JP2000000570A - Covered electrode type electrolytic system - Google Patents

Covered electrode type electrolytic system

Info

Publication number
JP2000000570A
JP2000000570A JP10202645A JP20264598A JP2000000570A JP 2000000570 A JP2000000570 A JP 2000000570A JP 10202645 A JP10202645 A JP 10202645A JP 20264598 A JP20264598 A JP 20264598A JP 2000000570 A JP2000000570 A JP 2000000570A
Authority
JP
Japan
Prior art keywords
water
electrolysis
electrodes
activated carbon
strongly acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10202645A
Other languages
Japanese (ja)
Inventor
Kinichi Takahashi
金一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GREEN SEIJU KK
Original Assignee
GREEN SEIJU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GREEN SEIJU KK filed Critical GREEN SEIJU KK
Priority to JP10202645A priority Critical patent/JP2000000570A/en
Publication of JP2000000570A publication Critical patent/JP2000000570A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electrolytic method capable of dealing with a problem of explosion or toxity by forming a layer of activated carbon to the peripheries of electrodes to cover the electrodes and performing electrolysis by using the covered electrodes to make it possible to form only objective strong acidic electrolyte water and suppressing the generation of hydrogen gas or chlorine gas. SOLUTION: An aq. soln. to which salt or the like is added is injected into an electrolytic cell 2 from an injection port 16 to prepare an electrolyte 14. A power supply apparatus 4 is connected to an anode 6 and cathode 8 comprising copper, etc., by connections 20, 22. Further, the peripheries of both of anodes 6 and cathodes 8 are covered with covering layers 10, 12 of activated carbon comprising fine mesh silk fabrics 24, 26 having antibacterial properties. A current is supplied across the anode 6 and the cathode 8 to perform electrolysis. By this constitution, the generation of hydrogen gas and chlorine gas can be suppressed and the hydrogen ion concn. in the aq. soln. can be enhanced and, in spite of a one tank type structure, pH becomes 2.7 or less especially and strong acid electrolytic water can be formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 本発明は水溶液の電気分解、そ
して殺菌力のある水溶液の製造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the electrolysis of an aqueous solution, and to the production of a sterilizing aqueous solution.

【0002】[0002]

【従来の技術】 殺菌(微生物を殺滅すること)・消毒
(人に対して病原性を有する微生物を殺滅すること)
は、病原菌による悪疫流行などに見舞われて来た人類
の、有史以来の課題である。古代には、病気は悪霊とか
汚れた空気や水によって起こると考えられて来た。当時
死体の防腐に、ピッチやタール、松ヤニなどを用い、蜂
蜜なども創傷の消毒として用いられて来た。ヘブライの
モーゼは、火を用いて清めることを書いている。滅菌
(物質中のすべての微生物を殺菌または除去する)法の
始まりである。
BACKGROUND ART Sterilization (killing microorganisms) and disinfection (killing microorganisms that are pathogenic to humans)
Has been a challenge for humankind, which has been hit by epidemics caused by pathogenic bacteria, since its history. In ancient times, sickness was thought to be caused by demons or dirty air or water. At that time, pitch, tar and pine tar were used for embalming corpses, and honey was also used to disinfect wounds. Hebrew Moses wrote about cleansing with fire. It is the beginning of the sterilization process (killing or removing all microorganisms in a substance).

【0003】19世紀になって、塩素化合物や石炭酸が
消毒剤として使用され、一方で、患者の創傷は外科医の
手や取り扱う道具によって、感染の危険にさらされるこ
とが明らかになり、手術創に触れる器具や包帯は、煮沸
または蒸気滅菌されるようになり、感染症対策は大きく
進んだ。
[0003] In the nineteenth century, chlorine compounds and carboxylate were used as disinfectants, while the wounds of patients were found to be at risk of infection by the hands of surgeons and tools handled, resulting in surgical wounds. Touching instruments and bandages have become boiled or steam sterilized, and infectious disease control has greatly advanced.

