ITNA20120074A1 - INNOVATIVE SHAFT IN COMPOSITE MATERIAL - Google Patents

INNOVATIVE SHAFT IN COMPOSITE MATERIAL Download PDF

Info

Publication number
ITNA20120074A1
ITNA20120074A1 IT000074A ITNA20120074A ITNA20120074A1 IT NA20120074 A1 ITNA20120074 A1 IT NA20120074A1 IT 000074 A IT000074 A IT 000074A IT NA20120074 A ITNA20120074 A IT NA20120074A IT NA20120074 A1 ITNA20120074 A1 IT NA20120074A1
Authority
IT
Italy
Prior art keywords
fibers
conrod
connecting rod
composite
arms
Prior art date
Application number
IT000074A
Other languages
Italian (it)
Inventor
Visconti Ignazio Crivelli
Original Assignee
Tepco Tecnologie Dei Polimeri E Dei Compositi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tepco Tecnologie Dei Polimeri E Dei Compositi filed Critical Tepco Tecnologie Dei Polimeri E Dei Compositi
Priority to IT000074A priority Critical patent/ITNA20120074A1/en
Priority to PCT/IT2013/000347 priority patent/WO2014091514A1/en
Publication of ITNA20120074A1 publication Critical patent/ITNA20120074A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • F16C7/02Constructions of connecting-rods with constant length
    • F16C7/026Constructions of connecting-rods with constant length made of fibre reinforced resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/12Force, load, stress, pressure
    • F16C2240/18Stress
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • F16C7/02Constructions of connecting-rods with constant length
    • F16C7/023Constructions of connecting-rods with constant length for piston engines, pumps or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

“Bielle innovative in materiale composito” "Innovative connecting rods in composite material"

1 Stato dell'arte 1 State of the art

Notoriamente una biella, costruita con acciai speciali, serve per trasformare un moto in alternato e viceversa, ed è soggetta a carichi di trazione, flessione, instabilità euleriana e fatica. It is known that a connecting rod, built with special steels, is used to transform a motion into alternating motion and vice versa, and is subject to loads of traction, bending, Eulerian instability and fatigue.

Per il continuo cambio di verso del suo moto e per la presenza di masse aggiuntive d bilanciamento si preducono in continuo perdite di energia cinetica legate al valore della massa della biella. Due to the continuous change of direction of its motion and the presence of additional balancing masses, continuous losses of kinetic energy are predicted, linked to the value of the mass of the connecting rod.

Ai fini di migliorare il rendimento complessivo del cinematismo diminuendo il valore della massa della biella si comprendono tutti i tentativi di realizzare bielle più leggere a parità di prestazioni , come è stato fatto tentando l’uso di metalli più leggeri dell’acciaio, come leghe leggere, titanio ed altri simili tentativi e poi negli ultimi decenni, a seguito del continuo miglioramento e comprensione dei di funzionamento dei materiali compositi fibrosi, tentando in molti brevetti anche intemazionali di tali materiali per la costruzione di bielle, che opportunamente progettate potrebbero sfruttare appieno i valori delle proprietà meccaniche molto elevati insieme ai bassi valori della densità di gran parte di compositi, pur presentando questi materiali caratteristiche di anisotropia e di non-omogeneità invece che essere isotropi e omogenei come i metalli. In order to improve the overall performance of the kinematics by decreasing the value of the mass of the connecting rod, all attempts to make lighter connecting rods with the same performance are included, as was done by trying to use metals lighter than steel, such as light alloys. , titanium and other similar attempts and then in recent decades, following the continuous improvement and understanding of the functioning of fibrous composite materials, attempting in many patents, including international ones, of these materials for the construction of connecting rods, which properly designed could fully exploit the values very high mechanical properties together with the low density values of most composites, even though these materials have characteristics of anisotropy and non-homogeneity instead of being isotropic and homogeneous like metals.

Tali caratteristiche, tuttavia, sono proprio la ragione per cui tali tentativi di usare compositi fibrosi per la biella sono stati scoraggianti e non hanno finora prodotto risultati di gran rilievo nel i costruzione di bielle più leggere. Gli inconvenienti principali per cui ciò si è verificato sono: Such characteristics, however, are precisely the reason why such attempts to use fibrous composites for the connecting rod have been discouraging and have not so far produced major results in the construction of lighter connecting rods. The main drawbacks for which this has occurred are:

1. è ben noto che, per vari motivi, la resistenza a TRAZIONE di una fibra lungo i suo asse è certo superiore alla sua resistenza a COMPRESSIONE lungo il suo asse; di conseguenza anche il materiale composito presenta caratteristiche meccaniche in TRAZIONE lungo la direzione delle fibre anche molto superiori a quelle in COMPRESSIONE lungo la stessa direzione. E in tutti i tentativi di brevettare bielle efficienti in composito si assiste al posizionamento, anche se giustificato con ragioni diverse, di fibre posizionate parallelamente all’asse longitudinale della biella che quindi saranno necessariamente sottoposte a sollecitazione di COMPRESSIONE durante l’eserc zio. 1. it is well known that, for various reasons, the TRACTION resistance of a fiber along its axis is certainly higher than its COMPRESSION resistance along its axis; consequently also the composite material has mechanical characteristics in TRACTION along the direction of the fibers even much higher than those in COMPRESSION along the same direction. And in all attempts to patent efficient composite connecting rods, we are witnessing the positioning, even if justified for different reasons, of fibers positioned parallel to the longitudinal axis of the connecting rod which will therefore necessarily be subjected to COMPRESSION stress during operation.

2. a causa dell’ anisotropia e non-omogeneità del materiale composito si verifici a che questi materiali sono molto sensibili negativamente a carichi locali concentrati di , in particolare in prossimità dell’inizio della/e fibra/e non avendo grandi possibilità di resistere ai carichi pluriassiali che si presentano in tali zone. E questo caso di carico pluriassiale concentrai si verifica certamente vicino alla testa e al piede di biella nella fase di COMPRESSIONE della nella nelle fibre poste con il proprio asse in direzione longitudinale, e tali zone di carichi singolari sono inizio di rottura sia delle fibre che della matrice del composito. 2. due to the anisotropy and non-homogeneity of the composite material, it is verified that these materials are very sensitive to local concentrated loads of, in particular near the beginning of the fiber / s and not having great possibilities of resisting pluriaxial loads that occur in these areas. And this case of concentrated pluriaxial load certainly occurs near the head and the small end in the compression phase of the in the fibers placed with their axis in the longitudinal direction, and these areas of singular loads are the beginning of the failure of both the fibers and the composite matrix.

Entrambi i punti indicati si possono superare aumentando la quantità di materiale composito presente, ma con ciò diminuendo fortemente i vantaggi dell’uso di tali materiali. Both points indicated can be overcome by increasing the amount of composite material present, but thereby greatly decreasing the advantages of using these materials.

