IL159763A - Composite interlayer for laminated glass - Google Patents

Composite interlayer for laminated glass

Info

Publication number
IL159763A
IL159763A IL159763A IL15976304A IL159763A IL 159763 A IL159763 A IL 159763A IL 159763 A IL159763 A IL 159763A IL 15976304 A IL15976304 A IL 15976304A IL 159763 A IL159763 A IL 159763A
Authority
IL
Israel
Prior art keywords
pvb
glass
polyurethane
layer
adhesion
Prior art date
Application number
IL159763A
Other languages
Hebrew (he)
Original Assignee
Solutia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solutia Inc filed Critical Solutia Inc
Publication of IL159763A publication Critical patent/IL159763A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2329/00Polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals
    • B32B2329/06PVB, i.e. polyinylbutyral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31598Next to silicon-containing [silicone, cement, etc.] layer
    • Y10T428/31601Quartz or glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31616Next to polyester [e.g., alkyd]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31627Next to aldehyde or ketone condensation product
    • Y10T428/3163Next to acetal of polymerized unsaturated alcohol [e.g., formal butyral, etc.]

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)
  • Glass Compositions (AREA)

Abstract

A composite interlayer suitable for using laminated glass includes a layer of plasticized polyvinyl butyral sandwiched between second and third polymeric layers. In a preferred embodiment, at least one and preferably both of the second and third layers are less than 5 mils thick and formed of polyurethane.

