JP2000001318A - Calcination furnace for iron chloride aqueous solution - Google Patents

Calcination furnace for iron chloride aqueous solution

Info

Publication number
JP2000001318A
JP2000001318A JP17800898A JP17800898A JP2000001318A JP 2000001318 A JP2000001318 A JP 2000001318A JP 17800898 A JP17800898 A JP 17800898A JP 17800898 A JP17800898 A JP 17800898A JP 2000001318 A JP2000001318 A JP 2000001318A
Authority
JP
Japan
Prior art keywords
furnace
heat source
aqueous solution
gas
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17800898A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kuga
光広 久我
Itsushi Nakano
逸史 中野
Toru Takeuchi
徹 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17800898A priority Critical patent/JP2000001318A/en
Publication of JP2000001318A publication Critical patent/JP2000001318A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a calcination furnace for iron chloride aq. solution capable of stabilizing the quality of iron oxide with improved control of the deviation of a swirling flow in the furnace compared to the conventional. SOLUTION: The calcination furnace for iron chloride aq. solution is provided with a blow port 3 for heat source gas, which is arranged on the furnace wall the cylindrical furnace body for forming a swirling flow of the heat source gas in the furnace, and a spray port 6 for spraying the iron chloride aq. solution generating hydrochloric acid, which is brought into contact with the heating source gas to generate iron oxide and hydrogen chloride. In such a case, plural gas discharge ports 11 for introducing a gas containing hydrogen chloride to the outside of the furnace are separately provided at an equal interval along the circumference in the upper part of the furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塩化鉄水溶液の焙
焼炉に係わり、詳しくは、熱源気体の旋回流の中に、塩
化鉄水溶液を噴霧し、酸化鉄及び塩化水素を製造する焙
焼炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a roasting furnace for an aqueous solution of iron chloride, and more particularly, to a roasting furnace for producing iron oxide and hydrogen chloride by spraying an aqueous solution of iron chloride into a swirling flow of a heat source gas. About the furnace.

【0002】[0002]

【従来の技術】一般に、塩化鉄水溶液を加熱して、化学
反応を起こし、塩化水素の回収及び酸化鉄の製造を行う
には、図8に示すような焙焼工程が用いられる。この工
程において主体となす装置は、焙焼炉1であり、火炎及
び/又は加熱された気体(以下、熱源気体という)を熱
源とし、それらを吹込み装置2の熱源気体の吹込み口3
を経由して、炉内で旋回流5を形成させるように、吹込
むようになっている。被加熱材料の塩化鉄水溶液7は、
噴霧口6を介して炉内に噴霧されるが、それは、事前に
該焙焼炉1の塩化水素を含有するガス10と吸収塔8に
おいて熱交換し、塩化鉄を濃縮してから噴霧される。な
お、この塩化水素を含有するガス10は、焙焼炉1のガ
ス排出口11から排出され、ガス10に同伴されている
酸化鉄の大部分をサイクロン9で回収した後に、吸収塔
8へ導かれるようになっている。吸収塔を出た塩化水素
は水などに接着させ、塩化水素水溶液などとして利用さ
れる。
2. Description of the Related Art Generally, a roasting process as shown in FIG. 8 is used to heat an aqueous solution of iron chloride to cause a chemical reaction to recover hydrogen chloride and produce iron oxide. The main device in this step is the roasting furnace 1, which uses a flame and / or a heated gas (hereinafter, referred to as a heat source gas) as a heat source and uses them as a heat source gas inlet 3 of a blowing device 2.
, So as to form a swirling flow 5 in the furnace. The aqueous solution of iron chloride 7 of the material to be heated is
It is sprayed into the furnace through the spray port 6, which is heat-exchanged in advance with the gas 10 containing hydrogen chloride in the roasting furnace 1 in the absorption tower 8 to concentrate the iron chloride before spraying. . The gas 10 containing hydrogen chloride is discharged from the gas discharge port 11 of the roasting furnace 1, and most of the iron oxide entrained in the gas 10 is recovered by the cyclone 9 before being introduced into the absorption tower 8. It is supposed to be. The hydrogen chloride that has exited the absorption tower is adhered to water or the like, and is used as a hydrogen chloride aqueous solution or the like.

