JP2000005569A - Series multistage filtration method - Google Patents

Series multistage filtration method

Info

Publication number
JP2000005569A
JP2000005569A JP10192317A JP19231798A JP2000005569A JP 2000005569 A JP2000005569 A JP 2000005569A JP 10192317 A JP10192317 A JP 10192317A JP 19231798 A JP19231798 A JP 19231798A JP 2000005569 A JP2000005569 A JP 2000005569A
Authority
JP
Japan
Prior art keywords
substance
virus
filtration
filter
removal rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10192317A
Other languages
Japanese (ja)
Inventor
Hidetoshi Hidaka
秀敏 日高
Masanobu Yokoki
正信 横木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP10192317A priority Critical patent/JP2000005569A/en
Publication of JP2000005569A publication Critical patent/JP2000005569A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a means for improving the rejection rate of a material such as virus to be removed without lowering the permeability of the material such as useful protein to be recovered. SOLUTION: A material to be removed is filtered off from a soln. contg. a material to be removed and a material to be recovered. In this case, a filter having >=2 rejection rate of the material to be removed per stage and >=90% permeability of the material to be recovered is plurally used in series to conduct multistage filtration. The filter is a porous hollow fiber made of the regenerated fiber of the cuprammonium process, and the material to be removed is virus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明に属する技術分野】本発明は、溶液中の除去対象
物質を効率的に除去する方法に関し、具体的には血漿や
血漿分画製剤、細胞培養培地あるいはバイオ医薬等のウ
イルスが混入する可能性がある溶液からウイルスを効率
的に除去するための濾過方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently removing a substance to be removed from a solution, and more specifically to a method in which a virus such as plasma, a plasma fraction preparation, a cell culture medium, or a biopharmaceutical is contaminated. The present invention relates to a filtration method for efficiently removing a virus from a potential solution.

【0002】[0002]

【従来の技術】多段濾過方法は、一般的に濾過フィルタ
ーの分野において濾過の効率的な手段として以前から知
られている。例えば、特開平2−167232号公報に
は、血液凝固第八因子製剤を銅アンモニア法再生セルロ
ース製多孔膜中空糸を用いての多段濾過方法が示されて
いる。この多段濾過方法では、血液凝固第八因子製剤か
らウイルスを除去する方法が開示されており、前段のフ
ィルターに使用する中空糸膜の平均孔径が後段に使用す
るフィルターのそれより小さくならないように配置する
ことを特徴としている。そして、この方法は後段に使用
するメインフィルターで目詰まりする大きな物質を前段
に使用するプレフィルターで除去することにより、後段
に使用するメインフィルターの本来の性能(有用タンパ
ク質の高透過率とウイルスの高除去率)を引き出すこと
にある。
BACKGROUND OF THE INVENTION Multistage filtration methods have long been known in the field of filtration filters as an efficient means of filtration. For example, Japanese Patent Application Laid-Open No. 2-167232 discloses a multistage filtration method in which a blood coagulation factor VIII preparation is produced using a porous membrane hollow fiber made of cellulose regenerated by a copper ammonia method. In this multi-stage filtration method, a method for removing a virus from a blood coagulation factor VIII product is disclosed, and the arrangement is such that the average pore size of the hollow fiber membrane used in the first stage filter is not smaller than that of the filter used in the second stage. It is characterized by doing. In this method, large substances clogged by the main filter used in the subsequent stage are removed by the pre-filter used in the previous stage, so that the original performance of the main filter used in the subsequent stage (high transmittance of useful proteins and virus High removal rate).

【0003】さらに、一般的に性能を向上させることを
目的として、メインフィルター自体を多段に配置する手
段が採用されている。しかしながら、多段濾過によるウ
イルス除去性能向上効果を享受しつつ、有用タンパク質
の透過率の低下を抑制するという二律背反する性能を高
いレベルで同時に満たすような手段は確立されていなか
った。
Further, in general, for the purpose of improving performance, means for arranging main filters themselves in multiple stages has been adopted. However, there has not been established any means for simultaneously satisfying the trade-off performance at a high level of suppressing the decrease in the transmittance of useful proteins while enjoying the effect of improving the virus removal performance by multi-stage filtration.

