IL172135A - Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby - Google Patents

Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby

Info

Publication number
IL172135A
IL172135A IL172135A IL17213505A IL172135A IL 172135 A IL172135 A IL 172135A IL 172135 A IL172135 A IL 172135A IL 17213505 A IL17213505 A IL 17213505A IL 172135 A IL172135 A IL 172135A
Authority
IL
Israel
Prior art keywords
ala
leu
gly
ser
val
Prior art date
Application number
IL172135A
Other languages
Hebrew (he)
Other versions
IL172135A0 (en
Inventor
Hagai Karchi
Rafael Meissner
Gil Ronen
Ezekiel Golan
Original Assignee
Hagai Karchi
Rafael Meissner
Gil Ronen
Ezekiel Golan
Evogene Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/IL2004/000431 external-priority patent/WO2004104162A2/en
Application filed by Hagai Karchi, Rafael Meissner, Gil Ronen, Ezekiel Golan, Evogene Ltd filed Critical Hagai Karchi
Priority to IL172135A priority Critical patent/IL172135A/en
Publication of IL172135A0 publication Critical patent/IL172135A0/en
Publication of IL172135A publication Critical patent/IL172135A/en

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

172135 ψτ\ I 453547 rnx murnx Ti vh DTTTSX *?W mms nvbsrto irwan η··π»χ METHODS OF INCREASING ABIOTIC STRESS TOLERANCE AND/OR BIOMASS IN PLANTS AND PLANTS GENERATED THEREBY 172135/2 1 METHODS OF INCREASING ABIOTIC STRESS TOLERANCE AND/OR BIOMASS IN PLANTS AND PLANTS GENERATED THEREBY FIELD AND BACKGROUND OF THE INVENTION The present invention relates to methods of increasing abiotic stress tolerance and/or biomass in plants using an exogenous polynucleotide which comprises a nucleic acid sequence set forth in SEQ ID NO: 13 and, more particularly, to plants expressing exogenous abiotic stress-tolerance genes.
Abiotic stress (also referred to as "environmental stress") conditions such as salinity, drought, flood, suboptimal temperature and toxic chemical pollution, cause substantial damage to agricultural plants. Most plants have evolved strategies to protect themselves against these conditions. However, if the severity and duration of the stress conditions are too great, the effects on plant development, growth and yield of most crop plants are profound. Furthermore, most crop plants are very susceptible to abiotic stress (ABS) and thus necessitate optimal growth conditions for commercial crop yields. Continuous exposure to stress causes major alterations in plant metabolism which ultimately lead to cell death and consequently yields losses. Thus, despite extensive research and the use of sophisticated and intensive crop-protection measures, losses due to abiotic stress conditions remain in the billions of dollars annually (1,2).
Developing stress-tolerant plants is a strategy that has the potential to solve or mediate at least some of these problems. However, traditional plant breeding strategies used to develop new lines of plants that exhibit tolerance to ABS are relatively inefficient since they are tedious, time consuming and of unpredictable outcome. Furthermore, limited germplasm resources for stress tolerance and incompatibility in crosses between distantly related plant species represent significant problems encountered in conventional breeding. Additionally, the cellular processes leading to ABS tolerance are complex in nature and involve multiple mechanisms of cellular adaptation and numerous metabolic pathways (4-7).
Genetic engineering efforts, aimed at conferring abiotic stress tolerance to transgenic crops, have been described in the prior art. Studies by Apse and Blumwald (Curr Opin Biotechnol. 13:146-150, 2002), Quesada et al. (Plant Physiol. 130:951-963, 2002), Holmstrom et al. (Nature 379: 683-684, 1996), Xu et al. (Plant Physiol 1 10: 249-257, 1996), Pilon-Smits and Ebskamp (Plant Physiol 107: 125-130, 1995) 172135/2 2 and Tarczynski et al. (Science 259: 508-510, 1993) have all attempted at generating stress tolerant plants.
In addition, several U.S. patents and patent applications also describe polynucleotides associated with stress tolerance and their use in generating stress tolerant plants. U.S. Pat. Nos. 5,296,462 and 5,356,816 describe transforming plants with polynucleotides encoding proteins involved in cold adaptation in Arabidopsis thaliana , to thereby promote cold tolerance in the transformed plants.
U.S. Pat. No. 6,670,528 describes transforming plants with polynucleotides encoding polypeptides binding to stress responsive elements, to thereby promote tolerance of the transformed plants to abiotic stress.
U.S. Pat. No. 6,720,477 describes transforming plants with a polynucleotide encoding a signal transduction stress-related protein, capable of increasing tolerance of the transformed plants to abiotic stress.
U.S Application Ser. Nos. 09/938842 and 10/342224 describe abiotic stress-related genes and their use to confer upon plants tolerance to abiotic stress.
U.S. Application Ser. No. 10/231035 describes overexpressing a molybdenum cofactor sulfurase in plants to thereby increase their tolerance to abiotic stress.
US 6313375 (Jung Rudolf et al., 2001) and US 6313376 (Jung Rudolf et al., 2001) disclose isolated maize aquaporin nucleic acids and their encoded proteins, methods relating to altering aquaporin concentration and/or composition of plants, recombinant expression cassettes, host cells, transgenic plants, and antibody compositions.
WO 93/06710 and US5750386 disclose recombinant pathogen-resistant plants.
WO 94/17194 discloses nematode-resistant transgenic plants.
Smart L., et al., 2001 (Plant and Cell Physiology, 42:686-693), relates to database EMBL AF290618, and describes down-regulation of MIP genes under drought stress in Nicotiana glauca.
EP 0905242 and US 6229069 disclose a method for controlling the water content of a plant which can provide a plant resistant to drying stress.
WO 02/090557 discloses the use of proteins facilitating water diffusion or water transport through the cell membrane, preferably aquaporin or aquaporin related proteins to obtain freeze-tolerant eukaryotic cells, preferably yeast cells or plant cells. 172135/2 2A WO 03/087313 discloses methods for enhancing maize silk exsertion under stress conditions and compositions relating to such methods, including nucleic acids and proteins.
WO 05/108422 relates to GenBank Accession Nos. AY525639, AY525640 and AY535641 and discloses methods and means for ammonia and/or ammonium transport in a variety of organisms, including mammals, yeast and plants.
EP-A-1033405 discloses DNA molecules that constitute fragments of the genome of a plant, and polypeptides encoded thereby which are useful for specifying a gene product in cells, either as a promoter or as a protein coding sequence or as an UTR or as a 3' termination sequence, and are also useful in controlling the behavior of a gene in the chromosome, in controlling the expression of a gene or as tools for genetic mapping, recognizing or isolating identical or related DNA fragments, or identification of a particular individual organism, or for clustering of a group of organisms with a common trait Database EMBL Accession Nos. AW218814 (EST301294) and AW218815 (EST301295) disclose sequences expressed in tomato root during/after fruit set.
Although the above described studies were at least partially successful in generating stress tolerant plants, there remains a need for stress tolerant genes which can be utilized to generate plants tolerant of a wide range of abiotic stress conditions.
While reducing the present invention to practice, the present inventors have identified through bioinformatic and laboratory studies several novel abiotic stress-tolerance genes, which can be utilized to increase tolerance to abiotic stress and/or biomass in plants.
SUMMARY OF THE INVENTION According to one aspect of the present invention there is provided a method of increasing tolerance of a plant to an abiotic stress. The method includes expressing within the plant an exogenous polynucleotide at least 90 % homologous to a polynucleotide selected from the group consisting of SEQ ID NOs: 1-18, 93-98 and 247-252.
According to an additional aspect of the present invention there is provided a method of increasing tolerance of a plant to an abiotic stress. The method includes 3 expressing within the plant an exogenous polynpeptide including an amino acid sequence selected from the group consisting of SEQ ID NOs: 39-92 and 105-230.
According to another aspect of the present invention there is provided a method of increasing biomass and/or yield of a plant. The method includes expressing within the plant an exogenous polynucleotide at least 90% homologous to a polynucleotide selected from the group consisting of SEQ ID NOs: 1-18, 93-98 and 247-252.
According to still additional aspect of the present invention there is provided a method of increasing biomass and/ or yield of a plant. The method includes expressing within the plant an exogenous polypeptide including an amino acid sequence selected from the group consisting of SEQ ID NOs: 39-92 and 105-230.
According to yet another aspect of the present invention there is provided a plant cell comprising an exogenous polynucleotide at least 90% homologous to a polynucleotide selected from the group consisting of SEQ ID NOs: 1-18, 93-98 and 247-252.
According to yet another aspect of the present invention there is provided a plant cell comprising an exogenous polynucleotide encoding a polypeptide including an amino acid sequence selected from the group consisting of SEQ ID NOs: 39-92 and 105-230.
According to still another aspect of the present invention there is provided a nucleic acid construct, including a polynucleotide at least 90% homologous to a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1-18, 93-98 and 247-252 and a promoter capable of directing transcription of the polynucleotide in a host cell.
According to another aspect of the present invention there is provided a nucleic acid construct, including a polynucleotide encoding a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 39-92 and 105-230 and a promoter capable of directing transcription of the polynucleotide in a host cell.
According to further yet another aspect of the present invention there is provided an isolated polypeptide, including an amino acid sequence at least 90% homologous to the amino acid sequence encoded by a polynucleotide selected from the group consisting of SEQ ID NOs: 1-18, 93-98 and 247-252.
According to an additional aspect of the present invention there is provided an isolated polypeptide including an amino acid sequence selected from the group consisting of SEQ ID NOs: 39-92 and 105-230.
According to further features in preferred embodiments of the invention described below, the expressing is effected by (i) transforming a cell of the plant with the exogenous polynucleotide; (ii) generating a mature plant from the cell; and (iii) cultivating the mature plant under conditions suitable for expressing the exogenous polynucleotide within the mature plant.
According to still further features in the described preferred embodiments the transforming is effected by introducing to the plant cell a nucleic acid construct including the exogenous polynucleotide and at least one promoter capable of directing transcription of the exogenous polynucleotide in the plant cell.
According to still further features in the described preferred embodiments the at least one promoter is a constitutive promoter.
According to still further features in the described preferred embodiments the constitutive promoter is CaMV 35S promoter.
According to still further features in the described preferred embodiments the constitutive promoter is At6669 promoter.
According to still further features in the described preferred embodiments the at least one promoter is an inducible promoter.
According to still further features in the described preferred embodiments the inducible promoter is an abiotic stress inducible promoter.
According to still further features in the described preferred embodiments the at least one promoter is a tissue-specific promoter.
According to still further features in the described preferred embodiments the expressing is effected by infecting the plant with a virus including the exogenous polynucleotide.
According to still further features in the described preferred embodiments the virus is an avirulent virus.
According to still further features in the described preferred embodiments the abiotic stress is selected from the group consisting of salinity, water deprivation, low temperature, high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, nutrient excess, atmospheric pollution and UV irradiation.
According to still further features in the described preferred embodiments the plant is a dicotyledonous plant.
According to still further features in the described preferred embodiments the plant is a monocotyledonous plant.
According to still further features in the described preferred embodiments the plant cell forms a part of a plant.
The present invention successfully addresses the shortcomings of the presently known configurations by providing methods of utilizing novel abiotic stress-tolerance genes to increase plants tolerance to abiotic stress and/or biomass and/or commercial yield.
BRIEF DESCRIPTION OF THE DRAWINGS The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
FIG. 1 is a flow chart illustrating a process of identifying putative plant stress-tolerance genes from nucleic-acid sequence databases.
FIG. 2 is a photograph of tomato seedling of a sensitive line (Evoline 1, Evogene, Rehovot, Israel) as seen on the left and a tolerant line (Evoline 2, Evogene, Rehovot, Israel) as seen on the right following 4 week growth under water irrigation containing 300 mM NaCl. Evolinel was proved for several seasons as being a relatively salt-sensitive line. Evoline 2 was proved for several seasons as being a highly salt-tolerant line.
FIGs. 3A-D are photographs illustrating a T2 transgenic Arabidopsis thaliana mature plant at flowering stage, expressing exogenous luciferase transgene from the At6669 promoter. The same plant is shown in Figures 3 A and 3B and a second plant 6 is shown in Figures 3C and 3D. Figures 3A and 3C are photographs taken under normal light conditions and Figures 3B and 3D are photographs taken in the dark. Strong illumination indicative of luciferase expression is observed in the flower and root tissues.
FIG. 4 is a bar graph illustrating the mean plant dry weight of transgenic T2 A. thaliana plants grown under salinity stress conditions (irrigated with 100 mM NaCl solution), as compared with similar plants grown under normal conditions (irrigated with water only). The plants were transformed with putative stress tolerance genes of the present invention (ABST l, 6, 19, 22, 27, 36, 37) and the effect of the promoters (35S vs. 6669) on biomass was examined.
FIG. 5 illustrates the mean fresh weight of transgenic Ύι A. thaliana plants grown under normal and stress conditions (irrigated with 0 or 100 M NaCl solution, respectively). The plants were transformed with putative stress tolerance genes, or with a luciferase reporter gene (control), positioned under the transcriptional control of the At6669 promoter. Means followed by the same letter are not significantly different according to a one way ANOVA T-Test.
FIG. 6A illustrates the mean fresh weight of T2 A. thaliana plants grown under normal or stress conditions (irrigated with 0 or 100 M NaCl solution, respectively). The plants were transformed with the putative stress tolerance genes of the present invention, or with luciferase reporter gene (control), positioned under the transcriptional control of the 35S promoter. Means followed by the same letter are not significantly different according to a one way ANOVA T-Test.
FIG. 6B illustrates the mean fresh weight of T2 A. thaliana plants grown under normal or stress conditions (irrigated with 0 or 100 M NaCl solution, respectively). The plants were transformed with the putative stress tolerance genes of the present invention, or with luciferase reporter gene (control), positioned under the transcriptional control of the At6669 promoter. Means followed by the same letter are not significantly different according to a one way ANOVA T-Test.
FIG. 7 illustrates the total seed weight from T2 A. thaliana plants over-expressing the ABST genes of the present invention regulated by the 6669 promoter grown under regular conditions. Means followed by the same letter are not significantly different according to a one way ANOVA T-Test. 7 FIGs. 8A-D are photographs depicting control and transgenic tomato plants (of the genetic background of Evoline3) of the present invention illustrating the increase in yield following over-expression of the putative ABST genes of the present invention. Figure 8 A is a photograph of a tomato plant over-expressing ABST_1, SEQ ID NO. 1 (right; 28) compared to its isogenic line that does not carry the gene (left; 29). Figure 8B is a photograph of roots from a tomato plant over-expressing ABST_1, SEQ I.D. NO. 1 (right; 28) compared to its isogenic line that does not carry the gene (left; 29). Figure 8C is a photograph of tomato plant canopies of a plant over-expressing ABST 36, SEQ I.D. NO. 13 (right; 30) compared to a control plant (left; 31). Figure 8D is a photograph of total fruits of a tomato plant over-expressing ABST_36, SEQ I.D. NO. 13 (right; 30) compared to a control plant (left; 31).
FIGs. 9A-C are line graphs illustrating the relative expression of putative ABST genes in stress tolerant tomato leaves (Evoline 2) versus stress sensitive tomato leaves (Evoline 1). Figure 9A illustrates the relative expression of ABST_36 gene in Evoline 2 tomato leaves following salt induction compared to its expression in leaves of the Evoline 1 variety. Figure 9B illustrates the relative expression of ABST_36 gene in Evoline 2 tomato roots following salt induction compared to its expression in roots of the Evoline 1 variety. Figure 9C illustrates the relative expression of ABST 37 gene in Evoline 2 tomato leaves following salt induction compared to its expression in leaves of the Evoline 1 variety.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is of methods of increasing plants tolerance to abiotic stress and/or biomass by utilizing novel abiotic stress tolerance genes and of plants exhibiting increased tolerance to stress conditions and/or increased capacity to accumulate biomass.
The principles and operation of the present invention may be better understood with reference to the drawings and accompanying descriptions.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be 8 understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
While reducing the present invention to practice, the present inventors while employing bioinformatic techniques, identified polynucleotide sequences which encode putative abiotic-stress tolerance (ABST) proteins (Examples 1 and 1 1). Selected sequences were isolated (Examples 3 and 12), cloned into expression vectors (Example 4 and 13) and introduced into Arabidopsis thaliana plants (Example 8) and tomato plants (Example 10). These plants, which were grown under salinity stress conditions, or under normal conditions, exhibited significantly higher biomass as compared with similar plants not carrying the exogenous ABST genes (Examples 9 and 10).
Thus, according to one aspect of the present invention, there is provided a method of increasing tolerance of a plant to an abiotic stress and/or plant biomass. The method includes expressing within the plant an exogenous polynucleotide at least 70% homologous, preferably at least 80% homologous, more preferably at least 85% homologous, most preferably at least 90% homologous to a polynucleotide selected from the group consisting of SEQ ID NOs: 1-18, 93-98 and 247-252. Alternatively, the exogenous polynucleotide of the present invention encodes a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NOs: 39-92 and 105-230.
As demonstrated in Example 8 herein below, introduction of SEQ ID NOs: 1, 4, 9, 13 and 14 into Arabidopsis thaliana plants increased plant tolerance to abiotic stress, such as a salinity stress as measured by an increase in fresh weight, dry weight, and/or seed weight. Transgenic tomato plants showed an increase in fresh canopy weight, dry weight, root weight, seed weight and increase in total fruit yield during abiotic stress, such as salinity or drought stress following introduction of these polynucleotide sequences as demonstrated in Example 10.
The nucleic acid sequences of the present invention may be altered, to further improve expression levels for example, by optimizing the nucleic acid sequence in accordance with the preferred codon usage for a particular plant cell type which is selected for the expression of the polypeptides of the present invention.
Construction of synthetic genes by altering the codon usage is described in for example PCT Patent Application WO 93/07278. 9 Alternatively, ortholog sequences in a particular plant may be identified (e.g. by bioinformatics techniques) as described in Example 10. Following qualification, these may be used to direct the expression of the polypeptides of the present invention in a particular plant species. Since this may increase the probabibilty of gene silencing, it may be preferable to optimize the nucleic acid sequence in accordance with the preferred codon usage as described above.
The phrase "abiotic stress" used herein refers to any adverse effect on metabolism, growth, reproduction and/or viability of a plant. Accordingly, abiotic stress can be induced by suboptimal environmental growth conditions such as, for example, salinity, water deprivation, flooding, low or high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, atmospheric pollution or UV irradiation.
The phrase "abiotic stress tolerance" as used herein refers to the ability of a plant to endure an abiotic stress without suffering a substantial alteration in metabolism, growth, productivity and/or viability.
The polynucleotides of the present invention may enhance abiotic stress tolerance by any mechanism. The polynucleotides may enhance abiotic stress tolerance by encoding for polypeptides which increase the amount of water available to the plant. For example, SEQ ID NO: 13 encodes a polypeptide that enhances symplastic water transport. Alternatively the polynucleotides may enhance abiotic stress tolerance by encoding for polypeptides which are involved in enhancing the expression of other proteins involved in in abiotic stress tolerance. For example, SEQ ID NO: 1 encodes a cytoplasmic ribosomal protein and SEQ ID NO: 14 is a transcription factor.
A suitable plant for use with the method of the present invention can be any monocotyledonous or dicotyledonous plant including, but not limited to, maize, wheat, barely, rye, oat, rice, soybean, peanut, pea, lentil and alfalfa, cotton, rapeseed, canola, pepper, sunflower, potato, tobacco, tomato, eggplant, eucalyptus, a tree, an ornamental plant, a perennial grass and a forage crop.
As used herein, the term "exogenous polynucleotide" refers to a nucleic acid sequence which is not naturally expressed within the plant but which, when introduced into the plant either in a stable or transient manner, produces at least one polypeptide product.
Expressing the exogenous polynucleotide of the present invention within the plant can be effected by transforming one or more cells of the plant with the exogenous polynucleotide, followed by generating a mature plant from the transformed cells and cultivating the mature plant under conditions suitable for expressing the exogenous polynucleotide within the mature plant.
Preferably, the transformation is effected by introducing to the plant cell a nucleic acid construct which includes the exogenous polynucleotide of the present invention and at least one promoter capable of directing transcription of the exogenous polynucleotide in the plant cell. Further details of suitable transformation approaches are provided hereinbelow.
As used herein, the term "promoter" refers to a region of DNA which lies upstream of the transcriptional initiation site of a gene to which RNA polymerase binds to initiate transcription of RNA. The promoter controls where (e.g., which portion of a plant, which organ within an animal, etc.) and/or when (e.g., which stage or condition in the lifetime of an organism) the gene is expressed.
Any suitable promoter sequence can be used by the nucleic acid construct of the present invention. Preferably the promoter is a constitutive promoter, a tissue-specific, or an abiotic stress-inducible promoter.
Suitable constitutive promoters include, for example, CaMV 35S promoter (SEQ ID NO: 19; Odell et al, Nature 313:810-812, 1985); Arabidopsis At6669 promoter (SEQ ID NO: 20); maize Ubi 1 (Christensen et al, Plant Sol. Biol. 18:675-689, 1992); rice actin (McElroy et al, Plant Cell 2:163-171, 1990); pEMU (Last et al, Theor. Appl. Genet. 81 :581-588, 1991); and Synthetic Super MAS (Ni et al, The Plant Journal 7: 661-76, 1995). Other constitutive promoters include those in U.S. Pat. Nos. 5,659,026, 5,608,149; 5.608,144; 5,604,121; 5.569,597: 5.466,785; 5,399,680; 5,268,463; and 5,608,142.
Suitable tissue-specific promoters include, but not limited to, leaf-specific promoters such as described, for example, by Yamamoto et al, Plant J. 12:255-265, 1997; won et al, Plant Physiol. 105:357-67, 1994; Yamamoto et al, Plant Cell Physiol. 35:773-778, 1994; Gotor et al, Plant J. 3:509-18, 1993; Orozco et al, Plant Mol. Biol. 23: 1129-1138, 1993; and Matsuoka et al, Proc. Natl. Acad. Sci. USA 90:9586-9590, 1993. 1 1 Suitable abiotic stress-inducible promoters include, but not limited to, salt-inducible promoters such as RD29A (Yamaguchi-Shinozalei et al, Mo . Gen. Genet. 236:331-340, 1993); drought-inducible promoters such as maize rabl7 gene promoter (Pla et. al, Plant Mol. Biol. 21:259-266, 1993), maize rab28 gene promoter (Busk et. al., Plant J. 11:1285-1295, 1997) and maize Ivr2 gene promoter (Pelleschi et. al., Plant Mol. Biol. 39:373-380, 1999); and heat-inducible promoters such as heat tomato hsp80-promoter from tomato (U.S. Pat. No. 5,187,267).
The nucleic acid construct of the present invention preferably further includes an appropriate selectable marker and/or an origin of replication. Preferably, the nucleic acid construct utilized is a shuttle vector, which can propagate both in E. coli (wherein the construct comprises an appropriate selectable marker and origin of replication) and be compatible for propagation in cells. The construct according to the present invention can be, for example, a plasmid, a bacmid, a phagemid, a cosmid, a phage, a virus or an artificial chromosome.
The nucleic acid construct of the present invention can be utilized to stably or transiently transform plant cells. In stable transformation, the exogenous polynucleotide of the present invention is integrated into the plant genome and as such it represents a stable and inherited trait. In transient transformation, the exogenous polynucleotide is expressed by the cell transformed but it is not integrated into the genome and as such it represents a transient trait.
There are various methods of introducing foreign genes into both monocotyledonous and dicotyledonous plants (Potrykus, I., Annu. Rev. Plant. Physiol., Plant. Mol. Biol. (1991) 42:205-225; Shimamoto et al, Nature (1989) 338:274-276).
The principle methods of causing stable integration of exogenous DNA into plant genomic DNA include two main approaches: (i) Agrobacterium-mediated gene transfer: lee et al (1987) Annu. Rev.
Plant Physiol. 38:467-486; Klee and Rogers in Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Molecular Biology of Plant Nuclear Genes, eds. Schell, J., and Vasil, L. K., Academic Publishers, San Diego, Calif. (1989) p. 2-25; Gatenby, in Plant Biotechnology, eds. Kung, S. and Arntzen, C. J., Butterworth Publishers, Boston, Mass. (1989) p. 93-112. 12 (ii) Direct DNA uptake: Paszkowski et al., in Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Molecular Biology of Plant Nuclear Genes eds. Schell, J., and Vasil, L. K., Academic Publishers, San Diego, Calif. (1989) p. 52-68; including methods for direct uptake of DNA into protoplasts, Toriyama, K. et al. (1988) Bio/Technology 6:1072-1074. DNA uptake induced by brief electric shock of plant cells: Zhang et al. Plant Cell Rep. (1988) 7:379-384. Fromm et al. Nature (1986) 319:791-793. DNA injection into plant cells or tissues by particle bombardment, Klein et al. Bio/Technology (1988) 6:559-563; McCabe et al. Bio/Technology (1988) 6:923-926; Sanford, Physiol. Plant. (1990) 79:206-209; by the use of micropipette systems: Neuhaus et al., Theor. Appl. Genet. (1987) 75:30-36; Neuhaus and Spangenberg, Physiol. Plant. (1990) 79:213-217; glass fibers or silicon carbide whisker transformation of cell cultures, embryos or callus tissue, U.S. Pat. No. 5,464,765 or by the direct incubation of DNA with germinating pollen, DeWet et al. in Experimental Manipulation of Ovule Tissue, eds. Chapman, G. P. and Mantell, S. H. and Daniels, W. Longman, London, (1985) p. 197-209; and Ohta, Proc. Natl. Acad. Sci. USA (1986) 83:715-719.
The Agrobacterium system includes the use of plasmid vectors that contain defined DNA segments that integrate into the plant genomic DNA. Methods of inoculation of the plant tissue vary depending upon the plant species and the Agrobacterium delivery system. A widely used approach is the leaf disc procedure which can be performed with any tissue explant that provides a good source for initiation of whole plant differentiation. Horsch et al. in Plant Molecular Biology Manual A5, Kluwer Academic Publishers, Dordrecht (1988) p. 1-9. A supplementary approach employs the Agrobacterium delivery system in combination with vacuum infiltration. The Agrobacterium system is especially viable in the creation of transgenic dicotyledonous plants.
There are various methods of direct DNA transfer into plant cells. In electroporation, the protoplasts are briefly exposed to a strong electric field. In microinjection, the DNA is mechanically injected directly into the cells using very small micropipettes. In microparticle bombardment, the DNA is adsorbed on microprojectiles such as magnesium sulfate crystals or tungsten particles, and the microprojectiles are physically accelerated into cells or plant tissues. 13 Following stable transformation plant propagation is exercised. The most common method of plant propagation is by seed. Regeneration by seed propagation, however, has the deficiency that due to heterozygosity there is a lack of uniformity in the crop, since seeds are produced by plants according to the genetic variances governed by Mendelian rules. Basically, each seed is genetically different and each will grow with its own specific traits. Therefore, it is preferred that the transformed plant be produced such that the regenerated plant has the identical traits and characteristics of the parent transgenic plant. Therefore, it is preferred that the transformed plant be regenerated by micropropagation which provides a rapid, consistent reproduction of the transformed plants.
Micropropagation is a process of growing new generation plants from a single piece of tissue that has been excised from a selected parent plant or cultivar. This process permits the mass reproduction of plants having the preferred tissue expressing the fusion protein. The new generation plants which are produced are genetically identical to, and have all of the characteristics of, the original plant. Micropropagation allows mass production of quality plant material in a short period of time and offers a rapid multiplication of selected cultivars in the preservation of the characteristics of the original transgenic or transformed plant. The advantages of cloning plants are the speed of plant multiplication and the quality and uniformity of plants produced.
Micropropagation is a multi-stage procedure that requires alteration of culture medium or growth conditions between stages. Thus, the micropropagation process involves four basic stages: Stage one, initial tissue culturing; stage two, tissue culture multiplication; stage three, differentiation and plant formation; and stage four, greenhouse culturing and hardening. During stage one, initial tissue culturing, the tissue culture is established and certified contaminant-free. During stage two, the initial tissue culture is multiplied until a sufficient number of tissue samples are produced to meet production goals. During stage three, the tissue samples grown in stage two are divided and grown into individual plantlets. At stage four, the transformed plantlets are transferred to a greenhouse for hardening where the plants' tolerance to light is gradually increased so that it can be grown in the natural environment.
Preferably, mature transformed plants generated as described above are further selected for abiotic stress tolerance. Accordingly, transformed and non-transformed 14 (wild type) plants are exposed to an abiotic stress condition, such as water depravation, suboptimal temperature, nutrient deficiency, or preferably a salt stress condition. Salt stress can be effected in many ways such as, for example, by irrigating the plants with a hyperosmotic solution, by cultivating the plants hydroponically in a hyperosmotic growth solution (e.g., Hoagland solution), or by culturing the plants in a hyperosmotic growth medium (e.g., MS medium). Since different plants vary considerably in their tolerance to salinity, the salt concentration in the irrigation water, growth solution, or growth medium is preferably adjusted according to the specific characteristics of the specific plant cultivar or variety, so as to inflict a mild or moderate effect on the physiology and/or morphology of the plants (for guidelines as to appropriate concentration please see, Bernstein and Kafkafi, Root Growth Under Salinity Stress In: Plant Roots, The Hidden Half 3rd ed. Waisel Y, Eshel A and Kafkafi U. (editors) Marcel Dekker Inc. New York, 2002, and reference therein). Following exposure to the stress condition the plants are frequently monitored until substantial physiological and/or morphological effects appear in wild type plants. Subsequently, transformed plants not exhibiting substantial physiological and/or morphological effects, or exhibiting higher biomass than wild-type plants, are identified as abiotic stress tolerant plants.
Although stable transformation is presently preferred, transient transformation of leaf cells, meristematic cells or the whole plant is also envisaged by the present invention.
Transient transformation can be effected by any of the direct DNA transfer methods described above or by viral infection using modified plant viruses.
Viruses that have been shown to be useful for the transformation of plant hosts include CaMV, TMV and BV. Transformation of plants using plant viruses is described in U.S. Pat. No. 4,855,237 (BGV), EP-A 67,553 (TMV), Japanese Published Application No. 63-14693 (TMV), EPA 194,809 (BV), EPA 278,667 (BV); and Gluzman, Y. et al. , Communications in Molecular Biology: Viral Vectors, Cold Spring Harbor Laboratory, New York, pp. 172-189 (1988). Pseudovirus particles for use in expressing foreign DNA in many hosts, including plants, is described in WO 87/06261.
Preferably, the virus of the present invention is avirulent and thus is incapable of causing severe symptoms such as reduced growth rate, mosaic, ring spots, leaf roll, yellowing, streaking, pox formation, tumor formation and pitting. A suitable avirulent virus may be a naturally occurring avirulent virus or an artificially attenuated virus. Virus attenuation may be effected by using methods well known in the art including, but not limited to, sub-lethal heating, chemical treatment or by directed mutagenesis techniques such as described, for example, by urihara and Watanabe (Molecular Plant Pathology 4:259-269, 2003), Gal-on et al. (1992), Atreya et al. (1992) and Huet et al. (1994).
Suitable virus strains can be obtained from available sources such as, for example, the American Type culture Collection (ATCC) or by isolation from infected plants. Isolation of viruses from infected plant tissues can be effected by techniques well known in the art such as described, for example by Foster and Tatlor, Eds. "Plant Virology Protocols: From Virus Isolation to Transgenic Resistance (Methods in Molecular Biology (Humana Pr), Vol 81)", Humana Press, 1998. Briefly, tissues of an infected plant believed to contain a high concentration of a suitable virus, preferably young leaves and flower petals, are ground in a buffer solution (e.g., phosphate buffer solution) to produce a virus infected sap which can be used in subsequent inoculations.
Construction of plant RNA viruses for the introduction and expression of non- viral exogenous polynucleotide sequences in plants is demonstrated by the above references as well as by Dawson, W. O. et al, Virology (1989) 172:285-292; Takamatsu et al. EMBO J. (1987) 6:307-311; French et al. Science (1986) 231 : 1294-1297; and Takamatsu et al. FEBS Letters (1990) 269:73-76.
When the virus is a DNA virus, suitable modifications can be made to the virus itself. Alternatively, the virus can first be cloned into a bacterial plasmid for ease of constructing the desired viral vector with the foreign DNA. The virus can then be excised from the plasmid. If the virus is a DNA virus, a bacterial origin of replication can be attached to the viral DNA, which is then replicated by the bacteria. Transcription and translation of this DNA will produce the coat protein which will encapsidate the viral DNA. If the virus is an RNA virus, the virus is generally cloned as a cDNA and inserted into a plasmid. The plasmid is then used to make all of the constructions. The RNA virus is then produced by transcribing the viral sequence of the plasmid and translation of the viral genes to produce the coat protein(s) which encapsidate the viral RNA. 16 Construction of plant RNA viruses for the introduction and expression in plants of non-viral exogenous polynucleotide sequences such as those included in the construct of the present invention is demonstrated by the above references as well as in U.S. Pat. No. 5,316,931.
In one embodiment, a plant viral polynucleotide is provided in which the native coat protein coding sequence has been deleted from a viral polynucleotide, a non-native plant viral coat protein coding sequence and a non-native promoter, preferably the subgenomic promoter of the non-native coat protein coding sequence, capable of expression in the plant host, packaging of the recombinant plant viral polynucleotide, and ensuring a systemic infection of the host by the recombinant plant viral polynucleotide, has been inserted. Alternatively, the coat protein gene may be inactivated by insertion of the non-native polynucleotide sequence within it, such that a protein is produced. The recombinant plant viral polynucleotide may contain one or more additional non-native subgenomic promoters. Each non-native subgenomic promoter is capable of transcribing or expressing adjacent genes or polynucleotide sequences in the plant host and incapable of recombination with each other and with native subgenomic promoters. Non-native (foreign) polynucleotide sequences may be inserted adjacent the native plant viral subgenomic promoter or the native and a non-native plant viral subgenomic promoters if more than one polynucleotide sequence is included. The non-native polynucleotide sequences are transcribed or expressed in the host plant under control of the subgenomic promoter to produce the desired products.
In a second embodiment, a recombinant plant viral polynucleotide is provided as in the first embodiment except that the native coat protein coding sequence is placed adjacent one of the non-native coat protein subgenomic promoters instead of a non-native coat protein coding sequence.
In a third embodiment, a recombinant plant viral polynucleotide is provided in which the native coat protein gene is adjacent its subgenomic promoter and one or more non-native subgenomic promoters have been inserted into the viral polynucleotide. The inserted non-native subgenomic promoters are capable of transcribing or expressing adjacent genes in a plant host and are incapable of recombination with each other and with native subgenomic promoters. Non-native polynucleotide sequences may be inserted adjacent the non-native subgenomic plant 17 viral promoters such that the sequences are transcribed or expressed in the host plant under control of the subgenomic promoters to produce the desired product.
In a fourth embodiment, a recombinant plant viral polynucleotide is provided as in the third embodiment except that the native coat protein coding sequence is replaced by a non-native coat protein coding sequence.
The viral vectors are encapsidated by the coat proteins encoded by the recombinant plant viral polynucleotide to produce a recombinant plant virus. The recombinant plant viral polynucleotide or recombinant plant virus is used to infect appropriate host plants. The recombinant plant viral polynucleotide is capable of replication in the host, systemic spread in the host, and transcription or expression of foreign gene(s) (exogenous polynucleotide) in the host to produce the desired protein.
Techniques for inoculation of viruses to plants may be found in Foster and Taylor, eds. "Plant Virology Protocols: From Virus Isolation to Transgenic Resistance (Methods in Molecular Biology (Humana Pr), Vol 81)", Humana Press, 1998; Maramorosh and Koprowski, eds. "Methods in Virology" 7 vols, Academic Press, New York 1967-1984; Hill, S.A. "Methods in Plant Virology", Blackwell, Oxford, 1984; Walkey, D.G.A. "Applied Plant Virology", Wiley, New York, 1985; and Kado and Agrawa, eds. "Principles and Techniques in Plant Virology", Van Nostrand-Reinhold, New York.
In addition to the above, the polynucleotide of the present invention can also be introduced into a chloroplast genome thereby enabling chloroplast expression.
A technique for introducing exogenous polynucleotide sequences to the genome of the chloroplasts is known. This technique involves the following procedures. First, plant cells are chemically treated so as to reduce the number of chloroplasts per cell to about one. Then, the exogenous polynucleotide is introduced via particle bombardment into the cells with the aim of introducing at least one exogenous polynucleotide molecule into the chloroplasts. The exogenous polynucleotides selected such that it is integratable into the chloroplast's genome via homologous recombination which is readily effected by enzymes inherent to the chloroplast. To this end, the exogenous polynucleotide includes, in addition to a gene of interest, at least one polynucleotide stretch which is derived from the chloroplast's genome. In addition, the exogenous polynucleotide includes a selectable marker, which serves by sequential selection procedures to ascertain that all or substantially all 18 of the copies of the chloroplast genomes following such selection will include the exogenous polynucleotide. Further details relating to this technique are found in U.S. Pat. Nos. 4,945,050; and 5,693,507 which are incorporated herein by reference. A polypeptide can thus be produced by the protein expression system of the chloroplast and become integrated into the chloroplast's inner membrane.
Since abiotic stress tolerance in plants can involve multiple genes acting additively or in synergy (see, for example, in Quesda et ah, Plant Physiol. 130:951-063, 2002), the present invention also envisages expressing a plurality of exogenous polynucleotides in a single host plant to thereby achieve superior abiotic stress tolerance.
Expressing a plurality of exogenous polynucleotides in a single host plant can be effected by co-introducing multiple nucleic acid constructs, each including a different exogenous polynucleotide, into a single plant cell. The transformed cell can than be regenerated into a mature plant using the methods described hereinabove.
Alternatively, expressing a plurality of exogenous polynucleotides in a single host plant can be effected by co-introducing into a single plant-cell a single nucleic-acid construct including a plurality of different exogenous polynucleotides. Such a construct can be designed with a single promoter sequence which can transcribe a polycistronic message including all the different exogenous polynucleotide sequences. To enable co-translation of the different polypeptides encoded by the polycistronic message, the polynucleotide sequences can be inter-linked via an internal ribosome entry site (IRES) sequence which facilitates translation of polynucleotide sequences positioned downstream of the IRES sequence. In this case, a transcribed polycistronic RNA molecule encoding the different polypeptides described above will be translated from both the capped 5' end and the two internal IRES sequences of the polycistronic RNA molecule to thereby produce in the cell all different polypeptides. Alternatively, the construct can include several promoter sequences each linked to a different exogenous polynucleotide sequence.
The plant cell transformed with the construct including a plurality of different exogenous polynucleotides, can be regenerated into a mature plant, using the methods described hereinabove.
Alternatively, expressing a plurality of exogenous polynucleotides in a single host plant can be effected by introducing different nucleic acid constructs, including 19 different exogenous polynucleotides, into a plurality of plants. The regenerated transformed plants can then be cross-bred and resultant progeny selected for superior abiotic stress tolerance and/or biomass traits, using conventional plant breeding techniques.
Hence, the present application provides methods of utilizing novel abiotic stress-tolerance genes to increase tolerance to abiotic stress and/or biomass and/or yield in a wide range of economical plants, safely and cost effectively.
Additional objects, advantages, and novel features of the present invention will become apparent to one ordinarily skilled in the art upon examination of the following examples, which are not intended to be limiting. Additionally, each of the various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below finds experimental support in the following examples.
EXAMPLES Reference is now made to the following examples, which together with the above descriptions, illustrate the invention in a non limiting fashion.
Generally, the nomenclature used herein and the laboratory procedures utilized in the present invention include molecular, biochemical, microbiological and recombinant DNA techniques. Such techniques are thoroughly explained in the literature. See, for example, "Molecular Cloning: A laboratory Manual" Sambrook et al., (1989); "Current Protocols in Molecular Biology" Volumes I-III Ausubel, R. M., ed. (1994); Ausubel et al., "Current Protocols in Molecular Biology", John Wiley and Sons, Baltimore, Maryland (1989); Perbal, "A Practical Guide to Molecular Cloning", John Wiley & Sons, New York (1988); Watson et al., "Recombinant DNA", Scientific American Books, New York; Birren et al. (eds) "Genome Analysis: A Laboratory Manual Series", Vols. 1-4, Cold Spring Harbor Laboratory Press, New York (1998); methodologies as set forth in U.S. Pat. Nos. 4,666,828; 4,683,202; 4,801,531; 5,192,659 and 5,272,057; "Cell Biology: A Laboratory Handbook", Volumes I-III Cellis, J. E., ed. (1994); "Current Protocols in Immunology" Volumes I-III Coligan J. E., ed. (1994); Stites et al. (eds), "Basic and Clinical Immunology" (8th Edition), Appleton & Lange, Norwalk, CT (1994); Mishell and Shiigi (eds), "Selected Methods in Cellular Immunology", W. H. Freeman and Co., New York (1980); available immunoassays are extensively described in the patent and scientific literature, see, for example, U.S. Pat. Nos. 3,791,932; 3,839,153; 3,850,752; 3,850,578; 3,853,987; 3,867,517; 3,879,262; 3,901,654; 3,935,074; 3,984,533; 3,996,345; 4,034,074; 4,098,876; 4,879,219; 5,011,771 and 5,281,521; "Oligonucleotide Synthesis" Gait, M. J., ed. (1984); "Nucleic Acid Hybridization" Hames, B. D., and Higgins S. J., eds. (1985); "Transcription and Translation" Hames, B. D., and Higgins S. J., eds. (1984); "Animal Cell Culture" Freshney, R. I., ed. (1986); "Immobilized Cells and Enzymes" IRL Press, (1986); "A Practical Guide to Molecular Cloning" Perbal, B., (1984) and "Methods in Enzymology" Vol. 1-317, Academic Press; "PCR Protocols: A Guide To Methods And Applications", Academic Press, San Diego, CA (1990); Marshak et al., "Strategies for Protein Purification and Characterization - A Laboratory Course Manual" CSHL Press (1996); all of which are incorporated by reference as if fully set forth herein. Other general references are provided throughout this document. The procedures therein are believed to be well known in the art and are provided for the convenience of the reader.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below.
EXAMPLE 1 Identifying putative abiotic stress tolerance genes Putative abiotic stress-tolerance (ABST) genes were selected from NCBI databases of tomato expressed sequence tags (ESTs) and cDNAs. The database sequences were clustered and assembled using the LEADS™ software (Compugen). Clustering resulted in more than 20,000 clusters, each representing a different gene. An expression profile summary was compiled for each cluster by pooling all keywords included in the sequence records comprising the cluster. The clusters were then screened to include polynucleotides originating from libraries identified by keywords relating to ABST. The selected clusters were further filtered to exclude any cluster 21 which included more than 100 ESTs per cluster and/or any cluster in which less than 50 % of the sequences were annotated by ABST-related keywords.
Prior art ABST plant genes were identified from the publications of Quesada et al. (Plant Physiol. 130:951-963, 2002); Apse and Blumwald (Curr Opin Biotechnol. 13: 146-150, 2002); Rontein et al. (Metab Eng 4:49-56, 2002); and references therein. Known plant ABST genes were aligned with the clustered tomato nucleic-acid sequences using the BLAST program. The tomato sequences having an e-score value lower than 5 were identified as ABST orthologes. Additional prior art tomato ABST genes were identified by searching the clustered tomato sequence records using the keywords "root", "crown gall", "nutrient", "callus", "disease", "pathogen", "elicitor" and "pseudomonas".
Finally, all identified prior art ABST genes were matched (by sequence alignment using the BLAST software) with the output set of tomato gene clusters, selected as described above. Consequently, about 40 % of the genes selected in the output set of clusters which matched with prior art ABST genes proved to be known ABST genes, indicating that the remaining genes of the selected clusters are potentially capable of increasing abiotic stress tolerance in plants.
The selected polynucleotide sequences (Table 1 A), were analyzed for presence of OPvFs using Vector NTI suite (InforMax, U.K.) version 6 (Hasting Software, Inc: www.genemnner.comA). ORFs identified in each of these polynucleotide sequences were compared to Genbank database sequences, using Blast (www.ncbi.nlm.nih.gov/BLAST/); the ORE displaying the highest homology to a GenBank sequence or sequences, was mapped in order to identify an ATG start codon. The position of the ATG start codon of this ORE was then compared with that of the identified polynucleotide sequence in order to verify that each of the eighteen sequences described herein includes a full length ORE and an ATG start codon (thus qualifying as a "putative ABST gene"). 22 Table 1A Putative ABST genes ABST polypeptide homologues were identified from the NCBI databases BLAST software (Table IB).
Table IB ABST homologues 23 Table IB continued Five of these genes were selected as having the most potential of being putative ABS tolerance genes on the basis of digital expression profiles (i.e. known to be up-regulated under different stress conditions) as listed in Tables 2-6, and homologies to public protein sequences and domains through multi sequence alignment searches. Also, only genes with low and medium expression levels were included.
The five genes are listed together with their functions in Table 1C below.
Table 1C Selected Putative ABS T genes Gene AC number, Length of Protein Protein domain Go classification name CDS bps length aa Similarities ABST 1 BG123819 / 833 151 Ribosomal RNA binding, SEQ ID TCI 53989 protein S13 morphogenesis, protein NO: 1 biosynthesis in cytosol ABST 6 BG627487 / 1242 163 DnaJ domain Chaperone activity, SEQ ID TCI 62949 protein folding NO: 4 24 Table 1C continued Digital expression, also known as electronic northern blot, is a tool for virtually displaying the expression profile of query genes based on the EST sequences forming the cluster. The tool can provide the expression profile of a cluster in terms of plant anatomy (in what tissues/organs is the gene expressed), developmental stage (the developmental stages at which a gene can be found) and profile of treatment (provides the physiological conditions under which a gene is expressed such as drought, cold, pathogen infection, etc). Given a random distribution of ESTs in the different clusters, the digital expression provides a probability value that describes the probability of a cluster having a total of N ESTs to contain X ESTs from a certain collection of libraries. For the probability calculations, various considerations are taken: a) the number of ESTs in the cluster, b) the number of ESTs of the implicated and related libraries, c) the overall number of ESTs available representing the species. Thereby clusters with low probability values are highly enriched with ESTs from the group of libraries of interest indicating a specialized expression.
The digital expression profile for ABST_1 (SEQ ID NO:l) is summarized below in Table 2.
Table 2 Change in expression of ABST 1 due to exposure to various treatments Table 2 continued The digital expression profile for ABST_6 (SEQ ID NO:4) is summarized in Table 3.
Table 3 Change in expression of ABST 6 due to exposure to various treatments The digital expression profile for ABSTJ22 (SEQ ID NO:9) is summarized below in Table 4.
Table 4 Change in expression of ABST_22 due to exposure to various treatments The digital expression profile for ABST 36 (SEQ ID NO: 13) is summarized below in Table 5. 26 Table 5 Change in expression of ABST 36 due to exposure to various treatments Table 5 continued The digital expression profile for ABST 37 (SEQ ID NO: 14) is summarized below in Table 6.
Table 6 Change in expression of ABST 37 due to exposure to various treatments ESTs in ESTs in Expected Keyword Fold p-value Gene Production ESTs hormone 1 23195 1 1 0.643514 treatment Mix of 1 8655 1 1 0.31009 elicitors nutrient 3 3258 1 3 0.000275679 deficiencies -N, -P, -K, - 3 3258 1 3 0.000275679 Fe, -Al 27 EXAMPLE 2 In-situ Validation/Expression Studies The five genes listed in Table 1C were validated in situ as putative ABST genes by analyzing their expression profile in tomato plants under favorable, salt and drought stress conditions.
The expression studies were carried out on three tomato lines - sensitive tomato variety (Evoline 1), processing tomato line with moderate tolerance to salt (Evoline 3, also referred to herein as M82) and drought and high salt tolerant tomato line (Evoline 2). All lines were tested for several seasons for their levels of tolerance to salt and other soil stresses such as drought. All lines are commercially available from Evogene, Rehovot, Israel.
Methods Salt induction: Salt stress induction was performed by introducing the roots of 14 days old tomato seedlings, of different tomato homozygote varieties, into a water bath which contained a solution of Hogland (comprising KN03-8mM, MgSC«4-lmM, H2P04-lmM, and microelements, all dissolved in water, at pH 6.5), and 300 mM NaCl. Plants were placed on a floating tray, such that only the roots were dipped in the solution. Plants were grown in salt solution for 5 weeks during which the degree of tolerance to the salt stress was measured, by comparing plant development and biomass. The experiment was performed in 3 sequential seasons and with 5 repeats for each line in each experiment. The experiments identified 3 tomato lines showing consistent level of either weak (Evolinel), moderate (Evoline3), or high (Evoline2) level of tolerance. During the last experiment RNA samples from leaves and roots from Evolinel and Evoline3 were taken 5, 9, 72, 240 hours after introducing the plants to salt solution.
Drought induction: Levels of tolerance to drought induction were tested on Evolinel, Evoline2, and Evoline3 tomato plants. The plants were grown in CYG Germination Pouches, (Mega International, MN, USA), from germination until 4 true leaf stage in a regular nutrient solution. Drought conditions were applied by adding polyethylene glycol- PEG to the growth solution to a final concentration of 15 %. RNA samples from leaves and roots were taken at time 0, 0.5h, 3h, 6h and 48h following drought induction. RNA expression level was measured by using quantitative RT PCR. 28 Results As illustrated in Figure 2, seedlings of the sensitive line (Evoline 1) were much smaller with far fewer leaves than seedlings of the tolerant line (Evoline 2) following four weeks growth under water irrigation containing 300mM NaCl.
Tables 7-9 below summarise the up-regulationchange in gene expression in response to various stress conditions (e.g. drought and salt) of polynucleotides of the present invention in tomato plants as calculated by quantitative RT-PCR.
Table 7 Relative expression of the ABST genes following salt induction compared to their expression at time 0 (TO) in leaves and roots of a tomato tolerant line (Evoline 2= highly tolerant line) Table 8 Relative expression of the ABST genes following salt induction compared to their expression in leaves and roots of tomato sensitive variety (Evoline 1= salt sensitive line) Time Organ ABST ABST ABST ABST ABST ABST ABST after J 6 19 22 7 J6 7 induction (hours) 0 leaves 1.00 1.00 1.00 1.00 1.00 1.00 1.00 leaves 1.60 0.00 1.10 1.18 1.58 1.18 0.00 9 leaves 0.88 0.34 1.14 0.83 1.80 0.58 0.83 72 leaves 0.70 0.20 1.21 0.81 0.95 0.40 1.71 240 leaves 0.44 2.25 1.56 0.69 0.56 0.23 7.63 0 roots 1.00 1.00 1.00 1.00 1.00 1.00 1.00 roots 0.96 1.56 1.05 1.01 1.25 0.84 0.81 9 roots 0.84 1.10 1.08 0.58 1.09 0.46 0.47 72 roots 0.83 1.31 1.43 1.00 1.41 0.24 0.44 240 roots 0.59 9.13 2.03 0.77 1.00 0.07 1.77 29 Table 9 Relative expression of the ABST genes following drought induction compared to their expression in TO in leaves and roots of seedlings of processing tomato variety (Evoline 3 = moderate salt tolerant line-M82) As seen from tables 7-9, ABST 1, 6, 22, 27, 36 and 37 all showed induction of expression under different stress conditions. The changes in gene expression as a response to various stresses could be classified into two main categories - immediate up-regulation e.g. ABST_36 and ABST l (from 30 minutes to 6 hours following induction) and delayed up-regulation e.g. ABST_37 and ABST 6 (24 to 240 hours following induction).