【0003】かかる焙焼炉1では、噴霧された塩化鉄水
溶液7が、加熱され、以下の反応式に従って固体状の酸
化鉄17(F23 )と気体状の塩化水素(HCl)1
8とを生成する。 2FeCl2 +(1/2)O2 +2H2 O→Fe23
+4HCl 2FeCl2 +3H2 O→Fe23 +6HCl その際、塩化鉄水溶液7は、噴霧口6から傘状(放射
状)に噴霧されるので、生成した酸化鉄17は、図9に
示すように、そのほとんどが焙焼炉1の内壁20に沿っ
て落下する。
[0003] In the roasting furnace 1, the sprayed iron chloride aqueous solution 7 is heated, and solid iron oxide 17 (F 2 O 3 ) and gaseous hydrogen chloride (HCl) 1 are heated according to the following reaction formula.
8 is generated. 2FeCl 2 + (1/2) O 2 + 2H 2 O → Fe 2 O 3
+ 4HCl 2FeCl 2 + 3H 2 O → Fe 2 O 3 + 6HCl At this time, the aqueous iron chloride solution 7 is sprayed from the spray port 6 in an umbrella-like (radial) manner, so that the generated iron oxide 17 is, as shown in FIG. Most of them fall along the inner wall 20 of the roasting furnace 1.

【0004】一方、かかる焙焼炉1においては、図10
に示すように、熱源気体を該内壁20に沿って旋回させ
るべく、該熱源気体の吹込み口3は、その軸が炉中心1
4と交わらない方向に向くように取り付けられている。
この吹込み口の中心軸が内壁20の接線16となす角度
19は、焙焼炉1の寸法によって様々であるが、大旨8
〜30°の範囲である。酸化鉄の品質は、焙焼炉1の操
業条件、すなわち、噴霧状態、原料処理量、炉内温度、
旋回流の流速等の影響を受ける。これらの影響因子を操
作する品質の制御技術は、特開昭61−86425号公
報、特開平4−270127号公報、特開平6−487
40号公報、特開平7−41320等に開示されてい
る。しかしながら、これらの品質制御技術は、酸化鉄1
7の品質を意図的に制御することよりも、炉内旋回流5
の状況が変化して酸化鉄品質が変化することに対応した
品質制御操作に過ぎず、酸化鉄品質を安定化できる旋回
条件の形成を主眼としたものではない。
On the other hand, in such a roasting furnace 1, FIG.
As shown in FIG. 3, the heat source gas injection port 3 has a shaft whose center is the furnace center 1 so that the heat source gas is swirled along the inner wall 20.
It is attached so that it faces in the direction that does not intersect with 4.
The angle 19 formed by the center axis of the blowing port with the tangent line 16 of the inner wall 20 varies depending on the size of the roasting furnace 1,
It is in the range of 30 °. The quality of the iron oxide depends on the operating conditions of the roasting furnace 1, namely, the spraying state, the raw material throughput, the furnace temperature,
It is affected by the velocity of the swirling flow. Quality control techniques for operating these influential factors are disclosed in JP-A-61-86425, JP-A-4-270127, and JP-A-6-487.
No. 40, JP-A-7-41320 and the like. However, these quality control techniques are based on iron oxide 1
7 rather than deliberately controlling the quality of
This is merely a quality control operation corresponding to the change of the iron oxide quality due to the change of the situation described above, and does not focus on the formation of the turning condition that can stabilize the iron oxide quality.

【0005】[0005]

【発明が解決しようとする課題】本発明は、かかる事情
に鑑み、炉内での旋回流の偏りを従来より抑制し、温度
分布を均一化して、酸化鉄の品質を安定化させることが
可能な塩化鉄水溶液の焙焼炉を提供することを目的とし
ている。旋回流に隔りが生じ、温度分布が不均一になる
と、旋回流と塩化鉄水溶液の接触効率が悪くなり、反応
が不十分になりやすい。その結果、酸化鉄の品質にばら
つきが生じるからである。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention can suppress the bias of the swirling flow in the furnace, make the temperature distribution uniform, and stabilize the quality of iron oxide. It is an object of the present invention to provide a roasting furnace for an aqueous iron chloride solution. If the swirling flow is separated and the temperature distribution becomes non-uniform, the contact efficiency between the swirling flow and the aqueous solution of iron chloride deteriorates, and the reaction tends to be insufficient. As a result, the quality of the iron oxide varies.

【0006】[0006]

