ITPI20070096A1 - FERTILIZATION SYSTEM FOR FITOPLANCTON MARINO, AIMED AT THE MAXIMUM ATMOSPHERIC CO2 ABSORPTION. THE OPERATION IS CARRIED OUT IN TWO PHASES PRIMARY TREATMENT WITH MIX OF 3 CONSTITUENTS AND SECONDARY TREATMENT WITH MIX OF 4 CONSTITUENTS ALL OF - Google Patents

FERTILIZATION SYSTEM FOR FITOPLANCTON MARINO, AIMED AT THE MAXIMUM ATMOSPHERIC CO2 ABSORPTION. THE OPERATION IS CARRIED OUT IN TWO PHASES PRIMARY TREATMENT WITH MIX OF 3 CONSTITUENTS AND SECONDARY TREATMENT WITH MIX OF 4 CONSTITUENTS ALL OF Download PDF

Info

Publication number
ITPI20070096A1
ITPI20070096A1 IT000096A ITPI20070096A ITPI20070096A1 IT PI20070096 A1 ITPI20070096 A1 IT PI20070096A1 IT 000096 A IT000096 A IT 000096A IT PI20070096 A ITPI20070096 A IT PI20070096A IT PI20070096 A1 ITPI20070096 A1 IT PI20070096A1
Authority
IT
Italy
Prior art keywords
range
mix
weight
preferably around
constituents
Prior art date
Application number
IT000096A
Other languages
Italian (it)
Inventor
Santino Letizia
Rosario Rocco Tulino
Original Assignee
Santino Letizia
Rosario Rocco Tulino
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santino Letizia, Rosario Rocco Tulino filed Critical Santino Letizia
Priority to IT000096A priority Critical patent/ITPI20070096A1/en
Priority to PCT/IB2007/003833 priority patent/WO2009019529A1/en
Publication of ITPI20070096A1 publication Critical patent/ITPI20070096A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/20Liquid fertilisers
    • C05G5/23Solutions

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Pest Control & Pesticides (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Environmental Sciences (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

DESCRIZIONE dell’invenzione industriale dal titolo “Sistema di fertilizzazione per il fitoplancton marino, finalizzato al massimo assorbimento di CO2 atmosferica. L’operazione si svolge in due fasi, trattamento primario con mix di 3 costituenti e trattamento secondario con mix di 4 costituenti tutti di natura inorganica.” DESCRIPTION of the industrial invention entitled "Fertilization system for marine phytoplankton, aimed at maximum absorption of atmospheric CO2. The operation takes place in two phases, primary treatment with a mix of 3 constituents and secondary treatment with a mix of 4 constituents all of an inorganic nature. "

TESTO DELLA DESCRIZIONE TEXT OF THE DESCRIPTION

Negli ultimi 150 anni la concentrazione di CO2 nell’atmosfera terrestre è cresciuta di circa 1/3 passando da 280 ppm a 375 ppm attuali, con un incremento di oltre 2 ppm annui dal 1985 in poi. In the last 150 years, the concentration of CO2 in the earth's atmosphere has grown by about 1/3 from 280 ppm to 375 ppm today, with an increase of over 2 ppm per year from 1985 onwards.

Le emissioni di CO2 conseguenti al consumo di combustibili fossili sono responsabili per circa i 2/3 dell’effetto serra, con i conseguenti gravissimi rischi sul mutamento del clima globale. CO2 emissions resulting from the consumption of fossil fuels are responsible for about 2/3 of the greenhouse effect, with the consequent very serious risks on global climate change.

E’ necessario contenere e ridurre il tasso atmosferico di CO2, tuttavia dal 1992 (data della sottoscrizione del primo trattato intemazionale di Rio de Janeiro sulle emissione dei gas-serra) ad oggi, il consumo di petrolio, carbone, gas naturale è cresciuto di circa il 10%, attestando ad oltre 86% l’energia di provenienza fossile. Anche se in un prossimo futuro si accrescesse in modo significativo l’aliquota di energia prodotta da fonti rinnovabili o dal nucleare gli squilibri sul clima in parte permarrebbero a causa del lungo tempo di permanenza della CO2nell’atmosfera terrestre. It is necessary to contain and reduce the atmospheric rate of CO2, however from 1992 (the date of the signing of the first international treaty of Rio de Janeiro on greenhouse gas emissions) to date, the consumption of oil, coal, natural gas has grown by about 10%, attesting to over 86% the energy of fossil origin. Even if in the near future the share of energy produced from renewable sources or nuclear power is significantly increased, the imbalances in the climate would remain in part due to the long residence time of CO2 in the earth's atmosphere.