2 Descrizione delHnnovazione 2 Description of the innovation

Allo scopo di superare gli inconvenienti citati, la presente idea innovativa della domanda in oggetto NA2012A000074, consiste nell’aver inventato una struttura di biella che usa in gran misura materiali compositi fibrosi eliminando però dall’origine, con la sua struttura, entrambi gli inconvenienti indicati caratteristici dei materiali compositi, durante entrambe le fasi di trazione e di compressione permettendo vantaggi di peso finale a parità di prestazioni, rispetto all’analoga biella in metallo. In order to overcome the aforementioned drawbacks, the present innovative idea of the present application NA2012A000074, consists in having invented a connecting rod structure which largely uses fibrous composite materials, eliminating however from the origin, with its structure, both drawbacks indicated characteristic of composite materials, during both the traction and compression phases, allowing final weight advantages with the same performance, compared to the analogous metal connecting rod.

Infatti in modo totalmente innovativo, rispetto a qualunque altro caso progettuale esistente , nell’invenzione della domanda NA2012A000074 si è previsto che le diverse porzioni di fibre presenti nella biella e depositate per avvolgimento sono sollecitate sempre in TRAZIONE lungo il proprio asse (in modo cioè che possano presentare le massime effettive caratteristiche meccaniche non presentabili quando sollecitate in compressione), sia quando la biella è sottoposta a compressione sia quando essa è sottoposta a trazione. In fact, in a totally innovative way, compared to any other existing design case, in the invention of the application NA2012A000074 it has been foreseen that the different portions of fibers present in the connecting rod and deposited by winding are always stressed in TRACTION along their axis (so that may have the maximum effective mechanical characteristics that cannot be present when stressed in compression), both when the connecting rod is subjected to compression and when it is subjected to traction.

Avviene cioè che, durante la fase di COMPRESSIONE della biella, nella invenzione della domanda NA2012A000074 il corpo centrale della biella disegnato in modo particolare tende deformarsi spingendo le sue 2 “braccia” verso l’ESTERNO e cioè ad allontanarsi tra loro. Così facendo, le 2 braccia sottopongono le fibre avvolte intorno ad esse braccia (la cerchiatura) ad uno stato di TRAZIONE LUNGO IL PROPRIO AS-SE, proprio in virtù della direzione che questa porzione di fibre possiede, depositata intorno lle braccia del corpo centrale della biella, cioè avvolte nella direzione ortogonale all’asse longitudinale della biella. Questo effetto innovativo (cioè fibre sottoposte a sola TRAZIONE lungo il loro asse e quindi che presentano le inassime effettive caratteristiche meccaniche) è chiaramente descritto ed evidenziato nelle rivendicazioni 1, 3, 5 e 7 della domanda NA2012 A000074. That is, it happens that, during the COMPRESSION phase of the connecting rod, in the invention of application NA2012A000074 the central body of the connecting rod designed in a particular way tends to deform by pushing its 2 "arms" outwards and that is to move away from each other. By doing so, the 2 arms subject the fibers wrapped around them arms (the hoop) to a state of TRACTION ALONG THEIR AS-SE, precisely by virtue of the direction that this portion of fibers has, deposited around the arms of the central body of the connecting rod, i.e. wound in the direction orthogonal to the longitudinal axis of the connecting rod. This innovative effect (i.e. fibers subjected to TRACTION only along their axis and therefore having the lowest effective mechanical characteristics) is clearly described and highlighted in claims 1, 3, 5 and 7 of application NA2012 A000074.

Quando la fase di sollecitazione agente sulla biella è di TRAZIONE, il composito de la cerchiatura non partecipa significativamente e tale stato di sollecitazione è invece scaricato direttamente sulla porzione di composito che ha fibre avvolte in direzione longitudinale esternamente e ortogonalmente ille fibre della cerehiatura, lungo tutto il perimetro della intera biella (avvolgimento polare): in tal modo trazione agente sulla biella fa lavorare in TRAZIONE lungo il loro asse tale porzione di fibre (cioèpresen do le massime effettive caratteristiche meccaniche). Questo effetto innovativo è chiaramente descritto evidenziato nelle rivendicazioni 1 , 3, 6 e 7 della domanda NA2012A000074. When the stress phase acting on the connecting rod is of TRACTION, the composite of the hoop does not participate significantly and this state of stress is instead discharged directly on the portion of the composite which has fibers wound in the longitudinal direction externally and orthogonally the fibers of the waxing, along the whole. the perimeter of the entire connecting rod (polar winding): in this way, traction acting on the connecting rod causes this portion of fibers to work in TRACTION along their axis (ie by maintaining the maximum effective mechanical characteristics). This innovative effect is clearly described and highlighted in claims 1, 3, 6 and 7 of application NA2012A000074.

La presente invenzione infatti prevede che la biella sia costituita dai seguenti componi nti indicati in Fig.l : In fact, the present invention provides that the connecting rod consists of the following components indicated in Fig. 1:

A anima o corpo centrale comprendente le boccole di testa (scomponibile o meno) e piede di biella collegate tra loro da 2 "braccia” laterali ricurve leggermente verso l’estemo , come tipicamente riportato in Fig.l, parte A. A core or central body including the head bushings (which can be disassembled or not) and the small end connected to each other by 2 lateral "arms" curved slightly outwards, as typically shown in Fig. 1, part A.

B cerchiatura, costituita da materiale composito depositato per avvolgimento trasversale delle fibre, o con altra tecnica, intorno alle 2 braccia, lungo l’intera lunghezza escludendo testa e piede di biella , trasversalmente all’asse dei fusto della biella, come in Fig.l , parte B. B ring, consisting of composite material deposited by transversal winding of the fibers, or with another technique, around the 2 arms, along the entire length excluding the head and small end, transversely to the axis of the connecting rod shaft, as in Fig. , part B.

C zona polare, costituita da materiale composito depositato con avvolgimento polare, o con altra tecnica, sull’intero Iato esterno perimetrale dell’anima o corpo centrale e sovrap sosto alla cerchiatura, come in Fig. 1, parte C. C polar area, consisting of composite material deposited with polar winding, or with another technique, on the entire outer perimeter side of the core or central body and overlapping the hoop, as in Fig. 1, part C.

La distribuzione quantitativa e qualitativa delle fibre del composito, in cerchiatura ed in zona polare, è funzione dei carichi effettivamente presenti sul cinematismo, ed è possibile pertanto proporzionare “su misura” separatamente qualità e quantità di fibre nella cerchiatura per resistere agli sforzi di COMPRESSIONE presenti sulla biella, e nella zona polare per resistere agli sforzi di TRAZIONE. In particolar fibre di carbonio/grafite sono preferibili per la cerchiatura in quanto, dotate di alto modulo, vengono fortemente sollecitate a trazione anche per le piccolissime deformazioni che sono ammesse; e fibre di vetro, aramidiche, basalto o altre preferibili per la zona polare dove la resistenza a trazione è la caratteristica più importante ed il modulo elastico è meno influente. The quantitative and qualitative distribution of the fibers of the composite, in the hoop and in the polar zone, is a function of the loads actually present on the kinematic system, and it is therefore possible to "tailor-made" the quality and quantity of fibers in the hoop separately to resist the COMPRESSION stresses present. on the connecting rod, and in the polar area to resist the TRACTION efforts. In particular carbon / graphite fibers are preferable for hooping since, having a high modulus, they are strongly stressed in traction even for the very small deformations that are allowed; and glass, aramid, basalt or other fibers preferable for the polar zone where the tensile strength is the most important characteristic and the elastic modulus is less influential.