【0004】19世紀後半にはパスツールが、煮沸した
水には微生物が発生しないこと、空気中の微生物が栄養
物の入った溶液中で醗酵することを証明し、コッホは、
細菌の染色・培養・滅菌法などの方法を確率し、結核菌
を発見し、感染症対策は飛躍的に進むこととなった。
[0004] In the late 19th century, Pasteur demonstrated that microorganisms did not form in boiled water and that microorganisms in the air fermented in nutrient-containing solutions.
By establishing methods such as staining, culturing, and sterilizing bacteria, they discovered M. tuberculosis, and drastically advanced countermeasures against infectious diseases.

【0005】感染性の病原菌については、1940年代
になって、ペニシリンなど抗生物質の発見によって制圧
されたかに見えたが、5年後にはペニシリナーゼ産性の
耐性菌と、抗生物質との追いかけっこが続き、現在ペニ
シリン系、セフェム系、アミノ酸糖体系の抗生物質に広
く耐性をもっている、多剤耐性菌によるMRSAメチシ
リン耐性黄色ブドウ球菌が発生し、病院内での大流行の
恐れが心配されている。
[0005] In the 1940's, it seemed that infectious pathogens were suppressed by the discovery of antibiotics such as penicillin, but five years later, the resistance between penicillinase-producing resistant bacteria and the antibiotics was followed. Subsequently, MRSA methicillin-resistant Staphylococcus aureus caused by multidrug-resistant bacteria, which are now widely resistant to penicillin-based, cephem-based, and amino acid-sugar-based antibiotics, have emerged, and there is concern about the possibility of a pandemic in hospitals.

【0006】一方、食料品についてはこれまで生ものを
含め、化学合成品からなる防腐剤などの添加物を用い、
腐敗防止策をとって来た。しかし、そうした添加物の中
には発ガン性をもつものも含まれ、最近では体の各器官
の働きを調整するホルモンを、ごく微量で乱す内分泌攪
乱物質(環境ホルモン)も含まれ、無添加のものが求め
られている。
On the other hand, in the case of foodstuffs, additives such as preservatives made of chemically synthesized products, including raw foods, have been used.
We have taken anti-corruption measures. However, some of these additives have carcinogenic properties, and recently, there are also endocrine disruptors (environmental hormones) that disturb the hormones that regulate the functions of the body's organs in very small amounts. Is required.

【0007】こうした状況の中で、水に食塩や塩化カリ
を加えて電気分解し、陽極側にできる殺菌力の強い水溶
液として、強酸性電解水が注目されてきた。強酸性電解
水(残留塩素濃度50ppm前後)の抗菌活性に関し、
MRSAをはじめ各種の細菌やウイルスでは接触時間5
秒、真菌では5秒〜1分で微生物の育成を停止すること
ができた。この強酸性電解水(残留塩素濃度50ppm
前後)は、既存の消毒剤である次亜塩素酸ソーダの0.
1%液(残留塩素濃度1000pp)と殺菌力を比較し
ても、細菌とウイルスについては差がなく、抗酸菌に対
しては強酸性電解水が優れていた。
[0007] Under such circumstances, strongly acidic electrolyzed water has been attracting attention as an aqueous solution having a strong bactericidal activity formed on the anode side by adding salt or potassium chloride to water and electrolyzing. Regarding the antibacterial activity of strongly acidic electrolyzed water (residual chlorine concentration around 50 ppm)
Contact time 5 for various bacteria and viruses including MRSA
In seconds and fungi, the growth of microorganisms could be stopped in 5 seconds to 1 minute. This strongly acidic electrolyzed water (residual chlorine concentration 50 ppm
Before and after) is 0.1% of sodium hypochlorite, an existing disinfectant.
Comparing the bactericidal activity with the 1% solution (residual chlorine concentration of 1000 pp), there was no difference between bacteria and viruses, and strongly acidic electrolyzed water was superior to acid-fast bacteria.