E’ quindi necessario sottrarre quote di CO2 dall’atmosfera seguendo due direttrici distinte: It is therefore necessary to subtract CO2 quotas from the atmosphere by following two distinct guidelines:

1) Sequestro attivo delle emissioni da sorgenti fisse (centrali termoelettriche, cementerei, ecc.) 1) Active sequestration of emissions from fixed sources (thermoelectric plants, cement plants, etc.)

2) Assorbimento delle parti diffuse dal sistema dei trasporti, dal riscaldamento e dalle piccole ma numerosissime produzioni industriali che non possono essere captate da impianti fissi, ma vanno catturate dalla vegetazione (Alberi, Alghe, ecc..). 2) Absorption of the parts spread by the transport system, from heating and from small but very numerous industrial productions that cannot be captured by fixed plants, but must be captured by vegetation (Trees, Algae, etc. ..).

Va posto in evidenza che anche attuando i vari programmi di riforestazione non si riscontrerebbero gli effetti risolutivi necessari ma si otterrebbero soltanto blandi benefici. Per bilanciare le emissioni attuali di CO2 occorrerebbe ogni anno una superficie di riforestazione con estensione equivalente superiore all’India. Si possono invece sottrarre quantità elevate di CO2 dall’atmosfera in modo sicuro e senza squilibri ambientali attraverso un incremento anche di modesta entità nell’attività fotosintetica degli organismi che costituiscono il fitoplancton marino. Essendo la superficie del globo, ricoperta per 2/3 dal mare si verifica in questo sistema il massimo scambio nell’interfaccia aria-acqua. Al fine di accrescere lo sviluppo degli organismi unicellulari (colonie di diatomee) e velocizzare il ciclo biologico è necessario svolgere un azione fertilizzante per incrementare l’attività fotosintetica. Ricerche sistematiche in tal senso sono iniziate nel 1990, impiegando diversi elementi con proprietà stimolanti. Il ferro contenuto in varie forme nei diversi composti è risultato in primis il candidato ottimale, le verifiche sull’assorbimento effettuate con traccianti di Torio radioattivo ne hanno data ampia conferma. It should be emphasized that even by implementing the various reforestation programs, the necessary resolutive effects would not be found but only mild benefits would be obtained. To balance current CO2 emissions, a reforestation area with an equivalent extension greater than India would be needed every year. On the other hand, large amounts of CO2 can be removed from the atmosphere safely and without environmental imbalances through an even modest increase in the photosynthetic activity of the organisms that make up marine phytoplankton. Since the surface of the globe is 2/3 covered by the sea, the maximum exchange in the air-water interface occurs in this system. In order to increase the development of unicellular organisms (colonies of diatoms) and speed up the biological cycle, it is necessary to carry out a fertilizing action to increase photosynthetic activity. Systematic research in this regard began in 1990, using various elements with stimulating properties. The iron contained in various forms in the different compounds was first and foremost the optimal candidate, the tests on the absorption carried out with radioactive thorium tracers have given ample confirmation of this.