E’ facile individuare come, nella presente invenzione, l’azione delle 2 braccia dell’anima interna di Fig. 1, realizzate in materiale metallico o in altro materiale e opportunamente curvate verso l’estemo, esercita in FASE DI COMPRESSIONE DELLA BIELLA una spinta laterale parallelamente all’asse delle fibre unidirezionali avvolte nella cerchiatura, che vengono quindi sottoposte esclusivamente a SOLA TRAZIONE, come mostrato tipicamente in Fig. 2. It is easy to identify how, in the present invention, the action of the 2 arms of the inner core of Fig. 1, made of metal or other material and suitably curved outwards, exerts a thrust in the COMPRESSION PHASE OF THE CONNECTING ROD. lateral parallel to the axis of the unidirectional fibers wrapped in the hoop, which are therefore subjected exclusively to TRACTION ONLY, as typically shown in Fig. 2.

E’ più evidente e comprensibile invece la funzione ed il rendimento delle fibre unidirezionali del composito avvolto nella zona di avvolgimento polare, relativamente alla fase di trazione agente sulla biella (vedi Fig. 3), in cui le fibre vengono chiaramente sottoposte a SOLA TRAZIONE durante tale fase di trazione sulla biella. Nel caso della presente invenzione la temperatura di esercizio del cinematismo è prevista nell’ambito termico -50 200°C, e la matrice prevista per inglobare le fibre è del tipo polimerico sia TI (termoindurente, come epossidica, fenolica o simile), sia TP (termoplastico, come PPS, PEI, PEEK o simile). On the other hand, the function and performance of the unidirectional fibers of the composite wound in the polar winding area is more evident and understandable, relative to the traction phase acting on the connecting rod (see Fig. 3), in which the fibers are clearly subjected to TRACTION ONLY during this traction phase on the connecting rod. In the case of the present invention, the operating temperature of the kinematics is foreseen in the thermal range -50 200 ° C, and the matrix foreseen to incorporate the fibers is of the polymeric type both TI (thermosetting, such as epoxy, phenolic or similar), and TP (thermoplastic, such as PPS, PEI, PEEK or similar).

La presente invenzione prevede anche che, in caso di forti sollecitazioni in compressione, ulteriore contributo alla rigidezza flessionale nel piano principale della biella, cioè la stabilità elastica eu eriana dell’anima interna e quindi dell’intera biella, possa essere costituito dalla presenza da ambo i lati tra l’anima interna e il composito della cerchiatura, di uno strato in materiale composito ad alto modulo, tipicamente composito con fibre di carbonio/grafite ad alto modulo poste in direzione longitudinale, come riportata tipicamente in Fig. 1, parte D, collegato rigidamente all’anima stessa ed alla cerchiatura. The present invention also provides that, in the event of strong compressive stresses, a further contribution to the bending stiffness in the main plane of the connecting rod, i.e. the Eu erian elastic stability of the inner core and therefore of the entire connecting rod, can be constituted by the presence of both the sides between the inner core and the composite of the hoop, of a layer of high modulus composite material, typically composite with high modulus carbon / graphite fibers placed in the longitudinal direction, as typically shown in Fig. 1, part D, rigidly connected to the core itself and to the hoop.

Claims (3)

