ITPI20090096A1 - AIRCONDITIONER WITH FREE FLOW ROTOR - Google Patents

AIRCONDITIONER WITH FREE FLOW ROTOR Download PDF

Info

Publication number
ITPI20090096A1
ITPI20090096A1 IT000096A ITPI20090096A ITPI20090096A1 IT PI20090096 A1 ITPI20090096 A1 IT PI20090096A1 IT 000096 A IT000096 A IT 000096A IT PI20090096 A ITPI20090096 A IT PI20090096A IT PI20090096 A1 ITPI20090096 A1 IT PI20090096A1
Authority
IT
Italy
Prior art keywords
blades
rotor
aero
generator
way
Prior art date
Application number
IT000096A
Other languages
Italian (it)
Inventor
Mario Rosario Chiarelli
Original Assignee
Atzeni Davide
Bolognesi Paolo
Mario Rosario Chiarelli
Massai Andrea
Russo Giovanni
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atzeni Davide, Bolognesi Paolo, Mario Rosario Chiarelli, Massai Andrea, Russo Giovanni filed Critical Atzeni Davide
Priority to ITPI2009A000096A priority Critical patent/IT1397762B1/en
Priority to PCT/IB2010/053481 priority patent/WO2011013105A2/en
Priority to EP10754561A priority patent/EP2459871A2/en
Publication of ITPI20090096A1 publication Critical patent/ITPI20090096A1/en
Application granted granted Critical
Publication of IT1397762B1 publication Critical patent/IT1397762B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0436Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor
    • F03D3/0472Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield orientation being adaptable to the wind motor
    • F03D3/049Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield orientation being adaptable to the wind motor with converging inlets, i.e. the shield intercepting an area greater than the effective rotor area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/066Rotors characterised by their construction elements the wind engaging parts being movable relative to the rotor
    • F03D3/067Cyclic movements
    • F03D3/068Cyclic movements mechanically controlled by the rotor structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/06Controlling wind motors  the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/23Geometry three-dimensional prismatic
    • F05B2250/232Geometry three-dimensional prismatic conical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/72Adjusting of angle of incidence or attack of rotating blades by turning around an axis parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/79Bearing, support or actuation arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Wind Motors (AREA)
  • Lubricants (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

DESCRIZIONE DESCRIPTION

Campo tecnico a cui l’Invenzione si riferisce Technical field to which the Invention refers

L’invenzione riguarda una macchina adibita allo sfruttamento dell’energia posseduta da una massa fluida in movimento (ad esempio aria o acqua). In particolare, l’invenzione può essere applicata per la realizzazione di aerogeneratori con rotore ad asse verticale (Figura 1a e Figura 1b). The invention relates to a machine used for the exploitation of the energy possessed by a fluid mass in motion (for example air or water). In particular, the invention can be applied for the construction of wind turbines with a vertical axis rotor (Figure 1a and Figure 1b).

Come noto gli aerogeneratori sono ampiamente usati per produrre energia elettrica grazie alla trasformazione dell’energia meccanica del rotore messo in movimento dal flusso di aria che lo investe. Il rendimento di un aerogeneratore, definito come rapporto tra la potenza meccanica all’asse del rotore e la potenza della massa fluida che investe il rotore stesso, dipende dalla configurazione del rotore medesimo: l’invenzione consente di aumentare questo rendimento rispetto a macchine convenzionali esistenti. As is known, wind turbines are widely used to produce electricity thanks to the transformation of the mechanical energy of the rotor set in motion by the flow of air that hits it. The efficiency of a wind turbine, defined as the ratio between the mechanical power at the axis of the rotor and the power of the fluid mass that strikes the rotor itself, depends on the configuration of the rotor itself: the invention makes it possible to increase this efficiency compared to machines existing conventional ones.