Il sistema articolato di fertilizzazione per il fitoplancton marino, oggetto del presente trovato si realizza in due fasi di trattamento distinte, separate da un intervallo di tempo variabile dalle 24 alle 72 ore in funzione del periodo stagionale, delle caratteristiche geoclimatiche della zona di mare in trattamento. Nella prima fase di preliminare il prodotto costituito da un mix A+B+C (A: Na2Si03B: H2Si03C: Na2B407) illustrato nella tavola 1 in soluzione diluita intorno al 2% in acqua di mare viene disperso per iniezione nella fascia superficiale del mare rilasciandovi in opportuna forma complessi ionici del silicio che svolgono la triplice funzione di accrescere l’assunzione del fosforo nelle sintesi ATP, di rendere disponibile una maggiore quantità di silicio per la costruzione delle pareti cellulari ed inoltre inibire P attività tossica degli ioni liberi Fe, Mn che si trovano nella composizione del mix del trattamento fertilizzante della successiva seconda fase. La fase di trattamento fertilizzante viene attuata con una soluzione diluita in acqua di mare intorno al 2 - 3% del mix D+E+F+G ( D: FeS04E:MnS04F:CU(NH4)P04G:ZnC03) illustrato nella tavola n°2. Si effettua il trattamento dopo un intervallo da 24 a 72 ore dal primo nella zona superficiale di mare apportando con esso una maggiore presenza ionica di Fe, Mn e Zn necessari a soddisfare i maggiori bisogni conseguenti all’incremento dell’attività fotosintetica. Nel fitoplancton marino sono presenti numerose sostanze essudanti (polifenoli, amminoacidi e proteine) che esercitano una benefica attività chetante nei confronti dei microelementi Fe, Mn e Zn che formano il mix fertilizzante, in conseguenza di questo fenomeno positivo si manifesta una maggiore assimilazione nel citoplasma cellulare con formazione di ferrodossina che svolge un ruolo di incremento del processo fotosintetico. A seguito delle azioni promotrici e fertilizzanti esercitate dai mix delle due fasi si determina una maggiore velocizzazione dei cicli biologici (incremento della organicazione del carbonio) con aumento dell’assorbimento della CO2 atmosferica presente nell’interfaccia aria-mare. Si verifica un incremento della produzione di diatomee Actinocyclus e delle Skeletonema nella fascia superficiale che insieme alle sostanze essudanti portano ad una maggiore presenza di proteine, carboidrati e grassi. The articulated fertilization system for marine phytoplankton, object of the present invention, is carried out in two distinct treatment phases, separated by a time interval varying from 24 to 72 hours depending on the seasonal period, of the geoclimatic characteristics of the sea area being treated. . In the first preliminary phase, the product consisting of a mix A + B + C (A: Na2Si03B: H2Si03C: Na2B407) shown in table 1 in a solution diluted around 2% in sea water is dispersed by injection in the superficial strip of the sea, releasing it in the appropriate form ionic complexes of silicon which perform the triple function of increasing the intake of phosphorus in ATP synthesis, of making a greater quantity of silicon available for the construction of cell walls and also inhibiting the toxic activity of free ions Fe, Mn which are found in the composition of the fertilizer treatment mix of the subsequent second phase. The fertilizer treatment phase is implemented with a solution diluted in sea water around 2 - 3% of the mix D + E + F + G (D: FeS04E: MnS04F: CU (NH4) P04G: ZnC03) shown in table n ° 2. The treatment is carried out after an interval of 24 to 72 hours from the first in the surface area of the sea, bringing with it a greater ionic presence of Fe, Mn and Zn necessary to meet the greater needs resulting from the increase in photosynthetic activity. In marine phytoplankton there are numerous exuding substances (polyphenols, amino acids and proteins) which exert a beneficial ketant activity against the microelements Fe, Mn and Zn that form the fertilizer mix, as a consequence of this positive phenomenon there is a greater assimilation in the cell cytoplasm with the formation of ferrodoxin which plays a role in increasing the photosynthetic process. As a result of the promoter and fertilizer actions exerted by the mix of the two phases, a greater speeding up of biological cycles is determined (increase in carbon organization) with an increase in the absorption of atmospheric CO2 present in the air-sea interface. There is an increase in the production of Actinocyclus diatoms and Skeletonemas in the superficial fascia which together with exuding substances lead to a greater presence of proteins, carbohydrates and fats.

L’aumento nella zona superficiale di mare delle sostanze proteiche, di carboidrati e grassi costituisce un opportunità per lo sviluppo dello zooplancton marino che dalla primaria azione di sintesi della catena nutrizionale effettuata dai Copepodi porta ad una maggiore formazione di AGE (Acido docosaesainoico (22:6) e di alcoli C20) che favoriscono la proliferazione di sardine, acciughe ed aringhe fino a tutta la catena alimentare che si conclude con salmoni e tonni. Operando l’azione fertilizzante con i parametri più opportuni per le diverse aree oceanografiche (venti correnti marine ecc.) ed il periodo stagionale si può ottimizzare il tasso di assorbimento di CO2 atmosferica su valori anche modesti che non determinano effetti collaterali di squilibrio per gli ecosistemi, in quanto si agisce sull’enorme superficie di scambio dell’interfaccia aria-acqua e non su valori piuttosto elevati di sottrazione di gas CO2 contenuta nell’atmosfera realizzati mediante azioni di assorbimento su sistemi concentrati con superfìci contenute. The increase in the surface area of the sea of protein substances, carbohydrates and fats constitutes an opportunity for the development of marine zooplankton which from the primary action of synthesis of the nutritional chain carried out by Copepods leads to a greater formation of AGE (Docosahexainoic acid (22: 6) and C20 alcohols) which favor the proliferation of sardines, anchovies and herring up to the entire food chain that ends with salmon and tuna. By operating the fertilizing action with the most appropriate parameters for the different oceanographic areas (sea currents, etc.) and the seasonal period, it is possible to optimize the absorption rate of atmospheric CO2 on even modest values that do not cause side effects of imbalance for the ecosystems , as it acts on the enormous exchange surface of the air-water interface and not on rather high values of subtraction of CO2 gas contained in the atmosphere achieved by means of absorption actions on concentrated systems with contained surfaces.