STESURA MODIFICATA DELLE Rivendicazioni 1 Biella da usare in cinematismi meccanici di trasformazione di moto rettilineo in rotatorio e viceversa, costruita con materiali compositi a fibre monodirezionali, invece di/o sostituen o in parte i materiali metallici, al fine di diminuire la massa della biella stessa. Detti materiali com positi vengono, nella presente invenzione, sollecitati sempre in TRAZIONE nella direzione dell’asse delle fibre presenti nelle 2 porzioni della biella, cioè le porzioni dette “cerchiatura” (11) (Fig. 1, parte B) e “avvolgimento o zona polare” (14) (Fig. 1, parte C). L’invenzione rivendica qui il disegno innovativo della parte centrale o fusto (15) (Fig. 1, parte A) della biella che presenta 2 “braccia” (16) e (116) leggermente curve verso l’ESTERNO nel piano principale della biella che, durante la fase di CC MPRESSIONE della biella sotto la forza Fc, tendono a deformarsi verso l’ESTERNO aumentando la distanza tra esse braccia (16) e (116). Per la presenza della detta cerchiatura (11) cioè della porzione di materiale composito fibroso con fibre avvolte intorno a dette 2 braccia (16) e (116), cioè con il propr o asse perpendicolare alla direzione longitudinale della biella, la detta deformazione verso l’ESTERNO delle dette 2 braccia (16) e (116) sotto la detta forza di compressione Fc tende a sua volta a deformare e sollecitare a SOLA TRAZIONE lungo il proprio asse le fibre del composito della detta cerchiatun (11). Quando invece l’azione agente sulla biella deriva da una forza Ft di TRAZIONE tale carico viene assorbito dall’altra porzione di materiale composito in cui le fibre sono avvolte con il proprio asse parallelo all’asse longitudinale della biella, detta porzione di composito costituendo la detta zona (14) di avvolgimento polare. 2 Biella, come riportato nella rivendicazione 1, che ottimizza le quantità e qualità li composito, potendo suddividere la scelta del materiale ottimale per la detta porzione di cerchiatura (11) per resistere, con fibre sollecitate in SOLA TRAZIONE lungo il proprio asse nella fase di CON PRESSIONE sotto la forza Fc agente sulla biella, e per la detta porzione di avvolgimento polare (14) per resistere nella fase di TRAZIONE sotto la forza Ft agente sulla biella, tali porzioni potendo essere progettate in funzione delle richieste meccaniche specifiche del progetto della biella, potendo utilizza e compositi con dette fibre presenti in percentuale volumetrica nel composito compresa tra 30% e 75% costituendo un composito con modulo elastico a TRAZIONE E compreso tra 20.000 MPa e 400.000 MPa, e resistenza a rottura a TRAZIONE compresa tra 300 MPa e 3.000 MPa, essendo le dette fibre del tipo Vetro E, Vetro S, Vetro R, o altre tipologie di Vetro, o carbonio/grafite di qualunque tipo, o basalto, o aramidiche, dette proprietà essendo permesse dalla utilizzazione di compositi con o senza nutrice di tipo polimerico sia del tipo TI (termoindurenti, come epossidiche, poliesteri, fenoliche per temperature massime consigliate non superiori a 180°C circa), oppure del tipo TP (termoplastiche, cerne PPS, PEI, PEEK o simili per temperature massime anche superiori a 250°C circa), o ancora dalla utilizzazione di matrici di tipo diverso come matrici metalliche o ceramiche, detto composito avendo densità o massa volumica compresa tra 0,7 g/cm<3>e 2,2 g/cm.<3> 3 Biella, come riportato nelle rivendicazioni 1 e 2, che presenta elementi critici innovativi costituiti dalla forma e geometria di particolari elementi strutturali della biella conseguenti a la particolarità di sollecitare le dette fibre presenti nelle 2 porzioni del detto composito ESCLUSIVAMENTE IN TRA-ZIONE nella direzione dell’asse delle dette fibre, detta forma e detta geometria essendo basate sulla presenza di: • Fusto o anima centrale (15) in metallo o altro materiale costituita sol dalmente dalla testa (12) e piede (13) di biella e da 2 braccia (16) e (116), rigidamente collegate a detta testa (12) e detto piede ( 13), come riportato tipicamente in Fig. 1 , parte A, sagomate in modo che, sotto il carico di COMPRESSIONE (Fc) agente durante l’esercizio sulle dette zone di testa (12) e piede (13) della biella, si flettano spostandosi verso l’esterno allontanandosi tra loro, dette braccia (16) e (1 16) avendo dimensioni e geometria variabili sia in funzione delle detti caratteristiche del ci nematismo, particolarmente per il numero di giri, per la potenza e coppia massima del cinematismo a cui asservire la detta biella, sia comunque lungo la loro estensione, con dette dimensioni comprese per lo spessore trasversale al piano della biella tra 1 mm e 50 mm , per lo spessore delle dette braccia (16) e (116) nel piano della biella comprese tra 1 mm e 60 rim, dette dimensioni essendo legate anche alla lunghezza (L) della biella e alla distanza (h) dei centri tra le dette zone della testa (12) e piede (13) della biella, detta distanza (h) essendo compres i tra 40 mm e 2.000 mm, potendo tutte le dette misure eccedere i detti valori indicati nei casi di bielle da inserire in particolari cinematismi di grandi dimensioni. • Cerchiatura (11), costituita dal detto materiale composito unidirezioale depositato intorno alle 2 dette braccia (16) e (116) per avvolgimento trasversale delle dette fibre, o con altra tecnica. Detta cerchiatura (11) è posta a coprire esclusivamente l’intera lunghezza coperta dalle dette braccia (16) e (116) della biella, trasversalmente alle 2 dette braccia (16) e (116) e intorno all’asse della biella, come in Fig. 1, parte B, avendo lo strato di materia e composito di detta cerchiatura (11) dimensione nella direzione longitudinale dettata dalla detta lunghezza (h) delle dette braccia (16) e (116) , e nello spessore un valore compreso tra 1 mm e 30 mm, potendo le dette misure eccedere i detti valori indicati nei casi di bielle da inserire in particolari cinematismi di grandi dimensioni. . Detta cerchiatura (11) costituisce una delle innovazione della presente domanda di brevetto per cui le fibre avvolte in detta cerchiatura vengono sottoposte a stato tensionale di SOLA TRAZIONE quando la biella è sottoposta a COMPRESSIONE . • zona ad avvolgimento polare (14), costituita da detto materiale composito unidirezionale depositato con avvolgimento polare, o con altra tecnica, sull’intero perimetO esterno delle dette braccia (16) e (116) in direzione trasversale alla detta cerchiatura (11) e sovrapposto ad essa cerchiatura, come in Fig. 1, parte C, avendo lo strato di materiale composti ) di detto avvolgimento polare (14) dimensioni nella direzione longitudinale pari alla detta lunghezza totale (L) della biella, nello spessore trasversale al piano della biella un valore tra 1 mm e 50 mm, nello spessore del detto avvolgimento polare (14) nel piano della biella un valore compreso tra 1 mm e 60 mm, potendo le dette misure eccedere i detti valori indicati nei casi di bielle da inserire in particolari cinematismi di grandi dimensioni. Detto avvolgimento polare (14) costituisce con la sua posizione una delle innovazione della presente domanda di brevetto per cui le fibre avvolte con detto avvolgimento (14) vengono sottoposte a stato tensionale di SOLA TRAZIONE quando la biella è sottoposta a TRAZIONE. Biella, come riportato nelle rivendicazioni 1, 2, e 3, che può ulteriormente aumentare la rigidezza flessionale e di instabilità euleriana nel suo piano principale durante la fase di compressione, interponendo tra detto fusto o anima centrale (15) in metallo o altro materiale e detta cerchiatura (1 1) uno strato (17) , da ambo i lati e con la stessa geometria della intera detta anima (15), di materiale composito con fibre posizionate in senso longitudinale come in Fig. 1 parte D, tipicamente composito con fibre di carbonio/grafite ad alto modulo, detto materiale avendo modulo elastico E a trazione compreso tra 80.000 MPa e 500.000 MPa, e spessore compreso tra 0,5 mm e 5 mm. Biella, come riportato nelle rivendicazioni 1 -4, che sfrutta la presenza delle (lette 2 braccia (16) e (116) curve verso l’esterno in metallo o altro materiale, rigidamente collegate a detta testa e piede di biella (12) e (13), che permettono, durante la fase di COMPRESSIONE della biella, di allontanarsi tra loro e spingere le fibre unidirezionali del composito della detta cerchiatura (11). avvolte con semplici tecnologie via umido di avvolgimento convenzionale, sollecitandole a SOLA TRAZIONE lungo il proprio asse (vedi Fig. 2). Biella, come riportato nelle rivendicazioni 1, 2, e 3, in cui le dette fibre unidirezionali del composito avvolto, con semplici tecnologie via umido di avvolgimento convenzionale nella detta zona ad avvolgimento polare (14) permettono di assorbire le sollecitazioni presenti sulla biella in direzione ad essa assiale (Fig. 3), durante la fase di TRAZIONE della biella sotto lo sforzo di trazione (Ft), permettendo a detto composito di resistere con il massimo rendimento alle sollecitazioni assiali presenti nella biella sottoponendo le fibre a stato tensionale di SOLA TRAZIONE lungo il proprio asse. Biella, come