Corrispondente stato dell’arte e aspetti tecnici da migliorare Negli aerogeneratori, la trasformazione della energia cinetica del fluido in energia meccanica viene ottenuta facendo impattare il fluido stesso contro le superfici portanti della macchina (pale). Le attuali configurazioni di aerogeneratori ad asse verticale, nelle soluzioni ingegneristiche ad oggi disponibili, presentano rendimenti generalmente non superiori al 35% (es. Savonius Rotor, Darrieus Rotor, H-Rotor), mentre le più moderne macchine ad asse orizzontale sono realizzate con rotori che hanno rendimenti generalmente più elevati (45%÷50%). In questi ultimi, tuttavia, gli elementi portanti, che sono tipicamente costituiti da pale diritte o svergolate, presentano problemi di stabilità strutturale (che aumentano al crescere delle dimensioni delle pale) che ne influenzano le prestazioni: alle alte velocità del vento viene infatti ridotto il passo delle pale per evitare sovrasollecitazioni dinamiche, a discapito della produttività della macchina stessa. Infine i gradienti di pressione che si producono sulla pala lungo la sua estensione, ed in particolare nella zona della estremità libera, sono causa di una non trascurabile rumorosità. Corresponding state of the art and technical aspects to be improved In wind turbines, the transformation of the kinetic energy of the fluid into mechanical energy is obtained by making the fluid impact against the bearing surfaces of the machine (blades). The current configurations of vertical axis wind turbines, in the engineering solutions available to date, have yields generally not exceeding 35% (eg Savonius Rotor, Darrieus Rotor, H-Rotor), while the most modern horizontal axis machines are made with rotors which generally have higher yields (45% à · 50%). In the latter, however, the load-bearing elements, which are typically made up of straight or twisted blades, have structural stability problems (which increase with the size of the blades) which affect their performance: at high wind speeds the blade pitch to avoid dynamic overstressing, to the detriment of the productivity of the machine itself. Finally, the pressure gradients that are produced on the blade along its extension, and in particular in the area of the free extremity, are the cause of a not negligible noise.

Vantaggi dell’invenzione Advantages of the invention

Nell’aerogeneratore oggetto dell’invenzione, la corrente fluida che impatta contro le pale del rotore subisce una prima deviazione, per poi proseguire liberamente all’interno del rotore ed infine, impattando contro le pale posteriori, subisce una seconda deviazione: la deviazione della corrente fluida e’ correlata alle forze di portanza che si generano sulle pale portanti del rotore (Figura 2). In the wind turbine object of the invention, the fluid current that impacts against the rotor blades undergoes a first deviation, then continues freely inside the rotor and finally, impacting against the rear blades, undergoes a second deviation: the deviation of the fluid current is correlated to the lift forces that are generated on the bearing blades of the rotor (Figure 2).

Il meccanismo fisico di funzionamento dell’aerogeneratore oggetto dell’invenzione e’ simile a quello delle turbomacchine classificate come macchine dinamiche o macchine a flusso continuo. The physical functioning mechanism of the wind turbine object of the invention is similar to that of turbomachines classified as dynamic machines or continuous flow machines.

La ripetuta interazione della corrente fluida con la schiera delle pale del rotore, consente di aumentare la quantità di energia trasferita dalla massa fluida al rotore e permette di ottenere un rendimento fluidomeccanico più elevato rispetto alle macchine convenzionali oggi esistenti. Infatti, per le configurazioni rotoriche in oggetto, non e’ applicabile il ben noto risultato della teoria di Betz che fissa il valore massimo del rendimento aeromeccanico raggiungibile da una turbina eolica. Nella teoria citata, si fa riferimento ad una superficie di discontinuità (il disco del rotore: di spessore pressocche’ nullo) attraverso la quale si verifica il salto di pressione responsabile del trasferimento energetico tra mass fluida e turbina mentre, nel caso presente, la massa fluida che sostiene il movimento del rotore occupa, neH’unita’ di tempo, un volume corrispondente di fatto allo spazio tridimensionale occupato dal rotore: per questo motivo e’ lecito supporre che il rendimento massimo indicato dalla teoria di Betz possa essere superato con la configurazione rotorica oggetto dell’invenzione. La particolare configurazione delle pale del rotore, che possono avere passo ed inclinazione variabile (anche a seconda della loro posizione rispetto alla direzione della corrente fluida) ed essere realizzate con profilo aerodinamico variabile tramite l'impiego di superfici mobili anteriori e/o posteriori (Figura 3a e Figura 3b), consente di aumentare ulteriormente il rendimento. The repeated interaction of the fluid current with the array of rotor blades allows to increase the amount of energy transferred from the fluid mass to the rotor and allows to obtain a higher fluid-mechanical efficiency than the conventional machines existing today. In fact, for the rotor configurations in question, the well known result of the Betz theory which fixes the maximum value of the aeromechanical efficiency achievable by a wind turbine is not applicable. In the theory cited, reference is made to a surface of discontinuity (the rotor disc: of almost zero thickness) through which the pressure jump responsible for the energy transfer between mass fluid and turbine occurs while, in the present case, the fluid mass that supports the movement of the rotor occupies, in the unit of time, a volume corresponding in fact to the three-dimensional space occupied by the rotor: for this reason it is reasonable to assume that the maximum efficiency indicated by Betz's theory can be exceeded with the rotor configuration object of the invention. The particular configuration of the rotor blades, which can have variable pitch and inclination (also depending on their position with respect to the direction of the fluid current) and be made with a variable aerodynamic profile through the use of front and / or rear moving surfaces (Figure 3a and Figure 3b), allows to further increase the yield.