【0008】わずかな塩素濃度で殺菌効果を出せる強酸
性電解水は、ぶどう球菌や緑膿菌に対しては、PH(水
素イオン濃度)が2.6〜2.8では5ppm、PHが
5〜6では50ppmの残留塩素が必要という研究レポ
ートもあり、PH値が低いと、さらに塩素濃度が低くて
殺菌効果をもつことが解っている。
[0008] Strongly acidic electrolyzed water capable of producing a bactericidal effect with a slight chlorine concentration is 5 ppm for staphylococci and Pseudomonas aeruginosa at a pH (hydrogen ion concentration) of 2.6 to 2.8 and 5 to 5 ppm. There is also a research report that No. 6 requires 50 ppm of residual chlorine, and it has been found that when the PH value is low, the chlorine concentration is even lower and has a bactericidal effect.

【0009】強酸性電解水の強力な殺菌力は、PHが
2.7以下、酸化還元電位(ORP)が1000mv以
上であることを条件にし、生成される次亜塩素酸との複
合作用によって生み出されることが分っている。このた
めわずかな塩素濃度で高い殺菌力を持つことができ、従
来の滅菌・消毒とは違った形での効用も期待できる。
The strong sterilizing power of the strongly acidic electrolyzed water is provided by a combined action with hypochlorous acid, provided that the pH is 2.7 or less and the oxidation-reduction potential (ORP) is 1000 mv or more. I know it will be. For this reason, it is possible to have a high sterilizing power even with a slight chlorine concentration, and it can be expected to have a different effect from the conventional sterilization and disinfection.

【0010】ところで、このようなPHが2.7以下の
強酸性電解水を作るためには、これまで電気分解装置と
しては、陰極室と陽極室を仕切る有隔膜を使った2槽型
装置が必要である。無隔膜の1槽型の装置では、弱酸性
電解水しか作ることができなかった。しかし、2槽型の
場合には、もう1槽にはアルカリ水ができ、その使用用
途が決まっていない時、例えば、強酸性電解水を大量に
使用する目的の時などには、アルカリイオン水自体無駄
に流すことになり、その廃水処理上の問題も生じた。さ
らに隔膜に付着物が付き、その除去処理や隔膜の交換
も、コストや運転管理の上で大変であった。
Incidentally, in order to produce such strongly acidic electrolyzed water having a pH of 2.7 or less, a two-tank type apparatus using a diaphragm that separates a cathode chamber and an anode chamber has been used as an electrolysis apparatus. is necessary. In a one-tank type device having no diaphragm, only weakly acidic electrolyzed water could be produced. However, in the case of a two-tank type, alkaline water is generated in the other tank, and when the intended use is not determined, for example, when a large amount of strongly acidic electrolyzed water is used, the alkaline ionized water is used. The wastewater itself was wasted, and there was a problem in the treatment of wastewater. In addition, deposits were attached to the diaphragm, and the removal treatment and replacement of the diaphragm were also difficult in terms of cost and operation management.

【0011】また、この電気分解の過程で陰極側に大量
に発生する水素ガスは、爆発性があり、陽極側に発生す
る塩素ガスは、吸引毒性があり問題となっていた。
Further, a large amount of hydrogen gas generated on the cathode side in the course of the electrolysis has an explosive property, and chlorine gas generated on the anode side has a problem of inhalation toxicity.

【0012】[0012]

【発明が解決しようとする課題】 そこで本発明では1
槽構造にし、目的とする強酸性電解水のみを作ることが
でき、また水素ガスや塩素ガスの発生を抑制し、爆発や
毒性の問題に対処できる電気分解方法を考えた。
SUMMARY OF THE INVENTION In the present invention,
We thought of an electrolysis method that can make only a target strong acidic electrolyzed water with a tank structure, suppress generation of hydrogen gas and chlorine gas, and deal with explosion and toxicity problems.

【0013】[0013]

【課題を解決するための手段】 本発明では上述した課
題を解決するために、電極の回りに活性炭の層を作り、
これによって電極部を被覆し、電気分解を行うようにし
た。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention forms a layer of activated carbon around an electrode,
Thus, the electrode portion was covered, and electrolysis was performed.