riportato nelle rivendicazioni 1-6 che sfrutta la possibilità di poi izionare quantitativamente e con orientazioni diverse le fibre del composito, nelle dette porzioni di cerchiatura e polare, al fine di proporzionare separatamente le 2 porzioni per soddisfare rispettivamente gli sforzi di compressione e di trazione agenti sulla biella pur sollecitando le fibre in SOLA TRAZIONE lungo il proprio asse. NEW MODIFIED VERSION OF CLAIMS New Claims Connecting Rod, or conrod, to be used to transform linear to rotational moVements and vice versa, totally or partially using composite materials in order to strongly decrease the conrod mass, where said composites are stressed only with TENSILE stresses acting on the unidirectional fibres, with or without an embedding matrix, that are present in 2 different composite portions of the conrod, that are the conrod fibres “hooping” (1 1), (Fig. 1, part B), and the conrod “polar winding zone” (14), (Fig. 1, part C). The claim here is the innovative design of the internal central internal body (15) (Fig. 1, part A) of the conrod presenting 2 arms (16) and (1 16) slightly curved OUTWARD within the main plane of the conrod so that, during the COMPRESSION stage acting on the conrod under the compressive force F<$, said arms (16) and (1 16) tend to deform OUTWARD getting apart and to increase the dis ice from each other. Due to the presence of the said composite hooping (11) portion wi^ fibres wound around the said 2 arms (16) and (116) that is with their axis perpendicular le conrod main longitudinal axis, the said deformation OUTWARD of the 2 arms (16) and 16), under the said COMPRESSIVE force Fc acting on the conrod, tend to elongate the said hooping fibres (11) along their axis, stressing them finally in PURE TENSION ONLY. In ie stage of presence of a TENSILE force on the conrod this load Ft is released upon the other said portion of polar winding of composite (14), where fibres wound with their axis parallel to the longitudinal axis of the conrod are stressed in PURE TENSION ONLY. Conrod, as in claim 1 , optimizing the quantities, orientations, types of the said unidirectional fibres in said composites due to the possibility to design separately the 2 said portions of the fibres hooping (I I) in order to resist, with fibres stressed with TENSILE STRESS only, to the action of the COM-PRESSIVE force Fc on the conrod, and of the polar winding zone (14) in order to resist, with fibres stressed with TENSILE STRESS only, to the action of the TENSILE force Ft on the conrod. Optimization of the designof the 2 said portions (1 1) and (14) is a function of the mechanical requirements for the conrod and in particular of the revolution number, power and maximum torque of the mechanism, using high tensile E Young modulus and high tensile strength in he said conrod fibres hooping (11), and in the said conrod polar winding zone (14), typically the said fibres being present in a volume fraction between 30% and 75% defining composites with tensile E Young modulus between 20.000 MPa and 400.000 MPa, and tensile strength between 300 MPa and 3.000 MPa, said fibres being of types like E-glass, S-glass, R-glass, or similar glasses, or any type of Carbon/graphite, or basalt type, or aramidic fibres types, where said properties are permitted by the use with or without an embedding matrix of thermosetting polymeric type like polyester, vinylester, epoxy, phenolic types, for temperature up to 180°C , or thermoplastic like PPS, PEI, PEEK or similar, with maximum temperature also higher than about 250°C, or other different types of embedding matrices like metals or ceramics, said composites having density between 0.7 g/cm<3>and 2.2 g/cm<3>. Conrod, as in claims 1 and 2, presenting critical innovative elements in the embodiment of the shape and geometry of structural parts of the conrod aiming to activate ONLY TENSlLE stresses in the fibres of the said portions of composites i.e. fibre hooping (1 1) and polar winding zone (14), the critical innovative elements being: a. Internal central body (15), made in a metal alloy or other material single piece that rigidly connects the big end (12) and the small end (13) through 2 OUTWARD curved arms (16) e (116), as typically shown in Fig. 1, part A, said arms being OUTWARD shaped and curved, so that under the said compression force (Fc) acting on the conrod during the COMPRES-SION phase, the curved arms (16) e (116) deform only in the OUTWARD direction, said curved arms ( 16) e ( 116) having dimensions and geometry function in particular of the revolution number, power and maximum torque of the mechanism, said dimensions and geometry varying also along the said curved arms (16) e (116) length, w|th said dimensions as for the thickness transverse to the conrod plane being between l mm and 50 mm, as for the thickness of the said curved arms (16) e (116) in the conrod plane! being between 1mm and 60mm, said dimensions being function also of the said length (L) of the conrod and of the distance (h) of the 2 centres of the said big end (12) and the small and (13), said distance (h) being between 40 mm and 2.000 mm, all the said dimensions being subjected to increase in presence of conrod to be used in particularly large mechanisms. b. Composite hooping (11), made of said unidirectional composite material transversely wound upon the 2 said arms (16) e (1 16) of the internal central body (15) of the conrod, with the hooping winding of fibres (11) extending exclusively for the entire length of the internal central body (15) of the conrod, around the said body transversely and around his axis, as shown in Fig. 1, part B, with the said Composite hooping (11) having dimensions in the longitudinal direction given by the said length (h) of the 2 said arms (16) and (116) of the internal central body (15) of the conrod and thickness transversely to the conrod plane between 1 mm and 30 mm, all the said dimensions being subjected to increase n presence of conrod to be used in particularly large mechanisms. Said composite hooping is one of the innovative aspects of the present invention, presenting fibres stressed ONLY in TENSION while the conrod is loaded in COMPRESSION c. Polar winding zone (14), made of said unidirectional composite material where said fibres are deposited via polar winding all around the external perimeter of the 2 said arms (16) e (1 16) of the internal central body (15) of the conrod, transversely and on top of the Composite hooping (11), as shown in Fig. 1, part C, said Polar winding (14) having in the longitudinal direction a dimension given by the said length (L) of the conrod, iin thickness transverse to the conrod plane dimension between 1 mm and 50 mm, and in thickness in the conrod plane dimension between 1 mm and 60 mm, all the said dimensions being subjected to increase in presence of conrod to be used in particularly large mechanisms. Said polar winding zone is one of the innovative aspects of the present invention, presenting fibres stressed ONLY in TENSION while the conrod is loaded in TENSION Conrod, as in claims 1, 2 and 3, where a further increase in flexural rigidity against Eulerian instability in the Conrod main plane during compression under the compressive force (Fc) is obtained through the presence, on both sides of the internal central body (15), and underneath the fibres hooping (11), of a layer (17) of high modulus composite, typically with unidirectional high modulus carbon/graphite fibres, as in Fig. 1 part D, said composite having a Young modulus E between 80.000 MPa and 500.000 MPa, and thickness between 0,5 mm and 5 mm, Conrod, as in claims 1 , 2, 3 and 4, where the said 2 arms (16) and (116) of the internal central body (15) rigidly connecting the big end (12) and the small end (13) and deforming exclusively in the outward direction during the compression phase under the compression force (Fc), act on the said fibres of the Composite hooping (11), wound with simple conventional humid winding technologies, stressing the said fibres ONLY IN TENSION along their axis as shown in Fig. MODIFIED DRAFTING OF Claims 1 Connecting rod to be used in mechanical kinematics for transforming rectilinear motion into rotary motion and vice versa, built with monodirectional fiber composite materials, instead of / or partially replacing the metallic materials, in order to reduce the mass of the connecting rod itself . Said composite materials are, in the present invention, always stressed in TRACTION in the direction of the axis of the fibers present in the 2 portions of the connecting rod, i.e. the portions called "ringing" (11) (Fig. 1, part B) and "winding or polar zone "(14) (Fig. 1, part C). The invention here claims the innovative design of the central part or stem (15) (Fig. 1, part A) of the connecting rod which has 2 "arms" (16) and (116) slightly curved outwards in the main plane of the connecting rod which, during the phase of CC PRESSURE of the connecting rod under the force Fc, tend to deform towards the OUTSIDE increasing the distance between them arms (16) and (116). Due to the presence of the said hoop (11) i.e. the portion of fibrous composite material with fibers wrapped around said 2 arms (16) and (116), i.e. with its axis perpendicular to the longitudinal direction of the connecting rod, the said deformation towards the The OUTSIDE of the said 2 arms (16) and (116) under the said compression force Fc tends in turn to deform and stress the composite fibers of the said rim (11) by TRACTION ONLY along its own axis. On the other hand, when the action acting on the connecting rod derives from a TRACTION force Ft, this load is absorbed by the other portion of composite material in which the fibers are wound with their axis parallel to the longitudinal axis of the connecting rod, said composite portion constituting the said polar winding zone (14). 