The expression profile of most the genes was also affected by the genotype of the plants (highly tolerant line vs. sensitive line) and the specific stress the plants were exposed to (i.e. salt or PEG). Three genes showed changes in expression in leaves only (ABST l, 22, 36). Only ABST 6 and 37 showed up-regulation of expression in both leaves and roots.
Significant changes were not detected in the expression of the ABST 19 as a response to salt or drought stress.
Table 10 below summarises the main expression modes of the ABST genes the present invention under salt and osmotic stress.
Table 10 Expression modes of the ABST genes of the present invention under salt and osmotic stresses Evoline 1 : has low salt tolerance Evoline 2: has high salt tolerance Evoline 3: has moderate salt tolerance Early response: 0.5 hours to 9 hours from induction Late response: 48 hours to 240 hours from induction 31 EXAMPLE 3 Isolation of ABS tolerance genes of the present invention RNA was extracted from 4 week-old tomato root and leaf tissues using Tri Reagent (Molecular Research Center, Inc), following the protocol provided by the manufacturer (www.mrcgene.com/tri.htm). Complementary DNA molecules were produced from the extracted mRNA using M-MuLV reverse-transcriptase (RT) enzyme (Roche) and T16NN DNA primer, according to the manufacturer's instructions. The cDNA sequences set forth in SEQ ID NOs: 1,4,8-9 and 12-14, were amplified by PCR using the primers described in Table 11 below, with PFU proof reading DNA polymerase enzyme (Promega- www.promega.com/pnotes/68/7381 __07/7381 07.html), following the protocol provided by the manufacturer. Additional restriction endonuclease sites were added to the 5' prime end of each primer to facilitate cloning of the ABS tolerance genes of the present invention in binary vectors.
Table 11 PCR primers used for amplifying ABS tolerance (ABST) genes of the present invention EXAMPLE 4 Cloning the ABST genes of the present invention The resulting PCR blunt ended products were purified using PCR Purification Kit (Qiagen, Germany), digested with the appropriate restriction enzymes (Roche) and then inserted into the binary plasmid vector pPI. The plasmid pPI was constructed by inserting a synthetic poly-(A) signal sequence, originating from pGL3 basic plasmid vector (Promega, Acc No U47295; bp 4658-4811) into the Hindlll restriction site of the binary vector pBI101.3 (Clontech, Acc. No. U12640).
The resulting pPI plasmid was digested with restriction enzymes (BamHl and Sad; MBI Ferinentas) and purified using PCR Purification Kit (Qiagen, Germany). 32 The open pPI construct was then ligated with each of the seven PCR products described hereinabove. The ligation was effected using a ligation mixture containing T4 DNA ligase enzyme (Roche) and was performed according to the manufacturer's instructions.
The pPI constructs harboring ABST genes of the present invention were introduced to E. coli DH5 competent cells by electroporation, using a MicroPulser electroporator (Biorad), 0.2 cm cuvettes (Biorad) and EC-2 electroporation program (Biorad). The treated cells were cultured in LB liquid medium at 37 °C for 1 hr, then plated over LB agar supplemented with kanamycin (50 mg/L; Sigma) and incubated at 37 °C for 16 hrs. Colonies which developed on the selective medium were analyzed by PCR using the primers set forth in SEQ ID NOs: 35-36, which were designed to span the inserted sequence in the pPI plasmid. The resulting PCR products were separated on 1.5 % agarose gels and the DNA fragment having the predicted size were isolated and sequenced using the ABI 377 sequencer (Amersham Biosciences Inc) in order to verify that the correct DNA sequences were properly introduced to the E. coli cells.
EXAMPLE 5 Generating binary vectors comprising ABST genes of the present invention and plant promoters operably linked thereto Generating binary vectors comprising the Cauliflower Mosaic Virus 35S promoter: The Cauliflower Mosaic Virus 35S promoter sequence (set forth in SEQ ID NO: 19) was inserted upstream of the ABST genes of the present invention in each of the pPI constructs described above. The promoter was isolated from the pBI121 plasmid (Clontech, Accession No. AF485783) using the restriction endonucleases Hindlll and BamWl (Roche). The isolated promoter was ligated into the pPI constructs digested with the same enzymes. Altogether, seven pPI constructs were generated, each comprising the CaMV 35S promoter positioned upstream of the ABST genes of the present invention having a sequence set forth in SEQ ID NO: 1,4,8,9,12,13 or 14.
Generating binary vectors comprising the At6669 promoter: The At6669 promoter sequence (set forth in SEQ ID NO: 20) was inserted upstream of the ABST genes of the present invention in each of the pPI binary constructs described above. 33 The promoter was isolated from Arabidopsis thaliana var ColO genomic DNA by PCR amplification using the primers set forth in SEQ ID NOs: 37-38. The PCR product was purified (Qiagen, Germany) and digested with the restriction endonucleases Hindlll and BamHl (Roche). The resulting promoter sequence was introduced into the open binary constructs digested with the same enzymes. Altogether, seven pPI constructs were generated, each comprising the At6669 promoter positioned upstream of the ABST genes of the present invention having a sequence set forth in SEQ ID NO: 1,4,8,9,12,13 or 14.
EXAMPLE 6 Confirming At6669 promoter activity in transgenic Arabidopsis thaliana The capacity of At-6669 promoter to regulate transcription of genes carried by the pPI vector in plants was tested. Accordingly, the promoter At6669 was inserted into the pPI binary vector upstream of a Luciferase reporter gene. The binary vector was introduced to Arabidopsis thaliana plants using the procedure as described in Example 6 below. Mature transformed T2 Arabidopsis plants were assayed for bio-illumination in a darkroom using an ultra-low light detection camera (Princeton Instruments Inc., USA) using the procedure described by Meissner et al. (Plant J. 22:265, 2000). Illumination indicating positive Luciferase activity was observed in the flower and root meristem tissues of transformed plants (Figures 3A-D).
To study the regulation mode of the promoter under stress conditions, the 6669 promoter and 35S promoter were both fused to the Arabidopsis Rab7 gene. Rab7 expresssion under the 6669 promoter gave significantly higher salt and osmotic tolerance performance compared to 35S in Arabidopsis, as determined by vegetative growth.
The promoter was further validated by comparing tolerance level of Arabidopsis plants containing the ABST genes of the present invention under the regulation of 6669 and under the regulation of 35S promoter (Figure 4). The plants were transformed with seven ABST genes of the present invention (ABST l, 6, 19, 22, 27, 36, 37) as described in Example 8. As illustrated in Figure 4, the plant dry weight increased following transformation of the ABST genes under the 6669 promoter to a greater extent than following transformation of the ABST genes under the 35S promoter both under normal and stress (100 mM salt) conditions. 34 EXAMPLE 7 Transforming Agrobacterium tumefaciens cells with binary vectors harboring ABST genes of the present invention Each of the binary vectors described in Example 5 above were used to transform Agrobacterium cells. Two additional binary constructs, having the Luciferase reporter gene replacing an ABST gene (positioned downstream of the 35S or At6669 promoter), were used as negative controls.
The binary vectors were introduced to Agrobacterium tumefaciens GV301, or LB4404 competent cells (about 109 cells/mL) by electroporation. The electroporation was effected by using a MicroPulser electroporator (Biorad), 0.2 cm cuvettes (Biorad) and EC-2 electroporation program (Biorad). The treated cells were cultured in LB liquid medium at 28 °C for 3 hr, then plated over LB agar supplemented with gentamycin (50 mg/L; for Agrobacterium strains GV301) or streptomycin (300 mg/L; for Agrobacterium strain LB4404) and kanamycin (50 mg/L) at 28 °C for 48 hrs. Abrobacterium colonies which developed on the selective media were analyzed by PCR using the primers set forth in SEQ ID NOs: 35-36, which were designed to span the inserted sequence in the pPI plasmid. The resulting PCR products were isolated and sequenced as described in Example 5 above, to verify that the correct ABST sequences were properly introduced to the Agrobacterium cells.
EXAMPLE 8 Transformation of Arabidopsis thaliana plants with ABST genes of the present invention Arabidopsis thaliana Columbia plants (T0 plants) were transformed using the Floral Dip procedure described by Clough and Bent (10) and by Desfeux et al. (1 1), with minor modifications. Briefly, T0 Plants were sown in 250 ml pots filled with wet peat-based growth mix. The pots were covered with aluminum foil and a plastic dome, kept at 4 °C for 3-4 days, then uncovered and incubated in a growth chamber at 18-24 °C under 16/8 hr light/dark cycles. The T0 plants were ready for transformation six days before anthesis.
Single colonies of Agrobacterium carrying the binary constructs, generated as described in Example 6 above, were cultured in LB medium supplemented with kanamycin (50 mg/L) and gentamycin (50 mg/L). The cultures were incubated at 28 °C for 48 hrs under vigorous shaking and then centrifuged at 4000 rpm for 5 minutes. The pellets comprising Agrobacterium cells were re-suspended in a transformation medium containing half-strength (2.15 g/L) Murashig-Skoog (Duchefa); 0.044 μΜ benzylamino purine (Sigma); 112 μg/L B5 Gambourg vitamins (Sigma); 5 % sucrose; and 0.2 ml/L Silwet L-77 (OSI Specialists, CT) in double-distilled water, at a pH of 5.7.
Transformation of T0 plants was effected by inverting each plant into an Agrobacterium suspension, such that the above ground plant tissue was submerged for 3-5 seconds. Each inoculated T0 plant was immediately placed in a plastic tray, then covered with a clear plastic dome to maintain humidity and was kept in the dark at room temperature for 18 hrs, to facilitate infection and transformation. Transformed (transgenic) plants were then uncovered and transferred to a greenhouse for recovery and maturation. The transgenic T0 plants were grown in the greenhouse for 3-5 weeks until siliques were brown and dry. Seeds were harvested from plants and kept at room temperature until sowing.
For generating Ti and T2 transgenic plants harboring the genes, seeds collected from transgenic To plants were surface-sterilized by soaking in 70 % ethanol for 1 minute, followed by soaking in 5 % sodium hypochloride and 0.05 % triton for 5 minutes. The surface-sterilized seeds were thoroughly washed in sterile distilled water then placed on culture plates containing half-strength Murashig-Skoog (Duchefa); 2 % sucrose; 0.8 % plant agar; 50 mM kanamycin; and 200 mM carbenicylin (Duchefa). The culture plates were incubated at 4 °C for 48 hours then transferred to a growth room at 25 °C for an additional week of incubation. Vital Ti Arabidopsis plants were transferred to a fresh culture plates for another week of incubation. Following incubation, the Ti plants were removed from culture plates and planted in growth mix contained in 250 ml pots. The transgenic plants were allowed to grow in a greenhouse to maturity. Seeds harvested from Ti plants were cultured and grown to maturity as T2 plants under the same conditions as used for culturing and growing the Ti plants. 36 EXAMPLE 9 Evaluating growth of transgenic plants cultivated under abiotic stress conditions Methods: Ti or T2 transgenic plants generated as described above were individually transplanted into pots containing a growth mixture of peat and vermiculite (volume ratio 3:2, respectively). The pots were covered for a 24 hr period for hardening, then placed in the greenhouse in random order and irrigated with tap water (provided from the pots' bottom every 3-5 days) for seven days. Thereafter, half of the plants were irrigated with a salt solution (100 mM NaCl and 5 mM CaCl2) to induce salinity stress (stress conditions). The other half was irrigated with tap water throughout (normal conditions). All plants were grown in the greenhouse at 100 % RH for 28 days and then harvested (the above ground tissue).
Vigor measurement: Fresh and dry mass were measured as a function of plant vigor. Dry mass was measured immediately following drying in an oven at 50 °C for seven days.
Results: Fresh weight: No significant differences in plant fresh weights were observed between the Ti plants transformed with 3 different ABST genes and plants transformed with the Luciferase reporter gene, grown either under normal or stress conditions (Figure 5 and Table 12 below). Yet, T[ plants transformed with SEQ ID NO: 1 positioned under the regulatory control of the At6669 promoter maintained 71 % of their fresh weight when exposed to stress conditions, while the control plants (carrying Luciferase gene positioned under the regulatory control of the AT6669 promoter) maintained only 61 % of their fresh weight under similar stress conditions. 37 Table 12 Fresh weight of Ti transgenic Arabidopsis plants irrigated with water solution N Rows represent number of independent transformation event plants measured. For each transgene, 3-5 independent transformation events with 1-3 plants per a single transformation event were used.
T2 plants transformed with SEQ ID NOs: 7 or 14 positioned under the regulatory control of the 35S promoter accumulated significantly higher biomass than control plants, regardless of growth conditions. As shown in Figure 6 A and Table 13 below, the mean fresh weight of plants transformed with SEQ ID NOs: 7 and 14, grown under stress conditions, were 15 % and 24 %, respectively, higher than the mean fresh weight control plants grown under similar stress conditions. Similarly, the mean fresh weight of plants transformed with SEQ ID NOs: 7 or 14, grown under normal conditions, were 21 % and 27 %, respectively, higher than the mean fresh weight control plants grown under similar normal conditions.
Similar phenomenon was observed with T2 plants transformed with SEQ ID NO: 4 positioned under the regulatory control of the 35S promoter. Accordingly, as shown in Figure 6A and Table 13 below, the mean fresh weight of plants transformed with SEQ ID NO: 4 was 14 % and 7 % was higher than the mean fresh weight of control plants grown under stress and normal conditions, respectively. Similarly, T2 plants transformed with SEQ ID NO: 4 positioned under the regulatory control of the At6669 promoter exhibited 1.3 and 5 % higher biomass than control plants grown under stress and normal conditions, respectively (Table 14). However, these differences were not found statistically different under the experimental conditions. 38 Table 13 Fresh weight of T2 transgenic Arabidopsis plants irrigated with water Table 13 continued lN Rows represent number of independent transformation event plants measured. For each transgene, 3-5 independent transformation events with 1-3 plants per a single transformation event were used.
T2 plants transformed with SEQ ID NOs: 1 and 13 positioned under the regulatory control of the At6669 promoter and grown under stress conditions, exhibited significantly higher biomass than control plants grown under similar stress conditions. The mean fresh weight of T2 plants transformed with SEQ ID NOs: 1 and 13 positioned under the regulatory control of the At6669 promoter, and grown under stress conditions, were 37 % and 21 %, respectively, higher than the mean fresh weight control plants grown under similar stress conditions (Figure 6B and Table 14 below). No significant increase in biomass over control was observed when these transgenic plants (carrying SEQ ID NOs: 1 and 13 regulated under At6669 promoter) where grown under normal conditions.
Table 14 Fresh weight of T 2 transgenic Arabidopsis plants irrigated with water solution Promoter Irrigation Transgene (SEQ solution (mM ID NO) N Rows NaCI) Mean (g) Std Error Luciferase At6669 6 0 0.3 0.010328 Luciferase At6669 6 100 0.125 0.009916 13 At6669 6 0 0.286667 0.024449 39 N Rows represent number of independent transformation event plants measured. For each transgene, 3-5 independent transformation events with 1-3 plants per a single transformation event were used.
The results illustrate that the isolated ABST genes of the present invention, set forth in SEQ ID NOs: 1 and 13, are capable of increasing plant tolerance to abiotic stress, such as a salinity stress. In addition, the isolated ABST genes of the present invention as set forth in SEQ ID NOs: 7, 14 (and possibly also 4), are capable of substantially promoting biomass in plants grown under stress, as well as under normal conditions.
Dry mass: Table 15 summarises the results the dry mass of Tl plants grown under lOO mM NaCl.
Table 15 Dry mass of Tl plants grown under lOOmM Nacl Table 16 summarises the results of the absolute and relative dry mass of the of the T2 transgenic lines overexpressing the ABST genes under regular growth conditions. 40 Table 16 Summary of absolute (g) and relative dry mass (relative to negative control %) of the T2 transgenic lines overexpressing the ABST genes under regular growth conditions As summarized in Table 16 above, transgenic T2 Arabidopsis plants over-expressing ABST genes of the present invention as set forth in SEQ ID NOs: 1 (ABST_1) and 4 (ABST_6) showed significant elevation of dry mass both under the 35S promoter and the 6669 promoter (ABST_1: 18 %, 49 % respectively, ABST_6: 10 %, 44 % respectively). SEQ ID NO: 13 (ABST_36) over-expression caused elevation in dry mass only under the regulation of 6669 promoter (24 %). ABST_22 and _37 over-expression (SEQ ID NOs: 9 and 14 respectively), under the regulation of the 35S promoter, caused more than a 40 % increase in the dry mass of the transgenic lines.
The results showed that all five tested genes improve vegetative growth development under favorable conditions. ABST l and 6 improve plant vigor in both regulation modes (6669 and 35S promoters).
The specific gene-promoter combination has a significant effect on dry mass elevation.
To further examine if elevation in plant vigor has a direct effect on total seed weight, T2 plant seeds (grown under regular conditions) over-expressing ABST 1, (SEQ ID NO: 1) 6 (SEQ ID NO: 4), 36 (SEQ ID NO: 13) and 37 (SEQ ID NO: 14) under the 6669 promoter were weighed. The seeds from plants over-expressing ABST_1 and 36 weighed 50 % more compared to control lines as illustrated in Figure 7 and Table 17 below. 41 Table 17 Average seed weight of arabidopsis lines over-expressing ABST genes 1, 6, 19, 36, 37 under the 6669 promoter * Levels not connected by same letter are significantly different The effect of over-expression of ABST genes in plants subjected to salt stress on dry mass was tested using the same plant populations grown under continuous irrigation of saline water.
As summarized in Table 18 below, ABST_6 and 36 (SEQ ID NOs: 4 and 13 repectively) increased the plant dry mass under both the 35S and 6669 promoters (ABST_6: 25 %, 16 % respectively; ABST 36: 15 %, 33 % respectively). Plants over-expressing ABST_1 (SEQ ID NO: 1) showed higher dry mass only under the 6669 promoter (66 %). ABST_22 and 37 (SEQ ID NOs: 9 and 14 repectively) were tested only under the 35S promoter and showed a significant increase (> 43 %) of plant dry mass compared to control line.
Table 18 Summary of absolute (g) and relative dry mass (relativ to negative control %) of the T2 transgenic lines overexpressing the ABST genes under salt stress conditions T2 plants overexpressing T2t slants overexpressing the ABST gene under the the ABST) *ene under the 35S promoter 6669 promoter Relative Relative expression expression Mean dry Std compare to Mean dry Std compare to Gene name mass (g) Error control (%) mass (g) Error control (%) Negative control 0.041 0.005 100.000 0.019 0.002 100.000 ABST 1 0.035 0.006 93.280 0.032 0.002 166.035 ABST 6 0.052 0.005 124.750 0.022 0.001 114.480 ABST 19 0.040 0.005 102.273 0.017 0.002 87.753 ABST 22 0.056 0.005 142.455 ND ND ND ABST 36 0.049 0.005 1 15.910 0.027 0.002 132.576 ABST 37 0.059 0.005 143.068 ND ND ND 42 ND= not determined Table 19 below summarizes the results of all the dry mass and seed measurements that were performed on the transgenic arabidopsis over-expressing the ABST genes, (calculated as percentage compare negative control).
Table 19 Dry Mass and seed measurements Table 19 continued EXAMPLE 10 Evaluating growth of transgenic tomato plants cultivated under abiotic stress conditions The M82 tomato variety strain (Evoline 3) was used to determine whether improvement of plant vigor under stress may be translated into improvement of commercial yield. ABST genes 1, 6 and 36 (SEQ I.D. NOs. 1, 4 and 13 respectively) were transformed under the regulation of the 6669 promoter. As described in Example 9, all three gene combinations showed significant improvement of stress tolerance in arabidopsis plants. The genes were introduced into M82 variety by crossing transgenic miniature tomato lines with M82 plants. To represent the variation of the position effect, a pool of pollen from transgenic lines representing 4 different insertion events from each one of the genes were used as the male parent. The Fl hybrids were used for further evaluation.
The segregating Fl populations were divided into two isogenic populations, i.e. plants over-expressing the ABST genes of the present invention and plants that 43 were not transformed to over-express ABST genes (NT) from the same populations used as negative controls. During the first three weeks, all the plants were grown in a nursery under regular conditions. Following this period the plants were transplanted into a commercial greenhouse under two different treatments. The first group of plants was grown under favorable conditions while the second group was grown under continuous irrigation of saline water (180 mM NaCl). Each transgenic line was compared to a NT plant derived from the same Fl population. The plants were evaluated for their plant and fruit performance at a stage where the percentage of red fruit was on average 80 %.
Results: The plants over-expressing ABST genes showed improved vigor and larger root systems than the NT plants. In addition, the plants over-expressing ABST genes showed improved yield under salt stress conditions.
Specifically, plants over-expressing ABST genes showed an elevation in the fresh weight of both canopies and roots. The populations expressing ABST_1, 6 and 36 showed elevations of 165 %, 162 %, 206 % respectively in canopy fresh weight compared to NT populations (Table 20) and higher root weight of 162 %, 168 % and 121 % respectively compared to NT plants.
Table 20 Summary of absolute (g) and relative fresh mass (relative to negative control %) of the canopies of M82 tomato T2 transgenic lines overexpressing the ABST genes under saline water irrigation ♦Levels not connected by same letter are significantly different) To further prove that this elevation in weight was due to accumulation of biomass and not only due to water accumulation, the dry mass of both the canopies and roots was measured. The dry mass of the canopies increased by 156 %, 145 % 44 and 161 % in the lines expressing ABST_1, 6, 36 respectively compared to the corresponding NT lines. Similar effects were observed in the roots of these lines. Roots of the plants over-expressing ABST genes contained 40 % (as summarized in Table 21 below) more dry matter than roots of the NT control plants (ABST l- 168 %, 6 -159 % and 36 - 140 %).
Table 21 Summary of absolute (g) and relative dry mass (relative to negative control %) of the roots of M82 tomato T2 transgenic lines overexpressing the ABST genes under saline water irrigation Table 21 continued * 'Levels not connected by same letter are significantly different) Only transgenic plants over expressing ABST 36 had a lower root/shoot mass ratio than control plants (Table 22 below). This lower ratio (0.067 compared to more than 0.08 in control plants) is the result of a nearly 50 % increase in shoot fresh weight rather than a major decrease in root fresh weight. This finding suggests that under stress growth conditions, the ABST 36 over-expressing plants require a relatively lower root mass to support shoot growth and development.
Table 22 Ratio between root to shoot mass in control plants and three transgenic lines over expressing ABST l, 6, 36 Gene name Ratio dry weight roots per canopy [MT]x[M82] Non-transgenic negative control 0.086287522 [ABST l]x[M82] 0.083090052 45 Fruit yield was analyzed by measuring the number of fruit clusters, the number of green and red fruits and weight of the green and red fruits in each one of the lines.
Plants over-expressing ABST_36 comprise (37 %) significantly more fruit clusters compared to control line suggesting a link between vigor and yield potential as summarized in Table 23 below.
All three tested ABST genes of the present invention improved total fruit yield as illustrated in Table 24. Specifically, ABST l increased fruit yield by 137 %.
ABST_6 increased fruit yield by 151 %. ABST_36 increased fruit yield by 191 %. The relative large internal variation within populations reflects the variation that exists between different insertion events.
A more detailed analysis of the yield determinants showed that most of the additional yield (50 % to 90 %) was due to elevation in the weight of green fruit (Table ). In addition most of the elevation in yield was due to an increase in the number of fruits rather than enlargement of fruit size (Table 26).
The significant difference in the number of green fruits between the lines largely depends on the physiological status of the plants. The control NT plants wilted much earlier while the plants over-expression ABST genes continued to develop for a longer period.
Table 23 Average number of fruit clusters in transgenic lines over-expressing the ABST genes and control lines M82 tomato T2 plants overexpressing the ABST gene under the 6669 promoter Mean number of Level of Relative per Gene name clusters Std Error significant control (%) [MT]x[M82]_T (Transgenic negative control) 18.586 1.493 b 100.000 [ABST l]x[M82] 19.402 1.829 ab 104.874 TABST 6MM821 22.533 2.586 ab 121.799 [ABST 36]x[M82] 25.467 2.876 a 137.660 46 Table 24 Total fruit yield in transgenic lines over-expressing the ABST genes and control lines Table 25 Green fruit weight of transgenic lines over-expressing the ABST genes and control lines (gram) Table 26 Average number of the green fruits that were produced in the transgenic lines expressing the ABST genes and control lines M82 tomato T2 plants overexpressing the ABST gene under the 6669 promoter Mean of number of Level of Relative per Gene name green fruits Std Error significant control (%) [MT]x[M82]_T (Transgenic negative control) 26.127 6.173 be 100.000 [ABST l]x[M82] 41.666 7.146 ab 160.254 [ABST 6]x[M821 41.047 10.106 ab 157.875 [ABST 36]x[M82] 58.703 11.756 a 225.780 47 Figures 8A-D depict control and transgenic plants of the present invention illustrating the increase in yield following over-expression of the ABST genes of the present invention.
Comparison between lines expressing ABST l, 6, 36 under favorable conditions to control lines under favorable conditions did not show any significant changes in the vigor of the vegetative parts or in the fruit yield. The following parameters were tested: fresh and dry weight of the roots and canopies, green fruit weight, red fruit weight and the average green and red fruit diameter. In all these parameters no differences were detected.
Table 27 below summarizes the results on crop yield following over-expression of ABST in tomato plants.
Table 27 Comparison of plant and fruit performances between transgenic and control plants grown under favorable and salt stress conditions (irrigation of 180Mm NaCl) Tomato plants that were crossed between transgenic miniature tomatos and the M82 line (line 3) were also grown under both salt stress and favorable conditions. The salt stress was carried out by continuous irrigation of saline water containing 180 mM NaCl.
The miniature populations expressing ABST l and 22 showed the highest improvement in salt tolerance compare to the control line based on plant and root mass and yield performance. The dry mass of the transgenic lines expressing ABST l, 22 was increased by 300 % and 257 % respectively. ABST 36 improved both shoot mass and yield by about 30 % as compared to control plants. The lines 48 expressing ABST l and 22 showed the highest yield performance (165 % and 140 % respectively) compared to control population.
ABST 36 and 37 were also over-expressed in a line 2 tolerant tomato plant (Y361) and its expression was compared to that in a line 1 sensitive tomato plant (Shirly). As illustrated in Figures 9A-C, ABST 36 expression was higher in the tolerant plants in both roots and leaves. ABST_37 was up-regulated in leaves of both tolerant and sensitive lines. However in the tolerant line (line 2) the expression was up-regulated in leaves much faster than in leaves of sensitive line (line 1). Up-regulation in roots occurred only in the tolerant lines (line 2).
Hence, the results from Examples 1-10, clearly indicate that the abiotic stress tolerance genes of the present invention described herein can be readily isolated and utilized to substantially increase tolerance to abiotic stress and/or biomass in plants.
EXAMPLE 11 Identifying putative abiotic stress- tolerance genes from Monocots Monocot ortholog sequences for the 5 putative ABST tomato genes (SEQ I.D. NOs. 1,4,9,13 and 14) were sought. Monocot genomic databases namely NCBI (http://www.ncbi.nlm.nih.gov and TIGR (http://www.tigr.org/) databases of Maize, Sorghum and Barley were initially screened. The expressed sequence tags (ESTs) and cDNA sequences were clustered and assembled using the LEADS™ software (Compugen) and compared to the TIGR (http://www.tigr.org/) databases of the above monocots. Overall, clustering of 372,000 maize ESTs resulted in 41,990 clusters among them 19,870 singletons. In Sorghum, about 190,000 ESTs were clustered into 39,000 clusters while in barley 370,500 ESTs generated 50,000 different clusters each representing a different gene. A digital expression profile summary was compiled for each cluster according to all keywords included in the sequence records comprising the cluster.
Yet, while comparing the monocot sequences to the tomato ABST genes, sequence homology levels differed dramatically, ranging from 45 % to 88 %. Moreover, the in-silico expression profile of the monocot genes did not always fit the profile of a gene involved in ABS tolerance.
In an attempt to identify the best orthologues for the tomato ABST genes various additional factors were analyzed. First, the sequences of the 5 tomato ABST 49 genes (SEQ ID NO: 1, 4, 9, 13 and 14) and their deduced polypeptide sequences (SEQ ID NOs: 236-240) were compared to all monocot putative proteins, encoded by DNA sequences of gene clusters mentioned above. The comparison was performed on the protein level looking for identity higher than 45 % along the entire protein sequences. Table 28 shows the best homologous genes and their identity level to the tomato ABST proteins. Next, these monocot proteins originating from different monocot species (barley, sorghum and maize) were screened based on their expression pattern during the development of several monocot species. This screening was based on digital expression of the genes, as described above. The genes were selected based on three criteria: genes with higher expression in roots, roots and leaves and or induce expression by treatments representing soil stress conditions (drought, salinity, soil deficiencies). The increase of expression was only counted in cases where the increase was greater than 2 fold (relative to the random EST distribution) with significance probability lower than 0.05. Table 29 summarizes the expression profile of the genes in different organ or tissues and the treatments that set off significant elevation in their expression level.
Table 28 The level of homology between the tomato ABST genes and their homologs from monocots 50 Table 29 The expression profile of ABST homologous in silico genes as represented by statistical analysis of their EST distribution 51 Table 29 continued None*- None of the treatments with significant elevation in digital expression could be considered as soil stress treatment A combination of the above screening as described in Table 28 and in Table 29 revealed the final list of six monocot genes that are predicted to be the most related to the tomato ABST genes (SEQ ID NOs. 93, 94, 95, 96, 97 and 98).
Another type of sequence alignment for finding putative orthologous sequences from barley, rice, maize and sorghum, using the tomato ABST genes as involved the use of an evology system. Digital expression analysis was performed on these genes allowing for the identification of other putative monocot orthologs. The results were corroborated by phylogenetic analysis which studies the relationships between the tomato ABST genes and the putative monocot orthologs.
The Evology system is a method for constructing ortholog groups across multiple eukaryotic taxa, using the Markov cluster algorithm to group putative orthologs and paralogs. The method coherent with the groups identified by EGO (http://www.tigr.org/tdb/tgi/ego/index.shtml') but improved the identification of "recent paralogs" since EGO is easily misled by the functional redundancy of multiple paralogs and by the absence of true orthologs within incomplete genome data set as in most of the plant species.
The Evologs is a tool for large-scale automated eukaryotic ortholog group identification. To resolve the many-to-many orthologous relationships inherent in comparisons across multiple genomes, Evologs applied the Markov Cluster algorithm (http://micans.org/mcl/), which is based on probability and graph flow theory and allows simultaneous classification of global relationships in a similarity space. MCL simulates random walks on a graph using Markov matrices to determine the transition probabilities among nodes of the graph. The MCL algorithm has previously been exploited for clustering a large set of protein sequences, where it was found to be very fast and reliable in dealing with complicated domain structures. Evologs generates clusters of at least two proteins, where each cluster consists of orthologs or paralogs from at least one species.
The putative orthologs were obtained using three levels of stringency. The first group with the lowest level (p value <= le-20 and identity >= 50 %), the second 52 group with moderate level of stringency (p value <= le-42 and identity >= 50 %) and the third group with the highest stringency include p value <= le-70 and identity >= 70 %. 1. Eight genes were identified as putative orthologs for ABST l. This group was defined using the highest stringency parameters (highest cutoff- level 3). 2. Nine monocot genes were identified as ABST 6 putative orthologs. These genes were found only after filtering under the lowest stringency alignment (level 1) parameters. This reduces the probability of finding a real monocot ortholog. 3. Eight monocot genes were identified as ABST_22 putative orthologs. These genes were found by using the highest stringency parameters (highest cutoff - level 3). 4. Twenty three putative ortholog genes were found for ABST 36 (Table 2).
This group was found by using the highest stringency parameters (the highest cutoff - level 3).
. Fourteen putative orthologs for ABST 37 were found only after reducing the alignment parameters to the second stringency level. However since the genes are transcription factors more accurate comparison should be done on their binding domains.
These genes were subjected to digital expression analysis. Genes that were identified as being up-regulated under stress conditions underwent phylogenetic analysis. The phylogenetic trees showed similar distances between tomato, Arabidopsis and monocots supporting the claim that conservation in function in Arabidopsis and tomato strongly indicates conservation in function in monocot (data not shown).
A final list of ten candidate monocot ortholog genes was drawn up, as detailed in Table 30 below.
Table 30 List of ten candidate monocot orthologues as revealed by evolog analysis, phylogenetic analysis and digital expression analyis Tomato gene TIGR Name/Ace No of Plant origin % Identity SEQ ID NO: Homologous gene (Percentage from the entire protein sequence) 1 TCI 04838 Sorghum 88% 53 Table 30 continued *SEQ ID NO: 242 is identical to SEQ ID NO: 74 The digital expression profile for TC104838 (SEQ ID NO:93) is listed Tables 31-33 herein below.
Table 31 Expression of TC104838 in different anatomical regions of the plant Table 32 Expression of TC104838 during development ESTs in ESTs in Expected Keyword Fold p-value Gene Production ESTs flowering 4 32705 1.35966 2.94192 0.0301425 8-14 days pre- 3 8840 1 3 0.00431486 anthesis post-flowering 1 5768 1 1 0.216515 germination 2 104379 4.33939 0.460895 0.985772 1.5 week 2 47911 1.99182 1.00411 0.636908 vegetative 1 21465 1 1 0.615042 weeks old 1 9746 1 1 0.34123 Table 33 Expression of TC104838 under various treatments Keyword ESTs in ESTs in Expected Fold p-value 54 The digital expression profile for TC94284 (SEQ ID NO:94) is listed in 34-36 herein below.
Table 34 Expression of TC94284 in different anatomical regions of the plant Table 35 Expression of TC94284 during development Table 36 Expression of TC94284 under various treatments ESTs in ESTs in Expected Keyword Fold p-value Gene Production ESTs drought 4 18855 1.23179 3.24731 0.0271328 drought stress 4 5768 1 4 0.000374052 after flowering nutrient 2 9927 1 2 0.134282 deficiencies Nitrogen 2 3313 1 2 0.0189181 deficient pathogen 3 17272 1.12837 2.6587 0.0951298 55 The digital expression profile for TC93449 (SEQ ID NO:95) is listed in 37-39 herein below.
Table 37 Expression of TC93449 in different anatomical regions of the plant Table 37 continued Table 38 Expression of TC93449 during development Table 39 Expression of TC93449 under various treatments ESTs in ESTs in Expected Keyword Fold p-value Gene Production ESTs drought 1 18855 2.68754 0.372087 0.942184 drought stress 1 5768 1 1 0.56683 after flowering heat stress 1 8875 1.26502 0.790502 0.727378 4 and 24 hours 1 8875 1.26502 0.790502 0.727378 at 40-42oC hormone 6 26047 3.71267 1.61609 0.155303 treatment ethylene- induced with ACC, 27 and 4 6261 1 4 0.0111844 72 hours after induction 56 Table 39 continued The digital expression profile for TCI 02291 (SEQ ID NO: 241 and 247) is listed in Tables 40-42 herein below.
Table 40 Expression of TC102291 in different anatomical regions of the plant Table 41 Expression of TCI 02291 during development ESTs in ESTs in Expected Keyword Fold p-value Gene Production ESTs flowering 3 32705 5.05016 0.594041 0.904756 post-flowering 3 5768 1 3 0.0581305 germination 14 104379 16.1 177 0.868609 0.854646 1 week 2 19538 3.01697 0.662917 0.821366 1.5 week 4 47911 7.3982 0.540672 0.962528 2 weeks old 8 27953 4.31637 1.85341 0.0543811 vegetative 5 21465 3.31453 1.50851 0.230885 weeks old 3 9746 1.50493 1.99344 0.188518 pre-flowering 2 3341 1 2 0.0935317 57 Table 42 Expression of TC102291 under various treatments Table 42 continued The digital expression profile for TC131030 (SEQ ID NO:242 and 248) is listed in Tables 43-45 herein below.
Table 43 Expression of TC131030 in different anatomical regions of the plant ESTs in ESTs in Expected Keyword Fold p-value Gene Production ESTs root 5 16560 1 5 1.48052E-06 seedling 1 57039 1 1 0.662622 58 Table 44 Expression of TCI 31030 during development The digital expression profile for TC249366 (SEQ ID NO:243 and 251) is listed in Tables 46-48 herein below.
Table 46 Expression of TC249366 in different anatomical regions of the plant Table 47 Expression of TC249366 during development ESTs in ESTs in Expected Keyword Fold p-value Gene Production ESTs germination 26 74869 5.59584 4.64631 7.54952E-15 young 26 34586 2.58502 10.058 0 seedling 59 Table 48 Expression of TC249366 under various treatments The digital expression profile for TC249365 (SEQ ID NO:244 and 250) is listed in Tables 49-51 herein below.
Table 49 Expression of TC24936S in different anatomical regions of the plant Table 50 Expression of TC249365 during development ESTs in ESTs in Expected Keyword Fold p-value Gene Production ESTs flowering 1 1 89278 1 1.7349 0.937375 0.649792 developed seedling + 8 9012 1.18456 6.75357 2.20576E-05 silking silking 3 2160 1 3 0.00293981 germination 26 74869 9.84095 2.64202 3.92859E-07 developed 9 31271 4.1 1033 2.1896 0.0196511 seedling developed seedling + 8 9012 1.18456 6.75357 2.20576E-05 silking young 9 34586 4.54606 1.97974 0.034885 60 Table 51 Expression of TC24936S under various treatments Table 51 continued The digital expression profile for AF057183 (SEQ ID NO:245 and 249) is listed in Tables 52-54 herein below.
Table 52 Expression of AF057183 in different anatomical regions of the plant Table 53 Expression of AF057183 during development ESTs in ESTs in Expected Keyword Fold p-value Gene Production ESTs flowering 15 83646 25.2528 0.593995 0.994869 developed seedling + 9 81 19 2.45113 3.67178 0.000831679 silking 61 Table 54 Expression of AF057183 under various treatments The digital expression profile for TC263205 (SEQ ID NO:246 and 252) is listed in Tables 55-57 herein below.
Table 55 Expression of TC263205 in different anatomical regions of the plant ESTs in ESTs in Expected Keyword Fold p-value Gene Production ESTs flower 1 89278 2.53106 0.395092 0.943664 seedling + 1 9012 1 1 0.227799 female flower mix 3 90046 2.55283 1.17517 0.488081 root 3 36059 1.02228 2.93461 0.075106 primary root 3 33886 1 3 0.0645285 system seedling 1 32466 1 1 0.617579 seedling + 1 9012 1 1 0.227799 female flower 62 Table 56 Expression of TC263205 during development Table 56 continued Expression of TC263205 under various treatments The digital expression profile for TCI 03772 (SEQ ID NO:98) is listed in Tables 58-60 herein below.
Table 58 Expression of TC103772 in different anatomical regions of the plant Table 59 Expression of TCI 03772 during development ESTs in ESTs in Expected Keyword Fold p-value Gene Production ESTs flowering 2 32705 2.33084 0.858059 0.708441 post-flowering 2 5768 1 2 0.0616601 germination 10 104379 7.43895 1.34428 0.106822 1.5 week 5 47911 3.41455 1.46432 0.236642 2 weeks old 5 27953 1.99217 2.50982 0.0357911 63 Table 60 Expression of TCI 03772 under various treatments Table 60 continued Selected polynucleotide sequences (SEQ ID NOs: 93-98) were analyzed for presence of ORFs using Vector NTI suite (InforMax, U.K.) version 6 (Hasting Software, Inc: www. generunner.com/). ORFs identified in each of these polynucleotide sequences were compared to Genbank database sequences, using Blast (www.ncbi.nlm.nih.gov/BLAST/); the ORF displaying the highest homology to a GenBank sequence or sequences, was mapped in order to identify an ATG start codon. The position of the ATG start codon of this ORF was then compared with that of the identified polynucleotide sequence in order to verify that each of the five sequences described herein includes a full length ORF and an ATG start codon (thus qualifies as a "putative monocot ABST gene").
Polypeptides with significant homology to monocot ABST genes (SEQ ID NOs: 93-98) have been identified from the NCBI databases using BLAST software (Table 61).
Table 61 ABST homologs 64 93 TC57929 Saccharum officinarum 108 98 93 TC 103857 sorghum 109 98 93 TC262554 Oryza sativa 1 10 98 93 TC258871 Zea mays 1 1 1 97 93 TC139195 Hordeum vulgare 1 12 96 93 TC262556 Oryza sativa 1 13 95 93 TC232174 Triticum aestivum 1 14 95 93 TC232139 Triticum aestivum 1 15 95 93 TC 139194 Hordeum vulgare 1 16 95 93 CA486561 Triticum aestivum 1 17 100 93 TC258873 Zea mays 1 18 100 93 CA 187014 Saccharum officinarum 1 19 90 93 TC233455 Triticum aestivum 120 96 93 CF063450 Zea mays 121 98 93 CA617041 Triticum aestivum 122 100 94 TC94284 sorghum 123 100 94 TC49791 Saccharum officinarum 124 95 95 TC93449 sorghum 125 100 95 TC49718 Saccharum officinarum 126 95 95 TC49720 Saccharum officinarum 127 96 96 TC92953 sorghum 128 100 96 TC66617 Saccharum officinarum 129 90 96 TC273860 Zea mays 130 91 96 TC253191 Zea mays 131 90 98 TC I 03772 sorghum 132 100 98 TC272084 Zea mays 133 92 98 TC60928 Saccharum officinarum 134 94 93 TC5422 canola 135 88 93 TC904 canola 136 88 93 TC121774 Solanum tuberosum 137 88 93 TC40342 Gossypium 138 88 93 TC40115 Gossypium 139 88 93 Lycopersicon TC155918 esculentum 140 88 93 Lycopersicon TC I 54398 esculentum 141 88 93 Lycopersicon TC I 54397 esculentum 142 88 93 Lycopersicon TC I 53989 esculentum 143 88 93 TC 120511 Solanum tuberosum 144 88 93 TCI 13582 Solanum tuberosum 145 88 93 TCI 12701 Solanum tuberosum 146 88 93 TC 1 1 1912 Solanum tuberosum 147 88 93 TC4674 Capsicum annum 148 88 93 TC270923 arabidopsis * 149 87 93 CD823817 canola 150 86 93 TC526 canola 151 86 93 TC525 canola 152 86 93 BG442528 Gossypium 153 87 93 TC33702 Gossypium 154 87 93 TC32714 Gossypium 155 87 93 TC270782 arabidopsis ** 156 87 93 TC225449 Glycine max *** 157 87 93 TC5255 Capsicum annum 158 88 93 TC28221 populus 159 84 93 TC 108140 medicago 160 85 65 93 TC28222 populus 161 84 93 TC94402 medicago 162 84 93 TC28223 populus 163 83 93 TC 102506 medicago 164 85 93 TC132070 Hordeum vulgare 165 79 93 TC251944 Triticum aestivum 166 77 93 NP890576 Oryza sativa 167 76 93 TC280376 Oryza sativa 168 73 93 CN009841 Triticum aestivum 169 75 93 BI948270 Hordeum vulgare 170 75 93 TC259334 arabidopsis 171 75 93 BQ767154 Hordeum vulgare 172 73 93 TC60345 Saccharum officinarum 173 73 93 TCI 38474 Hordeum vulgare 174 85 93 TC41472 populus 175 72 93 BJ458177 Hordeum vulgare 176 72 93 CB674176 Oryza sativa 177 82 93 TC216405 Glycine max 178 88 93 AJ777371 populus 179 70 93 CV019213 tobacco 180 85 93 CK215690 Triticum aestivum 181 80 93 CD830784 canola 182 85 93 CA624722 Triticum aestivum 183 85 93 TC32906 populus 184 76 93 CR285127 Oryza sativa 185 89 93 TC251945 Triticum aestivum 186 72 94 TC274823 Oryza sativa 187 77 94 TCI 32394 Hordeum vulgare 188 75 94 TC267180 Triticum aestivum 189 77 94 TC261921 Zea mays 190 87 94 TC267181 Triticum aestivum 191 74 94 TC261922 Zea mays 192 81 94 TC267182 Triticum aestivum 193 73 95 TC249531 Zea mays 194 86 95 TC232170 Triticum aestivum 195 85 95 TC 146720 Hordeum vulgare 196 85 95 TC249329 Oryza sativa 197 84 95 TC249532 Zea mays 198 88 95 TC232150 Triticum aestivum 199 85 95 TC249330 Oryza sativa 200 76 95 CB672603 Oryza sativa 201 71 95 TC32440 Gossypium 202 81 95 TC I 19105 Solanum tuberosum 203 72 96 TC247999 Triticum aestivum 204 78 96 TC247359 Triticum aestivum 205 77 96 TC132566 Hordeum vulgare 206 77 96 TC248676 Triticum aestivum 207 74 96 TC249667 Oryza sativa 208 77 96 TC66618 Saccharum officinarum 209 88 97 TC253495 Oryza sativa 214 90 97 TC224823 Glycine max 215 75 97 TC234990 Triticum aestivum 216 74 97 TC266178 Triticum aestivum 217 73 97 TCI 19051 Solanum tuberosum 218 83 97 TC56409 Saccharum officinarum 219 75 97 TC35873 Populus 220 80 97 TC I 19052 Solanum tuberosum 221 82 66 * SEQ ID NO: 149 is identical to SEQ ID NO: 41 Table 61 continued ** SEQ ID NO: 156 is identical to SEQ ID NO: 42 *** SEQ ID NO: 157 is identical to SEQ ID NO: 40 EXAMPLE 12 Generating putative Monocot ABST genes DNA sequences of six putative Monocot ABST genes were synthesized by GeneArt (http ://www. geneart.com/) . Synthetic DNA was designed in silico, based on the encoded amino-acid sequences of the Monocot ABST genes (SEQ ID NOs: 99, 100, 101, 102, 103 and 104), and by using plant-based codon-usage. The synthetic sequences and the plant native orthologues were compared. At least 1 mutation per 20 nucleotide base pairs was added to avoid possible silencing, when over-expressing the gene in favorable monocot species, such as maize. The planned sequences were bordered with the following restriction enzymes sites polylinker- Sail, Xbal, BamH , Smal at the 5' end and Sacl at the 3' end. The sequences were cloned in double strand, PCR Script plasmid (GeneArt).
EXAMPLE 13 Cloning the putative ABST genes The PCR Script plasmids harboring the synthetic, monocot-based ABST genes were digested with the restriction endonucleases Xbal and Sacl (Roche), purified using PCR Purification Kit (Qiagen, Germany), and inserted via DNA ligation using T4 DNA ligase enzyme (Roche) and according to the manufacturer's instructions, into pKG(NOSter), (SEQ ID NO: 233) and pKG(35S+NOSter), (SEQ ID NO: 234), plant expression vector plasmids, also digested with Xbal and Sacl (Roche) and purified. pKG plasmid is based on the PCR Script backbone (GeneArt), with several changes in 67 the polylinker site to facilitate cloning a gene of interest downstream to a promoter and upstream to a terminator, suitable for expression in plant cells. Moreover, the inserted gene, together with the promoter and the terminator could be easily moved to a binary vector.
The resulting pKG(NOSter) and pKG(35S+NOSter) harboring putative Monocot ABST genes were introduced into E. coli DH5 competent cells by electroporation, using a MicroPulser electroporator (Biorad), 0.2 cm cuvettes (Biorad) and EC-2 electroporation program (Biorad). The treated cells were cultured in LB liquid medium at 37 °C for 1 hour, plated over LB agar supplemented with ampicillin (100 mg/L; Duchefa) and incubated at 37 °C for 16 hrs. Colonies that developed on the selective medium were analyzed by PCR using the primers of SEQ ID NO: 231 and SEQ ID NO: 232, which were designed to span the inserted sequence in the pKG plasmids. The resulting PCR products were separated on 1 % agarose gels and from the colonies having the DNA fragment of the predicted size, a plasmid was isolated using miniprep Plasmid Kit (Qiagen) and sequenced using the ABI 377 sequencer (Amersham Biosciences Inc) in order to verify that the correct DNA sequences were properly introduced to the E. coli cells.
Positive pKG(NOSter) plasmids harboring putative Monocot ABST genes were digested with the restriction enzymes Hindlll and Sail (Roche), purified using PCR Purification Kit (Qiagen, Germany), and then ligated (as described above) with At6669 promoter sequence (set forth in SEQ ID NO: 20) digested from pPI+At6669 plasmid with the same enzymes and purified. The resulting plasmids were introduced into E. coli DH5 competent cells by electroporation, the treated cells were cultured in LB liquid medium at 37 °C for 1 hr, subsequently plated over LB agar supplemented with ampicillin (100 mg/L; Duchefa) and incubated at 37°C for 16 hours. Colonies grown on the selective medium were analyzed by PCR using the primers SEQ ID NO: 235 and SEQ ID NO: 232. Positive plasmids were identified isolated and sequenced as described above.
The plasmid pPI was constructed by inserting a synthetic poly-(A) signal sequence, originating from pGL3 basic plasmid vector (Promega, Acc No U47295; bp 4658-4811) into the Hindlll restriction site of the binary vector pBI101.3 (Clontech, Acc. No. U 12640). 68 The At6669 promoter was isolated from Arabidopsis thaliana var ColO genomic DNA by PCR amplification using the primers set forth in SEQ ID NOs: 37 and 38. The PCR product is purified (Qiagen, Germany) and digested with the restriction endonucleases Hindlll and Sail (Roche). The resulting promoter sequence was introduced into the open binary pPI vector digested with the same enzymes, to produce pPI+At6669 plasmid.
EXAMPLE 14 Generating binary vectors comprising putative Monocot ABST genes and plant promoters operably linked thereto Generating binary vectors comprising the Cauliflower Mosaic Virus 35S promoter: The five pKG(35S+NOSter) constructs harboring putative Monocot ABST genes (SEQ ID Nos: 93, 94, ,95, 96, 97 and 98) were digested with Hindlll and EcoRI (Roche) restriction endonucleases in order to excise expression cassettes and ligated to pPI plasmid digested with the same endonucleases and purified (as described above). Altogether, five pPI constructs wer generated, each comprising putative Monocot ABST gene having a sequence set forth in SEQ ID NOs: 93, 94, ,95, 96, 97 and 98 positioned downstream to the Cauliflower Mosaic Virus 35S promoter and upstream to the Nopaline Synthase (NOS) terminator, which was originated from the digestion of pBI101.3 (Clontech, Acc. No. U12640), using the restriction sites Sacl and EcoRI.
Generating binary vectors comprising the At6669 promoter: The five pKG(At6669+NOSter) constructs harboring putative Monocot ABST genes downstream to At6669 promoter sequence (set forth in SEQ ID NO: 20), and upstream to the Nopaline Synthase (NOS) terminator, were digested with Hindlll and EcoRI (Roche) in order to excise expression cassettes and ligated into pPI plasmid which was digested with the same restriction endonucleases and purified (as described above). Altogether, five pPI constructs were generated, each comprising the At6669 promoter positioned upstream of a putative Monocot ABST gene having a sequence set forth in SEQ ID NOs: 93, 94, 95, 96, 97 and 98.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in 172135/2 combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination.
It is noted that those portions of the specification which do not fall within the scope of the claims of this application do not belong to the invention.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. All publications, patents, patent applications and sequences identified by their accession numbers mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application or sequence identified by their accession number was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. 70 REFERENCES CITED (Additional references are cited hereinabove) www.fao.org/ag/agl/agll/spush/degrad.htm. www.fao.org/ag/agl/aglw/watermanagement introduc.stm McCue KF, Hanson AD (1990).Drought and salt tolerance: towards understanding and application. Trends Biotechnol 8: 358-362.
Flowers TJ, Yeo Ar (1995). Breeding for salinity resistance in crop plants: where next? Aust J Plant Physiol 22:875-884.
Nguyen BD, Brar DS, Bui BC, Nguyen TV, Pham LN, Nguyen HT (2003). Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, ORYZA RUFIPOGON Griff., into indica rice ( Oryza sativa L.). Theor Appl Genet. 106:583-93.
Sanchez AC, Subudhi PK, Rosenow DT, Nguyen HT (2002). Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Biol. 48:713-26.
Quesada V, Garcia-Martinez S, Piqueras P, Ponce MR, Micol JL (2002). Genetic architecture of NaCl tolerance in Arabidopsis.
Plant Physiol. 130:951-963.
Apse MP, Blumwald E (2002). Engineering salt tolerance in plants. Curr Opin Biotechnol. 13:146-150.
Rontein D, Basset G, Hanson AD (2002). Metabolic engineering of osmoprotectant accumulation in plants.
Metab Eng 4:49-56 Clough SJ, Bent AF (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735-43.