【0014】[0014]

【発明の具体的実施例】 以下本発明を図面で説明す
る。図は、本発明による、電極被覆型の電気分解方法に
よる装置である。(2)は電気分解槽、(4)は電源装
置、(6)は陽電極、(8)は陰電極、(10)と(1
2)は活性炭の被覆槽、(14)は電解液、(16)は
注入口、(18)は抜き取り口である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. The figure shows an apparatus according to the electrode coating type electrolysis method according to the present invention. (2) is an electrolysis tank, (4) is a power supply device, (6) is a positive electrode, (8) is a negative electrode, and (10) and (1).
2) is a coating tank of activated carbon, (14) is an electrolytic solution, (16) is an inlet, and (18) is an outlet.

【0015】食塩(NaCl)を0.1〜0.3%加え
た水溶液を、注入口(16)から電気分解槽に注入し、
電解液(14)とする。電源装置(4)で直流電源を作
り、φ20mmの銅の軸心からなる陽電極(6)、及び
陰電極(8)に結線(20)(22)する。活性炭の被
覆槽(10,12)は、抗菌性があって水が痛まず、目
の細かい絹の布(24,26)で、活性炭を電極(6,
8)の回りに、φ40mmの大きさで層状に包んで作っ
た。
An aqueous solution to which 0.1% to 0.3% of sodium chloride (NaCl) is added is injected into the electrolysis tank through the injection port (16),
Electrolyte (14). A DC power supply is produced by the power supply device (4), and the wires (20) and (22) are connected to the positive electrode (6) and the negative electrode (8) each having a copper axis of φ20 mm. Activated carbon coating tanks (10, 12) have antibacterial properties, do not hurt water, and use fine silk cloth (24, 26) to apply activated carbon to electrodes (6, 12).
8), wrapped in layers with a size of φ40 mm.

【0016】実際の電気分解としては、例として25V
の電圧、1Aの電流で電気分解を行った。約30分程度
の時間で、1槽で形成されるこの電気分解槽(2)の電
解液(14)は、PH2.2の強酸性電解水となってい
ることが確認された。
The actual electrolysis is, for example, 25 V
The electrolysis was performed at a voltage of 1 A and a current of 1 A. In about 30 minutes, it was confirmed that the electrolytic solution (14) of the electrolysis tank (2) formed in one tank was a strongly acidic electrolyzed water having a pH of 2.2.

【0017】通常の電気分解に於いては、同程度の電圧
・電流条件の下では、電解液は50〜60℃に温度上昇
する。しかし、本実施例では30〜40℃にしか上がら
なかった。また水(HO)は水素(H)イオンと水
酸基(OH)イオンになり、水素イオンは陰極に引き
寄せられ、電子が供給され水素ガスを発生する。
In ordinary electrolysis, the temperature of the electrolyte rises to 50 to 60 ° C. under similar voltage and current conditions. However, in this example, the temperature rose only to 30 to 40 ° C. Water (H 2 O) is converted into hydrogen (H + ) ions and hydroxyl group (OH ) ions, and the hydrogen ions are attracted to the cathode and electrons are supplied to generate hydrogen gas.

【0018】また、食塩(NaCl)も、ナトリウム
(Na)イオンと塩素(Cl)イオンに分かれ、塩
素イオンは陽極に引き寄せられ、電子を供給し塩素ガス
が発生する。
Further, salt (NaCl) is also divided into sodium (Na + ) ions and chlorine (Cl ) ions, and the chlorine ions are attracted to the anode to supply electrons and generate chlorine gas.

【0019】ところが、本実施例に於いては、水素ガス
及び塩素ガスの発生は、通常内同条件の電気分解の時と
比べ、約10分の1に抑えられたのである。その結果、
水溶液中の水素イオン濃度が高まり、1槽構造であるに
もかかわらずPHが2.7以下となり、強酸性電解水を
作ることができた。
However, in the present embodiment, the generation of hydrogen gas and chlorine gas was suppressed to about 1/10 compared to the electrolysis under the same conditions. as a result,
The concentration of hydrogen ions in the aqueous solution was increased, and the pH became 2.7 or less despite the one-tank structure, so that strongly acidic electrolyzed water could be produced.

【0020】一方、陽極では以下のような反応が行われ
る。 水は水素イオンと溶存酸素となり、発生した塩素は水と
反応して塩酸と次亜塩素酸を作る。
On the other hand, the following reaction takes place at the anode. Water becomes hydrogen ions and dissolved oxygen, and the generated chlorine reacts with water to produce hydrochloric acid and hypochlorous acid.

