IN2015DN03036A - - Google Patents

Download PDF

Info

Publication number
IN2015DN03036A
IN2015DN03036A IN3036DEN2015A IN2015DN03036A IN 2015DN03036 A IN2015DN03036 A IN 2015DN03036A IN 3036DEN2015 A IN3036DEN2015 A IN 3036DEN2015A IN 2015DN03036 A IN2015DN03036 A IN 2015DN03036A
Authority
IN
India
Prior art keywords
switching
voltage
voltage converters
controller
converters
Prior art date
Application number
Other languages
English (en)
Inventor
Andreas; Larsson
Magnus; Mellteg
Torbjorn; Holmberg
Original Assignee
Ericsson Telefon Ab L M
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ericsson Telefon Ab L M filed Critical Ericsson Telefon Ab L M
Publication of IN2015DN03036A publication Critical patent/IN2015DN03036A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
IN3036DEN2015 2012-11-29 2013-11-27 IN2015DN03036A (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP2012073945 2012-11-29
PCT/EP2013/074847 WO2014083050A2 (en) 2012-11-29 2013-11-27 Determination of phase offsets in a power supply system having multiple switching converters

Publications (1)

Publication Number Publication Date
IN2015DN03036A true IN2015DN03036A (pt) 2015-09-18

Family

ID=47435884

Family Applications (1)

Application Number Title Priority Date Filing Date
IN3036DEN2015 IN2015DN03036A (pt) 2012-11-29 2013-11-27

Country Status (4)

Country Link
US (1) US9584015B2 (pt)
CN (1) CN104823374B (pt)
IN (1) IN2015DN03036A (pt)
WO (1) WO2014083050A2 (pt)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10439491B2 (en) * 2014-02-14 2019-10-08 Telefonaktiebolaget Lm Ericsson (Publ) Power supply electronic circuit with IBC to control current ripple
EP3127022B1 (en) * 2014-03-31 2018-03-14 Telefonaktiebolaget LM Ericsson (publ) Switched mode power supply output filter configuration
CN106787648B (zh) * 2016-11-30 2020-06-02 惠州Tcl移动通信有限公司 一种保护移动终端开机的方法及系统
CN115668721B (zh) 2020-05-20 2023-08-15 思睿逻辑国际半导体有限公司 功率转换器中的电流的随机化
US11658559B2 (en) * 2020-05-20 2023-05-23 Cirrus Logic, Inc. Minimizing voltage droop in a power converter
CN112928937B (zh) * 2021-01-22 2022-07-22 北京四方继保自动化股份有限公司 一种针对交直流电压质量优化的mmc调制方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7298116B2 (en) 2002-12-05 2007-11-20 Nxp B.V. Multiple-output dc-dc converter
DE10261739A1 (de) * 2002-12-30 2004-07-08 Robert Bosch Gmbh Vorrichtung zur EMV-optimierten Ansteuerung elektrischer Verbraucher
DE50313206D1 (de) * 2003-08-26 2010-12-02 Ford Global Tech Llc Einrichtung und Verfahren zur Steuerung der Versorgung von elektrischen Verbrauchern
US7265522B2 (en) * 2003-09-04 2007-09-04 Marvell World Trade Ltd. Dynamic multiphase operation
US6995548B2 (en) * 2003-10-29 2006-02-07 Intersil Americas Inc. Asymmetrical multiphase DC-to-DC power converter
DE10352508A1 (de) * 2003-11-11 2005-06-02 Robert Bosch Gmbh Verfahren zur Stromversorgung eines mehrsträngigen, durch Pulsweitenmodulation gesteuerten Elektromotors
NZ553000A (en) 2007-02-02 2009-09-25 Advanced Environmental Technol Switching technique for efficient electrical power utilization
US8570009B2 (en) * 2007-06-08 2013-10-29 Intersil Americas Inc. Power supply with a magnetically uncoupled phase and an odd number of magnetically coupled phases, and control for a power supply with magnetically coupled and magnetically uncoupled phases
US7999519B2 (en) * 2007-12-11 2011-08-16 Dell Products L.P. Phase shedding converter with ripple minimization
TW200934084A (en) * 2008-01-30 2009-08-01 Elitegroup Computer Sys Co Ltd Power converting system and its converting method
US8179705B2 (en) * 2008-05-27 2012-05-15 Power-One, Inc. Apparatus and method of optimizing power system efficiency using a power loss model
DE102008002971A1 (de) * 2008-07-25 2009-01-15 Robust Electronics Gmbh Verfahren zur Minimierung der Grundschwingungsamplitude des Quellenstroms bei Mehrkonvertersystemen
US8093752B2 (en) * 2008-10-17 2012-01-10 Infineon Technologies Ag Synchronization of plural DC-DC voltage converters
CN101931386B (zh) * 2009-06-19 2014-03-26 鸿富锦精密工业(深圳)有限公司 脉宽调制控制系统
JP2011072167A (ja) 2009-09-28 2011-04-07 Tdk-Lambda Corp 制御装置および制御方法、並びにプログラム
US8772967B1 (en) * 2011-03-04 2014-07-08 Volterra Semiconductor Corporation Multistage and multiple-output DC-DC converters having coupled inductors
US8717788B2 (en) * 2011-03-10 2014-05-06 Ford Global Technologies, Llc Method and system for controlling a power converter system connected to a DC-bus capacitor

Also Published As

Publication number Publication date
US20150311789A1 (en) 2015-10-29
US9584015B2 (en) 2017-02-28
CN104823374A (zh) 2015-08-05
WO2014083050A3 (en) 2014-09-12
WO2014083050A2 (en) 2014-06-05
CN104823374B (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
IN2015DN03036A (pt)
WO2013032753A3 (en) Systems and methods for switched-inductor integrated voltage regulators
WO2013107782A3 (en) Power converter circuit, power supply system and method
EP2790313A3 (en) Multilevel inverter
WO2014106744A3 (en) Power balancing in a multi-phase system
MX2011009479A (es) Convertidor de fuente de voltaje modular.
MX340942B (es) Convertidor de energia para el generador de motor.
IN2014DN08834A (pt)
FR2982090B1 (fr) Dispositif d'equilibrage de charge des elements d'une batterie de puissance
WO2014058571A3 (en) Generator dispatching or load shedding control method and system for microgrid applications
EP2768129A3 (en) Apparatus and method for controlling circulating current in an inverter system
RU2016115720A (ru) Новая топология четырехуровневой ячейки преобразователя для каскадных модульных многоуровневых преобразователей
GB201120367D0 (en) Photovoltaic inverter systems
WO2013086247A8 (en) Multi-phase converter system and method
GB2517336A (en) Photovoltaic DC-AC converter with soft switching
FR2983006B1 (fr) Systeme d'alimentation continue securisee et regulee a entrees multiples
MX2014000773A (es) Dispositivo de conversion de energia.
WO2014113146A8 (en) Connection for improved current balancing between parallel bridge circuits
IN2014DN07476A (pt)
WO2015024731A3 (fr) Dispositif d'equilibrage de charge des elements d'une batterie de puissance
MY158784A (en) Power converter
MX2013013987A (es) Dispositivo convertidor de energia.
WO2011070078A3 (de) System zur dezentralen speicherung und generierung elektrischer energie
CN103762828A (zh) 一种多级电力电子变换器系统的控制方法及装置
WO2015099667A8 (en) Dynamic dc link voltage control