IN2015KN00588A - - Google Patents

Info

Publication number
IN2015KN00588A
IN2015KN00588A IN588KON2015A IN2015KN00588A IN 2015KN00588 A IN2015KN00588 A IN 2015KN00588A IN 588KON2015 A IN588KON2015 A IN 588KON2015A IN 2015KN00588 A IN2015KN00588 A IN 2015KN00588A
Authority
IN
India
Prior art keywords
layer
coating
tlc
pvd
metal free
Prior art date
Application number
Inventor
Yuriy Ivanov
Marcus Kennedy
Original Assignee
Federal Mogul Burscheid Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal Mogul Burscheid Gmbh filed Critical Federal Mogul Burscheid Gmbh
Publication of IN2015KN00588A publication Critical patent/IN2015KN00588A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials

Abstract

The present application relates to a sliding element, in particular a piston ring, having a coating (10) on a substrate (12), which forms at least one sliding surface of the sliding element. The coating (10) has, from the inside outwards, a carbide or nitride layer (16), then a carbide containing (preferably PVD ) TLC layer (17), then a metal free PVD TLC layer (22) and then a metal free PACVD TLC layer (18).
IN588KON2015 2012-08-10 2013-07-30 IN2015KN00588A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012214284.3A DE102012214284B4 (en) 2012-08-10 2012-08-10 Sliding element, in particular piston ring, with a resistant coating
PCT/EP2013/065993 WO2014023615A1 (en) 2012-08-10 2013-07-30 Sliding element, in particular piston ring, having resistant coating

Publications (1)

Publication Number Publication Date
IN2015KN00588A true IN2015KN00588A (en) 2015-07-17

Family

ID=48917519

Family Applications (1)

Application Number Title Priority Date Filing Date
IN588KON2015 IN2015KN00588A (en) 2012-08-10 2013-07-30

Country Status (10)

Country Link
US (1) US9476504B2 (en)
EP (1) EP2882886B1 (en)
JP (1) JP6261582B2 (en)
KR (1) KR102093530B1 (en)
CN (1) CN105102680B (en)
BR (1) BR112015002898B1 (en)
DE (1) DE102012214284B4 (en)
IN (1) IN2015KN00588A (en)
RU (1) RU2634811C2 (en)
WO (1) WO2014023615A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5564099B2 (en) * 2012-12-28 2014-07-30 株式会社リケン Combination of cylinder and piston ring
DE102014213822A1 (en) * 2014-07-16 2016-01-21 Federal-Mogul Burscheid Gmbh Sliding element, in particular piston ring, and method for producing the same
DE102014217040A1 (en) * 2014-08-27 2016-03-03 Bayerische Motoren Werke Aktiengesellschaft Coating for metal components, method for coating a metal component, pistons for internal combustion engines and motor vehicles
CN107835866B (en) * 2016-03-04 2019-06-28 株式会社理研 Sliding component and piston ring
DE102016107874A1 (en) * 2016-04-28 2017-11-16 Federal-Mogul Burscheid Gmbh Sliding element, in particular piston ring
CN106011855A (en) * 2016-07-18 2016-10-12 大连维钛克科技股份有限公司 Carbon-based coating applied to sliding part
BR102016017735B1 (en) * 2016-07-29 2021-05-18 Mahle Metal Leve S.A. sliding element for internal combustion engines
BR102017007599B1 (en) * 2017-04-12 2022-07-26 Mahle Metal Leve S.A. PISTON RING FOR INTERNAL COMBUSTION ENGINES
US11047478B2 (en) * 2017-06-02 2021-06-29 Mahle International Gmbh Piston ring and method of manufacture
US20190120291A1 (en) * 2017-10-24 2019-04-25 Hamilton Sundstrand Corporation Air bearing
PL239495B1 (en) * 2018-03-26 2021-12-06 Politechnika Lodzka Method for producing carbon coating doped with titanium and oxygen
CN109372651B (en) * 2018-09-25 2021-06-08 安庆帝伯格茨活塞环有限公司 Diamond-like coating piston ring and preparation method thereof
EP3650583A1 (en) * 2018-11-08 2020-05-13 Nanofilm Technologies International Pte Ltd Ta-c based coatings with improved hardness
DE102019206420A1 (en) * 2019-05-03 2020-11-05 Robert Bosch Gmbh Process for coating a mechanically highly stressed surface of a component as well as the coated component itself
DE102019214934A1 (en) * 2019-09-27 2021-04-01 Robert Bosch Gmbh Wear-resistant coated metallic component
CN113551034A (en) * 2021-07-28 2021-10-26 安庆帝伯格茨活塞环有限公司 Double-transition-layer diamond-like coating piston ring
CN114875361A (en) * 2022-05-27 2022-08-09 重庆中光学建设镀膜科技有限公司 High-adhesion metal coating and preparation process thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19513614C1 (en) 1995-04-10 1996-10-02 Fraunhofer Ges Forschung Bipolar pulsed plasma CVD of carbon@ layer on parts with complicated geometry
JP4331292B2 (en) 1998-10-30 2009-09-16 株式会社リケン Composite diamond-like carbon coating with low wear and excellent adhesion
DE10018143C5 (en) * 2000-04-12 2012-09-06 Oerlikon Trading Ag, Trübbach DLC layer system and method and apparatus for producing such a layer system
DE10203730B4 (en) 2002-01-30 2010-09-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for depositing metal-free carbon layers
JP4085699B2 (en) * 2002-06-04 2008-05-14 トヨタ自動車株式会社 Sliding member and manufacturing method thereof
DE102004041234A1 (en) * 2004-08-26 2006-03-02 Ina-Schaeffler Kg Wear resistant coating and method of making same
JP2006097871A (en) * 2004-09-30 2006-04-13 Nsk Ltd Rolling sliding member and rolling device
WO2006125683A1 (en) * 2005-05-26 2006-11-30 Nv Bekaert Sa Piston ring having hard multi-layer coating
JP5503145B2 (en) * 2005-08-18 2014-05-28 スルザー メタプラス ゲーエムベーハー Substrate coated by a layered structure comprising a tetrahedral carbon layer and a soft outer layer
JP2007070667A (en) * 2005-09-05 2007-03-22 Kobe Steel Ltd Formed article with hard multilayer film of diamond-like carbon, and production method therefor
ATE452218T1 (en) * 2005-09-10 2010-01-15 Schaeffler Kg WEAR-RESISTANT COATING AND METHOD FOR PRODUCING THE SAME
JP2007162099A (en) * 2005-12-15 2007-06-28 Toyota Motor Corp Hard carbon film, production method therefor and sliding member
DE102006029415B4 (en) * 2006-06-27 2023-07-06 Schaeffler Technologies AG & Co. KG Wear-resistant coating and manufacturing process therefor
JP2009167512A (en) * 2008-01-21 2009-07-30 Kobe Steel Ltd Diamond-like carbon film for sliding component and method for manufacturing the same
DE102008016864B3 (en) * 2008-04-02 2009-10-22 Federal-Mogul Burscheid Gmbh piston ring
DE102008042747A1 (en) * 2008-10-10 2010-04-15 Federal-Mogul Burscheid Gmbh Sliding element in an internal combustion engine, in particular piston ring
DE102009028504C5 (en) 2009-08-13 2014-10-30 Federal-Mogul Burscheid Gmbh Piston ring with a coating
DE102009046281B3 (en) * 2009-11-02 2010-11-25 Federal-Mogul Burscheid Gmbh Sliding element, in particular piston ring, and combination of a sliding element with a running partner
JP2012047603A (en) * 2010-08-26 2012-03-08 Tokai Kiyouhan Kk Measurement head for air micrometer