Description

COMPOSITE INTERLAYER FOR LAMINATED GLASS Mist fl>*3tt -s ii Eitan, Pearl, Latzer & Cohen-Zedek P-6483-IL COMPOSITE INTERLAYER FOR LAMINATED GLASS BACKGROUND OF THE INVENTION codes that are required to be met There are also specific code requirements in both the US and Europe for use of laminated, glass in architectural applications wherein minimum penetration resistance must be met The staircase method utilizes an impact tower from which the steel ball can be dropped from various heights onto a 30.5 cm x 30.5 cm (12 inches x 12 inches) laminated glass sample.
The MBH is defined as the ball drop height at which 50% of the samples would hold the ball and 50% would allow penetration. The test laminate is supported horizonally in a support frame described in the ANSI Z26.1 code. If necessary, an environmental chamber is used to condition laminates to the desired test temperature. The test is performed by positioning the sample in the support frame and dropping a ball onto the laminate sample from a height near the expected MBH. If the ball penetrates the laminate, the result is recorded as a failure and if the ball is supported, the result is recorded as a hold. If the result is a hold, the process is repeated from a drop height 0.5 m higher than the previous test. If the result is a failure, the process is repeated at a drop height 0.5 m lower than the previous test It is usually necessary to test at least twelve laminates in order to obtain reliable results. This procedure is repeated until all of the test samples have been used. The results are then tabulated and the percent hold at each drop height is calculated. These results are then graphed as percent hold versus height and a line representing the best fit of the data is drawn on the graph. The MBH can men be read from the graph at the point where the percent hold is 50%.
The energy test method determines the MBH by applying the principle of conservation of energy to a ball impacting a laminate. The loss in kinetic energy by the ball after penetrating WO 03/Oi)C240 PCT/US02/2I119 - 2 through a laminate is equal to the amount of energy absorbed by the laminate. The kinetic energy of the ball as it strikes the laminate can be calculated from the drop height The kinetic energy of the ball after if -exits the laminate can be determined by measuring the velocity of the ball using two magnetic field detector coils which are separated by a known fixed distance beneath the laminate. Testing of at least six laminates is usually necessary to obtain reliable results. The measured change in kinetic energy can then be used to calculate the MBH.
In order to achieve acceptable penetration resistance for a glass PVB/glass laminate, it is essential for the interf acial _gLass/P VB adhesion levels to be maintained at about 2-7 Pummel units, Acceptable penetration resistance is achieved at a pummel adhesion value of 2 to 7, preferably 4 to 6. At a pummel adhesion value of less than 2, too much glass is lost from the sheet and glass spelling during impact as well as problems with laminate integrity (i.e., delaniination) and long term durability can occur. At a pummel adhesion of more than 7, adhesion of the glass to the sheet is generally too high and results in a laminate with poor energy dissipation and low penetration resistance.
Adhesion of PVB to glass is measured using a pummel adhesion test (pummel adhesion value has no~units) that is routinely used for quality control purposes in the laminated glass industry. GLass/PVB/glass laminates are prepared, conditioned to -18°C 0BF) and each is manually "pummeled" with a 1 pound (454 g) ball peen hammer to break the glass. All broken glass unadhered to the PVB sheet is removed. The glass left adhered to the sheet is visually compared with a set of standards of known pummel scale, the higher the number, the more glass that remains adhered to the sheet; i.e. at pummel zero no glass is adhered and at pummel 10, 100% of the glass is adhered to the sheet surface.
Another factor in addition to adhesion that is an important consideration for In order to make acceptable interlayer products forjose^ in l-in inated lass applications, significant efforts are expended to manufacture product with consistent adhesion performance. This is done via tight irianuf actunng control of resin, plasticizer and other components as well as quality control evaluation of peel adhesion for each lot of interlayers that are produced. PVB interlayers are also manufactured at a controlled level of moisture since interlayer moisture has a large influence on PVB/glass adhesion levels. ; On the customer's side, there are numerous factors that can affect PVB/glass adhesion including glass source, glass washing, interlayer moisture content, etc. It is extr mely important to maintain laminate assembly rooms and PVB blank storage rooms at controlled humidity and temperature to prevent changes in interlayer moisture content Secondary processing operations such as PVB shaping described in a previous section can result in changes in PVB interlayer moisture content and have accompanying significant effects on PVB/glass adhesion levels and penetration resistance. It is often possible to have very different adhesion behavior on each glass surface or variable spotty adhesion within a windshield due to glass surface cleanliness that can result in unacceptable penetration resistance and again unacceptable quality, A small percentage of windshield production must be destructively tested to assure that the manufactured product meets the targeted pummel adhesion and required MBH specifications.
Another significant performance deficiency with PVB based laminates is the effect of temperature on penetration resistance. At -18°C (0° F) the observed MBH is about 30-40% of the MBH that is achieved at 23°C (73° F).