【課題を解決するための手段】発明者は、上記目的を達
成するため、炉内での旋回流の偏りを抑制し、温度分布
を均一化する手段の開発に鋭意努力し、本発明を完成し
た。すなわち、本発明は、円筒状炉体の炉壁に設けら
れ、炉内に熱源気体の旋回流を形成させる熱源気体の吹
込み口と、該熱源気体に接触して酸化鉄及び塩化水素を
生じせしめる塩化鉄水溶液を、噴霧する噴霧口とを備え
た塩化鉄水溶液の焙焼炉において、前記塩化水素を含有
するガスを炉外へ導くガス排出口を、炉体上部の円周に
沿い等間隔で離隔して複数設けることを特徴とする塩化
鉄水溶液の焙焼炉である。本発明によれば、塩化水素を
含有するガスの炉体上部からの抜き出しを適切に行うよ
うにしたので、炉内での旋回流の偏りを従来より抑制で
きるようになる。その結果、製造された酸化鉄の品質が
従来よりも、安定した。
Means for Solving the Problems In order to achieve the above object, the inventor has diligently made efforts to develop means for suppressing the bias of the swirling flow in the furnace and making the temperature distribution uniform, and completed the present invention. did. That is, the present invention provides a heat source gas inlet provided on a furnace wall of a cylindrical furnace body for forming a swirling flow of the heat source gas in the furnace, and generates iron oxide and hydrogen chloride by contacting the heat source gas. In an iron chloride aqueous solution roasting furnace equipped with a spray port for spraying an iron chloride aqueous solution to be sprayed, gas outlets for guiding the gas containing hydrogen chloride to the outside of the furnace are arranged at equal intervals along the circumference of the furnace body upper part. A roasting furnace for an aqueous solution of iron chloride, wherein a plurality of roasting furnaces are provided apart from each other. According to the present invention, since the gas containing hydrogen chloride is appropriately extracted from the upper part of the furnace body, the bias of the swirling flow in the furnace can be suppressed as compared with the related art. As a result, the quality of the manufactured iron oxide was more stable than before.

【0007】[0007]

【発明の実施の形態】以下、発明をなすに至った経緯も
含め、本発明の実施の形態を説明する。まず、発明者
は、焙焼炉1内で熱源気体の旋回流5について研究を重
ねた。そして、該旋回流5の中心軸12がずれて、偏り
を起こす原因は、以下のことにあると結論した。つま
り、(1)熱源気体の吹込み口3が、炉体の円周方向で
均等に配置されていない、(2)炉底に設けた酸化鉄1
7の排出口13が、炉体円周の中心14に配置されてい
ない、(3)炉体上部のガス排出口11が、円周方向で
均等に配置されていない。これは、旋回流5の中心軸1
2が、図7(a)に示すように、炉中心14と重なるこ
とが望ましいことを示唆するものである。しかしなが
ら、従来の塩化鉄水溶液7の焙焼炉1では、上記の
(1)及び(2)についての配慮はあるが、(3)を配
慮したものは今までに存在しない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below, including the circumstances leading to the invention. First, the inventor repeated research on the swirling flow 5 of the heat source gas in the roasting furnace 1. Then, it was concluded that the cause of the deviation of the center axis 12 of the swirling flow 5 to cause the deviation was as follows. That is, (1) the heat source gas inlets 3 are not evenly arranged in the circumferential direction of the furnace body, and (2) the iron oxide 1 provided on the furnace bottom.
The outlet 13 of 7 is not arranged at the center 14 of the circumference of the furnace body. (3) The gas outlets 11 in the upper part of the furnace body are not uniformly arranged in the circumferential direction. This is the central axis 1 of the swirling flow 5
2 suggests that it is desirable to overlap the furnace center 14 as shown in FIG. However, in the conventional roasting furnace 1 for the iron chloride aqueous solution 7, although the above (1) and (2) are considered, there is no one considering (3).

【0008】そこで、発明者は、炉体上部のガス排出口
11の配置について鋭意検討を重ね、以下に述べる本発
明を完成したのである。複数のガス排出口11を、下記
に図1及び図2で例示するように、炉体上部の円周に沿
い等間隔で離隔して設け、旋回流5の流れを乱すことな
く円滑に排出するようにした。
The inventor of the present invention has made intensive studies on the arrangement of the gas outlets 11 in the upper part of the furnace body, and has completed the present invention described below. As shown in FIGS. 1 and 2 below, a plurality of gas outlets 11 are provided at equal intervals along the circumference of the upper part of the furnace body to smoothly discharge the swirling flow 5 without disturbing the flow. I did it.