【0004】[0004]

【発明が解決しようとする課題】本発明は、有用タンパ
ク質の透過率を低下させずに、ウイルス等の除去対象物
質の除去率を向上させる手段を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide means for improving the removal rate of a substance to be removed such as a virus without reducing the transmittance of a useful protein.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記従来
技術の課題を解決すべく鋭意研究を重ねた結果、1段濾
過で除去対象ウイルスの除去率が2以上であり、かつ回
収対象物質の有用タンパク質の透過率が90%以上であ
るフィルターを複数用いて、直列に多段濾過すること
が、ウイルス除去率を加算的に向上させ、かつ有用タン
パク質の透過率の低下を抑制しうる手段であることを見
出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above-mentioned problems of the prior art, and as a result, the removal rate of the virus to be removed by one-stage filtration is 2 or more, and Means in which multi-stage filtration is performed in series using a plurality of filters having a transmittance of a useful protein of a substance of 90% or more as a substance, whereby a virus removal rate can be additionally increased and a decrease in the transmittance of a useful protein can be suppressed. And completed the present invention.

【0006】即ち本発明は、除去対象物質と回収対象物
質を含有する溶液から除去対象物質を濾過・分離するに
際し、1段濾過での除去対象物質の除去率が2以上であ
り、かつ回収対象物質の透過率が90%以上であるフィ
ルターを複数用いて直列に多段濾過することを特徴とす
る濾過・分離法であり、さらにフィルターが銅アンモニ
ア法再生セルロース製多孔中空糸であり、除去対象物質
がウイルスである前記濾過・分離法である。
That is, according to the present invention, when filtering and separating a substance to be removed from a solution containing the substance to be removed and the substance to be recovered, the removal rate of the substance to be removed by one-stage filtration is 2 or more, and A filtration / separation method in which a plurality of filters having a substance transmittance of 90% or more are filtered in series using a plurality of filters. The filter is a porous hollow fiber made of regenerated cellulose using a copper-ammonia method. Is a virus / filtration / separation method.

【0007】対象となるウイルスの除去に関して一定の
有効性を有するフィルターを用いて1段濾過を行ってい
る血漿分画製剤の製造工程中などでは、除去率を高めよ
うとして、同様あるいはさらに除去性能の高いフィルタ
ーを付加して、多段濾過を行えば、一般に総合的な除去
率の向上は実現できても、透過・回収すべき有用タンパ
ク質の透過性が低下する。一方、有用タンパク質の透過
性を維持するために、平均孔径のより大きな膜を用いれ
ば、有用タンパク質の透過性は向上するものの、多段濾
過しても、対象ウイルスの除去率が加算的に向上せず、
十分な効果が得られない場合がある。本発明は、かくの
ごとき二律背反の特性の間で、除去対象物質に対する特
定の除去率と回収対象物質に対する特定の透過率を有す
るフィルターを選択し、該フィルターを多段に用いるこ
とにより、加算的にウイルスの除去性能を向上させつ
つ、かつ有用タンパク質の透過性能の低下を抑制し得る
ことを見いだしたことにある。
[0007] During the production process of a plasma fraction preparation in which one-stage filtration is carried out using a filter having a certain degree of effectiveness with respect to the removal of the target virus, a similar or even higher removal performance is attempted to increase the removal rate. If a multi-stage filtration is carried out by adding a filter having a high molecular weight, generally the overall removal rate can be improved, but the permeability of useful proteins to be permeated and recovered is reduced. On the other hand, if a membrane having a larger average pore size is used to maintain the permeability of the useful protein, the permeability of the useful protein is improved, but the removal rate of the target virus is additionally improved even in multi-stage filtration. Without
In some cases, a sufficient effect cannot be obtained. The present invention selects a filter having a specific removal rate for a substance to be removed and a specific transmittance for a substance to be removed between the two trade-off characteristics as described above, and using the filter in multiple stages, thereby making it additive. It has been found that it is possible to improve the virus removal performance and to suppress a decrease in useful protein permeation performance.

