JP2000002666A - Multiple reflection measuring apparatus - Google Patents

Multiple reflection measuring apparatus

Info

Publication number
JP2000002666A
JP2000002666A JP17172898A JP17172898A JP2000002666A JP 2000002666 A JP2000002666 A JP 2000002666A JP 17172898 A JP17172898 A JP 17172898A JP 17172898 A JP17172898 A JP 17172898A JP 2000002666 A JP2000002666 A JP 2000002666A
Authority
JP
Japan
Prior art keywords
light
light transmitting
image
transmitting member
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17172898A
Other languages
Japanese (ja)
Inventor
Hirotaka Ono
裕孝 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP17172898A priority Critical patent/JP2000002666A/en
Publication of JP2000002666A publication Critical patent/JP2000002666A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multiple reflection measuring apparatus by which a multiple reflection can be measured quantitatively. SOLUTION: A holding part 3 which holds a light transmission member 2 having a light transmission layer 20 is provided. An inspection light source 4 which makes inspection light B incident on the light transmission member 2 at an angle of incidence α tilted with respect to the normal line S of the light transmission layer 20 on the light transmission member 2 held by the holding part 3 is provided. A light receiving member 5 by which a main reflected image K2 based on the reflection of the inspection light B at the light transmission member 2 and a ghost image H2 as a subreflected image are received is provided in such a way that the degree of the multiple reflection of the light transmission member 2 can be judged on the basis of the interval ΔM between the main reflected image K2 and the ghost image H2 a the subreflected image.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、後見鏡やエレクト
ロクロミック表示素子等といった光透過性をもつ光透過
部材における多重写りの度合を測定する多重写り測定装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multiple image measuring apparatus for measuring the degree of multiple image reflection on a light transmitting member having a light transmitting property, such as a rear-view mirror or an electrochromic display device.

【0002】[0002]

【従来の技術】後見鏡なとでは、二重写りすることがあ
る。例えば、図11(A)(B)に示すように、後見鏡
100で建物200などをみたときには、主反射像K2
のほかに、副反射像であるゴースト像H2が写ることが
ある。従来より、二重写りの度合は、後見鏡100に対
面する試験者の肉眼による官能試験で判定していた。
2. Description of the Related Art In a rear view mirror, double images may occur. For example, as shown in FIGS. 11A and 11B, when the building 200 and the like are viewed with the rear-view mirror 100, the main reflection image K2
In addition, a ghost image H2 which is a sub-reflection image may appear. Conventionally, the degree of double reflection has been determined by a sensory test with the naked eye of an examiner facing the rearview mirror 100.

【0003】また特開平7−128242号公報には、
光源として機能するLED素子、検査対象物である透明
ガラス、撮像素子とをそれぞれ直列に配置し、LED素
子から照射された可視光を透明ガラスにこれの厚み方向
に貫通させるとともに、透明ガラスのうちの微小領域を
介してLED素子を撮像素子で撮像し、撮像に基づいて
透明ガラスの歪みの有無を判別する技術が知られてい
る。
[0003] Japanese Patent Application Laid-Open No. 7-128242 discloses that
An LED element functioning as a light source, a transparent glass to be inspected, and an image sensor are arranged in series, and visible light emitted from the LED element is passed through the transparent glass in the thickness direction thereof. A technique is known in which an image of an LED element is captured by an image sensor through a very small area, and the presence or absence of distortion of the transparent glass is determined based on the captured image.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記した公報
方式とは異なり、光透過部材での検知光の反射を利用し
た方式の多重写り測定装置を提供することを課題とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a multiplex reflection measuring apparatus of a type utilizing reflection of detection light at a light transmitting member, which is different from the above-mentioned publication system.

【0005】[0005]

【課題を解決するための手段】本発明の多重写り測定装
置は、光透過層と光反射層とが積層された光透過部材を
保持する保持部と、保持部に保持された光透過部材の光
透過層の法線に対して傾斜した入射角で、検査光を光透
過部材に光透過層側から入射させる検査光源と、主反射
像と副反射像との間隔に基づいて光透過部材の多重写り
の度合を判定できるように、光透過部材での検知光の反
射に基づく主反射像と副反射像とを受光する受光部材と
を具備していることを特徴とするものである。
SUMMARY OF THE INVENTION A multiple reflection measuring apparatus according to the present invention comprises a holding portion for holding a light transmitting member having a light transmitting layer and a light reflecting layer laminated thereon, and a light transmitting member held by the holding portion. An inspection light source that causes inspection light to enter the light transmitting member from the light transmitting layer side at an angle of incidence that is inclined with respect to the normal line of the light transmitting layer, and a light transmitting member that is based on the distance between the main reflection image and the sub reflection image. A light receiving member is provided for receiving a main reflection image and a sub reflection image based on the reflection of the detection light by the light transmitting member so that the degree of multiple reflection can be determined.