Claims (6)

RIVENDICAZIONI 1) Si rivendica il sistema in due fasi distinte e separate da un intervallo di tempo di 24 - 72 ore del sistema di fertilizzazione per il fitoplactoncton marino, finalizzato all’ assorbimento della CO2 contenuta nell’atmosfera dell’interfaccia aria mare. CLAIMS 1) The system is claimed in two distinct phases separated by a time interval of 24 - 72 hours of the fertilization system for marine phytoplactochton, aimed at absorbing the CO2 contained in the atmosphere of the air-sea interface. 2) Si rivendica la composizione sia qualitativa sia quantitativa del mix dei tre elementi del trattamento preliminare costituito da: a) Na2Si03(Metasilicato di Sodio) nel range dal 70 al 35% in peso ma preferibilmente intorno al 60%. b) H2Si03(Acido Metasilicico) nel range tra il 35 ed il 15% in peso ma preferibilmente intorno al 20%. c) Na2B407(Tetra borato di Sodio) nel range tra il 15 e 8% in peso ma preferibilmente intorno al 12%. 2) The qualitative and quantitative composition of the mix of the three elements of the preliminary treatment is claimed, consisting of: a) Na2Si03 (Sodium metasilicate) in the range from 70 to 35% by weight but preferably around 60%. b) H2Si03 (Metasilicic Acid) in the range between 35 and 15% by weight but preferably around 20%. c) Na2B407 (Sodium Tetra borate) in the range between 15 and 8% by weight but preferably around 12%. 3) Si rivendica il grado di diluizione della soluzione del mix rivendicato al punto 2 tra 1% ed il 4% in peso in acqua di mare, ma preferibilmente intorno al 2%. 3) The degree of dilution of the solution of the mix claimed at point 2 is claimed between 1% and 4% by weight in sea water, but preferably around 2%. 4) Si rivendica la composizione sia qualitativa sia quantitativa del complesso fertilizzante costituito da: d) FeS04(Solfato di Ferro) nel range dal 55% al 95% in peso ma preferibilmente intorno all’ 85% e) MnS04(Solfato di manganese) nel range dal 3% al 20% in peso ma preferibilmente intorno all’ 8% f) CU(NH4)P04(FosfatoCupro Ammoniacale) nel range dal 1% al 15% in peso ma preferibilmente il 4% . g) ZnC03(Carbonato di Zinco) nel range dallo 0,5 al 4% in peso ma preferibilmente 1%. 4) The qualitative and quantitative composition of the fertilizer complex consisting of: d) FeS04 (Iron Sulphate) in the range from 55% to 95% by weight but preferably around 85% e) MnS04 (Manganese sulphate) in the range from 3% to 20% by weight but preferably around 8% f) CU (NH4) P04 (PhosphateCupro Ammoniacal) in the range from 1% to 15% by weight but preferably 4 %. g) ZnC03 (Zinc carbonate) in the range from 0.5 to 4% by weight but preferably 1%. 5) Si rivendica il grado di diluizione del mix rivendicato al punto 4 in acqua di mare nell’ intervallo tra 1% ed 8% in peso ma preferibilmente intorno al 3%. 5) The degree of dilution of the mix claimed in point 4 is claimed in sea water in the range between 1% and 8% by weight but preferably around 3%. 6) Si rivendica l’utilizzo dell’idrato di ammonio (NH4OH) in soluzione acquosa al 35% per effettuare la neutralizzazione e catalizzare l’ossidazione del complesso fertilizzante rivendicato al punto 4 con un valore del pH finale della soluzione diluita nel range pH 6.6 a pH 7.8 ma preferibilmente pH 7.2 7) Si rivendica il valore della temperatura della soluzione del prodotto fertilizzante di trattamento per la cattura della CO2 atmosferica nel range dai 12°C ai 45°C ma preferibilmente intorno ai 30°C. 8) Si rivendica il valore ottimale della profondità degli ugelli dispersori immersi sotto al pelo libero dell’acqua tra 0.5 metri e 8 metri ma preferibilmente 2 metri. 