【0021】溶存酸素は、一定(1100mv)の酸化
還元電位の下で過酸化水素(H)を生みだし、こ
の過酸化水素は、次亜塩素酸の存在によってハイドロキ
シルラジカル(・OH)を生成する。このハイドロキシ
ルラジカルは、酸素の助けを借りて細胞の脂質膜を酸化
損傷させ、タンパクを変性させDNAを切断し、酵素の
活性を失わせることにより細菌やウイルスなどを殺菌す
る。これが強酸性電解水の殺菌作用のメカニズムであ
る。(「強酸性電解水の基礎知識」<ウォーター研究会
>)
Dissolved oxygen produces hydrogen peroxide (H 2 O 2 ) under a constant (1100 mv) oxidation-reduction potential, and this hydrogen peroxide is converted to a hydroxyl radical (.OH) by the presence of hypochlorous acid. Generate The hydroxyl radical oxidizes and damages the lipid membrane of cells with the help of oxygen, denatures proteins, cuts DNA, and loses the activity of enzymes, thereby killing bacteria and viruses. This is the mechanism of the sterilizing action of the strongly acidic electrolyzed water. ("Basic knowledge of strongly acidic electrolyzed water"<Water Study Group>)

【0022】このメカニズムは、活性酸素の生体に対し
てのそれと似ていて、血液中好中菌が体内に入ってきた
病原体を捕食する際に、一方で、NADPHオキシデー
スという酵素から、スーパーオキシドアニオンラジカル
(・O )を生成し過酸化水素にし、他方で、別のミ
エロパーオキシデースという酵素から、塩素イオンや過
酸化水を基質として次亜塩素酸を作り、この2つの働き
で菌を殺すのと同じという。(「強酸性電解水の基礎知
識」)
This mechanism is similar to that of reactive oxygen species in living organisms. When blood neutrophils prey on pathogens that have entered the body, on the other hand, from the enzyme NADPH oxidase, the superoxide anion is removed. Radicals (.O 2 ) are generated and converted into hydrogen peroxide. On the other hand, hypochlorous acid is produced from another enzyme called myeloperoxidase using chlorine ions and water peroxide as substrates. It is the same as killing. ("Basic knowledge of strongly acidic electrolyzed water")

【0023】図2は、鮮魚類(ここではたらこ)を図1
の電気分解装置で作った強酸性電解水によって処理し、
その静菌効果を見たときの検体別残存菌数を示す表であ
る。この実験では、図3のような培養実験プログラムに
従って実験を行った。
FIG. 2 is a diagram showing fresh fish (in this case, taro) in FIG.
Treated with strongly acidic electrolyzed water produced by the electrolyzer of
It is a table | surface which shows the number of residual bacteria by sample when the bacteriostatic effect is observed. In this experiment, the experiment was performed according to a culture experiment program as shown in FIG.

【0024】まず最初、冷蔵庫内に約1日(19時間)
そのまま放置し、菌の一定程度の増殖を計った。その後
「AC培養」(一般生菌培養シャーレにて48時間)、
「CC培養」(大腸菌群培養シャーレにて24時間)に
分け、強酸性電解水に「30S」では30秒、「30
M」では30分間浸漬した。これを「UAW浸漬」とし
た。また強酸性電解水のPHについて「PH2」ではP
H2.16の酸性水、「PH4」ではPH3.69の酸
性水を用いた。
First, about 1 day (19 hours) in the refrigerator
The cells were allowed to stand as they were and a certain degree of growth of the bacteria was measured. After that, "AC culture" (48 hours in a general viable cell culture dish),
Divided into "CC culture" (24 hours in a culture dish for coliforms), 30 seconds in "30S" and "30
M "for 30 minutes. This was designated as “UAW immersion”. The pH of strongly acidic electrolyzed water is "PH2"
The acidic water of H2.16 and the acidic water of PH 3.69 were used for “PH4”.