【0006】[0006]

【発明の実施の形態】保持部は光透過部材を保持するも
のである。保持部は、光透過部材を所定の傾斜角で傾斜
させた状態で保持する方式が好ましい。傾斜角として
は、適宜選択でき、水平方向に対して20〜70度程
度、例えば45度にできる。光透過部材は光透過層を備
えているものである。光透過層としては、一般的には、
無機系または有機系の透明なガラス板を採用できる。光
透過部材としては、光透過層を備えているものの、光反
射層をもたない形態でも良い。あるいは、光透過部材と
しては、光透過層と光反射層とが積層された形態でも良
い。代表的な光透過部材としては、光透過層の背面にア
ルミ蒸着膜等の光反射層を積層した構造をもつ鏡、表示
素子(例えばエレクトロクロミック素子)の本体があげ
られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A holding section holds a light transmitting member. It is preferable that the holding unit holds the light transmitting member in a state of being inclined at a predetermined inclination angle. The inclination angle can be appropriately selected, and can be about 20 to 70 degrees, for example, 45 degrees with respect to the horizontal direction. The light transmitting member has a light transmitting layer. As the light transmitting layer, generally,
An inorganic or organic transparent glass plate can be employed. The light transmitting member may have a light transmitting layer but may have no light reflecting layer. Alternatively, the light transmitting member may have a configuration in which a light transmitting layer and a light reflecting layer are stacked. Typical light transmitting members include a mirror having a structure in which a light reflecting layer such as an aluminum vapor-deposited film is laminated on the back surface of the light transmitting layer, and a main body of a display element (for example, an electrochromic element).

【0007】検査光源は、保持部に保持された光透過部
材の光透過層の法線に対して傾斜した入射角で、検査光
を光透過部材に入射させる。検査光源としては指向性が
良い光を照射するものが好ましく、指向性が極めて良い
光を照射するレーザ素子が好ましい。光は可視光が好ま
しい。光の色は特に限定されず、赤色、青色、緑色、黄
色などを問わない。
The inspection light source causes the inspection light to enter the light transmitting member at an angle of incidence that is inclined with respect to the normal to the light transmitting layer of the light transmitting member held by the holding unit. As the inspection light source, one that emits light having good directivity is preferable, and a laser element that emits light having extremely good directivity is preferable. The light is preferably visible light. The color of light is not particularly limited, and may be red, blue, green, yellow, or the like.

【0008】受光部材は、光透過部材での検知光の反射
に基づく主反射像と副反射像(ゴースト像とも呼ばれ
る)とを受光するものである。受光部材としては、受光
面をもつスクリーン、撮像形態を電気信号に変換し得る
CCD素子等の受光素子を採用できる。そして本発明に
よれば、受光部材で受光した主反射像と副反射像との間
隔に基づいて光透過部材における多重写りの度合を判定
できる。
The light receiving member receives a main reflection image and a sub reflection image (also called a ghost image) based on the reflection of the detection light by the light transmitting member. As the light receiving member, a screen having a light receiving surface, a light receiving element such as a CCD element capable of converting an imaging mode into an electric signal can be adopted. Further, according to the present invention, the degree of multiple reflection on the light transmitting member can be determined based on the distance between the main reflection image and the sub reflection image received by the light receiving member.

【0009】主反射像と副反射像との間隔の測定は、作
業者が肉眼に基づいてスケール目盛等で測定しても良
く、あるいは、CCD素子等の受光素子による電気信号
に基づいて測定しても良い。
The distance between the main reflection image and the sub reflection image may be measured by a worker on a scale or the like based on the naked eye, or may be measured based on an electric signal from a light receiving element such as a CCD element. May be.

【0010】[0010]

【実施例】以下、図1〜図4を参照して第1実施例を説
明する。 (第1実施例)本実施例によれば、基部1には、光透過
部材2を保持するための保持部3が設けられている。保
持部3の保持面3aはθ(水平方向に対して実質的に4
5度)傾いて配置されている。保持部3には第1ガイド
10が水平方向つまり矢印X1,X2方向に沿って延設
されている。第1ガイド10を利用して保持部3に設置
された光透過部材2は、第1ガイド10に沿って矢印X
1,X2方向に保持部3に対して相対移動できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment will be described below with reference to FIGS. (First Embodiment) According to the present embodiment, the base 1 is provided with the holding portion 3 for holding the light transmitting member 2. The holding surface 3a of the holding portion 3 has θ (substantially 4 with respect to the horizontal direction).
(5 degrees). A first guide 10 extends in the holding section 3 in the horizontal direction, that is, along the directions of arrows X1 and X2. The light transmitting member 2 installed on the holding unit 3 using the first guide 10 moves along the first guide 10 with an arrow X
It can move relative to the holding unit 3 in the X and X directions.

【0011】基部1には、水平方向に沿った第2ガイド
11が設けられている。第2ガイド11は第1ガイド1
0と直交する向きに配設されている。検査光源として機
能する半導体レーザ素子4が第2ガイド11に水平方向
に沿ってつまり矢Y1,Y2方向に移動可能に設けられ
ている。半導体レーザ素子4は、保持部3の保持面3a
の上方に配置されている。半導体レーザ素子4(出力:
4mW)は、指向性が高く拡散性が少ない可視のレーザ
光(波長:670nm、スポット径:0.5mm、赤
色)を検知光として照射する。
The base 1 is provided with a second guide 11 extending in the horizontal direction. The second guide 11 is the first guide 1
It is arranged in a direction orthogonal to 0. A semiconductor laser element 4 functioning as an inspection light source is provided on the second guide 11 so as to be movable in a horizontal direction, that is, in directions of arrows Y1 and Y2. The semiconductor laser element 4 has a holding surface 3 a of the holding section 3.
It is arranged above. Semiconductor laser device 4 (output:
4 mW) irradiates visible laser light (wavelength: 670 nm, spot diameter: 0.5 mm, red) having high directivity and low diffusion as detection light.