2 Connecting rod, as reported in claim 1, which optimizes the quantity and quality of the composite, being able to divide the choice of the optimal material for the said portion of the hoop (11) to resist, with fibers stressed in TRACTION ONLY along their axis in the phase of WITH PRESSURE under the force Fc acting on the connecting rod, and for the said polar winding portion (14) to resist in the TRACTION phase under the force Ft acting on the connecting rod, these portions can be designed according to the specific mechanical requirements of the connecting rod project , being able to use and composites with said fibers present in volumetric percentage in the composite between 30% and 75% constituting a composite with Tensile E elastic modulus between 20,000 MPa and 400,000 MPa, and Tensile breaking strength between 300 MPa and 3,000 MPa, being the said fibers of the type E Glass, S Glass, R Glass, or other types of Glass, or carbon / graphite of any type, or basalt, or aramidic, said properties being allowed by the use of composites with or without polymeric type nourisher both of the TI type (thermosetting, such as epoxies, polyesters, phenolics for maximum recommended temperatures not exceeding about 180 ° C), or of the TP type (thermoplastic , cerne PPS, PEI, PEEK or similar for maximum temperatures even higher than about 250 ° C), or from the use of matrices of different types such as metal or ceramic matrices, said composite having density or density between 0.7 g / cm <3> and 2.2 g / cm. <3> 3 Connecting rod, as reported in claims 1 and 2, which has innovative critical elements consisting of the shape and geometry of particular structural elements of the connecting rod resulting from the particularity of stressing said fibers present in the 2 portions of said composite EXCLUSIVELY IN TRANSACTION in the direction of the axis of said fibers, said shape and said geometry being based on the presence of: between metal or other material consisting only of the head (12) and foot (13) of the connecting rod and 2 arms (16) and (116), rigidly connected to said head (12) and said foot (13) , as typically shown in Fig. 1, part A, shaped so that, under the COMPRESSION load (Fc) acting during exercise on said areas of the head (12) and foot (13) of the connecting rod, they flex moving towards the outside moving away from each other, said arms (16) and (1 16) having variable dimensions and geometry both as a function of said characteristics of the kinematics, particularly for the number of revolutions, for the power and maximum torque of the kinematic mechanism to which they are to be enslaved said connecting rod, in any case along their extension, with said dimensions included for the transversal thickness to the plane of the connecting rod between 1 mm and 50 mm, for the thickness of said arms (16) and (116) in the plane of the connecting rod between 1 mm and 60 rim, said dimensions being also related to the length (L) of the the connecting rod and at the distance (h) of the centers between the said areas of the head (12) and foot (13) of the connecting rod, said distance (h) being between 40 mm and 2,000 mm, all said measures being able to exceed those values indicated in the case of connecting rods to be inserted in particular kinematic mechanisms of large dimensions. Ring (11), consisting of the said unidirectional composite material deposited around the 2 said arms (16) and (116) by transversal winding of the said fibers, or with another technique. Said ring (11) is set to cover exclusively the entire length covered by said arms (16) and (116) of the connecting rod, transversely to the 2 said arms (16) and (116) and around the axis of the connecting rod, as in Fig. 1, part B, having the material and composite layer of said ring (11) dimension in the longitudinal direction dictated by the said length (h) of the said arms (16) and (116), and in the thickness a value between 1 mm and 30 mm, the said measures being able to exceed the said values indicated in the case of connecting rods to be inserted in particular kinematic mechanisms of large dimensions. . Said loop (11) constitutes one of the innovations of the present patent application for which the fibers wrapped in said loop are subjected to a tensional state of TRACTION ONLY when the connecting rod is subjected to COMPRESSION. polar winding zone (14), consisting of said unidirectional composite material deposited with polar winding, or with another technique, on the entire external perimeter of said arms (16) and (116) in a transverse direction to said hoop (11) and superimposed to it, as in Fig. 1, part C, having the layer of material composed) of said polar winding (14) dimensions in the longitudinal direction equal to said total length (L) of the connecting rod, in the transversal thickness to the plane of the connecting rod a value between 1 mm and 50 mm, in the thickness of said polar winding (14) in the plane of the connecting rod a value between 1 mm and 60 mm, the said measures being able to exceed the said values indicated in the case of connecting rods to be inserted in particular kinematic mechanisms big dimensions. Said polar winding (14) constitutes with its position one of the innovations of the present patent application for which the fibers wound with said winding (14) are subjected to a tensional state of TRACTION ONLY when the connecting rod is subjected to TRACTION. Connecting rod, as reported in claims 1, 2, and 3, which can further increase the flexural stiffness and Eulerian instability in its main plane during the compression phase, by interposing between said stem or central core (15) made of metal or other material and said hoop (11) a layer (17), on both sides and with the same geometry as the entire said core (15), of composite material with fibers positioned longitudinally as in Fig. 1 part D, typically composite with fibers high modulus carbon / graphite, said material having tensile modulus E between 80,000 MPa and 500,000 MPa, and thickness between 0.5 mm and 5 mm. Connecting rod, as reported in claims 1 -4, which exploits the presence of the (read 2 arms (16) and (116) curved outwards in metal or other material, rigidly connected to said head and small end (12) and (13), which allow, during the COMPRESSION phase of the connecting rod, to move away from each other and push the unidirectional fibers of the composite of said hoop (11). axis (see Fig. 2). Connecting rod, as reported in claims 1, 2, and 3, in which said unidirectional fibers of the wound composite, with simple conventional wet winding technologies in said polar winding zone (14) allow to absorb the stresses present on the connecting rod in its axial direction (Fig. 3), during the TRACTION phase of the connecting rod under the traction force (Ft), allowing said composite to resist with maximum efficiency iment to the axial stresses present in the connecting rod by subjecting the fibers to a tensional state of ONLY TRACTION along their axis. Biella, as reported in claims 1-6 which exploits the possibility of then quantitatively and with different orientations the fibers of the composite, in the said ring and polar portions, in order to proportion the 2 portions separately to satisfy respectively the compression and of traction acting on the connecting rod while stressing the fibers in TRACTION ONLY along their axis. NEW MODIFIED VERSION OF CLAIMS New Claims Connecting Rod, or conrod, to be used to transform linear to rotational moVements and vice versa, totally or partially using composite materials in order to strongly decrease the conrod mass, where said composites are stressed only with TENSILE stresses acting on the unidirectional fibers, with or without an embedding matrix, that are present in 2 different composite portions of the conrod, that are the conrod fibers "hooping" (1 1), (Fig. 1, part B), and the conrod “Polar winding zone” (14), (Fig. 1, part C). The claim here is the innovative design of the internal central internal body (15) (Fig. 1, part A) of the conrod presenting 2 arms (16) and (1 16) slightly curved OUTWARD within the main plane of the conrod so that , during the COMPRESSION stage