Desfeux C, Clough SJ, Bent AF (2000). Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123: 895-904. 71 SEQUENCE LISTING <110> Evogene Ltd. <120> METHODS OF INCREASING ABIOTIC STRESS TOLERANCE AND/OR BIOMASS IN PLANTS <130> 30598 <160> 252 <170> Patentln version 3.3 <210> 1 <211> 456 <212> DNA <213> Lycopersicon esculentum <400> 1 atgggtcgta tgcacagtcg tggtaagggt atttcagctt ctgctctccc ttacaagaga 60 actcctccta gttggctcaa gatctctgct ccagatgttg aggacaacat ctgcaagttc 120 gctaagaaag gattgacccc ttcacagatt ggtgtgattc ttcgtgattc tcatggaatt 180 gcacaagtga agagtgttac tggtagcaag atcttgcgta tcctcaaggc acatgggctt 240 gcacctgaga ttccagagga tttgtaccac ctgattaaga aggctgttgc cattaggaag 300 catttggaga ggaacaggaa ggataaggat tctaagttcc gtttgatttt ggtggagagc 360 aggattcatc gccttgctcg ttattacaag aaaacaaaaa agctcccacc tgtctggaaa 420 tacgaatcta ccactgctag cacacttgtg gcatag 456 <210> 2 <211> 1386 <212> DNA <213> Lycopersicon esculentum <400> 2 atggctattc ctcttcaatt ctctagtata tccactcgca cagatctctc cttgccggag 60 actagaactt tcaggttacc gaaacctttc tccgtcatca gatgctccgc cggcgaacct 120 gttccttcct cgtcggctac tgctgagtca gagttcgatg ctaaggtttt ccggaagaat 180 ctgaccagaa gtgctaatta caatcgtaaa ggttttggac acaaagaagc tactcttgaa 240 ctcatgaatc gcgaatatac cagtgatatc atcaagaaat tgaaggagaa tgaatttgag 300 tatacatggg gaaacgtaac cgtaaaactt gcagagtcct atggtttctg ttggggggtt 360 gagcgtgcag ttcagattgc ttatgaagcg aggaaacagt ttccaacaga gaggatttgg 420 ataactaatg aaattattca caaccccact gtgaataaga ggctagagga tatggatgtt 480 aagaacattc cacttgagga agggaagaaa aactttgatg ttgttgacaa ggatgatgtt 540 gtggttttgc ctgcttttgg ggctgctgtt gatgaaatgt tggttttgag tgataaaaac 600 gtacaaattg ttgatacaac ctgcccgtgg gtgactaagg tttggaacac ggttgaaaag 660 cacaagaagg gagaatatac ctccattatc catggtaaat atgctcatga ggaaactgtt 720 gcgactgcat cctttgctgg gaaatacatc attgtgaaga acatggcaga ggcaacttat 780 gtctgtgatt atattcttgg aggtaaactt gatggttcta gctcaaccaa agaggcattt 840 atgcagaaat ttaaatatgc agtttctgaa gggtttgatc cggatgttga ccttgtaaaa 900 gctggtattg caaaccaaac aactatgttg aagggagaaa cagaagatat tgggaagttg 960 gtcgagagga ccatgatgca aaaatatggg gtggaaaatg ttaacaacca cttcgtaagt 1020 72 172135/2 ttcaacacta tatgcgatgc cacacaagag cgtcaagatg caatgtataa gctggttgag 1080 caaaagctgg atcttatgtt agtgattggt ggctggaact caagtaacac ttcacatcta 1140 caggagattg cagaggaacg tggaattccc tcatactgga ttgacagtga acagagagta 1200 ggtcctggaa acaaaataag ttacaagtta atgcatggtg agttggttga gaaagagaac 1260 ttcttaccgg agggtcctat tacagttggg gtgacatctg gtgcatccac ccccgataag 1320 gttgttgaag atgtccttat caaggtgttt gatatcaagc gcgaggaagc cttacaattg 1380 gcctaa 1386 <210> 3 <211> 2418 <212> DNA <213> Lycopersicon esculentum <400> 3 atggctcaac gtgttctaac tcgtgttcac agtcttcgtg aacgtcttga tgctactttg 60 gatgctcatc gcaatgaaat tttgctcttt ctttcaagga tcgaaagcca cgggaaaggg 120 atcttgaaac ctcaccagct actggctgag tttgaatcaa ttcagaaaga agacaaagac 180 aaactgaatg atcatgcctt tgaagaagtc ctgaaatcca ctcaggaagc aattgttttg 240 cccccatggg ttgcacttgc tattcgtttg aggcccggtg tgtgggaata tgtccgtgtg 300 aatgttaatg ctcttagtgt tgaggagctg actgtgcctg agtttttgca attcaaggaa 360 gaacttgtta acggaacttc cagtgataac tttgttcttg aattggattt tgagcccttc 420 actgcatcat ttccaaaacc aaccctcacg aaatcaattg gaaatggagt tgaattcctc 480 aacaggcacc tctctgctaa aatgttccat gacaaggaaa gcatgacccc tcttctcgag 540 tttcttcgag ttcaccacta caatggaaag tcaatgatgc tgaatgatag aattcagaat 600 ttgtatactc tccaaaaagt cctgaggaag gccgaggaat acctcaccac cctttcgcca 660 gaaacttcat actcctcatt tgagcacaag ttccaagaaa ttggcttgga gagaggttgg 720 ggtgacaccg cagagcgtgt tctagagatg atctgcatgc tcctggatct ccttgaggct 780 cctgactcat gtactcttga gaagttcctt agtagaattc ctatggtttt caatgtagtt 840 atactttcac ctcatggata tttcgcccag gaaaatgtct tgggttaccc cgacactggt 900 ggtcaggttg tctatatttt ggatcaagtt cctgccttgg agcgtgagat gctcaagcgc 960 ataaaggagc aaggacttga tatcaaaccg cgtattctta ttgttactcg gcttctccct 1020 gatgcagttg gtaccacttg tggtcagcga ctcgagaagg tatttggaac tgagcattca 1080 catattctta gggtcccctt taggactgaa aagggcattg ttcgcaaatg gatctctcgt 1140 tttgaagtct ggccatacat ggagactttc attgaggatg tggggaaaga aataaccgca 1200 gaactgcaag ctaagccaga tcttattatt ggaaactata gtgagggaaa ccttgcagcc 1260 tccttgttgg ctcacaagtt aggtgtaaca cagtgcacca ttgctcatgc attggagaaa 1320 accaaatatc ctgattctga catttacttg aacaaatttg acgagaaata ccacttctca 1380 gctcagttca cagctgatct tatagcaatg aatcatactg atttcattat caccagcacc 1440 ttccaggaga tagcaggaag caaggacact gttggacagt atgagagcca catggccttc 1500 acaatgcctg gattgtatag agttgttcat ggcattgatg tgttcgaccc caaattcaac 1560 attgtgtcac caggagctga tgtgaatctc tatttcccat actccgaaaa ggaaaagaga 1620 73 172135/2 ttgacaactt ttcaccctga aattgaagac ttgctgttta gcgatgttga gaacgaagaa 1680 cacctgtgtg tgttgaagga caggaataag cccatcatat tcaccatggc aagattggac 1740 cgagtgaaga acttaactgg acttgtcgag tggtatgcta agaatccacg actaagggag 1800 ttggttaacc ttgtagtggt tggtggagac cgaagaaagg aatccaaaga cttggaagag 1860 caggcagaga tgaagaagat gtatgaactt ataaagactc acaatttgaa tggccagttc 1920 cgatggattt cttcccagat gaaccgcgtg aggaatgggg aactctacag gtacattgct 1980 gacacaaggg gagctttcgt gcagcctgca ttctacgagg ctttcggtct gactgttgtt 2040 gaggccatga gctgcggttt gcctacattt gcaactaatc aaggtggtcc agctgagatc 2100 atcgttcatg gaaagtctgg tttccaaatt gatccatacc atggcgagca ggctgctgat 2160 ctcctcgctg agttcttcga gaaatgtaag gtagaccctt cacattggga agccatttcc 2220 aagggtggcc ttaagcgtat acaggagaag tacacatggc aaatctactc cgaccggctg 2280 ttgacactag ctgctgttta cgggttctgg aagcacgttt ccaagcttga tcgtcttgaa 2340 attcgtcgtt atcttgagat gttttacgct ctcaaattcc gcaagctggc tgaacttgtc 2400 ccattggctg ttgagtaa 2418 <210> 4 <211> 522 <212> DNA <213> Lycopersicon esculentum <400> 4 atggaagaca aaagcaatga ttattatgca gttttggggt tgaagaagga atgcactgac 60 acagaactta ggaatgccta taagaagctt gcactgaaat ggcacccaga tcgctgttca 120 gcatcgggga atttgaagtt tgtagatgaa gcaaagaagc aatttcaggc aattcaagaa 180 gcatattctg tgttatcgga tgcaaacaaa aagtttttgt acgatgtagg agtttatgac 240 tctggtgatg atgacgacga aaatggcatg ggtgatttcc tgaatgaaat ggcagctatg 300 atgagccaaa ataagtccaa tgaaaatcag ggagaagaaa cctttgagga attgcaggat 360 atgtttaatg aaatgttcaa cagtgataat ggaacgtttt cttcttcttc ttcttcttct 420 tcttcttctt ggactggaac tccttcaatg tgctctacta catcatctac atcttcaagt 480 gagacttttt taacctttcc ccaacaagag aagttcaggt ga 522 <210> 5 <211> 1434 <212> DNA <213> Lycopersicon esculentum <400> 5 atggctactg ctactactct ctctcctgct gatgctgaaa agctcaacaa cctcaaatct 60 gccgtcgccg gtctaaatca aatcagtgaa aatgagaaat ctggatttat taaccttgtc 120 ggtcgctatc taagtggtga agcacaacac attgactgga gtaagatcca gacgccaact 180 gatgaagttg tggtgcctta tgacaagtta gcacctcttt ctgaagatcc cgcggaaact 240 aagaagcttt tggacaaact tgttgtcctg aagctcaatg gaggcttggg aacaacaatg 300 ggatgcacgg gtcccaaatc agttattgaa gttcgtaatg gtttgacatt ccttgacttg 360 attgtcaagc aaattgaggc actcaatgcc aagttcggat gcagtgttcc cctgcttttg 420 74 172135/2 atgaattcgt tcaacaccca cgatgataca ctgaagattg ttgaaaaata tgcaaactca 480 aacattgata ttcatacatt caatcagagc cagtaccctc gcctggttac tgaagacttt 540 gccccacttc catgcaaagg caattccgga aaagatggat ggtaccctcc aggtcatggt 600 gatgttttcc cttctttgat gaatagtgga aagcttgatg cactactagc aaagggcaag 660 gaatatgtct ttgttgcaaa ctctgataat ttgggcgcca ttgttgattt gaaaatctta 720 aatcatttga tcctaaacaa aaatgagtac tgcatggagg ttactcccaa aactttagct 780 gatgtcaaag gtggcacctt aatctcatat gaaggaaaag tacagctatt ggaaatagca 840 caagtccctg atgaacatgt caatgaattc aagtcaattg aaaaattcaa aattttcaac 900 accaacaact tgtgggtgag tcttagtgct attaaaagac ttgtagaagc agatgcactc 960 aagatggaga ttattcccaa cccaaaggaa gtagacggag ttaaagttct tcaacttgaa 1020 actgctgccg gtgctgcgat taagtttttc gaccgggcaa ttggtgctaa tgttcctcga 1080 tctcgtttcc ttcccgtgaa agcaacttca gatttgctcc ttgttcagtc tgatctttac 1140 accttgactg atgagggcta tgtcatccga aacccggcca ggtctaatcc gtccaaccca 1200 tccatcgagt taggacctga attcaagaag gtggccaact tcttaggccg tttcaagtcc 1260 attcccagca tcattgatct aggtagcttg aaggtgaccg gtgatgtatg gtttggatct 1320 agcgttaccc taaaggggaa agtgactgtt gcagccaaat ccggagtgaa gctagaaatt 1380 ccagatggtg ctgtgattgc aaacaaggac atcaatggac ctgaggatat atag 1434 <210> 6 <211> 1485 <212> DNA <213> Lycopersicon esculentum <400> 6 atggcaaaga gtggcatttt ggtaattgtt tcagctcttg ttgttcttgc agtttgtggt 60 gtttttgctg aggagaacga atatgtgttg actttggacc attctaacct cactgagact 120 gttgctaagc acaacttcat tgttgttgaa ttctatgcac cttggtgtgg acactgtaag 180 agtcttgctc ctgagtatga aaaagctgcc tcagagctga gtagtcatga ccctccaatt 240 gttctagcta agtatgatgc aaatgatgaa gccaatagag aactttcaaa acagtacgag 300 atccagggtt tcccaactat taagatattg agagatggag gaaagaaagt tcaagactat 360 aacggtcctc gtgaagcagc tggtattgta tcctacttga agaaacaagt gggtcctgca 420 tctgctgaaa tcaagtcgaa ggaagatgcc acaaacctta ttgatgagaa aagtatcttt 480 gttgttggta tatttccaga cccctccgga gagaaattcg agaactattt aacgctagct 540 gaaaaactgc gaggcgagtt cgattttgct cacactgttg atgctaaaca cctccctcgg 600 ggtggaccag tcaacaagcc cactcttcgt cttctaaagc catttgatga actctttgtt 660 gattttgagg actttgatgt cgatgcaatg gagaagttca tctcagaatc tagtattcct 720 gttgttacta tttttgacaa tgacccaaac aaccatcctt atgttaacaa gttcttcgaa 780 ggcaccaacg ccaaggcatt gctatttgtg aactttagct ctgaatttga tgcttttaag 840 tccaagtaca acgatgttgc tgtgatttac aaaggggatg gggtgagctt tctcttgggt 900 gatgttgagg ctggtcaagg tgcttttgag tacttcggac tgaagccgga acaggcacct 960 gtgatcatca taatggacgc tgatgaacaa aagtatatta aggaccatgt ggaacctgat 1020 75 172135/2 gccattgctg cttacttgaa ggattacaag gaaggaaaac tgaagccaca tgtgaagtca 1080 gagcccatcc ctgaagtcaa tgacgaacct gttaaggtgg ttgttaggga taccctccag 1140 gatatggttt acaaatcggg aaaaaatgtg ctgttagagt tctatgcacc ttggtgtggc 1200 cactgcaaga gtctggctcc aattttggat gaagtggctg tatcatttga aagcgatcct 1260 gatgttctca ttgcaaaact ggacgcaacc gcaaatgatc tcccgaaagg tgactttgat 1320 gttcagggat tccctactat gtacttcaga tccgcctctg gtaacttgtc acagtacaat 1380 ggtgagagaa caaaagaggc tatcatcgaa ttcatcgaga agaatcgtgg caagcctgct 1440 cagtcagact ctgccaaagt cgattcagca aaggatgaac tttag 1485 <210> 7 <211> 250 <212> DNA <213> Lycopersicon esculentum <400> 7 atgccgggtg cgctcgcatg gcaggtcaca aaacctaata aagatgcgat ttttgtgttc 60 ggaggggaga tggtacgggg ttttttgccc gactctcctc tctgtgtctg tctttggcct 120 cctttctttt ctagaactgt ctgcaagatc tattcagata aacgtctcat caaatttggc 180 gttaatgtcc ccgaacgatg gtttcgatat ccgcaaagtt atagcagcgc tctacctttt 240 caatggatag 250 <210> 8 <211> 717 <212> DNA <213> Lycopersicon esculentum <400> 8 atgaattctc agatttgcag atctgctaca agagcagcta agtcactcct ttctgcttca 60 tctaagcaga cttctcgtgc tttttcagga ggacgagcag cagctgcagc agccacagtt 120 tcattgagag gagtggtgcc ttctctagcc tcatatggca ggaatgaatc tggaaatgca 180 tctagagctt ggatttctgg tgtgcttgcc cttcctgcag cagcttacat gctccaggag 240 caagaagcac atgctgccga gatggagcgc acctttattg ccatcaagcc agatggagta 300 cagagaggcc tgatttcaga aatcgtatca cggtttgagc gcaagggctt caagctggtt 360 gcaatcaaag ttgtgattcc ttccaaggaa tttgcaaaga agcactatca tgacttgagt 420 gagcgaccat tctttaacgg cttgtgcgac ttccttagct ctggccctgt cttagcaatg 480 gtttgggaag gtgaaggtgt aatcagatat ggaaggaagc ttatcggagc caccgatcca 540 cagaaatctg aacctggaac catcagaggc gatttagctg ttgtagtagg aaggaacatc 600 atccatggca gcgatggccc cgagaccgca aaggatgaga tcaacctatg gtttaaacca 660 gaggagttgg ttaattacac cagcaactct gagaagtggc tatatggtga taactaa 717 <210> 9 <211> 897 <212> DNA <213> Lycopersicon esculentum <400> 9 atggagaata tgcagagcta ttggcaattt ggcgacgagc ttcgaggaca atcaaaagcc 60 tcagaggatc ataaatggtc aacagctgct ataaaattat ctgaacagat gaagtacaaa 120 76 172135/2 ggtgaacgta ggaataacct tgacctttca aagagctctg ctgaaattag gcccaggggt 180 aatcatatgt ttcaggaaga taacaagtgg gaaagcctta acttcaatat gttaaatttg 240 gaaagcaaga tgactgaaaa tatgagcaag aatcgcatta tggatagcat tttcaatgca 300 aatccagttt atcttaagcc caattttaac agcttgggaa attcatcttt aagcaagttc 360 aatgctagca actataccaa ggaacctagc aagaataaca ataacaacgt tgagagcaca 420 aatggaaata actccgttga caaaaggttt aagactctgc ctgctgctga aacactgccg 480 aagaatgagg ttcttggtgg atatatattt gtttgtaaca atgacacaat gcaggaagac 540 ctaaagcgcc tgctctttgg ccttcctcct agatacagag attccgtgag ggcaataaca 600 ccagggttgc ccttgttcct atataattac actactcacc agttgcatgg tatctttgag 660 gcatcgagtt ttggaggttc caacattgat ccaactgcct gggaggataa aaagtgtaaa 720 ggagagtcaa ggttccctgc tcaggtgagg atccgtgtcc ggaaagtctg taatcctttg 780 gaggaagatg ctttcagacc agttttacat cattatgatg gccccaagtt ccgtctggag 840 ctctccattc ctgagacttt ggacttacta gatctctgtg aaaaagccgg tgtgtag 897 <210> 10 <211> 489 <212> DNA <213> Lycopersicon esculentum <400> 10 atgtcacacc ccaccgcagc tccgctatca ggaccacgcc tctcacaacc ctcgtcgtcg 60 gcgatgtctc ccttgtacaa acagaaatct tggtcaccgg acacgtttcg cgacgaggcg 120 tggcagcggc ggaagggtac ccacggaagc tgcctcaaac ggcggagcaa gagcgttacc 180 gatgaggact ttgatgagat taaggcctgt atcgaattag ggtttggatt tgattcgcca 240 gaaatggatc agcgattgtc tgatactttt ccggcgtatg acctgtttta cgccgtgaat 300 aaacaataca ccgacactct ttcaaagact tcctctgtat catcggtcat ctccaattgc 360 gagtcaaccc ttcctcccgt cagtccccac accattgtct ttccaggaga taatccacag 420 gcagtgaaga caaggttgcg gcaatgggca caggtggttg cgtgtgtggt gcgtcaatct 480 tcgtattaa 489 <210> 11 <211> 489 <212> DNA <213> Lycopersicon esculentura <400> 11 atgtcacacc ccaccgcagc tccgctatca ggaccacgcc tctcacaacc ctcgtcgtcg 60 gcgatgtctc ccttgtacaa acagaaatct tggtcaccgg acacgtttcg cgacgaggcg 120 tggcagcggc ggaagggtac ccacggaagc tgcctcaaac ggcggagcaa gagcgttacc 180 gatgaggact ttgatgagat taaggcctgt atcgaattag ggtttggatt tgattcgcca 240 gaaatggatc agcgattgtc tgatactttt ccggcgtatg acctgtttta cgccgtgaat 300 aaacaataca ccgacactct ttcaaagact tcctctgtat catcggtcat ctccaattgc 360 gagtcaaccc ttcctcccgt cagtccccac accattgtct ttccaggaga taatccacag 420 gcagtgaaga caaggttgcg gcaatgggca caggtggttg cgtgtgtggt gcgtcaatct 480 tcgtattaa 489 77 172135/2 <211> 606 <212> DNA <213> Lycopersicon esculentum <400> 12 atgggatact ggaaagcaaa ggttcttcca aagatcaagc agatctttga taaaaatgga 60 cccaagaaaa ctgctgctgc tgaggcatgc aagacttttg atcaagctaa ggaggaatat 120 agcaaggagt ttgaagagaa gaagactgag cttcaaccca aagttgttga aatttatgaa 180 gctgctgcag ttgagatcaa gagcttagtg aaggaaccaa agggtgcagg gctgaagaaa 240 aactcagatg gggttcagaa attccttgat gaccttgtca agattgaatt tccgggatca 300 aaagctgtta gcgaagcaag ttcaaacttt gggccttcct atgtatcggg cccaattatt 360 tttgtgttcg aaaaagtttc cactttcata gtcacagaag ataagaagga agaggaaccc 420 gcggctgctg atgacgtgca tgcaccagcc gccacgtcaa ctgaagaggt ggaggtgaag 480 gtgaaggaga aggagaagga gatagttatt gagtctggag aaccaaacaa ggaagaagca 540 cctgctactg ttgttgctga cgtggcacct gcaactaagg tggaagaagc accaaaggtg 600 gtttaa 606 <210> 13 <211> 750 <212> DNA <213> Lycopersicon esculentum <400> 13 atggctggcg gcgtagctat tggaagtttt agtgattcat tcagcgttgt ctctcttaag 60 tcctatcttg ccgaattcat ctccacactc atctttgtct tcgccggagt tggttccgcc 120 attgcttacg gcaagttgac aacaaatgct gcacttgatc cggctgggct tgtagctatt 180 gcagtttgcc atggatttgc tctattcgta gccgtttcga tttccgctaa catctccggt 240 ggtcatgtta accctgcggt cacctgtgga ttaaccttcg gcggacatat tacctttatc 300 actggctcct tctacatgct tgctcaactt accggcgccg ctgtagcttg cttcctcctc 360 aaattcgtca ccggaggatg tgctattcca acccatggag tgggagctgg tgtgagcata 420 ctagaaggac tcgtgatgga aataataatc acatttggtt tagtttatac tgtgttcgca 480 accgccgctg acccgaagaa gggttcattg ggcacaattg caccgattgc aattggtctc 540 attgttggag ctaatatttt ggctgccgga ccattctccg gtggatcaat gaacccagct 600 cgttcatttg gacctgcaat ggttagtggt aactttgagg gtttctggat ctactggatt 660 ggtccattag ttggtggtag tttggctggt cttatttaca caaatgtgtt catgacacaa 720 gaacatgctc ctttatccaa tgagttctaa 750 <210> 14 <211> 735 <212> DNA <213> Lycopersicon esculentum <400> 14 atggaggtcg attctagtgg gaatcctaat tggttatttg attatgagtt gatgacggat 60 attacttctg ctgcatctgt taccgtcgct gagtttcagt ctccggctac tattgatttc 120 agctggcctg ctcaaacgat ctatgcttct tctaatctca ttactgaaac agattacaca 180 78 172135/2 tttgcggatt cagaagttag caaggaggca agctcacgaa agcggttaaa aagtgaatgt 240 tgcagctctc cgagatctaa ggcatgcaga gagaaattgc ggagggacag actgaatgag 300 aggttcctcg cattgagctc tgtccttgat cctggaaggc caccaaaaac tgagaaagtt 360 gcaattctaa gtgatgctca aaggatgctg attgagctgc gaactgaaac ccagaagctg 420 aaggagtcaa atgaggagct gcaagagaag ataaaagaac ttaaggcaga gaagaatgag 480 ctccgagatg aaaagcaaag gctaaaggaa gaaaaggata atttggagca gcaggttaaa 540 agcttagctt ctaaagcagg atttctctcc catccttctg ccatgggagc tgcatttact 600 gcacaaggac aagttgctgc aggcaacaaa ttgatgcctt tcattggtta tcccagygty 660 gcgatgtggc rattcatgca acctgctgtt gttgacacat ctcaagatca tgtgctccgt 720 cctccagttg cttaa 735 <210> 15 <211> 645 <212> DNA <213> Lycopersicon esculentum <400> 15 cccttcaaac ctaaaaaaaa gagaaaatca acaaaaaaaa tgggagcttg tgcaacgaag 60 ccaaaggatt tgaaaggaga tgcaccggaa accgcaccgg aaaatgttcc ggcgactgaa 120 atcgccacca aggatgcggc ggaagtagcc gtcgccgcca aggatgtggt ggttgtggcg 180 gaagtagaag tgaaaaagga aattgaggcc gatgctgctg ctgcagatga cgacgatgct 240 gaaaaacgcc gatctctatc taacttgttc aaagagaacg aagaatgtaa ggggtcagag 300 caagtaaacg aggaggcatc caagatcaca ccatcagaag ctaagccaga agaagttgag 360 aaggttgttg atgctcctgt aacttcagag atagaaaaag cactagaagt ggcctcaatt 420 actgc'tgagg ctcccaaggt ggagccttcc gaggagaaga agatagatga agtgaaatca 480 gaacctaaga ctcctgctga gaagaaagta gaggaagcaa aaccggcagt agagactcct 540 gcagagaaga aaatagaaga ggcaccagtt gctccaactc acgtggagac gaaagccgaa 600 gatgctccaa aggtaactgt agtagaagaa aagaagtcga gctag 645 <210> 16 <211> 630 <212> DNA <213> Lycopersicon esculentum <400> 16 cccttcaaac ctaaaaaaaa gagaaaatca acaaaaaaaa tgggagcttg tgcaacgaag 60 ccaaaggatt tgaaaggaga tgcaccggaa accgcaccgg aaaatgttcc ggcgactgaa 120 atcgccacca aggatgcggc ggaagtagcc gtcgccgcca aggatgtggt ggttgtggcg 180 gaagtagaag tgaaaaagga aattgaggcc gatgctgctg ctgcagatga cgacgatgct 240 gaaaaacgcc gatctctatc taacttgttc aaagagaacg aagaatgtaa ggggtcagag 300 caagtaaacg aggaggcatc caagatcaca ccatcagaag ctaagccaga agaagttgag 360 aaggttgttg atgctcctgt aacttcagag atagaaaaag cactagaagt ggcctcaatt 420 actgctgagg ctcccaaggt ggagccttcc gaggagaaga agatagatga agtgaaatca 480 gaacctaaga ctcctgctga gaagaaagta gaggaagcaa aaccggcagt agagactcct 540 79 172135/2 gcagagaaga aaatagaaga ggcaccagtt gctccaactc acgtggagac gaaagccgaa 600 gattgcatgg tgaaaaacgc gtggaaatga 630 <210> 17 <211> 216 <212> DNA <213> Lycopersicon esculentum <400> 17 atggagataa catgtgcact tgtctgtgag atcttactag caatcttgct tcctcctctt 60 ggtgtttgcc ttcgcaatgg ttgctgcact gtggagttct tgatttgctt ggtattgacc 120 atattgggct atgttcctgg aattatctat gctctctatg caatcctctt tgttgaacgt 180 gaaccaagaa gggattatta tgacactctt gcttga 216 <210> 18 <211> 216 <212> DNA <213> Lycopersicon esculentum <400> 18 atggactcaa gatgtgcaat tctgtgtgaa gttttactag caatcttgct tcctcctctt 60 ggtgtttgcc ttcgcaatgg ttgctgcact gtggagttct tgatttgctt ggtattgacc 120 atattgggct atgttcctgg aattatctat gctctttatg caatcctctg tattcaaagt 180 gaaccacact accatcatta ccattctctt gcttga 216 <210> 19 <211> 877 <212> DNA <213> Cauliflower mosaic virus <400> 19 aagcttgcat gcctgcaggt ccccagatta gccttttcaa tttcagaaag aatgctaacc 60 cacagatggt tagagaggct tacgcagcag gtctcatcaa gacgatctac ccgagcaata 120 atctccagga aatcaaatac cttcccaaga aggttaaaga tgcagtcaaa agattcagga 180 ctaactgcat caagaacaca gagaaagata tatttctcaa gatcagaagt actattccag 240 tatggacgat tcaaggcttg cttcacaaac caaggcaagt aatagagatt ggagtctcta 300 aaaaggtagt tcccactgaa tcaaaggcca tggagtcaaa gattcaaata gaggacctaa 360 cagaactcgc cgtaaagact ggcgaacagt tcatacagag tctcttacga ctcaatgaca 420 agaagaaaat cttcgtcaac atggtggagc acgacacact tgtctactcc aaaaatatca 480 aagatacagt ctcagaagac caaagggcaa ttgagacttt tcaacaaagg gtaatatccg 540 gaaacctcct cggattccat tgcccagcta tctgtcactt tattgtgaag atagtggaaa 600 aggaaggtgg ctcctacaaa tgccatcatt gcgataaagg aaaggccatc gttgaagatg 660 cctctgccga cagtggtccc aaagatggac ccccacccac gaggagcatc gtggaaaaag 720 aagacgttcc aaccacgtct tcaaagcaag tggattgatg tgatatctcc actgacgtaa 780 gggatgacgc acaatcccac tatccttcgc aagacccttc ctctatataa ggaagttcat 840 ttcatttgga gagaacacgg gggactctag aggatcc 877 <210> 20 <211> 2322 <212> DNA 80 172135/2 <213> Arabidopsis thaliana <400> 20 aagctttaag ctccaagccc acatctatgc acttcaacat atctttttct agatgagttg 60 gtaaaagtag aaaaagatat gatgatttta aatttgtttc tatttatatg tgttcatcga 120 aacttcattt tttttagttt taatagagag tttatatgac ttttaaaaat tgatttaaaa 180 ctgtgtcaaa aattaaaagg acaataaaaa atttgcatac aaccgaaaat acttatattt 240 agacaagaaa aaataatact tgtgatgctg attttatttt attatatatc atgaatcatg 300 atcatccaat tttccggata agccaaagtc aaaatgatgg gttcccccta atcttttatg 360 ctgagaaata gatgtatatt cttagatagt aatataaaat tgggttaaag aatgatgatt 420 cgattatagc ctcaactaga agatacgtgt agtgcaggtg tgtagttaac tggtggtagt 480 ggcagacaac cagattagga gttaaataaa gcctttagat ttgagagatt gaaatattcg 540 attggaacct ttctagattt ttacagccat ctaaaattag atgcagatca cctactacca 600 ttcaaaaatg aacaaaataa tttcatttac attttcctag cataagatat aataataaaa 660 tagtgctcat tttaattact ttttctaaat attttcgtta ttttaaattt tgcttgtcta 720 tactctacag ctcatttaat aacggaaaca aaaataattg cagggatacg gatgggtagc 780 tttcaaaact tacatcatct tctgtttctt gagatcaact atttttggag ctttgtctca 840 atcgtaccaa aggataatgg tcctacctcc ttttgcattc ttaactttat cttctctact 900 tatttctttt ttgggatttt tgggggtatt attttatctt ttgtagatat acacattgat 960 ttactacaaa cgtatactac tatccatctt caactcttcg gaatatgatt tcgaaaaaac 1020 tatgaagatt aacgggtatc ttaaacatgt taagatacac cggacaattt tcatttagaa 1080 gaattgatat gcaattaaca ataaatagtt gatgatcttt tagttttgaa gatgtgcgtt 1140 aagacttaag cgtgtggtaa caaggtggga ctcgggcaac gcaaagcctt gtagagtcca 1200 cttgctcaac ttgtctttct tttatctctt ttccaagtct caagattcaa tgaactccgt 1260 gtaacacaaa cacgcccata gatgagctca tttttggtat ttccaatatt gccactccat 1320 gataatatca tctagggatg gggttcattt attttgaaat ctcaacaaat ctcgtcgatt 1380 ctaacacaca tgattgattt gtttacttac ttgaaagttg gcaactatct gggattaaaa 1440 tttatctttt tctactgcta gctagaagca tctatatatg ttagcctaat acgtggaaga 1500 tgtcattgct aataatggct aaagatgtgt attaattttt cttctttttt ccttgaattt 1560 ttgttctttg acataaacta tgctgtcaaa atgtgtagaa tctttttaca taaatcattc 1620 cctgttacac actaaaaggt tcacaacgga cgattgtatt ggacttccag atcataaacc 1680 atgcaaaact gaaaaccaca agaataatta gttctaactt tagaacgttc gtacgtgttt 1740 catgttcaaa aagcgtcaat tataaaagtt gggaaattac ttttgagttt tgacatttct 1800 aaggacagtc aaatatgaca acattgggat gcaacttacc ttgtattaac ttattttgtt 1860 ataaaaccat atattacata ttttaaaggg ttgataaata atcaaatata ccaaaacata 1920 gcttttcaat atatttgtaa aacacgtttg gtctactagc taattatgag aacatttgtt 1980 caatgcatga ttatctagta tctactagtg gattatgaaa attagatatt ttcattgcat 2040 gattatcttc catatatagt gataacatca aaagaatcta caccaattat tgcatttttt 2100 cattatataa taagcactaa actgtaaaat tatattcagc cacccaaacc atgacaaatc 2160 81 172135/2 accttaaagg cttaaacaca taacagccat tacgagtcac aggtaagggt ataatagtaa 2220 agaatcaatc tatataatat acgacccacc ctttctcatt ctttctggag agtaacatcg agacaaagaa gaaaaactaa aaaagagaac cccaaaggat cc <210> 21 <211> 31 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 21 gggaaggatc catgggtcgt atgcacagtc g <210> 22 <211> 32 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 22 cgacggagct cctatgccac aagtgtgcta gc 32 <210> 23 <211> 35 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 23 gggaaggatc cggtggtatt gaagttatgg aagac <210> 24 <211> 30 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 24 gctgcgagct cctaatgctt ccgtccactc 30 <210> 25 <211> 34 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 25 gggaaggatc catgaattct cagatttgca gate 34 <210> 26 <211> 36 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 26 gaggagagct cttagttatc accatatagc cacttc <210> 27 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 27 gggaatctag acaacatgga gaatatgcag age <210> 28 <211> 31 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 28 agaagecegg gcacatagca cctacacacc g <210> 29 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 29 gggaaggatc cgatgggata ctggaaagca aag <210> 30 <211> 32 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 30 ageeggaget cttaaaccac ctttggtgct tc <210> 31 <211> 29 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 31 gggaaggatc caaatggctg geggegtag <210> 32 <211> 34 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 32 agaaggagct ctagaactca ttggataaag gage <210> 33 <211> 32 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 33 gggaaggatc catggaggtc gattctagtg gg <210> 34 <211> 32 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 34 agaagcccgg gttaagcaac tggaggacgg ag <210> 35 <211> 22 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 35 ggtggctcct acaaatgcca tc <210> 36 <211> 20 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 36 aagttgggta acgccagggt <210> 37 <211> 22 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 37 tagtttggtc agatgggaaa eg <210> 38 <211> 25 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 38 aaatattgga tcctttgggg ttctc <210> 39 <211> 151 84 <212> PRT <213> Panax ginseng <400> 39 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Thr Pro Gin Asp 25 30 Asp Asp Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro 35 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 40 <211> 151 <212> PRT <213> Glycine max <400> 40 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ser Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Ser Ser Gin Asp 25 30 Val Glu Glu Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 35 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Asn 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 172135/2 Ser He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 41 <211> 151 <212> PRT <213> Arabidopsis thaliana <400> 41 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Ser Ser Pro Ser Trp Leu Lys Thr Thr Ser Gin Asp 25 30 Val Asp Glu Ser He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Pro Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 42 <211> 151 <212> PRT <213> Arabidopsis thaliana <400> 42 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 86 172135/2 Pro Tyr Lys Arg Ser Ser Pro Ser Trp Leu Lys Thr Thr Pro Gin Asp 25 30 Val Asp Glu Ser He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Pro Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 43 <211> 151 <212> PRT <213> Arabidopsis thaliana <400> 43 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro His Lys Arg Ser Ser Pro Ser Trp Leu Lys Thr Thr Pro Gin Asp 25 30 Val Asp Glu Ser He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Pro Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 87 172135/2 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 44 <211> 151 <212> PRT <213> Pisum sativum <400> 44 Met Gly Arg Leu His Ser Lys Gly Lys Gly He Ser Ser Ser Ala Leu 1 5 10 15 Pro Tyr Arg Arg Thr Ala Pro Ser Trp Leu Lys He Ser Ser Gin Asp 25 30 Val Asp Glu Thr He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ser He Arg Lys His Leu Glu Arg Phe Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 45 <211> 150 <212> PRT <213> Arabidopsis thaliana <400> 45 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Ser Ser Pro Ser Trp Leu Lys Thr Thr Ser Gin Asp 25 30 Val Asp Glu Ser He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Pro Gin Val Lys 172135/2 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 ■ Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Asn Glu Ser Thr Thr 130 135 140 Ala Ser Thr Leu Val Ala 145 150 <210> 46 <211> 150 <212> PRT <213> Arabidopsis thaliana <400> 46 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Ser Ser Pro Ser Trp Leu Lys Thr Thr Pro Gin Asp 25 30 Val Asp Glu Ser He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Pro Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Asn Glu Ser Thr Thr 130 135 140 Ala Ser Thr Leu Val Ala 145 150 <210> 47 89 <211> 151 <212> PRT <213> Oryza sativa <400> 47 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ser Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys Thr Ala Ala Ser Asp 25 30 Val Glu Glu Met He Met Lys Ala Ala Lys Lys Gly Gin Met Pro 35 40 45 Gin He Gly Val Val Leu Arg Asp Gin His Gly He Pro Leu Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr Phe Leu He Lys Lys Ala 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Arg Thr Lys Lys Leu Pro Pro Thr Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 48 <211> 151 <212> PRT <213> Zea mays <400> 48 Met Gly Ala Met His Ser Arg Gly Lys Gly He Ser Ser Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Thr Trp Leu Lys Thr Ala Ala Ser Asp 25 30 Val Glu Glu Met He Thr Lys Ala Ala Lys Lys Gly Gin Met Pro Ser 35 40 45 Gin He Gly Val Leu Leu Arg Asp Gin His Gly He Pro Leu Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr Phe Leu He Lys Lys Ala Val 90 172135/2 Ala lie Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu lie Leu Val Glu Ser Arg lie His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Arg Thr Lys Lys Leu Pro Pro Thr Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 49 <211> 156 <212> PRT <213> Oryza sativa <400> 49 Met Gly Arg Met His Ser Arg Gly Lys Gly lie Ser Ser Ser Ala lie 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Val Lys Thr Ala Ala Ala Asp 25 30 Val Glu Glu Met lie Met Lys Ala Ala Lys Lys Gly Gin Met Pro Ser 40 45 Gin lie Gly Val Val Leu Arg Asp Gin His Gly He Pro Leu Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr Phe Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Arg Thr Lys Lys Leu Pro Pro Thr Trp Lys Thr Thr Tyr Gin 130 135 140 Leu Ser Ala Val Cys Leu Asn Tyr Phe Gin Ala Pro 145 150 155 <210> 50 <211> 151 <212> PRT <213> Drosophila melanogaster <400> 50 Met Gly Arg Met His Ala Pro Gly Lys Gly He Ser Gin Ser Ala Leu 1 5 10 15 91 Pro Tyr Arg Arg Thr Val Pro Ser Trp Leu Lys Leu Asn Ala Asp Asp 25 30 Val Lys Glu Gin He Lys Lys Ala Gly Gin Glu Gly Ser Asp Ser Leu 35 40 45 Gin He Gly He He Leu Arg Asp Ser His Gly Val Ala Gin Val Arg 50 55 60 Phe Val Asn Gly Asn Lys He Leu Arg He Met Lys Ser Val Gly Leu 65 70 75 80 Lys Pro Asp He Pro Glu Asp Leu Tyr His Met He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Gly Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Thr Lys Ser Val Leu Pro Pro Asn Trp Lys Tyr Glu Ser Ser 130 135 140 Thr Ala Ser Ala Leu Val Ala 145 150 <210> 51 <211> 155 <212> PRT <213> Unknown <220> <223> environmental sequence <400> 51 Met Gly Arg Met His Thr Pro Gly Lys Gly Met Ser Gly Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Ser Ala Pro Ser Trp Leu Lys He Thr Pro Thr Glu 25 30 Val Thr Glu Met He Val Lys Met Ala Lys Lys Gly Met Thr Pro Ser 35 40 45 Gin He Gly Val Met Leu Arg Asp Asn Gin Gly He Ala Gin Val 50 55 60 Thr Val Thr Asn Ser Lys He Leu Arg He Leu Arg Gly Gin Gly Leu 65 70 75 80 Ala Pro Ser Leu Pro Glu Asp Leu Tyr Cys Leu He Lys Lys Ala Val 85 90 95 Val Arg Lys His Leu Glu Arg Asn Arg Lys Asp Met Asp Ser Lys 100 105 110 92 172135/2 Phe Arg Leu lie Leu lie Glu Ser Arg lie His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Leu Ala Lys Lys Leu Glu Pro Thr Phe Lys Tyr Asp Ser Ala 130 135 140 Thr Ala Ser Thr Leu Leu Thr Ala Ala Gly Lys 145 150 155 <210> 52 <211> 230 <212> PRT <213> Arabidopsis thaliana <400> 52 Met Ala Ser Ser Asn Ser Glu 1 5 10 15 Leu Gly Leu Lys Lys Glu Cys Ser Lys Thr Glu Leu Arg Ser Ala Tyr 25 30 Lys Lys Leu Ala Leu Arg Trp His Pro Asp Arg Cys Ser Ser Met Glu 40 45 Phe Val Glu Glu Ala Lys Lys Lys Phe Gin Ala lie Gin Glu Ala Tyr 50 55 60 Val Leu Ser Asp Ser Asn Lys Arg Phe Leu Tyr Asp Val Gly Ala 70 75 80 Tyr Asn Thr Asp Asp Asp Asp Asp Gin Asn Gly Met Gly Asp Phe Leu 85 90 95 Asn Glu Met Ala Thr Met Met Asn Gin Ser Lys Pro Ser Asp Asn Asn 100 105 110 Thr Gly Asp Ser Phe Glu Gin Leu Gin Asp Leu Phe Asn Glu Met Phe 115 120 125 Gin Gly Asp Ala Ala Ala Phe Pro Ser Ser Ser Ser Cys Ser Thr Ser 130 135 140 Asn Phe Thr Ser Ser Arg Ser Phe Val Phe Asp Thr Asn Ser Gin Arg 145 150 155 160 Ser Ser Ser Phe Ala Thr Ser Ser Met Gly Met Asn Asn Asp Pro Phe 165 170 175 Gly Tyr Asp Pro Arg Ala His Ser Phe Ser Leu Gly Val Asp His Gin 180 185 190 Gin Glu Phe Lys Lys Gly Lys Asn Asn Gly Gly Arg Arg Asn Arg Arg 195 200 205 Lys Asn Asn Val Pro Ser Ala Gly His Glu Thr Ser Ser Ser Asn Asn 210 215 220 93 172135/2 Tyr Gly Val Pro Thr Ser 225 230 <210> 53 <211> 242 <212> PRT <213> Mus <400> 53 Met Val Asp Tyr Tyr Glu Val Leu Gly Val Gin Arg His Ala Ser Pro 1 5 10 15 Glu Asp He Lys Lys Ala Tyr Arg Lys Gin Ala Leu Lys Trp His Pro 25 30 Asp Lys Asn Pro Glu Asn Lys Glu Glu Ala Glu Arg Lys Phe Lys Gin 40 45 Val Ala Glu Ala Tyr Glu Val Leu Ser Asp Ala Lys Lys Arg Asp He 50 55 60 Tyr Asp Lys Tyr Gly Lys Glu Gly Leu Asn Gly Gly Gly Gly Gly Gly 65 70 75 80 Gly He His Phe Asp Ser Pro Phe Glu Phe Gly Phe Thr Phe Arg Asn 85 90 95 Pro Asp Asp Val Phe Arg Glu Phe Phe Gly Gly Arg Asp Pro Phe 100 105 110 Phe Asp Phe Phe Glu Asp Pro Phe Asp Asp Phe Phe Gly Asn Arg Arg 115 120 125 Gly Pro Arg Gly Asn Arg Ser Arg Gly Ala Ala Pro Phe Phe Ser Thr 130 135 140 Phe Ser Gly Phe Pro Ser Phe Gly Ser Gly Phe Pro Ala Phe Asp Thr 145 150 155 160 Gly Phe Thr Pro Phe Gly Ser Leu Gly His Gly Gly Leu Thr Ser Phe 165 170 175 Ser Ser Thr Ser Phe Gly Gly Ser Gly Met Gly Asn Phe Lys Ser He 180 185 190 Ser Thr Ser Thr Lys He Val Asn Gly Lys Lys He Thr Thr Lys Arg 195 200 205 He Val Glu Asn Gly Gin Glu Arg Val Glu Val Glu Glu Asp Gly Gin 210 215 220 Leu Lys Pro Leu Thr He Asn Gly Lys Glu His Leu Leu Arg Leu Asp 225 230 235 240 Asn Lys 94 172135/2 <210> 54 <211> 242 <212> PRT <213> Rattus norvegicus <400> 54 Met Val Asp Tyr Tyr Glu Val Leu Gly Val Gin Arg His Ala Ser Pro 1 5 10 15 Glu Asp lie Lys Lys Ala Tyr Arg Lys Gin Ala Leu Lys Trp His Pro 25 30 Asp Lys Asn Pro Glu Asn Lys Glu Glu Ala Glu Arg Lys Phe Lys Gin 40 45 Val Ala Glu Ala Tyr Glu Val Leu Ser Asp Ala Lys Lys Arg Asp 50 55 60 Tyr Asp Lys Tyr Gly Lys Glu Gly Leu Asn Gly Gly Gly Gly Gly Gly 65 70 75 80 Gly Ser His Phe Asp Ser Pro Phe Glu Phe Gly Phe Thr Phe Arg Asn 85 90 95 Pro Asp Asp Val Phe Arg Glu Phe Phe Gly Gly Arg Asp Pro Phe 100 105 110 Phe Asp Phe Phe Glu Asp Pro Phe Asp Asp Phe Phe Gly Asn Arg Arg 115 120 125 Gly Pro Arg Gly Ser Arg Ser Arg Gly Ala Gly Ser Phe Phe Ser Ala 130 135 140 Phe Ser Gly Phe Pro Ser Phe Gly Ser Gly Phe Pro Ala Phe Asp Thr 145 150 155 160 Gly Phe Thr Pro Phe Gly Ser Leu Gly His Gly Gly Leu Thr Ser Phe 165 170 175 Ser Ser Ala Ser Phe Gly Gly Ser Gly Met Gly Asn Phe Lys Ser He 180 185 190 Ser Thr Ser Thr Lys He Val Asn Gly Lys Lys He Thr Thr Lys Arg 195 200 205 Val Glu Asn Gly Gin Glu Arg Val Glu Val Glu Glu Asp Gly Gin 210 215 220 Leu Lys Ser Leu Thr He Asn Gly Lys Glu His Leu Leu Arg Leu Asp 225 230 235 240 Asn Lys <210> 55 <211> 158 <212> PRT <213> Picea glauca 95 <400> 55 Met Glu Thr Thr Phe Tyr Ser lie Leu Gly Val Asn Lys Asp Ser Ser 1 5 10 15 Ser Ala Glu lie Arg Ser Ala Tyr Arg Lys Leu Ala Met Lys Trp His 25 30 Pro Asp Lys Trp Ser Thr Asp Pro Ser Ser Ser Glu Thr Ala Lys Leu 35 40 45 Arg Phe Gin Gin lie Gin Glu Ala Tyr Ser Val Leu Ser Asp Asp Thr 50 55 60 Arg Ala Leu Tyr Asp Ala Gly Met Tyr Glu Pro Ser Glu Asp Met 70 75 80 Asp Ala Phe Cys Asp Phe Leu Asp Glu Leu Ser Ser Leu He Ala Thr 85 90 95 Val Lys Val Gin Ser Asn Lys Asp Asp Glu Leu Leu Gin Leu Gin Glu 100 105 110 Met Phe Thr Lys Met Leu Glu Glu Asp Trp Phe Ser Thr Asp Asn Phe 115 120 125 Glu Ala Phe Lys Glu He Ser Ser Gin His Ser Asp Asp Lys Pro Glu 130 135 140 Asn Gly Gin Asp His Glu Pro Tyr Gly Ser Val Asp Asp Leu 145 150 155 <210> 56 <211> 156 <212> PRT <213> Arabidopsis thaliana <400> 56 Met Ala Cys Glu Gly Gly Gly Ser Asn Val Arg Ser Ser Tyr Tyr Thr 1 5 10 15 He Leu Gly He Arg Lys Asp Ala Ser Val Ser Asp He Arg Thr Ala 25 30 Tyr Arg Lys Leu Ala Met Lys Trp His Pro Asp Arg Tyr Ala Arg Asn 35 40 45 Pro Gly Val Ala Gly Glu Ala Lys Arg Arg Phe Gin Gin He Gin Glu 50 55 60 Ala Tyr Ser Val Leu Asn Asp Glu Asn Lys Arg Ser Met Tyr Asp Val 65 70 75 80 Gly Leu Tyr Asp Pro His Glu Asp Asp Asp Asp Asp Phe Cys Asp Phe 85 90 95 Met Gin Glu Met He Ser Met Met Asn Asn Val Lys Asp Ala Gly Glu 96 172135/2 100 105 110 Ser Leu Glu Asp Leu Gin Arg Met Phe Thr Asp Met Val Gly Gly Asp 115 120 125 Gly Val Ser Tyr Asp Cys Asn Asn Asn Pro Lys Gly Asn Lys Arg Pro 130 135 140 Arg Val Asn He Ser Arg Ser Ser Ala Ala Met Arg 145 150 155 <210> 57 <211> 156 <212> PRT <213> Arabidopsis thaliana <400> 57 Met Ala Cys Glu Gly Gly Gly Ser Asn Val Arg Ser Ser Tyr Tyr Thr 1 5 10 15 Val Leu Gly He Arg Lys Asp Ala Ser Val Ser Asp He Arg Thr Ala 25 30 Tyr Arg Lys Leu Ala Met Lys Trp His Pro Asp Arg Tyr Ala Arg Asn 40 45 Pro Gly Val Ala Gly Glu Ala Lys Arg Arg Phe Gin Gin He Gin Glu 50 55 60 Ala Tyr Ser Val Leu Asn Asp Glu Asn Lys Arg Ser Met Tyr Asp Val 65 70 75 80 Gly Leu Tyr Asp Pro His Glu Asp Asp Asp Asp Asp Phe Cys Asp Phe 85 90 95 Met Gin Glu Met He Ser Met Met Asn Asn Val Lys Asp Glu Gly Glu 100 105 110 Ser Leu Glu Asp Leu Gin Arg Met Phe Thr Asp Met Val Gly Gly Asp 115 120 125 Gly Val Ser Tyr Asp Cys Asn Asn Asn Pro Lys Gly Ser Lys Arg Pro 130 135 140 Arg Val Asn Val Ser Arg Ser Ser Ala Ala Met Arg 145 150 155 <210> 58 <211> 207 <212> PRT <213> Daucus carota <400> 58 Met He Asp Gin Glu Glu Ser Asn Phe Asn Phe Asn Phe Asn Gin Pro 1 5 10 15 Gin Gin Pro Gin Gin Gin Gin Phe His Gly Lys Ser Val Lys Lys Asn 25 30 97 Lys Asn Lys Asn Asn Asn Asn Asn Ser Glu Ser Gly Asn Lys Asn Gly 35 40 45 Gly Glu Asn Lys Asn Gly Val Glu Lys Arg Phe Lys Thr Leu Pro Pro 50 55 60 Ala Glu Ser Leu Pro Arg Asn Glu Thr Val Gly Gly Tyr He Phe Val 65 70 75 80 Cys Asn Asn Asp Thr Met Gin Glu Asn Leu Lys Arg Gin Leu Phe Gly 85 90 95 Leu Pro Pro Arg Tyr Arg Asp Ser Val Arg Ala He Thr Pro Gly Leu 100 105 110 Pro Leu Phe Leu Tyr Asn Tyr Ser Thr His Gin Leu His Gly Val Phe 115 120 125 Glu Ala Ala Ser Phe Gly Gly Thr Asn He Asp Pro Thr Ala Trp Glu 130 135 140 Asp Lys Lys Asn Gin Gly Glu Ser Arg Phe Pro Ala Gin Val Arg Val 145 150 155 160 Met Thr Arg Lys He Cys Glu Pro Leu Glu Glu Asp Ser Phe Arg Pro 165 170 175 He Leu His His Tyr Asp Gly Pro Lys Phe Arg Leu Glu Leu Asn He 180 185 190 Pro Glu Ala He Ser Leu Leu Asp He Phe Glu Glu Thr Lys Ala 195 200 205 <210> 59 <211> 213 <212> PRT <213> Pisum sativum <400> 59 Met Asn Lys Asn Ser Leu Arg Asn Gly Val Tyr Asn Met Asn Ala Val 1 5 10 15 Tyr Gin Lys Ser Asn Ala Asn Phe Val Gly Asn Met Asn Ser Asn Lys 25 30 Tyr Ser Gly Asn Val Gin Leu Asn Lys Asp Pro His Ser Asn Asn Asn 35 40 45 Asn Asn Asn Asn Glu Asn Asn Thr Asn Ala Thr Asp Lys Arg Phe Lys 50 55 60 Thr Leu Pro Ala Ala Glu Thr Leu Pro Arg Asn Glu Val Leu Gly Gly 65 70 75 80 Tyr He Phe Val Cys Asn Asn Asp Thr Met Gin Glu Asp Leu Lys Arg 85 90 95 98 172135/2 Gin Leu Phe Gly Leu Pro Pro Arg Tyr Arg Asp Ser Val Arg Ala lie 100 105 110 Thr Pro Gly Leu Pro Leu Phe Leu Tyr Asn Tyr Thr Thr His Gin Leu 115 120 125 His Gly lie Phe Glu Ala Thr Cys Phe Gly Gly Ser Asn lie Asp Pro 130 135 140 Thr Ala Trp Glu Asp Lys Lys Cys Lys Gly Glu Ser Arg Phe Pro Ala 145 150 155 160 Gin Val Arg lie Arg Val Arg Lys lie Cys Lys Ala Leu Glu Glu Asp 165 170 175 Ser Phe Arg Pro Val Leu His His Tyr Asp Gly Pro Lys Phe Arg Leu 180 185 190 Glu Leu Ser Val Pro Glu Thr Leu Asp Leu Met Asp Leu Cys Glu Gin 195 200 205 Ala Gly Ser Ala Ala 210 <210> 60 <211> 305 <212> PRT <213> Citrus X paradisi <400> 60 Met Asp Asn Met His Ser Phe Trp Gin Leu Gly Asp Glu Leu Arg Gly 1 5 10 15 Gin Ser Arg Thr Ser Glu Asp Gin Ser Trp Leu Arg Ala Ala Ser Arg 25 30 Leu Ala Glu Gin Thr Arg Phe Lys Gly Glu Arg Met Asn Asn Leu Asp 40 45 Leu Ser Lys Gly Met Thr Glu lie Arg Pro Arg Asp Lys lie Met Tyr 50 55 60 His Glu Asp Asn Asn Phe Glu Ser Phe Asn Phe Asn Phe Asn Met Met 65 70 75 80 Asn Leu Asp Asn Lys Val Val Glu Asn Val Thr Lys Ser Ser Leu Arg 85 90 95 Asn Gly lie Tyr Asn Met Asn Ala Val Tyr Gin Lys Asn Ser Gly His 100 105 110 Asn Met Gly Asn Leu Met Val Asn Lys Tyr Gly Gly Asn Asn Leu Ser 115 120 125 Val Lys Glu Ala Glu Asn Asn Asn Asn Asn Asn Asn Asn Asn Asn Asp 130 135 140 99 172135/2 Ser Asn Ala Asn Ser Ala Leu Asp Lys Arg Phe Lys Thr Leu Pro Ala 145 150 155 160 Thr Glu Thr Leu Pro Arg Asn Glu Val Leu Gly Gly Tyr He Phe Val 165 170 175 Cys Asn Asn Asp Thr Met Gin Glu Asp Leu Lys Arg Gin Leu Phe Gly 180 185 190 Leu Pro Pro Arg Tyr Arg Asp Ser Val Arg Ala He Thr Pro Gly Leu 195 200 205 Pro Leu Phe Leu Tyr Asn Tyr Thr Thr His Gin Leu His Gly He Phe 210 215 220 Glu Ala Thr Gly Phe Gly Gly Ser Asn He Asp Pro Thr Ala Trp Glu 225 230 235 240 Asp Lys Lys Cys Lys Gly Glu Ser Arg Phe Pro Ala Gin Val Arg He 245 250 255 Arg Val Arg Lys Leu Cys Lys Ala Leu Glu Glu Asp Ala Phe Arg Pro 260 265 270 Val Leu His His Tyr Asp Gly Pro Lys Phe Arg Leu Glu Leu Ser Val 275 280 285 Pro Glu Thr Leu Asp Leu Met Asp Leu Cys Glu Gin Ala Gly Ser Ala 290 295 300 Ala 305 <210> 61 <211> 296 <212> PRT <213> Arabidopsis thaliana <400> 61 Met Asp Ser Phe Trp Gin Leu Gly Asp Glu Leu Arg Gly Gin Thr Arg 1 5 10 15 Ala Ser Glu Asp His Lys Trp Ser Thr Val Ala Thr Lys Leu Ala Glu 25 30 Gin Thr Arg Met Lys Gly Glu Arg Met Asn Asn Leu Asp Leu Ser Lys 40 45 Gly Tyr Thr Glu Phe Arg Pro Ser Glu Lys Phe Ser Phe Gin Glu Asn 50 55 60 Asn Leu Asn Phe Asn Met Leu Asn Leu Asp Gly Lys Phe Gly Glu Ser 65 70 75 80 He Met Gly Lys Thr Ser Met Gin Ser Asn Val Tyr Asn Met Asn Thr 85 90 95 100 172135/2 Val Phe Gin Lys Asn Asp Phe Lys Ser Gly Gly Asn Met Lys Val Asn 100 105 110 Lys Tyr Asn Gly Asn He Val Ala Asn Lys Glu Met Ser Asn Asn Lys 115 120 125 His Asn Asn Asn Cys Asn Asp Asn Gly Asn Met Asn Leu Ala Val Asp 130 135 140 Lys Arg Phe Lys Thr Leu Pro Ala Ser Glu Thr Leu Pro Arg Asn Glu 145 150 155 160 Val Leu Gly Gly Tyr He Phe Val Cys Asn Asn Asp Thr Met Gin Glu 165 170 175 Asp Met Lys Arg His Leu Phe Gly Leu Pro Pro Arg Tyr Arg Asp Ser 180 185 190 Val Arg Ala He Thr Pro Gly Leu Pro Leu Phe Leu Tyr Asn Tyr Thr 195 200 205 Thr His Gin Leu His Gly He Phe Glu Ala Thr Thr Phe Gly Gly Thr 210 215 220 Asn He Asp Ala Thr Ala Trp Glu Asp Lys Lys Cys Lys Gly Glu Ser 225 230 235 240 Arg Phe Pro Ala Gin Val Arg He Arg Val Arg Lys He Cys Lys Ala 245 250 255 Leu Glu Glu Asp Ser Phe Arg Pro Val Leu His His Tyr Asp Gly Pro 260 265 270 Lys Phe Arg Leu Glu Leu Ser Val Pro Glu Thr Leu Asp Leu Leu Asp 275 280 285 Leu Cys Glu Gin Ala Gly Ser Ala 290 295 <210> 62 <211> 296 <212> PRT <213> Arabidopsis thaliana <400> 62 Met Asp Ser Phe Trp Gin Leu Gly Asp Glu Leu Arg Gly Gin Thr Arg 1 5 10 15 Ala Ser Glu Asp His Lys Trp Ser Thr Val Ala Thr Lys Leu Ala Glu 25 30 Gin Thr Arg Met Lys Gly Glu Arg Met Asn Asn Leu Asp Leu Ser Lys 40 45 Gly Tyr Thr Glu Phe Arg Pro Ser Glu Lys Phe Ser Phe Gin Glu Asn 50 55 60 101 Asn Leu Asn Phe Asn Met Leu Asn Leu Asp Gly Lys Phe Gly Glu Ser 65 TO 75 80 Met Gly Lys Thr Ser Met Gin Ser Asn Val Tyr Asn Met Asn Thr 85 90 95 Val Phe Gin Lys Asn Asp Phe Lys Ser Gly Gly Asn Met Lys Val Asn 100 105 110 Lys Tyr Asn Gly Asn Val Val Ala Asn Lys Glu Met Ser Asn Asn Lys 115 120 125 His Asn Asn Asn Cys Asn Asp Asn Gly Asn Met Asn Leu Ala Val Asp 130 135 140 Lys Arg Phe Lys Thr Leu Pro Ala Ser Glu Thr Leu Pro Arg Asn Glu 145 150 155 160 Val Leu Gly Gly Tyr He Phe Val Cys Asn Asn Asp Thr Met Gin Glu 165 170 175 Asp Met Lys Arg His Leu Phe Gly Leu Pro Pro Arg Tyr Arg Asp Ser 180 185 190 Val Arg Ala He Thr Pro Gly Leu Pro Leu Phe Leu Tyr Asn Tyr Thr 195 200 205 Thr His Gin Leu His Gly He Phe Glu Ala Thr Thr Phe Gly Gly Thr 210 215 220 Asn He Asp Ala Thr Ala Trp Glu Asp Lys Lys Cys Lys Gly Glu Ser 225 230 235 240 Arg Phe Pro Ala Gin Val Arg He Arg Val Arg Lys He Cys Lys Ala 245 250 255 Leu Glu Glu Asp Ser Phe Arg Pro Val Leu His His Tyr Asp Gly Pro 260 265 270 Lys Phe Arg Leu Glu Leu Ser Val Pro Glu Thr Leu Asp Leu Leu Asp 275 280 285 Leu Cys Glu Gin Ala Gly Ser Ala 290 295 <210> 63 <211> 742 <212> PRT <213> Arabidopsis thaliana <400> 63 Met Ala Glu Ala Met Glu Thr Glu Met Asp Phe Ser Asp Gly Glu Gin 1 5 10 15 Thr Asn Gly Asn Ser His Val Thr Ala Ser Gin Tyr Phe Ala Pro Pro 25 30 102 172135/2 Gly Tyr Asn Arg Ser Leu Val Ala Ala Tyr Gly Asn Gly Asn Thr Thr 40 45 lie Gly Leu Glu Lys Gly He Glu Arg Arg Leu Asp His His Glu Gin 50 55 60 Leu Pro Gly Tyr He Phe Met Cys Asn Gly Arg Thr Lys Thr Asp Cys 65 70 75 80 Tyr Arg Tyr Arg Val Phe Gly He Pro Arg Gly Gly Lys Asp Val Val 85 90 95 Glu Ser He Lys Pro Gly Met Lys Leu Phe Leu Tyr Asp Phe Glu Lys 100 105 110 Arg Leu Leu Tyr Gly Val Tyr Glu Ala Thr Val Gly Gly Arg Leu Asp 115 120 125 He Glu Pro Glu Ala Phe Glu Gly Lys Tyr Pro Ala Gin Val Gly Phe 130 135 140 Arg He Val Met Asn Cys Leu Pro Leu Thr Glu Asn Thr Phe Lys 145 150 155 Ala He Tyr Glu Asn Tyr Lys Gly Ser Lys Phe Lys Gin Glu Leu Ser 165 170 175 Pro His Gin Val Met Ser Leu Leu Ser Leu Phe Arg Ser Phe Thr Ser 180 185 190 Pro Glu Leu Asp Leu Leu Pro His Arg Leu Ala Ser Arg Ala Ser Ala 195 200 205 Pro Arg Thr Leu Ser Phe Glu Glu Arg Phe He Ala Ala Thr His Leu 210 215 220 Arg Asn Ala Ser Ser Val Leu Asp Pro Leu Ser Ala Arg His val Glu 225 230 235 240 Pro Arg Leu Gly Ser Val Met Ala His Gin Pro Val Pro Arg Thr Ser 245 250 255 Leu Leu Gin His Ser Tyr Phe Arg Gin Asp Asp Tyr Thr Thr Pro Pro 260 265 270 Arg Glu Ser Leu Ser Asn Leu Asn Gin Pro Tyr Tyr Pro Thr Glu Ala 275 280 285 Arg Gin Leu Arg Leu Leu Gly Asp Pro Ser Arg Ser Asp Ser Pro Arg 290 295 300 Ser Glu Pro Pro Arg Ser Ser He Gin Asp Pro Gin Leu Lys Tyr Leu 305 310 315 320 Thr He Leu Ser Asn He Arg Arg Tyr Gly Ser Ala Ser Asp Arg Leu 103 172135/2 325 330 335 Ala Ser Glu Asn Glu Tyr His Pro Ala Thr Pro Ser Glu Lys Asp Gin 340 345 350 Phe Ala Val Pro Tyr Ser Asp Asn Lys Asn Tyr Pro Ser Thr Leu Ser 355 360 365 Gly Ser Glu His Pro Ser Ala Ser Ala Ala Asn Gly Ser Val Tyr Arg 370 375 380 Ser Glu Phe Tyr Asn Ser Ala Ser Gin Lys Glu Gly Glu Ala Ser Gin 385 390 395 400 Gin His Glu He Pro Ala Gly Thr Tyr His His Pro Glu Ala Ser Thr 405 410 415 Val Ser Asn Thr Thr Lys Ser Met Gin Pro Asp Met Gin Ala Val Ser 420 425 430 Val Ala Gin Ser His Thr Glu Thr Ala Gly Tyr Pro Thr Pro Ala His 435 440 445 Gly Glu Ala Ser Gin Pro Pro Ala Gly Ala He Gly Tyr Thr His Gin 450 455 460 Pro Gin Ser Val Ala Gly Asn Tyr Ser Thr His Ser Gin Pro Gly Asn 465 470 475 480 Val Glu Glu Ser Thr Gin Ser Tyr Ala Gly Thr Asp Ser Tyr Ser Gin 485 490 495 Gin Gin Tyr Tyr Ala Ala Met Gly Pro Thr Thr Gin Leu His Ala Gly 500 505 510 Gly Tyr He Gin Lys Pro His Glu He Gly Tyr Ser Gin Gin Pro His 515 520 525 Asp Ala Ala Thr Gly Tyr Ser Gin Gin Pro His Asp Ala Ala Thr Gly 530 535 540 Tyr Ser Gin Gin Pro His Asp Ala Ala Thr Gly Tyr Ser Gin Gin Pro 545 550 555 560 His Ala Ala Ser Thr Gly Tyr Ser Gin Gin Thr Tyr Ala Ala Ala Thr 565 570 575 Gly Tyr Thr Gin Gin Pro His Ala Ala Ala Ala Gly Tyr Thr Gin Gin 580 585 590 Pro His Ala Ala Ala Thr Gly Tyr Ser Gin Gin Pro His Ala Ala Ala 595 600 605 Thr Ala His Ala Gin Gin Pro Tyr Ala Ala Ala Thr Ala His Ala Gin 610 615 620 104 172135/2 Gin Leu His Ala Val Ala Thr Gly Tyr Ala Leu Gin Leu His Ala Ala 625 630 635 640 Ala Thr Gly Tyr Ala Gin Gin Pro His Ala Ala Ala Thr Gly Tyr Ala 645 650 655 Leu Gin Pro His Ala Gin Ala Val Glu Tyr Thr Met Gin Pro His Ala 660 665 670 Gin Ala Val Gly Tyr Met Pro Gin Tyr His Ala His Ala Val Val Tyr 675 680 685 Ser Gin Gin Gly Val Thr Gin Gly Ser Val Pro Arg Ala Pro Gly Thr 690 695 700 Thr Asp Cys Asn Ala Ala Asn Gin Ala Tyr Ser Ala Thr Gly Asp Trp 705 710 715 720 Asn Ala Val His Gin Ser Tyr Tyr Pro Gin Thr Ala Asp Ala Thr Thr 725 730 735 Thr Tyr Tyr Gin Thr Ser 740 <210> 64 <211> 195 <212> PRT <213> Arabidopsis thaliana <400> 64 Met Ala Gly Val Ala Phe Gly Ser Phe Asp Asp Ser Phe Ser Leu Ala 1 5 10 15 Leu Arg Ala Tyr Leu Ala Glu Phe He Ser Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Ala Lys Leu Thr Ser Asp 40 45 Ala Ala Leu Asp Thr Pro Gly Leu Val Ala He Ala Val Cys His Gly 50 55 60 Phe Ala Leu Phe Val Ala Val Ala He Gly Ala Asn He Ser Gly Gly 65 70 75 80 His Val Asn Pro Ala Val Thr Phe Gly Leu Ala Val Gly Gly Gin He 85 90 95 Thr Val He Thr Gly Val Phe Tyr Trp He Ala Gin Leu Leu Gly Ser 100 105 110 Thr Ala Ala Cys Phe Leu Leu Lys Tyr Val Thr Gly Gly Leu Ala Val 115 120 125 Pro Thr His Ser Val Ala Ala Gly Leu Gly Ser He Glu Gly Val Val 130 135 140 105 172135/2 Met Glu He He He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr 145 150 155 160 Ala Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro Leu Ala 165 170 175 He Gly Leu He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 180 185 190 Gly Gly Ser 195 <210> 65 <211> 248 <212> PRT <213> Gossypium hirsutum <400> 65 Met Ala Gly He Ala Phe Gly Arg Phe Asp Asp Ser Phe Ser Leu 1 5 10 15 Thr Val Lys Ala Tyr Leu Ala Glu Phe He Ser Thr Leu Val Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Asn Lys Leu Thr Thr Asp 40 45 Ala Ala Leu Asp Pro Asp Gly Leu Val Ala He Ala Val Cys His Gly 50 55 60 Phe Ala Leu Phe Val Ala Val Ala He Gly Ala Asn He Ser Gly Gly 65 70 75 80 His Val Asn Pro Ala Val Thr Phe Gly Leu Ala Leu Gly Gly Gin 85 90 95 Thr He Leu Thr Gly He Phe Tyr Trp He Ala Gin Leu Leu Gly Ser 100 105 110 Val Ala Cys Phe Leu Leu Lys Ala Val Thr Gly Gly Leu Thr Val 115 120 125 Pro He His Gly Leu Gly Ala Gly Val Gly Ala He Gin Gly Val Val 130 135 140 Met Glu He He He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr 145 150 155 160 Ala Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro He Ala 165 170 175 He Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 180 185 190 Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ser 195 200 205 106 172135/2 Gly Asp Phe Asn Gly He Trp He Tyr Trp Val Gly Pro Leu He Gly 210 215 220 Gly Gly Leu Ser Gly Leu He Tyr Gly Asn Val Phe Met Asn Ser Asp 225 230 235 240 His Ala Pro Leu Ser Asn Asp Phe 245 <210> 66 <211> 250 <212> PRT <213> Arabidopsis thaliana <400> 66 Met Ala Gly Val Ala Phe Gly Ser Phe Asp Asp Ser Phe Ser Leu Ala 1 5 10 , 15 Ser Leu Arg Ala Tyr Leu Ala Glu Phe He Ser Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Ala Lys Leu Thr Ser Asp 40 45 Ala Ala Leu Asp Thr Pro Gly Leu Val Ala He Ala Val Cys His Gly 50 55 60 Phe Ala Leu Phe Val Ala Val Ala He Gly Ala Asn He Ser Gly Gly 65 70 75 80 His Val Asn Pro Ala Val Thr Phe Gly Leu Ala Val Gly Gly Gin He 85 90 95 Thr Val He Thr Gly Val Phe Tyr Trp He Ala Gin Leu Leu Gly Ser 100 105 110 Thr Ala Ala Cys Phe Leu Leu Lys Tyr Val Thr Gly Gly Leu Ala Val 115 120 125 Pro Thr His Ser Val Ala Ala Gly Leu Gly Ser He Glu Gly Val Val 130 135 140 Met Glu He He He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr 145 150 155 160 Ala Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro Leu Ala 165 170 175 He Gly Leu He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 180 185 190 Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ala 195 200 205 Gly Asp Phe Ser Gly His Trp Val Tyr Trp Val Gly Pro Leu He Gly 210 215 220 107 Gly Glu Leu Ala Gly Leu He Tyr Gly Asn Val Phe Met Gly Ser Ser 225 230 235 240 Glu His Val Pro Leu Ala Ser Ala Asp Phe 245 250 <210> 67 <211> 250 <212> PRT <213> Arabidopsis thaliana <400> 67 Met Ala Gly Val Ala Phe Gly Ser Phe Asp Asp Ser Phe Ser Leu Ala 1 5 10 15 Ser Leu Arg Ala Tyr Leu Ala Glu Phe He Ser Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Ala Lys Leu Thr Ser Asp 35 40 45 Ala Ala Leu Asp Thr Pro Gly Leu Val Ala He Ala Val Cys His Gly 50 55 60 Phe Ala Leu Phe Val Ala Val Ala He Gly Ala Asn He Ser Gly Gly 65 70 75 80 His Val Asn Pro Ala Val Thr Phe Gly Leu Ala Val Gly Gly Gin He 85 90 95 Thr Val He Thr Gly Val Phe Tyr Trp He Ala Gin Leu Leu Gly Ser 100 105 110 Thr Ala Ala Cys Phe Leu Leu Lys Tyr Val Thr Gly Gly Leu Ala Val 115 120 125 Pro Thr His Ser Val Ala Ala Gly Leu Gly Ser He Glu Gly Val Val 130 135 140 Met Glu He He He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr 145 150 155 160 Ala Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro Leu Ala 165 170 175 He Gly Leu He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 180 185 190 Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ala 195 200 205 Gly Asp Phe Ser Gly His Trp Val Tyr Trp Val Gly Pro Leu He Gly 210 215 220 Gly Gly Leu Ala Gly Leu He Tyr Gly Asn Val Phe Met Gly Ser Ser 225 230 235 240 108 Glu His Val Pro Leu Ala Ser Ala Asp Phe 245 250 <210> 68 <211> 250 <212> PRT <213> Arabidopsis thaliana <400> 68 Met Val Lys He Glu He Gly Ser Val Gly Asp Ser Phe Ser Val Ala 1 5 10 15 Ser Leu Lys Ala Tyr Leu Ser Glu Phe He Ala Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala Leu Ala Phe Ala Lys Leu Thr Ser Asp 35 ■ 40 45 Ala Ala Leu Asp Pro Ala Gly Leu Val Ala Val Ala Val Ala His Ala 50 55 60 Phe Ala Leu Phe Val Gly Val Ser He Ala Ala Asn He Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Leu Gly Leu Ala Val Gly Gly Asn He 85 90 95 Thr Val He Thr Gly Phe Phe Tyr Trp He Ala Gin Cys Leu Gly Ser 100 105 110 He Val Ala Cys Leu Leu Leu Val Phe Val Thr Asn Gly Glu Ser Val 115 120 125 Pro Thr His Gly Val Ala Ala Gly Leu Gly Ala He Glu Gly Val Val 130 1'35 140 Met Glu He Val Val Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr 145 150 155 160 Ala Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro He Ala 165 170 175 He Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 180 185 190 Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Val Ser 195 200 205 Gly Asp Phe Ser Gin He Trp He Tyr Trp Val Gly Pro Leu Val Gly 210 215 220 Gly Ala Leu Ala Gly Leu He Tyr Gly Asp Val Phe He Gly Ser Tyr 225 230 235 240 Ala Pro Ala Pro Thr Thr Glu Ser Tyr Pro 245 250 109 <210> 69 <211> 248 <212> PRT <213> Nicotiana glauca <400> 69 Met Pro Gly lie Ala Phe Gly Arg lie Asp Asp Ser Phe Ser Val Gly 1 5 10 15 Ser Leu Lys Ala Tyr Leu Ala Glu Phe lie Ser Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala lie Ala Tyr Asn Lys Leu Thr Ala Asn 35 40 45 Ala Ala Leu Asp Pro Ala Gly Leu Val Ala Val Ala Val Cys His Gly 50 55 60 Phe Ala Leu Phe Val Ala Val Ala Val Gly Ala Asn He Ser Gly Gly 65 70 75 80 His Val Asn Pro Ala Val Thr Phe Gly Leu Ala Leu Gly Gly Gin He 85 90 95 Thr Leu Leu Thr Gly Leu Phe Tyr He He Ala Gin Leu Leu Gly 100 105 110 Val Ala Cys Leu Leu Leu Lys Val Val Thr Gly Gly Leu Ala Val 115 , 120 125 Pro Thr His Asn Val Ala Ala Gly Val Gly Ala Leu Glu Gly Val Val 130 135 140 Met Glu He He He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr 145 150 ' 155 160 Ala Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro He Ala 165 170 175 He Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 180 185 190 Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala 195 200 205 Gly Asp Phe Thr Asn Asn Trp He Tyr Trp Ala Gly Pro Leu Val Gly 210 215 220 Gly Gly Leu Ala Gly Leu Thr Tyr Ser Asn Val Phe Met Gin His Glu 225 230 ' 235 240 His Ala Pro Leu Ser Ser Asp Phe 245 I <210> 70 <211> 248 <212> PRT <213> Raphanus sativus 110 <400> 70 Met Ala Gly Val Ala Phe Gly Ser Phe Asp Asp Ser Phe Ser Leu Ala 1 5 10 15 Ser Leu Arg Ala Tyr Leu Ala Glu Phe He Ser Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Ala Lys Leu Thr Ser Asp 35 . 40 45 Ala Ala Leu Asp Thr Pro Gly Leu Val Ala He Ala Val Cys His Gly 50 55 60 Phe Ala Leu Phe Val Ala Val Ala He Gly Ala Asn He Ser Gly Gly 65 70 75 80 His Val Asn Pro Ala Val Thr Phe Gly Leu Ala Val Gly Gly Gin 85 90 95 Thr Leu He Thr Gly Val Phe Tyr Trp Val Ala Gin Leu Leu Gly 100 105 110 Thr Ala Ala Cys Phe Leu Leu Lys Tyr Val Thr Gly Gly Leu Ala Val 115 ' 120 125 Pro Thr His Ser Val Ala Ala Gly Val Gly Ala He Glu Gly Val Val 130 135 140 Met Glu He He He Thr Phe Ser Leu Val Tyr Thr Val Tyr Pro Thr 145 150 155 160 Ala Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro Leu Ala 165 170 175 He Gly Leu He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 180 185 190 Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ala 195 1 200 205 Gly Asp Phe Ser Gly His Trp Val Tyr Trp Val Gly Pro Leu He Gly 210 215 220 Gly Gly Leu Ala Gly Val Thr Tyr Gly Asn Val Phe Met Thr Ser Glu 225 230 . 235 240 His Val Pro Leu Ala Ser Glu Phe 245 <210> 71 <211> 248 <212> PRT <213> Helianthus annuus <400> 71 Met Pro Gly He Ala Phe Gly Ser Phe Asp Asp Ser Phe Ser Leu Ser I l l 172135/2 15 Ser He Lys Ser Tyr Val Ala Glu Phe He Ser Thr Leu Leu Phe Val ' 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Phe Ala Lys Leu Thr Ala Asp 40 45 Ala Asp Leu Asp Pro Ala Gly Leu Val Ala He Ala Val Cys His Gly 50 55 60 Leu Ala Leu Phe Val Ala Val Ser He Ala Ala Asn He Ser Gly Gly 65 70 75 80 His Val Asn Pro Ala Val Thr Phe Gly Leu Ala Val Gly Gly Gin He 85 ' 90 95 Thr He Leu Thr Gly He Phe Tyr Trp He Ala Gin Cys He Gly Ser 100 105 110 He Ala Ala Cys Tyr Leu Leu Ser Phe Val Thr Gly Gly Leu Ala Val 115 120 125 Pro Thr His Ala Val Ala Ala Gly Val Gly Ala He Gin Gly Val Val 130 135 140 Met Glu He He He Thr Phe Ala Leu Val Tyr Asn Val Tyr Ala Thr 145 150 155 160 Ala Val Asp Pro Lys Lys Gly Asp Leu Gly Thr He Ala Pro Leu Ala 165 , 170 175 He Gly Leu He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 180 185 190 Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ala 195 200 205 Gly Asp Phe Ser Gly His Trp He Tyr Trp Val Gly Pro Leu Val Gly 210 215 220 Gly Gly Leu Ala Gly Ala lie Tyr Ser Asn Val Phe He Ser Asn Glu 225 230 235 240 His Ala Pro Leu Ser Ser Glu Phe 245 <210> 72 <211> 248 <212> PRT <213> Oryza sativa <400> 72 Met Val Lys Leu Ala Phe Gly Ser Leu Gly Asp Ser Phe Ser Ala Thr 1 5 10 15 Ser Val Lys Ala Tyr Val Ala Glu Phe He Ala Thr Leu Leu Phe Val 112 172135/2 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Gly Gin Leu Thr Asn Gly 40 45 Gly Ala Leu Asp Pro Ala Gly Leu Val Ala He Ala He Ala His Ala 50 55 60 Leu Ala Leu Phe Val Gly Val Ser Val Ala Ala Asn He Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Phe Gly Leu Ala Val Gly Gly His He 85 90 95 Thr He Leu Thr Gly Leu Phe Tyr Trp He Ala Gin Leu Leu Gly Ala 100 105 110 Ser He Ala Cys Leu Leu Leu Lys Phe Val Thr His Gly Lys Ala He 115 120 125 Pro Thr His Gly Val Ala Gly He Ser Glu Leu Glu Gly Val Val Met 130 135 140 Glu He Val He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr Ala 145 150 155 160 Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro He Ala He 165 170 175 Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser Gly 180 185 190 Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ala Gly 195 200 205 Asn Phe Ala Gly Asn Trp Val Tyr Trp Val Gly Pro Leu He Gly Gly 210 215 220 Gly Leu Ala Gly Leu Val Tyr Gly Asp Val Phe He Gly Ser Tyr Gin 225 230 235 240 Pro Val Ala Asp Gin Asp Tyr Ala 245 <210> 73 <211> 248 <212> PRT <213> Zea mays <400> 73 Met Val Lys Leu Ala Phe Gly Ser Phe Arg Asp Ser Leu Ser Ala Ala 1 5 ' 10 15 Ser Leu Lys Ala Tyr Val Ala Glu Phe He Ala Thr Leu Leu Phe Val , 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Ser Gin Leu Thr Lys Gly 113 172135/2 40 45 Gly Ala Leu Asp Pro Ala Gly Leu Val Ala He Ala He Ala His Ala 50 55' 60 Phe Ala Leu Phe Val Gly Val Ser Met Ala Ala Asn He Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Phe Gly Leu Ala Val Gly Gly His He 85 90 95 Thr He Leu Thr Gly He Leu Tyr Trp Val Ala Gin Leu Leu Gly Ala 100 105 110 Ser Val Ala Cys Phe Leu Leu Gin Tyr Val Thr His Gly Gin Ala He 115 120 125 Pro Thr His Gly Val Ser Gly He Ser Glu He Glu Gly Val Val Met 130 135 140 Glu He Val He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr Ala 145 150 , 155 160 Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro Met Ala He 165 170 175 Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser Gly 180 185 190 Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ala Gly 195 200 205 Asn Phe Ala Gly Asn Trp Val Tyr Trp Val Gly Pro Leu Val Gly Gly 210 215 220 Gly Leu Ala Gly Leu Val Tyr Gly Asp Val Phe He Ala Ser Tyr Gin 225 230 ■ 235 240 Pro Val Gly Gin Gin Glu Tyr Pro 245 <210> 74 <211> 249 <212> PRT <213> Hordeum vulgare <400> 74 Met Val Lys Leu Ala Phe Gly Ser Phe Gly Asp Ser Phe Ser Ala Thr 1 5 10 15 Ser He Arg Ser Tyr Val Ala Glu Phe He Ala Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ser Tyr Gly Gin Leu Thr Gin Gly ' 40 45 Gly Ala Leu Asp Pro Ala Gly Leu Val Ala He Ala He Ala His Ala 114 172135/2 50 55 60 Phe Ala Leu Phe Val Gly Val Ala Met Ala Ala Asn He Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Phe Gly Leu Ala Val Gly Gly His Val 85 , 90 95 Thr He Leu Thr Gly Leu Phe Tyr Trp Val Ala Gin Leu Leu Gly Ala 100 105 110 Val Ala Cys Leu Leu Leu Gin Phe Val Thr His Ala Gin Ala Met 115 '■ 120 125 Pro Thr His Ala Val Ser Gly He Ser Glu Val Glu Gly Val Val Met 130 135 140 Glu He Val He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr Ala 145 150 155 160 Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro Met Ala He 165 ' 170 175 Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser Gly 180 185 190 Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ala Gly 195 200 205 Asn Phe Ser Gly His Trp Val Tyr Trp Val Gly Pro Leu He Gly Gly 210 215 220 Gly Leu Ala Gly Leu Val Tyr Gly Asp Val Phe He Ala Ser Tyr Gin 225 230 235 240 Pro Val Gly His Gin Gin Glu Tyr Pro 245 <210> 75 <211> 228 <212> PRT <213> Antirrhinum majus <400> 75 Phe Gly Ser He Gly Asp Ser Phe Ser Val Ala Ser He Lys Ala Tyr 1 5 10 15 Val Ala Glu Phe He Ala Thr Leu Leu Phe Val Phe Ala Gly Val Gly . 25 30 Ser Ala He Ala Tyr Asn Lys Leu Thr Ser Asp Ala Ala Leu Asp Pro 40 45 Ala Gly Leu Val Ala Val Ala Val Ala His Ala Phe Ala Leu Phe Val 50 55 60 Gly Val Ser Met Ala Ala Asn Val Ser Gly Gly His Leu Asn Pro Ala 1 15 65 70 75 80 Val Thr Leu Gly Leu Ala Val Gly Gly Asn He Thr He Leu Thr Gly 85 ' 90 95 Leu Phe Tyr Trp He Ala Gin Cys Leu Gly Ser Thr Val Ala Cys Leu 100 1 105 110 Leu Leu Lys Phe Val Thr Asn Gly Leu Ser Val Pro Thr His Gly Val 115 1 120 125 Ala Ala Gly Met Asp Ala He Gin Gly Val Val Met Glu He He He 130 135 140 Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr Ala Ala Asp Pro Lys 145 150 155 160 Lys Gly Ser Leu Gly Val He Ala Pro He Ala He Gly Phe He Val 165 ' 170 175 Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser Gly Gly Ser Met Asn 180 185 190 Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ser Gly Asp Phe Ser Gin 195 200 205 Asn Trp He Tyr Trp Ala Gly Pro Leu He Gly Gly Ala Leu Ala Gly 210 215 220 Phe He Tyr Gly 225 <210> 76 <211> 248 <212> PRT <213> Zea mays <400> 76 Met Val Lys Leu Ala Phe Gly Ser Phe Arg Asp Ser Leu Ser Ala Ala 1 5 ' 10 15 Ser Leu Lys Ala Tyr Val Ala Glu Phe He Ala Thr Leu Leu Phe Val ' 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Ser Gin Leu Thr Lys Gly 35 ' 40 45 Gly Ala Leu Asp Pro Ala Gly Leu Val Ala He Ala He Ala His Ala 50 55 60 Phe Ala Leu Phe Val Gly Val Ser Met Ala Ala Asn He Ser Gly Gly 65 70 ! 75 80 His Leu Asn Pro Ala Val Thr Phe Gly Leu Ala Val Gly Gly His He 85 ' 90 95 Thr He Leu Thr Gly He Leu Tyr Trp Val Ala Gin Leu Leu Gly Ala 1 16 100 105 110 Ser Val Ala Cys Phe Leu Leu Gin Tyr Val Thr His Gly Gin Ala He 115 120 125 Pro Thr His Gly Val Ser Gly He Ser Glu He Glu Gly Val Val Met 130 135 140 Glu He Val He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr Ala 145 150 . 