【0012】基部1から距離L隔てた位置に、垂直面状
に配置されたスクリーンである受光部材5が配置されて
いる。本実施例では、駆動源6が駆動すると、基部1と
受光部材5との少なくとも一方が第3ガイド60にそっ
て移動し、基部1と受光部材5との間の間隔Lは調整さ
れる。従って駆動源6は、半導体レーザ素子4と受光部
材5との間の距離を可変とする距離可変手段として機能
する。駆動源6としては、モータ機構またはシリンダ機
構を採用できる。
A light receiving member 5, which is a screen arranged in a vertical plane, is arranged at a distance L from the base 1. In this embodiment, when the drive source 6 is driven, at least one of the base 1 and the light receiving member 5 moves along the third guide 60, and the distance L between the base 1 and the light receiving member 5 is adjusted. Therefore, the drive source 6 functions as a distance varying unit that varies the distance between the semiconductor laser element 4 and the light receiving member 5. As the drive source 6, a motor mechanism or a cylinder mechanism can be adopted.

【0013】測定の際には、図1に示すように、測定対
象物である光透過部材2を保持部3に保持する。光透過
部材2は水平方向に対してθ(実質的に45度)傾斜し
て配置される。光透過部材2は、一定肉厚をもつガラス
板である光透過層20の背面に、アルミ蒸着膜等の光反
射層23が積層されたものである。光反射層23の反射
率は光透過層20の表面20aの反射率よりもかなり高
い。
At the time of measurement, as shown in FIG. 1, a light transmitting member 2 which is an object to be measured is held by a holding portion 3. The light transmitting member 2 is arranged to be inclined θ (substantially 45 degrees) with respect to the horizontal direction. The light transmitting member 2 is formed by laminating a light reflecting layer 23 such as an aluminum vapor-deposited film on the back surface of a light transmitting layer 20 which is a glass plate having a certain thickness. The reflectivity of the light reflecting layer 23 is considerably higher than the reflectivity of the surface 20a of the light transmitting layer 20.

【0014】半導体レーザ素子4を所望の位置に設定
し、半導体レーザ素子4からレーザ光Bを下方に向けて
実質的に鉛直方向に沿って照射する。レーザ光Bは、光
透過部材2の光透過層20の法線Sに対して傾斜した入
射角αで、光透過部材2に光透過層20側から入射す
る。この結果、図3に示すように、レーザ光Bが、光透
過部材2のうち反射率が高い光反射層23で反射し、光
強度の強い主反射光K1となる。またレーザ光Bの一部
が光透過部材2のうち反射率が低い光透過層20の表面
20aで反射し、光強度が弱い副反射光としてのゴース
ト光H1となる。
The semiconductor laser element 4 is set at a desired position, and a laser beam B is emitted downward from the semiconductor laser element 4 substantially in the vertical direction. The laser beam B is incident on the light transmitting member 2 from the light transmitting layer 20 side at an incident angle α inclined with respect to the normal S of the light transmitting layer 20 of the light transmitting member 2. As a result, as shown in FIG. 3, the laser beam B is reflected by the light reflecting layer 23 having a high reflectance in the light transmitting member 2, and becomes the main reflected light K1 having a high light intensity. Further, a part of the laser light B is reflected on the surface 20a of the light transmitting layer 20 having a low reflectance in the light transmitting member 2, and becomes the ghost light H1 as the sub-reflected light having a low light intensity.

【0015】これにより図4に示すように、受光部材5
においては、主反射光K1に基づいてスポット状の主反
射像K2が写るとともに、ゴースト光H1に基づいて微
小スポット状のゴースト像H2が副反射像として写る。
受光部材5において主反射像K2とゴースト像H2との
間の間隔ΔMが小さいときには、光透過部材2の二重写
りの度合いが小さい。また、間隔ΔMが大きいときに
は、光透過部材2の二重写りの度合いが大きい。本実施
例によれば、間隔ΔMを測定することにより、光透過部
材2における二重写りの度合いを定量的に測定できる。
As a result, as shown in FIG.
In, a spot-shaped main reflection image K2 is formed based on the main reflected light K1, and a minute spot-shaped ghost image H2 is formed as a sub-reflected image based on the ghost light H1.
When the distance ΔM between the main reflection image K2 and the ghost image H2 in the light receiving member 5 is small, the degree of double reflection of the light transmitting member 2 is small. When the interval ΔM is large, the degree of double reflection of the light transmitting member 2 is large. According to the present embodiment, the degree of double reflection on the light transmitting member 2 can be quantitatively measured by measuring the interval ΔM.

【0016】本実施例によれば、光透過部材2の測定個
所を変更するために、第1ガイド10に沿って矢印X
1,X2方向に光透過部材2を平行に相対移動させた
り、あるいは、半導体レーザ素子4を第2ガイド11に
水平方向に沿ってつまり矢印Y1,Y2方向に移動させ
たりする。このようにすれば、光透過部材2における測
定箇所の増加を図り得るため、二重写りに対する品質保
証に有効である。
According to this embodiment, in order to change the measuring point of the light transmitting member 2, the arrow X is moved along the first guide 10.
The light transmissive member 2 is relatively moved in parallel in the 1, X2 direction, or the semiconductor laser element 4 is moved in the second guide 11 along the horizontal direction, that is, in the directions of the arrows Y1, Y2. By doing so, the number of measurement points on the light transmitting member 2 can be increased, which is effective for quality assurance against double reflection.