【0008】本発明で言う除去率とは、−log(濾液
中の除去対象物質濃度/元液中の除去対象物質濃度)で
表される。本発明において濾過対象溶液としては、血
漿、血清、血漿分画製剤の製造過程の中間精製物の溶
液、バイオ医薬品の製造過程の中間精製物の溶液等があ
り、その場合、除去対象物質はHIV, HCV, Polio, Parvo
等の各種のウイルスおよび異常プリオンタンパク質等で
あり、回収対象物質は血液凝固第VIII因子、同第IX因
子、スロンビン、スロンビン・アンチスロンビン複合
体、フィブリノーゲン、免疫グロブリン、アルブミン等
である。
The removal rate referred to in the present invention is represented by -log (concentration of the substance to be removed in the filtrate / concentration of the substance to be removed in the original solution). In the present invention, the solution to be filtered includes plasma, serum, a solution of an intermediate purified product in the production process of a plasma fraction preparation, a solution of an intermediate purified product in the production process of a biopharmaceutical, etc., in which case, the substance to be removed is HIV. , HCV, Polio, Parvo
And the target substances to be collected include blood coagulation factor VIII, factor IX, thrombin, a thrombin / antithrombin complex, fibrinogen, immunoglobulin, albumin and the like.

【0009】濾過方法としては元液を閉鎖された1次側
空間に圧入するdead-end方式、元液を循環させながらそ
の一部を濾過するタンジェンシャル方式があげられ、液
温度、pH・塩濃度等の元液性状は回収対象物の特性を
維持することと一定の濾過特性を発揮することの両面か
ら適宜決められる。また、濾過圧力、濾過容量(単位膜
面積当たりの濾過量)、元液循環速度(タンジェンシャ
ル濾過の場合)等のフィルター使用条件は除去対象物質
の除去レベル、回収対象物質の純度、濾過所要時間等の
目標とフィルターの性能、さらにはそれらの条件が回収
対象物質の特性維持に与える影響などの観点から総合的
に決定する。
As a filtration method, there are a dead-end method in which the original liquid is injected into a closed primary space, and a tangential method in which a part of the original liquid is filtered while circulating the original liquid. The properties of the original liquid, such as the concentration, are determined as appropriate from both aspects of maintaining the characteristics of the object to be recovered and exhibiting certain filtration characteristics. The filter use conditions such as filtration pressure, filtration volume (filtration amount per unit membrane area), and original liquid circulation rate (in the case of tangential filtration) are defined as the removal level of the substance to be removed, the purity of the substance to be removed, and the time required for filtration. It is determined comprehensively from the viewpoints of the objectives such as and the like, the performance of the filter, and the effects of those conditions on maintaining the characteristics of the target substance.

【0010】本発明では複数のフィルターを直列に配列
するのでdead-end方式を採用することが好ましい。本発
明によれば、溶液中の除去対象物質を効率的に除去する
濾過方法が提供されるが、除去対象物質が例えばウイル
スである場合は除去率が通常4以上、好ましくは5以上
であることが望ましいとされるので、2段濾過法の場
合、これを実現するため1段濾過法での除去対象物質の
除去率が2.5以上であることが望ましい。また、同様
に回収対象物質の総合透過率を90%以上に保つため
に、1段濾過法での回収対象物質の透過率は95%以上
であることが望ましい。
In the present invention, since a plurality of filters are arranged in series, it is preferable to employ a dead-end system. According to the present invention, a filtration method for efficiently removing a substance to be removed from a solution is provided. When the substance to be removed is, for example, a virus, the removal rate is usually 4 or more, preferably 5 or more. In the case of the two-stage filtration method, the removal rate of the substance to be removed by the one-stage filtration method is desirably 2.5 or more in order to realize this. Similarly, in order to maintain the total transmittance of the substance to be recovered at 90% or more, the transmittance of the substance to be recovered by the single-stage filtration method is desirably 95% or more.