155 160 Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro Met Ala He 165 170 175 Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser Gly 180 ' 185 190 Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ala Gly 195 200 205 Asn Phe Ala Gly Asn Trp Val Tyr Trp Val Gly Pro Leu Val Gly Gly 210 215 220 Gly Leu Ala Gly Pro Val Tyr Gly Asp Val Phe He Ala Ser Tyr Gin 225 230 235 240 Pro Val Gly Gin Gin Glu Tyr Pro 245 <210> 77 <211> 248 <212> PRT <213> Helianthus annuus <400> 77 Met Pro Gly He Ala Phe Gly Ser Phe Asp Asp Ser Phe Ser Ser Ser 1 5 ' 10 15 Ser He Lys Ala Tyr He Ala Glu Phe He Ser Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Ala Lys Leu Thr Ala Asp 35 40 45 Ala Ala Leu Asp Pro Pro Gly Leu Val Ala Val Ala Val Cys His Gly 50 55 60 Phe Ala Leu Phe Val Ala Val Cys He Ala Ala Asn He Cys Gly Gly 65 70 75 80 His Val Asn Pro Ala Val Thr Leu Gly Leu Ala Val Gly Gly Gin He 85 ' 90 95 Thr Phe Leu Thr Gly Leu Phe Tyr Trp He Ala Gin Leu Leu Gly Ser 100 105 110 Thr Val Ala Cys Phe Leu Leu Ser Phe Val Thr Gly Gly Leu Ala Val 1 17 172135/2 115 120 125 Pro Thr His Gly Val Ala Glu Gly Val Gly Thr He Gin Gly Val Val 130 135 140 Phe Glu He He He Thr Phe Ala Met Val Tyr Thr Val Tyr Ala Thr 145 150 ; 155 160 Ala Cys Asp Pro Lys Lys Gly Ala Leu Gly Thr He Ala Pro He Ala 165 170 175 He Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 180 185 190 Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ser 195 200 205 Phe Asp Phe Ser Gly His Trp He Tyr Trp Val Gly Pro Leu Val Gly 210 215 220 Gly Gly Leu Ala Gly Leu He Tyr Pro Asn Val Phe He Ser Asn Glu 225 230 235 240 His He Pro Leu Thr Asn Glu 245 <210> 78 <211> 248 <212> PRT <213> Helianthus annuus <400> 78 Met Pro Gly He Ala Phe Gly Ser Phe Asp Asp Ser Phe Ser Ser Ser 1 5 10 15 Ser He Lys Ala Tyr He Ala Glu Phe He Ser Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Ala Lys Leu Thr Ala Asp 40 45 Ala Ala Leu Asp Pro Ser Gly Leu Val Ala He Ala Val Cys His Gly 50 55 60 Leu Ala Leu Phe Val Ala Val Ser He Ala Ala Asn He Ser Gly Gly 65 70 75 80 His Val Asn Pro Ala Val Thr Phe Gly Leu Ala Val Gly Gly Gin He 85 90 95 Thr He Leu Thr Gly Leu Phe Tyr Trp He Ala Gin Leu Leu Gly Ser 100 ' 105 110 Val Ala Ala Cys Phe Leu Leu Ser Phe Val Thr Gly Gly Leu Ala Val 115 120 125 Pro Thr His Gly Val Ala Ala Gly Val Gly Val Leu Gin Gly Val Val 1 1 8 1 72 135/2 130 135 140 Phe Glu He He He Thr he Ala Leu Val Tyr Thr Val Tyr Ala Thr 145 150 155 160 Ala Cys Asp Pro Lys Lys Gly Ala Leu Gly Thr He Ser Pro He Ala 165 ' 170 175 He Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 180 185 190 Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Thr Val Ala Ala 195 200 205 Phe Asp Phe Ser Gly His rp Phe Tyr Trp Val Gly Pro Leu He Gly 210 215 220 Gly Gly Leu Ala Gly Ala He Tyr Pro Asn Val Phe He Ser Asn Glu 225 230 ' 235 240 His He Pro Leu Thr Asn Asp Tyr 245 <210> 79 <211> 248 <212> PRT <213> Vernicia fordii <400> 79 Met Ala Arg He Ala Phe Gly Arg Phe Asp Asp Ser Phe Ser Leu Gly 1 5 10 15 Phe Lys Ala Tyr Leu Ala Glu Phe He Ser Thr Leu Leu Tyr Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Asn Lys Leu Thr Ala Asn 40 45 Ala Ala Leu Asp Pro Ala Gly Leu Val Ala He Ala He Cys His Gly 50 55 60 Phe Ala Leu Phe Val Ala Val Ala Val Gly Ala Asn He Ser Gly Gly 65 70 75 80 His Val Asn Pro Ala Val Ala Phe Gly Leu Ala Leu Gly Gly Gin 85 90 95 Thr He Leu Thr Gly He Phe Tyr Trp He Ala Gin Leu Leu Gly Ser 100 105 110 He Val Ala Cys Phe Leu Leu Lys Leu Val Thr Gly Gly Leu Ala He 115 i 120 125 Pro Thr His Ser Val Ala Gly Arg Val Gly Ala He Glu Gly Val Val 130 135 140 Met Glu He He He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr 1 19 1 72135/2 145 150 155 160 ftla Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro He Ala 165 170 175 He Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser ISO ! 185 190 Gly Gly Ser Met Tyr Pro Ala Arg Ser Phe Gly Pro Ala Val Val Ser 195 200 205 Gly Asp Phe His Asp Asn Trp He Tyr Trp Val Gly Pro Leu He Gly 210 215 220 Gly Gly Leu Ala Gly Leu lie Tyr Gly Asn Leu Tyr He Ser Gly Asp 225 230 235 240 His Thr Pro Leu Ser Asn Asp Phe 245 <210> 80 <211> 248 <212> PRT <213> Daucus carota <400> 80 Met Val Lys Leu Ala He Gly Ser Val Gly Asp Ser Phe Ser Ala Val 1 5 10 15 Ser Leu Lys Ser Tyr Leu Ala Glu Phe He Ala Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Gly His Leu Thr Ala Asp 40 45 Ala Ala Leu Asp Pro Ala Gly Leu Val Ala He Ala He Ala His Ala 50 55 60 Phe Ala Leu Phe Val Gly Val Ser Met Ala Ala Asn He Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Leu Gly Leu Ala He Gly Gly Asn He 85 90 95 Thr He He Thr Gly Leu Phe Tyr Trp He Ala Gin Cys Leu Gly Ser 100 105 110 Thr Val Ala Cys Phe Leu Leu Lys Phe Val Thr Ala Gly Lys Ala He 115 120 125 Pro Thr His Gly Val Gly Ala Gly Leu Gly Ala Ala Glu Gly Val Val 130 135 140 Phe Glu He Val He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr 145 150 ' 155 160 Ala Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro He Ala 120 172135/2 165 170 175 lie Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 180 185 190 Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala 195 200 205 Phe Asp Phe Ser Gly His Trp He Tyr Trp Val Gly Pro Leu He Gly 210 215 220 Gly Gly Leu Ala Gly Leu Val Tyr Gly Asp Val Phe He Gly Ser Tyr 225 230 235 240 Ala Pro He Ala Glu Asp Tyr Ala 245 <210> 81 <211> 250 <212> PRT <213> Antirrhinum majus <400> 81 Met Val Lys He Ala Phe Gly Ser He Gly Asp Ser Phe Ser Val Ala 1 5 10 15 Ser He Lys Ala Tyr Val Ala Glu Phe He Ala Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Asn Lys Leu Thr Ser Asp 40 45 Ala Ala Leu Asp Pro Ala Gly Leu Val Ala Val Ala Val Ala His Ala 50 55 60 Phe Ala Leu Phe Val Gly Val Ser Met Ala Ala Asn Val Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Leu Gly Leu Ala Val Gly Gly Asn He 85 90 95 Thr He Leu Thr Gly Leu Phe Tyr Trp He Ala Gin Cys Leu Gly Ser 100 ' 105 110 Thr Val Ala Cys Leu Leu Leu Lys Phe Val Thr Asn Gly Leu Ser Val 115 120 125 Pro Thr His Gly Val Ala Ala Gly Met Asp Ala He Gin Gly Val Val 130 135 140 Met Glu He He He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr 145 150 155 160 Ala Ala Asp Pro Lys Lys Gly Ser Leu Gly Val He Ala Pro He Ala 165 170 175 He Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 121 180 185 190 Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ser 195 200 205 Gly Asp Phe Ser Gin Asn Trp He Tyr Trp Ala Gly Pro Leu He Gly 210 215 220 Gly Ala Leu Ala Gly Phe He Tyr Gly Asp Val Phe He Thr Ala His 225 230 235 240 Ala Pro Leu Pro Thr Ser Glu Asp Tyr Ala 245 250 <210> 82 <211> 250 <212> PRT <213> Nicotiana tabacum <400> 82 Met Val Arg He Ala Phe Gly Ser He Gly Asp Ser Phe Ser Val Gly 1 5 10 15 Ser Leu Lys Ala Tyr Val Ala Glu Phe He Ala Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Asn Lys Leu Thr Ala Asp 35 40 45 Ala Ala Leu Asp Pro Ala Gly Leu Val Ala Val Ala Val Ala His Ala 50 55 60 Phe Ala Leu Phe Val Gly Val Ser He Ala Ala Asn He Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Leu Gly Leu Ala Val Gly Gly Asn 85 90 95 Thr He Leu Thr Gly Phe Phe Tyr Trp He Ala Gin Leu Leu Gly Ser 100 105 110 Thr Val Ala Cys Leu Leu Leu Lys Tyr Val Thr Asn Gly Leu Ala Val 115 120 125 Pro Thr His Gly Val Ala Ala Gly Leu Asn Gly Leu Gin Gly Val Val 130 135 140 Met Glu He He He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr 145 150 155 160 Ala Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro He Ala 165 170 175 He Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 180 185 190 Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Val Ala 122 172135/2 195 200 205 Gly Asp Phe Ser Gin Asn Trp He Tyr Trp Ala Gly Pro Leu He Gly 210 215 220 Gly Gly Leu Ala Gly Phe He Tyr Gly Asp Val Phe He Gly Cys His 225 230 235 240 Thr Pro Leu Pro Thr Ser Glu Asp Tyr Ala 245 250 <210> 83 <211> 250 <212> PRT <213> Helianthus annuus <400> 83 Met Val Lys Leu Ala He Gly Ser He Gly Asp Ser Leu Ser Ala Gly 1 5 10 15 Ser He Lys Ser Tyr Leu Ala Glu Phe He Ala Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Gly Lys Leu Thr Thr Asp 40 45 Ala Ala Leu Asp Pro Ala Gly Leu Val Ala He Ala He Ala His Ala 50 55 60 Phe Ala Leu Phe Val Gly Val Ser Met Ala Ala Asn He Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Phe Gly Leu Ala He Gly Gly Asn 85 90 95 Thr He He Thr Gly Leu Phe Tyr Trp He Ala Gin Cys Leu Gly Ser 100 105 110 Val Ala Cys Phe Leu Leu Gin Phe Val Thr Gly Gly Leu Ala Val 115 120 125 Pro Thr His Gly Val Ala Asp Gly Met Asn Gly Val Gin Gly Val Val 130 135 140 Met Glu He He He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr 145 150 155 160 Ala Val Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro Met Ala 165 170 175 He Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 180 185 190 Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Val Ser 195 200 205 Gly Asp Phe Ser Gin Asn Trp He Tyr Trp Val Gly Pro Leu He Gly 123 172135/2 210 215 220 Gly Gly Leu Ala Gly Phe He Phe Gly Asp Val Phe He Gly Ser Tyr 225 230 235 240 Glu Thr Leu Pro Asp Ser Gly Asp Tyr Ala 245 250 <210> 84 <211> 250 <212> PRT <213> Solanum tuberosum <400> 84 Met Val Arg He Ala Phe Gly Ser He Gly Asp Ser Leu Ser Val Gly 1 5 10 15 Ser Leu Lys Ala Tyr Leu Ala Glu Phe He Ala Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Asn Lys Leu Thr Ser Asp 40 45 Ala Ala Leu Asp Pro Ala Gly Leu Val Ala He Ala Val Ala His Ala 50 55 60 Phe Ala Leu Phe Val Gly Val Ser Met Ala Ala Asn He Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Leu Gly Leu Ala Val Gly Gly Asn He 85 90 95 Thr Thr Leu Thr Gly Leu Phe Tyr Trp Val Ala Gin Leu Leu Gly Ser 100 105 110 Thr Val Ala Cys Leu Leu Leu Lys Tyr Val Thr Asn Gly Leu Ala Val 115 120 125 Pro Thr His Gly Val Ala Ala Gly Met Asn Gly Ala Glu Gly Val Val 130 135 140 Met Glu He Val He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr 145 150 155 160 Ala Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro He Ala 165 170 175 He Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 180 185 190 Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Val Ala 195 200 205 Gly Asp Phe Ser Gin Asn Trp He Tyr Trp Val Gly Pro Leu He Gly 210 215 220 Gly Gly Leu Ala Gly Phe He Tyr Gly Asp Val Phe He Gly Ser His 124 225 230 235 240 Thr Pro Leu Pro Thr Ser Glu Asp Tyr Ala 245 250 <210> 85 <211> 250 <212> PRT <213> Nicotiana tabacum <400> 85 Met Val Leu He Ala Phe Gly Ser He Gly Asp Ser Phe Ser Val Gly 1 5 10 15 Ser Leu Lys Ala Tyr Val Ala Glu Phe He Ala Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Asn Lys Leu Thr Ala Asp 35 40 45 Ala Ala Leu Asp Pro Ala Gly Leu Val Ala Val Ala Val Ala His Ala 50 55 60 Phe Ala Leu Phe Val Gly Val Ser He Ala Ala Asn He Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Leu Gly Leu Ala Val Gly Gly Asn 85 90 95 Thr He Leu Thr Gly Phe Phe Tyr Trp He Ala Gin Leu Leu Gly Ser 100 105 110 Thr Val Ala Cys Leu Leu Leu Lys Tyr Val Thr Asn Gly Leu Ala Val 115 120 125 Pro Thr His Gly Val Ala Ala Gly Leu Asn Gly Phe Gin Gly Val Val 130 135 140 Met Glu He He He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr 145 150 155 160 Ala Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro He Ala 165 170 175 He Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 180 185 190 Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Val Ala 195 200 205 Gly Asp Phe Ser Gin Asn Trp He Tyr Trp Ala Gly Pro Leu He Gly 210 215 220 Gly Gly Leu Ala Gly Phe He Tyr Gly Asp Val Phe He Gly Cys His 225 230 235 240 Thr Pro Leu Pro Thr Ser Glu Asp Tyr Ala 125 172135/2 245 250 <210> 86 <211> 250 <212> PRT <213> Lycopersicon esculentum <400> 86 Met Val Arg He Ala Phe Gly Ser He Gly Asp Ser Leu Ser Val Gly 1 5 10 15 Ser Leu Lys Ala Tyr Leu Ala Glu Phe He Ala Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Phe Asn Lys Leu Thr Ser Gly 40 45 Ala Ala Leu Asp Pro Ala Gly Leu Val Ala He Ala Val Ala His Ala 50 55 60 Phe Ala Leu Phe Val Gly Val Ser Met Ala Ala Asn He Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Leu Gly Leu Ala Val Gly Gly Asn He 85 90 95 Thr He Leu Thr Gly Leu Phe Tyr Trp Val Ala Gin Leu Leu Gly Ser 100 105 110 Thr Val Ala Cys Leu Leu Leu Lys Tyr Val Thr Asn Gly Leu Ala Val 115 120 125 Pro Thr His Gly Val Ala Ala Gly Met Ser Gly Ala Glu Gly Val Val 130 135 140 Met Glu He Val He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr 145 150 155 160 Ala Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro He Ala 165 170 175 He Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 180 185 190 Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Val Ala 195 200 205 Gly Asp Phe Ser Gin Asn Trp He Tyr Trp Val Gly Pro Leu He Gly 210 215 220 Gly Gly Leu Ala Gly Phe He Tyr Gly Asp Val Phe He Gly Cys His 225 230 235 240 Thr Pro Leu Pro Thr Ser Glu Asp Tyr Ala 245 250 <210> 87 126 172135/2 <211> 234 <212> PRT <213> Arabidopsis thaliana <400> 87 Met Val Ser Pro Glu Asn Ala Asn Trp He Cys Asp Leu He Asp Ala 1 5 10 15 Asp Tyr Gly Ser Phe Thr He Gin Gly Pro Gly Phe Ser Trp Pro Val 25 30 Gin Gin Pro He Gly Val Ser Ser Asn Ser Ser Ala Gly Val Asp Gly 40 45 Ser Ala Gly Asn Ser Glu Ala Ser Lys Glu Pro Gly Ser Lys Lys Arg 50 55 60 Gly Arg Cys Glu Ser Ser Ser Ala Thr Ser Ser Lys Ala Cys Arg Glu 65 70 75 80 Lys Gin Arg Arg Asp Arg Leu Asn Asp Lys Phe Met Glu Leu Gly Ala 85 90 95 He Leu Glu Pro Gly Asn Pro Pro Lys Thr Asp Lys Ala Ala He Leu 100 105 110 Val Asp Ala Val Arg Met Val Thr Gin Leu Arg Gly Glu Ala Gin Lys 115 120 125 Leu Lys Asp Ser Asn Ser Ser Leu Gin Asp Lys He Lys Glu Leu Lys 130 135 140 Thr Glu Lys Asn Glu Leu Arg Asp Glu Lys Gin Arg Leu Lys Thr Glu 145 150 155 160 Lys Glu Lys Leu Glu Gin Gin Leu Lys Ala Met Asn Ala Pro Gin Pro 165 170 175 Ser Phe Phe Pro Ala Pro Pro Met Met Pro Thr Ala Phe Ala Ser Ala 180 185 190 Gin Gly Gin Ala Pro Gly Asn Lys Met Val Pro He He Ser Tyr Pro 195 200 205 Gly Val Ala Met Trp Gin Phe Met Pro Pro Ala Ser Val Asp Thr Ser 210 215 220 Gin Asp His Val Leu Arg Pro Pro Val Ala 225 230 <210> 88 <211> 234 <212> PRT <213> Arabidopsis thaliana <400> 88 Met Val Ser Pro Glu Asn Ala Asn Trp He Cys Asp Leu He Asp Ala 1 5 10 15 127 172135/2 Asp Tyr Gly Ser Phe Thr lie Gin Gly Pro Gly Phe Ser Trp Pro Val 25 30 Gin Gin Pro lie Gly Val Ser Ser Asn Ser Ser Ala Gly Val Asp Gly 40 45 Ser Ala Gly Asn Ser Glu Ala Ser Lys Glu Pro Gly Ser Lys Lys Arg 50 55 60 Gly Arg Cys Glu Ser Ser Ser Ala Thr Ser Ser Lys Ala Cys Arg Glu 65 70 75 80 Lys Gin Arg Arg Asp Arg Leu Asn Asp Lys Phe Met Glu Leu Gly Ala 85 90 95 He Leu Glu Pro Gly Asn Pro Pro Lys Thr Asp Lys Ala Ala He Leu 100 105 110 Val Asp Ala Val Arg Met Val Thr Gin Leu Arg Gly Glu Ala Gin Lys 115 120 125 Leu Lys Asp Ser Asn Ser Ser Leu Gin Asp Lys He Lys Glu Leu Lys 130 135 140 Thr Glu Lys Asn Glu Leu Arg Asp Glu Lys Gin Arg Leu Lys Thr Glu 145 150 155 160 Lys Glu Lys Leu Glu Gin Gin Leu Lys Ala He Asn Ala Pro Gin Pro 165 170 175 Ser Phe Phe Pro Ala Pro Pro Met Met Pro Thr Ala Phe Ala Ser Ala 180 185 190 Gin Gly Gin Ala Pro Gly Asn Lys Met Val Pro He He Ser Tyr Pro 195 200 205 Gly Val Ala Met Trp Gin Phe Met Pro Pro Ala Ser Val Asp Thr Ser 210 215 220 Gin Asp His Val Leu Arg Pro Pro Val Ala 225 230 <210> 89 <211> 216 <212> PRT <213> Oryza sativa <400> 89 Cys Gly Ala Phe Pro Trp Asp Ala Ser Pro Ser Cys Ser Asn Pro Ser 1 5 10 15 Val Glu Val Ser Ser Tyr Val Asn Thr Thr Ser Tyr Val Leu Lys Glu 25 30 Pro Gly Ser Asn Lys Arg Val Arg Ser Gly Ser Cys Gly Arg Pro Thr 40 45 128 172135/2 Ser Lys Ala Ser Arg Glu Lys He Arg Arg Asp Lys Met Asn Asp Arg 50 55 60 Phe Leu Glu Leu Gly Thr Thr Leu Glu Pro Gly Lys Pro Val Lys Ser 65 TO 75 80 Asp Lys Ala Ala He Leu Ser Asp Ala Thr Arg Met Val He Gin Leu 85 90 95 Arg Ala Glu Ala Lys Gin Leu Lys Asp Thr Asn Glu Ser Leu Glu Asp 100 105 110 Lys He Lys Glu Leu Lys Ala Glu Lys Asp Glu Leu Arg Asp Glu Lys 115 120 125 Gin Lys Leu Lys Val Glu Lys Glu Thr Leu Glu Gin Gin Val Lys He 130 135 140 Leu Thr Ala Thr Pro Ala Tyr Met Pro His Pro Thr Leu Met Pro Ala 145 150 155 160 Pro Tyr Pro Gin Ala Pro Leu Ala Pro Phe His His Ala Gin Gly Gin 165 170 175 Ala Ala Gly Gin Lys Leu Met Met Pro Phe Val Gly Tyr Pro Gly Tyr 180 185 190 Pro Met Trp Gin Phe Met Pro Pro Ser Glu Val Asp Thr Ser Lys Asp 195 200 205 Ser Glu Ala Cys Pro Pro Val Ala 210 215 <210> 90 <211> 226 <212> PRT <213> Arabidopsis thaliana <400> 90 Met Val Ser Pro Glu Asn Thr Asn Trp Leu Ser Asp Tyr Pro Leu He 1 5 10 15 Glu Gly Ala Phe Ser Asp Gin Asn Pro Thr Phe Pro Trp Gin He Asp 25 30 Gly Ser Ala Thr Val Ser Val Glu Val Asp Gly Phe Leu Cys Asp Ala 40 45 Asp Val He Lys Glu Pro Ser Ser Arg Lys Arg He Lys Thr Glu Ser 50 55 60 Cys Thr Gly Ser Asn Ser Lys Ala Cys Arg Glu Lys Gin Arg Arg Asp 65 70 75 80 Arg Leu Asn Asp Lys Phe Thr Glu Leu Ser Ser Val Leu Glu Pro Gly 85 90 95 129 172135/2 Arg Thr Pro Lys Thr Asp Lys Val Ala He He Asn Asp Ala He Arg 100 105 110 Met Val Asn Gin Ala Arg Asp Glu Ala Gin Lys Leu Lys Asp Leu Asn 115 120 125 Ser Ser Leu Gin Glu Lys He Lys Glu Leu Lys Asp Glu Lys Asn Glu 130 135 140 Leu Arg Asp Glu Lys Gin Lys Leu Lys Val Glu Lys Glu Arg He Asp 145 150 155 160 Gin Gin Leu Lys Ala He Lys Thr Gin Pro Gin Pro Gin Pro Cys Phe 165 170 175 Leu Pro Asn Pro Gin Thr Leu Ser Gin Ala Gin Ala Pro Gly Ser Lys 180 185 190 Leu Val Pro Phe Thr Thr Tyr Pro Gly Phe Ala Met Trp Gin Phe Met 195 200 205 Pro Pro Ala Ala Val Asp Thr Ser Gin Asp His Val Leu Arg Pro Pro 210 215 220 Val Ala 225 <210> 91 <211> 256 <212> PRT <213> Oryza sativa <400> 91 Met Ala Ser Pro Glu 1 5 10 15 Asp Asp Leu Ala Ala Ala Ala Gly Phe Asp Ala Ala Pro Ala Gly Gly 25 30 Phe Tyr Trp Thr Thr Pro Ala Pro Pro Gin Ala Ala Leu Gin Pro Pro 40 45 Pro Pro Gin Gin Gin Pro Val Ala Pro Ala Thr Ala Ala Pro Asn Ala 50 55 60 Cys Ala Glu He Asn Gly Ser Val Asp Cys Glu His Gly Lys Glu Gin 65 70 75 80 Pro Thr Asn Lys Arg Pro Arg Ser Glu Ser Gly Thr Arg Pro Ser Ser 85 90 95 Lys Ala Cys Arg Glu Lys Val Arg Arg Asp Lys Leu Asn Glu Arg Phe 100 105 110 Leu Glu Leu Gly Ala Val Leu Glu Pro Gly Lys Thr Pro Lys Met Asp 115 120 125 130 Lys Ser Ser He Leu Asn Asp Ala He Arg Val Met Ala Glu Leu Arg 130 135 140 Ser Glu Ala Gin Lys Leu Lys Glu Ser Asn Glu Ser Leu Gin Glu Lys 145 150 155 160 Lys Glu Leu Lys Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gin 165 170 175 Lys Leu Lys Ala Glu Lys Glu Ser Leu Glu Gin Gin He Lys Phe Leu 180 185 190 Asn Ala Arg Pro Ser Phe Val Pro His Pro Pro Val He Pro Ala 195 200 205 Ala Phe Thr Ala Pro Gin Gly Gin Ala Ala Gly Gin Lys Leu Met Met 210 215 220 Pro Val He Gly Tyr Pro Gly Phe Pro Met Trp Gin Phe Met Pro Pro 225 230 235 240 Ser Asp Val Asp Thr Thr Asp Asp Thr Lys Ser Cys Pro Pro Val Ala 245 250 255 <210> 92 <211> 253 <212> PRT <213> Oryza sativa <400> 92 Met Ser Gly Thr Pro Ala Asp Gly Gly Gly Gly Gly Gly Gly Gly Gly 1 5 10 15 Gly Gly Ser Gly Asp Asp Trp Phe Leu Asp Cys Gly He Leu Glu Asp 25 30 Leu Pro Ala Ala Ala Cys Gly Ala Phe Pro Trp Asp Ala Ser Pro Ser 35 40 45 Cys Ser Asn Pro Ser Val Glu Val Ser Ser Tyr Val Asn Thr Thr Ser 50 55 60 Tyr Val Leu Lys Glu Pro Gly Ser Asn Lys Arg Val Arg Ser Gly Ser 65 70 75 80 Cys Gly Arg Pro Thr Ser Lys Ala Ser Arg Glu Lys He Arg Arg Asp 85 90 95 Lys Met Asn Asp Arg Phe Leu Glu Leu Gly Thr Thr Leu Glu Pro Gly 100 105 110 Lys Pro Val Lys Ser Asp Lys Ala Ala He Leu Ser Asp Ala Thr Arg 115 120 125 Met Val He Gin Leu Arg Ala Glu Ala Lys Gin Leu Lys Asp Thr Asn 130 135 140 131 172135/2 Glu Ser Leu Glu Asp Lys He Lys Glu Leu Lys Ala Glu Lys Asp Glu 145 150 155 160 Leu Arg Asp Glu Lys Gin Lys Leu Lys Val Glu Lys Glu Thr Leu Glu 165 170 175 Gin Gin Val Lys He Leu Thr Ala Thr Pro Ala Tyr Met Pro His Pro 180 185 190 Thr Leu Met Pro Ala Pro Tyr Pro Gin Ala Pro Leu Ala Pro Phe His 195 200 205 His Ala Gin Gly Gin Ala Ala Gly Gin Lys Leu Met Met Pro Phe Val 210 215 220 Gly Tyr Pro Gly Tyr Pro Met Trp Gin Phe Met Pro Pro Ser Glu Val 225 230 235 240 Asp Thr Ser Lys Asp Ser Glu Ala Cys Pro Pro Val Ala <210> 93 <211> 1037 <212> DNA <213> Sorghum bicolor <400> 93 acggtaacag agcaatttca gatcagtaga tgcgaacaaa aaccttgctc actcttctct 60 catttcatag cggaaagtaa ccaaagcgga cagtaacatc atcgaacacg ggggtaccaa 120 cacctaatcc aaaggttcaa cggacactaa cacatgggta actcagaatc caacggaacg 180 gtaacacgat actatagata gatagatagc taggataact tggccgaagc cagggtgggc 240 ccacacaatc agttctcgca ctcgcgcgcc tttcccattc gcgccgccgc cgccgccgct 300 gcaagcgcca gctcgccgtc gtccgagcca aacaccccaa cgccgccatg gggcgtatgc 360 acagccgcgg gaagggtatc tcgtcgtcgg cgctgccgta caagaggacg ccgccgacct 420 ggctcaagac cgccgcctcc gacgtggagg agatgatcac taaggcggcg aagaagggtc 480 agatgccgtc gcagatcggc gtcctgctcc gtgaccagca cggtatcccc cttgtcaaga 540 gcgtcacggg cagcaagatc ctccgcatcc tcaaggccca tgggctggcg ccagaaatcc 600 cggaggacct ctacttcctc atcaagaagg cggtggcgat aaggaagcac cttgagagga 660 acaggaagga caaagactcc aaattcaggc tcattcttgt tgagagcagg atccaccgcc 720 ttgcccgcta ctacaagcgc acaaagaagc ttccacccac ctggaagtat gagtcaacca 780 ccgcaagcac tctggtggcc taagtgagga gctcaacatt aggtgcttga agctgggcta 840 ttcttggaat catttttatg taccgtttta tgagtttgga gtgaactaga gatcttgaat 900 gtcctgtgga ggatgccata aacccttttg gttacataga actgcctgtt gttaactttt 960 gctactcggc atccagattt tgtcagctat aatatgatca tttacattac atggtttgcc 1020 cctaccttcc tgcagtc 1037 <210> 94 <211> 1346 132 172135/2 <212> DNA <213> Sorghum bicolor <400> 94 aagagaagag cagcagcagc aacagccgcg ccatccgctt gcttccttcc ttcctcttct 60 ctccctccta ccccaccgcc ggcgtcgcct cttcgcgttg cgcgccctcg cgtcgcaccc 120 gtgggtagca gccgcgtacc taccaacctg cgtgctgccg ggggagctct gcacgtctcc 180 tgtcgcctcg cctctcggca tggacgccgg gggagagaag ttcagcgacg cggcggcggc 240 ggagggcggt gagggcggcg gcgacctcta cgccgtcctc gggctcaaga aggagtgctc 300 cgacgccgac ctcaaggtcg cttaccggaa gctcgccaag aaatggcacc cggacaaatg 360 ctcctcctcc agcagcgtga aacacatgga ggaagccaag gagaagttcc aagagatcca 420 gggcgcctat tccgtactct ctgacgccaa taaacggctc ctctacgatg ttggagtata 480 cgacgatgag gacgacgagg atagcatgca ggggatgggt gacttcattg gtgagatggc 540 ccagatgatg agccaggtgc ggccgacgag gcaggaaagc tttgaggagc tgcagcagct 600 ttttgtggac atgttccagt ctgatattga ttcaggattc tgcaacgggt ctgctaagga 660 tcaagttcag gggcaagcca aaagtagaac atgctcgacc tcaccttcat catcaccgtc 720 cccacctcct cctcctacta tagtaaagga ggcagaggtg tcatcatgta atggcttcaa 780 taagcggggt tcatcagcaa tggactcagg gaagcctcca aggcctgttg aaggcggtgc 840 tggtcaggct ggattttgtt ttggggtgag cgatacgaag caaacgccga agccgagagg 900 tccgaacacc agccggagga ggaacggccg gaaacagaag ctgtcatcca agcacgatgt 960 ttcatctgaa gatgaaacgg ccggttccta gcaccagcag ctacggtagc agtttgacct 1020 gtggctttgg tgatatcatt cgttggtcct tggcggtgcc gagggcccta gtagccagca 1080 gcggcaggga ggcacagcat gtcgcttctg ctagctgctg tgatctgaag aggcgtttag 1140 ctcatcatat gccttacctt aggcctgtga gggacttcca ttgaaactcg tcgaggatac 1200 tgcatttttc tttctccatc tgtgtcggtt gtgttgtaca atacattgag tgacttctaa 1260 tcgattcttt ttttttacca ttaattaaca tctggtatat ccgattgatc gatccctagc 1320 cactgattac atgcatgagt tctttg 1346 <210> 95 <211> 1623 <212> DNA <213> Sorghum bicolo:r <400> 95 gcacgaggcc ctcttccgcc tcctctctct ctctctctct ctctcggctc tcgctctcag 60 acgactgctg ggcagccgcc gccctaggcc aggtgctgag gctttccctg gtctcttcgc 120 cgtcgacgag cacccaccag taggtacttg attggacgag ccatggacag cctgtggcat 180 ctgggggacg agctccgtgg gcaaccgaag gtggtggagg accgccagtg gtcgctcatg 240 acgtccaagc tggcggagat caccaggtcc aagggcgaga ggatgaacga cctcgactac 300 gccaggatga acaccgtccc tgacgccaag cagtgggaca agacgtcctt ccagcatcat 360 gaccagagca ggatggacca catcaatctc ggcctcatga acctggatct caagatgaac 420 gatctcaaga tgaacgaggc ccccaccgcc atgaagctcc ccttccacaa catgccctat 480 aacatgaacc caatgtaccc caaggggagc aatgccaatg tcaatgtcaa tgcgttcaag 540 133 atgaatgttg gggtgaacaa gtactccaat agtcctaacg ggaaagacgc caatgggaaa 600 aacaatggcg gcagcaacaa caatggagga aacagcaatg ggagcgcaaa cggcaattct 660 gcagttgaca agcgcttcaa gacattgcca acaagtgaga tgctaccgag gaatgaagtc 720 cttggtggat acatctttgt ctgcaacaac gataccatgc aggaggatct caagaggcag 780 ctttttggat tgccagcaag atatcgtgat tcagtccgag caattactcc tggcctgcct 840 cttttcctct ataactacac aacccaccag cttcatgggg tatttgaggc tgccagcttt 900 ggtgggtcta atatcgatcc cactgcatgg gaggataaga agtgtaaagg tgaatctaga 960 ttcccagctc aggtgaggat ccgcattagg aagctttgca agccgttgga agaggattcc 1020 ttcaggccag ttttgcacca ttatgatggc ccaaagtttc gccttgagct ctctatcgcg 1080 gagaccttgt cgctgctaga cctatgtgag aaggaaggta tctgagctgt tggggaggtg 1140 gttgccttgt gagcttctag taaatatcaa tcatccttgt atgttttgtg gatggtggtt 1200 ggttggcaat gttgtttatt ttagcgaaag ctgctgctgg ttttgttttc cctaccctgg 1260 atgaaagcaa ggacctggta cttggaaggc cccctcaaac aagctgtgag cctgtcagtg 1320 tactgcgttg tgtctgtcgt cgtcaagaac caaaccaatc ttggaccgac tgagagttgg 1380 agtgtgtatg ttttgctgtc tatctacatg tgttagtaga gtgggtatac ctgggcagaa 1440 tgggtcctca aaagatgggg ggcctatctg tatactatgt gtaatggtta agatgcatgc 1500 ggccctaagt aagggctggt gatgtcgatg ctggtgctcc tggtgtgtat tttgtactct 1560 gttgtacctt gaacctcctt tgcatttgcc ttaatgctgc tgctttttgc actgtcaaaa 1620 aaa 1623 <210> 96 <211> 1726 <212> DNA <213> Sorghum bicolor <400> 96 aaaaattccc tgcactttat ttcatttaca tcggtggttg tatcttgcac acggttcatt 60 taccatacat acatccaaac tttcctcatc aatttttcgt cgtcaggtac ttctaataaa 120 taccaaaaac ctcgggggca gctcctcttc actgccatga ttttggaagt cgccgcagta 180 gaaactcaaa gtattgtgca cctgttcaag ccaagagacg agaagatcct cctcgcagaa 240 ggccacaagc ggccaagaag cccaggcctc tcttcctcga aggcgtactc tggttctctg 300 gtcggactat ccattgtatt tgcacctcta tcagcacttg ttgcctcatc agagcccatg 360 tcccaccctc ctcctcctcc tgttgatcaa aatatctcgc tgcgcttttg cgagtccttt 420 tccctccaag gaacagaaac acccggcgct tttaccccac ccgcacccgc tttcccctcc 480 cggccaagaa caggagcaac aacaaggctc ctcctcgaga cattccattc atccatggcg 540 aagctcgtga acaagctggt cgattcgttc gaggagcaag acaccccgga cgtcggctgc 600 gtgcgcgccg tgctggccga gctcgtcctc accttcctct tcgtcttcac cggcgtctcc 660 gccgccatgg ccgccgggtc cggcgtgaag cccggcgagg ctatgccgat ggcgacgctg 720 gcggcggtgg caatcgcgca cgcgctggca gccggcgtac tggtgacggc cgggttccac 780 gtctccggcg gccacctcaa ccccgccgtg acggtggggc tcatggtgcg cggccacatc 840 accaagctcc gggcggtgct ctacgtcgcc gcgcaggtgc tggcgtcctc cctcgcctgc 900 134 atcctgctcc gctacctcag cggcggcatg gtgaccccgg tgcacgccct tggcgcgggc 960 atcagcccga tgcagggcct ggtgatggag gtgatcctca ccttctccct gctcttcgtc 1020 acctacgcca tgatcctgga cccacggagc caggtccgca ccatcggccc gctgctgacc 1080 ggcctcatcg ttggtgccaa cagcctcgcc ggtggcaact tcagcggcgc gtccatgaac 1140 ccggcacggt ccttcgggcc agccctggcc agcggggtct ggacaaacca ctggatctac 1200 tggatcggcc cgctgcttgg cgggcccctg gccgggttca tctacgagtc tttgttcatt 1260 gtgaacaaga cgcacgagcc gctgctcaat ggagacatct gacgaaccat cggcctgccc 1320 tgtggctgtg ggcagggcag tcagcatggt tggttcatgc ttgtttctgt aaaatagttc 1380 attgtctaca agcatgatgg atacatatat tggtcaaggt aattagagag ggttgctgta 1440 aaatagttac cctggtatag gattgttgga tgtagaaatt gttgatgggc tttgtatttt 1500 tttccccctt ttcatgccaa ggaattcttt tttttttaga gggcggggtt ctgtcaagga 1560 tttgttaagg ctattagtag ttagccatgt agtagaaaac tagagaatgg tatacgtggg 1620 agtgggacct gaagtttttt caggtacact gtagtactat tgtaattttg tcttgaagat 1680 ggaattggat gtacagagta aaaacttctc tttcaagcag taaaaa 1726 <210> 97 <211> 1097 <212> DNA <213> Sorghum bicolor <400> 97 gcatcagcct gataagctat agccagccat cttctctgaa ttccaactca gtccaagggc 60 tggaagcttg aagtaccgtc agagaaaaag aaaaaaagat ggtgaagctt gcatttggaa 120 gcttgggcga ctctttcagc gccgcgtccc tcaagtccta tgtggccgag ttcattgcca 180 cgctcctctt cgtgttcgcc ggcgtcgggt ccgccattgc ctactcgcaa ttgaccaagg 240 gtggcgctct ggaccccgcc ggcctggtgg ccatcgccat cgcccatgcg ttcgcgctct 300 tcgtcggcgt ctccatggcc gccaacgtct ccggcggcca cctgaacccc gccgtcacct 360 tcggcctcgc cgtcggcggc cacatcacca tcctcaccgg catcttctac tgggtcgccc 420 aggtgctcgg cgcgtccgtg gcgtgccttc tcctgaagta cgtcacccac ggacaggcta 480 tcccgacaca cggcgtgtcc gggatcagcg agatcgaggg cgtggtgatg gagatcgtga 540 tcaccttcgc gctcgtgtac accgtgtacg ccaccgcggc cgaccccaag aaggggtccc 600 tgggcaccat cgcgcccatc gccatcggct tcatcgtcgg cgccaacatc ctggcggccg 660 gacccttcag cggcggctcc atgaacccgg cccgctcctt cggccccgcc gtggccgctg 720 gcaacttcgc cggcaactgg gtctactggg tcggccccct catcggcggc ggcctggccg 780 ggctcgtcta cggcgacgtg ttcatcgcct cctaccagcc cgtcggccag caggatcagt 840 acccatgaag aaagtcgatc cggacccaaa tgcaatgcaa cccgtcgtgt tgatttcacc 900 gtcctcgtcg attcgccgtc gtgtcatcgc ttcgcgcttg tgattatgtt tggtcttgtt 960 tgcattaccc cttctggttt aattttcacc aacggtgtca acatgctgta agcgagagaa 1020 ccgttcgatc tatacctgta taaatgtaat gtacggttca gtatttccaa gtacagtata 1080 tgttccggac ggatttc 1097 <210> 98 135 172135/2 <211> 1160 <212> DNA <213> Sorghum bicolor <400> 98 gcacgaggcg gcgtcggagc ccacgaccgc ttccgcccca gtccccaccg ccctcgaccc 60 cgattccccc aatccctgcc gcgaccgctg aaccctagcc tactccggcc atctgccgct 120 ggccccggcg atcccccgcc atggcctccc ccgagggaac cacgtgggtc ttcgactgtc 180 ccctcatgga cgacctcgcg gtggccgccg acttcgcggc agcccccgcg gggggatttt 240 tctgggcagc gccgccgtcg ctacagccgc aggtggtgca ggcgccggtc cagtctgtcg 300 ttgccgcgtc ggctcccaac ccatgtgtgg aaatcagtag ctctgtggac tgtggtcagg 360 gaaaagaaca gccaacaaat aaacgtccta ggtcagaaag taccgcagaa ccaagcacaa 420 aagcatccag ggagaaaatt agaagggata agctgaacga gagattcctg gaattgggtg 480 ccattttgga gccagggaaa actcctaaaa tggacaagtc agctatatta aatgatgcta 540 ttcgtgtagt aggtgaattg cgtagcgaag caaaagagct caaggattca aatgagagcc 600 tacaagagaa gattaaagag ctaaaggctg agaagaatga gctgcgagac gagaagcaaa 660 ggctgaaggc cgagaaggag agcctggagc agcagatcaa gttcctgaat gcccgcccaa 720 gtctggtacc acaccaccca gtgatctcag cctctgcctt cactgctccc caggggccgg 780 cagtcgccgg gcacaagctg atgatgcctg tgcttggcta ccctggattc ccgatgtggc 840 agttcatgcc gccttctgat gttgacacct ctgatgaccc caagtcttgc ccacctgtgg 900 cgtaagcaag tgaagaggcg atgctgccct ccattgattc aagtctagat cgtgatcagt 960 ctgcagtgtt gttggtgtag ttgactccac tctccagaat ggaagggaag gttatatgtg 1020 tcggatggtg acatggggtg atctgatgac ccctttgtat attatatggt aaatgaataa 1080 attccgtgac cagttgcaaa tgaggattag cagactagct catgtctatt cctgcctttt 1140 tgtcgtataa accacgttgt 1160 <210> 99 <211> 151 <212> PRT <213> Sorghum bicolor <400> 99 Met Gly Arg Met His Ser Arg Gly Lys Gly lie Ser Ser Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Thr Trp Leu Lys Thr Ala Ala Ser Asp 25 30 Val Glu Glu Met lie Thr Lys Ala Ala Lys Lys Gly Gin Met Pro Ser 40 45 Gin lie Gly Val Leu Leu Arg Asp Gin His Gly lie Pro Leu Val Lys 50 55 60 Ser Val Thr Gly Ser Lys lie Leu Arg lie Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu lie Pro Glu Asp Leu Tyr Phe Leu He Lys Lys Ala Val 85 90 95 136 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Arg Thr Lys Lys Leu Pro Pro Thr Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 100 <211> 258 <212> PRT <213> Sorghum bicolor <400> 100 Met Asp Ala Gly Gly Glu Lys Phe Ser Asp Ala Ala Ala Ala Glu Gly 1 5 10 15 Gly Glu Gly Gly Gly Asp Leu Tyr Ala Val Leu Gly Leu Lys Lys Glu 25 30 Cys Ser Asp Ala Asp Leu Lys Val Ala Tyr Arg Lys Leu Ala Lys Lys 35 40 45 Trp His Pro Asp Lys Cys Ser Ser Ser Ser Ser Val Lys His Met Glu 50 55 60 Glu Ala Lys Glu Lys Phe Gin Glu He Gin Gly Ala Tyr Ser Val Leu 65 70 75 80 Asp Ala Asn Lys Arg Leu Leu Tyr Asp Val Gly Val Tyr Asp Asp 85 90 95 Glu Asp Asp Glu Asp Ser Met Gin Gly Met Gly Asp Phe He Gly Glu 100 105 110 Met Ala Gin Met Met Ser Gin Val Arg Pro Thr Arg Gin Glu Ser Phe 115 120 125 Glu Glu Leu Gin Gin Leu Phe Val Asp Met Phe Gin Ser Asp He Asp 130 135 140 Ser Gly Phe Cys Asn Gly Ser Ala Lys Asp Gin Val Gin Gly Gin Ala 145 150 155 160 Lys Ser Arg Thr Cys Ser Thr Ser Pro Ser Ser Ser Pro Ser Pro Pro 165 170 175 Pro Pro Pro Thr He Val Lys Glu Ala Glu Val Ser Ser Cys Asn Gly 180 185 190 Phe Asn Lys Arg Gly Ser Ser Ala Met Asp Ser Gly Lys Pro Pro Arg 195 200 205 137 172135/2 Pro Val Glu Gly Gly Ala Gly Gin Ala Gly Phe Cys Phe Gly Val 210 215 220 Asp Thr Lys Gin Thr Pro Lys Pro Arg Gly Pro Asn Thr Ser Arg Arg 225 230 235 240 Arg Asn Gly Arg Lys Gin Lys Leu Ser Ser Lys His Asp Val Ser Ser 245 250 255 Glu Asp <210> 101 <211> 320 <212> PRT <213> Sorghum bicolor <400> 101 Met Asp Ser Leu Trp His Leu Gly Asp Glu Leu Arg Gly Gin Pro Lys 1 5 10 15 Val Val Glu Asp Arg Gin Trp Ser Leu Met Thr Ser Lys Leu Ala Glu 25 30 Thr Arg Ser Lys Gly Glu Arg Met Asn Asp Leu Asp Tyr Ala Arg 40 45 Met Asn Thr Val Pro Asp Ala Lys Gin Trp Asp Lys Thr Ser Phe Gin 50 55 60 His His Asp Gin Ser Arg Met Asp His lie Asn Leu Gly Leu Met Asn 65 70 75 80 Leu Asp Leu Lys Met Asn Asp Leu Lys Met Asn Glu Ala Pro Thr Ala 85 90 95 Met Lys Leu Pro Phe His Asn Met Pro Tyr Asn Met Asn Pro Met Tyr 100 105 110 Pro Lys Gly Ser Asn Ala Asn Val Asn Val Asn Ala Phe Lys Met Asn 115 120 125 Val Gly Val Asn Lys Tyr Ser Asn Ser Pro Asn Gly Lys Asp Ala Asn 130 135 140 Gly Lys Asn Asn Gly Gly Ser Asn Asn Asn Gly Gly Asn Ser Asn Gly 145 150 155 160 Ser Ala Asn Gly Asn Ser Ala Val Asp Lys Arg Phe Lys Thr Leu Pro 165 170 175 Thr Ser Glu Met Leu Pro Arg Asn Glu Val Leu Gly Gly Tyr He Phe 180 185 190 Val Cys Asn Asn Asp Thr Met Gin Glu Asp Leu Lys Arg Gin Leu Phe 195 200 205 138 172135/2 Gly Leu Pro Ala Arg Tyr Arg Asp Ser Val Arg Ala lie Thr Pro Gly 210 215 220 Leu Pro Leu Phe Leu Tyr Asn Tyr Thr Thr His Gin Leu His Gly Val 225 ? 230 235 240 Phe Glu Ala Ala Ser Phe Gly Gly Ser Asn lie Asp Pro Thr Ala Trp 245 250 255 Glu Asp Lys Lys Cys Lys Gly Glu Ser Arg Phe Pro Ala Gin Val Arg 260 265 270 He Arg He Arg Lys Leu Cys Lys Pro Leu Glu Glu Asp Ser Phe Arg 275 280 285 Pro Val Leu His His Tyr Asp Gly Pro Lys Phe Arg Leu Glu Leu Ser 290 295 300 He Ala Glu Thr Leu Ser Leu Leu Asp Leu Cys Glu Lys Glu Gly He 305 310 315 320 <210> 102 <211> 381 <212> PRT <213> Sorghum bicolor <400> 102 Met He Leu Glu Val Ala Ala Val Glu Thr Gin Ser He Val His Leu 1 5 10 15 Phe Lys Pro Arg Asp Glu Lys He Leu Leu Ala Glu Gly His Lys Arg 25 30 Pro Arg Ser Pro Gly Leu Ser Ser Ser Lys Ala Tyr Ser Gly Ser Leu 40 45 Val Gly Leu Ser He Val Phe Ala Pro Leu Ser Ala Leu Val Ala Ser 50 55 60 Ser Glu Pro Met Ser His Pro Pro Pro Pro Pro Val Asp Gin Asn He 65 70 75 80 Ser Leu Arg Phe Cys Glu Ser Phe Ser Leu Gin Gly Thr Glu Thr Pro 85 90 95 Gly Ala Phe Thr Pro Pro Ala Pro Ala Phe Pro Ser Arg Pro Arg Thr 100 105 110 Gly Ala Thr Thr Arg Leu Leu Leu Glu Thr Phe His Ser Ser Met Ala 115 120 125 Lys Leu Val Asn Lys Leu Val Asp Ser Phe Glu Glu Gin Asp Thr Pro 130 135 140 Asp Val Gly Cys Val Arg Ala Val Leu Ala Glu Leu Val Leu Thr Phe 145 150 155 160 139 172135/2 Leu Phe Val Phe Thr Gly Val Ser Ala Ala Met Ala Ala Gly Ser Gly 165 Π0 175 Val Lys Pro Gly Glu Ala Met Pro Met Ala Thr Leu Ala Ala Val Ala 180 185 190 He Ala His Ala Leu Ala Ala Gly Val Leu Val Thr Ala Gly Phe His 195 200 205 Val Ser Gly Gly His Leu Asn Pro Ala Val Thr Val Gly Leu Met Val 210 215 220 Arg Gly His He Thr Lys Leu Arg Ala Val Leu Tyr Val Ala Ala Gin 225 230 235 240 Val Leu Ala Ser Ser Leu Ala Cys He Leu Leu Arg Tyr Leu Ser Gly 245 250 255 Gly Met Val Thr Pro Val His Ala Leu Gly Ala Gly He Ser Pro Met 260 265 270 Gin Gly Leu Val Met Glu Val He Leu Thr Phe Ser Leu Leu Phe Val 275 280 285 Thr Tyr Ala Met He Leu Asp Pro Arg Ser Gin Val Arg Thr He Gly 290 295 300 Pro Leu Leu Thr Gly Leu He Val Gly Ala Asn Ser Leu Ala Gly Gly 305 310 315 320 Asn Phe Ser Gly Ala Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala 325 330 335 Leu Ala Ser Gly Val Trp Thr Asn His Trp He Tyr Trp He Gly Pro 340 345 350 Leu Leu Gly Gly Pro Leu Ala Gly Phe He Tyr Glu Ser Leu Phe He 355 360 365 Val Asn Lys Thr His Glu Pro Leu Leu Asn Gly Asp He 370 375 380 <210> 103 <211> 249 <212> PRT <213> Sorghum bicolor <400> 103 Met Val Lys Leu Ala Phe Gly Ser Leu Gly Asp Ser Phe Ser Ala Ala 1 5 10 15 Ser Leu Lys Ser Tyr Val Ala Glu Phe He Ala Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Ser Gin Leu Thr Lys Gly 40 45 140 172135/2 Gly Ala Leu Asp Pro Ala Gly Leu Val Ala He Ala He Ala His Ala 50 55 60 Phe Ala Leu Phe Val Gly Val Ser Met Ala Ala Asn Val Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Phe Gly Leu Ala Val Gly Gly His He 85 90 95 Thr He Leu Thr Gly He Phe Tyr Trp Val Ala Gin Val Leu Gly Ala 100 105 110 Ser Val Ala Cys Leu Leu Leu Lys Tyr Val Thr His Gly Gin Ala He 115 120 125 Pro Thr His Gly Val Ser Gly He Ser Glu He Glu Gly Val Val Met 130 135 140 Glu He Val He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr Ala 145 150 155 160 Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro He Ala He 165 170 175 Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser Gly 180 185 190 Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ala Gly 195 200 205 Asn Phe Ala Gly Asn Trp Val Tyr Trp Val Gly Pro Leu He Gly Gly 210 215 220 Gly Leu Ala Gly Leu Val Tyr Gly Asp Val Phe He Ala Ser Tyr Gin 225 230 235 240 Pro Val Gly Gin Gin Asp Gin Tyr Pro 245 <210> 104 <211> 254 <212> PRT <213> Sorghum bicolor <400> 104 Met Ala Ser Pro Glu Gly Thr Thr Trp Val Phe Asp Cys Pro Leu Met 1 5 10 15 Asp Asp Leu Ala Val Ala Ala Asp Phe Ala Ala Ala Pro Ala Gly Gly 25 30 Phe Phe Trp Ala Ala Pro Pro Ser Leu Gin Pro Gin Val Val Gin Ala 40 45 Pro Val Gin Ser Val Val Ala Ala Ser Ala Pro Asn Pro Cys Val Glu 50 55 60 141 172135/2 He Ser Ser Ser Val Asp Cys Gly Gin Gly Lys Glu Gin Pro Thr Asn 65 70 75 80 Lys Arg Pro Arg Ser Glu Ser Thr Ala Glu Pro Ser Thr Lys Ala Ser 85 90 95 Arg Glu Lys He Arg Arg Asp Lys Leu Asn Glu Arg Phe Leu Glu Leu 100 105 110 Gly Ala He Leu Glu Pro Gly Lys Thr Pro Lys Met Asp Lys Ser Ala 115 120 125 He Leu Asn Asp Ala He Arg Val Val Gly Glu Leu Arg Ser Glu Ala 130 135 140 Lys Glu Leu Lys Asp Ser Asn Glu Ser Leu Gin Glu Lys He Lys Glu 145 150 155 160 Leu Lys Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gin Arg Leu Lys 165 170 175 Ala Glu Lys Glu Ser Leu Glu Gin Gin He Lys Phe Leu Asn Ala Arg 180 185 190 Pro Ser Leu Val Pro His His Pro Val He Ser Ala Ser Ala Phe Thr 195 200 205 Ala Pro Gin Gly Pro Ala Val Ala Gly His Lys Leu Met Met Pro Val 210 215 220 Leu Gly Tyr Pro Gly Phe Pro Met Trp Gin Phe Met Pro Pro Ser Asp 225 230 235 240 Val Asp Thr Ser Asp Asp Pro Lys Ser Cys Pro Pro Val Ala 245 250 <210> 105 <211> 151 <212> PRT <213> Zea mays <400> 105 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ser Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Thr Trp Leu Lys Thr Ala Ala Ser Asp 25 30 Val Glu Glu Met He Thr Lys Ala Ala Lys Lys Gly Gin Met Pro Ser 40 45 Gin He Gly Val Leu Leu Arg Asp Gin His Gly He Pro Leu Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 142 172135/2 Ala Pro Glu He Pro Glu Asp Leu Tyr Phe Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Arg Thr Lys Lys Leu Pro Pro Thr Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 106 <211> 171 <212> PRT <213> Saccharum of ficinarum <400> 106 Arg Arg Arg Arg Arg Arg Lys Arg Gin Leu Ala Val Ala Arg Ala Lys 1 5 10 15 His Pro Asn Ala Ala Met Gly Arg Met His Ser Arg Gly Lys Gly He 25 30 Ser Ser Ser Ala Leu Pro Tyr Lys Arg Thr Pro Pro Thr Trp Leu Lys 40 45 Thr Ala Ala Ser Asp Val Glu Glu Met He Thr Lys Ala Ala Lys Lys 50 55 60 Gly Gin Met Pro Ser Gin He Gly Val Leu Leu Arg Asp Gin His Gly 65 70 75 80 He Pro Leu Val Lys Ser Val Thr Gly Ser Lys He Leu Arg He Leu 85 90 95 Lys Ala His Gly Leu Ala Pro Glu He Pro Glu Asp Leu Tyr Phe Leu 100 105 110 He Lys Lys Ala Val Ala He Arg Lys His Leu Glu Arg Asn Arg Lys 115 120 125 Asp Lys Asp Ser Lys Phe Arg Leu He Leu Val Glu Ser Arg He His 130 135 140 Arg Leu Ala Arg Tyr Tyr Lys Arg Thr Lys Lys Leu Pro Pro Thr Trp 145 150 155 160 Lys Tyr Glu Ser Thr Thr Ala Ser Thr Leu Val 165 170 <210> 107 <211> 172 143 <212> PRT <213> Sorghum bicolor <400> 107 Arg Arg Arg Arg Arg Arg Cys Lys Arg Gin Leu Ala Val Val Arg Ala 1 5 10 15 Lys His Pro Asn Ala Ala Met Gly Arg Met His Ser Arg Gly Lys Gly 25 30 He Ser Ser Ser Ala Leu Pro Tyr Lys Arg Thr Pro Pro Thr Trp Leu 35 40 45 Thr Ala Ala Ser Asp Val Glu Glu Met He Thr Lys Ala Ala Lys 50 55 60 Lys Gly Gin Met Pro Ser Gin He Gly Val Leu Leu Arg Asp Gin His 65 70 75 80 Gly He Pro Leu Val Lys Ser Val Thr Gly Ser Lys He Leu Arg He 85 90 95 Leu Lys Ala His Gly Leu Ala Pro Glu He Pro Glu Asp Leu Tyr Phe 100 105 110 Leu He Lys Lys Ala Val Ala He Arg Lys His Leu Glu Arg Asn Arg 115 120 125 Lys Asp Lys Asp Ser Lys Phe Arg Leu He Leu Val Glu Ser Arg He 130 135 140 His Arg Leu Ala Arg Tyr Tyr Lys Arg Thr Lys Lys Leu Pro Pro Thr 145 150 155 160 Trp Lys Tyr Glu Ser Thr Thr Ala Ser Thr Leu Val 165 170 <210> 108 <211> 151 <212> PRT <213> Saccharum of ficinarum <400> 108 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ser Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Thr Trp Leu Lys Thr Ala Ala Thr Glu 25 30 Val Glu Glu Met He Thr Lys Ala Ala Lys Lys Gly Gin Met Pro Ser 35 40 45 Gin He Gly Val Leu Leu Arg Asp Gin His Gly He Pro Leu Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 144 172135/2 Ala Pro Glu He Pro Glu Asp Leu Tyr Phe Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Arg Thr Lys Lys Leu Pro Pro Thr Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 109 <211> 187 <212> PRT <213> Sorghum bicolor <400> 109 Met Pro His Ala Pro Pro Leu Ala Leu Ala Pro Pro Pro Pro Pro Gin 1 5 10 15 Leu Leu Gin Gin Gin Ala Pro Ala Arg Arg Arg Arg Leu Gly Arg His 25 30 Gin Ser Ala Ala Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser 40 45 Ser Ser Ala Leu Pro Tyr Lys Arg Thr Pro Pro Thr Trp Leu Lys Thr 50 55 60 Ala Ala Thr Glu Val Glu Glu Met He Thr Lys Ala Ala Lys Lys Gly 65 70 75 80 Gin Met Pro Ser Gin He Gly Val Leu Leu Arg Asp Gin His Gly He 85 90 95 Pro Leu Val Lys Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys 100 105 110 Ala His Gly Leu Ala Pro Glu He Pro Glu Asp Leu Tyr Phe Leu He 115 120 125 Lys Lys Ala Val Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp 130 135 140 Lys Asp Ser Lys Phe Arg Leu He Leu Val Glu Ser Arg He His Arg 145 150 155 160 Leu Ala Arg Tyr Tyr Lys Arg Thr Lys Lys Leu Pro Pro Thr Trp Lys 165 170 175 Tyr Glu Ser Thr Thr Ala Ser Thr Leu Val Ala 180 185 145 172135/2 <210> 110 <211> 184 <212> PRT <213> Oryza sativa <220> <221> misc_feature <222> (1)..(2) <223> Xaa can be any naturally occurring amino acid <400> 110 Xaa Xaa Glu Lys Thr Pro Ser Tyr Arg Arg Ser Arg Pro Ser Arg Pro 1 5 10 15 Arg Ala Pro Pro Pro Pro Pro Ala Val Ala Gly Ala Lys Pro Leu Asp 25 30 Ala Ala Met Gly Arg Met His Ser Arg Gly Lys Gly lie Ser Ser Ser 40 45 Ala Leu Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys Thr Ala Ala 50 55 60 Ser Asp Val Glu Glu Met He Met Lys Ala Ala Lys Lys Gly Gin Met 65 70 75 80 Pro Ser Gin He Gly Val Val Leu Arg Asp Gin His Gly He Pro Leu 85 90 95 Val Lys Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His 100 105 110 Gly Leu Ala Pro Glu He Pro Glu Asp Leu Tyr Phe Leu He Lys Lys 115 120 125 Ala Val Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp 130 135 140 Ser Lys Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala 145 150 155 160 Arg Tyr Tyr Lys Arg Thr Lys Lys Leu Pro Pro Thr Trp Lys Tyr Glu 165 170 175 Ser Thr Thr Ala Ser Thr Leu Val 180 <210> 111 <211> 151 <212> PRT <213> Zea mays <400> 111 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ser Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro He Trp Leu Lys Thr Ala Thr Ala Glu 25 30 146 Val Glu Glu Met He Thr Lys Ala Ala Lys Lys Gly Gin Met Pro 35 40 45 Gin He Gly Val Leu Leu Arg Asp Gin His Gly He Pro Leu Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr Phe Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Arg Thr Lys Lys Leu Pro Pro Thr Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 112 <211> 183 <212> PRT <213> Hordeum vulgare <220> <221> misc_f eature <222> ( 1 ) . . ( 2 ) <223> Xaa can be any naturally occurring amino acid <400> 112 Xaa Xaa Pro Leu Phe Tyr Pro Leu Thr Thr Arg Ala Ser Leu Ala Leu 1 5 10 15 Pro Ala Ala Ala Ala Ala Ala Ala Pro Leu Ala Ala Ala Ala Ala Ala 25 30 Ala Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ser Ser Ala 35 40 45 Leu Pro Tyr Lys Arg Thr Pro Pro Ser Trp Val Lys Thr Ala Val Ala 50 55 60 Asp Val Asp Glu Leu He Thr Lys Ala Ala Lys Lys Gly Gin Met Pro 65 70 75 80 Gin He Gly Val Leu Leu Arg Asp Gin His Gly He Pro Leu Val 85 90 95 Lys Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly 100 105 110 147 172135/2 Leu Ala Pro Glu He Pro Glu Asp Leu Tyr Phe Leu He Lys Lys Ala 115 120 125 Val Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser 130 135 140 Lys Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg 145 150 155 160 Tyr Tyr Lys Arg Thr Lys Lys Leu Pro Pro Thr Trp Lys Tyr Glu Ser 165 170 175 Thr Thr Ala Ser Thr Leu Val 180 <210> 113 <211> 178 <212> PRT <213> Oryza sativa <400> 113 Ser Ser Arg Arg Arg Arg Leu Leu Arg Arg Ala Val Ala Asn Arg Arg 1 5 10 15 Arg Arg Ser Pro Ser Pro Asn Ser Pro Leu Pro Pro Trp Gly Arg Met 25 30 His Ser Arg Gly Lys Gly He Ser Ser Ser Ala He Pro Tyr Lys Arg 40 45 Thr Pro Pro Ser Trp Val Lys Thr Ala Ala Ala Asp Val Glu Glu Met 50 55 60 He Met Lys Ala Ala Lys Lys Gly Gin Met Pro Ser Gin He Gly Val 65 70 75 80 Val Leu Arg Asp Gin His Gly He Pro Leu Val Lys Ser Val Thr Gly 85 90 95 Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu Ala Pro Glu He 100 105 110 Pro Glu Asp Leu Tyr Phe Leu He Lys Lys Ala Val Ala He Arg Lys 115 120 125 His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys Phe Arg Leu He 130 135 140 Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr Tyr Lys Arg Thr 145 150 155 160 Lys Lys Leu Pro Pro Thr Trp Lys Tyr Glu Ser Thr Thr Ala Ser Thr 165 170 175 Leu Val 148 172135/2 <210> 114 <211> 170 <212> PRT <213> Triticum aestivum <400> 114 Ala Leu Phe Tyr Pro Leu Thr Thr Arg Ala Ser Leu Ala Leu Pro Ala 1 5 10 15 Ala Ala Ala Ala Thr Pro Leu Ala Ala Ala Ala Ala Ala Ala Met Gly 25 30 Arg Met His Ser Arg Gly Lys Gly lie Ser Ser Ser Ala Leu Pro Tyr 40 45 Lys Arg Thr Pro Pro Ser Trp Val Lys Thr Ala Val Ala Asp Val Asp 50 55 60 Glu Leu lie Thr Lys Ala Ala Lys Lys Gly Gin Met Pro Ser Gin He 65 70 75 80 Gly Val Leu Leu Arg Asp Gin His Gly He Pro Leu Val Lys Ser Val 85 90 95 Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu Ala Pro 100 105 110 Glu He Pro Glu Asp Leu Tyr Phe Leu He Lys Lys Ala Val Ala He 115 120 125 Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys Phe Arg 130 135 140 Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr Tyr Lys 145 150 155 160 Arg Thr Lys Lys Leu Pro Pro Thr Trp Lys 165 170 <210> 115 <211> 177 <212> PRT <213> Triticum aestivum <220> <221> misc_feature <222> (1) .. (2) <223> Xaa can be any naturally occurring amino acid <400> 115 Xaa Xaa Ala Gly Asn Ser Ala Arg Gly Ser Ser Pro Ser Arg Pro Ser 1 5 10 15 Arg Arg Cys Cys Cys Arg Gin Pro Pro Pro Pro Ser Pro Glu Leu Asn 25 30 Pro Ser Pro Asp Ala Met Gly Arg Met His Ser Arg Gly Lys Gly He 40 45 149 172135/2 Ser Ser Ser Ala Leu Pro Tyr Lys Arg Thr Pro Pro Ser Trp Val Lys 50 55 60 Thr Ala Val Ala Asp Val Asp Glu Leu lie Thr Lys Ala Ala Lys Lys 65 70 75 80 Gly Gin Met Pro Ser Gin lie Gly Val Leu Leu Arg Asp Gin His Gly 85 90 95 lie Pro Leu Val Lys Ser Val Thr Gly Ser Lys lie Leu Arg He Leu 100 105 110 Lys Ala His Gly Leu Ala Pro Glu He Pro Glu Asp Leu Tyr Phe Leu 115 120 125 He Lys Lys Ala Val Ala He Arg Lys His Leu Glu Arg Asn Arg Lys 130 135 140 Asp Lys Asp Ser Lys Phe Arg Leu He Leu Val Glu Ser Arg He His 145 150 155 160 Arg Leu Ala Arg Tyr Tyr Lys Arg Thr Lys Lys Leu Pro Pro Thr Trp 165 170 175 Lys <210> 116 <211> 171 <212> PRT <213> Hordeum vulgare <400> 116 Arg Arg Arg Ser Cys Pro Ser Ser Pro Ser Arg Arg Cys Cys Cys Arg 1 5 10 15 Gin Pro Pro Pro Ser Ser Pro Glu Leu Asn Pro Ser Pro Asp Ala Met 25 30 Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ser Ser Ala Leu Pro 40 45 Tyr Lys Arg Thr Pro Pro Ser Trp Val Lys Thr Ala Val Ala Asp Val 50 55 60 Asp Glu Leu He Thr Lys Ala Ala Lys Lys Gly Gin Met Pro Ser Gin 65 70 75 80 He Gly Val Leu Leu Arg Asp Gin His Gly He Pro Leu Val Lys Ser 85 90 95 Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu Ala 100 105 110 Pro Glu He Pro Glu Asp Leu Tyr Phe Leu He Lys Lys Ala Val Ala 115 120 125 150 172135/2 He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys Phe 130 135 140 Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr Tyr 145 150 155 160 Lys Arg Thr Lys Lys Leu Pro Pro Thr Trp Lys 165 170 <210> 117 <211> 116 <212> PRT <213> Triticum aestivum <400> 117 Met He Thr Lys Ala Ala Lys Lys Gly Gin Met Pro Ser Gin He Gly 1 5 10 15 Val Leu Leu Arg Asp Gin His Gly He Pro Leu Val Lys Ser Val Thr 25 30 Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu Ala Pro Glu 40 45 He Pro Glu Asp Leu Tyr Phe Leu He Lys Lys Ala Val Ala He Arg 50 55 60 Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys Phe Arg Leu 65 70 75 80 He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr Tyr Lys Arg 85 90 95 Thr Lys Lys Leu Pro Pro Thr Trp Lys Tyr Glu Ser Thr Thr Ala Ser 100 105 110 Thr Leu Val Ala 115 <210> 118 <211> 116 <212> PRT <213> Zea mays <400> 118 Met He Thr Lys Ala Ala Lys Lys Gly Gin Met Pro Ser Gin He Gly 1 5 10 15 Val Leu Leu Arg Asp Gin His Gly He Pro Leu Val Lys Ser Val Thr 25 30 Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu Ala Pro Glu 40 45 He Pro Glu Asp Leu Tyr Phe Leu He Lys Lys Ala Val Ala He Arg 50 55 60 151 172135/2 Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys Phe Arg Leu 65 70 75 80 He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr Tyr Lys Arg 85 90 95 Thr Lys Lys Leu Pro Pro Thr Trp Lys Tyr Glu Ser Thr Thr Ala Ser 100 105 110 Thr Leu Val Ala 115 <210> 119 <211> 122 <212> PRT <213> Saccharum of ficinarum <400> 119 Met He Thr Asn Ala Ala Lys Lys Gly Gin Met Pro Ser Gin He Gly 1 5 10 15 Val Leu Val Arg Asp Gin His Gly He Pro Leu Val Lys Ser Val Thr 25 30 Gly Ser Met He Leu Arg He Leu Lys Ala His Gly Leu Ser Leu Glu 40 45 He Pro Glu Asp Leu Tyr Phe Leu He Lys Lys Ala Val Trp He Arg 50 55 60 Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Phe Lys Phe Thr Leu 65 70 75 80 He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr Tyr Lys Arg 85 90 95 Thr Lys Lys Leu Pro Pro Thr Cys Lys Tyr Glu Thr Thr Thr Gly Ser 100 105 110 Thr Leu Val Ala He Val Val Ser Ser Thr 115 120 <210> 120 <211> 210 <212> PRT <213> Triticum aestivum <220> <221> misc_f eature <222> ( 38 ) . . ( 38 ) <223> Xaa can be any naturally occurring amino acid <400> 120 Met Pro Ser Gin He Gly Val Leu Leu Arg Asp Gin His Gly He Pro 1 5 10 15 Leu Val Lys Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala 25 30 152 172135/2 His Gly Leu Ala Pro Xaa He Pro Glu Asp Leu Tyr Phe Leu He Lys 40 45 Lys Ala Val Ala He Arg Lys His Leu Glu Arg Asn Arg Arg Asp Lys 50 55 60 Asp Ser Lys Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu 65 70 75 80 Ala Arg Tyr Tyr Lys Arg Thr Lys Lys Leu Pro Pro Thr Trp Lys Trp 85 90 95 Glu Val Lys Ala Val Leu Asp Asp Tyr Pro Lys Leu Cys Leu Thr Lys 100 105 110 Gly Arg Lys Val Leu Glu He Arg Pro Ser He Glu Trp Asn Lys Gly 115 120 125 His Ala Leu Lys Phe Leu Leu Lys Ser Leu Gly Tyr Ala Gly Arg 130 135 140 Asp Val Phe Pro He Tyr He Gly Asp Asp Arg Thr Asp Glu Asp Ala 145 150 155 160 Phe Lys Val Leu Gin Asn Met Gly Gin Gly He Gly He Leu Val Thr 165 170 175 Lys Phe Pro Lys Asp Thr Ser Ala Ser Tyr Ser Leu Arg Glu Pro Ala 180 185 190 Glu Val Lys Glu Phe Met Arg Lys Leu Val Lys Ser Asn Gly He Lys 195 200 205 Lys Gly 210 <210> 121 <211> 92 <212> PRT <213> Zea mays <400> 121 Met Pro Leu Val Lys Ser Val Thr Gly Ser Lys He Leu Arg He Leu 1 5 10 15 Lys Ala His Gly Leu Ala Pro Glu He Pro Glu Asp Leu Tyr Phe Leu 25 30 He Lys Lys Ala Val Ala He Arg Lys His Leu Glu Arg Asn Arg Lys 40 45 Asp Lys Asp Ser Lys Phe Arg Leu He Leu Val Glu Ser Arg He His 50 55 60 Arg Leu Ala Arg Tyr Tyr Lys Arg Thr Lys Lys Leu Pro Pro Thr Trp 65 70 75 80 153 172135/2 Lys Tyr Glu Ser Thr Thr Ala Ser Thr Leu Val Ala 85 90 <210> 122 <211> 96 <212> PRT <213> Triticum aestivum <220> <221> misc_feature <222> (86)..(86) <223> Xaa can be any naturally occurring amino acid <400> 122 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ser Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Thr Trp Leu Lys Thr Ala Ala Ser Asp 25 30 Val Glu Glu Met He Thr Lys Ala Ala Lys Lys Gly Gin Met Pro Ser 40 45 Gin He Gly Val Leu Leu Arg Asp Gin His Gly He Pro Leu Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Trp 65 70 75 80 His Gin Lys Ser Arg Xaa Leu Tyr Phe Ser Ser Arg Arg Arg Trp Arg 85 90 95 <210> 123 <211> 327 <212> PRT <213> Sorghum bicolor <220> <221> misc_feature <222> (1) .. (2) <223> Xaa can be any naturally occurring amino acid <400> 123 Xaa Xaa Arg Glu Glu Gin Gin Gin Gin Gin Pro Arg His Pro Leu Ala 1 5 10 15 Ser Phe Leu Pro Leu Leu Ser Leu Leu Pro His Arg Arg Arg Arg Leu 25 30 Phe Ala Leu Arg Ala Leu Ala Ser His Pro Trp Val Ala Ala Ala Tyr 40 45 Leu Pro Thr Cys Val Leu Pro Gly Glu Leu Cys Thr Ser Pro Val Ala 50 55 60 Ser Pro Leu Gly Met Asp Ala Gly Gly Glu Lys Phe Ser Asp Ala Ala 65 70 75 80 154 172135/2 Ala Ala Glu Gly Gly Glu Gly Gly Gly Asp Leu Tyr Ala Val Leu Gly 85 90 95 Leu Lys Lys Glu Cys Ser Asp Ala Asp Leu Lys Val Ala Tyr Arg Lys 100 105 110 Leu Ala Lys Lys Trp His Pro Asp Lys Cys Ser Ser Ser Ser Ser Val 115 120 125 Lys His Met Glu Glu Ala Lys Glu Lys Phe Gin Glu He Gin Gly Ala 130 135 140 Tyr Ser Val Leu Ser Asp Ala Asn Lys Arg Leu Leu Tyr Asp Val Gly 145 150 155 160 Val Tyr Asp Asp Glu Asp Asp Glu Asp Ser Met Gin Gly Met Gly Asp 165 170 175 Phe He Gly Glu Met Ala Gin Met Met Ser Gin Val Arg Pro Thr Arg 180 185 190 Gin Glu Ser Phe Glu Glu Leu Gin Gin Leu Phe Val Asp Met Phe Gin 195 200 205 Ser Asp He Asp Ser Gly Phe Cys Asn Gly Ser Ala Lys Asp Gin Val 210 215 220 Gin Gly Gin Ala Lys Ser Arg Thr Cys Ser Thr Ser Pro Ser Ser Ser 225 230 235 240 Pro Ser Pro Pro Pro Pro Pro Thr He Val Lys Glu Ala Glu Val Ser 245 250 255 Ser Cys Asn Gly Phe Asn Lys Arg Gly Ser Ser Ala Met Asp Ser Gly 260 265 270 Lys Pro Pro Arg Pro Val Glu Gly Gly Ala Gly Gin Ala Gly Phe Cys 275 280 285 Phe Gly Val Ser Asp Thr Lys Gin Thr Pro Lys Pro Arg Gly Pro Asn 290 295 300 Thr Ser Arg Arg Arg Asn Gly Arg Lys Gin Lys Leu Ser Ser Lys His 305 310 315 320 Asp Val Ser Ser Glu Asp 325 <210> 124 <211> 265 <212> PRT <213> Saccharum officinarum <400> 124 Met Asp Ala Gly Gly Glu Lys Cys Gly Asp Ala Ala Ala Ala Glu Gly 1 5 10 15 155 172135/2 Gly Glu Gly Gly Gly Asp Leu Tyr Ala Val Leu Gly Leu Lys Lys Glu 25 30 Cys Ser Asp Ala Asp Leu Lys Val Ala Tyr Arg Lys Leu Ala Lys Lys 40 45 Trp His Pro Asp Lys Cys Ser Ser Ser Ser Ser Val Lys His Met Glu 50 55 60 Glu Ala Lys Glu Lys Phe Gin Glu lie Gin Gly Ala Tyr Ser Val Leu 65 70 75 80 Ser Asp Ala Asn Lys Arg Leu Leu Tyr Asp Val Gly Val Tyr Asp Asp 85 90 95 Glu Asp Asp Glu Asp Ser Met Gin Gly Met Gly Asp Phe lie Gly Glu 100 105 110 Met Ala Gin Met Met Ser Gin Val Arg Pro Thr Arg Gin Glu Ser Phe 115 120 125 Glu Glu Leu Gin Gin Leu Phe Val Asp Met Phe Gin Ser Asp lie Asp 130 135 140 Ser Gly Phe Cys Asn Gly Thr Ala Lys Gly His Gin Val Gin Gly Gin 145 150 155 160 Ala Lys Ser Arg Thr Cys Ser Thr Ser Pro Ser Ser Ser Pro Ser Pro 165 170 175 Pro Pro Pro Thr lie Val Lys Glu Ala Glu Val Pro Ser Cys Asn Gly 180 185 190 Phe Asn Lys Arg Gly Ser Ser Ala Met Asp Ser Gly Lys Pro Pro Arg 195 200 205 Pro Val Glu Gly Gly Ala Gly Gin Arg Gin Ala Gly Phe Cys Phe Gly 210 215 220 Val Ser Asp Thr Lys Gin Ala Ala Lys Pro Arg Gly Pro Asn Thr Ser 225 230 235 240 Arg Arg Arg Asn Gly Arg Lys Gin Lys Leu Ser Ser Lys His Asp Val 245 250 255 Ser Ser Glu Asp Glu Thr Ala Gly Ser 260 265 <210> 125 <211> 320 <212> PRT <213> Sorghum bicolor <400> 125 Met Asp Ser Leu Trp His Leu Gly Asp Glu Leu Arg Gly Gin Pro Lys 1 5 10 15 156 172135/2 Val Val Glu Asp Arg Gin Trp Ser Leu Met Thr Ser Lys Leu Ala Glu 25 30 lie Thr Arg Ser Lys Gly Glu Arg Met Asn Asp Leu Asp Tyr Ala Arg 40 45 Met Asn Thr Val Pro Asp Ala Lys Gin Trp Asp Lys Thr Ser Phe Gin 50 55 60 His His Asp Gin Ser Arg Met Asp His He Asn Leu Gly Leu Met Asn 65 70 75 80 Leu Asp Leu Lys Met Asn Asp Leu Lys Met Asn Glu Ala Pro Thr Ala 85 90 95 Met Lys Leu Pro Phe His Asn Met Pro Tyr Asn Met Asn Pro Met Tyr 100 105 110 Pro Lys Gly Ser Asn Ala Asn Val Asn Val Asn Ala Phe Lys Met Asn 115 120 125 Val Gly Val Asn Lys Tyr Ser Asn Ser Pro Asn Gly Lys Asp Ala Asn 130 135 140 Gly Lys Asn Asn Gly Gly Ser Asn Asn Asn Gly Gly Asn Ser Asn Gly 145 150 155 160 Ala Asn Gly Asn Ser Ala Val Asp Lys Arg Phe Lys Thr Leu Pro 165 170 175 Thr Ser Glu Met Leu Pro Arg Asn Glu Val Leu Gly Gly Tyr He Phe 180 185 190 Val Cys Asn Asn Asp Thr Met Gin Glu Asp Leu Lys Arg Gin Leu Phe 195 200 205 Gly Leu Pro Ala Arg Tyr Arg Asp Ser Val Arg Ala He Thr Pro Gly 210 215 220 Leu Pro Leu Phe Leu Tyr Asn Tyr Thr Thr His Gin Leu His Gly Val 225 230 235 240 Phe Glu Ala Ala Ser Phe Gly Gly Ser Asn He Asp Pro Thr Ala Trp 245 250 255 Glu Asp Lys Lys Cys Lys Gly Glu Ser Arg Phe Pro Ala Gin Val Arg 260 265 270 He Arg He Arg Lys Leu Cys Lys Pro Leu Glu Glu Asp Ser Phe Arg 275 280 285 Pro Val Leu His His Tyr Asp Gly Pro Lys Phe Arg Leu Glu Leu Ser 290 295 300 He Ala Glu Thr Leu Ser Leu Leu Asp Leu Cys Glu Lys Glu Gly He 305 310 315 320 157 172135/2 <210> 126 <211> 265 <212> PRT <213> Saccharum officinarum <400> 126 Met Asn Thr Asp Pro Asp Ala Lys Gin Trp Asp Lys Thr Ser Tyr Gin 1 5 10 15 His His Asn Glu Ser Arg Met Asp His lie Asn Leu Gly Leu Met Asn 25 30 Leu Asp Leu Lys Met Asn Glu Ala Ala Thr Ala Met Lys Leu Pro Phe 40 45 His Asn Met Pro Tyr Asn Met Asn Pro Met Tyr Pro Lys Gly Ser Asn 50 55 60 Val Asn Val Asn Ala Phe Lys Met Asn Val Gly Val Asn Lys Tyr Ser 65 70 75 80 Asn Ser Pro Asn Gly Lys Asp Ala Asn Gly Lys Asn Asn Gly Gly Ser 85 90 95 Asn Asn Asn Gly Gly Asn Ser Asn Gly Ser Ala Asn Ser Asn Ser Ala 100 105 110 Val Asp Lys Arg Phe Lys Thr Leu Pro Thr Ser Glu Met Leu Pro Arg 115 120 125 Asn Glu Val Leu Gly Gly Tyr He Phe Val Cys Asn Asn Asp Thr Met 130 135 140 Gin Glu Asp Leu Lys Arg Gin Leu Phe Gly Leu Pro Ala Arg Tyr Arg 145 150 155 160 Asp Ser Val Arg Ala He Thr Pro Gly Leu Pro Leu Phe Leu Tyr Asn 165 170 175 Tyr Thr Thr His Gin Leu His Gly Val Phe Glu Ala Ala Ser Phe Gly 180 185 190 Gly Ser Asn He Asp Pro Thr Ala Trp Glu Asp Lys Lys Cys Lys Gly 195 200 205 Glu Ser Arg Phe Pro Ala Gin Val Arg He Arg He Arg Lys Leu Cys 210 215 220 Lys Pro Leu Glu Glu Asp Ser Phe Arg Pro Val Leu His His Tyr Asp 225 230 235 240 Gly Pro Lys Phe Arg Leu Glu Leu Ser He Ala Glu Thr Leu Ser Leu 245 250 255 Leu Asp Leu Cys Glu Lys Glu Gly He 260 265 158 172135/2 <210> 127 <211> 200 <212> PRT <213> Saccharum officinarum <220> <221> misc_feature <222> (1)..