It has been lcnown for a long time that with proper selection , of the urethane polymer structure (hi particular, the soft segment portion) that the sensitivity of the penetration resistance to lower test temperatures for glass polyurethane glass laminates can be greatly reduced Another significant use of polyurethane. (PU) interlayers wherein PVB interlayers do not participate is in the fabrication o'f specialty laminates involving glasspolycarbonate/glass wherein penetration resistance of the glass laminate is predominately controlled by the polycarbonate component and the PU component acts primarily as an hdhesive for the laminate construction. Plasticizers typically used in commercially available PVB interlayers appear to chemically attack the polycarbonate surface resulting in a crazing haze and unacceptable quality. 159763/2 Glass PU/glass laininaies typically show excellent resistance of PU/glass adhesion to high humidity and temperature in contrast to PVB based laminates.
In spite of the benefits displayed by polyurethane based laminates, such laminates have not replaced PVB based laminates because of the higher cost of polyurethane polymer. Accordingly, there exists a need in the art for an interlayer that can be used in laminated glass which miiumkes the effects of temperature and adhesion on observed penetration resistance with the lower cost arid other properties associated with PVB based laminates. The present invention provides a composite interlayer that incorporates many of these benefits.
STJM ARY OF THE INVENTION The present invention provides an improved process for forming a multilayer composite suitable for in glass laminates. In a preferred embodiment, the composite includes a layer of plasn'ci2ed PVB sandwiched between second and third polymeric layers. In a preferred embodiment, at least one of the second and third layers is polyurethane less than 0.125 mm (.005 inches) thick. Both the second and third layers are initially formed from unplasticized polyurethane less than 0.125 mm (.005 inches) thick in one preferred embodiment but became plasticized by plasticizer migration from the PVB, In another preferred embodiment, plasticized polyuiethane is used to form the second and third layers.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is directed to a multilayer composite interlayer for use in l-tminated glass. In a preferred embodiment, two thin layers [0.0125 - 0.125 mm (.0005 to .005 inches)] of polyurethane are sandwiched around a core layer of plasticized polyvinyl bur ral. The laminates of the present invention have some performance characteristics similar to monotiihic polyurethane but at a lower cost Improvements vs. standard glass PVB/glass laminates include high penetration resistance at high adhesion and much less sensitivity of penetration resistance to test temperature.
In the present invention, the polyurethane layers are preferably less than 0.125 mm (.005 inches) thick. The preferred range is 0.025 - 0.10 mm (.001 - .004 inches). The PVB layer is generally less than about 1.52 mm (.060 inches) thick and preferably in the range of .38 - .76 mm (.015 - 030 inches). In the preferred embodiment, the PVB layer is 0.56 - 0.70 mm (.022 - .028 inches) thick and is sandwiched between two layers of polyurethane.
The invention is so limited to embodiments wherein, a single layer of PVB is sandwiched between two layers of polyurethane. In other embodiments additional functional layers such as polyethylene terephthalate film. (PET) or PET film coated with IR reflecting layers or striictural plastic sheets, such as polycarbonate sheets, can be utilized in conjunction with the PVB and polyurethane layers. For exam le a multilayer composite withih.the.scope of this invention may sequentially comprise a layer of polyurethane a layer of PVB, a layer of polyurethane, a layer of polycarbonate, and a layer of polyurethane. Another embodiment may comprise a layer of polyurethane, a layer of PVB, a layer of PET, and a layer of PVB or polyurethane. However, in other embodiments, a single layer of polyurethane is applied to just one side of the PVB. Such embodiments can be used in laminates having polyethylene terephthalate (PET) layers. Other comb arions and other plastic materials as known to those in the art also are usable herein.
The thin layers of polyurethane used in the present invention are preferably based upon an aliphatic based polyurethane, bcludmg aliphatic isocyanate-polyether (or polyester) urethane, and preferably include a UV stabilizer and an antioxidant in order to achieve the required stability when exposed to heat and UV light In addition, the polyurethane layers preferably should be formulated to obtain high adhesion to glass by the incorporation of silane coupling agents or other suitable ch-aaistries. Such techniques are well known to those of skill in the art Suitable techniques are disclosed in U.S. Patent No. 3,965,057.
PVB resin typically is produced by known aqueous or solvent acetalization processes reacting polyvinyl alcohol polymer (PVOH) with btrtyraldehyde in the presence of acid catalyst, followed by neutralization of the catalyst, separation, stabilization and drying of the resin. It is ' commercially available from SoMa Inc. as Birtvar® resin. PVB resin typically has a weight average molecular weight greater than 70,000, preferably about 100,000 to 250,000, as measured by size exclusion chromatography using low angle laser light scattering. On a weight basis, PVB typically comprises less than 22%» preferably about 17 to 19% hydroxyl groups calculated as polyvinyl alcohol (PVOH); up to 10%, preferably 0 to 3% residual ester groups, calculated as polyvinyl ester, e.g. acetate, with the balance being acetal, preferably butyraldehyde acetal, but WO 03/D C240 PCT US02/2U19 optionaUy including a minor amount of acetal groups other than butyral, for example 2-ethyl hexanal.