【0025】その結果が図2であるが、大腸菌について
は元々ゼロで、これは実験考察の対象から外す。一般生
菌については、強酸性電解水によって処理したものは未
処理の物に比べ、雑菌数が少なくなっていることが分か
る。実験結果ではPHの差や浸漬時間による差はみられ
ず、この結果から言うと、PH4のものを30秒浸漬す
るだけで、静菌の効果があることが分った。
FIG. 2 shows the result, which is originally zero for Escherichia coli, which is excluded from the experimental consideration. As for general viable bacteria, those treated with strongly acidic electrolyzed water have a smaller number of germs than untreated ones. In the experimental results, there was no difference between the PH and the immersion time, and from these results, it was found that the bacteriostatic effect was obtained only by immersing PH4 for 30 seconds.

【0026】また、この実験によって、本発明による図
1の電気分解装置によって作った強酸性電解水が、細菌
に対し殺菌の効果があることを確認した。
This experiment also confirmed that the strongly acidic electrolyzed water produced by the electrolyzer of FIG. 1 according to the present invention has a sterilizing effect on bacteria.

【0027】[0027]

【発明の効果】 以上、本発明による活性炭など多孔性
の導伝物質で電極を被覆し、電気分解する方法を用いれ
ば、水素ガスや塩素ガスの発生を、従来の方式に比べ飛
躍的に抑えることができ、爆発や有毒ガスによる影響を
除去して、強酸性電解水を作ることができる。また、1
槽で強酸性電解水を作ることができるため、アルカリ水
の処理を考えることなく装置を作り、その処理に煩わさ
れることがなくなる。
As described above, when the method of coating an electrode with a porous conductive material such as activated carbon according to the present invention and performing electrolysis is used, the generation of hydrogen gas and chlorine gas is drastically suppressed as compared with the conventional method. And removes the effects of explosions and toxic gases to produce strongly acidic electrolyzed water. Also, 1
Since strongly acidic electrolyzed water can be produced in the tank, an apparatus can be made without considering the treatment of alkaline water, and the treatment is not bothered.

【0028】尚、本願の図面に示した実施例はあくまで
1実施例であり、本願はこの実施例に限定されるもので
はない。たとえば活性炭を絹の布に包んだが、層状に活
性炭を粘結したり、固着し、別に固定する方法で被覆し
てもよい。その場合絹の布はいらなくなる。また、今回
は電極に銅を使ったが、通常の電気分解に使っている白
金や黒鉛などを電極としてもよい。また、電気分解のた
めの溶媒として食塩を使ったが、塩化カリウムなど他の
塩化物でもよい。
The embodiment shown in the drawings of the present application is just one embodiment, and the present invention is not limited to this embodiment. For example, the activated carbon is wrapped in a silk cloth, but the activated carbon may be covered or fixed in a layered manner and fixed separately. In that case, no silk cloth is needed. Although copper is used for the electrode this time, platinum or graphite used for normal electrolysis may be used as the electrode. Although salt was used as a solvent for electrolysis, other chlorides such as potassium chloride may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本願発明の、1実施例の電気分解装置の概
略図である。
FIG. 1 is a schematic view of an electrolyzer according to one embodiment of the present invention.

【図2】は、図1の装置により作った強酸性電解水を使
用し、鮮魚類への静菌効果を見る実験結果の残存菌数を
示す表。
FIG. 2 is a table showing the number of residual bacteria as a result of an experiment for examining the bacteriostatic effect on fresh fish using strongly acidic electrolyzed water produced by the apparatus of FIG. 1;

【図3】は、図2の結果を導き出す実験の、培養方法な
どのプログラムを示す図。
FIG. 3 is a diagram showing a program such as a culture method in an experiment for deriving the results of FIG. 2.