(2) <223> Xaa can be any naturally occurring amino acid <400> 127 Xaa Xaa Gin Pro Lys Val Val Glu Asp Arg Gin Trp Ser Leu Met Thr 1 5 10 15 Ser Lys Leu Ala Glu lie Thr Arg Ser Lys Gly Glu Arg Met Asn Asp 25 30 Leu Asp Tyr Ala Arg Met Asn Thr Val Pro Asp Ala Lys Gin Trp Asp 40 45 Lys Thr Ser Tyr Gin His His Asp Glu Ser Arg Met Asp His lie Asn 50 55 60 Leu Gly Leu Met Asn Leu Asp Leu Lys Met Asn Asp Leu Lys Met Asn 65 70 75 80 Glu Ala Ala Thr Ala Met Lys Leu Pro Phe His Asn Met Pro Tyr Asn 85 90 95 Met Asn Pro Met Tyr Pro Lys Gly Ser Asn Val Asn Val Asn Ala Phe 100 105 110 Lys Met Asn Val Gly Val Asn Lys Tyr Ser Ser Ser Pro Asn Gly Lys 115 120 125 Asp Ala Asn Gly Lys Asn Asn Gly Gly Ser Asn Asn Asn Gly Gly Asn 130 135 140 Ser Asn Gly Ser Ala Asn Ser Asn Ser Ala Val Asp Lys Arg Phe Lys 145 150 155 160 Thr Leu Pro Thr Ser Glu Met Leu Pro Arg Asn Glu Val Leu Gly Gly 165 170 175 Tyr lie Phe Val Cys Asn Asn Asp Thr Met Gin Glu Asp Leu Lys Arg 180 185 190 Gin Leu Phe Gly Leu Pro Ala Arg 195 200 <210> 128 <211> 381 <212> PRT <213> Sorghum bicolor <400> 128 Met lie Leu Glu Val Ala Ala Val Glu Thr Gin Ser He Val His Leu 1 5 10 15 159 172135/2 Phe Lys Pro Arg Asp Glu Lys He Leu Leu Ala Glu Gly His Lys Arg 25 30 Pro Arg Ser Pro Gly Leu Ser Ser Ser Lys Ala Tyr Ser Gly Ser Leu 40 45 Val Gly Leu Ser He Val Phe Ala Pro Leu Ser Ala Leu Val Ala Ser 50 55 60 Ser Glu Pro Met Ser His Pro Pro Pro Pro Pro Val Asp Gin Asn He 65 70 75 80 Ser Leu Arg Phe Cys Glu Ser Phe Ser Leu Gin Gly Thr Glu Thr Pro 85 90 95 Gly Ala Phe Thr Pro Pro Ala Pro Ala Phe Pro Ser Arg Pro Arg Thr 100 105 110 Gly Ala Thr Thr Arg Leu Leu Leu Glu Thr Phe His Ser Ser Met Ala 115 120 125 Lys Leu Val Asn Lys Leu Val Asp Ser Phe Glu Glu Gin Asp Thr 130 135 140 Asp Val Gly Cys Val Arg Ala Val Leu Ala Glu Leu Val Leu Thr Phe 145 150 155 160 Leu Phe Val Phe Thr Gly Val Ser Ala Ala Met Ala Ala Gly Ser Gly 165 170 175 Val Lys Pro Gly Glu Ala Met Pro Met Ala Thr Leu Ala Ala Val Ala 180 185 190 He Ala His Ala Leu Ala Ala Gly Val Leu Val Thr Ala Gly Phe His 195 200 205 Val Ser Gly Gly His Leu Asn Pro Ala Val Thr Val Gly Leu Met Val 210 215 220 Arg Gly His He Thr Lys Leu Arg Ala Val Leu Tyr Val Ala Ala Gin 225 230 235 240 Val Leu Ala Ser Ser Leu Ala Cys He Leu Leu Arg Tyr Leu Ser Gly 245 250 255 Gly Met Val Thr Pro Val His Ala Leu Gly Ala Gly He Ser Pro Met 260 265 270 Gin Gly Leu Val Met Glu Val He Leu Thr Phe Ser Leu Leu Phe Val 275 280 285 Thr Tyr Ala Met He Leu Asp Pro Arg Ser Gin Val Arg Thr He Gly 290 295 300 Pro Leu Leu Thr Gly Leu He Val Gly Ala Asn Ser Leu Ala Gly Gly 160 305 310 315 320 Asn Phe Ser Gly Ala Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala 325 330 335 Leu Ala Ser Gly Val Trp Thr Asn His Trp He Tyr Trp He Gly Pro 340 345 350 Leu Leu Gly Gly Pro Leu Ala Gly Phe He Tyr Glu Ser Leu Phe He 355 360 365 Val Asn Lys Thr His Glu Pro Leu Leu Asn Gly Asp He 370 375 380 <210> 129 <211> 308 <212> PRT <213> Saccharum officinarum <400> 129 Pro Thr Arg Pro Pro Pro Pro Val Val Gin Asn He Ser Leu Arg Phe 1 5 10 15 Glu Ser Phe Ser Leu Gin Gly Thr Gly Thr Thr Gly Ala Phe Thr 20 25 30 Pro Pro Pro Ala Phe Pro Ser Pro Pro Gly Arg Leu Leu Leu Ala He 35 40 45 Val His Ser Phe Met Ala Lys Leu Val Asn Lys Leu Val Asp Ser Phe 50 55 60 Asp His Asp Glu Thr Thr Pro Asp Val Gly Cys Val Arg Ala Val Leu 65 70 75 80 Ala Glu Leu Val Leu Thr Phe Leu Phe Val Phe Thr Gly Val Ser Ala 85 90 95 Ala Met Ala Ala Gly Ser Gly Gly Lys Pro Gly Glu Ala Met Pro Met 100 105 110 Ala Thr Leu Ala Ala Val Ala He Ala His Ala Leu Ala Ala Gly Val 115 120 125 Leu Val Thr Ala Gly Phe His Val Ser Gly Gly His Leu Asn Pro Ala 130 135 140 Val Thr Val Gly Leu Met Val Cys Gly His He Thr Lys Leu Arg Ala 145 150 155 160 Val Leu Tyr He Ala Ala Gin Leu Leu Ala Ser Ser Leu Ala Cys He 165 170 175 Leu Leu Arg Tyr Leu Ser Gly Gly Met Val Thr Pro Val His Ala Leu 180 185 190 Gly Ala Gly He Ser Pro Met Gin Gly Leu Val Met Glu Val He Leu 161 172135/2 195 200 205 Thr Phe Ser Leu Leu Phe Val Thr Tyr Ala Met He Leu Asp Pro Arg 210 215 220 Ser Gin Val Arg Thr He Gly Pro Leu Leu Thr Gly Leu He Val Gly 225 230 235 240 Ala Asn Ser Leu Ala Gly Gly Asn Phe Thr Gly Ala Ser Met Asn Pro 245 250 255 Ala Arg Ser Phe Gly Pro Ala Leu Ala Thr Gly Val Trp Thr Asn His 260 265 270 Trp Val Tyr Trp He Gly Pro Leu Leu Gly Gly Pro Leu Ala Gly Phe 275 280 285 Val Tyr Glu Ser Leu Phe He Val Asn Lys Thr His Glu Pro Leu Leu 290 295 300 Asn Gly Asp He 305 <210> 130 <211> 257 <212> PRT <213> Zea mays <400> 130 Met Ala Lys Leu Val Asn Lys Leu Val Asp Ser Phe Asp His His Glu 1 5 10 15 Ala Pro Ala Pro Asp Val Gly Cys Val Arg Ala Val Leu Ala Glu Leu 25 30 Val Leu Thr Phe Leu Phe Val Phe Thr Gly Val Ser Ala Ser Met Ala 40 45 Ala Gly Ala Gly Gly Lys Pro Gly Glu Ala Met Pro Met Ala Thr Leu 50 55 60 Ala Ala Val Ala He Ala His Ala Leu Ala Ala Gly Val Leu Val Thr 65 70 75 80 Ala Gly Phe His Val Ser Gly Gly His Leu Asn Pro Ala Val Thr Val 85 90 95 Gly He Leu Val Arg Gly His He Thr Lys Leu Arg Ala Leu Leu Tyr 100 105 110 Val Ala Ala Gin Leu Leu Ala Ser Ser Leu Ala Cys He Leu Leu Arg 115 120 125 Tyr Leu Ser Gly Gly Met Val Thr Pro Val His Ala Leu Gly Ala Gly 130 135 140 He Ser Pro Met Gin Gly Leu Val Met Glu Val He Leu Thr Phe Ser 162 172135/2 145 150 155 160 Leu Leu Phe Val Thr Tyr Ala Met He Leu Asp Pro Arg Ser Gin Val 165 170 175 Arg Thr He Gly Pro Leu Leu Thr Gly Leu He Val Gly Ala Asn 180 185 190 Leu Ala Gly Gly Asn Phe Thr Gly Ala Ser Met Asn Pro Ala Arg 195 200 205 Phe Gly Pro Ala Met Ala Thr Gly Val Trp Thr Asn His Trp Val Tyr 210 215 220 Trp He Gly Pro Leu Leu Gly Gly Ser Leu Ala Gly Phe Val Tyr Glu 225 230 235 240 Ser Leu Phe Met Val Tyr Lys Thr His Glu Pro Leu Leu Asn Gly Asp 245 250 255 He <210> 131 <211> 255 <212> PRT <213> Zea mays <400> 131 Met Ala Lys Leu Met Asn Lys Leu Val Asp Ser Phe Glu His Asp Glu 1 5 10 15 He Leu Asp Val Gly Cys Val Arg Ala Val Leu Ala Glu Leu Val Leu 25 30 Thr Phe Leu Phe Val Phe Thr Gly Val Ser Ala Ala Met Ala Ala Gly 40 45 Asp Gly Lys Pro Gly Asp Ala Met Pro Met Ala Thr Leu Ala Ala 50 55 60 Val Ala He Ala His Ala Leu Ala Ala Gly Val Leu Val Thr Ala Gly 65 70 75 80 Phe His Val Ser Gly Gly His Leu Asn Pro Ala Val Thr Val Gly Leu 85 90 95 Met Val Arg Gly His He Thr Lys Leu Arg Ala Val Leu Tyr Val Ala 100 105 110 Ala Gin Leu Leu Ala Ser Ser Ala Ala Cys Val Leu Leu Arg Phe Leu 115 120 125 Ser Gly Gly Met Val Thr Pro Val His Ala Leu Gly Arg Gly He Ser 130 135 140 Pro Met Gin Gly Leu Val Met Glu Val He Leu Thr Phe Ser Leu Leu 163 172135/2 145 150 155 160 Phe Val Thr Tyr Ala Met lie Leu Asp Pro Arg Ser Gin Val Arg Ala 165 170 175 lie Gly Pro Leu Leu Thr Gly Leu He Val Gly Ala Asn Ser Leu Ala 180 185 190 Gly Gly Asn Phe Thr Gly Ala Ser Met Asn Pro Ala Arg Ser Phe Gly 195 200 205 Pro Ala Leu Ala Thr Gly Asp Trp Thr Asn His Trp Val Tyr Trp He 210 215 220 Gly Pro Leu Leu Gly Gly Pro Leu Ala Gly Phe Val Tyr Glu Ser Leu 225 230 235 240 Phe Leu Val Gin Lys Met His Glu Pro Leu Leu Asn Gly Glu Val 245 250 255 <210> 132 <211> 254 <212> PRT <213> Sorghum bicolor <400> 132 Met Ala Ser Pro Glu Gly Thr Thr Trp Val Phe Asp Cys Pro Leu Met 1 5 10 15 Asp Asp Leu Ala Val Ala Ala Asp Phe Ala Ala Ala Pro Ala Gly Gly 25 30 Phe Phe Trp Ala Ala Pro Pro Ser Leu Gin Pro Gin Val Val Gin Ala 40 45 Pro Val Gin Ser Val Val Ala Ala Ser Ala Pro Asn Pro Cys Val Glu 50 55 60 He Ser Ser Ser Val Asp Cys Gly Gin Gly Lys Glu Gin Pro Thr Asn 65 70 75 80 Lys Arg Pro Arg Ser Glu Ser Thr Ala Glu Pro Ser Thr Lys Ala Ser 85 90 95 Arg Glu Lys He Arg Arg Asp Lys Leu Asn Glu Arg Phe Leu Glu Leu 100 105 110 Gly Ala He Leu Glu Pro Gly Lys Thr Pro Lys Met Asp Lys Ser Ala 115 120 125 He Leu Asn Asp Ala He Arg Val Val Gly Glu Leu Arg Ser Glu Ala 130 135 140 Lys Glu Leu Lys Asp Ser Asn Glu Ser Leu Gin Glu Lys He Lys Glu 145 150 155 160 Leu Lys Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gin Arg Leu Lys 164 165 ΠΟ 175 Ala Glu Lys Glu Ser Leu Glu Gin Gin lie Lys Phe Leu Asn Ala Arg 180 185 190 Pro Ser Leu Val Pro His His Pro Val He Ser Ala Ser Ala Phe Thr 195 200 205 Ala Pro Gin Gly Pro Ala Val Ala Gly His Lys Leu Met Met Pro Val 210 215 220 Leu Gly Tyr Pro Gly Phe Pro Met Trp Gin Phe Met Pro Pro Ser Asp 225 230 235 240 Val Asp Thr Ser Asp Asp Pro Lys Ser Cys Pro Pro Val Ala 245 250 <210> 133 <211> 252 <212> PRT <213> Zea mays <400> 133 Met Ala Ser Pro Glu Gly Thr Thr Trp Val Phe Asp Cys Pro Leu Met 1 5 10 15 Asp Asp Leu Ala Val Ala Ala Asp Phe Ala Ala Ala Pro Ala Gly Gly 25 30 Phe Phe Trp Ala Ala Pro Pro Ser Leu Gin Pro Gin Ala Pro Val Gin 35 40 45 Ser Val Val Ala Ala Ser Ala Pro Asn Pro Cys Met Glu He Ser Ser 50 55 60 Ser Val Asp Cys Gly Gin Glu Lys Glu Gin Pro Thr Asn Lys Arg Pro 65 70 75 80 Arg Ser Glu Ser Thr Thr Glu Ser Ser Thr Lys Ala Ser Arg Glu Lys 85 90 95 He Arg Arg Asp Lys Leu Asn Glu Arg Phe Leu Glu Leu Gly Ala He 100 105 110 Leu Glu Pro Gly Lys Thr Pro Lys Met Asp Lys Thr Ala He Leu Ser 115 120 125 Asp Ala He Arg Val Val Gly Glu Leu Arg Ser Glu Ala Lys Lys Leu 130 135 140 Lys Asp Ser Asn Glu Asn Leu Gin Glu Lys He Lys Glu Leu Lys Ala 145 150 155 160 Glu Lys Asn Glu Leu Arg Asp Glu Lys Gin Arg Leu Lys Ala Glu Lys 165 170 175 Glu Ser Leu Glu Gin Gin He Lys Phe Leu Asn Ala Arg Pro Ser Leu 165 172135/2 180 185 190 Val Pro His His Pro Val lie Pro Ala Ser Ala Phe Pro Ala Pro Gin 195 200 205 Gly Pro Ala Ala Ala Ala Arg His Lys Leu Met Met Pro Val lie Gly 210 215 220 Tyr Pro Gly Phe Pro Met Trp Gin Phe Met Pro Pro Ser Asp Val Asp 225 230 235 240 Thr Ser Asp Asp Pro Arg Ser Cys Pro Pro Val Ala 245 250 <210> 134 <211> 159 <212> PRT <213> Saccharura officinarum <400> 134 Met Ala Ser Pro Glu Gly Thr Thr Trp Val Phe Asp Cys Pro Leu Met 1 5 10 15 Asp Asp Leu Ala Val Ala Ala Asp Phe Ala Ala Ala Pro Ala Gly Gly 25 30 Phe Phe Trp Ala Ala Pro Pro Ser Leu Gin Pro Gin Val Val Gin Ala 40 45 Pro Val Gin Ser Val Val Ala Ala Ser Ala Pro Asn Pro Pro Cys Val 50 55 60 Glu He Ser Ser Ser Val Asp Cys Gly Gin Gly Lys Glu Gin Pro Thr 65 70 75 80 Asn Lys Arg Pro Arg Ser Glu Ser Thr Ala Glu Pro Ser Thr Lys Ala 85 90 95 Ser Arg Glu Lys He Arg Arg Asp Lys Leu Asn Lys Arg Phe Leu Glu 100 105 110 Trp Gly Ala He Val Glu Pro Gly Glu Thr Pro Lys Met Asp Lys Ser 115 120 125 Ala He Leu Asn Asp Ala He Arg Ala Val Ser Glu Leu Arg Ser Glu 130 135 140 Thr Lys Lys Leu Lys Asp Ser Asn Glu Ser Leu Gin Gly Glu Asp 145 150 155 <210> 135 <211> 151 <212> PRT <213> Brassica napus <400> 135 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 166 172135/2 Pro Tyr Lys Arg Ser Pro Pro Thr Trp Leu Lys Thr Thr Ala Leu Asp 25 30 Val Asp Glu Ser He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Pro Gin Val Lys 50 55 60 Ser Val Thr Gly Asn Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 136 <211> 151 <212> PRT <213> Brassica napus <400> 136 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Ser Pro Pro Thr Trp Leu Lys Thr Thr Ala Leu Asp 25 30 Val Asp Glu Ser He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Pro Gin Val Lys 50 55 60 Ser Val Thr Gly Asn Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 167 172135/2 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 137 <211> 151 <212> PRT <213> Solarium tuberosum <400> 137 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys Thr Ser Ala Pro Asp 25 30 Val Glu Asp Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 138 <211> 151 <212> PRT <213> Gossypium sp . <400> 138 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Ser Ser Gin Asp 25 30 Val Glu Glu Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 168 Gin lie Gly Val lie Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 139 <211> 151 <212> PRT <213> Gossypium sp . <400> 139 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Ser Ser Gin Asp 25 30 Val Glu Glu Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 35 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 169 172135/2 <210> 140 <211> 151 <212> PRT <213> Lycopersicon esculentum <400> 140 Met Gly Arg Me t His Ser Arg Gly Lys Gly lie Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys lie Ser Ala Pro Asp 25 30 Val Glu Asp Asn lie Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 141 <211> 151 <212> PRT <213> Lycopersicon esculentum <400> 141 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Ser Ala Pro Asp 25 30 Val Glu Asp Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 170 172135/2 Ala Pro Glu lie Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 142 <211> 151 <212> PRT <213> Lycopersicon esculentum <400> 142 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Ser Ala Pro Asp 25 30 Val Glu Asp Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 143 <211> 151 <212> PRT <213> Lycopersicon esculentum <400> 143 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 171 172135/2 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Ser Ala Pro Asp 25 30 Val Glu Asp Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu al Ala 145 150 <210> 144 <211> 151 <212> PRT <213> Solanum tuberosum <400> 144 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Ser Ala Pro Asp 25 30 Val Glu Asp Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 172 172135/2 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 145 <211> 151 <212> PRT <213> Solanum tuberosum <400> 145 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Ser Ala Pro Asp 25 30 Val Glu Asp Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 146 <211> 151 <212> PRT <213> Solanum tuberosum <400> 146 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Ser Ala Pro Asp 25 30 Val Glu Asp Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 173 1 72 135/2 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 147 <211> 151 <212> PRT <213> Solanum tuberosum <400> 147 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Ser Ala Pro Asp 25 30 Val Glu Asp Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 - Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 174 172135/2 <210> 148 <211> 151 <212> P T <213> Capsicum annuum <400> 148 Met Gly Arg Met His Ser Arg Gly Lys Gly lie Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys lie Ser Ala Pro Asp 25 30 Val Glu Asp Asn lie Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin lie Gly Val lie Leu Arg Asp Ser His Gly lie Ala Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys lie Leu Arg lie Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu lie Pro Glu Asp Leu Tyr His Leu lie Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 149 <211> .151 <212> PRT <213> Arabidopsis thaliana <400> 149 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Ser Ser Pro Ser Trp Leu Lys Thr Thr Ser Gin Asp 25 30 Val Asp Glu Ser He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Pro Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 175 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 150 <211> 151 <212> PRT <213> Brassica napus <400> 150 Met Gly Arg Leu His Ser Lys Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Ser Pro Pro Ser Trp Leu Lys Thr Thr Ser Gin Asp 25 30 Val Asp Glu Ser He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 35 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Pro Gin Val Lys 50 55 60 Ser Val Thr Gly Asn Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 151 <211> 151 <212> PRT <213> Brassica napus <400> 151 176 172135/2 Met Gly Arg Leu His Ser Lys Gly Lys Gly lie Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Ser Pro Pro Ser Trp Leu Lys Thr Thr Ser Glu Asp 25 30 Val Asp Glu Ser lie Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin lie Gly Val lie Leu Arg Asp Ser His Gly lie Pro Gin Val Lys 50 55 60 Ser Val Thr Gly Asn Lys lie Leu Arg lie Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu lie Pro Glu Asp Leu Tyr His Leu lie Lys Lys Ala Val 85 90 95 Ala lie Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu lie Leu Val Glu Ser Arg lie His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 152 <211> 151 <212> PRT <213> Brassica napus <400> 152 Met Gly Arg Leu His Ser Lys Gly Lys Gly lie Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Ser Pro Pro Ser Trp Leu Lys Thr Thr Ser Gin Asp 25 30 Val Asp Glu Ser lie Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Pro Gin Val Lys 50 55 60 Ser Val Thr Gly Asn Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 177 172135/2 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 153 <211> 151 <212> PRT <213> Gossypium Sp . <400> 153 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Arg Arg Thr Pro Pro Ser Trp Leu Lys He Ser Ser Gin Asp 25 30 Val Glu Glu Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 154 <211> 151 <212> PRT <213> Gossypium Sp . <400> 154 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Ser Ser Gin Asp 25 30 Val Glu Asp Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 178 172135/2 40 45 Gin lie Gly Val lie Leu Arg Asp Ser His Gly lie Ala Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys lie Leu Arg lie Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu lie Pro Glu Asp Leu Tyr His Leu lie Lys Lys Ala Val 85 90 95 Ala lie Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu lie Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 155 <211> 151 <212> PRT <213> Gossypium Sp . <400> 155 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Ser Ser Gin Asp 25 30 Val Glu Glu Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Arg 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 179 172135/2 145 ■ 150 <210> 156 <211> 151 <212> PRT <213> Arabidopsis thaliana <400> 156 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Ser Ser Pro Ser Trp Leu Lys Thr Thr Pro Gin Asp 25 30 Val Asp Glu Ser He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Pro Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 157 <211> 151 <212> PRT <213> Glycine max <400> 157 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ser Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Ser Ser Gin Asp 25 30 Val Glu Glu Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Asn 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 180 172135/2 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ser He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 HO Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 158 <211> 215 <212> PRT <213> Capsicum annuum <220> <221> misc_f eature <222> ( 1 ) . . ( 3 ) <223> Xaa can be any naturally occurring amino acid <400> 158 Xaa Xaa Xaa Glu Arg Glu Arg Glu Arg Glu Arg Glu Arg Glu Arg Glu 1 5 10 15 Arg Glu Arg Glu Arg Glu Arg Glu Arg Glu Arg Glu Arg Glu Arg Glu 25 30 Arg Glu Arg Glu Arg Glu Arg Glu Arg Glu Arg Gly Gin Pro Asn Ser 40 45 Ser Leu Ser Pro Pro Pro Ser Pro Leu Thr Thr Asn Thr Gin Pro Ala 50 55 60 He Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala 65 70 75 80 Leu Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Ser Ala Pro 85 90 95 Asp Val Glu Asp Asn He Cys Lys Phe Ala Lys Lys Gly Leu Ala Pro 100 105 110 Ser Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val 115 120 125 Lys Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly 130 135 140 Leu Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala 145 150 155 160 181 172135/2 Val Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser 165 170 175 Lys Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg 180 185 190 Tyr Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser 195 200 205 Thr Thr Ala Ser Thr Leu Val 210 215 <210> 159 <211> 151 <212> PRT <213> Populus Sp . <400> 159 .
Met Gly Arg Met His Ser His Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Ser Ala Gin Asp 25 30 Val Glu Asp Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Arg 50 55 60 Ser Val Thr Gly Asn Gin He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Ser 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 160 <211> 151 <212> PRT <213> Medicago truncatula <400> 160 Met Gly Arg Met His Ser Gly Gly Lys Gly He Ser Ser Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Ser Ala Pro Gly Trp Leu Lys Thr Ser Thr Gin Asp 182 1 72 135/2 Val Glu Glu Thr He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 Phe He Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ser He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 161 <211> 151 <212> PRT <213> Populus Sp . <400> 161 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Ser Ala Gin Asp 25 30 Val Asp Asp Ser He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Arg 50 55 60 Ser Val Thr Gly Asn Gin He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Ala Pro Val Trp Lys Tyr Glu Ser Ser 183 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 162 <211> 151 <212> PRT <213> Medicago truncatula <400> 162 Met Gly Arg Met His Ser Gly Gly Lys Gly He Ser Ser Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Ala Ser Trp Leu Lys He Ser Thr Gin Asp 25 30 Val Asp Glu Thr He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro 35 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 Ala Val Thr Gly Asn Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ser He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 163 <211> 151 <212> PRT <213> Populus Sp . <400> 163 Met Gly Arg Met His Ser Lys Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Ser Pro Gin Asp 25 30 Val Asp Asp Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 35 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 184 172135/2 Ala Val Thr Gly Asn Gin He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Ser 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 164 <211> 148 <212> PRT <213> Medicago truncatula <400> 164 Met His Ser Lys Gly Lys Gly He Ser Ser Ser Ala Leu Pro Tyr Lys 1 5 10 15 Arg Thr Ser Pro Ser Trp Leu Lys He Ser Ser Pro Glu Val Asp Glu 25 30 Thr He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser Gin He Gly 40 45 Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys Ser Val Thr 50 55 60 Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu Ala Pro Glu 65 70 75 80 He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val Ser He Arg 85 90 95 Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys Phe Arg Leu 100 105 110 He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr Tyr Lys Lys 115 120 125 Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr Thr Ala Ser 130 135 140 Thr Leu Val Ala 145 <210> 165 <211> 151 185 172135/2 <212> PRT <213> Hordeum vulgare <400> 165 Met Gly Arg Met His Ser Asn Gly Lys Gly Met Ser Ser Ser Val He 1 5 10 15 Pro Tyr Lys Arg Glu Ala Pro Ala Trp Val Lys Thr Ala Ala Pro Asp 25 30 Val Glu Glu Met He Val Arg Ala Ala Lys Lys Gly Gin Leu Pro Ser 40 45 Gin He Gly Ala Leu Leu Arg Asp Gly His Gly He Pro Leu Ser Lys 50 55 60 Ala Val Thr Gly Ala Lys He Val Arg Leu Leu Lys Ala Arg Gly Leu 65 70 75 80 Ala Pro Glu Met Pro Glu Asp Leu Tyr Phe Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Ser Asp Val Asp Ala Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg Val His Arg Leu Thr Arg Tyr 115 120 125 Tyr Arg Leu Thr Lys Lys Met Pro Ala Ala Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 166 <211> 185 <212> PRT <213> Triticum aestivum <220> <221> misc_feature <222> 11).. (2) <223> Xaa can be any naturally occurring amino acid <400> 166 Xaa Xaa Gly Thr Ser He Phe Ala Arg Phe Pro Ser Pro Pro Pro Gin 1 5 10 15 Gin Leu Leu Pro He Ser Leu Leu Ala Ala Ala Leu Arg Ser Pro Leu 25 30 Ala Ala Met Gly Arg Met His Ser Asn Gly Lys Gly Met Ser Ser Ser 40 45 Val He Pro Tyr Lys Arg Glu Ala Pro Ala Trp Val Lys Thr Ser Ala 50 55 60 Pro Asp Val Glu Glu He He Val Arg Ala Ala Lys Lys Gly Gin Leu 186 172135/2 65 70 75 80 Pro Ser Gin lie Gly Ala Leu Leu Arg Asp Gly Tyr Gly lie Pro Leu 85 90 95 Ser Lys Ala Val Thr Gly Ala Lys lie Val Arg Leu Leu Lys Ala Arg 100 105 110 Gly Leu Ala Pro Glu Met Pro Glu Asp Leu Tyr Phe Leu lie Lys Lys 115 120 125 Ala Val Ala lie Arg Lys His Leu Glu Arg Asn Arg Ser Asp Val Asp 130 135 140 Ala Lys Phe Arg Leu lie Leu Val Glu Ser Arg Val His Arg Leu Thr 145 150 155 160 Arg Tyr Tyr Arg Leu Thr Lys Lys Met Pro Ala Ala Trp Lys Tyr Glu 165 170 175 Ser Thr Thr Ala Ser Thr Leu Val Ala 180 185 <210> 167 <211> 151 <212> P T <213> Oryza sativa <400> 167 Met Gly Arg Leu His Ser Lys Gly Lys Gly lie Ala Ser Ser Thr Leu 1 5 10 15 Pro Tyr Ser Arg Thr Pro Pro Ala Trp Leu Lys Thr Thr Pro Asp Gin 25 30 Val Val Asp His lie Cys Lys Leu Ala Lys Lys Gly Ala Thr Pro 40 45 Gin He Gly Val Val Leu Arg Asp Ser His Gly Val Ala Gin Val Lys 50 55 60 He Val Thr Gly Asn Lys He Leu Arg He Leu Lys Ser Asn Gly Leu 65 70 75 80 Ala Pro Glu Leu Pro Glu Asp Leu Tyr Phe Leu He Lys Lys Ala Val 85 90 95 Ala Val Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu He Glu Ser Arg He His Arg Leu Ser Arg Tyr 115 120 125 Tyr Lys Thr Val Gly Val Leu Pro Pro Thr Trp Arg Tyr Glu Ser Ala 130 135 140 Thr Ala Ser Thr Leu Val Ala 187 172135/2 145 150 <210> 168 <211> 151 <212> PRT <213> Oryza sativa <400> 168 Met Gly Arg Met His Ser Ser Gly Lys Gly Met Ser Cys Ser Val Leu 1 5 10 15 Pro Tyr Arg Arg Ala Ala Pro Ala Trp Val Lys Thr Ser Ala Ser Glu 25 30 Val Glu Glu Met He Val Arg Val Ala Lys Lys Gly Gin Leu Pro Ser 40 45 Gin He Gly Ala He Leu Arg Asp Ala His Ala Val Pro Leu Ala Gin 50 55 60 Gly Val Thr Gly Gly Lys He Leu Arg Val Leu Lys Ser Arg Gly Leu 65 70 75 80 Ala Pro Glu Val Pro Glu Asp Leu Tyr Phe Leu He Lys Lys Ala Val 85 90 95 Ala Met Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Thr Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg Val His Arg Leu Thr Arg Tyr 115 120 125 Tyr Arg Leu Ala Lys Lys He Pro Ala Phe Phe Lys Tyr Asp Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 169 <211> 151 <212> PRT <213> Triticum aestivum <400> 169 Met Gly Arg Leu His Ser Lys Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Ser Arg Ser Ser Pro Ala Trp Leu Lys Thr Thr Pro Glu Gin 25 30 Val Val Glu Gin He Ser Lys Leu Ala Arg Lys Gly Ala Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 His Val Thr Gly Asn Arg He Leu Arg He Leu Lys Ser Ser Gly Leu 65 70 75 80 188 172135/2 Ala Pro Glu Leu Pro Glu Asp Leu Tyr Met Leu lie Lys Lys Ala Val 85 90 95 Ala Val Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu lie Leu lie Glu Ser Arg lie His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Thr Val Gly Val Leu Pro Pro Thr Trp Lys Tyr Glu Ser Ala 130 135 140 Thr Ala Ser Thr He Val Ala 145 150 <210> 170 <211> 151 <212> PRT <213> Hordeum vulgare <400> 170 Met Gly Arg Leu His Ser Lys Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Ser Arg Ser Ser Pro Ala Trp Leu Lys Thr Thr Pro Glu Gin 25 30 Val Val Glu Gin He Ser Lys Leu Ala Arg Lys Gly Ala Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 His Val Thr Gly Asn Arg He Leu Arg He Leu Lys Ser Ser Gly Leu 65 70 75 80 Ala Pro Glu Leu Pro Glu Asp Leu Tyr Met Leu He Lys Lys Ala Val 85 90 95 Ala Val Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu He Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Thr Val Gly Val Leu Pro Pro Thr Trp Lys Tyr Glu Ser Ala 130 135 140 Thr Ala Ser Thr He Val Ala 145 150 <210> 171 <211> 151 <212> PRT <213> Arabidopsis thaliana <400> 171 1 89 172135/2 Met Gly Arg Leu His Ser Lys Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Ser Arg Ser Ser Pro Ala Trp Leu Lys Thr Thr Pro Glu Gin 25 30 Val Val Glu Gin He Ser Lys Leu Ala Arg Lys Gly Ala Thr Pro Ser 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 His Val Thr Gly Asn Arg He Leu Arg He Leu Lys Ser Ser Gly Leu 65 70 75 80 Ala Pro Glu Leu Pro Glu Asp Leu Tyr Met Leu He Lys Lys Ala Val 85 90 95 Ala Val Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu He Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Thr Val Gly Val Leu Pro Pro Thr Trp Lys Tyr Glu Ser Ala 130 135 140 Thr Ala Ser Thr He Val Ala 145 150 <210> 172 <211> 151 <212> PRT <213> Hordeum vulgare <400> 172 Met Gly Arg Met His Ser Gly Gly Lys Gly He Ala Lys Ser Ser Leu 1 5 10 15 Pro Tyr Arg Arg Ser Pro Pro Ser Trp Leu Lys Val Thr Ala Ser Gin 25 30 Val Glu Asp His Val Asn Lys Leu Ala Lys Arg Gly Leu Thr Pro 40 45 Gin He Gly Val He Leu Arg Asp Ser Asn Gly He Ala Gin Val Lys 50 55 60 Ser Val Thr Gly Asn Lys He Leu Arg He Leu Lys Lys Ser Gly Leu 65 70 75 80 Ala Pro Ala He Pro Glu Asp Leu Tyr Met Leu He Lys Lys Ala Val 85 90 95 Ala Val Arg Lys His Leu Glu Arg Asn Lys Lys Asp Lys Asp Ser Lys 100 105 110 190 Phe Arg Leu lie Leu He Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Arg Ala Ser Arg Lys Leu Asp Ala Asn Trp Lys Tyr Glu Ser Ala 130 135 140 Thr Ala Ser Ala Leu Val Ala 145 150 <210> 173 <211> 175 <212> PRT <213> Saccharum officinarum <400> 173 Leu Ala Thr Ala Ala Asn Leu Ser Leu Ala Leu Pro Pro Ala Arg Arg 1 5 10 15 Arg Pro Pro Leu Ala Ala Thr Ala Ala Met Gly Arg Met Tyr Gly Pro 25 30 Gly Lys Gly Met Ser Ser Ser Val Leu Pro Tyr Ala Arg Val Ala Pro 35 40 45 Gly Trp Val Arg Ser Thr Ala Gly Glu Val Glu Glu Met He Val Arg 50 55 60 Ala Ala Lys Lys Gly His Leu Pro Ser Gin He Gly Ala Leu Leu Arg 65 70 75 80 Asp Thr His Gly Val Pro Leu Val His Gly Val Thr Gly Gly Lys 85 90 95 Leu Arg Met Leu Lys Ala Arg Gly Leu Ala Pro Glu Val Pro Glu Asp 100 105 110 Leu Tyr Phe Leu He Lys Lys Ala Val Ala He Arg Lys His Leu Asp 115 120 125 Arg Asn Arg Thr Asp Val Asp Ala Lys Phe Arg Leu He Leu Val Glu 130 135 140 Ser Arg Val His Arg Leu He Arg Tyr Tyr Arg Arg Thr Lys Lys He 145 150 155 160 Ala Pro Asn Leu Lys Tyr Glu Ser Thr Thr Ala Ser Ala Leu Val 165 170 175 <210> 174 <211> 131 <212> PRT <213> Hordeum vulgare <400> 174 He Ser Ala Ser Ala Leu Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu 1 5 10 15 191 172135/2 Lys He Ser Ser Gin Asp Val Glu Asp Asn He Cys Lys Phe Ala Lys 25 30 Lys Gly Leu Thr Pro Ser Gin He Gly Val He Leu Arg Asp Ser His 40 45 Gly He Ala His Val Lys Ser Val Thr Gly Ser Lys He Leu Arg He 50 55 60 Leu Lys Ala His Gly Leu Ala Pro Glu He Pro Glu Asp Leu Tyr His 65 70 75 80 Leu He Lys Lys Ala Val Ala He Arg Lys His Leu Glu Arg Asn Arg 85 90 95 Lys Asp Lys Asp Ser Lys Phe Arg Leu He Leu Val Glu Ser Arg He 100 105 110 His Arg Leu Ala Arg Tyr Tyr Lys Lys Thr Lys Lys Leu Pro Pro Val 115 120 125 Trp Lys Tyr 130 Met His Asn Pro His Lys Gly He Ala Gly Ser Ala Leu 10 15 Pro Tyr Lys Arg Thr Pro Pro Arg Trp Leu Lys Val Thr Pro Glu Glu 25 30 Val Ser Glu Gin He Phe Lys Leu Ala Arg Lys Gly Met Thr Pro Ser 40 45 Gin He Gly Val Val Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 Ser Val Thr Gly Ala Lys He Leu Arg He Leu Lys Gly Asn Gly Leu 65 70 75 80 Ala Pro Glu Leu Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Val Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu He Glu Ser Arg He His Arg Leu Val Arg Tyr 115 120 125 Tyr Lys Thr Lys Ser Gin Leu Ser Pro Ser Phe Lys Tyr Glu Ser Ala 130 135 140 192 Thr Ala Ser Thr He Val Ser 145 150 <210> 176 <211> 151 <212> PRT <213> Hordeum vulgare <400> 176 Met Gly Arg Met His Thr Pro Gly Lys Gly He Ser Lys Ser Ala Leu 1 5 10 15 Pro Tyr Arg Arg Ser Val Ala Thr Trp Leu Lys Ser Ser Ser Glu Asp 25 30 Val Lys Asp His He Phe Lys Leu Ala Lys Lys Gly Leu Thr Pro Ser 35 40 45 Lys He Gly Val He Leu Arg Asp Ser His Gly Val Ala Gin Val Arg 50 55 60 Phe Val Thr Gly Asn Lys He Leu Arg He Met Lys Ala Met Gly Leu 65 70 75 80 Ala Pro Gly Leu Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Arg Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Arg Lys Ser Lys He Ala Pro Asn Trp Arg Tyr Glu Ser Ser 130 135 140 Thr Ala Ser Ala Leu Val Ala 145 150 <210> 177 <211> 164 <212> PRT <213> Oryza sativa <220> <221> misc_feature <222> ( 1 ) . . ( 2 ) <223> Xaa can be any naturally occurring amino acid <400> 177 Xaa Xaa Glu Lys Gly He Ser Ser Ser Ala Leu Pro Cys Lys Arg He 1 5 10 15 Pro Pro Ser Leu Leu Lys Asn Ala Ala Ser Asn Val Glu Glu Met He 25 30 Met Lys Ala Ala Lys Met Gly Gin Met Ser Ser Gin He Gly Val Val 35 40 45 193 172135/2 Leu Arg His Gin His Gly He Pro Leu Val Lys Ser He Ala Ser Ser 50 55 60 Lys He Leu His He Leu Lys Ala His Gly Leu Ala Pro Lys He Leu 65 70 75 80 Glu Asp Leu Tyr Phe Leu He Lys Lys Ala Val Ala He Arg Lys His 85 90 95 Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Ser Phe Arg Leu He Leu 100 105 110 Val Glu Ser Arg He His Arg Leu Val Arg Tyr Tyr Lys Arg Thr Lys 115 120 125 Lys Leu Pro Pro Thr Leu Arg Phe Lys Trp He Leu Phe Lys Val Gly 130 135 140 Leu Met Leu Ser Ser Leu Leu Leu Thr Cys Val Leu Ser Asn Leu Arg 145 150 155 160 Asn Gly Leu Leu He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser Gin 10 15 He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Asn Ser 25 30 Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu Ala 40 45 Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 50 55 60 He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys Phe 65 70 75 80 Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr Tyr 85 90 95 Lys Lys Thr Lys Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr Thr 100 105 110 Ala Ser Thr Leu Val Ala 115 <210> 179 <2U> 135 <212> PRT 194 <213> Populus Sp . <400> 179 Ser Ala Leu Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys Thr Ser 1 5 10 15 Ala Asn Glu Val Cys Asp His Val Cys Arg Leu Ala Lys Lys Gly Leu 25 30 Thr Pro Ser Gin He Gly Val Val Leu Arg Asp Ser His Gly He Pro 35 40 45 Gin Val Lys Ser Val Thr Asn Asn Lys He Leu Arg He Leu Lys Ala 50 55 60 Asn Gly Phe Ala Pro Glu Leu Pro Glu Asp Leu Tyr His Leu He Lys 65 70 75 80 Lys Ala Ala Ser He Arg Lys His Leu Lys Arg Ser Arg Gin Asp Lys 85 90 95 Asp Ala Lys Phe His Leu He Leu Val Glu Ala Arg He His Arg Val 100 105 110 Ser Arg Tyr Tyr Lys Glu Ser Lys His Leu Pro Ala Asn Trp Arg Tyr 115 120 125 Glu Ser Pro Thr Ala Ala Thr 130 135 <210> 180 <211> 116 <212> PRT <213> Nicotiana tabacum <400> 180 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Ser Ala Pro Asp 25 30 Val Glu Asp Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro Ser 35 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala He Arg Lys His Leu Glu Arg Asp Arg Lys Asp Lys Asp Ser Lys 100 105 110 195 172135/2 Phe Arg Leu lie 115 <210> 181 <211> 152 <212> PRT <213> Triticum aestivum <220> <221> misc_feature <222> ( 129 ) . . ( 130 ) <223> Xaa can be any naturally occurring amino acid <400> 181 Met Gly Gly He Asp Ser Arg Arg Glu Gly Tyr Met Val Val Gly Val 1 5 10 15 Ala Val Gin Glu Asp Ser Ser Glu Val Gly Ser Arg Pro Thr Val Ala 25 30 Asp Val Asp Glu Leu He Thr Lys Ala Ala Lys Lys Gly Gin Met Pro 40 45 Ser Gin He Gly Val Leu Leu Arg Asp Gin His Gly He Pro Leu Val 50 55 60 Lys Ser Val Thr Gly Ser Lys He Leu Arg He He Lys Ala His Gly 65 70 75 80 Leu Ala Pro Glu He Pro Glu Asp Leu Tyr Phe Leu He Lys Lys Ala 85 90 95 Val Ala He Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp 100 105 110 Lys Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Pro Pro Arg 115 120 125 Xaa Xaa Lys Gly Arg Lys Lys Phe Pro Asp Lys Trp Lys Pro Pro Pro 130 135 140 Pro Pro Gly Ser He Leu Val Ala 145 150 <210> 182 <211> 128 <212> PRT <213> Brassica napus <400> 182 Ser Arg Cys Glu Asx Arg Ala Ser Ser He Cys Ala Asn Ala Pro Ser 1 5 10 15 Leu Gin Val Cys Glu Glu Gly Leu Thr Pro Ser Gin He Gly Val He 25 30 Leu Arg Asp Ser His Gly He Pro Gin Val Lys Ser Val Thr Gly Asn 40 45 196 172135/2 Lys He Leu Arg He Leu Lys Ala His Gly Leu Ala Pro Glu He Pro 50 55 60 Asp Asp Leu Tyr His Leu He Lys Lys Ala Val Ala He Arg Lys His 65 70 75 80 Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys Phe Arg Leu He Leu 85 90 95 Ala Glu Ser Arg He His Arg Leu Ala Arg Tyr Tyr Lys Lys Thr Lys 100 105 110 Lys Leu Pro Pro Val Trp Lys Tyr Glu Ser Thr Thr Ala Ser Thr Leu 115 120 125 <210> 183 <211> 121 <212> PRT <213> Triticum aestivum <220> <221> misc_f eature <222> ( 113 ) . . ( 113 ) <223> Xaa can be any naturally occurring amino acid <220> <221> misc_f eature <222> ( 116 ) . . ( 116) <223> Xaa can be any naturally occurring amino acid <400> 183 Ala Ala Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ser Ser 1 5 10 15 Ala Leu Pro Tyr Lys Arg Thr Pro Pro Thr Trp Leu Lys Thr Ala Ala 25 30 Asp Val Glu Glu Met He Thr Lys Ala Ala Lys Lys Gly Gin Met 40 45 Pro Ser Gin He Gly Val Leu Leu Arg Asp Gin His Gly He Pro Leu 50 55 60 Val Lys Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala Met 65 70 75 80 Gly Trp Asn Arg Asn Pro Gly Gly Leu Tyr Ser His Gin Glu Ala Val 85 90 95 Ala He Arg Asn Thr Leu Glu Glu Gin Glu Gly Gin Arg Ser Lys Ser 100 105 110 Xaa Ser Ser Xaa Gin Asn Arg Phe Asn 115 120 <210> 184 <211> 102 <212> PRT <213> Populus Sp . 197 <400> 184 Met Gly Arg Met His Ser Lys Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Ser Pro Ser Trp Leu Lys He Ser Pro Gin Asp 25 30 Val Asp Asp Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro 35 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 Thr Val Thr Gly Asn Gin He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Cys Tyr Leu Gly Ser He 100 <210> 185 <211> 142 <212> PRT <213> Oryza sativa <400> 185 Glu Asp Gly Ser Asp Val Val Ala Asp Trp Arg Cys Ala Pro Ser Gin 1 5 10 15 His Gly He Pro Leu Val Lys Ser He Ala Ser Ser Lys He Leu His 25 30 He Leu Asn Ala His Gly Leu Ala Pro Lys He Leu Glu Asp Leu Tyr 35 40 45 Phe Leu He Lys Lys Ala Val Ala He Arg Lys His Leu Glu Arg Asn 50 55 60 Arg Lys Asp Lys Asp Ser Ser Phe Arg Leu He Leu Val Glu Ser Arg 65 70 75 80 He His Arg Leu Val Arg Tyr Tyr Lys Arg Thr Lys Lys Leu Pro Pro 85 90 95 Thr Leu Arg Ser Trp He He Phe Leu Glu Phe Ser Thr Val Phe Ser 100 105 110 Cys Ser Arg Met Leu Gin Met Asp Thr Leu Gin Ser Arg Leu Asp Val 115 120 125 Glu Phe Leu Val Ala His Met Cys Ser Val Lys Phe Lys Glu 130 135 140 <210> 186 198 172135/2 <211> 163 <212> PRT <213> Triticum aestivum <400> 186 Phe Pro Ser Pro Pro Pro Gin Gin Leu Leu Pro He Ser Leu Leu Ala 1 5 10 15 Ala Ala Leu Arg Ser Pro Leu Ala Ala Met Gly Arg Met His Ser Asn 25 30 Gly Lys Gly Met Ser Ser Ser Val He Pro Tyr Lys Arg Glu Ala Pro 40 45 Thr Trp Val Lys Thr Ser Ala Pro Asp Val Glu Glu He He Val Arg 50 55 60 Ala Ala Lys Lys Gly Gin Leu Pro Ser Gin He Gly Ala Leu Leu Arg 65 70 75 80 Asp Gly Tyr Gly He Pro Leu Ser Lys Ala Val Thr Gly Ala Lys He 85 90 95 Val Arg Leu Leu Lys Ala Arg Gly Leu Ala Pro Glu Met Pro Arg Gly 100 105 110 Pro Leu Leu Pro His Gin Glu Gly Arg Cys Asp Ser Glu Ala Pro Gly 115 120 125 Arg Gly Thr Ser Arg Thr Trp Thr Pro Ser Ser Ala Ser Ser Ser Ser 130 135 140 Arg Thr Arg Ser Asn Ala Ser Thr Ala Thr Thr Ala Ser Thr Arg Arg 145 150 155 160 Cys Arg Arg <210> 187 <211> 333 <212> PRT <213> Oryza sativa <220> <221> misc_feature <222> (1)..(2) <223> Xaa can be any naturally occurring amino acid <400> 187 Xaa Xaa Val Glu Thr Ser Asp Leu Arg Glu Arg Glu Arg Glu Gly Lys 1 5 10 15 Gly Arg Arg Arg Arg Arg Gly Thr Lys Arg Thr Arg Arg Ala Arg Ala 25 30 He Phe Ala Leu Leu Pro Leu Ser Ser Leu Ser Ser Pro Leu Leu Arg 40 45 199 172135/2 Ser Ser Ala Ser Pro Ala Gly Arg Arg Leu Pro Val Leu Glu Ala Ala 50 55 60 Ala Ala Asp Thr Gly Gly Asp Asp Met Ala Asp Gly Gly Glu Lys Cys 65 70 75 80 Arg Asp Ala Ala Gly Glu Gly Gly Gly Gly Gly Asp Leu Tyr Ala Val 85 90 95 Leu Gly Leu Lys Lys Glu Cys Ser Asp Ala Asp Leu Lys Leu Ala Tyr 100 105 110 Arg Lys Leu Ala Met Arg Trp His Pro Asp Lys Cys Ser Ser Ser Ser 115 120 125 Ser Ala Lys His Met Glu Glu Ala Lys Glu Lys Phe Gin Glu lie Gin 130 135 140 Gly Ala Tyr Ser Val Leu Ser Asp Ser Asn Lys Arg Phe Leu Tyr Asp 145 150 155 160 Val Gly Val Tyr Asp Asp Asp Asp Asn Asp Asp Asp Asn Leu Gin Gly 165 170 175 Met Gly Asp Phe He Gly Glu Met Ala Gin Met Met Ser Gin Ala Arg 180 185 190 Pro Thr Arg Gin Glu Ser Phe Lys Glu Leu Gin Gin Leu Phe Val Asp 195 200 205 Met Phe Gin Ala Asp Leu Asp Ser Gly Phe Cys Asn Gly Pro Ser Lys 210 215 220 Cys Tyr His Thr Gin Ala Gin Ser Gin Thr Arg Thr Ser Ser Thr Ser 225 230 235 240 Pro Ser Met Ser Pro Ser Pro Pro Pro Pro Val Ala Thr Glu Ala Glu 245 250 255 Ser Pro Ser Cys Asn Gly He Asn Lys Arg Gly Ser Ser Ala Met Asp 260 265 270 Ser Gly Lys Pro Pro Arg Ala Ser Glu Val Ser Ala Gly Gin Ser Gin 275 280 285 Ser Gly Phe Cys Phe Gly Lys Ser Asp Ala Lys Gin Ala Ala Lys Thr 290 295 300 Arg Ser Gly Asn Thr Ala Ser Arg Arg Arg Asn Gly Arg Lys Gin Lys 305 310 315 320 Val Ser Ser Lys His Asp Val Ser Ser Glu Asp Glu Met 325 330 <210> 188 <211> 294 <212> PRT 200 <213> Hordeum vulgare <400> 188 Trp Arg Gly Ala Gin Thr Ala Glu Glu Arg Glu Arg Gly Lys Leu Gin 1 5 10 15 Glu Pro Pro Pro Pro Pro Pro Ala His Pro Pro Ala Gly Asp Ala Arg 25 30 Gly Met Ala Thr Gly Gly Asp Gly Asp Pro Ala Ala Pro Gly Gly Gly 35 40 45 Asp Leu Tyr Ala Val Leu Gly Leu Ser Lys Glu Cys Ser Asp Ala Asp 50 55 60 Leu Lys Val Ala Tyr Arg Lys Leu Ala Met Arg Trp His Pro Asp Arg 65 70 75 80 Cys Ser Ser Ser Ser Gly Thr Lys His Met Glu Glu Ala Lys Glu Lys 85 90 95 Phe Gin Glu lie Gin Gly Ala Tyr Ser Val Leu Ser Asp Ala Asn Lys 100 105 110 Arg Phe Leu Tyr Asp Val Gly Val Tyr Gin Glu Glu Glu Asp Ser Asp 115 120 125 Asp Ser Met Gin Gly Met Gly Asp Phe Leu Gly Glu Met Ala His Met 130 135 140 Met Ser Gin Thr Arg Pro Ala Arg Gin Glu Ser Phe Glu Glu Leu Gin 145 150 155 160 Gin Leu Phe Val Asp Met Phe Gin Ser Asp lie Asp Ser Gly Phe Cys 165 170 175 Asn Gly Pro Ala Lys Gly His His Asp Pro Phe Gin Arg Gin Thr Gin 180 185 190 Thr Phe Ser Thr Ser Pro Ser Ser Pro Pro Ser Pro Pro Pro Pro Leu 195 200 205 Ala Thr Glu Ala Glu Ala Ala Ser Cys Asn Gly He Asn Lys Arg Gly 210 215 220 Ser Ser Ala Met Gly Ser Gly Lys Pro Pro Arg Ala Ala Glu Ala Gly 225 230 235 240 Ala Gly Tyr Gly Gin Ser Glu Phe Cys Phe Gly Thr Ser Asp Ala Lys 245 250 255 Gin Ala Pro Arg Ala Arg Gly Gly Asn Thr Ser Arg Arg Arg Asn Gly 260 265 270 Gin Lys Gin Lys Leu Ser Ser Lys His Asp Val Ser Ser Glu Asp Glu 275 280 285 201 Met Leu Ser Pro Gin Gin 290 <210> 189 <211> 301 <212> PRT <213> Triticum aestivum <400> 189 Arg Glu Arg Glu Arg Glu Gly Arg Lys Arg Gin Glu Pro Pro Pro Pro 1 5 10 15 Ser Ser Pro Leu Ser Ser Ser Ser Ser Pro Ala His Pro Arg Ala Pro 25 30 Gin Ala Gly Gly Ala Gly Arg Gly Met Ala Thr Gly Gly Asp Gly Cys 35 40 45 Gly Gly Gly Glu Pro Ala Ala Pro Gly Gly Gly Asp Leu Tyr Ala Val 50 55 60 Leu Gly Leu Ser Lys Glu Cys Ser Asp Ala Asp Leu Lys Leu Ala Tyr 65 70 75 80 Arg Lys Leu Ala Met Arg Trp His Pro Asp Arg Cys Ser Ser Ser Ser 85 90 95 Gly Thr Lys Arg Met Glu Glu Ala Lys Glu Lys Phe Gin Glu He Gin 100 105 110 Gly Ala Tyr Ser Val Leu Ser Asp Ala Asn Lys Arg Phe Leu Tyr Asp 115 120 125 Val Gly Val Tyr Gin Glu Glu Glu Asp Ser Asp Asp Ser Met Gin Gly 130 135 140 Met Gly Asp Phe Leu Gly Glu Met Ala His Met Met Ser Gin Thr Arg 145 150 155 160 pro Ala Arg Gin Glu Ser Phe Glu Glu Leu Gin Gin Leu Phe val Asp 165 170 175 Met Phe Gin Ser Asp He Asp Ser Gly Phe Cys Asn Arg Pro Ala Lys 180 185 190 Gly His His Asp Pro Phe Gin Thr Phe Ser Thr Ser Pro Ser Ser Ser 195 200 205 Pro Ser Pro Pro Pro Pro Val Ala Thr Glu Ala Glu Ala Ala Ser Cys 210 215 220 Asn Gly He Asn Lys Arg Gly Ser Ser Ala Met Gly Ser Gly Lys Pro 225 230 235 240 Pro Arg Ala Gly Glu Ala Gly Ala Gly Tyr Gly Gin Pro Glu Phe Cys 245 250 255 202 Phe Gly Thr Ser Asp Ala Lys Gin Ala Pro Lys Ala Arg Gly Arg Asn 260 265 270 Thr Ser Arg Arg Arg Asn Gly Gin Lys Gin Lys Leu Ser Ser Lys His 275 280 285 Asp Val Ser Ser Glu Asp Glu Met Leu Ser Pro Gin Gin 290 295 300 <210> 190 <211> 203 <212> PRT <213> Zea mays <400> 190 Met Glu Glu Ala Lys Glu Lys Phe Gin Glu lie Gin Gly Ala Tyr 1 5 10 15 Val Leu Ser Asp Ala Asn Lys Arg Leu Leu Tyr Asp Val Gly Val Tyr 25 30 Asp Asp Glu Asp Asp Glu Glu Ser Met Gin Gly Met Gly Asp Phe 35 40 45 Gly Glu Met Ala Gin Met Met Ser Gin Ala Gin Pro Thr Arg Gin Glu 50 55 60 Ser Phe Glu Glu Leu Gin Gin Leu Phe Val Asp Met Phe Gin Ser Asp 65 70 75 80 lie Asp Ser Gly Phe Cys Asn Arg Thr Ala Lys Ala His Gin Phe Gin 85 90 95 Gly Pro Ala Lys Ser Arg Thr Cys Ser Thr Ser Pro Ser Ser Ser Pro 100 105 110 Ser Pro Pro Pro Thr Thr Ala Lys Asp Ala Glu Val Pro Ser Cys Asn 115 120 125 Gly Phe Asn Lys Arg Gly Ser Ser Ala Leu Asp Ser Gly Lys Pro Pro 130 135 140 Lys Pro Val Glu Gly Gly Ala Gly Gin Asn Gin Ala Gly Phe Cys Phe 145 150 155 160 Gly Val Ser Asp Thr Lys Glu Thr Pro Lys Leu Pro Gly Gin Asn Ala 165 170 175 Ser Arg Arg Arg Asn Gly Arg Lys Gin Lys Leu Ser Ser Lys His Asp 180 185 190 Val Ser Ser Glu Asp Glu Thr Ala Ala Gly Ser 195 200 <210> 191 <211> 164 <212> PRT 203 172135/2 <213> Triticum aestivum <400> 191 Met Gin Gly Met Gly Asp Phe Leu Gly Glu Met Ala His Met Met Ser 1 5 10 15 Gin Thr Arg Pro Ala Arg Gin Glu Ser Phe Glu Glu Leu Gin Gin Leu 25 30 Phe Val Asp Met Phe Gin Ser Asp lie Asp Ser Gly Phe Cys Asn Gly 40 45 Pro Ala Lys Gly His His Asp Pro Phe Gin Thr Phe Ser Thr Phe Pro 50 55 60 Ser Ser Ser Pro Ser Pro Pro Pro Pro Leu Ala Thr Glu Ala Glu Ala 65 70 75 80 Ala Ser Cys Asn Gly lie Asn Lys Arg Gly Ser Ser Ala Met Gly Ser 85 90 95 Gly Lys Pro Pro Arg Thr Gly Glu Ala Gly Ala Gly Tyr Gly Gin Pro 100 105 110 Glu Phe Cys Phe Gly Arg Ser Asp Ala Lys Gin Ala Pro Lys Ala Arg 115 120 125 Gly Gly Asn Thr Ser Arg Arg Arg Asn Gly Gin Lys Gin Lys Pro Ser 130 135 140 Ser Lys His Asp Val Ser Ser Glu Asp Glu Met Leu Ser Pro Gin Gin 145 150 155 160 Pro Arg Val Val <210> 192 <211> 134 <212> PRT <213> Zea mays <400> 192 Met Arg Gin Glu Ser Phe Glu Glu Leu Gin Gin Leu Phe Val Asp Met 1 5 10 15 Phe Gin Ser Asp lie Asp Ser Gly Phe Cys Asn Gly Thr Ala Lys Gly 25 30 His Gin Val Gin Gly Gin Ala Lys Ser Arg Thr Cys Ser Pro Arg Ser 40 45 Pro Pro Thr Thr lie Val Lys Glu Ala Glu Val Ser Ser Cys Asn Gly 50 55 60 Phe Asn Lys Arg Gly Ser Ser Ala Met Asp Ser Gly Lys Pro Pro Arg 65 70 75 80 204 Pro Val Glu Cys Gly Ala Gly Gin Ser Gin Ala Gly Phe Cys Phe Gly 85 90 95 Val Ser Asp Thr Pro Lys Pro Arg Gly Pro Asn Ala Asn Arg Lys Arg 100 105 110 Asn Gly Arg Lys Gin Lys Leu Phe Pro Lys His Tyr Val Thr Ser Glu 115 120 125 Asp Asp Thr Ala Gly 130 <210> 193 <211> 143 <212> PRT <213> Triticum aestivum <220> <221> misc_feature <222> (132) .. (132) <223> Xaa can be any naturally occurring amino acid <220> <221> misc_feature <222> (141).. (142) <223> Xaa can be any naturally occurring amino acid <400> 193 Gly Ala Leu Val Leu Pro Ser Arg Cys Cys Ser Cys Ala Val Leu Ser 1 5 10 15 Asp Ala Asn Lys Arg Phe Leu Tyr Asp Val Gly Val Tyr Gin Glu Glu 25 30 Glu Asp Ser Asp Asp Ser Met Gin Gly Met Gly Asp Phe Leu Gly Glu 35 40 45 Met Ala His Met Met Ser Gin Ala Arg Pro Ala Arg Gin Glu Ser Phe 50 55 60 Glu Glu Leu Gin Gin Leu Phe Val Asp Met Phe Gin Ser Asp lie Asp 65 70 75 80 Ser Gly Phe Cys Asn Gly Pro Ala Lys Gly His His Asp Pro Phe Gin 85 90 95 Thr Phe Ser Thr Ser Pro Ser Ser Ser Pro Ser Pro Pro Pro Pro Leu 100 105 110 Ala Thr Glu Ala Glu Ala Ala Ser Cys Asn Gly lie Asn Lys Arg Gly 115 120 125 Ser Ser Ala Xaa Gly Leu Trp Gly Lys Pro Pro flrg xaa xaa eiy 130 135 140 <210> 194 <211> 322 <212> PRT <213> Zea mays 205 172135/2 <400> 194 Met Asp Gly Leu Trp His Leu Gly Asp Glu Leu Arg Gly Gin Pro Lys 1 5 10 15 Val Val Glu Asp Arg Gin Trp Ser Leu Met Thr Ser Lys Leu Ala Glu 25 30 lie Thr Arg Ser Arg Gly Glu Arg Thr Asn Asp Leu Asp Tyr Ala Arg 40 45 Met Asn Ala Ala Pro Asp Ala Lys Arg Trp Gly Lys Ala Ala Ser Tyr 50 55 60 Gin His His Asp Glu Gly Arg Met Asp His His Val Gly Leu Ser Leu 65 70 75 80 Lys Met Asn Asp Leu Lys Met Asn Glu Ala Ala Ala Ala Ala Val Met 85 90 95 Lys Leu Pro Phe Arg Gly Val Pro Tyr Asn Val Asn Pro Met Tyr Pro 100 105 110 Lys Gly Ser Asn Ala Asn Ala Asn Val Asn Ala Phe Lys Met Asn Val 115 120 125 Gly Val Asn Lys Tyr Ser Ser Ser Ala Asn Gly Lys Asp Ser Gly Gly 130 135 140 Lys Ser Ser Gly Gly Ser Asn Asn Asn Ser Gly Gly Gly Gly Asn Gly 145 150 155 160 Asn Gly Thr Ala Asn Gly Ser Ser Ala Val Asp Lys Arg Phe Lys Thr 165 170 175 Leu Pro Thr Ser Glu Met Leu Pro Lys Asn Glu Val Leu Gly Gly Tyr 180 185 190 lie Phe Val Cys Asn Asn Asp Thr Met Gin Glu Asp Leu Lys Arg Gin 195 200 205 Leu Phe Gly Leu Pro Ala Arg Tyr Arg Asp Ser Val Arg Ala lie Thr 210 215 220 Pro Gly Leu Pro Leu Phe Leu Tyr Asn Tyr Thr Thr His Gin Leu His 225 230 235 240 Gly Val Phe Glu Ala Ala Ser Phe Gly Gly Ser Asn lie Asp Pro Thr 245 250 255 Ala Trp Glu Asp Lys Lys Cys Lys Gly Glu Ser Arg Phe Pro Ala Gin 260 265 270 Val Arg lie Arg Val Arg Lys Leu Cys Lys Pro Leu Glu Glu Asp Ser 275 280 285 Phe Arg Pro Val Leu His His Tyr Asp Gly Pro Lys Phe Arg Leu Glu 206 172135/2 290 295 300 Leu Ser lie Ala Glu Thr Leu Ser Leu Leu Asp Leu Cys Glu Lys Glu 305 310 315 320 Gly He <210> 195 <211> 310 <212> PRT <213> Triticum aestivum <400> 195 Met Asp Asn Leu Trp His Leu Gly Asp Glu Phe Arg Gly Gin Ser Lys 1 5 10 15 Val Val Glu Asp Arg Gin Trp Ser Leu Met Thr Ser Lys Leu Ala Glu 25 30 He Thr Lys Ser Lys Ala Glu Arg Met Asn Asp Phe Glu Tyr Ala Arg 40 45 Met Asn Thr Val Pro Asp Val Lys Gin Trp Asp Lys Leu Ser Tyr His 50 55 60 Gin Glu Asp Asn Lys Met Asp His Leu Asn Leu Gly Leu Met Asn Leu 65 70 75 80 Asp Leu Lys Met Asn Asp Leu Lys Met Asn Glu Ala Ala Met Lys Tyr 85 90 95 Pro Phe Arg Asn Met Ala Tyr Asn Met Asn Pro Met Tyr Pro Lys Gly 100 105 110 Asn Asn Gly Asn Val Asn Ser Phe Lys Met Asn Val Gly Val Asn Lys 115 120 125 Tyr Pro Asn Asn Gin Asn Gly Lys Glu Ala Asn Gly Lys His Asn Gly 130 135 140 Gly Asn Asn Asn Asn Gly Gly Asn Ser Asn Asn Asn Ser Val Asp Lys 145 150 155 160 Arg Phe Lys Thr Leu Pro Thr Ser Glu Met Leu Pro Arg Asn Glu Val 165 170 175 Leu Gly Gly Tyr He Phe Val Cys Asn Asn Asp Thr Met Gin Glu Asp 180 185 190 Leu Lys Arg Gin Leu Phe Gly Leu Pro Ala Arg Tyr Arg Asp Ser Val 195 200 205 Arg Ala He Thr Pro Gly Leu Pro Leu Phe Leu Tyr Asn Tyr Thr Thr 210 215 220 His Gin Leu His Gly Val Phe Glu Ala Ala Ser Phe Gly Gly Ser Asn 207 172135/2 225 230 235 240 lie Asp Pro Thr Ala Trp Glu Asp Lys Lys Cys Lys Gly Glu Ser Arg 245 250 255 Phe Pro Ala Gin Val Arg lie Arg lie Arg Arg Leu Cys Lys Ala Leu 260 265 270 Glu Glu Asp Ala Phe Arg Pro Val Leu His His Tyr Asp Gly Pro Lys 275 280 285 Phe Arg Leu Glu Leu Ser lie Ala Glu Thr Leu Ser Leu Leu Asp Leu 290 295 300 Cys Lys Thr Glu Asp Ala 305 310 <210> 196 <211> 309 <212> PRT <213> Hordeum vulgare <400> 196 Met Asp Asn Leu Trp His Leu Gly Asp Glu Phe Arg Gly Gin Ser Lys 1 5 10 15 Val Val Glu Asp Arg Gin Trp Ser Leu Met Thr Ser Lys Leu Ala Glu 25 30 lie Thr Lys Ser Lys Ala Glu Arg Met Asn Asp Phe Glu Tyr Ala Arg 40 45 Met Asn Thr Val Pro Asp Val Lys Gin Trp Asp Lys Leu Ser Tyr His 50 55 60 Gin Glu Asp Asn Lys Met Asp His Leu Asn Leu Gly Leu Met Asn Leu 65 70 75 80 Asp Leu Lys Met Asn Asp Leu Lys Met Asn Glu Ala Ala Met Lys Tyr 85 90 95 Pro Phe Arg Asn Met Ala Tyr Asn Met Asn Pro Met Tyr Pro Lys Gly 100 105 110 Asn Asn Gly Asn Val Asn Ser Phe Lys Met Asn Val Gly Val Asn Lys 115 120 125 Tyr Pro Asn Asn Gin Asn Gly Lys Glu Ala Asn Gly Lys His Asn Gly 130 135 140 Gly Asn Asn Asn Asn Gly Gly Asn Ser Asn Asn Ser Val Asp Lys Arg 145 150 155 160 Phe Lys Thr Leu Pro Thr Ser Glu Met Leu Pro Arg Asn Glu Val Leu 165 170 175 Gly Gly Tyr lie Phe Val Cys Asn Asn Asp Thr Met Gin Glu Asp Leu 208 172135/2 180 185 190 Lys Arg Gin Leu Phe Gly Leu Pro Ala Arg Tyr Arg Asp Ser Val Arg 195 200 205 Ala lie Thr Pro Gly Leu Pro Leu Phe Leu Tyr Asn Tyr Thr Thr His 210 215 220 Gin Leu His Gly Val Phe Glu Ala Ala Ser Phe Gly Gly Ser Asn He 225 230 235 240 Asp Pro Thr Ala Trp Glu Asp Lys Lys Cys Lys Gly Glu Ser Arg Phe 245 250 255 Pro Ala Gin Val Arg He Arg He Arg Arg Leu Cys Lys Ala Leu Glu 260 265 270 Glu Asp Ala Phe Arg Pro Val Leu His His Tyr Asp Gly Pro Lys Phe 275 280 285 Arg Leu Glu Leu Ser He Ala Glu Thr Leu Ser Leu Leu Asp Leu Cys 290 295 300 Lys Ser Glu Asp Ala 305 <210> 197 <211> 314 <212> PRT <213> Oryza sativa <400> 197 Met Asp Asn Leu Trp His Leu Gly Asp Glu Phe Arg Gly Gin Ser Lys 1 5 10 15 Val Val Glu Asp Arg Gin Trp Ser Leu Met Thr Ser Lys Leu Ala Glu 25 30 He Asn Lys Ser Lys Ala Glu Arg Thr Asn Glu Leu Asp Tyr Ala Arg 40 45 Met Asn Thr He Pro Asp Val Lys Gin Trp Asp Lys Val Ser Tyr His 50 55 60 Gin Asp Glu Ser Lys Met Asp His Leu Asn Leu Gly Leu Met Asn Leu 65 70 75 80 Asp Leu Lys Met Asn Asp He Arg Met Asn Asp Ala Ala Met Lys Asn 85 90 95 Pro Phe Arg Gly Met Ala Tyr Asn Met Asn Gin Leu Tyr Pro Lys Gly 100 105 110 Gly Asn Gly Asn Val Asn Ser Phe Lys Met Asn Val Gly Val Asn Lys 115 120 125 Tyr Leu His Ser Pro Asn Gly Lys Asp Val Asn Gly Lys Asn Ser Gly 209 130 135 140 Ala Asn Ser Asn Gly Ser Asn Ser Ser Gly Asn Asn Ser Ser Asn Ser 145 150 155 160 Ala Val Asp Lys Arg Phe Lys Thr Leu Pro Thr Ser Glu Met Leu Pro 165 170 175 Arg Asn Glu Val Leu Gly Gly Tyr He Phe Val Cys Asn Asn Asp Thr 180 185 190 Met Gin Glu Asp Leu Lys Arg Gin Leu Phe Gly Leu Pro Ala Arg Tyr 195 200 205 Arg Asp Ser Val Arg Ala He He Pro Gly Leu Pro Leu Phe Leu Tyr 210 215 220 Asn Tyr Thr Thr His Gin Leu His Gly Val Phe Glu Ala Ser Ser Phe 225 230 235 240 Gly Gly Ser Asn He Asp Pro Thr Ala Trp Glu Asp Lys Lys Cys Lys 245 250 255 Gly Glu Ser Arg Phe Pro Ala Gin Val Arg He Arg He Arg Lys Leu 260 265 270 Cys Lys Pro Leu Glu Glu Asp Ala Phe Arg Pro Val Leu His His Tyr 275 280 285 Asp Gly Pro Lys Phe Arg Leu Glu Leu Ser He Ala Glu Thr Leu Ser 290 295 300 Leu Leu Asp Leu Cys Glu Lys Glu Gly Val 305 310 <210> 198 <211> 356 <212> PRT <213> Zea mays <220> <221> misc_feature <222> (1) .. (2) <223> Xaa can be any naturally occurring amino acid <400> 198 Xaa Xaa Ala Thr Cys Leu Leu Ser Phe Leu Pro Ser He Pro Pro Cys 1 5 10 15 Leu Arg Pro Leu Leu Thr Pro Val Gly Arg Gly Ala Ala Ala Asp Cys 25 30 Trp Asp Cys Pro Thr Pro Ser Ala Gin Val He Phe Gly Pro Phe Ala 35 40 45 Gly Asp Glu His His Gin Val Cys Gin Val Asp Arg Ala Met Asp Ser 50 55 60 210 172135/2 Leu Trp His Leu Gly Asp Glu Leu Arg Gly Gin Pro Lys Val Val Glu 65 70 75 80 Asp Arg Gin Trp Ser Leu Met Thr Ser Lys Leu Ala Glu He Thr Arg 85 90 95 Lys Gly Glu Arg Met Asn Thr Val Pro Asp Ala Lys Gin Trp Asp 100 105 110 Lys Thr Ser Tyr Gin Leu His Asp Asp Ser Arg Met Gly His He Asn 115 120 125 Leu Gly Leu Met Asn Leu Asp Leu Lys Met Asn Glu Ala Ala Ala Met 130 135 140 Lys Leu Pro Phe Arg Gly Met Pro Tyr Asn Met Asn Gin Met Tyr Leu 145 150 155 160 Lys Gly Ser Asn Ala Asn Ser Asn Val Asn Ala Phe Lys Met Asn Val 165 170 175 Gly Val Asn Lys Tyr Ser Asn Ser Pro Asn Gly Lys Asp Ala Asn Gly 180 185 190 Lys Asn Asn Gly Gly Ser Gly Gly Asn Asn Asn Asn Gly Ser Ala Asn 195 200 205 Gly Thr Ser Val Ala Asp Lys Arg Phe Lys Thr Leu Pro Thr Ser Glu 210 215 220 Met Leu Pro Arg Asn Glu Val Leu Gly Gly Tyr He Phe Val Cys Asn 225 230 235 240 Asn Asp Thr Met Gin Glu Asp Leu Lys Arg Gin Leu Phe Gly Leu Pro 245 250 255 Ala Arg Tyr Arg Asp Ser Val Arg Ala He Thr Pro Gly Leu Pro Leu 260 265 270 Phe Leu Tyr Asn Tyr Thr Thr His Gin Leu His Gly Val Phe Glu Ala 275 280 285 Ala Ser Phe Gly Gly Ser Asn He Asp Pro Thr Ala Trp Glu Asp Lys 290 295 300 Lys Cys Lys Gly Glu Ser Arg Phe Pro Ala Gin Val Arg He Cys He 305 310 315 320 Arg Lys Leu Cys Lys Pro Leu Glu Glu Asp Ser Phe Arg Pro Val Leu 325 330 335 His His Tyr Asp Gly Pro Lys Phe Arg Leu Glu Leu Ser He Ala Glu 340 345 350 Thr Leu Ser Leu 355 211 <210> 199 <211> 340 <212> PRT <213> Triticum aestivum <220> <221> misc_feature <222> (338) .. (340) <223> Xaa can be any naturally occurring amino acid <400> 199 Val Gly Gly Ala Lys Trp Glu Pro Thr Pro Ser Gin Pro Ser Gly Leu 1 5 10 15 Leu Ser Ser Ser Gin Gin Phe Ala lie Arg Pro Gin lie Gin Arg Pro 25 30 Arg Arg Asn Pro Ala Pro Asn Leu Ala Glu Ser Leu Asn Arg Ala 35 40 45 Met Asp Asn Leu Trp His Leu Gly Asp Glu Phe Arg Gly Gin Ser Lys 50 55 60 Val Glu Asp Arg Gin Trp Ser Leu Met Thr Ser Lys Leu Ala Glu 70 75 80 lie Thr Lys Ser Lys Ala Glu Arg Met Asn Asp Phe Glu Tyr Ala Arg 85 90 95 Met Asn Thr Val Pro Asp Val Lys Gin Trp Asp Lys Leu Ser Tyr His 100 105 110 Gin Glu Asp Asn Lys Met Asp His Leu Asn Leu Gly Leu Met Asn Leu 115 120 125 Asp Leu Lys Met Asn Asp Leu Lys Met Asn Glu Ala Ala Met Lys Tyr 130 135 140 Pro Phe Arg Asn Met Ala Tyr Asn Met Asn Pro Met Tyr Pro Lys Gly 145 150 155 160 Asn Asn Gly Asn Val Asn Ser Phe Lys Met Asn Val Gly Val Asn Lys 165 170 175 Tyr Pro Asn Asn Gin Asn Gly Lys Glu Ala Asn Gly Lys His Asn Gly 180 185 190 Gly Asn Asn Asn Asn Gly Gly Asn Ser Asn Asn Asn Ser Val Asp Lys 195 200 205 Arg Phe Lys Thr Leu Pro Thr Ser Glu Met Leu Pro Arg Asn Glu Val 210 215 220 Leu Gly Gly Tyr He Phe Val Cys Asn Asn Asp Thr Met Gin Glu Asp 225 230 235 240 212 Leu Lys Arg Gin Leu Phe Gly Leu Pro Ala Arg Tyr Arg Asp Ser Val 245 250 255 Arg Ala lie Thr Pro Gly Leu Pro Leu Phe Leu Tyr Asn Tyr Thr Thr 260 265 270 His Gin Leu His Gly Val Phe Glu Ala Ala Ser Phe Gly Gly Ser Asn 275 280 285 lie Asp Pro Thr Ala Trp Glu Asp Lys Lys Cys Lys Gly Glu Ser Arg 290 295 300 Phe Pro Ala Gin Val Arg He Arg He Arg Arg Leu Cys Lys Ala Leu 305 310 315 320 Glu Glu Asp Ala Phe Arg Pro Val Leu His His Tyr Asp Gly Pro Lys 325 330 335 Phe Xaa Xaa Xaa 340 <210> 200 <211> 314 <212> PRT <213> Oryza sativa <400> 200 Met Asp Asn Leu Trp His Leu Gly Asp Glu Phe Arg Gly Gin Ser Lys 1 5 10 15 Val Val Glu Asp Arg Gin Trp Ser Leu Met Thr Ser Lys Leu Ala Glu 25 30 Asn Lys Ser Lys Ala Glu Arg Thr Asn Glu Leu Asp Tyr Ala Arg 35 40 45 Met Asn Thr He Pro Asp Val Lys Gin Trp Asp Lys Val Ser Tyr His 50 55 60 Gin Asp Glu Ser Lys Met Asp His Leu Asn Leu Gly Leu Met Asn Leu 65 70 75 80 Asp Leu Lys Met Asn Asp He Arg Met Asn Asp Ala Ala Met Lys Asn 85 90 95 Pro Phe Arg Gly Met Ala Tyr Asn Met Asn Gin Leu Tyr Pro Lys Gly 100 105 110 Gly Asn Gly Asn Val Asn Ser Phe Lys Met Asn Val Gly Val Asn Lys 115 120 125 Tyr Leu His Ser Pro Asn Gly Lys Asp Val Asn Gly Lys Asn Ser Gly 130 135 140 Ala Asn Ser Asn Gly Ser Asn Ser Ser Gly Asn Asn Ser Ser Asn Ser 145 150 ' 155 160 213 172135/2 Ala Val Asp Lys Arg Phe Lys Thr Leu Pro Thr Ser Glu Met Leu Pro 165 170 175 Arg Asn Glu Val Leu Gly Gly Tyr lie Phe Val Cys Asn Asn Asp Thr 180 185 190 Met Gin Glu Asp Leu Lys Arg Gin Leu Phe Gly Leu Pro Ala Arg Tyr 195 200 205 Arg Asp Ser Val Arg Ala He He Pro Gly Leu Pro Leu Phe Leu Tyr 210 215 220 Asn Tyr Thr Thr His Gin Leu His Gly Val Ser Glu Ala Ser Ser Phe 225 230 235 240 Gly Gly Ser Asn Leu Asp Pro Thr Glu Trp Asp Asp Thr Thr Cys Asn 245 250 255 Gly Glu Ser Arg Phe Pro Ala Gin Val Thr Leu Arg Leu Pro Lys Leu 260 265 270 Cys Lys Pro Leu Glu Asp Ala Ala Ser Thr Pro Val Leu His His Tyr 275 280 285 Asp Gly Pro Gin Ser Arg Leu Asp Leu Ser He Ala Asp Asn Leu 290 295 300 Leu Leu His Leu Cys Ala Gin Gin Arg Val 305 310 <210> 201 <211> 184 <212> PRT <213> Oryza sativa <400> 201 Met Asp Asn Leu Trp His Leu Gly Asp Glu Phe Arg Gly Gin Ser Lys 1 5 10 15 Val Val Glu Asp Arg Gin Trp Ser Leu Met Thr Ser Lys Leu Ala Glu 25 30 He Asn Lys Ser Lys Ala Glu Arg Thr Asn Glu Leu Asp Tyr Ala Arg 40 45 Met Asn Thr He Pro Asp Val Lys Gin Trp Asp Lys Val Ser Tyr His 50 55 60 Gin Asp Glu Ser Lys Met Asp His Leu Asn Leu Gly Leu Met Asn Leu 65 70 75 80 Asp Leu Lys Met Asn Asp He Arg Met Asn Asp Ala Ala Met Lys Asn 85 90 95 Pro Phe Arg Gly Met Ala Tyr Asn Met Asn Gin Leu Tyr Pro Lys Gly 100 105 110 214 172135/2 Gly Asn Gly Asn Val Asn Ser Phe Lys Met Asn Val Gly Val Asn Lys 115 120 125 Tyr Leu His Ser Pro Asn Gly Lys Asp Val Asn Gly Lys Arg Phe Lys 130 135 140 Thr Leu Pro Thr Ser Glu Met Leu Pro Arg Asn Glu Val Leu Gly Gly 145 150 155 160 Tyr He Phe Val Cys Asn Asn Asp Thr Met Gin Glu Asp Leu Lys Arg 165 170 175 Gin Leu Phe Gly Leu Pro Ala Arg 180 <210> 202 <211> 197 <212> PRT <213> Gossypium Sp <400> 202 Met Gly Thr Arg Ala Lys Glu Lys Asn He Met Glu Pro Arg Val Gly 1 5 10 15 Arg Arg Thr Ala Thr Arg Lys Asn Asn Asn Asn Asn Asp Asn Asn Asn 25 30 Glu Asn Lys Asp Gly Lys Ser Ala Ala Asp Lys Arg Phe Lys Thr Leu 40 45 Pro Pro Ser Glu Ser Leu Pro Arg Asn Glu Thr Val Gly Gly Tyr 50 55 60 Phe Val Cys Asn Asn Asp Thr Met Glu Glu Asn Leu Arg Arg Gin Leu 65 70 75 80 Phe Gly Leu Pro Pro Arg Tyr Arg Asp Ser Val Arg Ala He Thr Pro 85 90 95 Gly Leu Pro Leu Phe Leu Tyr Asn Tyr Ser Thr His Gin Leu His Gly 100 105 110 Val Phe Glu Ala Ala Ser Phe Gly Gly Thr Asn He Asp Pro Thr Ala 115 120 125 Trp Glu Asp Lys Lys Cys Pro Gly Glu Ser Arg Phe Pro Ala Gin Val 130 135 140 Arg Val He Thr Arg Lys He Cys Glu Pro Leu Glu Glu Asp Ser Phe 145 150 155 160 Arg Pro He Leu His His Tyr Asp Gly Pro Lys Phe Arg Leu Glu Leu 165 170 175 Asn He Pro Glu Ala Leu Ser Leu Leu Asp He Phe Ala Asp Gin Gin 180 185 190 215 172135/2 Asp Thr Cys lie Ser 195 <210> 203 <211> 188 <212> PRT <213> Solanum <400> 203 Lys Phe Gly Lys Gly Phe Phe Glu Asp Glu His Lys Ser Val Lys Lys 1 5 10 15 Asn Asn Lys Ser Val Lys Glu Ser Asn Lys Asp Val Asn Ser Glu Lys 25 30 Gin Asn Gly Val Asp Lys Arg Phe Lys Thr Leu Pro Pro Ala Glu Ser 40 45 Leu Pro Arg Asn Glu Thr Val Gly Gly Tyr lie Phe Val Cys Asn Asn 50 55 60 Asp Thr Met Ala Glu Asn Leu Lys Arg Glu Leu Phe Gly Leu Pro Pro 65 70 75 80 Arg Tyr Arg Asp Ser Val Arg Gin lie Thr Pro Gly Leu Pro Leu Phe 85 90 95 Leu Tyr Asn Tyr Ser Thr His Gin Leu His Gly Val Phe Glu Ala Ala 100 105 110 Ser Phe Gly Gly Ser Asn lie Asp Pro Ser Ala Trp Glu Asp Lys Lys 115 120 125 Asn Pro Gly Glu Ser Arg Phe Pro Ala Gin Val Leu Val Val Thr Arg 130 135 140 Lys Val Cys Glu Pro Leu Glu Glu Asp Ser Phe Arg Pro lie Leu His 145 150 155 160 His Tyr Asp Gly Pro Lys Phe Arg Leu Glu Leu Asn Val Pro Glu Ala 165 170 175 He Ser Leu Leu Asp He Phe Glu Glu Asn Lys Asn 180 185 <210> 204 <211> 255 <212> PRT <213> Triticum aestivum <400> 204 Met Asp Thr Lys His Ala Asp Ser Phe Asp Glu Arg Asp Val Val Val 1 5 10 15 Asp Ala Gly Cys Val Arg Ala Val Leu Gly Glu Leu Val Leu Thr Phe 25 30 Leu Phe Val Phe Thr Gly Val Ala Ala Ala Met Ala Ala Gly Val Pro 216 172135/2 40 45 Glu Leu Gin Gly Ala Ala Met Pro Met Ala Thr Leu Ala Gly Val Ala 50 55 60 Leu Ala Gin Ala Leu Ala Ala Gly Val Leu Val Thr Ala Gly Phe His 65 70 75 80 Val Ser Gly Gly His Leu Asn Pro Ala Val Thr Val Ala Leu Leu Ala 85 90 95 Arg Gly His lie Thr Ala Phe Arg Ala Val Leu Tyr Val Ala Ala Gin 100 105 110 Leu Leu Ala Ser Ser Leu Ala Cys lie Leu Leu Arg Tyr Leu Ser Gly 115 120 125 Gly Gin Ala Thr Pro Val Pro Val His Thr Leu Gly Ala Gly He Gly 130 135 140 Pro Met Gin Gly Leu Val Met Glu Val He Leu Thr Phe Ser Leu Leu 145 150 155 160 Phe Val Val Tyr Ala Thr He He Asp Pro Arg Thr Thr Val Pro Gly 165 170 175 Tyr Gly Pro Met Leu Thr Gly Leu He Val Gly Ala Asn Thr He Ala 180 185 190 Gly Gly Asn Phe Ser Gly Ala Ser Met Asn Pro Ala Arg Ser Phe Gly 195 200 205 Pro Ala Leu Ala Thr Gly Val Trp Thr Asn His Trp Val Tyr Trp Val 210 215 220 Gly Pro Leu Val Gly Gly Pro Leu Ala Gly Phe Val Tyr Glu Thr Val 225 230 235 240 Phe Met Val Thr Lys Thr His Glu Pro Leu Leu Gly Trp Asp Phe 245 250 255 <210> 205 <211> 256 <212> PRT <213> Triticum aestivum <400> 205 Met Asp Thr Lys His Ala Asp Ser Leu Asp Glu Arg Asp Val Val Val 1 5 10 15 Val Asp Ala Gly Cys Val Arg Ala Val Leu Gly Glu Leu Val Leu Thr 25 30 Phe Leu Phe Val Phe Thr Gly Val Ala Ala Ala Met Ala Ala Gly Val 40 45 Pro Glu Leu Gin Gly Ala Ala Met Pro Met Ala Thr Leu Ala Gly Val 217 172135/2 50 55 60 Ala Leu Ala Gin Ala Leu Ala Ala Gly Val Leu Val Thr Ala Gly Phe 65 70 75 80 His Val Ser Gly Gly His Leu Asn Pro Ala Val Thr Val Ala Leu Leu 85 90 95 Ala Arg Gly His He Thr Ala Phe Arg Ala Val Leu Tyr Val Ala Ala 100 105 110 Gin Leu Leu Ala Ser Ser Leu Ala Cys He Leu Leu Arg Tyr Leu Ser 115 120 125 Gly Gly Gin Ala Thr Pro Val Pro Val His Thr Leu Gly Thr Gly He 130 135 140 Gly Pro Met Gin Gly Leu Val Met Glu He He Leu Thr Phe Ser Leu 145 150 155 160 Leu Phe Val Val Tyr Ala Thr He Leu Asp Pro Arg Thr Thr Val Pro 165 170 175 Gly Tyr Gly Pro Met Leu Thr Gly Leu He Val Gly Ala Asn Thr He 180 185 190 Ala Gly Gly Asn Phe Ser Gly Ala Ser Met Asn Pro Ala Arg Ser Phe 195 200 205 Gly Pro Ala Leu Ala Thr Gly Val Trp Thr Asn His Trp Val Tyr Trp 210 215 220 Val Gly Pro Leu Val Gly Gly Pro Leu Ala Gly Phe Val Tyr