Il fissaggio delle pale ad entrambe le estremità in corrispondenza di due “paratie†(come mostrato in Figura 1a e in Figura 1b), consente di ottenere una struttura rigida e robusta, riproducibile sia in piccole che in grandi dimensioni, essendo ridotti i problemi di instabilità aeroelastica. The fixing of the blades at both ends in correspondence of two â € œparatieâ € (as shown in Figure 1a and in Figure 1b), allows to obtain a rigid and robust structure, reproducible in both small and large dimensions, as problems are reduced. of aeroelastic instability.

La produzione di rumore di natura aerodinamica à ̈ più bassa rispetto alle configurazioni tradizionali, in quanto i gradienti di pressione e di velocità lungo l’asse delle pale sono ridotti. The production of aerodynamic noise is lower than in traditional configurations, as the pressure and speed gradients along the axis of the blades are reduced.

Il valore elevato del rendimento e la sua costanza per un ampio intervallo di velocità del vento, permette di ottenere macchine che hanno una maggiore continuità della produzione di energia anche a bassi valori di velocità del vento (3-4 m/s). The high value of the efficiency and its constancy for a wide range of wind speeds, allows to obtain machines that have a greater continuity of energy production even at low wind speed values (3-4 m / s).

Per come à ̈ costituito, il rotore della macchina, oggetto dell’invenzione, à ̈ auto-awiante, non richiede cioà ̈ l'applicazione di una coppia esterna per dare inizio al moto di rotazione. As it is made, the rotor of the machine, object of the invention, is self-starting, it does not require the application of an external torque to start the rotation motion.

La possibilità di modificare in maniera dinamica la geometria del rotore variando il passo, l’inclinazione ed il profilo delle pale, modificando la superficie resistente investita dalla corrente fluida, permette di operare anche in condizioni di vento estreme che viceversa risultano proibitive per le macchine tradizionali esistenti sul mercato. The possibility of dynamically modifying the geometry of the rotor by varying the pitch, the inclination and the profile of the blades, modifying the resistant surface hit by the fluid current, allows to operate even in extreme wind conditions which, conversely, are prohibitive for the machines. existing on the market.

Per aumentare il rendimento fluidomeccanico in prossimità del rotore può essere installato un sistema auto-orientante realizzato con apposite superfici sagomate che mette in ombra le pale che tendenzialmente si oppongono al moto di rotazione (Figura 6). To increase the fluid-mechanical efficiency near the rotor, a self-orienting system can be installed, made with special shaped surfaces that obscure the blades that tend to oppose the rotation motion (Figure 6).

Descrizione di alcuni modi di realizzare l’invenzione con riferimento ai disegni Description of some ways of realizing the invention with reference to the drawings

Aeroqeneratore con rotore a flusso interno libero: la Figura 1a e la Figura 1 b, riportano, rispettivamente, la vista di assieme della macchina oggetto dell’invenzione per due diverse configurazioni: la prima con l’apparecchiatura per la generazione dell’energia elettrica posizionata in prossimità del rotore stesso (per macchine piccole) con impiego contemporaneo o meno di uno o più generatori elettrici, la seconda con l’apparecchiatura per la generazione dell’energia elettrica posizionata in prossimità della base dell’aerogeneratore (per macchine più grandi). Aeroqenerator with free internal flow rotor: Figure 1a and Figure 1 b, respectively, show the assembly view of the machine object of the invention for two different configurations: the first with the equipment for generating the electricity positioned near the rotor itself (for small machines) with simultaneous use or less of one or more electric generators, the second with the equipment for the generation of electricity positioned near the base of the wind generator ( for larger machines).