フロントページの続き Fターム(参考) 4D061 AA03 AB07 AB10 BA02 BB02 BB04 BB14 BB29 BB30 BB31 BB35 BD12 BD13 4K011 AA12 AA16 DA01 Continued on the front page F term (reference) 4D061 AA03 AB07 AB10 BA02 BB02 BB04 BB14 BB29 BB30 BB31 BB35 BD12 BD13 4K011 AA12 AA16 DA01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電極を活性炭等の多孔性の導電物資によっ
て、被覆したことを特徴とする電極被覆型電気分解方法
1. An electrode-coated electrolysis method comprising coating an electrode with a porous conductive material such as activated carbon.
【請求項2】陽及び陰の前記電極との間に、隔膜を設け
ることなく一層構造とし、該層の溶液を、強酸性水(P
H2.7以下)として作ることを可能にした、特許請求
の範囲第一項に示した電極被覆型電気分解方法
2. A one-layer structure without providing a diaphragm between the positive and negative electrodes, and the solution in the layer is made of strongly acidic water (P).
H2.7 or less), the electrode-coated electrolysis method according to claim 1 made possible.
JP10202645A 1998-06-15 1998-06-15 Covered electrode type electrolytic system Pending JP2000000570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10202645A JP2000000570A (en) 1998-06-15 1998-06-15 Covered electrode type electrolytic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10202645A JP2000000570A (en) 1998-06-15 1998-06-15 Covered electrode type electrolytic system

Publications (1)

Publication Number Publication Date
JP2000000570A true JP2000000570A (en) 2000-01-07

Family

ID=16460785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10202645A Pending JP2000000570A (en) 1998-06-15 1998-06-15 Covered electrode type electrolytic system

Country Status (1)

Country Link
JP (1) JP2000000570A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003043700A1 (en) * 2001-11-20 2003-05-30 Kazuo Aoki Automatic fire extinguisher
KR200457464Y1 (en) * 2009-05-08 2011-12-20 엽정화 Electrolyzer use carbon electrode panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003043700A1 (en) * 2001-11-20 2003-05-30 Kazuo Aoki Automatic fire extinguisher
KR200457464Y1 (en) * 2009-05-08 2011-12-20 엽정화 Electrolyzer use carbon electrode panel

Similar Documents

Publication Publication Date Title
EP2207415B1 (en) Electrochemical device for biocide treatment in agricultural applications
JP4464027B2 (en) Dental apparatus and method for operating the apparatus
JP4116949B2 (en) Electrochemical sterilization and sterilization method
Ignatov et al. Preparation of electrochemically activated water solutions (catholyte/anolyte) and studying their physical-chemical properties
Li et al. Electrochemical wastewater disinfection: Identification of its principal germicidal actions
EP1218297B8 (en) Apparatus for preparing sterilizing water and process for sterilizing water
VM et al. Universal Electrochemical Technology for Environmental Protection.
KR20120092056A (en) The electrolytic apparatus for clo2 gas and sterilization system of room
CN101746857A (en) Method and equipment of electrochemical disinfection for water
JP2002104908A (en) Disinfectant agricultural electrolytic water and production unit therefor
CN101638262A (en) Process for producing electrolyzed oxidizing water and bottled package
CN113215596B (en) System suitable for hypochlorous acid sterilizing water in industrial production
JP2011229405A (en) Method for exterminating ectoparasite which is parasitic on cultured fish
Ignatov et al. Studying electrochemically activated naCl solutions of anolyte and catholyte by methods of non-Equilibrium energy spectrum (NES) and differential non-equilibrium energy spectrum (DNES)
JP2000226680A (en) Production of sterilizing electrolytic water and device therefor
JP4098617B2 (en) Sterilization method
GB2409684A (en) Method of production of a biocidal liquid medium
JP2000000570A (en) Covered electrode type electrolytic system
Ignatov et al. Studying Electrochemically Activated NaCl Solutions of Anolyte and Catholyte by Methods of Non-Equilibrium Energy Spectrum (NES) and Differential Non-Equilibrium Energy Spectrum (DNES)
CN110354390A (en) A kind of diabetes Wound healing preparation and its application
JPH10113664A (en) Sterilized water having high electron activity
CN219195148U (en) Plasma enhanced diaphragm electrolysis device for preparing spectacle lens disinfectant
CN113215595B (en) Portable hypochlorous acid sterilizing water production device
CN210065943U (en) High oxidation water generating equipment
CN115786937A (en) Method for preparing spectacle lens disinfectant by adopting high-voltage discharge plasma enhanced low-voltage diaphragm electrolysis