acting on the conrod under the compressive force F <$, said arms (16) and (1 16) tend to deform OUTWARD getting apart and to increase the dis ice from each other. Due to the presence of the said composite hooping (11) portion wi ^ fibers wound around the said 2 arms (16) and (116) that is with their axis perpendicular le conrod main longitudinal axis, the said deformation OUTWARD of the 2 arms ( 16) and 16), under the said COMPRESSIVE force Fc acting on the conrod, tend to elongate the said hooping fibers (11) along their axis, stressing them finally in PURE TENSION ONLY. In ie stage of presence of a TENSILE force on the conrod this load Ft is released upon the other said portion of polar winding of composite (14), where fibers wound with their axis parallel to the longitudinal axis of the conrod are stressed in PURE TENSION ONLY. Conrod, as in claim 1, optimizing the quantities, orientations, types of the said unidirectional fibers in said composites due to the possibility to design separately the 2 said portions of the fibers hooping (I I) in order to resist, with fibers stressed with TENSILE STRESS only, to the action of the COM-PRESSIVE force Fc on the conrod, and of the polar winding zone (14) in order to resist, with fibers stressed with TENSILE STRESS only, to the action of the TENSILE force Ft on the conrod . Optimization of the design of the 2 said portions (1 1) and (14) is a function of the mechanical requirements for the conrod and in particular of the revolution number, power and maximum torque of the mechanism, using high tensile E Young modulus and high tensile strength in he said conrod fibers hooping (11), and in the said conrod polar winding zone (14), typically the said fibers being present in a volume fraction between 30% and 75% defining composites with tensile E Young modulus between 20.000 MPa and 400,000 MPa, and tensile strength between 300 MPa and 3.000 MPa, said fibers being of types like E-glass, S-glass, R-glass, or similar glasses, or any type of Carbon / graphite, or basalt type, or aramidic fibers types, where said properties are permitted by the use with or without an embedding matrix of thermosetting polymeric type like polyester, vinylester, epoxy, phenolic types, for temperature up to 180 ° C, or thermoplastic like PPS, PEI, PEEK or similar, with maximum temperature also higher than about 250 ° C, or other different types of embedding matrices like metals or ceramics, said composites having density between 0.7 g / cm <3> and 2.2 g / cm <3>. Conrod, as in claims 1 and 2, presenting critical innovative elements in the embodiment of the shape and geometry of structural parts of the conrod aiming to activate ONLY TENSlLE stresses in the fibers of the said portions of composites i.e. fiber hooping (1 1) and polar winding zone (14), the critical innovative elements being: a. Internal central body (15), made in a metal alloy or other material single piece that rigidly connects the big end (12) and the small end (13) through 2 OUTWARD curved arms (16) e (116), as typically shown in Fig. 1, part A, said arms being OUTWARD shaped and curved, so that under the said compression force (Fc) acting on the conrod during the COMPRES-SION phase, the curved arms (16) e (116) deform only in the OUTWARD direction, said curved arms (16) e (116) having dimensions and geometry function in particular of the revolution number, power and maximum torque of the mechanism, said dimensions and geometry varying also along the said curved arms (16) e (116 ) length, w | th said dimensions as for the thickness transverse to the conrod plane being between l mm and 50 mm, as for the thickness of the said curved arms (16) e (116) in the conrod plane! being between 1mm and 60mm, said dimensions being function also of the said length (L) of the conrod and of the distance (h) of the 2 centers of the said big end (12) and the small and (13), said distance (h) being between 40 mm and 2.000 mm, all the said dimensions being subjected to increase in presence of conrod to be used in particularly large mechanisms. b. Composite hooping (11), made of said unidirectional composite material transversely wound upon the 2 said arms (16) e (1 16) of the internal central body (15) of the conrod, with the hooping winding of fibers (11) extending exclusively for the entire length of the internal central body (15) of the conrod, around the said body transversely and around his axis, as shown in Fig. 1, part B, with the said Composite hooping (11) having dimensions in the longitudinal direction given by the said length (h) of the 2 said arms (16) and (116) of the internal central body (15) of the conrod and thickness transversely to the conrod plane between 1 mm and 30 mm, all the said dimensions being subjected to increase n presence of conrod to be used in particularly large mechanisms. Said composite hooping is one of the innovative aspects of the present invention, presenting fibers stressed ONLY in TENSION while the conrod is loaded in COMPRESSION c. Polar winding zone (14), made of said unidirectional composite material where said fibers are deposited via polar winding all around the external perimeter of the 2 said arms (16) e (1 16) of the internal central body (15) of the conrod , transversely and on top of the Composite hooping (11), as shown in Fig. 1, part C, said Polar winding (14) having in the longitudinal direction a dimension given by the said length (L) of the conrod, iin thickness transverse to the conrod plane dimension between 1 mm and 50 mm, and in thickness in the conrod plane dimension between 1 mm and 60 mm, all the said dimensions being subjected to increase in presence of conrod to be used in particularly large mechanisms. Said polar winding zone is one of the innovative aspects of the present invention, presenting fibers stressed ONLY in TENSION while the conrod is loaded in TENSION Conrod, as in claims 1, 2 and 3, where a further increase in flexural rigidity against Eulerian instability in the Conrod main plane during compression under the compressive force (Fc) is obtained through the presence, on both sides of the internal central body (15), and underneath the fibers hooping (11), of a layer (17) of high modulus composite , typically with unidirectional high modulus carbon / graphite fibers, as in Fig. 1 part D, said composite having a Young modulus E between 80.000 MPa and 500.000 MPa, and thickness between 0,5 mm and 5 mm, Conrod, as in claims 1 , 2, 3 and 4, where the said 2 arms (16) and (116) of the internal central body (15) rigidly connecting the big end (12) and the small end (13) and deforming exclusively in the outward direction during the compression phase under the compression force (Fc), ac t on the said fibers of the Composite hooping (11), wound with simple conventional humid winding technologies, stressing the said fibers ONLY IN TENSION along their axis as shown in Fig. 2, Conrod, as in claims 1 , 2 and 3 where said unidirectional fibres of said composite in said Polar winding zone (14), ), wound with simple conventional humid winding technologies, permit to absorbe, during the tensile phase under the tensile force (Ft), with only TENSILE stressed along their axis, the load Ft acting on the conrod, as shown in Fig.2, Conrod, as in claims 1, 2 and 3 where said unidirectional fibers of said composite in said Polar winding zone (14),), wound with simple conventional humid winding technologies, permit to absorbe, during the tensile phase under the tensile force (Ft ), with only TENSILE stressed along their axis, the load Ft acting on the conrod, as shown in Fig. 3. Conrod, as in claims from 1 to 6, where fibres differing in said quantity and said quality in said different zones (11) and (14) of the Conrod can be used to in order to optimize the mechanical design, using high modulus fibres where deformations must be minimized, like in the Composite hooping (11), and high strength fibres where strength is the main requirement like Polar winding zone (14), still having always fibres stressed with ONLY TENSILE STRESSES along their axis.3. Conrod, as in claims from 1 to 6, where fibers differing in said quantity and said quality in said different zones (11) and (14) of the Conrod can be used to in order to optimize the mechanical design, using high modulus fibers where deformations must be minimized, like in the Composite hooping (11), and high strength fibers where strength is the main requirement like Polar winding zone (14), still having always fibers stressed with ONLY TENSILE STRESSES along their axis.
IT000074A 2012-12-13 2012-12-13 INNOVATIVE SHAFT IN COMPOSITE MATERIAL ITNA20120074A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
IT000074A ITNA20120074A1 (en) 2012-12-13 2012-12-13 INNOVATIVE SHAFT IN COMPOSITE MATERIAL
PCT/IT2013/000347 WO2014091514A1 (en) 2012-12-13 2013-12-12 Innovative connecting rod in composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT000074A ITNA20120074A1 (en) 2012-12-13 2012-12-13 INNOVATIVE SHAFT IN COMPOSITE MATERIAL