【0017】ところで、光透過部材2の光透過層20の
表面20aと背面20cとの平行度が低いときには、基
部1と受光部材5との距離Lが変化した場合には、上記
したΔMの値が変化する傾向がある。従って光透過部材
2の光透過層20の表面20aと背面20cとの平行度
を把握する場合には、まず、半導体レーザ素子4からレ
ーザ光Bを照射し、主反射像K2とゴースト像H2との
間の間隔ΔM(1)を測定する第1測定工程を実施す
る。その後に、駆動源6を駆動させて基部1と受光部材
5との間の間隔Lを増大させたり、減少させたりして間
隔Lを変化させる工程を行う。このとき半導体レーザ素
子4及び光透過部材2をその位置に保持したままにして
おく。その後に、再び、主反射像K2とゴースト像H2
との間の間隔ΔM(2)を測定する第2測定工程を行な
う。
By the way, when the parallelism between the front surface 20a and the back surface 20c of the light transmitting layer 20 of the light transmitting member 2 is low, when the distance L between the base 1 and the light receiving member 5 changes, the value of ΔM described above is obtained. Tend to change. Therefore, when grasping the parallelism between the front surface 20a and the back surface 20c of the light transmitting layer 20 of the light transmitting member 2, first, the semiconductor laser element 4 irradiates the laser light B, and the main reflection image K2 and the ghost image H2 A first measuring step of measuring the interval ΔM (1) between the two. Thereafter, a step of driving the drive source 6 to increase or decrease the distance L between the base 1 and the light receiving member 5 to change the distance L is performed. At this time, the semiconductor laser element 4 and the light transmitting member 2 are kept in that position. Thereafter, again, the main reflection image K2 and the ghost image H2
A second measuring step of measuring the interval ΔM (2) between

【0018】そして、第1測定工程におけるΔM(1)
の値と、第2測定工程におけるΔM(2)の値とが同一
値あるいは接近値であるときには、光透過部材2の光透
過層20の表面20aと背面20cとの平行度が高いと
判定できる。また、第1測定工程におけるΔM(1)の
値と、第2測定工程におけるΔM(2)の値とがかなり
異なるときには、光透過部材2の光透過層20の表面2
0aと背面20cとの平行度が低いと判定できる。従っ
て本実施例の装置は、光透過層20の表面20aと背面
20cとの平行度を測定する平行度測定装置としても把
握できる。
Then, ΔM (1) in the first measurement step
Is equal to or close to the value of ΔM (2) in the second measurement step, it can be determined that the parallelism between the front surface 20a and the back surface 20c of the light transmitting layer 20 of the light transmitting member 2 is high. . When the value of ΔM (1) in the first measurement step is significantly different from the value of ΔM (2) in the second measurement step, the surface 2 of the light transmitting layer 20 of the light transmitting member 2
It can be determined that the parallelism between 0a and the back surface 20c is low. Therefore, the device of this embodiment can be understood as a parallelism measuring device that measures the parallelism between the front surface 20a and the back surface 20c of the light transmitting layer 20.

【0019】(第2実施例)図5は第2の実施例を示
す。第2実施例は第1実施例と基本的には同様の構成を
備えており、基本的には同様の作用効果を奏する。この
実施例では、光透過部材2Bは、ガラス板である光透過
層20をもつものの、光反射層を備えていない。レーザ
光Bが光透過部材2Bのうち光透過層20の背面20c
で反射し、光強度の強い主反射光K1となる。またレー
ザ光Bの一部が光透過部材2Bのうち光透過層20の表
面20aで反射し、光強度が弱いゴースト光H1とな
る。
(Second Embodiment) FIG. 5 shows a second embodiment. The second embodiment has basically the same configuration as the first embodiment, and basically has the same operation and effect. In this embodiment, the light transmitting member 2B has the light transmitting layer 20 which is a glass plate, but does not have the light reflecting layer. The laser beam B is emitted from the back surface 20c of the light transmitting layer 20 of the light transmitting member 2B.
, And becomes main reflected light K1 having a high light intensity. Further, a part of the laser light B is reflected on the surface 20a of the light transmitting layer 20 of the light transmitting member 2B, and becomes the ghost light H1 having low light intensity.

【0020】(第3実施例)図6は第3実施例の基本概
念を示す。第3実施例は第1実施例と基本的には同様の
構成を備えており、基本的には同様の作用効果を奏す
る。この例では、保持部3の保持面3aの上方に位置す
るように基部1に装備された第1ガイド10に、複数個
の半導体レーザ素子4が設けられている。即ち、傾斜状
態の保持面3aに沿って複数個の半導体レーザ素子4が
並設されている。
(Third Embodiment) FIG. 6 shows the basic concept of the third embodiment. The third embodiment has basically the same configuration as the first embodiment, and basically has the same operation and effect. In this example, a plurality of semiconductor laser elements 4 are provided on a first guide 10 provided on the base 1 so as to be located above the holding surface 3a of the holding section 3. That is, a plurality of semiconductor laser elements 4 are arranged side by side along the inclined holding surface 3a.

【0021】本実施例によれば、複数個の半導体レーザ
素子4から照射された検査光としてのレーザ光BA,B
B,BCについて、主反射光K1に基づいてスポット状
の主反射像K2が受光部材5に写り、ゴースト光H1に
基づいて微小スポット状のゴースト像H2が受光部材5
に写る。そのため光透過部材2について複数の測定個所
を短時間のうちに測定できる。
According to this embodiment, the laser beams BA and B as the inspection light emitted from the plurality of semiconductor laser elements 4 are used.
For B and BC, a spot-shaped main reflection image K2 is reflected on the light receiving member 5 based on the main reflected light K1, and a minute spot-shaped ghost image H2 is formed on the light receiving member 5 based on the ghost light H1.
It is reflected in. Therefore, it is possible to measure a plurality of measurement points in the light transmitting member 2 in a short time.