Più in dettaglio, facendo riferimento alla Figura 1a si ha: (1) Pale del Rotore, (2) Paratia Inferiore, (3) Paratia Superiore, (4) Coperchio Carenato, (5) Distanziale, (6) Ruota Dentata, (7) Albero, (8) Gruppo di Supporto del Rotore, (9) Gruppo Generatore Elettrico, (10) Supporto Generatore Elettrico, (11) Involucro Carenato, (12) Torre - struttura tubolare o struttura a traliccio, (13) Quadro di Controllo e Interfaccia con la Rete Elettrica, (14) Basamento. More in detail, referring to Figure 1a, we have: (1) Rotor Blades, (2) Lower Bulkhead, (3) Upper Bulkhead, (4) Fairing Cover, (5) Spacer, (6) Toothed Wheel, (7 ) Shaft, (8) Rotor Support Assembly, (9) Electric Generator Assembly, (10) Electric Generator Support, (11) Faired Enclosure, (12) Tower - tubular or lattice structure, (13) Control Panel and Interface with the Electric Grid, (14) Base.

Mentre, facendo riferimento alla Figura 1 b si ha: (1) Pale del Rotore, (2) Paratia Inferiore, Paratia Superiore, (4) Coperchio Carenato, (5) Masse di Bilanciamento, (6) albero, (7) Gruppo di Supporto del Rotore, (8) Involucro Carenato, (9) Prte Superiore della Torre, (10) Giunto, (11) Supporto del Freno di Sicurezza, (12) Freno di Sicurezza, (13) Moltiplicatore di Giri Epicicloidale, (14) Gruppo Generatore Elettrico, (15) Parte Inferiore della Torre con Portello di Accesso Smontabile, (16) Quadro di Controllo e Interfaccia con la Rete Elettrica, (17) Basamento. While, referring to Figure 1 b we have: (1) Rotor Blades, (2) Lower Bulkhead, Upper Bulkhead, (4) Faired Cover, (5) Balancing Masses, (6) Shaft, (7) Group of Rotor Support, (8) Fairing Enclosure, (9) Tower Top Prte, (10) Coupling, (11) Safety Brake Support, (12) Safety Brake, (13) Planetary Gearbox, (14) Electric Generator Assembly, (15) Lower Part of the Tower with Removable Access Door, (16) Control Panel and Interface with the Electric Grid, (17) Base.

Principio di funzionamento: la Figura 2 mostra il principio di funzionamento del rotore, parte principale dell’invenzione, che consiste nella generazione di una coppia motrice ottenuta grazie all’azione delle forze di portanza che si sviluppano sulle pale. Tali forze di portanza sono correlate alla deviazione della corrente fluida (e quindi alla variazione della quantità di moto del flusso) che si verifica sia all’esterno che all’interno del rotore stesso. Operating principle: Figure 2 shows the operating principle of the rotor, the main part of the invention, which consists in the generation of a driving torque obtained thanks to the action of the lift forces that develop on the blades. These lift forces are correlated to the deviation of the fluid current (and therefore to the variation of the momentum of the flow) that occurs both inside and outside the rotor itself.

Profilo delle pale: il profilo delle pale può essere fisso (Figura 3a) oppure modificabile nella parte anteriore, nella parte posteriore o in entrambe (Figura 3b), analogamente a quanto realizzato nelle ali di velivoli. La curvatura può essere fatta variare tramite un sistema di regolazione, inserito nelle due paratie di estremità, che aziona le eventuali superfici mobili anteriore (slat) e posteriore (flap). Profile of the blades: the profile of the blades can be fixed (Figure 3a) or modifiable in the front part, in the rear part or in both (Figure 3b), similarly to what is achieved in aircraft wings. The curvature can be varied by means of an adjustment system, inserted in the two end bulkheads, which activates any movable front (slat) and rear (flap) surfaces.