【0009】本発明に係る焙焼炉1は、筒状体であり、
炉体上部から中間部までの胴体が円筒で、その下方にコ
ーン形状の筒体が連接してなる。そして、炉体上部に
は、炉内で生成した塩化水素を含有するガスを排出する
ためのガス排出口11が設けられている。及び原料であ
る塩化鉄水溶液7を噴霧するための噴霧口6が設けられ
ている。塩化鉄水溶液の噴霧はスプレーなどを用いて行
なうことが好ましく、噴霧口はスプレーノズルであるこ
とが好ましい。また、胴体の壁には、熱源となる火炎及
び/又は加熱された気体(熱源気体)の吹込み装置2が
取付けられている。この吹込み装置2は、燃料ガス(例
えば、コークス炉ガス)と気体(例えば、空気)との混
合物4を燃焼させた燃焼排ガスを、火炎と共に直接、熱
源気体の吹込み口3から炉内へ吹き込めるようにしたも
のである。その際、火炎と共に、加熱された空気(熱
風)も焙焼炉1内に吹き込まれる。該焙焼炉1内に該熱
源気体の旋回流5を形成させるためには、この火炎及び
加熱された気体の吹込まれる方向は、平面視で、熱源気
体の吹込み口の中心軸が炉体内壁の接線に対して8〜3
0°の角度をなすようにしてある。また、側面視では、
水平になっているのが好ましい、つまり、上下方向に傾
けないことが好ましい。なお、本発明では、該吹込み口
3は、1ケでも複数箇所でも良いが、複数箇所設け、焙
焼炉1の胴体に円周に沿って均等に配置されていること
が好ましい。また、胴体下方のコーン体の下端には、生
成した酸化鉄17を排出するバルブが設置されていても
よい。
A roasting furnace 1 according to the present invention is a cylindrical body,
The body from the upper part to the middle part of the furnace is a cylinder, and a cone-shaped cylinder is connected below the body. Further, a gas outlet 11 for discharging a gas containing hydrogen chloride generated in the furnace is provided at an upper portion of the furnace body. A spray port 6 for spraying an aqueous solution of iron chloride 7 as a raw material is provided. The spraying of the aqueous solution of iron chloride is preferably performed using a spray or the like, and the spray port is preferably a spray nozzle. Further, a blowing device 2 for a flame serving as a heat source and / or a heated gas (heat source gas) is attached to a wall of the body. The blowing device 2 directly burns a combustion exhaust gas obtained by burning a mixture 4 of a fuel gas (for example, coke oven gas) and a gas (for example, air) together with a flame from the heat source gas injection port 3 into the furnace. It is something that can be blown. At this time, heated air (hot air) is also blown into the roasting furnace 1 together with the flame. In order to form the swirling flow 5 of the heat source gas in the roasting furnace 1, the direction in which the flame and the heated gas are blown is such that the central axis of the heat source gas blowing port is the furnace in plan view. 8 to 3 for the tangent to the body wall
The angle is set to 0 °. In side view,
It is preferable to be horizontal, that is, not to be tilted up and down. In the present invention, the number of the blowing ports 3 may be one or more. However, it is preferable that a plurality of the blowing ports 3 are provided, and the blowing ports 3 are uniformly arranged on the body of the roasting furnace 1 along the circumference. Further, a valve for discharging generated iron oxide 17 may be provided at the lower end of the cone body below the body.

【0010】次に、本発明の特徴は、上記した焙焼炉1
に、複数のガス排出口11を、図1及び図2で例示する
ように、炉体上部の円周に沿い等間隔で離隔して設け、
旋回流5の流れを乱すことなく円滑に排出するようにし
たことにある。これによって、該ガス排出口11から均
一に塩化水素を含有するガスが抜け出し、炉内の旋回流
5は偏りのないものになり、製造する酸化鉄17の品質
を安定させることが可能となる。ガス排出口を設置する
位置は、噴霧口6よりも上部が好ましい。これは、被加
熱材料である塩化鉄水溶液をも排出することを防止する
ためである。
Next, a feature of the present invention is that the roasting furnace 1 described above is used.
A plurality of gas outlets 11 are provided at equal intervals along the circumference of the upper part of the furnace body, as illustrated in FIGS.
The reason is that the swirling flow 5 is smoothly discharged without disturbing the flow. As a result, the gas containing hydrogen chloride uniformly escapes from the gas discharge port 11, and the swirling flow 5 in the furnace becomes even and the quality of the iron oxide 17 to be manufactured can be stabilized. The position where the gas discharge port is installed is preferably higher than the spray port 6. This is to prevent discharge of the aqueous solution of iron chloride as the material to be heated.

【0011】なお、このガス10には、炉内で生成した
塩酸18や水蒸気、吹き込まれた熱源気体及び酸化鉄1
7の粉末などが含まれている。また、本発明に係る焙焼
炉1は、焙焼対象の原料である塩化鉄水溶液7の種類を
制限するものではなく、塩化鉄を含有する水溶液であれ
ばいかなるものにも適用される。但し、製鉄所の冷延工
程の製錬設備等、鋼材の酸洗設備で発生する廃塩酸の利
用が好ましい。理由は、安価に入手できるからである。
さらに、塩化鉄水溶液7中の塩化鉄の濃度は、好ましく
は、Fe濃度として10g/リットル以上、より好まし
くは10〜500g/リットルであることが好ましい
が、特に制限されるものではない。加えて、塩化鉄水溶
液7中には、Zn、Mn、Mg、Si、Cr、Al等か
らなる化合物を含有していても良い。
The gas 10 contains hydrochloric acid 18 and water vapor generated in the furnace, the blown heat source gas and the iron oxide 1
7 and the like. Further, the roasting furnace 1 according to the present invention does not limit the type of the iron chloride aqueous solution 7, which is a raw material to be roasted, and can be applied to any aqueous solution containing iron chloride. However, use of waste hydrochloric acid generated in steel pickling equipment such as smelting equipment in a cold rolling process of an ironworks is preferred. The reason is that it can be obtained at low cost.
Further, the concentration of iron chloride in the aqueous iron chloride solution 7 is preferably 10 g / liter or more as Fe concentration, more preferably 10 to 500 g / liter, but is not particularly limited. In addition, the iron chloride aqueous solution 7 may contain a compound composed of Zn, Mn, Mg, Si, Cr, Al, or the like.