Also Published As

Publication number Publication date
US9476504B2 (en) 2016-10-25
BR112015002898B1 (en) 2021-06-15
CN105102680B (en) 2018-07-31
EP2882886A1 (en) 2015-06-17
WO2014023615A1 (en) 2014-02-13
JP2015525861A (en) 2015-09-07
KR20150060691A (en) 2015-06-03
RU2634811C2 (en) 2017-11-03
DE102012214284B4 (en) 2014-03-13
RU2015108068A (en) 2016-09-27
US20150240944A1 (en) 2015-08-27
KR102093530B1 (en) 2020-03-25
JP6261582B2 (en) 2018-01-17
EP2882886B1 (en) 2018-03-21
CN105102680A (en) 2015-11-25
DE102012214284A1 (en) 2014-02-13
BR112015002898A2 (en) 2018-05-22

Similar Documents

Publication Publication Date Title
IN2015KN00588A (en)
EP3642377A4 (en) Iron based alloy suitable for providing a hard and corrosion resistant coating on a substrate, article having a hard and corrosion resistant coating, and method for its manufacture
MX2017008159A (en) Corrosion inhibitor compositions for acidizing treatments.
EP2612948A3 (en) Process for coating a turbine rotor and articles thereof
MX348385B (en) Sliding element, in particular piston ring, having a coating and process for producing a sliding element.
MX2017003405A (en) Aqueous compositions for coating metallic surfaces, methods, and articles.
EP3642376A4 (en) Iron based alloy suitable for providing a hard and wear resistant coating on a substrate, article having a hard and wear resistant coating, and method for its manufacture
IN2012CH02636A (en)
WO2014150465A3 (en) Composite coatings and methods therefor
MX2020003262A (en) Biological indicator.
MX2016015028A (en) Layered construction of metallic materials.
EP3288097A4 (en) Metal substrate, and deposition mask using same
MX2016003657A (en) Security element, particularly a security label.
MX2016000558A (en) Coatings for forming tools.
MY168619A (en) Hot-dip al-based alloy coated steel sheet excellent in workability
MX2012008125A (en) Tool for galvanically coating sliding bearings.
MX2019010950A (en) Phenalene-1-one-containing photosensitizer composition, phenalene-1-one compound and the use thereof.
PH12015500415A1 (en) Arc pvd coating with enhanced reducing friction and reducing wear properties
MX2020006339A (en) A hot-dip coated steel substrate.
MX2018013747A (en) Corrosion protection coating system.
WO2016109203A3 (en) Coated articles and methods for making same
WO2013052195A3 (en) Rheology modified pretreatment compositions and associated methods of use
MX2019007730A (en) Vanadium silicon nitride film, vanadium silicon nitride film coated member, and method for manufacturing same.
TW201612137A (en) Method for producing double-sided metallized ceramic substrates
MX2019000540A (en) Protective coating for a thermally stressed structure.