Geometria del rotore: il rotore dell’aerogeneratore oggetto dell’invenzione si compone di una schiera di pale (Figura 4a) caratterizzate da passo, inclinazione e profilo fissi o variabili, opportunamente disposte in modo circonferenziale attorno all’asse di rotazione del rotore stesso. Le pale sono fissate nell’estremità superiore (quella più lontana dal resto della macchina sulla quale il rotore à ̈ montato) ed inferiore (quella più vicina al resto della macchina sulla quale il rotore à ̈ montato) a due “paratie†(Figure 4b, 4c) che possono essere realizzate con due elementi piatti oppure convessi nella parte interna al rotore, per accelerare il flusso del fluido interno al rotore stesso. La paratia inferiore à ̈ collegata ad una struttura che si interfaccia con la torre del rotore: essa à ̈ solidale con l’albero di trasmissione della macchina, oppure trasmette il moto al sistema di generazione elettrica, attraverso un collegamento meccanico, ad esempio a cinghia o con ruota dentata. La parte interna del rotore à ̈ libera. Il collegamento tra il rotore e la torre à ̈ realizzata attraverso elementi che consentono la rotazione del rotore stesso. Il rotore può avere forma cilindrica (Figure 4a, 4b e 4c già’ citate) realizzato con pale di forma cilindrica (asse delle pale rettilineo e sezione dei profili simile per tutto lo sviluppo della pala) o rastremata; forma tronco-conica (Figure 4d, 4e, 4f), sferica (Figure 4g, 4h), semisferica (Figure 4i, 41, 4m). Le pale possono essere diritte o svergolate, anche in funzione della geometria del rotore. Rotor geometry: the rotor of the wind turbine object of the invention consists of an array of blades (Figure 4a) characterized by fixed or variable pitch, inclination and profile, suitably arranged circumferentially around the axis of rotation of the rotor itself. The blades are fixed in the upper extremity (the one furthest from the rest of the machine on which the rotor is mounted) and the lower one (the one closest to the rest of the machine on which the rotor is mounted) to two â € œparatieâ € ( Figures 4b, 4c) which can be made with two flat or convex elements in the internal part of the rotor, to accelerate the flow of the fluid inside the rotor itself. The lower bulkhead is connected to a structure that interfaces with the rotor tower: it is integral with the machine transmission shaft, or it transmits motion to the electrical generation system, through a mechanical connection, for example to belt or with toothed wheel. The inside of the rotor is free. The connection between the rotor and the tower is made through elements that allow the rotation of the rotor itself. The rotor can have a cylindrical shape (Figures 4a, 4b and 4c already mentioned) made with cylindrical blades (rectilinear blade axis and similar profile section throughout the blade development) or tapered; truncated-conical shape (Figures 4d, 4e, 4f), spherical (Figures 4g, 4h), hemispherical (Figures 4i, 41, 4m). The blades can be straight or twisted, also depending on the geometry of the rotor.

Passo e inclinazione delle pale: il rotore può essere composto da pale a passo fisso oppure variabile. Il passo, o calettamento, può essere fatto variare in maniera ciclica in modo da avere una orientazione diversa da pala a pala lungo la circonferenza, oppure può essere variato in maniera uniforme per tutte le pale. Il passo delle pale può essere fatto variare, ad esempio, in funzione della velocità di rotazione del rotore o in funzione della velocità del vento. Nelle Figura 5a e Figura 5b sono indicate due possibili soluzioni per il controllo del passo delle pale. Infine, rispetto all’asse del rotore le pale possono avere inclinazione fissa o variabile. L’inclinazione delle pale può essere controllata da un sistema di regolazione, ad esempio in funzione della velocità del vento. Per renderne possibile la variazione di passo e/o di inclinazione le pale del rotore vengono montate su barre di supporto che insieme alle paratie di estremità realizzano una struttura portante chiusa (scheletro del rotore) rappresentata schematicamente nel caso di un rotore di forma cilindrica nella Figura 5c. Pitch and inclination of the blades: the rotor can be composed of fixed or variable pitch blades. The pitch, or keying, can be made to vary cyclically in order to have a different orientation from blade to blade along the circumference, or it can be varied in a uniform manner for all blades. The pitch of the blades can be made to vary, for example, according to the speed of rotation of the rotor or according to the speed of the wind. Figure 5a and Figure 5b show two possible solutions for controlling the pitch of the blades. Finally, with respect to the rotor axis, the blades can have a fixed or variable inclination. The inclination of the blades can be controlled by an adjustment system, for example as a function of wind speed. To make it possible to change the pitch and / or inclination, the rotor blades are mounted on support bars which together with the end bulkheads create a closed bearing structure (rotor skeleton) schematically represented in the case of a cylindrical rotor in the Figure 5c.

Statore: per aumentare il rendimento fluidomeccanico, in prossimità del rotore può’ essere installata una superficie statorica sagomata e auto-orientante con la direzione del vento, per la schermatura parziale delle pale resistenti (Figura 6). Stator: to increase the fluid-mechanical efficiency, a shaped and self-orienting stator surface with the direction of the wind can be installed near the rotor, for partial shielding of the resistant blades (Figure 6).