【0011】発明におけるフィルターとしては、ウイル
ス除去を目的とする場合には銅アンモニア法再生セルロ
ース製の中空糸膜、ポリフッ化ビニリデンの平膜及び中
空糸膜、ポリアクリロニトリルの平膜及び中空糸膜等が
あげられる。特に銅アンモニア法再生セルロース製中空
糸膜は比較的大きさの似通っているウイルスと有用タン
パク質を効率的に篩い分けるための膜の孔径コントロー
ルが容易であり、かつ素材の化学的特性によりタンパク
質の吸着が少なく好ましい。
The filter in the present invention is preferably a hollow fiber membrane made of cellulose regenerated by a copper-ammonia method, a flat membrane and a hollow fiber membrane of polyvinylidene fluoride, a flat membrane and a hollow fiber membrane of polyacrylonitrile, etc. for the purpose of removing viruses. Is raised. In particular, the hollow fiber membrane made of regenerated cellulose using the cuprammonium method is easy to control the pore size of the membrane for efficiently sifting relatively similar viruses and useful proteins, and adsorbing proteins due to the chemical characteristics of the material. Is preferred.

【0012】本発明による実施例を説明するに先立ち、
本明細書中に用いられた各種物性値の測定方法を以下に
示す。 [平均孔径測定]水をフィルターで濾過した場合の水の
流出量Vを測定し、(1)式から平均孔径(D)を求め
た。 D=2.0(VTμ/PAρr )1/2 (1) ここで、 V :水の流出量 T :中空糸の膜厚 P :圧力差 A :膜面積 ρr :空孔率 μ :水の粘性率
Prior to describing an embodiment according to the present invention,
The methods for measuring various physical properties used in the present specification are shown below. [Measurement of Average Pore Diameter] The outflow amount V of water when water was filtered with a filter was measured, and the average pore diameter (D) was obtained from the equation (1). D = 2.0 (VTμ / PAρr) 1/2 (1) where, V: water outflow T: film thickness of hollow fiber P: pressure difference A: membrane area ρr: porosity μ: viscosity of water rate

【0013】[ウイルス除去率の測定]本発明における
ウイルス除去に関する効果の判定はウイルスの対数減少
率(LRV)で表された除去率を測定することによって
おこなった。ウイルスのLRVはウイルスを含む溶液
(元液)を濾過し、濾液中のウイルス濃度を測定するこ
とによって(2)式により求めた。ウイルスの濃度の測
定は一般に動物細胞を利用した感染性試験、PCR法等
により行われる。本願明細書における実施例、比較例に
おいては、いずれも動物細胞感染性試験により測定し
た。 LRV=−log(濾液中のウイルス濃度/元液中のウイルス濃度)(2)
[Measurement of Virus Removal Rate] The effect on virus removal in the present invention was determined by measuring a virus removal rate expressed as a logarithmic reduction rate (LRV) of the virus. The LRV of the virus was determined from the formula (2) by filtering a solution containing the virus (original solution) and measuring the virus concentration in the filtrate. The measurement of the virus concentration is generally performed by an infectivity test using animal cells, a PCR method, or the like. In Examples and Comparative Examples in the specification of the present application, all were measured by an animal cell infectivity test. LRV = -log (virus concentration in filtrate / virus concentration in original solution) (2)

【0014】[回収対象タンパク質の透過率の測定]本
発明における回収対象タンパク質の透過率は(3)式に
より算出される。 透過率 [%]=(濾液中のタンパク質濃度/元液中のタンパク質濃度) ×100 (3) また、タンパク質濃度の測定は一般に、各種発色試薬と
反応させ分光光度計を用いて吸光度を測定する方法、あ
るいは液体クロマトグラフ法等により行われる。本願明
細書における実施例、比較例においては、いずれも、吸
光度測定法により測定した。
[Measurement of transmittance of protein to be recovered] The transmittance of the protein to be recovered in the present invention is calculated by the formula (3). Transmittance [%] = (protein concentration in filtrate / protein concentration in original solution) × 100 (3) In addition, protein concentration is generally measured by reacting with various coloring reagents and measuring absorbance using a spectrophotometer. The method is performed by a liquid chromatography method or the like. In the examples and comparative examples in the specification of the present application, all were measured by an absorbance measurement method.