9) Si rivendica il range di velocità ottimale di iniezione delle soluzioni dei mix tra i 10 ed i 60 metri al secondo ma preferibilmente intorno ai 35 metri al secondo. 10) Si rivendica il range dell’angolo di iniezione degli ugelli dispersori immersi come rivendicato al punto 8 delle soluzioni dei mix da 0° a 60° verso l’alto ma preferibilmente intorno ai 40° per una maggiore permanenza degli ioni nell’interfaccia di scambio aria-a6) The use of ammonium hydrate (NH4OH) in a 35% aqueous solution is claimed to carry out the neutralization and catalyze the oxidation of the fertilizer complex claimed in point 4 with a final pH value of the diluted solution in the pH range of 6.6 at pH 7.8 but preferably pH 7.2 7) The temperature value of the solution of the treatment fertilizer product for the capture of atmospheric CO2 is claimed in the range from 12 ° C to 45 ° C but preferably around 30 ° C. 8) The optimal value of the depth of the dispersing nozzles immersed under the free surface of the water is claimed between 0.5 meters and 8 meters but preferably 2 meters. 9) The optimal injection speed range of the solutions of the mixes is claimed between 10 and 60 meters per second but preferably around 35 meters per second. 10) The range of the injection angle of the immersed dispersing nozzles is claimed as claimed in point 8 of the mix solutions from 0 ° to 60 ° upwards but preferably around 40 ° for a greater permanence of the ions in the interface of air exchange-a
IT000096A 2007-08-09 2007-08-09 FERTILIZATION SYSTEM FOR FITOPLANCTON MARINO, AIMED AT THE MAXIMUM ATMOSPHERIC CO2 ABSORPTION. THE OPERATION IS CARRIED OUT IN TWO PHASES PRIMARY TREATMENT WITH MIX OF 3 CONSTITUENTS AND SECONDARY TREATMENT WITH MIX OF 4 CONSTITUENTS ALL OF ITPI20070096A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
IT000096A ITPI20070096A1 (en) 2007-08-09 2007-08-09 FERTILIZATION SYSTEM FOR FITOPLANCTON MARINO, AIMED AT THE MAXIMUM ATMOSPHERIC CO2 ABSORPTION. THE OPERATION IS CARRIED OUT IN TWO PHASES PRIMARY TREATMENT WITH MIX OF 3 CONSTITUENTS AND SECONDARY TREATMENT WITH MIX OF 4 CONSTITUENTS ALL OF
PCT/IB2007/003833 WO2009019529A1 (en) 2007-08-09 2007-11-07 Fertilization system for the marine phytoplankton to absorb atmospheric co2 comprising two different treatment phases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT000096A ITPI20070096A1 (en) 2007-08-09 2007-08-09 FERTILIZATION SYSTEM FOR FITOPLANCTON MARINO, AIMED AT THE MAXIMUM ATMOSPHERIC CO2 ABSORPTION. THE OPERATION IS CARRIED OUT IN TWO PHASES PRIMARY TREATMENT WITH MIX OF 3 CONSTITUENTS AND SECONDARY TREATMENT WITH MIX OF 4 CONSTITUENTS ALL OF

Publications (1)

Publication Number Publication Date
ITPI20070096A1 true ITPI20070096A1 (en) 2007-11-08

Family

ID=39276192

Family Applications (1)

Application Number Title Priority Date Filing Date
IT000096A ITPI20070096A1 (en) 2007-08-09 2007-08-09 FERTILIZATION SYSTEM FOR FITOPLANCTON MARINO, AIMED AT THE MAXIMUM ATMOSPHERIC CO2 ABSORPTION. THE OPERATION IS CARRIED OUT IN TWO PHASES PRIMARY TREATMENT WITH MIX OF 3 CONSTITUENTS AND SECONDARY TREATMENT WITH MIX OF 4 CONSTITUENTS ALL OF

Country Status (2)