Claims (10)

SET DI RIVENDICAZIONI EMENDATO SENZA SEGNI 1 Un aero-generatore comprendente un rotore con corrente fluida interna libera, il rotore comprendendo: • Una paratia inferiore (2); • Una paratia superiore (4) sovrapposta ad una predeterminata distanza dalla paratia inferiore; • Una schiera di pale (1) interposte tra la paratia superiore (4) e la paratia inferiore (2) in modo tale da formare una camera interna libera da elementi strutturali in modo tale da lasciare libero da ostacoli il flusso del fluido all'interno del rotore, e tale per cui il flusso entrante viene deviato una prima volta da una porzione della palettatura anteriore ed una seconda volta da una porzione della palettatura posteriore che risulta anche essa portante in modo tale che detta doppia deviazione del flusso si traduce in una spinta circonferenziale che si sviluppa sulle pale attive realizzando una coppia motrice e tale per cui non à ̈ richiesta l'azione di una coppia esterna di avviamento; • dette pale avendo un profilo curvo aerodinamico comprendente un bordo di uscita a punta di coltello ed un bordo di attacco stondato; • Caratterizzato dal fatto che le pale sono arrangiate secondo una inclinazione tale da generare portanza quando investite dal flusso entrante ed uscente dalla camera e con il bordo di uscita a coltello rivolto verso l'esterno della camera interna . UNSIGNED AMENDED CLAIM SET 1 An aero-generator comprising a rotor with free internal fluid current, the rotor comprising: â € ¢ A lower bulkhead (2); â € ¢ An upper bulkhead (4) superimposed at a predetermined distance from the lower bulkhead; â € ¢ An array of blades (1) interposed between the upper bulkhead (4) and the lower bulkhead (2) in such a way as to form an internal chamber free from structural elements in such a way as to leave the flow of fluid free from obstacles. inside the rotor, and such that the incoming flow is diverted a first time by a portion of the front blade and a second time by a portion of the rear blade which is also load-bearing in such a way that said double deflection of the flow translates into a circumferential thrust that develops on the active blades creating a driving torque and such that the action of an external starting torque is not required; â € ¢ said blades having an aerodynamic curved profile comprising a knife-tip trailing edge and a rounded leading edge; â € ¢ Characterized by the fact that the blades are arranged according to an inclination such as to generate lift when hit by the flow entering and leaving the chamber and with the knife-like exit edge facing the outside of the internal chamber. 2. Un aero -generatore , in accordo alla rivendicazione 1, in cui le pale (1) possono essere a scelta: • A passo fisso; • A passo variabile; 2. An aero-generator, according to claim 1, in which the blades (1) can be chosen as follows: â € ¢ Fixed pitch; â € ¢ With variable pitch; 3. Un aero-generatore, in accordo alla rivendicazione 2, in cui, nel caso di pale a passo variabile, detto passo può essere variato uniformemente per tutta la schiera di pale o non uniformemente, al variare cioà ̈ della posizione che ogni pala assume periodicamente durante il moto di rotazione del rotore. 3. An aero-generator, according to claim 2, in which, in the case of blades with variable pitch, said pitch can be varied uniformly for the entire array of blades or not uniformly, depending on the position that each blade assumes periodically during the rotational motion of the rotor. 4. Un aero-generatore, secondo la rivendicazione 2 o 3, in cui il passo può essere variato attraverso un accoppiamento ruota dentata-corona o attraverso opportuni martinetti. 4. An aero-generator, according to claim 2 or 3, in which the pitch can be varied through a gear wheel-crown coupling or through suitable jacks. 5. Un aero-generatore, secondo una o più rivendicazioni dalla 2 alla 4, in cui le pale vengono montate su barre di supporto vincolate alla paratia superiore ed alla paratia inferiore. 5. An aero-generator, according to one or more claims 2 to 4, in which the blades are mounted on support bars fixed to the upper and lower bulkheads. 6. Un aero-generatore, secondo la rivendicazione 1, in cui l'asse di ciascuna pala può a scelta avere inclinazione costante o variabile. 6. An aero-generator, according to claim 1, in which the axis of each blade can optionally have constant or variable inclination. 7. Un aero-generatore, secondo la rivendicazione 1, in cui le pale possono avere profilo variabile o costante e, nel caso di profilo variabile, questo viene variato attraverso elementi mobili anteriori (slat), posteriori (flap) o entrambi. 7. An aero-generator, according to claim 1, in which the blades can have a variable or constant profile and, in the case of a variable profile, this is varied through front (slat), rear (flap) movable elements or both. 8. Un aero-generatore, secondo la rivendicazione 1, in cui la superficie interna delle paratie (2, 4) connesse con le pale possono essere a scelta piane oppure opportunamente sagomate in modo tale da restringere la sezione interna del rotore ed accelerare il flusso. 8. An aero-generator, according to claim 1, in which the internal surface of the bulkheads (2, 4) connected to the blades can be optionally flat or suitably shaped in such a way as to restrict the internal section of the rotor and accelerate the flow . 9. Un aero-generatore, secondo la rivendicazione 1, in à ̈ previsto uno statore realizzato con superfici sagomate in modo tale da risultare di tipo auto-orientante con la direzione del vento e configurato in modo tale da schermare le pale resistenti. 9. An aero-generator, according to claim 1, is provided with a stator made with surfaces shaped in such a way as to be self-orienting with the direction of the wind and configured in such a way as to shield the resistant blades. 10. Un aero-generatore, secondo la rivendicazione 1, in cui sono previste apparecchiature per la generazione dell'energia elettrica posizionabili in prossimità della base dell'aero-generatore nel caso di aerogeneratori di grandi dimensioni oppure in prossimità del rotore stesso in aero-generatori più piccoli, con l'impiego di uno o più generatori elettrici anche contemporaneamente.10. An aero-generator, according to claim 1, in which there are equipment for the generation of electrical energy which can be positioned near the base of the aerogenerator in the case of large-sized wind turbines or near the rotor itself in the wind turbine. smaller generators, with the use of one or more electric generators even simultaneously.
ITPI2009A000096A 2009-07-31 2009-07-31 AIRCONDITIONER WITH FREE FLOW ROTOR IT1397762B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ITPI2009A000096A IT1397762B1 (en) 2009-07-31 2009-07-31 AIRCONDITIONER WITH FREE FLOW ROTOR
PCT/IB2010/053481 WO2011013105A2 (en) 2009-07-31 2010-07-30 Aerogenerator with free internal flow rotor
EP10754561A EP2459871A2 (en) 2009-07-31 2010-07-30 Aerogenerator with free internal flow rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ITPI2009A000096A IT1397762B1 (en) 2009-07-31 2009-07-31 AIRCONDITIONER WITH FREE FLOW ROTOR