【0022】(第4実施例)図7は第4実施例の基本概
念を示す。第4実施例は第1実施例と基本的には同様の
構成を備えており、基本的には同様の作用効果を奏す
る。この例では、保持面3aの上方に位置するように基
部1に装備された第4ガイド14に、複数個の半導体レ
ーザ素子4が設けられている。即ち、複数個の半導体レ
ーザ素子4が保持面3aの長さ方向に沿って並設されて
いる。
(Fourth Embodiment) FIG. 7 shows the basic concept of the fourth embodiment. The fourth embodiment has basically the same configuration as the first embodiment, and basically has the same operation and effect. In this example, a plurality of semiconductor laser elements 4 are provided on a fourth guide 14 provided on the base 1 so as to be located above the holding surface 3a. That is, a plurality of semiconductor laser elements 4 are arranged side by side along the length direction of the holding surface 3a.

【0023】本実施例によれば、複数個の半導体レーザ
素子4から照射された光CA,CB,CC,CDのそれ
ぞれについて、前述同様に、主反射光K1に基づいてス
ポット状の主反射像K2が写り、ゴースト光H1に基づ
いて微小スポット状のゴースト像H2が写る。そのため
光透過部材2について複数の測定箇所を短時間のうち測
定できる。
According to this embodiment, for each of the light beams CA, CB, CC, and CD emitted from the plurality of semiconductor laser elements 4, a spot-like main reflection image is formed on the basis of the main reflection light K1, as described above. K2 is captured, and a ghost image H2 in the form of a minute spot is captured based on the ghost light H1. Therefore, a plurality of measurement points can be measured in a short time in the light transmitting member 2.

【0024】(第5実施例)図8は第5実施例の基本概
念を示す。第5実施例は第1実施例と基本的には同様の
構成を備えており、基本的には同様の作用効果を奏す
る。受光部材としてのCCD素子である受光素子53が
設けられている。半導体レーザ素子4から照射されたレ
ーザ光Bが、光透過部材2のうち反射率が高い光反射層
23で反射し、光強度の強い主反射光K1となる。また
レーザ光Bの一部が光透過部材2のうち反射率が低い光
透過層20の表面20aで反射し、光強度が弱いゴース
ト光H1となる。
(Fifth Embodiment) FIG. 8 shows the basic concept of the fifth embodiment. The fifth embodiment has basically the same configuration as the first embodiment, and basically has the same operation and effect. A light receiving element 53 which is a CCD element as a light receiving member is provided. The laser light B emitted from the semiconductor laser element 4 is reflected by the light reflecting layer 23 of the light transmitting member 2 having a high reflectance, and becomes a main reflected light K1 having a high light intensity. In addition, a part of the laser light B is reflected on the surface 20a of the light transmitting layer 20 of the light transmitting member 2 having a low reflectance, and becomes ghost light H1 having a low light intensity.

【0025】これにより、受光素子53においては、光
強度が強い主反射光K1に基づいてスポット状の主反射
像K2が撮像されるとともに、光強度が弱いゴースト光
H1に基づいて微小スポット状のゴースト像H2が撮像
される。主反射像K2とゴースト像H2との間隔ΔM
は、受光素子53のうち主反射像K2とゴースト像H2
との間における画素数に対応するため、画素数に基づい
て間隔ΔMは検出回路55により求められ、表示回路5
6で表示される。
Thus, in the light receiving element 53, a spot-shaped main reflection image K2 is picked up based on the main reflection light K1 having a high light intensity, and a minute spot-shaped reflection image is formed based on the ghost light H1 having a low light intensity. The ghost image H2 is captured. Distance ΔM between main reflection image K2 and ghost image H2
Are the main reflection image K2 and the ghost image H2 of the light receiving element 53.
, The interval ΔM is obtained by the detection circuit 55 based on the number of pixels.
6 is displayed.

【0026】(第6実施例)図9は第6実施例の基本概
念を示す。第6実施例は第1実施例と基本的には同様の
構成を備えており、即ち図1の場合と同様であり、同様
の作用効果を奏する。本実施例では、光透過部材2C
は、エレクトロクロミック表示素子等の表示素子に使用
されるものであり、ガラス板である第1光透過層21
と、別のガラス板である第2光透過層22と、第2光透
過層22の背面にアルミ蒸着膜などの光反射層23とを
積層したものである。第1光透過層21と第2光透過層
22との間には、微小隙間であるギャップ25が形成さ
れている。
(Sixth Embodiment) FIG. 9 shows the basic concept of the sixth embodiment. The sixth embodiment has basically the same configuration as the first embodiment, that is, it is the same as the case of FIG. 1 and has the same operation and effect. In this embodiment, the light transmitting member 2C
Is used for a display element such as an electrochromic display element, and the first light transmission layer 21 is a glass plate.
And a second light transmission layer 22 which is another glass plate, and a light reflection layer 23 such as an aluminum vapor-deposited film laminated on the back surface of the second light transmission layer 22. A gap 25, which is a minute gap, is formed between the first light transmitting layer 21 and the second light transmitting layer 22.