【0012】[0012]

【実施例】(実施例1)図1に示すように、炉体上部に
2つのガス排出口11を等間隔(互いに180°)に離
隔して設置した本発明に係る焙焼炉1を用いて、塩化鉄
水溶液7から酸化鉄を製造した。なお、熱源気体の吹込
み口は2カ所等間隔に設置した。該焙焼炉1の操業条件
は、塩化鉄水溶液7の噴霧量:3.5m3 /時、塩化鉄
水溶液中の鉄濃度:22g/100ミリリットル、吹込
み熱風量:5500Nm3 /時、熱風温度:1400℃
である。得られた酸化鉄粒子の平均粒径および酸化鉄中
の塩素含有量を、製造開始後1時間毎に測定し、結果を
図5及び図6に示す。その平均粒子径の最大値は0.8
0μm、最小値は0.75μmであり、塩素含有量の最
大値は0.14wt%、最小値は0.10wt%であっ
た。また、図1に示す4カ所の温度を測定し、それぞれ
の平均値を求めた。温度測定値は、熱源吹込み口の上方
1m、炉の内壁から30cmの所である。測定点aの温
度の平均値は694℃、測定点bの温度の平均値は70
2℃、測定点cの温度は測定点は688℃、測定点dの
温度の平均値は696℃であった。なお、平均粒径は、
空気透過法で測定したものである。
(Embodiment 1) As shown in FIG. 1, a roasting furnace 1 according to the present invention is used in which two gas outlets 11 are installed at equal intervals (180 ° from each other) at the upper part of a furnace body. Thus, iron oxide was produced from the aqueous iron chloride solution 7. In addition, the heat source gas blowing ports were installed at two locations at equal intervals. The operating conditions of the roasting furnace 1 are as follows: spray amount of the aqueous solution of iron chloride 7: 3.5 m 3 / hour, iron concentration in the aqueous solution of iron chloride: 22 g / 100 ml, hot air volume blown: 5500 Nm 3 / hour, hot air temperature : 1400 ° C
It is. The average particle size of the obtained iron oxide particles and the chlorine content in the iron oxide were measured every hour after the start of production, and the results are shown in FIGS. 5 and 6. The maximum value of the average particle size is 0.8
0 μm, the minimum value was 0.75 μm, the maximum value of the chlorine content was 0.14 wt%, and the minimum value was 0.10 wt%. Further, the temperatures at four locations shown in FIG. 1 were measured, and the average value of each was determined. The temperature reading is 1 m above the heat source inlet and 30 cm from the inner wall of the furnace. The average value of the temperature at the measurement point a is 694 ° C., and the average value of the temperature at the measurement point b is 70.
The temperature at measurement point c was 2688C, the measurement point was 688C, and the average temperature at measurement point d was 696C. The average particle size is
It was measured by the air permeation method.

【0013】(実施例2)図2に示すように、炉体上部
に4つのガス排出口11を等間隔(90°)に離隔して
設置した本発明に係る焙焼炉1を用い、塩化鉄水溶液7
から酸化鉄17を製造した。なお、熱源気体の吹込み口
は2カ所、等間隔に設置した。該焙焼炉の操業条件は、
上記実施例1と同じである。得られた酸化鉄粒子の平均
粒径および酸化鉄中の塩素含有量の経時変化を、実施例
1と同様に測定した。結果を図5及び図6に示す。その
平均粒子径の最大値は0.78μm、最小値は0.75
μmであり、塩素含有量の最大値は0.11wt%、最
小値は0.09wt%であった。また、図1に示す4カ
所の温度を測定し、それぞれの平均値を求めた。温度測
定位置は、熱源吹込み口の上方1m、炉の内壁から30
cm所である。測定点aの温度平均値は690℃、測定
点bの温度の平均値は690℃、測定点cの温度の測定
点dの温度の平均値は699℃であった。
(Embodiment 2) As shown in FIG. 2, a roasting furnace 1 according to the present invention in which four gas discharge ports 11 are installed at equal intervals (90 °) in the upper part of a furnace body, Iron solution 7
To produce iron oxide 17. In addition, the heat source gas blowing ports were installed at two places at equal intervals. The operating conditions of the roasting furnace are:
This is the same as the first embodiment. The changes over time in the average particle size of the obtained iron oxide particles and the chlorine content in the iron oxide were measured in the same manner as in Example 1. The results are shown in FIGS. The maximum value of the average particle diameter is 0.78 μm and the minimum value is 0.75 μm.
μm, and the maximum value of the chlorine content was 0.11 wt% and the minimum value was 0.09 wt%. Further, the temperatures at four locations shown in FIG. 1 were measured, and the average value of each was determined. The temperature measurement position is 1 m above the heat source inlet and 30 m from the inner wall of the furnace.
cm place. The average value of the temperature at the measurement point a was 690 ° C., the average value of the temperature at the measurement point b was 690 ° C., and the average value of the temperature at the measurement point c was 699 ° C.