【0015】[0015]

【発明の実施の形態】次に、実施例および参考例によっ
て本発明をさらに具体的に説明する。
Next, the present invention will be described more specifically with reference to examples and reference examples.

【0016】[0016]

【実施例1】有効膜面積0.001m2 で平均孔径35
nmのフィルター(「PLANOVA 35N」:旭化成工業株
式会社製)を使用した。109 以上の力価のBVDV
(Bovine Viral Diarrhea Virus)をスパイクした1%
牛γグロブリン溶液を該フィルターを用いて、dead-end
方式で、0.25kg/cm2 の定圧で濾過した。中空
糸膜 濾過方法は図1、図2、図3に示したように、直
列で1段、2段、3段とフィルターを連結して濾過し
た。結果を表1に示す。
Example 1 An effective membrane area of 0.001 m 2 and an average pore diameter of 35
nm filter ("PLANOVA 35N": manufactured by Asahi Kasei Corporation) was used. BVDV with a titer of 10 9 or more
(Bovine Viral Diarrhea Virus) spiked 1%
The bovine gamma globulin solution is used for dead-end
The solution was filtered at a constant pressure of 0.25 kg / cm 2 . As shown in FIGS. 1, 2, and 3, the hollow fiber membrane was filtered by connecting a first stage, a second stage, a third stage, and a filter in series. Table 1 shows the results.

【0017】[0017]

【表1】 [Table 1]

【0018】表1に示すとおり、1段濾過でBVDV除
去率が2以上、牛γグロブリンの透過率が90%以上と
なるPLANOVA 35Nフィルターを用いて、直列に2段、
3段と段数を増やすことにより、BVDV除去率は4.
96、6.36と大きく向上した。一方、牛γグロブリ
ン透過率は2段濾過、3段濾過において、それぞれ88
%、86%といずれも高いレベルで維持できた。
As shown in Table 1, using a PLANOVA 35N filter having a BVDV removal rate of 2 or more and a bovine gamma globulin transmittance of 90% or more in one-stage filtration, two stages in series,
By increasing the number of stages to three, the BVDV removal rate becomes 4.
96, 6.36 greatly improved. On the other hand, the bovine gamma globulin transmittance was 88 88 respectively in the two-stage filtration and the three-stage filtration.
% And 86%, both could be maintained at high levels.

【0019】[0019]

【比較例1】有効膜面積0.001m2 で平均孔径15
nmのフィルター(「PLANOVA 15N」:旭化成工業株
式会社製)を使用した。109 以上の力価のBVDV
(Bovine Viral Diarrhea Virus)をスパイクした1%
牛γグロブリン溶液を該フィルターを用いて、dead-end
方式で、0.25kg/cm2 の定圧で濾過した。濾過
方法は図1、図2、図3に示したように、直列で1段、
2段、3段とフィルターを連結して濾過した。結果を表
2に示す。W
[Comparative Example 1] Effective pore area of 0.001 m 2 and average pore size of 15
nm filter (“PLANOVA 15N”: manufactured by Asahi Kasei Corporation) was used. BVDV with a titer of 10 9 or more
(Bovine Viral Diarrhea Virus) spiked 1%
The bovine gamma globulin solution is used for dead-end
The solution was filtered at a constant pressure of 0.25 kg / cm 2 . As shown in FIG. 1, FIG. 2, and FIG.
The filter was connected to the second and third stages and filtered. Table 2 shows the results. W

【0020】[0020]

【表2】 [Table 2]

【0021】表2に示すとおり、1段濾過でBVDV除
去率が2以上であるが、牛γグロブリン透過率が90%
以下であるフィルターを用いて、直列に2段、3段と段
数を増やしても、いずれも6.68を上回る高いBVD
V除去率を維持できたが、一方、牛γグロブリン透過率
は2段濾過、3段濾過において、それぞれ54%、51
%と大きく低下した。
As shown in Table 2, the BVDV removal rate by one-stage filtration was 2 or more, but the bovine gamma globulin transmittance was 90%.
Even if the number of stages is increased to two or three in series using the following filters, a high BVD exceeding 6.68 in any case is obtained.
V removal rate could be maintained, while bovine gamma globulin permeability was 54% and 51% in two-stage filtration and three-stage filtration, respectively.
%.