【0027】光反射層23の反射率は、第1光透過層2
1の表面21aの反射率または第2光透過層22の表面
22aの反射率よりもかなり高い。半導体レーザ素子4
から照射された検査光として機能するレーザ光Bを、光
透過部材2の法線Sに対して傾斜した入射角αで、光透
過部材2に第1光透過層21側から入射させる。この結
果、図9に示すように、光透過部材2Cのうち反射率が
高い光反射層23で反射した光は、光強度が強い主反射
光K1となる。また光透過部材2Cのうち反射率が低い
第1光透過層21の表面21aで反射した光は、光強度
が弱いゴースト光H1となる。これにより受光部材5に
おいては、主反射光K1に基づいてスポット状の主反射
像K2が写り、ゴースト光H1に基づいて微小スポット
状の第1ゴースト像H2が写る。
The reflectivity of the light reflecting layer 23 is determined by the first light transmitting layer 2.
The reflectance of the first surface 21a or the reflectance of the surface 22a of the second light transmitting layer 22 is considerably higher. Semiconductor laser device 4
Laser light B functioning as inspection light irradiated from the first light transmitting layer 21 is incident on the light transmitting member 2 from the first light transmitting layer 21 side at an incident angle α inclined with respect to the normal S of the light transmitting member 2. As a result, as shown in FIG. 9, the light reflected by the light reflecting layer 23 having a high reflectance in the light transmitting member 2C becomes a main reflected light K1 having a high light intensity. The light reflected on the surface 21a of the first light transmitting layer 21 having a low reflectance in the light transmitting member 2C becomes a ghost light H1 having a low light intensity. As a result, on the light receiving member 5, a spot-shaped main reflected image K2 appears based on the main reflected light K1, and a minute spot-shaped first ghost image H2 appears based on the ghost light H1.

【0028】主反射像K2とゴースト像H2との間の間
隔ΔN1を測定することにより、光透過部材2Cにおけ
る二重写りの度合いを定量的に測定できる。ところで、
光透過部材2Cの第1光透過層21と第2光透過層22
との平行が低いときには、基部1と受光部材5との距離
Lを変化した場合には、上記したΔNの値が変化する。
従って光透過部材2Cの第1光透過層21と第2光透過
層22との平行度を把握する場合には、主反射像K2と
ゴースト像H2との間の間隔ΔN(1)を測定する第1
測定工程を実施し、その後に、駆動源6を駆動させて基
部1と受光部材5との間の間隔Lを変化させる工程を行
い、その後に、再び、主反射像K1とゴースト像H2と
の間の間隔ΔN(2)を測定する第2測定工程を行な
う。そして第1測定工程におけるΔN(1)の値と第2
測定工程におけるΔN(2)の値とが同一あるいは接近
値であるときには、光透過部材2の第1光透過層21と
第1光透過層22との平行度が高いと判定できる。
By measuring the interval ΔN1 between the main reflection image K2 and the ghost image H2, the degree of double reflection on the light transmitting member 2C can be quantitatively measured. by the way,
First light transmitting layer 21 and second light transmitting layer 22 of light transmitting member 2C
Is low, the value of ΔN changes when the distance L between the base 1 and the light receiving member 5 changes.
Therefore, when grasping the parallelism between the first light transmitting layer 21 and the second light transmitting layer 22 of the light transmitting member 2C, the distance ΔN (1) between the main reflection image K2 and the ghost image H2 is measured. First
The measurement step is performed, and thereafter, the step of driving the drive source 6 to change the distance L between the base 1 and the light receiving member 5 is performed. Thereafter, the main reflection image K1 and the ghost image H2 are again formed. A second measuring step of measuring the interval ΔN (2) is performed. Then, the value of ΔN (1) in the first measurement process and the second
When the value of ΔN (2) in the measurement step is the same or a close value, it can be determined that the parallelism between the first light transmitting layer 21 and the first light transmitting layer 22 of the light transmitting member 2 is high.

【0029】また、第1測定工程におけるΔN(1)の
値と第2測定工程におけるΔN(2)の値とがかなり異
なるときには、光透過部材2Cの第1光透過層21と第
2光透過層22との平行度が低いと判定できる。従って
本実施例装置は、平行度を測定する平行度測定装置でも
ある。またガラス板である第1光透過層21とガラス板
である第2光透過層22との平行度を測定することは、
第1光透過層21と第2光透過層22との間におけるギ
ャップ25の厚みの均一性を測定することにもなるた
め、本実施例装置はギャップ厚み測定装置でもある。な
お図9では、透明導電膜や発色層を図面上省略してい
る。
When the value of ΔN (1) in the first measuring step is significantly different from the value of ΔN (2) in the second measuring step, the first light transmitting layer 21 of the light transmitting member 2C and the second light transmitting layer 21 It can be determined that the parallelism with the layer 22 is low. Therefore, the apparatus of this embodiment is also a parallelism measuring apparatus for measuring the parallelism. In addition, measuring the parallelism between the first light transmission layer 21 that is a glass plate and the second light transmission layer 22 that is a glass plate,
Since the uniformity of the thickness of the gap 25 between the first light transmission layer 21 and the second light transmission layer 22 is also measured, the apparatus of this embodiment is also a gap thickness measurement apparatus. In FIG. 9, the transparent conductive film and the coloring layer are omitted in the drawing.