Glu Thr 225 230 235 240 Val Phe Met Val Thr Lys Thr His Glu Pro Leu Leu Gly Trp Asp Phe 245 250 255 <210> 206 <211> 257 <212> PRT <213> Hordeura vulgare <400> 206 Met Ala Ala Thr Lys His Ala Asp Ser Phe Asp Glu Arg Glu Val Ala 1 5 10 15 Val Val Asp Thr Gly Cys Val Arg Ala Val Leu Gly Glu Leu Val Leu 25 30 Thr Phe Leu Phe Val Phe Thr Gly Val Ala Ala Ala Met Ala Ala Gly 40 45 Val Pro Glu Leu Pro Gly Ala Ala Met Pro Met Ala Thr Leu Ala Gly 50 55 60 Val Ala Leu Ala Gin Ala Leu Ala Ala Gly Val Leu Val Thr Ala Gly 218 172135/2 65 70 75 80 Phe His Val Ser Gly Gly His Leu Asn Pro Ala Val Thr Val Ala Leu 85 90 95 Leu Ala Arg Gly His lie Thr Ala Phe Arg Ala Val Leu Tyr Val Val 100 105 110 Ala Gin Leu Leu Ala Ser Ser Leu Ala Cys lie Leu Leu Arg Cys Leu 115 120 125 Thr Gly Gly Gin Pro Thr Pro Val Pro Val His Thr Leu Gly Ala Gly 130 135 140 He Gly Pro Met Gin Gly Leu Val Met Glu He He Leu Thr Phe Ser 145 150 155 160 Leu Leu Phe Val Val Tyr Ala Thr He Leu Asp Pro Arg Thr Thr Val 165 170 175 Pro Gly Tyr Gly Pro Met Leu Thr Gly Leu He Val Gly Ala Asn Thr 180 185 190 He Ala Gly Gly Asn Phe Ser Gly Ala Ser Met Asn Pro Ala Arg Ser 195 200 205 Phe Gly Pro Ala Leu Ala Thr Gly Val Trp Thr Asn His Trp He Tyr 210 215 220 Trp Val Gly Pro Leu Val Gly Gly Pro Leu Ala Gly Phe Val Tyr Glu 225 230 235 240 Met Val Phe Met Val Lys Lys Thr His Glu Pro Leu Leu Gly Trp Asp 245 250 255 Phe <210> 207 <211> 336 <212> PRT <213> Triticum aestivum <400> 207 Met Gly Pro Val Phe Leu Leu Gly Leu Ser Gin His Gly Ser Ala Pro 1 5 10 15 Gly Leu Phe Arg Ala Leu Phe Leu Pro Arg Ser His Thr Asp Tyr Ser 25 30 His His He Pro Arg Ser Arg Ala Thr Ser Leu Val Ser Met Asp Thr 40 45 Lys His Ala Asp Ser Phe Glu Glu Arg Asp Val Val Val Asp Ala Gly 50 55 60 Cys Val Arg Ala Val Leu Gly Glu Leu Val Leu Thr Phe Leu Phe Val 219 172135/2 65 70 75 80 Phe Thr Gly Val Ala Ala Ala Met Ala Ala Gly Val Pro Glu Leu Pro 85 90 95 Gly Ala Ala Met Pro Met Ala Thr Leu Ala Gly Val Ala Leu Ala Gin 100 105 110 Ala Leu Ala Ala Gly Val Leu Val Thr Ala Gly Phe His Val Ser Gly 115 120 125 Gly His Leu Asn Pro Ala Val Thr Val Ala Leu Leu Ala Arg Gly His 130 135 140 He Thr Ala Phe Arg Ala Val Leu Tyr Val Ala Ala Gin Leu Leu Ala 145 150 155 160 Ser Ser Leu Ala Cys He Leu Leu Arg Tyr Leu Ser Gly Gly Gin Ala 165 170 175 Thr Pro Val Pro Val His Thr Leu Gly Ala Gly He Gly Pro Met Gin 180 185 190 Gly Leu Val Met Glu Val He Leu Thr Phe Ser Leu Leu Phe Val Val 195 200 205 Tyr Ala Thr He He Asp Pro Arg Thr Thr Val Pro Gly Tyr Gly Pro 210 215 220 Met Leu Thr Gly Leu He Val Gly Ala Asn Thr He Ala Gly Gly Asn 225 230 235 240 Phe Ser Gly Ala Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Leu 245 250 255 Ala Met Gly Val Trp Thr Asn His Trp Val Tyr Trp Val Gly Pro Leu 260 265 270 Val Gly Gly Pro Leu Ala Gly Phe Val Tyr Glu Met Val Phe Met Val 275 280 285 Lys Lys Asp Ala Arg Ala Ser Ala Trp Leu Gly Leu Leu Glu Asn Arg 290 295 300 Leu Leu Pro Tyr Leu His Leu His Phe Ala Met Tyr Thr Ser Val Tyr 305 310 315 320 Lys Ala He Asp Val Ala Gly Arg Phe Phe Arg Pro Ser Asp Ser Ser 325 330 335 <210> 208 <211> 315 <212> PRT <213> Oryza sativa <400> 208 He Lys Ser Arg Gly Lys Gin Arg Arg Gin Ala Glu Gin Arg Arg Glu 220 172135/2 15 Pro His Leu Gly Lys Lys Lys Arg Lys He He Ser Ser His Phe Leu 25 30 Leu Pro Phe Ser Ser Pro Arg He Phe Thr Lys Gin He Ser Leu Gin 40 45 Phe Phe Ser Phe Phe Phe Leu He Leu Arg He Phe Ser He Glu Glu 50 55 60 Arg Arg Glu Leu Trp Asp Arg Phe Arg Ala Met Ala Lys Glu Val Asp 65 70 75 80 Pro Cys Asp His Gly Glu Val Val Asp Ala Gly Cys Val Arg Ala Val 85 90 95 Leu Ala Glu Leu Val Leu Thr Phe Val Phe Val Phe Thr Gly Val Ala 100 105 110 Ala Thr Met Ala Ala Gly Val Pro Glu Val Ala Gly Ala Ala Met Pro 115 120 125 Met Ala Ala Leu Ala Gly Val Ala He Ala Thr Ala Leu Ala Ala Gly 130 135 140 Val Leu Val Thr Ala Gly Phe His Val Ser Gly Gly His Leu Asn Pro 145 150 155 160 Ala Val Thr Val Ala Leu Leu Ala Arg Gly His He Thr Ala Phe Arg 165 170 175 Ser Ala Leu Tyr Val Ala Ala Gin Leu Leu Ala Ser Ser Leu Ala Cys 180 185 190 He Leu Leu Arg Tyr Leu Thr Gly Gly Met Ala Thr Pro Val His Thr 195 200 205 Leu Gly Ser Gly He Gly Pro Met Gin Gly Leu Val Met Glu He He 210 215 220 Leu Thr Phe Ser Leu Leu Phe Val Val Tyr Ala Thr He Leu Asp Pro 225 230 235 240 Arg Ser Ser Val Pro Gly Phe Gly Pro Leu Leu Thr Gly Leu He Val 245 250 255 Gly Ala Asn Thr He Ala Gly Gly Asn Phe Ser Gly Ala Ser Met Asn 260 265 270 Pro Ala Arg Ser Phe Gly Pro Ala Leu Ala Thr Gly Val Trp Thr His 275 280 285 His Trp He Tyr Trp Leu Gly Pro Leu He Gly Gly Pro Leu Ala Gly 290 295 300 221 172135/2 Leu Val Tyr Glu Ser Leu Phe Leu Val Lys Arg 305 310 315 <210> 209 <211> 202 <212> PRT <213> Saccharum officinarum <220> <221> misc_feature <222> (198).. (198) <223> Xaa can be any naturally occurring amino acid <400> 209 Pro Pro Pro Pro Pro Pro Pro Pro Val Val Gin Asn lie Ser Leu Arg 1 5 10 15 Phe Ser Glu Ser Phe Ser Leu Gin Gly Thr Gly Thr Thr Gly Ala Phe 25 30 Thr Pro Pro Pro Ala Phe Pro Ser Pro Pro Gly Thr Gly Ala Thr Arg 40 45 Leu Leu Leu Ala lie Val His Ser Phe Met Ala Lys Leu Val Asn Lys 50 55 60 Leu Leu Asp Ser Phe Asp His Asp Asp Thr Thr Pro Asp Val Gly Cys 65 70 75 80 Val Arg Ala Val Leu Ala Glu Leu Val Leu Thr Phe Leu Phe Val Phe 85 90 95 Thr Gly Val Ser Ala Ala Met Ala Ala Gly Ser Gly Gly Lys Pro Gly 100 105 110 Glu Ala Met Pro Met Ala Thr Leu Ala Ala Val Ala He Ala Asn Ala 115 120 125 Leu Ala Ala Gly Val Leu Val Thr Ala Gly Phe His Val Ser Gly Gly 130 135 140 His Leu Asn Pro Ala Val Thr Val Gly Leu Met Val Cys Arg His 145 150 155 Thr Lys Leu Arg Ala Val Leu Tyr He Ala Ala Gin Leu Leu Ala Ser 165 170 175 Leu Ala Cys He Leu Leu Arg Tyr Leu Ser Gly Gly Met Val Thr 180 185 190 Pro Val His Ala Leu Xaa Ala Gly He Lys 195 200 <210> 210 <211> 256 <212> PRT <213> Oryza sativa <400> 210 222 Met Ala Ser Pro Glu Gly Ser Thr Trp Val Phe Asp Cys Pro Leu Met 1 5 10 15 Asp Asp Leu Ala Ala Ala Ala Gly Phe Asp Ala Ala Pro Ala Gly Gly 25 30 Phe Tyr Trp Thr Thr Pro Ala Pro Pro Gin Ala Ala Leu Gin Pro Pro 35 40 45 Pro Pro Gin Gin Gin Pro Val Ala Pro Ala Thr Ala Ala Pro Asn Ala 50 55 60 Cys Ala Glu He Asn Gly Ser Val Asp Cys Glu His Gly Lys Glu Gin 65 70 75 80 Pro Thr Asn Lys Arg Pro Arg Ser Glu Ser Gly Thr Arg Pro Ser Ser 85 90 95 Lys Ala Cys Arg Glu Lys Val Arg Arg Asp Lys Leu Asn Glu Arg Phe 100 105 110 Leu Glu Leu Gly Ala Val Leu Glu Pro Gly Lys Thr Pro Lys Met Asp 115 120 125 Lys Ser Ser He Leu Asn Asp Ala He Arg Val Met Ala Glu Leu Arg 130 135 140 Ser Glu Ala Gin Lys Leu Lys Glu Ser Asn Glu Ser Leu Gin Glu Lys 145 150 155 160 He Lys Glu Leu Lys Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gin 165 170 175 Lys Leu Lys Ala Glu Lys Glu Ser Leu Glu Gin Gin He Lys Phe Leu 180 185 190 Asn Ala Arg Pro Ser Phe Val Pro His Pro Pro Val He Pro Ala Ser 195 200 205 Ala Phe Thr Ala Pro Gin Gly Gin Ala Ala Gly Gin Lys Leu Met Met 210 215 220 Pro Val He Gly Tyr Pro Gly Phe Pro Met Trp Gin Phe Met Pro Pro 225 230 235 240 Asp Val Asp Thr Thr Asp Asp Thr Lys Ser Cys Pro Pro Val Ala 245 250 255 <210> 211 <211> 251 <212> P T <213> Triticum aestivum <400> 211 Met Ala Ser Pro Glu Gly Ser Asn Trp Val Phe Asp Cys Pro Leu Met 1 5 10 15 223 Asp Asp Leu Ala Ala Ala Asp Phe Ala Ala Ala Ser Ala Gly Gly Phe 25 30 Tyr Trp Thr Pro Pro Met Gin Pro Gin Met His Thr Leu Ala Gin Ala 35 40 45 Val Ser Ala Thr Pro Ala Pro Asn Pro Cys Ala Glu He Asn Ser Ser 50 55 60 Val Ser Val Asp Trp Asp His Ala Lys Gly Gin Pro Lys Asn Lys Arg 65 70 75 80 Pro Arg Ser Glu Thr Gly Ala Gin Pro Ser Ser Lys Ala Cys Arg Glu 85 90 95 Lys Val Arg Arg Asp Lys Leu Asn Glu Arg Phe Leu Glu Leu Gly Ala 100 105 110 Val Leu Asp Pro Gly Lys Thr Pro Lys He Asp Lys Cys Ala He Leu 115 120 125 Asn Asp Ala He Arg Ala Val Thr Glu Leu Arg Ser Glu Ala Glu Lys 130 135 140 Leu Lys Asp Ser Asn Glu Ser Leu Gin Glu Lys He Arg Glu Leu Lys 145 150 155 160 Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gin Lys Leu Lys Ala Glu 165 170 175 Lys Glu Ser Leu Glu Gin Gin He Lys Phe Met Asn Ala Arg Gin Ser 180 185 190 Leu Val Pro His Pro Ser Val He Pro Ala Ala Ala Phe Ala Ala Ala 195 200 205 Gin Gly Gin Ala Ala Gly His Lys Leu Met Met Pro Val Met Ser Tyr 210 215 220 Pro Gly Phe Pro Met Trp Gin Phe Met Pro Pro Ser Asp Val Asp Thr 225 230 235 240 Ser Asp Asp Pro Lys Ser Cys Pro Pro Val Ala 245 250 <210> 212 <211> 251 <212> PRT <213> Hordeum vulgare <400> 212 Met Ala Ser Pro Glu Gly Ser Asn Trp Val Phe Asp Cys Pro Leu Met 1 5 10 15 Asp Asp Leu Ala Ala Ala Asp Phe Ala Ala Val Pro Ala Gly Gly Phe 25 30 224 Tyr Trp Asn Pro Pro Met Pro Pro Gin Met His Thr Leu Ala Gin Ala 35 40 45 Val Ser Ala Thr Pro Ala Pro Asn Pro Cys Ala Glu lie Asn Ser Ser 50 55 60 Ser Val Asp Trp Asp His Ala Lys Gly Gin Pro Lys Asn Lys Arg 70 75 80 Pro Arg Ser Glu Thr Gly Ala Gin Pro Ser Ser Lys Ala Cys Arg Glu 85 90 95 Lys Val Arg Arg Asp Lys Leu Asn Glu Arg Phe Leu Glu Leu Gly Ala 100 105 110 Val Leu Asp Pro Gly Lys Thr Pro Lys lie Asp Lys Cys Ala lie Leu 115 120 125 Asn Asp Ala lie Arg Ala Val Thr Glu Leu Arg Ser Glu Ala Glu Lys 130 135 140 Leu Lys Asp Ser Asn Glu Ser Leu Gin Glu Lys lie Arg Glu Leu Lys 145 150 155 160 Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gin Lys Leu Lys Ala Glu 165 170 175 Lys Glu Ser Leu Glu Gin Gin lie Lys Phe Met Asn Ala Arg Gin Arg 180 185 190 Leu Val Pro His Pro Ser Val He Pro Ala Thr Ala Phe Ala Ala Ala 195 200 205 Gin Gly Gin Ala Ala Gly His Lys Leu Met Met Pro Val Met Ser Tyr 210 215 220 Pro Gly Phe Pro Met Trp Gin Phe Met Pro Pro Ser Asp Val Asp Thr 225 230 235 240 Ser Asp Asp Pro Lys Ser Cys Pro Pro Val Ala 245 250 Leu Tyr He He Val Thr Tyr Gly He Leu Lys Tyr 5 10 15 Lys Phe He Phe Phe Thr Ser Ala Glu He Asn Gly Ser Val Asp Cys 25 30 Glu His Gly Lys Glu Gin Pro Thr Asn Lys Arg Pro Arg Ser Glu Ser 35 40 45 225 172135/2 Gly Thr Arg Pro Ser Ser Lys Ala Cys Arg Glu Lys Val Arg Arg Asp 50 55 60 Lys Leu Asn Glu Arg Phe Leu Glu Leu Gly Ala Val Leu Glu Pro Gly 65 70 75 80 Lys Thr Pro Lys Met Asp Lys Ser Ser lie Leu Asn Asp Ala lie Arg 85 90 95 Val Met Ala Glu Leu Arg Ser Glu Ala Gin Lys Leu Lys Glu Ser Asn 100 105 110 Glu Ser Leu Gin Glu Lys lie Lys Glu Leu Lys Ala Glu Lys Asn Glu 115 120 125 Leu Arg Asp Glu Lys Gin Lys Leu Lys Ala Glu Lys Glu Ser Leu Glu 130 135 140 Gin Gin lie Lys Phe Leu Asn Ala Arg Pro Ser Phe Val Pro His Pro 145 150 155 160 Pro Val He Pro Ala Ser Ala Phe Thr Ala Pro Gin Gly Gin Ala Ala 165 170 175 Gly Gin Lys Leu Met Met Pro Val He Gly Tyr Pro Gly Phe Pro Met 180 185 ' 190 Trp Gin Phe Met Pro Pro Ser Asp Val Asp Thr Thr Asp Asp Thr Lys 195 200 205 Cys Pro Pro Val Ala 210 <210> 214 <211> 882 <212> PRT <213> Oryza sativa <400> 214 Met Val Lys Leu Ala Phe Gly Ser Cys Gly Asp Ser Phe Ser Ala Ser 1 5 10 15 Ser He Lys Ala Tyr Val Ala Glu Phe He Ala Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Gly Gin Leu Thr Lys Gly 40 45 Gly Ala Leu Asp Pro Ala Gly Leu Val Ala He Ala He Ala His Ala 50 55 60 Phe Ala Leu Phe Val Gly Val Ser Met Ala Ala Asn He Ser Gly Gly 65 70 75 80 His Leu Asn Pro Val Val Thr Phe Gly Leu Ala Val Gly Gly His He 85 90 95 226 172135/2 Thr lie Leu Thr Gly He Phe Tyr Trp Val Ala Gin Leu Leu Gly Ala 100 105 110 Val Ala Cys Leu Leu Cys Ser Ser Pro Pro Thr Asp Arg Leu Ala 115 120 125 He Pro Thr His Ala He Ala Gly He Ser Glu He Glu Gly Met Val 130 135 140 Met Glu He Val He Thr Phe Ala Leu Val Tyr Thr Gly Tyr Ala Thr 145 150 155 160 Ala Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr Val Ala Pro Met Asp 165 170 175 He Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 180 185 190 Gly Ser Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ala 195 200 205 Gly Asn Phe Ala Gly Asn Trp Val Tyr Trp Val Gly Pro Leu He Gly 210 215 220 Gly Gly Leu Ala Gly Leu Val Tyr Asp Asp Val Phe He Ala Ser Tyr 225 230 235 240 Gin Pro Val Met He Gly Phe Thr Val He Leu Cys Asp Arg Ser Asp 245 250 255 Gin Ala Val Tyr Ala Gly Gin Thr Ser Gly Asp Arg Ala Val Thr Pro 260 265 270 Cys Leu Gly Arg Val Phe Ala Val Met Asp Arg Glu Ser Ala Trp Cys 275 280 285 Arg Met Gin Ser Tyr He Met Ala Glu Asn Tyr Asp He Trp Arg Lys 290 295 300 Val Ser His Pro Tyr Val He Pro Glu Ala He Asn Thr Ala Ala Glu 305 310 315 320 Lys Thr Ala Phe Glu Gin Asn Cys Lys Ala Arg Asn He Leu Leu Ser 325 330 335 Gly He Ser Arg Ser Asp Tyr Asp Arg Val Ala His Leu Gin Thr Ala 340 345 350 His Glu He Trp He Ala Leu Ser Asn Phe His Gin Gly Thr Asn Asn 355 360 365 He Lys Glu Leu Arg Arg Asp Leu Phe Lys Lys Glu Tyr He Lys Phe 370 375 380 Glu Met Lys Pro Gly Glu Ala Leu Asp Asp Tyr Leu Ser Arg Phe Asn 385 390 395 400 227 172135/2 Lys He Leu Ser Asp Leu Arg Ser Val Asp Ser Ser Tyr Asp Ala Asn 405 410 415 Tyr Pro Gin Ser Glu He Ser Arg His Phe Leu Asn Gly Leu Asp Met 420 425 430 Ser He Trp Glu Met Lys Val Thr Ser He Gin Glu Ser Val Asn Met 435 440 445 Ser Thr Leu Thr Leu Asp Ser Leu Tyr Thr Lys Leu Lys Thr His Glu 450 455 460 Met Asn He Leu Ala Arg Lys Val Asp Ser Lys Ser Ser Ala Leu Val 465 470 475 480 Ser Ser Ser Thr Ser Leu Asp Val Gly Ala Ser Ser Ser Lys Ser Ser 485 490 495 Val Leu Ala Leu Phe Asn Ala Met Ser Asp Asp Gin Leu Glu Gin Phe 500 505 510 Glu Glu Glu Asp Leu Val Leu Leu Ser Asn Lys Phe Ser Arg Ala Met 515 520 525 Lys Asn Val Arg Asn Arg Lys Arg Gly Glu Pro Asn Arg Cys Phe Glu 530 535 540 Cys Gly Ala Leu Asp His Leu Arg Ser His Cys Pro Lys Leu Gly Arg 545 550 555 560 Gly Lys Lys Glu Asp Asp Gly Arg Val Lys Glu Asp Asp Val Asn Lys 565 570 575 Lys Lys Asn Met Lys Glu Lys Glu Lys Lys Lys His Cys Met Gin Trp 580 585 590 Leu He Gin Glu Leu He Lys Val Phe Asp Glu Ser Glu Asp Glu Asp 595 600 605 Glu Gly Lys Gly Lys Gin Val Val Asp Leu Ala Phe He Ala Arg Asn 610 615 620 Ala Ser Ser Asp Val Asp Glu Ser Asp Asp Asp Asn Glu Glu Lys Leu 625 630 635 640 Ser Tyr Asp Gin Leu Glu Tyr Ala Ala Tyr Lys Phe Ala Lys Lys Leu 645 650 655 Gin Thr Cys Ser He Val Leu Asp Glu Lys Asp His Thr He Glu He 660 665 670 Leu Asn Ala Glu He Ala Arg Leu Lys Ser Leu He Pro Asn Asp Asp 675 680 685 Asn Cys Gin Ser Cys Glu Val Leu Phe Ser Glu He Asn Ala Leu Arg 228 690 695 700 Asp Val Asn Ser Val Asn Cys Lys Lys Leu Glu Phe Glu He Glu Lys 705 710 715 720 Ser Lys Lys Leu Glu Ser Ser Phe Ala Leu Gly Phe Ala Leu His Ala 725 730 735 Arg Val Val Asp Glu Leu He Leu Thr Lys Asn Val Leu Lys Lys He 740 745 750 Gin Ser Cys Phe Leu Cys Lys Phe Phe Gly Gin Cys Phe Met Cys Asn 755 760 765 Lys Ala Lys Gin Asn Asn Gly Val Leu He Ser Gin Asp Cys Ser Lys 770 775 780 Cys Val Leu Asn Glu Leu Lys Leu Lys Asp Ala Leu Glu Arg Val Lys 785 790 795 800 His Met Glu Glu He He Lys Gin Asp Glu Val Phe Ser Cys Ser Thr 805 810 815 Cys Arg Lys Gin Lys Gly Leu Leu Asp Ala Cys Lys Asn Cys Ala He 820 825 830 Leu Thr Gin Glu Val Ser Tyr Leu Lys Ser Ser Leu Gin Arg Phe Ser 835 840 845 Asp Gly Lys Lys Asn Leu Asn Met He Leu Asp Gin Ser Asn Val Ser 850 855 860 Thr His Asn Arg Gly Leu Gly Phe Asp Ser Tyr Ser Lys Asp Leu Asp 865 870 875 880 Val Ala <210> 215 <211> 249 <212> PRT <213> Glycine max <400> 215 Met Val Lys He Ala Leu Gly Thr Leu Asp Asp Ser Phe Ser Ala Ala 1 5 10 15 Leu Lys Ala Tyr Phe Ala Glu Phe His Ala Thr Leu He Phe Val 20 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Asn Glu Leu Thr Lys Asp 35 40 45 Ala Ala Leu Asp Pro Thr Gly Leu Val Ala Val Ala Val Ala His Ala 50 55 60 Phe Ala Leu Phe Val Gly Val Ser Val Ala Ala Asn He Ser Gly Gly 229 172135/2 65 70 75 80 His Leu Asn Pro Ala Val Thr Phe Gly Leu Ala He Gly Gly Asn He 85 90 95 Thr Leu He Thr Gly Phe Leu Tyr Trp He Ala Gin Leu Leu Gly Ser 100 105 110 He Val Ala Cys Leu Leu Leu Asn Leu He Thr Ala Lys Ser He Pro 115 120 125 Ser His Ser Pro Ala Asn Gly Val Asn Asp Leu Gin Ala Val Val Phe 130 135 140 Glu He Val He Thr Phe Gly Leu Val Tyr Thr Val Tyr Ala Thr Ala 145 150 155 160 Val Asp Pro Lys Lys Gly Ser Leu Gly He He Ala Pro He Ala He 165 170 175 Gly Phe Val Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser Gly 180 185 190 Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Val Ser Gly 195 200 205 Asp Leu Ala Ala Asn Trp He Tyr Trp Val Gly Pro Leu He Gly Gly 210 215 220 Gly Leu Ala Gly Leu He Tyr Gly Asp Val Phe He Gly Ser Tyr Ala 225 230 235 240 Pro Val Pro Ala Ser Glu Thr Tyr Pro 245 <210> 216 <211> 248 <212> PRT <213> Triticum aestivum <400> 216 Met Pro Ala Ser He Ala Phe Gly Arg Phe Asp Asp Ser Phe Ser Leu 1 5 10 15 Ala Ser Phe Lys Ala Tyr He Ala Glu Phe He Ser Thr Leu He Phe 25 30 Val Phe Ala Gly Val Gly Ser Ala He Ala Tyr Ser Lys Val Ser Gly 40 45 Gly Ala Pro Leu Asp Pro Ser Gly Leu He Ala Val Ala He Cys His 50 55 60 Gly Phe Gly Leu Phe Val Ala Val Ala Val Gly Ala Asn He Ser Gly 65 70 75 80 Gly His Val Asn Pro Ala Val Thr Phe Gly Leu Ala Leu Gly Gly Gin 230 172135/2 95 He Thr He Leu Thr Gly He Phe Tyr Trp Val Ala Gin Leu Leu Gly 100 105 110 Ala He Val Gly Ala Phe Leu Val Gin Phe Cys Thr Gly Val Ala Thr 115 120 125 Pro Thr His Gly Leu Ser Gly Val Gly Ala Phe Glu Gly Val Val Met 130 135 140 Glu He He Val Thr Phe Gly Leu Val Tyr Thr Val Tyr Ala Thr Ala 145 150 155 160 Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro He Ala He 165 170 175 Gly Phe He Val Gly Ala Asn He Leu Val Ala Gly Pro Phe Ser Gly 180 185 190 Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ser Gly 195 200 205 Asp Phe Thr Asn He Trp He Tyr Trp Ala Gly Pro Leu He Gly Gly 210 215 220 Gly Leu Ala Gly Val Val Tyr Arg Tyr Leu Tyr Met Cys Asp Asp His 225 230 235 240 Thr Ala val Ala Gly Asn Asp Tyr 245 <210> 217 <211> 248 <212> PRT <213> Triticum aestivum <400> 217 Met Pro Gly Ser He Ala Phe Gly Arg Phe Asp Asp Ser Phe Ser Leu 1 5 10 15 Ala Ser Phe Lys Ala Tyr He Ala Glu Phe He Ser Thr Leu He Phe 25 30 Val Phe Ala Gly Val Gly Ser Ala He Ala Tyr Thr Lys Val Ser Gly 40 45 Gly Ala Pro Leu Asp Pro Ser Gly Leu He Ala Val Ala He Cys His 50 55 60 Gly Phe Gly Leu Phe Val Ala Val Ala He Gly Ala Asn He Ser Gly 65 70 75 80 Gly His Val Asn Pro Ala Val Thr Phe Gly Leu Ala Leu Gly Gly Gin 85 90 95 He Thr He Leu Thr Gly He Phe Tyr Trp Val Ala Gin Leu Leu Gly 23 1 172135/2 100 105 110 Ala He Val Gly Ala Phe Leu Val Gin Phe Cys Thr Gly Val Ala Thr 115 120 125 Pro Thr His Gly Leu Ser Gly Val Gly Ala Phe Glu Gly Val Val Met 130 135 140 Glu He He Val Thr Phe Gly Leu Val Tyr Thr Val Tyr Ala Thr Ala 145 150 155 160 Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro He Ala He 165 170 175 Gly Phe He Val Gly Ala Asn He Leu Val Ala Gly Pro Phe Ser Gly 180 185 190 Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ser Gly 195 200 205 Asp Phe Thr Asn He Trp He Tyr Trp Ala Gly Pro Leu He Gly Gly 210 215 220 Gly Leu Ala Gly Val Val Tyr Arg Tyr Val Tyr Met Cys Asp Asp His 225 230 235 240 Ser Ser Val Ala Gly Asn Asp Tyr 245 <210> 218 <211> 207 <212> PRT <213> Solanum tuberosum <400> 218 Met Val Lys He Ala Phe Gly Ser He Gly Asp Ser Leu Ser Val Gly 1 5 10 15 Ser Leu Lys Ala Tyr Leu Ala Glu Phe He Ala Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Asn Lys Leu Thr Ser Asp 40 45 Ala Ala Leu Asp Pro Ala Gly Leu Val Ala He Ala Val Ala His Ala 50 55 60 Phe Ala Leu Phe Val Gly Val Ser Met Ala Ala Asn He Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Leu Gly Leu Ala Val Gly Gly Asn 85 90 95 Thr He Leu Thr Gly Leu Phe Tyr Trp Val Ala Gin Leu Leu Gly Ser 100 105 110 Thr Val Ala Cys Leu Leu Leu Lys Tyr Val Thr Asn Gly Leu Ala Val 232 172135/2 115 120 125 Pro Thr His Gly Val Ala Ala Gly Met Asn Gly Ala Glu Gly Val Val 130 135 140 Met Glu He Val He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr 145 150 155 160 Ala Ala Val Val Ala Gly Asp Phe Ser Gin Asn Trp He Tyr Trp Val 165 170 175 Gly Pro Leu He Gly Gly Gly Leu Ala Gly Phe He Tyr Gly Asp Val 180 185 190 Phe He Gly Ser His Thr Pro Leu Pro Thr Ser Glu Asp Tyr Ala 195 200 205 <210> 219 <211> 224 <212> PRT <213> Saccharum of ficinarum <220> <221> misc_feature <222> ( 172 ) . . ( 172 ) <223> Xaa can be any naturally occurring amino acid <220> <221> misc_feature <222> ( 215 ) . . ( 215 ) <223> Xaa can be any naturally occurring amino acid <400> 219 Phe Gin Pro Arg Arg Ala Lys Arg Glu Ser Lys Met Val Lys Leu Ala 1 5 10 15 Phe Gly Ser Val Gly Asp Ser Phe Ser Ala Thr Ser He Lys Ala Tyr 25 30 Val Ser Glu Phe He Ala Thr Leu Leu Phe Val Phe Ala Gly Val Gly 40 45 Ser Ala He Ala Tyr Gly Gin Leu Thr Asn Asp Gly Ala Leu Asp Pro 50 55 60 Ala Gly Leu Val Ala He Ala He Ala His Ala Leu Ala Leu Phe Val 65 70 75 80 Gly Val Ser He Ala Ala Asn He Ser Gly Gly His Leu Asn Pro Ala 85 90 95 Val Thr Phe Gly Leu Ala Val Gly Gly His He Thr He Leu Thr Gly 100 105 110 Leu Phe Tyr Trp Val Ala Gin Leu Leu Gly Ala Ser Val Ala Cys Leu 115 120 125 Leu Leu Lys Phe Val Thr His Gly Lys Ala He Pro Thr His Gly Val 130 135 140 233 172135/2 Ser Gly He Ser Glu Leu Glu Gly Val Val Phe Glu He Val He Thr 145 150 155 160 Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr Ala Xaa Arg Pro Gin Glu 165 170 175 Gly Leu Pro Arg His His Arg Ala His Arg His Arg Leu His Arg Arg 180 185 190 Arg Gin His Pro Arg Arg Gly Ala Leu Gin Pro Arg Leu His Glu Pro 195 200 205 Gly Pro Ser Phe Gly Pro Xaa Val Ala Arg Gly Asn Phe Ala Gly Asn 210 215 220 <210> 220 <211> 128 <212> PRT <213> Populus Sp . <400> 220 Met He Thr Trp Phe Gin Gin Ala Val Pro He His Ser Val Ala Ala 1 5 10 15 Gly Val Gly Ala He Glu Gly Val Val Met Glu He He He Thr Phe 25 30 Ala Leu Val Tyr Thr Val Tyr Ala Thr Ala Ala Asp Pro Lys Lys Gly 40 45 Ser Leu Gly Thr He Ala Pro He Ala He Gly Phe He Val Gly Ala 50 55 60 Asn He Leu Ala Ala Gly Pro Phe Ser Gly Gly Ser Met Asn Pro Ala 65 70 75 80 Arg Ser Phe Gly Pro Ala Val Ala Ser Gly Asp Phe His Asp Asn Trp 85 90 95 He Tyr Trp Ala Gly Pro Leu Val Gly Gly Gly He Ala Gly Leu He 100 105 110 Tyr Gly Asn Val Phe He Thr Asp His Thr Pro Leu Ser Gly Asp Phe 115 120 125 <210> 221 <211> 114 <212> PRT <213> Solanum tuberosum <400> 221 Met Ser Gly Ala Glu Gly Val Val Met Glu He Val He Thr Phe Ala 1 5 10 15 Leu Val Tyr Thr Val Tyr Ala Thr Ala Ala Asp Pro Lys Lys Gly Ser 25 30 234 Leu Gly Thr He Ala Pro Met Ala He Gly Phe He Val Gly Ala Asn 35 40 45 Leu Ala Ala Gly Pro Phe Ser Gly Gly Ser Met Asn Pro Ala Arg 50 55 60 Phe Gly Pro Ala Val Val Ala Gly Asp Phe Phe Gin Asn Trp He 70 75 80 Tyr Trp Val Gly Pro Leu He Gly Gly Gly Leu Ala Gly Phe He Tyr 85 90 95 Gly Asp Val Phe He Gly Ser Pro Pro Pro Leu Pro Thr Ser Glu Asp 100 105 110 Tyr Ala <210> 222 <211> 128 <212> PRT <213> Glycine max <220> <221> misc_feature <222> ( 13 ) . . ( 15 ) <223> Xaa can be any naturally occurring amino acid <400> 222 Met Ser Gin Glu Ala Phe Gin Leu Gin Ser Thr Val Xaa Xaa Xaa Gly 1 5 10 15 Val Gly Ala Val Glu Gly Val Val Thr Glu He He He Thr Phe Gly 25 30 Leu Val Tyr Thr Val Tyr Ala Thr Ala Ala Asp Pro Lys Lys Gly Ser 35 40 45 Leu Gly Thr He Ala Pro He Ala He Gly Phe He Val Gly Ala Asn 50 55 60 He Leu Ala Ala Gly Pro Phe Ser Gly Gly Ser Met Asn Pro Ala Arg 65 70 75 80 Phe Gly Pro Ala Val Val Ser Gly Asp Phe His Asp Asn Trp He 85 90 95 Tyr Trp Val Gly Pro Leu He Gly Gly Gly Leu Ala Gly Leu He Tyr 100 105 110 Gly Asn Val Phe He Arg Ser Asp His Ala Pro Leu Ser Ser Glu Phe 115 120 125 <210> 223 <211> 104 <212> PRT <213> Solanum tuberosum 235 <400> 223 Met Glu lie He He Thr Phe Gly Leu Val Tyr Thr Val Phe Ala Thr 1 5 10 15 Ala Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro He Ala 25 30 He Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 35 40 45 Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Met Ala Thr 50 55 60 Gly Asn Phe Glu Gly Phe Trp He Tyr Trp He Gly Pro Leu Val Gly 65 70 75 80 Gly Ser Leu Ala Gly Leu He Tyr Thr Asn Val Phe Met Gin Gin Glu 85 90 95 His Ala Pro Leu Ser Asn Glu Phe 100 <210> 224 <211> 149 <212> PRT <213> Zea mays <400> 224 Met Val Lys Leu Ala Phe Gly Ser Phe Arg Asp Ser Leu Ser Ala Ala 1 5 10 15 Ser Leu Lys Ala Tyr Val Ala Glu Phe He Ala Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Ser Gin Leu Thr Lys Gly 35 40 45 Gly Ala Leu Asp Pro Ala Gly Leu Val Ala He Ala He Ala His Ala 50 55 60 Phe Ala Leu Phe Val Gly Val Ser Met Ala Ala Asn He Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Phe Gly Pro Phe Asp Gly Ala Ser Met 85 90 95 Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ala Gly Asn Phe Ala 100 105 110 Gly Asn Trp Val Tyr Trp Val Gly Pro Leu Val Gly Gly Gly Leu Ala 115 120 125 Gly Leu Val Tyr Gly Asp Val Phe He Ala Ser Tyr Gin Pro Val Gly 130 135 140 Gin Gin Glu Tyr Pro 145 236 172135/2 <210> 225 <211> 149 <212> PRT <213> Zea mays <400> 225 Met Val Lys Leu Ala Phe Gly Ser Phe Arg Asp Ser Leu Ser Ala Ala 1 5 10 15 Ser Leu Lys Ala Tyr Val Ala Glu Phe He Ala Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Ser Gin Leu Thr Lys Gly 40 45 Gly Ala Leu Asp Pro Ala Gly Leu Val Ala He Ala He Ala His Ala 50 55 60 Phe Ala Leu Phe Val Gly Val Ser Met Ala Ala Asn He Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Phe Gly Pro Phe Asp Gly Ala Ser Met 85 90 95 Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ala Gly Asn Phe Ala 100 105 110 Gly Asn Trp Val Tyr Trp Val Gly Pro Leu Val Gly Gly Gly Leu Ala 115 120 125 Gly Leu Val Tyr Gly Asp Val Phe He Ala Ser Tyr Gin Pro Val Gly 130 135 140 Gin Gin Glu Tyr Pro 145 <210> 226 <211> 105 <212> PRT <213> Oryza sativa <400> 226 Met Glu He He Val Thr Phe Gly Leu Val Tyr Thr Val Tyr Ala Thr 1 5 10 15 Ala Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro He Ala 25 30 He Gly Phe He Val Gly Ala Asn He Leu Val Ala Gly Pro Phe Ser 40 45 Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ser 50 55 60 Gly Asp Tyr Thr Asn He Trp He Tyr Trp Val Gly Pro Leu Val Gly 65 70 75 80 237 172135/2 Gly Gly Leu Ala Gly Leu Val Tyr Arg Tyr Val Tyr Met Cys Gly Asp 85 90 95 His Ala Pro Val Ala Ser Ser Glu Phe 100 105 <210> 227 <211> 126 <212> PRT <213> Triticum aestivum <400> 227 Ser Arg Cys Glu Leu Tyr Cys Pro Glu Arg Ser He Cys Asn Glu Ser 1 5 10 15 Cys Leu Glu Asn Thr Met Met Glu He He He Thr Phe Gly Leu Val 25 30 Tyr Thr Val Phe Ala Thr Ala Ala Asp Pro Lys Lys Gly Ser Leu Gly 40 45 Thr He Ala Pro He Ala He Gly Leu He Val Gly Ala Asn He Leu 50 55 60 Ala Ala Gly Pro Phe Ser Gly Gly Ser Met Asn Pro Ala Arg Ser Phe 65 70 75 80 Gly Pro Ala Met Val Ser Gly Asn Phe Glu Gly Phe Trp He Tyr Trp 85 90 95 He Gly Pro Leu Val Gly Gly Ser Leu Ala Gly Leu He Tyr Thr Asn 100 105 110 Val Phe Met Thr Gin Glu His Ala Pro Leu Ser Asn Glu Phe 115 120 125 <210> 228 <211> 140 <212> PRT <213> Capsicum annuum <400> 228 Met Ala Gly He Ala Phe Gly Arg Val Asp Asp Ser Phe Ser Ala Gly 1 5 10 15 Ser Leu Lys Ala Tyr Leu Ala Glu Phe He Ser Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Asn Lys Leu Thr Val Asn 40 45 Ala Ala Leu Asp Pro Ala Gly Leu Val Ala He Ala Val Cys His Gly 50 55 60 Phe Gly Leu Phe Val Ala Val Ser He Ala Ala Asn He Ser Gly Gly 65 70 75 80 238 172135/2 His Val Asn Pro Ala Val Thr Phe Gly Leu Ala Leu Gly Gly Gin He 85 90 95 Thr Leu Leu Thr Gly Leu Phe Leu His His Cys Ser Thr Phe Gly Leu 100 105 110 His Cys Ser Leu His Pro Pro Gin He Arg His Arg Arg He Gly Tyr 115 120 125 Ser Asn Ser Trp Ser Gly Ser Trp Cys Gly Cys His 130 135 140 <210> 229 <211> 101 <212> PRT <213> Hordeum vulgare <400> 229 Met Thr Phe Gly Leu Val Tyr Thr Val Tyr Ala Thr Ala Val Asp Pro 1 5 10 15 Lys Lys Gly Ser Leu Gly Thr He Ala Pro He Ala He Gly Phe He 25 30 Val Gly Ala Asn He Leu Val Gly Gly Ala Phe Ser Gly Ala Ser Met 40 45 Asn Pro Ala Val Ser Phe Gly Pro Ala Leu Val Ser Trp Glu Trp Gly 50 55 60 Tyr Gin Trp Val Tyr Trp Val Gly Pro Leu He Gly Gly Gly Leu Ala 65 70 75 80 Gly Val He Tyr Glu Leu Leu Phe He Ser Arg Thr His Glu Gin Leu 85 90 95 Pro Thr Thr Asp Tyr 100 <210> 230 <211> 154 <212> PRT <213> Gossypium Sp . <400> 230 Met Val Met Pro Phe Gly Leu Val Tyr Pro Val Tyr Ala Pro Ala Val 1 5 10 15 Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro Leu Ala He Gly 25 30 Phe He Val Gly Ala Asn He Leu Ala Gly Gly Ala Phe Asp Gly Ala 40 45 Met Asn Pro Ala Val Ser Phe Gly Pro Pro Leu Val Ser Trp Thr 50 55 60 Trp Asp Asn Pro Trp He Tyr Trp Val Gly Pro Leu He Gly Gly Gly 239 172135/2 65 70 75 80 Leu Ala Gly Phe Phe Arg Ser Ser Phe Ser Ser Ala Thr Pro Arg Ser 85 90 95 Ser Ser Gin Pro Pro lie lie Lys Pro Asn Gin Gly Leu lie Asp Leu 100 105 110 Phe Val Pro Leu Lys Pro Asp Phe Phe Arg Phe His Leu Ser Phe Leu 115 120 125 Phe Leu Ser Leu Phe Phe Val Phe Asn Leu Gly Pro Val Asp Phe Val 130 135 140 Tyr Phe Phe Phe lie Pro His Pro Phe Ser 145 150 <210> 231 <211> 20 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 231 tacgactcac tatagggcga 20 <210> 232 <2U> 20 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 232 gctatgacca tgattacgcc 20 <210> 233 <211> 3207 <212> DNA <213> Artificial sequence <220> <223> pKG(NOSter) plasmid <400> 233 taaattatcg cgcgcggtgt catctatgtt actagatcgg gaattcaatg cggccgccac 60 cgcggtggcc agcttttgtt ccctttagtg agggttaatt gcgcgcttgg cgtaatcatg 120 gtcatagctg tttcctgtgt gaaattgtta tccgctcaca attccacaca acatacgagc 180 cggaagcata aagtgtaaag cctggggtgc ctaatgagtg agctaactca cattaattgc 240 gttgcgctca ctgcccgctt tccagtcggg aaacctgtcg tgccagctgc attaatgaat 300 cggccaacgc gcggggagag gcggtttgcg tattgggcgc tcttccgctt cctcgctcac 360 tgactcgctg cgctcggtcg ttcggctgcg gcgagcggta tcagctcact caaaggcggt 420 aatacggtta tccacagaat caggggataa cgcaggaaag aacatgtgag caaaaggcca 480 gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg tttttccata ggctccgccc 540 ccctgacgag catcacaaaa atcgacgctc aagtcagagg tggcgaaacc cgacaggact 600 240 ataaagatac caggcgtttc cccctggaag ctccctcgtg cgctctcctg ttccgaccct 660 gccgcttacc ggatacctgt ccgcctttct cccttcggga agcgtggcgc tttctcatag 720 ctcacgctgt aggtatctca gttcggtgta ggtcgttcgc tccaagctgg gctgtgtgca 780 cgaacccccc gttcagcccg accgctgcgc cttatccggt aactatcgtc ttgagtccaa 840 cccggtaaga cacgacttat cgccactggc agcagccact ggtaacagga ttagcagagc 900 gaggtatgta ggcggtgcta cagagttctt gaagtggtgg cctaactacg gctacactag 960 aaggacagta tttggtatct gcgctctgct gaagccagtt accttcggaa aaagagttgg 1020 tagctcttga tccggcaaac aaaccaccgc tggtagcggt ggtttttttg tttgcaagca 1080 gcagattacg cgcagaaaaa aaggatctca agaagatcct ttgatctttt ctacggggtc 1140 tgacgctcag tggaacgaaa actcacgtta agggattttg gtcatgagat tatcaaaaag 1200 gatcttcacc tagatccttt taaattaaaa atgaagtttt aaatcaatct aaagtatata 1260 tgagtaaact tggtctgaca gttaccaatg cttaatcagt gaggcaccta tctcagcgat 1320 ctgtctattt cgttcatcca tagttgcctg actccccgtc gtgtagataa ctacgatacg 1380 ggagggctta ccatctggcc ccagtgctgc aatgataccg cgagacccac gctcaccggc 1440 tccagattta tcagcaataa accagccagc cggaagggcc gagcgcagaa gtggtcctgc 1500 aactttatcc gcctccatcc agtctattaa ttgttgccgg gaagctagag taagtagttc 1560 gccagttaat agtttgcgca acgttgttgc cattgctaca ggcatcgtgg tgtcacgctc 1620 gtcgtttggt atggcttcat tcagctccgg ttcccaacga tcaaggcgag ttacatgatc 1680 ccccatgttg tgcaaaaaag cggttagctc cttcggtcct ccgatcgttg tcagaagtaa 1740 gttggccgca gtgttatcac tcatggttat ggcagcactg cataattctc ttactgtcat 1800 gccatccgta agatgctttt ctgtgactgg tgagtactca accaagtcat tctgagaata 1860 gtgtatgcgg cgaccgagtt gctcttgccc ggcgtcaata cgggataata ccgcgccaca 1920 tagcagaact ttaaaagtgc tcatcattgg aaaacgttct tcggggcgaa aactctcaag 1980 gatcttaccg ctgttgagat ccagttcgat gtaacccact cgtgcaccca actgatcttc 2040 agcatctttt actttcacca gcgtttctgg gtgagcaaaa acaggaaggc aaaatgccgc 2100 aaaaaaggga ataagggcga cacggaaatg ttgaatactc atactcttcc tttttcaata 2160 ttattgaagc atttatcagg gttattgtct catgagcgga tacatatttg aatgtattta 2220 gaaaaataaa caaatagggg ttccgcgcac atttccccga aaagtgccac ctaaattgta 2280 agcgttaata ttttgttaaa attcgcgtta aatttttgtt aaatcagctc attttttaac 2340 caataggccg aaatcggcaa aatcccttat aaatcaaaag aatagaccga gatagggttg 2400 agtgttgttc cagtttggaa caagagtcca ctattaaaga acgtggactc caacgtcaaa 2460 gggcgaaaaa ccgtctatca gggcgatggc ccactacgtg aaccatcacc ctaatcaagt 2520 tttttggggt cgaggtgccg taaagcacta aatcggaacc ctaaagggag cccccgattt 2580 agagcttgac ggggaaagcc ggcgaacgtg gcgagaaagg aagggaagaa agcgaaagga 2640 gcgggcgcta gggcgctggc aagtgtagcg gtcacgctgc gcgtaaccac cacacccgcc 2700 gcgcttaatg cgccgctaca gggcgcgtcc cattcgccat tcaggctgcg caactgttgg 2760 gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc tggcgaaagg gggatgtgct 2820 241 gcaaggcgat taagttgggt aacgccaggg ttttcccagt cacgacgttg taaaacgacg gccagtgagc gcgcgtaata cgactcacta tagggcgaat tgggtaccgc ggccgctatt gataagctta atatgtcgac gatttctcta gaatacgagc tcgaatttcc ccgatcgttc aaacatttgg caataaagtt tcttaagatt gaatcctgtt gccggtcttg cgatgattat catataattt ctgttgaatt acgttaagca tgtaataatt aacatgtaat gcatgacgtt atttatgaga tgggttttta tgattagagt cccgcaatta tacatttaat acgcgataga aaacaaaata tagcgcgcaa actagga <210> 234 <211> 3868 <212> DNA <213> Artificial sequence <220> <223> pKG (35S+NOSter ) plasmid <400> 234 gtaggtatct cagttcggtg taggtcgttc gctccaagct gggctgtgtg cacgaacccc ccgttcagcc cgaccgctgc gccttatccg gtaactatcg tcttgagtcc aacccggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg taggcggtgc tacagagttc ttgaagtggt ggcctaacta cggctacact agaaggacag tatttggtat ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa acaaaccacc gctggtagcg gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa aaaaggatct caagaagatc ctttgatctt ttctacgggg tctgacgctc agtggaacga aaactcacgt taagggattt tggtcatgag attatcaaaa aggatcttca cctagatcct tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa cttggtctga cagttaccaa tgcttaatca gtgaggcacc tatctcagcg atctgtctat ttcgttcatc catagttgcc tgactccccg tcgtgtagat aactacgata cgggagggct taccatctgg ccccagtgct gcaatgatac cgcgagaccc acgctcaccg gctccagatt tatcagcaat aaaccagcca gccggaaggg ccgagcgcag aagtggtcct gcaactttat ccgcctccat ccagtctatt aattgttgcc gggaagctag agtaagtagt tcgccagtta atagtttgcg caacgttgtt gccattgcta caggcatcgt ggtgtcacgc tcgtcgtttg gtatggcttc attcagctcc ggttcccaac gatcaaggcg agttacatga tcccccatgt tgtgcaaaaa agcggttagc tccttcggtc ctccgatcgt tgtcagaagt aagttggccg cagtgttatc actcatggtt atggcagcac tgcataattc tcttactgtc atgccatccg taagatgctt ttctgtgact ggtgagtact caaccaagtc attctgagaa tagtgtatgc ggcgaccgag ttgctcttgc ccggcgtcaa tacgggataa taccgcgcca catagcagaa ctttaaaagt gctcatcatt ggaaaacgtt cttcggggcg aaaactctca aggatcttac cgctgttgag atccagttcg atgtaaccca ctcgtgcacc caactgatct tcagcatctt ttactttcac cagcgtttct gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg gaataagggc gacacggaaa tgttgaatac tcatactctt cctttttcaa tattattgaa gcatttatca gggttattgt ctcatgagcg gatacatatt tgaatgtatt tagaaaaata aacaaatagg ggttccgcgc acatttcccc gaaaagtgcc acctaaattg taagcgttaa 242 172135/2 tattttgtta aaattcgcgt taaatttttg ttaaatcagc tcatttttta accaataggc 1620 cgaaatcggc aaaatccctt ataaatcaaa agaatagacc gagatagggt tgagtgttgt 1680 tccagtttgg aacaagagtc cactattaaa gaacgtggac tccaacgtca aagggcgaaa 1740 aaccgtctat cagggcgatg gcccactacg tgaaccatca ccctaatcaa gttttttggg 1800 gtcgaggtgc cgtaaagcac taaatcggaa ccctaaaggg agcccccgat ttagagcttg 1860 acggggaaag ccggcgaacg tggcgagaaa ggaagggaag aaagcgaaag gagcgggcgc 1920 tagggcgctg gcaagtgtag cggtcacgct gcgcgtaacc accacacccg ccgcgcttaa 1980 tgcgccgcta cagggcgcgt cccattcgcc attcaggctg cgcaactgtt gggaagggcg 2040 atcggtgcgg gcctcttcgc tattacgcca gctggcgaaa gggggatgtg ctgcaaggcg 2100 attaagttgg gtaacgccag ggttttccca gtcacgacgt tgtaaaacga cggccagtga 2160 gcgcgcgtaa tacgactcac tatagggcga attgggtacc gcggccgcta ttgataagct 2220 tgcatgcctg caggtcaatt ctcatgtttg acagcttatc atcggtgcga tgccccccat 2280 cgtaggtgaa ggtggaaatt aatgatccat cttgagacca caggcccaca acagctacca 2340 gtttcctcaa gggtccacca aaaacgtaag cgcttacgta catggtcgat aagaaaaggc 2400 aatttgtaga tgttaacatc caacgtcgct ttcagggatc ccccctcaga agaccagagg 2460 gctattgaga cttttcaaca aagggtaata tcgggaaacc tcctcggatt ccattgccca 2520 gctatctgtc acttcatcga aaggacagta gaaaaggaag gtggctccta caaatgccat 2580 cattgcgata aaggaaaggc tatcgttcaa gatgcctcta ccgacagtgg tcccaaagat 2640 ggacccccac ccacgaggaa catcgtggaa aaagaagacg ttccaaccac gtcttcaaag 2700 caagtggatt gatgtgatat ctccactgac gtaagggatg acgcacaatc ccactatcct 2760 tcgcaagacc cttcctctat ataaggaagt tcatttcatt tggagaggac aggcttcttg 2820 agatccttca acaattacca acaacaacaa acaacaaaca acattacaat tactatttac 2880 aattacagtc gacgatttct ctagaatacg agctcgaatt tccccgatcg ttcaaacatt 2940 tggcaataaa gtttcttaag attgaatcct gttgccggtc ttgcgatgat tatcatataa 3000 tttctgttga attacgttaa gcatgtaata attaacatgt aatgcatgac gttatttatg 3060 agatgggttt ttatgattag agtcccgcaa ttatacattt aatacgcgat agaaaacaaa 3120 atatagcgcg caaactagga taaattatcg cgcgcggtgt catctatgtt actagatcgg 3180 gaattcaatg cggccgccac cgcggtggcc agcttttgtt ccctttagtg agggttaatt 3240 gcgcgcttgg cgtaatcatg gtcatagctg tttcctgtgt gaaattgtta tccgctcaca 3300 attccacaca acatacgagc cggaagcata aagtgtaaag cctggggtgc ctaatgagtg 3360 agctaactca cattaattgc gttgcgctca ctgcccgctt tccagtcggg aaacctgtcg 3420 tgccagctgc attaatgaat cggccaacgc gcggggagag gcggtttgcg tattgggcgc 3480 tcttccgctt cctcgctcac tgactcgctg cgctcggtcg ttcggctgcg gcgagcggta 3540 tcagctcact caaaggcggt aatacggtta tccacagaat caggggataa cgcaggaaag 3600 aacatgtgag caaaaggcca gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg 3660 tttttccata ggctccgccc ccctgacgag catcacaaaa atcgacgctc aagtcagagg 3720 tggcgaaacc cgacaggact ataaagatac caggcgtttc cccctggaag ctccctcgtg 3780 243 172135/2 cgctctcctg ttccgaccct gccgcttacc ggatacctgt ccgcctttct cccttcggga 3840 agcgtggcgc tttctcatag ctcacgct 3868 <210> 235 <211> 20 <212> DNA <213> Artificial sequence <220> <223> Single strand DNA oligonucleotide <400> 235 tcagccaccc aaaccatgac <210> 236 <211> 151 <212> PRT <213> Lycopersicon esculentum <400> 236 Met Gly Arg Met His Ser Arg Gly Lys Gly He Ser Ala Ser Ala Leu 1 5 10 15 Pro Tyr Lys Arg Thr Pro Pro Ser Trp Leu Lys He Ser Ala Pro Asp 25 30 Val Glu Asp Asn He Cys Lys Phe Ala Lys Lys Gly Leu Thr Pro 40 45 Gin He Gly Val He Leu Arg Asp Ser His Gly He Ala Gin Val Lys 50 55 60 Ser Val Thr Gly Ser Lys He Leu Arg He Leu Lys Ala His Gly Leu 65 70 75 80 Ala Pro Glu He Pro Glu Asp Leu Tyr His Leu He Lys Lys Ala Val 85 90 95 Ala lie Arg Lys His Leu Glu Arg Asn Arg Lys Asp Lys Asp Ser Lys 100 105 110 Phe Arg Leu He Leu Val Glu Ser Arg He His Arg Leu Ala Arg Tyr 115 120 125 Tyr Lys Lys Thr Lys Lys Leu Pro Pro al Trp Lys Tyr Glu Ser Thr 130 135 140 Thr Ala Ser Thr Leu Val Ala 145 150 <210> 237 <211> 219 <212> PRT <213> Lycopersicon esculentum <400> 237 Met Glu Asp Lys Ser Asn Asp Tyr Tyr Ala Val Leu Gly Leu Lys Lys 1 5 10 15 244 172135/2 Glu Cys Thr Asp Thr Glu Leu Arg Asn Ala Tyr Lys Lys Leu Ala Leu 25 30 Lys Trp His Pro Asp Arg Cys Ser Ala Ser Gly Asn Leu Lys Phe Val 40 45 Asp Glu Ala Lys Lys Gin Phe Gin Ala lie Gin Glu Ala Tyr Ser Val 50 55 60 Leu Ser Asp Ala Asn Lys Lys Phe Leu Tyr Asp Val Gly Val Tyr Asp 65 70 75 80 Ser Gly Asp Asp Asp Asp Glu Asn Gly Met Gly Asp Phe Leu Asn Glu 85 90 95 Met Ala Ala Met Met Ser Gin Asn Lys Ser Asn Glu Asn Gin Gly Glu 100 105 110 Glu Thr Phe Glu Glu Leu Gin Asp Met Phe Asn Glu Met Phe Asn 115 120 125 Asp Asn Gly Thr Phe Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Trp 130 135 140 Thr Gly Thr Pro Ser Met Cys Ser Thr Thr Ser Ser Thr Ser Ser Ser 145 150 155 160 Glu Thr Phe Leu Thr Phe Pro Asn Lys Arg Ser Ser Gly Glu Met Lys 165 170 175 Ser Gly Ser Ser Val Arg Gly Asp Ser Cys Gin Phe Gin Gly Phe Cys 180 185 190 Val Gly Ala Gly Gly Thr Ser Gly Lys Cys Asn Glu Arg Glu Arg Ser 195 200 205 Trp Arg Lys Asn Ser Lys Ser Gly Arg Lys His 210 215 <210> 238 <211> 298 <212> PRT <213> Lycopersicon esculentum <400> 238 Met Glu Asn Met Gin Ser Tyr Trp Gin Phe Gly Asp Glu Leu Arg Gly 1 5 10 15 Gin Ser Lys Ala Ser Glu Asp His Lys Trp Ser Thr Ala Ala lie Lys 25 30 Leu Ser Glu Gin Met Lys Tyr Lys Gly Glu Arg Arg Asn Asn Leu Asp 40 45 Leu Ser Lys Ser Ser Ala Glu lie Arg Pro Arg Gly Asn His Met Phe 50 ' 55 60 245 172135/2 Gin Glu Asp Asn Lys Trp Glu Ser Leu Asn Phe Asn Met Leu Asn Leu 65 70 75 80 Glu Ser Lys Met Thr Glu Asn Met Ser Lys Asn Arg He Met Asp 85 90 95 He Phe Asn Ala Asn Pro Val Tyr Leu Lys Pro Asn Phe Asn Ser Leu 100 105 110 Gly Asn Ser Ser Leu Ser Lys Phe Asn Ala Ser Asn Tyr Thr Lys Glu 115 120 125 Pro Ser Lys Asn Asn Asn Asn Asn Val Glu Ser Thr Asn Gly Asn Asn 130 135 140 Val Asp Lys Arg Phe Lys Thr Leu Pro Ala Ala Glu Thr Leu Pro 150 155 160 Lys Asn Glu Val Leu Gly Gly Tyr He Phe Val Cys Asn Asn Asp Thr 165 170 175 Met Gin Glu Asp Leu Lys Arg Leu Leu Phe Gly Leu Pro Pro Arg Tyr 180 185 190 Arg Asp Ser Val Arg Ala He Thr Pro Gly Leu Pro Leu Phe Leu Tyr 195 200 205 Asn Tyr Thr Thr His Gin Leu His Gly He Phe Glu Ala Ser Ser Phe 210 215 220 Gly Gly Ser Asn He Asp Pro Thr Ala Trp Glu Asp Lys Lys Cys Lys 225 230 235 240 Gly Glu Ser Arg Phe Pro Ala Gin Val Arg He Arg Val Arg Lys Val 245 250 255 Cys Asn Pro Leu Glu Glu Asp Ala Phe Arg Pro Val Leu His His Tyr 260 265 270 Asp Gly Pro Lys Phe Arg Leu Glu Leu Ser He Pro Glu Thr Leu Asp 275 280 285 Leu Leu Asp Leu Cys Glu Lys Ala Gly Val 290 295 <210> 239 <211> 249 <212> PRT <213> Lycopersicon esculentum <400> 239 Met Ala Gly Gly Val Ala He Gly Ser Phe Ser Asp Ser Phe Ser Val 1 5 10 15 Val Ser Leu Lys Ser Tyr Leu Ala Glu Phe He Ser Thr Leu He Phe 25 30 246 172135/2 Val Phe Ala Gly Val Gly Ser Ala He Ala Tyr Gly Lys Leu Thr Thr 40 45 Asn Ala Ala Leu Asp Pro Ala Gly Leu Val Ala He Ala Val Cys His 50 55 60 Gly Phe Ala Leu Phe Val Ala Val Ser He Ser Ala Asn He Ser Gly 65 70 75 80 Gly His Val Asn Pro Ala Val Thr Cys Gly Leu Thr Phe Gly Gly His 85 90 95 He Thr Phe He Thr Gly Ser Phe Tyr Met Leu Ala Gin Leu Thr Gly 100 105 110 Ala Ala Val Ala Cys Phe Leu Leu Lys Phe Val Thr Gly Gly Cys Ala 115 120 125 He Pro Thr His Gly Val Gly Ala Gly Val Ser He Leu Glu Gly Leu 130 135 140 Val Met Glu He He He Thr Phe Gly Leu Val Tyr Thr Val Phe Ala 145 150 155 160 Thr Ala Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro He 165 170 175 Ala He Gly Leu He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe 180 185 190 Ser Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Met Val 195 200 205 Ser Gly Asn Phe Glu Gly Phe Trp He Tyr Trp He Gly Pro Leu Val 210 215 220 Gly Gly Ser Leu Ala Gly Leu He Tyr Thr Asn Val Phe Met Thr Gin 225 230 235 240 Glu His Ala Pro Leu Ser Asn Glu Phe 245 <210> 240 <211> 244 <212> PRT <213> Lycopersicon esculentum <400> 240 Met Glu Val Asp Ser Ser Gly Asn Pro Asn Trp Leu Phe Asp Tyr Glu 1 5 10 15 Leu Met Thr Asp He Thr Ser Ala Ala Ser Val Thr Val Ala Glu Phe 25 30 Gin Ser Pro Ala Thr He Asp Phe Ser Trp Pro Ala Gin Thr He Tyr 40 45 247 172)35/2 Ala Ser Ser Asn Leu lie Thr Glu Thr Asp Tyr Thr Phe Ala Asp Ser 50 55 60 Glu Val Ser Lys Glu Ala Ser Ser Arg Lys Arg Leu Lys Ser Glu Cys 65 70 75 80 Cys Ser Ser Pro Arg Ser Lys Ala Cys Arg Glu Lys Leu Arg Arg Asp 85 90 95 Arg Leu Asn Glu Arg Phe Leu Ala Leu Ser Ser Val Leu Asp Pro Gly 100 105 110 Arg Pro Pro Lys Thr Glu Lys Val Ala lie Leu Ser Asp Ala Gin Arg 115 120 125 Met Leu lie Glu Leu Arg Thr Glu Thr Gin Lys Leu Lys Glu Ser Asn 130 135 140 Glu Glu Leu Gin Glu Lys lie Lys Glu Leu Lys Ala Glu Lys Asn Glu 145 150 155 160 Leu Arg Asp Glu Lys Gin Arg Leu Lys Glu Glu Lys Asp Asn Leu Glu 165 170 175 Gin Gin Val Lys Ser Leu Ala Ser Lys Ala Gly Phe Leu Ser His Pro 180 185 190 Ser Ala Met Gly Ala Ala Phe Thr Ala Gin Gly Gin Val Ala Ala Ser 195 200 205 Asn Lys Leu Met Pro Phe lie Gly Tyr Pro Ser Val Ala Met Trp Arg 210 215 220 Phe Met Gin Pro Ala Val Val Asp Thr Ser Gin Asp His val Leu Arg 225 230 235 240 Pro Pro Val Ala <210> 241 <211> 362 < <221123>> PSRoTrghum bicolor <400> 241 Met Glu Gly Tyr Asp Arg Glu Phe Trp Gin Phe Ser Asp Thr Leu Arg 1 5 10 15 Leu Gin Thr Ala Ala Phe Ser Gly Leu Ser Leu Gly Asp Ser lie Trp 25 30 Ser Pro Ala Thr Gly Gly Ala Ala Ala Ala Asp Arg Arg Asn Asn Ser 40 45 Asn Asp Leu Phe Ala Ala Ser Ala Ser Pro Ala Asp Thr Thr Ala Ala 50 55 60 248 172135/2 Lys Asn Asn Gly Gly Val Gly Leu Arg Leu Asn Leu Asn Asp Gly Gly 65 70 75 80 Pro Gly Leu He Gly Ser Gly Lys Leu Ala Phe Gly Gly Ser Lys Ala 85 90 95 Asp Arg Tyr Asn Asn Leu Pro Ala Thr Thr Glu Lys Ala Ala Ser Ala 100 105 110 Tyr Asn Asn Asn He Asn Val Asn Ala Gly Tyr Ala Lys Asn Asn Asn 115 120 125 Asn Asn Ala Leu Ala Phe Asn Lys Met Gly He Tyr Gly Tyr Asn Thr 130 135 140 Asn Asn Ser Asn He Ser Asn Asn Ser Ser Ser Gly Glu Val Lys Ser 145 150 155 160 Tyr Phe Asn Lys Ser Ala Gly Arg Ala Ala Ser Asn Asn Ser His Gly 165 170 175 His Gly His Ala Gly Gly Lys Lys Gly Gly Glu Tyr Gly Asn Lys Lys 180 185 190 Lys His Gly Lys Asn Glu Gly Asn Asn Gly Gly Gly Gly Ala Gly Ala 195 200 205 Thr Asp Lys Arg Phe Lys Thr Leu Pro Ala Ser Glu Ala Leu Pro Arg 210 215 220 Gly Gin Ala He Gly Gly Tyr He Phe Val Cys Asn Asn Asp Thr Met 225 230 235 240 Asp Glu Asn Leu Arg Arg Glu Leu Phe Gly Leu Pro Ser Arg Tyr Arg 245 250 255 Asp Ser Val Arg Ala He Arg Pro Gly Leu Pro Leu Phe Leu Tyr Asn 260 265 270 Tyr Ser Thr His Gin Leu His Gly He Phe Glu Ala Val Ser Phe Gly 275 280 285 Gly Thr Asn He Asp Pro Thr Ala Trp Glu Asp Lys Lys Cys Pro Gly 290 295 300 Glu Ser Arg Phe Pro Ala Gin Val Arg Val Ala Thr Arg Lys He Tyr 305 310 315 320 Asp Pro Leu Glu Glu Asp Ala Phe Arg Pro He Leu His His Tyr Asp 325 330 335 Gly Pro Lys Phe Arg Leu Glu Leu Ser Val Thr Glu Ala Leu Ala Leu 340 345 350 Leu Asp He Phe Ala Asp Lys Asp Asp Ala 355 360 249 172135/2 <210> 242 <211> 249 <212> PRT <213> Hordeum vulgare <400> 242 Met Val Lys Leu Ala Phe Gly Ser Phe Gly Asp Ser Phe Ser Ala Thr 1 5 10 15 Ser He Arg Ser Tyr Val Ala Glu Phe He Ala Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ser Tyr Gly Gin Leu Thr Gin Gly 40 45 Gly Ala Leu Asp Pro Ala Gly Leu Val Ala lie Ala He Ala His Ala 50 55 60 Phe Ala Leu Phe Val Gly Val Ala Met Ala Ala Asn He Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Phe Gly Leu Ala Val Gly Gly His Val 85 90 95 Thr He Leu Thr Gly Leu Phe Tyr Trp Val Ala Gin Leu Leu Gly Ala 100 105 110 Ser Val Ala Cys Leu Leu Leu Gin Phe Val Thr His Ala Gin Ala Met 115 120 125 Pro Thr His Ala Val Ser Gly He Ser Glu Val Glu Gly Val Val Met 130 135 140 Glu lie Val lie Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr Ala 145 150 155 160 Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro Met Ala He 165 170 175 Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser Gly 180 185 190 Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ala Gly 195 200 205 Asn Phe Ser Gly His Trp Val Tyr Trp Val Gly Pro Leu He Gly 210 215 220 Gly Leu Ala Gly Leu Val Tyr Gly Asp Val Phe He Ala Ser Tyr Gin 225 230 235 240 Pro Val Gly His Gin Gin Glu Tyr Pro 245 <210> 243 <211> 250 <212> PRT 250 172135/2 <213> Hordeum vulgare <400> 243 Met Val Lys Leu Ala Phe Gly Ser Val Gly Asp Ser Phe Ser Val Thr 1 5 10 15 Ser He Lys Ala Tyr Val Ala Glu Phe He Ala Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Phe Gly Gin Leu Thr Asn Gly 40 45 Gly Ala Leu Asp Pro Ala Gly Leu Val Ala He Ala Val Ala His Ala 50 55 60 Leu Ala Leu Phe Val Gly Val Ser Val Ala Ala Asn Thr Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Phe Gly Leu Ala Val Gly Gly His 85 90 95 Thr Val Leu Thr Gly Leu Phe Tyr Trp Val Ala Gin Leu Leu Gly Ala 100 105 110 Ser Val Ala Cys Leu Leu Leu Arg Phe Val Thr His Gly Lys Ala He 115 120 125 Pro Thr His Gly Val Ser Gly Gly Thr Thr Glu Leu Glu Gly Val Val 130 135 140 Phe Glu lie Val lie Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr 145 150 155 160 Ala Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro He Ala 165 170 175 He Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser 180 185 190 Gly Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ala 195 200 205 Ala Asp Phe Ala Gly Asn Trp Val Tyr Trp Val Gly Pro Leu He Gly 210 215 220 Gly Gly Leu Ala Gly Leu Val Tyr Gly Asp Val Phe He Gly Gly Ser 225 230 235 240 Tyr Gin Gin Val Ala Asp Gin Asp Tyr Ala 245 250 <210> 244 <211> 249 <212> PRT <213> Zea mays <400> 244 251 172135/2 Met Val Lys Leu Ala Phe Gly Ser Val Gly Asp Ser Phe Ser Ala Thr 1 5 10 15 Ser lie Lys Ala Tyr Val Ala Glu Phe He Ala Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala He Ala Tyr Gly Gin Leu Thr Asn Gly 40 45 Gly Ala Leu Asp Pro Ala Gly Leu Val Ala He Ala He Ala His Ala 50 55 60 Leu Ala Leu Phe Val Gly Val Ser Val Ala Ala Asn He Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Phe Gly Leu Ala Val Gly Gly His He 85 90 95 Thr He Leu Thr Gly Val Phe Tyr Trp Val Ala Gin Leu Leu Gly Ala 100 105 110 Thr Val Ala Cys Leu Leu Leu Gly Phe Val Thr His Gly Lys Ala 115 120 125 Pro Thr His Ala Val Ala Gly He Ser Glu Leu Glu Gly Val Val Phe 130 135 140 Glu Val Val He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr Ala 145 150 155 160 Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro He Ala He 165 170 175 Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser Gly 180 185 190 Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ala Gly 195 200 205 Asp Phe Ala Gly Asn Trp Val Tyr Trp Val Gly Pro Leu Val Gly Gly 210 215 220 Gly Leu Ala Gly Leu Val Tyr Gly Asp Val Phe He Gly Gly Ser Tyr 225 230 235 240 Gin Gin Val Ala Asp Gin Asp Tyr Ala 245 <210> 245 <211> 249 <212> PRT <213> Zea mays <400> 245 Met Val Lys Leu Ala Phe Gly Ser Val Gly Asp Ser Phe Ser Ala Thr 1 5 10 15 252 172135/2 Ser lie Lys Ala Tyr Val Ala Glu Phe lie Ala Thr Leu Leu Phe Val 25 30 Phe Ala Gly Val Gly Ser Ala lie Ala Tyr Gly Gin Leu Thr Asn Gly 40 45 Gly Ala Leu Asp Pro Ala Gly Leu Val Ala lie Ala lie Ala His Ala 50 55 60 Leu Ala Leu Phe Val Gly Val Ser Val Ala Ala Asn lie Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Phe Gly Leu Ala Val Gly Gly His 85 90 95 Thr He Leu Thr Gly Val Phe Tyr Trp Val Ala Gin Leu Leu Gly Ala 100 105 110 Thr Val Ala Cys Leu Leu Leu Gly Phe Val Thr His Gly Lys Ala 115 120 125 Pro Thr His Ala Val Ala Gly He Ser Glu Leu Glu Gly Val Val Phe 130 135 140 Glu Val Val He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr Ala 145 150 155 160 Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro He Ala He 165 170 175 Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser Gly 180 185 190 Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ala Gly 195 200 205 Asp Phe Ala Gly Asn Trp Val Tyr Trp Val Gly Pro Leu Val Gly Gly 210 215 220 Gly Leu Ala Gly Leu Val Tyr Gly Asp Val Phe He Gly Gly Ser Tyr 225 230 235 240 Gin Gin Val Ala Asp Gin Asp Tyr Ala 245 <210> 246 <211> 248 <212> PRT <213> Zea mays <400> 246 Met Val Lys Leu Ala Phe Gly Ser Phe Arg Asp Ser Leu Ser Ala Ala 1 5 10 15 Ser Leu Lys Ala Tyr Val Ala Glu Phe He Ala Thr Leu Leu Phe Val 253 172135/2 Phe Ala Gly Val Gly Ser Ala lie Ala Tyr Ser Gin Leu Thr Lys Gly 40 45 Gly Ala Leu Asp Pro Ala Gly Leu Val Ala He Ala He Ala His Ala 50 55 60 Phe Ala Leu Phe Val Gly Val Ser Met Ala Ala Asn He Ser Gly Gly 65 70 75 80 His Leu Asn Pro Ala Val Thr Phe Gly Leu Ala val Gly Gly His He 85 90 95 Thr He Leu Thr Gly He Leu Tyr Trp Val Ala Gin Leu Leu Gly Ala 100 105 110 Ser Val Ala Cys Phe Leu Leu Gin Tyr Val Thr His Gly Gin Ala He 115 120 125 Pro Thr His Gly Val Ser Gly He Ser Glu He Glu Gly Val Val Met 130 135 140 Glu He Val He Thr Phe Ala Leu Val Tyr Thr Val Tyr Ala Thr Ala 145 150 155 160 Ala Asp Pro Lys Lys Gly Ser Leu Gly Thr He Ala Pro Met Ala He 165 170 175 Gly Phe He Val Gly Ala Asn He Leu Ala Ala Gly Pro Phe Ser Gly 180 185 190 Gly Ser Met Asn Pro Ala Arg Ser Phe Gly Pro Ala Val Ala Ala Gly 195 200 205 Asn Phe Ala Gly Asn Trp Val Tyr Trp Val Gly Pro Leu Val Gly Gly 210 215 220 Gly Leu Ala Gly Leu Val Tyr Gly Asp Val Phe He Ala Ser Tyr Gin 225 230 235 240 Pro Val Gly Gin Gin Glu Tyr Pro 245 <210> 247 <211> 1603 <212> DNA <213> Sorghum bicolor <400> 247 tactggacct ccacacttgc acttggttgg agcttcttct cctttttttt tttccattgc 60 tcctctgctt cgcgtcgcct cgcgtctctt ctctccctcc cccggcaggc taacagacac 120 agcagag'cgc aggaacacag agcgagagag atcaatcgag gccatggagg gctacgaccg 180 cgagttctgg cagttcagcg acacgctgcg cctgcagacg gccgccttct ccggcctatc 240 cctcggcgac tccatctggt cccccgccac cggcggcgcc gccgccgccg accggcgcaa 300 caacagcaac gacctcttcg ccgcatccgc gtcgcccgcc gacaccaccg ccgccaagaa 360 caacggcggc gtcggcctca gactcaatct caacgatggc gggccaggcc tcatcggctc 420 254 172)35/2 cgggaagctc gccttcggcg gcagcaaggc cgaccgctac aacaacctcc ccgccaccac 480 cgagaaggcc gcgtccgcgt acaacaacaa catcaacgtc aacgccggct acgccaagaa 540 caacaacaac aacgccctgg cgttcaacaa gatggggatc tacggctaca acacgaacaa 600 cagcaacatc agcaacaaca gcagcagcgg ggaggtgaag agctacttca acaagtccgc 660 cgggagggcg gcgagcaaca acagccacgg gcacgggcac gccggcggca agaagggagg 720 ggagtacggc aataagaaga agcacggcaa gaacgagggc aacaacggcg gtggcggagc 780 gggggccacg gacaagcggt tcaagacgct gccggcgtcg gaggcgctgc cgcgggggca 840 ggccatcggc gggtacatct tcgtctgcaa caacgacacc atggacgaga acctcaggag 900 ggagctcttc gggctgccgt ccaggtacag ggactcggtg cgtgccatcc gccctgggct 960 gcccctcttc ctctacaact actccaccca ccaactccac ggcatcttcg aggccgtgag 1020 ctttggcggg accaacatcg acccgacggc gtgggaggac aagaagtgcc ccggcgagtc 1080 gcgcttccct gcacaggtgc gggtggcaac gcggaagatc tacgaccccc tggaggagga 1140 cgccttccgc cccatcctcc accactacga cgggcccaag ttccggctcg agctctccgt 1200 caccgaggcc ctcgcactcc tcgacatctt cgccgacaag gacgacgcct gatcctagat 1260 cctcctcatc ggatcgtcag ggactcgagg cttggaactt ggatgaatga acaataatgg 1320 atggacatgt atcccgtcct acgagacggg agtatacaca ccagcacggt ggagtactag 1380 tatattaatt aataattaat ataatatatc cacctttgtt tgatgttatg ggctatgtat 1440 gaggcacgcg tccaattgtt ttgtttttat aacacttgtg cgatgattgc agagaactag 1500 ccctcgtttt tgtaagatat actcccacta agatatctgt attgttcggg tctaactgac 1560 atgtataaac atctgtgaaa taataagttc ttgtgcgaaa aaa 1603 <210> 248 <2U> 976 <212> DNA <213> Hordeum vulgare <400> 248 cacgaggctg tgatcagatc agacttcgaa ctctttagcc tgaagaagtc acagagaaaa 60 cagtcgagtg caactgcaag atggtgaagc ttgcgtttgg aagcttcggc gactcgttca 120 gcgccacgtc catcaggtcc tatgtcgcgg agttcatcgc caccctcctc ttcgtgttcg 180 ccggcgtcgg gtccgccatt tcctacgggc aactgacgca gggtggcgca ctggacccgg 240 ctggccttgt ggcgatcgcc atcgcccatg ccttcgccct cttcgtcggc gtggcgatgg 300 ctgccaacat ctccggcggc cacctgaacc ccgccgtcac gttcggcctc gccgtcggcg 360 gccacgtcac catcctcacc gggctcttct actgggtcgc ccagctgctc ggcgcctccg 420 tggcatgcct cctcctgcag tttgtcaccc acgcccaggc tatgccgacg cacgccgtgt 480 ccggcatcag cgaggtcgag ggcgtggtga tggagatcgt gatcaccttc gcgctggtgt 540 acacggtgta cgcgacggcg gccgacccca agaagggctc cctcggcacc atcgcgccca 600 tggcgatcgg cttcatcgtc ggcgccaaca tcctcgccgc cgggcccttc agcggcggct 660 ccatgaaccc ggcgcgctcc ttcgggccgg ccgtggcggc cggcaacttc tccggccact 720 gggtgtactg ggtcgggcca ctcattggtg gcggcctcgc cgggctcgtc tacggcgacg 780 tgttcatcgc ctcctaccag ccggtcggcc accagcagga atacccatga agcgcacgga 840 255 172135/2 tccgaaccta gcttctttgg ctcgttgctt gtttcccctt gtgtgatgaa tttcccttct 900 cgattctaat ccacctcaaa aatgtaaaag tgtaagagaa ccactcgatc ttacatgaac 950 ggttcagcgt ttttcg 976 <210> 249 <211> 1281 <212> DNA <213> Zea mays <400> 249 aaatgttttg tgacgattat ccccgcaccg tccagagtac tctaacccac aagttgaggc 60 cgccctgcag cccatcagac gaggacgcgc gcgtgtataa aagctgactg gactcccagc 120 gtctgtcagc gaaccgaagc agcagccaat tcgctcgagt tcagatcgag cgcgcgccaa 180 gcaagtcttc cggccggccg cgaagagcgc aatcaagcaa gacaagatgg tgaagctcgc 240 cttcggaagc gtcggcgact ccttcagcgc cacctccatc aaggcctacg tggccgagtt 300 catcgccacc ctcctcttcg tcttcgccgg cgtcggttcc gccatcgcct acgggcaact 360 gacgaatggc ggcgcgctgg acccggcggg cctggtggcg atcgcgatcg cgcacgcgct 420 ggcgctgttc gtgggcgtgt ccgtcgcggc gaacatctcg ggcggccacc tgaacccggc 480 cgtgacgttc gggctggccg tgggcggcca catcaccatc ctgacgggcg tcttctactg 540 ggtggcccag ctgctgggcg ccaccgtggc gtgcctgctc ctcgggttcg tcacccacgg 600 caaggccatc ccgacgcacg ccgtcgcggg catcagcgag ctggaaggcg tcgtgttcga 660 ggtcgtcatc accttcgcgc tcgtctacac cgtgtacgcc accgccgccg accccaagaa 720 gggctcgctc ggcaccatcg cgcccatcgc catcggcttc atcgtcggcg ccaacatcct 780 cgccgcgggg cccttcagcg gcggctccat gaaccccgcc cgctccttcg gccccgccgt 840 cgccgcgggc gacttcgccg gaaactgggt ctactgggtc ggcccgctcg tcggcggcgg 900 cctcgctggc ctcgtctacg gcgacgtctt cattggcggc tcctaccagc aggtcgcgga 960 ccaggactac gcctaattta ttcaccactc catctccgct ctggatgaat ggattcaaaa 1020 ccgtcgtcgt ttgcttttgc tcctcgccac gttcaattaa tggttgtgta tgcatgtatg 1080 tgccaatatg atgtgccttt gccctggtcc attcatttcc ctttcttttt tcggggtgaa 1140 atagatgtaa agatctcgtc ttgcctgccg tactcgcgct gtgttgggaa aaattggttt 1200 tcgttccaag tttgtttacg catggatttc ttkrctcctt tatggttttg attcacgtct 1260 gccccgtaag tctatttctc a 1281 <210> 250 <211> 128: 1 <212> DNA <213> Zea mays <400> 250 aaatgttttg tgacgattat ccccgcaccg tccagagtac tctaacccac aagttgaggc 60 cgccctgcag cccatcagac gaggacgcgc gcgtgtataa aagctgactg gactcccagc 120 gtctgtcagc gaagccgaag cagcagccaa ttcgctcgag ttcagatcga gcgcgcgcca 180 agcaagtctt ccggccggcc gcgaagagcg caatcaagca agacaagatg gtgaagctcg 240 ccttcggaag cgtcggcgac tccttcagcg ccacctccat caaggcctac gtggccgagt 300 256 172135/2 tcatcgccac cctcctcttc gtcttcgccg gcgtcggttc cgccatcgcc tacgggcaac 360 tgacgaatgg cggcgcgctg gacccggcgg gcctggtggc gatcgcgatc gcgcacgcgc 420 tggcgctgtt cgtgggcgtg tccgtcgcgg cgaacatctc gggcggccac ctgaacccgg 480 ccgtgacgtt cgggctggcc gtgggcggcc acatcaccat cctgacgggc gtcttctact 540 gggtggccca gctgctgggc gccaccgtgg cgtgcctgct cctcgggttc gtcacccacg 600 gcaaggccat cccgacgcac gccgtcgcgg gcatcagcga gctggaaggc gtcgtgtcg 660 aggtcgtcat caccttcgcg ctcgtctaca ccgtgtacgc caccgccgcc gaccccaaga 720 agggctcgct cggcaccatc gcgcccatcg ccatcggctt catcgtcggc gccaacatcc 780 tcgccgcggg gcccttcagc ggcggctcca tgaaccccgc ccgctccttc ggccccgccg 840 tcgccgcggg cgacttcgcc ggaaactggg tctactgggt cggcccgctc gtcggcggcg 900 gcctcgctgg cctcgtctac ggcgacgtct tcattggcgg ctcctaccag caggtcgcgg 960 accaggacta cgcctaattt attcaccact ccatctccgc tctggatgaa tggattcaaa 1020 accgtcgtcg tttgcttttg ctcctcgcca cgttcaatta atggttgtgt atgcatgtat 1080 gtgccaatat gatgtgcctt tgccctggtc cattcatttc cctttctttt ttcggggtga 1140 aatagatgta aagatctcgt cttgcctgcc gtactcgcgc tgtgttggga aaaattggtt 1200 ttcgttccaa gtttgtttac gcatggattt cttggctcct ttatggtttt gattcacgtc 1260 tgccccgtaa gtctatttct c 1281 <210> 251 <211> 108: L <212> DNA <213> Zea mays <400> 251 gaattccatt gtcttgggag cctcagagcg ccagccaagt cttgcggtcg cgaagagcaa 60 cgcaacaaga tggtgaagct cgcattcgga agcgtcggcg actccttcag cgtcacctcc 120 atcaaggcct acgtggcgga gttcatcgcc accctcctct tcgtcttcgc cggcgtgggt 180 tccgccatcg ccttcgggca actgacgaat ggcggcgcgc tggaccctgc gggtctggtg 240 gcgatcgcgg tggcgcacgc gctggccctc ttcgtgggcg tctccgtggc cgcgaacacc 300 tccggcggcc acctgaaccc cgccgtgacg ttcggcctgg ccgtgggcgg ccacatcacc 360 gtcctcaccg gcctcttcta ctgggtggcc cagctgctgg gcgcgtccgt ggcgtgcctg 420 ctcctcaggt tcgtgaccca cggcaaggcc atcccgaccc acggcgtctc cggcggcacc 480 accgagctgg agggcgtcgt gttcgagatc gtcatcacct tcgcgctcgt gtacaccgtg 540 tacgccaccg ccgccgaccc caagaagggc tccctcggca ccatcgcgcc catcgccatc 600 ggcttcatcg tcggcgccaa catcctcgcc gcggggccct tcagcggcgg ctccatgaac 660 cccgcccgct ccttcggccc cgccgtcgcc gcggccgact tcgccggcaa ctgggtctac 720 tgggtcggcc cgctcatcgg cggcggactc gctggcctcg tctacggcga cgtcttcatc 780 ggcggctcct accagcaggt cgccgaccag gactacgcct aagtagtgct ccgttcgtct 840 ggattcagct catccaacgc aggcggccgt ttcgatcggc gtcgtcattt gctttgctct 900 tcatttcatc acgttatgta acgtgccaat gatgtgtgtc gtcctggtct gttccattcc 960 gtccttgtat tcatttccct tcttttttcg gggtaaaatc gatgtaaaga tctcatccga 1020 257 172135/2 tctgccgttt tcgatcgcct tggagtggaa aaaaaacagg tgattttcgt tttatgcatg 1080 g 1081 <210> 252 <2U> 1054 1 <212> DNA <213> Zea mays <400> 252 gcacgaggcc atcttctctg aattccagtc caagggccgg aataccgtca gagggagtgg 60 bgagaggggg ggaaaaaaga tggtgaagct cgcatttgga agctttcgcg actctttgag 120 cgccgcgtcg ctcaaggcct atgtggccga gttcattgcc acgctgctct tcgtgttcgc 180 cggcgtcggg tccgccattg cctactcgca attgacgaag ggcggcgctc tggaccccgc 240 cggcctggtg gccatcgcca tcgcccatgc gttcgcgctc ttcgtcggcg tctccatggc 300 cgccaacatc tccggcggcc acctgaaccc cgccgtcacc ttcggcctcg ccgtcggcgg 360 ccacatcacc atcctcaccg gcatcctcta ctgggttgcc cagcttctcg gcgcttccgt 420 ggcgtgcttt ctcctgcagt acgtcaccca cggacaggct atcccgacgc acggcgtctc 480 cgggatcagc gagatcgagg gcgtggtgat ggagatcgtg atcaccttcg cgctggtgta 540 caccgtgtac gccaccgcgg ccgacccgaa gaaggggtcc ctgggcacca tcgcgcccat 600 ggccatcggc ttcatcgtcg gcgccaacat cctggccgcc ggccccttca gcggcggctc 660 catgaacccg gcccgctcct tcggccccgc cgtggcggcc ggtaacttcg ccggcaactg 720 ggtgtactgg gtcggccccc tcgtcggcgg tggcctggcg gggctcgtct acggcgacgt 780 gttcatcgcc tcctaccagc cggtcggcca gcaggagtac ccatgaaagt ccggatgagc 840 tagcccgatc gatccgtctg tgttgatttc accatcgtcg tcgtcgtgtc atctggcgct 900 tcgtgctgtg atcatgtttt gtcctgtttg catttcccaa cgtctggttt tcatttccat 960 tcaccaacgg tgccaagatg ccgtaagcaa gcgagagaag tgttcggtct gtatctgtat 1020 aaatgcaatg cacagttcgg cgttacgatg aacg 1054