【0022】[0022]

【比較例2】有効膜面積0.001m2 で平均孔径35
nmのフィルター(「PLANOVA 35N」:旭化成工業株
式会社製)を使用した。107.4 以上の力価のPoli
oウイルスをスパイクした1%牛γグロブリン溶液を該
フィルターを用いて、dead-end方式で、0.25kg/
cm2 の定圧で濾過した。濾過方法は図1、図2、図3
に示したように、直列で1段、2段、3段とフィルター
を連結して濾過した。結果を表3に示す。
Comparative Example 2 An average pore diameter of 35 with an effective membrane area of 0.001 m 2.
nm filter ("PLANOVA 35N": manufactured by Asahi Kasei Corporation) was used. Poli with a titer of 10 7.4 or more
o Using a 1% bovine gamma globulin solution spiked with the virus, 0.25 kg /
Filtered at a constant pressure of cm 2 . 1, 2 and 3
As shown in Table 1, the filters were connected in series with one, two, and three stages and filtered. Table 3 shows the results.

【0023】[0023]

【表3】 [Table 3]

【0024】表3に示すとおり、1段濾過で牛γグロブ
リンの透過率は90%以上を満たすが、Polioウイ
ルスの除去率が2に満たないPLANOVA 35Nフィルター
を用いて、直列に2段、3段と段数を増やしても、Po
lioウイルスの除去率は0.25、0.42と低いレ
ベルにとどまった。
As shown in Table 3, the filtration rate of bovine gamma globulin is 90% or more by one-stage filtration, but the removal rate of Polio virus is less than 2, using a PLANOVA 35N filter having a filtration rate of 2 or less, and two-stage filtration is performed. Even if the number of steps and the number of steps are increased, Po
The removal rate of lio virus was as low as 0.25 and 0.42.

【0025】[0025]

【発明の効果】1段濾過での除去対象物質の除去率が2
以上であり、かつ回収対象物質の透過率が90%以上で
あるフィルターを複数用いて直列に多段濾過することに
より、例えば回収対象物質であるタンパク質透過率の低
下を抑制し、かつ除去対象物質であるウイルスの除去率
が加算的に向上させることが可能になり、本発明によれ
ば、溶液中の除去対象物質を効率的に除去する濾過方法
が提供できた。
According to the present invention, the removal rate of the substance to be removed by one-stage filtration is 2
As described above, by performing multiple-stage filtration in series using a plurality of filters having a transmittance of the target substance of 90% or more, for example, it is possible to suppress a decrease in the protein transmittance as the target substance and to remove the target substance. According to the present invention, a filtration method for efficiently removing a substance to be removed from a solution can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】1段濾過法の装置の構成を示す概念図である。FIG. 1 is a conceptual diagram showing a configuration of an apparatus of a one-stage filtration method.

【図2】2段濾過法の装置の構成を示す概念図である。FIG. 2 is a conceptual diagram showing a configuration of an apparatus of a two-stage filtration method.

【図3】3段濾過法の装置の構成を示す概念図である。FIG. 3 is a conceptual diagram showing a configuration of an apparatus of a three-stage filtration method.

フロントページの続き Fターム(参考) 4C077 AA11 BB02 CC06 KK11 LL05 MM05 MM09 NN03 NN15 PP03 4D006 GA02 KA53 KA55 MA01 MA03 MA22 MB06 MC13 MC29 MC39 PB52 PB55 PC41 Continued on the front page F term (reference) 4C077 AA11 BB02 CC06 KK11 LL05 MM05 MM09 NN03 NN15 PP03 4D006 GA02 KA53 KA55 MA01 MA03 MA22 MB06 MC13 MC29 MC39 PB52 PB55 PC41