【0030】(第7実施例)図10は第7実施例の基本
概念を示す。第7実施例は第1実施例と基本的には同様
の構成を備えており、基本的には同様の作用効果を奏す
る。図10に示すように、基台1と受光部材5との間に
は、可動式のレンズ系8が設けられている。レンズ系8
は、拡大レンズ80と、拡大レンズ80を矢印U1,U
2方向に移動させ得るシリンダ機構またはモータ機構な
どで構成された可動部81とを備えている。従って、レ
ンズ系8の拡大レンズ80を矢印U1方向に移動させ
て、主反射光K1及びゴースト光H1のレーザ光経路に
配置すれば、拡大レンズ80によりΔMの大きさを拡大
でき、測定の容易化を図り得る。光透過層20の厚みが
薄い場合には、ΔMが小さ目となるため、ΔMを拡大で
きる本例装置は有利である。不要の場合には、レンズ系
8の拡大レンズ80を矢印U2方向に退避させておけば
良い。
(Seventh Embodiment) FIG. 10 shows the basic concept of the seventh embodiment. The seventh embodiment has basically the same configuration as the first embodiment, and basically has the same operation and effect. As shown in FIG. 10, a movable lens system 8 is provided between the base 1 and the light receiving member 5. Lens system 8
Indicates the magnifying lens 80 and arrows U1 and U
And a movable portion 81 including a cylinder mechanism or a motor mechanism that can be moved in two directions. Therefore, by moving the magnifying lens 80 of the lens system 8 in the direction of the arrow U1 and disposing the magnifying lens 80 in the laser light path of the main reflected light K1 and the ghost light H1, the magnitude of ΔM can be enlarged by the magnifying lens 80, and the measurement is easy. Can be achieved. When the thickness of the light transmission layer 20 is small, ΔM is small, and thus the device of the present example capable of increasing ΔM is advantageous. If not necessary, the magnifying lens 80 of the lens system 8 may be retracted in the direction of the arrow U2.

【0031】その他、本発明は上記した各実施例に係る
装置のみに限定されるものではなく、発明の要旨を逸脱
しない範囲内において、必要に応じて適宜変更して実施
し得るものである。 (付記)上記した実施例から次の技術的思想も把握でき
る。
In addition, the present invention is not limited to the apparatus according to each of the above-described embodiments, but can be appropriately modified as necessary without departing from the scope of the invention. (Supplementary Note) The following technical idea can be understood from the above-described embodiment.

【0032】ガラス板等の光透過層を備えた光透過部
材を用い、光透過部材の光透過層の法線に対して傾斜し
た入射角で、レーザ光などの検査光を光透過部材に入射
させる操作と、検知光の光透過部材の反射に基づく主反
射像と副反射像とを受光部材で受光し、受光部材におけ
る主反射像と副反射像との間隔に基づいて光透過部材の
多重写りの度合を測定する操作とを実施することを特徴
とする多重写り測定方法。
A light-transmitting member having a light-transmitting layer such as a glass plate is used, and inspection light such as laser light is incident on the light-transmitting member at an angle of incidence inclined with respect to the normal of the light-transmitting layer of the light-transmitting member. Operation, and the main reflection image and the sub reflection image based on the reflection of the detection light by the light transmission member are received by the light receiving member, and the light transmission member is multiplexed based on the distance between the main reflection image and the sub reflection image in the light receiving member. And an operation of measuring the degree of reflection.

【0033】ガラス板等の光透過層を備えた光透過部
材を保持する保持部と、保持部に保持された光透過部材
の光透過層の法線に対して傾斜した入射角で、レーザ光
などの検査光を光透過部材に入射させる検査光源と、主
反射像と副反射像との間隔に基づいて光透過部材の多重
写りの度合を判定できるように、検知光の光透過部材の
反射に基づく主反射像と副反射像とを受光する受光部材
とを具備していることを特徴とする平行度測定装置また
はギャップ厚み測定装置。
A holding portion for holding a light transmitting member having a light transmitting layer such as a glass plate, and a laser beam at an incident angle inclined with respect to the normal of the light transmitting layer of the light transmitting member held by the holding portion. The inspection light source that causes inspection light to enter the light transmitting member and the reflection of the detection light by the light transmitting member so that the degree of multiple reflection of the light transmitting member can be determined based on the distance between the main reflection image and the sub reflection image. A parallelism measuring device or a gap thickness measuring device, comprising: a light-receiving member that receives a main reflection image and a sub-reflection image based on an image.

【0034】検知光源と受光部材との間の距離を可変
とする距離可変手段が設けられている請求項1に係る装
置。
An apparatus according to claim 1, further comprising a distance varying means for varying a distance between the detection light source and the light receiving member.

【0035】[0035]

【発明の効果】本発明装置によれば、検査光源から照射
さたれレーザ光などの検査光を光透過部材の法線に対し
て傾斜した入射角で入射させる。そして、光透過部材で
の反射に基づく光強度が強い主反射光で形成された主反
射像と、光透過部材での反射に基づく光強度が弱い副反
射像とを受光部材が受光する。そして、受光部材におけ
る主反射像と副反射像との間隔に基づいて、光透過部材
における多重写りの度合を定量的に求め得、判定でき
る。従って光透過部材の多重写りに対する品質保証に有
利である。
According to the apparatus of the present invention, inspection light such as laser light emitted from an inspection light source is incident at an angle of incidence that is inclined with respect to the normal to the light transmitting member. Then, the light receiving member receives a main reflection image formed by main reflection light having a high light intensity based on the reflection at the light transmission member and a sub-reflection image having a low light intensity based on the reflection at the light transmission member. Then, based on the interval between the main reflection image and the sub reflection image on the light receiving member, the degree of multiple reflection on the light transmitting member can be quantitatively obtained and determined. Therefore, it is advantageous for quality assurance against multiple reflection of the light transmitting member.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例に係る装置の構成図である。FIG. 1 is a configuration diagram of an apparatus according to a first embodiment.

【図2】異なる方向からみた第1実施例に係る装置の構
成図である。
FIG. 2 is a configuration diagram of an apparatus according to a first embodiment viewed from different directions.

【図3】光透過部材での光の反射形態を説明する構成図
である。
FIG. 3 is a configuration diagram illustrating a reflection form of light on a light transmitting member.