Claims (37)

258 172135/3 WHAT IS CLAIMED IS:
1. A method of increasing tolerance of a plant to an abiotic stress, comprising expressing within the plant an exogenous polynucleotide which comprises a nucleic acid sequence set forth in SEQ ID NO: 13, thereby increasing the tolerance of the plant to the abiotic stress.
2. The method of claim 1, wherein said expressing is effected by: (a) transforming a cell of said plant with said exogenous polynucleotide; (b) generating a mature plant from said cell; and (c) cultivating said mature plant under conditions suitable for expressing said exogenous polynucleotide within said mature plant.
3. The method of claim 2, wherein said transforming is effected by introducing to said plant cell a nucleic acid construct including said exogenous polynucleotide and at least one promoter capable of directing transcription of said exogenous polynucleotide in said plant cell.
4. The method of claim 3, wherein said at least one promoter is a constitutive promoter.
5. The method of claim 4, wherein said constitutive promoter is CaMV 35S promoter.
6. The method of claim 4, wherein said constitutive promoter is At6669 promoter.
7. The method of claim 3, wherein said at least one promoter is an inducible promoter.
8. The method of claim 7, wherein said inducible promoter is an abiotic stress inducible promoter. 259 172135/3
9. The method of claim 1, wherein said expressing is effected by infecting said plant with a virus including said exogenous polynucleotide.
10. The method of claim 9, wherein said virus is an avirulent virus.
11. 1 1. The method of claim 1 , wherein said abiotic stress is selected from the group consisting of salinity, water deprivation, low temperature, high temperature, heavy metal toxicity, anaerobiosis, nutrient deficiency, nutrient excess, atmospheric pollution, UV irradiation and drought.
12. The method of claim 1, wherein said plant is a dicotyledonous plant.
13. The method of claim 1 , wherein said plant is a monocotyledonous plant.
14. A method of increasing biomass of a plant, comprising expressing within the plant an exogenous polynucleotide which comprises a nucleic acid sequence set forth in SEQ ID NO: 13, thereby increasing biomass of the plant.
15. The method of claim 14, wherein said expressing is effected by: (a) transforming a cell of said plant with said exogenous polynucleotide; (b) generating a mature plant from said cell; and (c) cultivating said mature plant under conditions suitable for expressing said exogenous polynucleotide within said mature plant.
16. The method of claim 15, wherein said transforming is effected by introducing to said plant cell a nucleic acid construct including said exogenous polynucleotide and at least one promoter capable of directing transcription of said exogenous polynucleotide in said plant cell.
17. The method of claim 16, wherein said at least one promoter is a constitutive promoter. 260 172135/3
18. The method of claim 17, wherein said constitutive promoter is CaMV 35S promoter.
19. The method of claim 17, wherein said constitutive promoter is At6669 promoter.
20. The method of claim 16, wherein said at least one promoter is an inducible promoter.
21. The method of claim 14, wherein said expressing is effected by infecting said plant with a virus including said exogenous polynucleotide.
22. The method of claim 21, wherein said virus is an avirulent virus.
23. The method of claim 14, wherein said plant is a dicotyledonous plant.
24. The method of claim 14, wherein said plant is a monocotyledonous.
25. A nucleic acid construct, comprising a polynucleotide which comprises a nucleic acid sequence set forth in of SEQ ID NO: 13 and a promoter capable of directing transcription of the polynucleotide in a host cell.
26. The construct of claim 25, wherein said promoter is a constitutive promoter.
27. The construct of claim 26, wherein said constitutive promoter is CaMV 35S promoter.
28. The construct of claim 26, wherein said constitutive promoter is At6669 promoter.
29. The construct of claim 25, wherein said promoter is an inducible promoter. 261 172135/3
30. The construct of claim 29, wherein said inducible promoter is an abiotic stress inducible promoter.
31. The construct of claim 25, wherein said host cell is a plant cell.
32. The construct of claim 31, wherein said plant cell forms a part of a dicotyledonous plant.
33. The construct of claim 31, wherein said plant cell forms a part of a monocotyledonous plant.
34. A plant cell with increased tolerance to an abiotic stress comprising an exogenous polynucleotide which comprises a nucleic acid sequence set forth in of SEQ ID NO: 13.
35. The plant cell of claim 34, wherein said plant cell forms a part of a plant.
36. A plant cell with increased biomass comprising an exogenous polynucleotide which comprises a nucleic acid sequence set forth in of SEQ ID NO: 13.
37. The plant cell of claim 36, wherein said plant cell forms a part of a plant. Patent Attorney G.E. Ehrlich (1995) Ltd.1 1 Menachem Begin Street 52 521 Ramat Gan
IL172135A 2003-05-22 2005-11-22 Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby IL172135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
IL172135A IL172135A (en) 2003-05-22 2005-11-22 Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US47243303P 2003-05-22 2003-05-22
PCT/IL2004/000431 WO2004104162A2 (en) 2003-05-22 2004-05-20 Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby
IL172135A IL172135A (en) 2003-05-22 2005-11-22 Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby

Publications (2)

Publication Number Publication Date
IL172135A0 IL172135A0 (en) 2006-04-10
IL172135A true IL172135A (en) 2011-10-31

Family

ID=42331640

Family Applications (1)

Application Number Title Priority Date Filing Date
IL172135A IL172135A (en) 2003-05-22 2005-11-22 Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby

Country Status (1)

Country Link
IL (1) IL172135A (en)

Also Published As

Publication number Publication date
IL172135A0 (en) 2006-04-10

Similar Documents

Publication Publication Date Title
US11130958B2 (en) Plants having increased tolerance to heat stress
US11299746B2 (en) Disease resistant pepper plants
US5013659A (en) Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
JP2002508957A (en) Method for determining function of nucleotide sequence and protein encoded by transfection into host
AU655186B2 (en) New antifungal preparations, process for making such preparations, process for obtaining plants with decreased susceptibility to fungi
CZ380997A3 (en) Dna sequence of hydroxyphenylpyruvate-dioxygenase gene and process for obtaining plants containing the hydroxyphenylpyruvate-dioxygenase gene and being tolerant to specific herbicides
Palusa et al. Organ‐specific, developmental, hormonal and stress regulation of expression of putative pectate lyase genes in Arabidopsis
EP1625199A2 (en) Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby
KR20100085930A (en) System for capturing and modifying large pieces of genomic dna and constructing organisms with synthetic chloroplasts
KR20070026257A (en) A new gene related to stresses and a method for producing a stress-resistant plant using the same
JPS63503196A (en) Plant cells resistant to herbicidal glutamine synthetase inhibitors
CN111433363A (en) Plants having increased abiotic stress tolerance and polynucleotides and methods for increasing abiotic stress tolerance in plants
US20140366219A1 (en) Increasing Soybean Defense Against Pests
AU2005203616B2 (en) Methods for increasing plant cell proliferation by functionally inhibiting a plant cyclin inhibitor gene
CA2459251C (en) Novel nucleic acid sequences and their use in methods for achieving pathogen resistance in plants
WO2009094527A2 (en) Transcriptional activators involved in abiotic stress tolerance
WO2021104542A1 (en) Use of rice gene osatl15 in adjusting pesticide absorption and transport
EP1529112A2 (en) Nucleic acid sequences encoding proteins associated with abiotic stress response
CS395891A3 (en) Ahas deletion mutants, resistant to herbicides
IL172135A (en) Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby
CN111560055B (en) Application of rice gene OsLAT3 in regulation of absorption and accumulation of diquat
CN112538107B (en) Triterpene related protein, encoding gene thereof and application of triterpene related protein in improving content of triterpene compounds in plants
Hohn et al. Plant DNA viruses as gene vectors

Legal Events

Date Code Title Description
FF Patent granted
KB Patent renewed
KB Patent renewed
KB Patent renewed