Publications (2)

Publication Number Publication Date
ITPI20090096A1 true ITPI20090096A1 (en) 2011-02-01
IT1397762B1 IT1397762B1 (en) 2013-01-24

Family

ID=42077497

Family Applications (1)

Application Number Title Priority Date Filing Date
ITPI2009A000096A IT1397762B1 (en) 2009-07-31 2009-07-31 AIRCONDITIONER WITH FREE FLOW ROTOR

Country Status (3)

Country Link
EP (1) EP2459871A2 (en)
IT (1) IT1397762B1 (en)
WO (1) WO2011013105A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8303250B2 (en) * 2009-12-30 2012-11-06 General Electric Company Method and apparatus for increasing lift on wind turbine blade
FR2971303A1 (en) * 2011-02-05 2012-08-10 Gallo Sabrina Steinke Technical device for customizing design and appearance of blades of vertical axis wind turbine used in e.g. urban environment to produce electricity, has expansion modules fixed in notch, and screws provided at outer end of blade of turbine
WO2013005099A1 (en) * 2011-07-07 2013-01-10 7907095 Canada Inc. Horizontal multiple stages wind turbine
GB2500199B (en) 2012-03-12 2016-01-27 Power Collective Ltd A wind turbine assembly
BE1020627A4 (en) * 2012-04-24 2014-02-04 Citius Engineering S A VERTICAL AXIS WIND MACHINE WITH SPHERICAL ROTOR.
AU2013313029B2 (en) * 2012-09-07 2017-04-13 Csr Building Products Limited Ventilator and blade therefor
WO2014036613A1 (en) * 2012-09-07 2014-03-13 Csr Building Products Limited Rotor ventilator
DE102014002078B4 (en) * 2014-02-14 2017-08-31 Thorsten RATH Vertical Wind Generator
AU2015201503B1 (en) 2015-03-23 2016-04-07 Ivr Group Pty Ltd Rotary vent
DE102017120908A1 (en) * 2017-09-11 2019-03-14 Kastel Maschinenbau Gmbh Vertical Wind Turbine
CN107476935B (en) * 2017-09-20 2020-03-13 罗彪 Vertical axis wind blade, wind wheel and wind power generation device
WO2024028658A1 (en) 2022-08-04 2024-02-08 Massai Simone Wind generator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2468002A1 (en) * 1979-10-16 1981-04-30 Massimi Pierre Wind turbine with deformable aerofoil blades - has aerofoil blades mounted vertically with leading edge automatically positioned cam deforming aerofoil section to reduce losses
DE4319291C1 (en) * 1993-06-11 1994-07-21 Hans Erich Gunder Rotor on vertical axis for wind-energy converter
CA2229335A1 (en) * 1996-07-10 1998-01-15 Alcatel Alsthom Compagnie Generale D'electricite Network element and input/output device for a synchronous transmission system
US20030209911A1 (en) * 2002-05-08 2003-11-13 Pechler Elcho R. Vertical-axis wind turbine
WO2004074679A2 (en) * 2003-02-19 2004-09-02 Eole Canada Inc. Windmill
GB2427003A (en) * 2005-06-06 2006-12-13 Steven Peace Portable renewable energy apparatus
WO2008086944A2 (en) * 2007-01-18 2008-07-24 I.C.I. Caldaie S.P.A. Vertical-axis wind turbine
US20080253889A1 (en) * 2005-05-13 2008-10-16 The Regents Of The University Of California Vertical axis wind turbines