【図4】主反射光に基づくスポット状の主反射像と、ゴ
ースト光に基づく微小スポット状のゴースト像を説明す
る構成図である。
FIG. 4 is a configuration diagram illustrating a spot-shaped main reflected image based on main reflected light and a minute spot-shaped ghost image based on ghost light.

【図5】第2実施例に係り、光反射層を備えていない光
透過部材での光の反射形態を説明する構成図である。
FIG. 5 is a configuration diagram illustrating a form of light reflection by a light transmitting member having no light reflecting layer according to a second embodiment.

【図6】第3実施例に係る装置の構成図である。FIG. 6 is a configuration diagram of an apparatus according to a third embodiment.

【図7】第4実施例に係る装置の構成図である。FIG. 7 is a configuration diagram of an apparatus according to a fourth embodiment.

【図8】第5実施例に係る装置の構成図である。FIG. 8 is a configuration diagram of an apparatus according to a fifth embodiment.

【図9】第6実施例に係り、光透過部材での光の反射形
態を説明する構成図である。
FIG. 9 is a configuration diagram illustrating a form of light reflection by a light transmitting member according to a sixth embodiment.

【図10】第7実施例に係る装置の構成図である。FIG. 10 is a configuration diagram of an apparatus according to a seventh embodiment.

【図11】従来の形態を示す構成図である。FIG. 11 is a configuration diagram showing a conventional mode.

【符号の説明】[Explanation of symbols]

図中、1は基部、2は光透過部材、20は光透過層、2
3は光反射層、4は半導体レーザ素子(検査光源)、5
は受光部材、Bはレーザ光(検査光)、H1はゴースト
像、K2は主反射像を示す。
In the figure, 1 is a base, 2 is a light transmitting member, 20 is a light transmitting layer, 2
3 is a light reflection layer, 4 is a semiconductor laser device (inspection light source), 5
Denotes a light receiving member, B denotes a laser beam (inspection light), H1 denotes a ghost image, and K2 denotes a main reflection image.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光透過層を備えた光透過部材を保持する保
持部と、 前記保持部に保持された光透過部材の光透過層の法線に
対して傾斜した入射角で、検査光を前記光透過部材に入
射させる検査光源と、 主反射像と副反射像との間隔に基づいて前記光透過部材
の多重写りの度合を判定できるように、前記光透過部材
での検知光の反射に基づく主反射像と副反射像とを受光
する受光部材とを具備していることを特徴とする多重写
り測定装置。
A holding unit for holding a light transmitting member having a light transmitting layer; and an inspection light having an incident angle inclined with respect to a normal to a light transmitting layer of the light transmitting member held by the holding unit. Inspection light source to be incident on the light transmitting member, so that the degree of multiple reflection of the light transmitting member can be determined based on the distance between the main reflection image and the sub reflection image, the reflection of the detection light on the light transmission member A multiple reflection measuring device, comprising: a light-receiving member that receives a main reflection image and a sub-reflection image based on the reflection image.
JP17172898A 1998-06-18 1998-06-18 Multiple reflection measuring apparatus Pending JP2000002666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17172898A JP2000002666A (en) 1998-06-18 1998-06-18 Multiple reflection measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17172898A JP2000002666A (en) 1998-06-18 1998-06-18 Multiple reflection measuring apparatus

Publications (1)

Publication Number Publication Date
JP2000002666A true JP2000002666A (en) 2000-01-07

Family

ID=15928585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17172898A Pending JP2000002666A (en) 1998-06-18 1998-06-18 Multiple reflection measuring apparatus

Country Status (1)

Country Link
JP (1) JP2000002666A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812120A (en) * 2020-07-17 2020-10-23 常熟理工学院 Turnover type lens defect detection device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812120A (en) * 2020-07-17 2020-10-23 常熟理工学院 Turnover type lens defect detection device and method
CN111812120B (en) * 2020-07-17 2021-08-17 常熟理工学院 Turnover type lens defect detection device and method

Similar Documents

Publication Publication Date Title
US9915622B2 (en) Wafer inspection
EP1049925B1 (en) Optical inspection method and apparatus
EP0459489B1 (en) Method of reading optical image of inspected surface and image reading system employable therein
US8451440B2 (en) Apparatus for the optical inspection of wafers
EP1017973A1 (en) Acoustical imaging system
JP5995214B2 (en) Optical device
JPS5831662A (en) Method and appratus for front edge detection for scanned sheet
JP4104924B2 (en) Optical measuring method and apparatus
JP2005156254A (en) Defect detection method and defect detector for plate-shaped glass
US20210341730A1 (en) Optical scanning apparatus
JP4021596B2 (en) Front illuminated phosphor screen for UV imaging
JP2000002666A (en) Multiple reflection measuring apparatus
WO2005103656A1 (en) Multiple surface viewer
US7307711B2 (en) Fluorescence based laser alignment and testing of complex beam delivery systems and lenses
JP3779507B2 (en) Inspection device for transparent laminate
JP2004219119A (en) Defect inspection method and device
CA2282015C (en) Light-scanning device
JP3231152B2 (en) Optical position detector
JPH0862123A (en) Scanning optical measuring apparatus
JPH10221266A (en) Foreign matter inspection method for exposure mask
JPH10267858A (en) Method for judging defect of glass substrate
JP2000258144A (en) Flatness and thickness measurement device for wafer
KR20230156849A (en) Apparatus for inspecting display panel and method for inspecting display panel
JPH03180707A (en) Surface defect detecting device
JPH102864A (en) Foreign matter inspecting device