Publications (1)

Publication Number Publication Date
ITNA20120074A1 true ITNA20120074A1 (en) 2014-06-14

Family

ID=48047548

Family Applications (1)

Application Number Title Priority Date Filing Date
IT000074A ITNA20120074A1 (en) 2012-12-13 2012-12-13 INNOVATIVE SHAFT IN COMPOSITE MATERIAL

Country Status (2)

Country Link
IT (1) ITNA20120074A1 (en)
WO (1) WO2014091514A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20161617A1 (en) * 2016-03-14 2017-09-14 Tepco Srl Tecnologie Dei Polimeri E Dei Compositi 80121 Napoli / It COMPOSITE COMPONENT CONNECTING ROD FOR CYLINDRICAL MULTI MOTORS.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2058623A (en) * 1979-08-17 1981-04-15 Art Metal Mfg Casting of fibre-reinforced composite articles
GB2067712A (en) * 1979-12-22 1981-07-30 Deutsche Forsch Luft Raumfahrt Gudgeon pin
US4391161A (en) * 1979-08-29 1983-07-05 Honda Giken Kogyo Kabushiki Kaisha Connecting rod of internal combustion engine
EP0626250A1 (en) * 1993-05-26 1994-11-30 AEROSPATIALE Société Nationale Industrielle Method for manufacturing a connecting rod from monolythic composite material by placing preimpregnated fibres on an extractable mandrel and connecting rod obtained by such a method
EP0678681A1 (en) * 1994-04-18 1995-10-25 AEROSPATIALE Société Nationale Industrielle Connecting rod made of composite material and method for manufacturing the same
US5571357A (en) * 1993-06-14 1996-11-05 Societe Anonyme Dite Aerospatiale Societe Nationale Industrielle Method for producing hollow composite articles by winding/laying down on an expansible mandrel
EP2266788A1 (en) * 2009-06-26 2010-12-29 Bd Invent S.A. Method for manufacturing composite rods and rods obtained according to the method
WO2011116967A1 (en) * 2010-03-26 2011-09-29 Messier-Bugatti-Dowty Method for producing a mechanical member from composite material, having an improved mechanical performance under traction-compression and bending

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2951112C2 (en) * 1979-12-19 1983-10-13 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Connecting rod made of fiber-reinforced plastic for power machines
DE2951111C2 (en) * 1979-12-19 1983-10-13 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Connecting rods for prime movers
JPS5740135A (en) * 1980-08-22 1982-03-05 Lord Corp Power transmitting member
GB2122708B (en) * 1982-07-01 1985-09-25 Dunlop Ltd Improvements in or relating to link means
JPS59158226A (en) * 1983-02-28 1984-09-07 Isuzu Motors Ltd Method for molding connecting rod
FR2543054B1 (en) * 1983-03-22 1986-02-28 Renault METHOD FOR MANUFACTURING A CONNECTING ROD IN COMPOSITE MATERIAL FOR AN ENGINE, ESPECIALLY A MOTOR VEHICLE
US5664327A (en) * 1988-11-03 1997-09-09 Emitec Gesellschaft Fur Emissionstechnologie Gmbh Method for producing a hollow composite members
DE3837293A1 (en) * 1988-11-03 1990-05-17 Emitec Emissionstechnologie CONNECTED HOLLOW BODY
DE10207981A1 (en) * 2002-02-25 2003-09-04 Daimler Chrysler Ag Connecting rod for IC engine comprises U-shaped outer section, which fits around outside of big end, and inner section which contains big end and little end and is fastened to this by nut and bolt

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2058623A (en) * 1979-08-17 1981-04-15 Art Metal Mfg Casting of fibre-reinforced composite articles
US4391161A (en) * 1979-08-29 1983-07-05 Honda Giken Kogyo Kabushiki Kaisha Connecting rod of internal combustion engine
GB2067712A (en) * 1979-12-22 1981-07-30 Deutsche Forsch Luft Raumfahrt Gudgeon pin
EP0626250A1 (en) * 1993-05-26 1994-11-30 AEROSPATIALE Société Nationale Industrielle Method for manufacturing a connecting rod from monolythic composite material by placing preimpregnated fibres on an extractable mandrel and connecting rod obtained by such a method
US5571357A (en) * 1993-06-14 1996-11-05 Societe Anonyme Dite Aerospatiale Societe Nationale Industrielle Method for producing hollow composite articles by winding/laying down on an expansible mandrel
EP0678681A1 (en) * 1994-04-18 1995-10-25 AEROSPATIALE Société Nationale Industrielle Connecting rod made of composite material and method for manufacturing the same
EP2266788A1 (en) * 2009-06-26 2010-12-29 Bd Invent S.A. Method for manufacturing composite rods and rods obtained according to the method
WO2011116967A1 (en) * 2010-03-26 2011-09-29 Messier-Bugatti-Dowty Method for producing a mechanical member from composite material, having an improved mechanical performance under traction-compression and bending

Also Published As

Publication number Publication date
WO2014091514A1 (en) 2014-06-19

Similar Documents

Publication Publication Date Title
JPH0118290B2 (en)
JP3009311B2 (en) Fiber-reinforced resin coil spring and method of manufacturing the same
Li et al. Mechanical response of all-composite pyramidal lattice truss core sandwich structures
JP5548516B2 (en) Fiber reinforced plastic spring
Deshmukh et al. Design and analysis of glass fiber reinforced polymer (GFRP) leaf spring
CA2586394A1 (en) Fiber reinforced rebar
ITNA20120074A1 (en) INNOVATIVE SHAFT IN COMPOSITE MATERIAL
JPS588819A (en) Composite connecting member and its manufacture
Chenghong et al. Impact damage modes and residual flexural properties of composites beam
JP6703489B2 (en) A rod-shaped component to which a torsional load is applied
US20070151444A1 (en) Scotch yoke engine
JP5002922B2 (en) Arm-shaped stress transmission member
JP3771360B2 (en) Tubular body made of fiber reinforced composite material
US20030029902A1 (en) Reinforced structural elements incorporating fiber-reinforced metal matrix composite wires and methods of producing the same
GB2063418A (en) Connecting rods
JPS5943643B2 (en) connecting rod
JP2004130564A (en) Tubular body made of fiber reinforced resin and golf club shaft comprising tubular body
US5485765A (en) Connecting rod with improved fatigue life
JP2017082966A (en) Wire for elastic member and elastic member
JPH09277389A (en) Tapered hollow shaft
CN114412827B (en) Integrated carbon fiber fan blade and forming method thereof
KR20180100404A (en) Fiber composite member, structural member, and manufacturing method
Tale et al. A Review on Comparison of Connecting Rod Made by 3D Printing Method
Zhang et al. Damping analysis of cocured composites with interleaved viscoelastic layers.
JPH0877860A (en) Motor-driven spring operating mechanism for switching apparatus and manufacture of coil spring