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 除去対象物質と回収対象物質を含有する
溶液から除去対象物質を濾過・分離するに際し、1段濾
過での除去対象物質の除去率が2以上であり、かつ回収
対象物質の透過率が90%以上であるフィルターを複数
用いて直列に多段濾過することを特徴とする除去対象物
質の濾過・分離方法。
When filtering and separating a substance to be removed from a solution containing the substance to be removed and the substance to be recovered, the removal rate of the substance to be removed by one-stage filtration is 2 or more, and the permeation of the substance to be collected is permeated. A method for filtering / separating a substance to be removed, characterized in that a plurality of filters having a ratio of 90% or more are used to perform multistage filtration in series.
【請求項2】 フィルターが銅アンモニア法再生セルロ
ース製多孔膜中空糸であることを特徴とする請求項1記
載の濾過・分離方法。
2. The method for filtration and separation according to claim 1, wherein the filter is a porous membrane hollow fiber made of cellulose regenerated by a copper ammonia method.
【請求項3】 除去対象物質がウイルスであることを特
徴とする請求項1または2記載の濾過・分離方法。
3. The method according to claim 1, wherein the substance to be removed is a virus.
JP10192317A 1998-06-24 1998-06-24 Series multistage filtration method Withdrawn JP2000005569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10192317A JP2000005569A (en) 1998-06-24 1998-06-24 Series multistage filtration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10192317A JP2000005569A (en) 1998-06-24 1998-06-24 Series multistage filtration method

Publications (1)

Publication Number Publication Date
JP2000005569A true JP2000005569A (en) 2000-01-11

Family

ID=16289281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10192317A Withdrawn JP2000005569A (en) 1998-06-24 1998-06-24 Series multistage filtration method

Country Status (1)

Country Link
JP (1) JP2000005569A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5403827B2 (en) * 2008-05-22 2014-01-29 旭化成メディカル株式会社 Filtration method
JP2016511238A (en) * 2013-02-01 2016-04-14 アンピオ ファーマシューティカルズ,インコーポレイテッド Method for producing diketopiperazine and diketopiperazine-containing compositions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5403827B2 (en) * 2008-05-22 2014-01-29 旭化成メディカル株式会社 Filtration method
US9272245B2 (en) 2008-05-22 2016-03-01 Asahi Kasei Medical Co., Ltd. Filtration method
JP2016511238A (en) * 2013-02-01 2016-04-14 アンピオ ファーマシューティカルズ,インコーポレイテッド Method for producing diketopiperazine and diketopiperazine-containing compositions

Similar Documents

Publication Publication Date Title
EP1206961B1 (en) Filter membranes for physiologically active substances
EP0552192B1 (en) Improved tangential filtration process and apparatus
CN102164657B (en) Use of porous hollow-fiber membrane for producing clarified biomedical culture medium
JP2003519005A (en) Cross flow filtration device
US6767466B2 (en) Leukocyte filter construction
CA2084873A1 (en) Process and apparatus for removal of dna and viruses
US7919592B2 (en) Method for separating off viruses from a protein solution by means of nanofiltration
Schwartz et al. Introduction to tangential flow filtration for laboratory and process development applications
KR101376410B1 (en) Method of concentrating shear-sensitive biopolymers using hollow fibre membranes
US4863609A (en) Process for the fractional separation of protein mixtures by means of membranes
JP5080713B2 (en) Method for producing virus-removed plasma protein composition by porous membrane treatment, virus-removed plasma protein composition, and virus removal method
JP4646114B2 (en) Plasma preparation or serum preparation and method for producing the same
JP2000005569A (en) Series multistage filtration method
JPH02167232A (en) Method for removing virus
JPH10337445A (en) Virus removing method
EP0264931A2 (en) A membrane for the separation of blood plasma components
JPH08187086A (en) Purification of viral gene
JP2009095701A (en) Multistage multilayer flat membrane
Higuchi et al. Rejection of single stranded and double stranded DNA by porous hollow fiber membranes
JP3439503B2 (en) Protein separation and purification method
JPH0823976A (en) Purification of plasmid dna having super-coil form
JP2717458B2 (en) Filtration method
EP0262656A2 (en) A membrane for the separation of blood plasma components
JP2013075838A (en) Method of producing purified hemoglobin
JPH09313130A (en) Purification of yeast essence

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906