Country Link
IT (1) ITPI20070096A1 (en)
WO (1) WO2009019529A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510137A (en) * 1995-07-28 1999-09-07 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Water-floating particulate matter containing micronutrients for phytoplankton
AU5136698A (en) * 1996-12-04 1998-06-29 Tetra Co., Ltd. Materials for growing algae and artificial fishing banks
US5967087A (en) * 1996-12-17 1999-10-19 Markels, Jr.; Michael Method of increasing seafood production in the barren ocean
AU761848B2 (en) * 1999-05-04 2003-06-12 Greensea Venture, Inc. Method of sequestering carbon dioxide
ATE486930T1 (en) * 2004-06-07 2010-11-15 Sampath Kumar Thothathri GROWTH-PROMOTING COMPOSITION FOR DIatoms
US20060081028A1 (en) * 2004-10-20 2006-04-20 Hammons Bob G Water soluble fertilizer having chelated micronutrients for use in fish ponds
WO2006104809A2 (en) * 2005-03-28 2006-10-05 Engel, Marc Method of controlling and modulating hurricanes

Also Published As

Publication number Publication date
WO2009019529A1 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
Kim et al. Enhancement of photosynthetic carbon assimilation efficiency by phytoplankton in the future coastal ocean
US20130115151A1 (en) Process for the removal of acid gases from the air and from combustion gases from burners and internal combustion engines by means of absorption with sodium hydroxide solution and process for obtaining sodium carbonate in order to acquire carbon credits
Li et al. Biological responses of the marine diatom Chaetoceros socialis to changing environmental conditions: A laboratory experiment
ITPI20070096A1 (en) FERTILIZATION SYSTEM FOR FITOPLANCTON MARINO, AIMED AT THE MAXIMUM ATMOSPHERIC CO2 ABSORPTION. THE OPERATION IS CARRIED OUT IN TWO PHASES PRIMARY TREATMENT WITH MIX OF 3 CONSTITUENTS AND SECONDARY TREATMENT WITH MIX OF 4 CONSTITUENTS ALL OF
Hubbard Barometer Rising: The Cartagena Protocol on Biosafety as a Model for Holistic International Regulation of Ocean Fertilization Projects and Other Forms of Geoengineering
Rask et al. Preface to the special issue" integrated monitoring in the Valkea-Kotinen catchment during 1990-2009: abiotic and biotic responses to changes in air pollution and climate"
Dziuba et al. Carbon footprint in fertilizer production as a tool for reduction of GHG emissions
Butnariu et al. Consequences of acid rain
CN105294216A (en) Biogas liquid drip irrigation fertilizer
Tonnard Etude du cycle biogéochimique du fer: Distribution et spéciation dans l’océan Atlantique nord (GA01) et l’océan Austral (GIpr05)(GEOTRACES)
CN105462841B (en) A kind of integrated processes of both culturing microalgae and industrial waste gas denitration
Tonnard Biogeochemical cycle of iron: distribution and speciation in the North Atlantic Ocean (GA01) and the Southern Ocean (GIpr05)(GEOTRACES)
US20100005967A1 (en) Method to scrub greenhouse gases from the atmosphere
Mikkelsen et al. Solar UV irradiation-induced production of N 2 O from plant surfaces-low emissions rates but all over the world.
Baltas et al. Marine Biomass Regeneration: Modelling Large-Scale Carbon Dioxide Removal
Guo et al. Mesophyll conductance and leaf carbon isotope composition of two high elevation conifers along an altitudinal gradient
Miller Comparative environmental assessment of organic and mineral fertilizers–Case study of BioA fertilizer produced from industrial waste
Kottmeier Process understanding of photosynthetic fluxes underlying ocean acidification responses in the coccolithophore Emiliania huxleyi
Mirkhalili A GIS Approach to Wind, SST (Sea Surface Temperature) and CHL (Chlorophyll) variations in the Caspian Sea
Mueller The Effect of Acid Rain on Soil Nutrient Levels and Plant Growth.
Kitidis et al. Photochemical mineralisation of dissolved organic nitrogen
Edwards et al. Physical and geochemical drivers of CDOM variability near a natural seep site in the Gulf of Mexico
Pypker et al. Relationship between environmental variables and CH 4 fluxes in sub-Boreal peatlands
Winston Algae biofuels deemed unsuitable for developing nations
Stewart et al. Tracing the source and fate of nitrate in contemporary mixed land-use surface water systems