【0014】(比較例1)図3に示すような、炉体上部
に1つのガス排出口11を設置した従来の焙焼炉1を用
い、塩化鉄水溶液7から酸化鉄17を製造した。なお、
熱源気体の吹込み口は2カ所、等間隔に設置した。該焙
焼炉1の操業条件は、上記実施例1と同じである。得ら
れた酸化鉄粒子の平均粒径および酸化鉄中の塩素含有量
の経時変化を、実施例1と同様に測定した。結果を図5
及び図6に示す。その平均粒子径の最大値は0.85μ
m、最小値は0.73μmであり、塩素含有量の最大値
は0.23wt%、最小値は0.10wt%であった。
また、図1に示す4カ所の温度を測定し、それぞれの平
均値を求めた。温度測定位置は、熱源吹込み口の上方1
m、炉の内壁から30cmの所である。測定点aの温度
平均値は691℃、測定点bの温度の平均値は675
℃、測定点cの温度の測定点は682℃、測定点dの温
度の平均値は702℃であった。
Comparative Example 1 As shown in FIG. 3, an iron oxide 17 was produced from an aqueous solution of iron chloride 7 using a conventional roasting furnace 1 having one gas outlet 11 at the upper part of the furnace body. In addition,
The heat source gas injection ports were installed at two places at equal intervals. The operating conditions of the roasting furnace 1 are the same as in the first embodiment. The time-dependent changes in the average particle size of the obtained iron oxide particles and the chlorine content in the iron oxide were measured in the same manner as in Example 1. Fig. 5 shows the results.
And FIG. The maximum value of the average particle size is 0.85μ
m, the minimum value was 0.73 μm, the maximum value of the chlorine content was 0.23 wt%, and the minimum value was 0.10 wt%.
Further, the temperatures at four locations shown in FIG. 1 were measured, and the average value of each was determined. The temperature measurement position is 1 above the heat source inlet.
m, 30 cm from the inner wall of the furnace. The average temperature at the measurement point a is 691 ° C., and the average temperature at the measurement point b is 675.
° C, the temperature at the measurement point c was 682 ° C, and the average temperature at the measurement point d was 702 ° C.

【0015】(比較例2)図4に示すような、炉体上部
に、2つのガス排出口11を設置した焙焼炉1を用い、
塩化鉄水溶液7から酸化鉄17を製造した。なお、熱源
気体の吹込み口は2カ所等間隔に設置した。該焙焼炉1
の操業条件は、実施例1と同じである。得られた酸化鉄
粒子の平均粒径および酸化鉄中の塩素含有量の経時変化
を、実施例1と同様に測定した。結果を図5及び図6に
示す。その平均粒子径の最大値は0.80μm、最小値
は0.72μmであり、塩素含有量の最大値は0.20
wt%、最小値は0.11wt%であった。また、図1
に示す4カ所の温度を測定し、それぞれの平均値を求め
た。温度測定位置は、熱源吹込み口の上方1m、炉の内
壁から30cmの所である。測定点aの温度平均値は6
80℃、測定点bの温度の平均値は678℃、測定点c
の温度の測定点は700℃、測定点dの温度の平均値は
703℃であった。
(Comparative Example 2) As shown in FIG. 4, a roasting furnace 1 provided with two gas discharge ports 11 in the upper part of the furnace body was used.
Iron oxide 17 was produced from the aqueous iron chloride solution 7. In addition, the heat source gas blowing ports were installed at two locations at equal intervals. The roasting furnace 1
Are the same as in the first embodiment. The changes over time in the average particle size of the obtained iron oxide particles and the chlorine content in the iron oxide were measured in the same manner as in Example 1. The results are shown in FIGS. The maximum value of the average particle diameter is 0.80 μm, the minimum value is 0.72 μm, and the maximum value of the chlorine content is 0.20 μm.
wt%, and the minimum value was 0.11 wt%. FIG.
The temperatures at the four locations shown in Table 2 were measured, and the average value of each was determined. The temperature measurement position was 1 m above the heat source inlet and 30 cm from the inner wall of the furnace. The temperature average value of the measurement point a is 6
80 ° C., average value of temperature at measurement point b is 678 ° C., measurement point c
Was 700 ° C., and the average value of the temperature at measurement point d was 703 ° C.