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350900A (en) * 1980-11-10 1982-09-21 Baughman Harold E Wind energy machine
GB9302648D0 (en) * 1993-02-10 1993-03-24 Farrar Austin P Wind powered turbine
DE4317617A1 (en) * 1993-05-27 1994-12-01 Ferenc Tabori Wind wheel having wind boxes
JPH1089234A (en) * 1996-09-12 1998-04-07 Arutetsukusu:Kk Windmill for wind power generation
WO2008102980A1 (en) * 2007-02-20 2008-08-28 Yun Se Kim Complex generator using solar and wind and wave

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2468002A1 (en) * 1979-10-16 1981-04-30 Massimi Pierre Wind turbine with deformable aerofoil blades - has aerofoil blades mounted vertically with leading edge automatically positioned cam deforming aerofoil section to reduce losses
DE4319291C1 (en) * 1993-06-11 1994-07-21 Hans Erich Gunder Rotor on vertical axis for wind-energy converter
CA2229335A1 (en) * 1996-07-10 1998-01-15 Alcatel Alsthom Compagnie Generale D'electricite Network element and input/output device for a synchronous transmission system
US20030209911A1 (en) * 2002-05-08 2003-11-13 Pechler Elcho R. Vertical-axis wind turbine
WO2004074679A2 (en) * 2003-02-19 2004-09-02 Eole Canada Inc. Windmill
US20080253889A1 (en) * 2005-05-13 2008-10-16 The Regents Of The University Of California Vertical axis wind turbines
GB2427003A (en) * 2005-06-06 2006-12-13 Steven Peace Portable renewable energy apparatus
WO2008086944A2 (en) * 2007-01-18 2008-07-24 I.C.I. Caldaie S.P.A. Vertical-axis wind turbine

Also Published As

Publication number Publication date
IT1397762B1 (en) 2013-01-24
WO2011013105A3 (en) 2011-04-07
EP2459871A2 (en) 2012-06-06
WO2011013105A2 (en) 2011-02-03

Similar Documents

Publication Publication Date Title
ITPI20090096A1 (en) AIRCONDITIONER WITH FREE FLOW ROTOR
WO2009008634A3 (en) Turbine construction for wind power generator
CN202612004U (en) Wind driven generator blade with strong wind resistance
US20160186719A1 (en) Psp wind-powered generator comprising blades at dihedral angles
CN102734083A (en) Wind driven generator paddle used for resisting strong wind
KR101817229B1 (en) Apparatus for generating by wind power
CN105024586A (en) Vibration-type wind power generation system
CA2892050C (en) Wind turbine rotor and methods of assembling the same
CN202971039U (en) Spiral plano-convex airfoil wind turbine paddle
KR101062190B1 (en) Horizontal rotors of hydro or wind turbines
JP2013519022A (en) High efficiency, high power vertical axis wind power generator
KR20110114043A (en) Ower generater
CN204610140U (en) Hat shape blade tip stretches wind turbine blade
KR101566501B1 (en) Downwind Windpower Generating Apparatus having Swept Blade Tip
KR101627665B1 (en) power generator blade and power generator including the same
JP2018519463A (en) Guide vane assembly
RU2182255C2 (en) Composite savonius-type rotor
KR101295260B1 (en) Aerogenerator that establish aileron
CN219101505U (en) Vertical axis wind power generation device based on grid structure
KR20170129031A (en) The air gear liyong wind power generator
CN203097954U (en) Reaction steam turbine
CN202628382U (en) Swing blade type efficient wind driven generator
CN201184279Y (en) Loose blade drag reduction type wind generating set
KR100955516B1 (en) Has a new-born energy facility and the environmental house which hits
CN208564848U (en) Wind power generating set and its wheel hub and vane change device