【0016】[0016]

【発明の効果】以上述べたように、本発明により、塩化
鉄水溶液の焙焼炉内で、熱源気体が偏りなく旋回し、温
度分布がより均一になり、製造した酸化鉄の平均粒径が
均一になるばかりでなく、塩素含有量などの品質特性が
安定化するようになった。
As described above, according to the present invention, in a roasting furnace for an aqueous solution of iron chloride, the heat source gas turns evenly, the temperature distribution becomes more uniform, and the average particle size of the manufactured iron oxide is reduced. In addition to being uniform, quality characteristics such as chlorine content have become more stable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る塩化鉄水溶液の焙焼炉を示す図で
あり、(a)は平面、(b)は側面である。
FIG. 1 is a diagram showing a roasting furnace for an aqueous solution of iron chloride according to the present invention, wherein (a) is a plane surface and (b) is a side surface.

【図2】本発明に係る塩化鉄水溶液の焙焼炉の別態様を
示す図であり、(a)は平面、(b)は側面である。
FIG. 2 is a view showing another embodiment of the roasting furnace for an aqueous solution of iron chloride according to the present invention, wherein (a) is a plane and (b) is a side.

【図3】従来の塩化鉄水溶液の焙焼炉を示す図であり、
(a)は、平面、(b)は側面である。
FIG. 3 is a view showing a conventional iron chloride aqueous solution roasting furnace;
(A) is a plane, (b) is a side surface.

【図4】本発明例以外の塩化鉄水溶液の焙焼炉の別態様
を示す図であり、(a)は、平面、(b)は側面であ
る。
FIG. 4 is a view showing another embodiment of a roasting furnace for an aqueous solution of iron chloride other than the example of the present invention, wherein (a) is a plane and (b) is a side.

【図5】実施例1、2、比較例1、2で製造した酸化鉄
の平均粒径の経時変化を示す図である。
FIG. 5 is a diagram showing the change over time in the average particle size of the iron oxides produced in Examples 1 and 2 and Comparative Examples 1 and 2.

【図6】実施例1、2、比較例1、2で製造した酸化鉄
に含有される塩素量の経時変化を示す図である。
FIG. 6 is a graph showing the change over time in the amount of chlorine contained in the iron oxides produced in Examples 1 and 2 and Comparative Examples 1 and 2.

【図7】熱源気体の旋回流を示す平面図であり、(a)
は偏りのない旋回流、(b)は偏りの生じた旋回流を示
す。
FIG. 7 is a plan view showing a swirling flow of a heat source gas, and FIG.
Indicates a non-biased swirling flow, and (b) indicates a non-uniform swirling flow.

【図8】塩化鉄水溶液から酸化鉄を製造する工程を示す
図である。
FIG. 8 is a diagram showing a process for producing iron oxide from an aqueous solution of iron chloride.

【図9】酸化鉄の落下状況を説明する図である。FIG. 9 is a diagram illustrating a falling state of iron oxide.

【図10】熱源気体の吹込みを説明する炉内の平面図で
ある。
FIG. 10 is a plan view of the inside of a furnace for explaining blowing of a heat source gas.

【符号の説明】[Explanation of symbols]

1 焙焼炉 2 熱源気体の吹込み装置 3 熱源気体の吹込み口 4 熱料ガスと気体の混合物 5 旋回流 6 噴霧口 7 塩化鉄水溶液 8 吸収塔 9 サイクロン 10 塩化水素を含有するガス 11 ガス排出口 12 旋回流の中心軸 13 酸化鉄の排出口 14 炉中心 15 吹込み口の中心軸 16 内壁の接線 17 酸化鉄 18 塩化水素(塩酸) 19 吹込み口の中心軸と内壁の接線のなす角度 20 内壁 21a,21b,21c,21d 温度の測定点 REFERENCE SIGNS LIST 1 roasting furnace 2 heat source gas blowing device 3 heat source gas blowing port 4 mixture of heating gas and gas 5 swirling flow 6 spray port 7 iron chloride aqueous solution 8 absorption tower 9 cyclone 10 gas containing hydrogen chloride 11 gas Outlet 12 Center axis of swirling flow 13 Outlet of iron oxide 14 Furnace center 15 Center axis of inlet 16 Tangent line of inner wall 17 Iron oxide 18 Hydrogen chloride (hydrochloric acid) 19 Tangent line of center axis of inlet and inner wall Angle 20 Inner wall 21a, 21b, 21c, 21d Temperature measurement point

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 徹 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 Fターム(参考) 4G002 AA03 AB02 AD04  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toru Takeuchi 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba F-term (reference) 4K002 AA03 AB02 AD04

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円筒状炉体の炉壁に設けられ、炉内に熱
源気体の旋回流を形成させる熱源気体の吹込み口と、該
熱源気体に接触して酸化鉄及び塩化水素を生じせしめる
塩化鉄水溶液を、噴霧する噴霧口とを備えた塩化鉄水溶
液の焙焼炉において、 前記塩化水素を含有するガスを炉外へ導くガス排出口
を、炉体上部の円周に沿い等間隔で離隔して複数設ける
ことを特徴とする塩化鉄水溶液の焙焼炉。
1. An inlet for a heat source gas provided on a furnace wall of a cylindrical furnace body for forming a swirling flow of the heat source gas in the furnace, and contacting the heat source gas to generate iron oxide and hydrogen chloride. In a roasting furnace for an aqueous solution of iron chloride provided with a spray port for spraying an aqueous solution of iron chloride, a gas outlet for guiding the gas containing hydrogen chloride to the outside of the furnace is provided at regular intervals along the circumference of the upper part of the furnace body. A roasting furnace for an aqueous solution of iron chloride, wherein a plurality of furnaces are provided separately.
JP17800898A 1998-06-11 1998-06-11 Calcination furnace for iron chloride aqueous solution Withdrawn JP2000001318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17800898A JP2000001318A (en) 1998-06-11 1998-06-11 Calcination furnace for iron chloride aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17800898A JP2000001318A (en) 1998-06-11 1998-06-11 Calcination furnace for iron chloride aqueous solution

Publications (1)

Publication Number Publication Date
JP2000001318A true JP2000001318A (en) 2000-01-07

Family

ID=16040954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17800898A Withdrawn JP2000001318A (en) 1998-06-11 1998-06-11 Calcination furnace for iron chloride aqueous solution

Country Status (1)

Country Link
JP (1) JP2000001318A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9329599B1 (en) 2014-11-21 2016-05-03 Industrial Technology Research Institute Automatic guided vehicle and method for controlling the same
KR101798731B1 (en) 2015-12-24 2017-11-17 주식회사 포스코 Method for manufacturing iron oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9329599B1 (en) 2014-11-21 2016-05-03 Industrial Technology Research Institute Automatic guided vehicle and method for controlling the same
KR101798731B1 (en) 2015-12-24 2017-11-17 주식회사 포스코 Method for manufacturing iron oxide

Similar Documents

Publication Publication Date Title
US3403001A (en) Process and apparatus for the production of metal oxides
JP5887178B2 (en) Spheroidized particle manufacturing apparatus and spheroidized particle manufacturing method
US3372001A (en) Apparatus for producing metal oxides
EP3908553B1 (en) Process for producing potassium sulphate
JP2000001318A (en) Calcination furnace for iron chloride aqueous solution
JP4555199B2 (en) Powder production equipment
JP5086657B2 (en) Rotary hearth reduction furnace and method of operation thereof
KR20160011918A (en) Oxygen enrichment system
JP4760985B2 (en) Blast furnace operation method
CN106247319A (en) A kind of gas industry boiler combustion device and combustion gas hierarchical arrangement method thereof
CA2547232A1 (en) Synthesis furnace
US3185464A (en) Iron ore reducing rotary furnace with mantle burner nozzles of concentric tubes
JPH11343122A (en) Calcining furnace for iron chloride aqueous solution
CN206572513U (en) A kind of heating furnace flat flame gas burner
JPH11147718A (en) Manufacturing apparatus of iron oxide
JP2006124241A (en) Method and apparatus for manufacturing iron oxide
JP5530127B2 (en) Rotary hearth furnace
JP2000128543A (en) Roasting furnace for production of iron oxide
CA1045757A (en) Production of low - sulfur chromium (iii) oxide pigment
JP2005300068A (en) Method for control of oxygen concentration and temperature of exhaust gas from rotary hearth reducing furnace
JPH0812339A (en) Production of iron oxide by calcining method
EP0009522B1 (en) A method of at least partially burning a hydrocarbon and/or carbonaceous fuel
JPH06257723A (en) Oxygen burner
JPH069504Y2 (en) Buffer type heat treatment furnace
JPH0741320A (en) Production of iron oxide for ferrite

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906