The PVB resin of the sheet is typically plasticized initially with about 10 to 70 and more commonly 30 to 45 parts plasticizer per hundred parts of resin (pphr). The final concentration of the plasticizer in the PVB sheet will be lower, depending upon the amount of migration that occurs- The amount of migration that occurs can be controlled by a number of factors which are discussed in greater detail below. Plasticizers commonly employed are esters of a poly asic acid or a polyhydric alcohol. Suitable plasticizers are triethylene glycol di-(2-ethylbutyrate), triethyleneglycol di-^-eraylhexanoate), tetraethyleneglycol diheptanoate, dihexyl adipate, dioctyl adipate, mixtures of heptyl and nonyl adipates, dibutyl sebacate, polymeric plasticizers such as the oil>modi£ed sebacic alkyds, and mixtures of phosphates and adipates, adipates and alkyl benzyl phthalates and mixed adipates made from C to C aliyl alcohols and cyclo C to do alcohols. C6 to Cg adipate esters such as dihexyl adipate are preferred plasticizers. A more preferred plasticizer is triethylene glycol di(2-ethylhexanoate). The amount of plasticizer used is a convenient means to modify and control the stiffness of the PVB. A useful surrogate property for stiffness is the glass transition temperature (Tg), which is directly related to the level of plasticizer. The plasticized PVB component used in tile polymer composites of this invention ■will generally have a glass transition temperature, Tg of about 30-45° C after plasticizer equilibration has taken place. The glass transition temperature for the soft segment of the polyurethane polymer component of this invention is typically found to be about -50°C to - 60°C.
As used herein, the glass transition temperature of interlayer materials such as plasticized polyvinyl butyral and polyurethane polymer can be determined by rheometric dynamic analysis, e.g. ineasuring a peak tan delta which can be the ratio of shear loss modulus (G") to shear storage modulus (G') or, alternatively, the ratio of tensile loss modulus (E") to tensile storage modulus (Ε'). The values reported for PVB herein were determined by a shear mode analysis using the following procedure. For instance, the thermoplastic polymer material is molded into a sample disc of 25 millimeters (mm) in diameter. The polymeric sample disc is placed between two 25 mm diameter parallel plate test fixtures of a Rheometrics Dynamic Spectrometer H. The polymeric sample disc is tested in shear mode at an oscillatiou frequency of 1 Hertz as the ■temperature of me sample is increased from -20 to 70°C at a rate of 2°C/minute. The position of the msximum value of tan delta (damping) plotted as dependent on temperature is used to detennine Tg. Experience indicates that the method is reproducible to within +/- 1 °C.
It is important to note that the PU component of the assembled PU PVB/PU composite in the preferred embodiment contains a certain level of plasticizer that has migrated from the PVB layer. This level is controlled by tie migration of the plasticizer from the PVB layer and is dependent upon the partitioning of the plasticizer between the polyurethane and PVB layers. The partition coefficient which can be measured and used to predict the migration of plasticizer and the equilibrium compositions of the layers is affected by the composition of the polyurethane layer, the plasticizer type utilized and the hydroxy! content of the PVB resin used. The mterfacial surface topography between the plasticized PVB and PU layers which is primarily controlled by the fabrication method (e.g., coextrusion, extrusion coating, etc.) will influence the rate at which equilibrium is achieved once the layers are combined. However, it will be appreciated that composites can be constructed in which no migration occurs or in wMch plasticizer rnigration occurs from the PU layer to the PVB layer.
It is also often useful or desirable to incorporate a UV absorber in the PVB. Ia addition to plasticizer, and optional UV absorber, PVB sheet may contain other perfomiance-enhancuig additives such as pigments or dyes for coloring all or part of the sheet, antioxidants and the like. There generally is no need for addition of adhesion control agents to the PVB sheet component since PVB/glass adhesion generally should not be a consideration for this use. PVB sheet is prepared by mixing combined plasticizer and other additives (e.g. UV-absorber and the like) with PVB resin and forcing the mixture under pressure through a die opening to form a sheet The laminates of the present invention can be prepared by conventional methods known to those of skill in the art. In order to achieve smooth mterfacial topography and acceptable mterfacial optics, the preferred process method for combining the PU and plasticized PVB layers is coextrusion. Through proper selection of the PVB and PU composition to achieve the required compatibility, it is possible that the PU/PVB PU composite can be reblended at low levels into the core PVB layer for effective material utilisation and lower costs without negative impact on laminate quality. Less preferred process methods include extrusion coating followed by two-ply lamination and two-pass extrusion coating. However, with these less preferred methods PU/PVB interfacial surface topography needs to be carefully controlled or else undesirable optical haze can be encountered even if the refractive indices of the PU and PVB component are closely matched.
Roughness of the surface of the sheet is usually produced through a phenomenon known to those skilled in the art as melt fracture and such desired characteristics can be derived by design of the extrudate die opening. Other known techniques for producing a rough surface on one or more sides of an extruding sheet involve specifying or controlling one of the following: polymer molecular weight distribution, water content and temperature of the melt These techniques are disclosed in U.S. Patent Nos. 2,904,844; 2,909,810; 3,994,654; 4,575,540 and European Patent No. 0185,863. Embossing of the sheet downstream of the die can also be used to produce the desired surface roughness. Examples of embossed plastic sheets with regular patterned surfaces which can be used with the present invention are described in U.S. Patent Nos. 5,425,977 and 5,455,103. This surface roughness is needed to facilitate the de'-aiiing of the glass/plasticized PU interface during initial laminate processing and is completely eliminated during subsequent autoclave lamination.
The multilayer polymeric laminates of the present invention are preferably used in laminated glass wherein the laminate is sandwiched between two sheets of glass. In other embodiments, sheets of polycarbonate can be affixed to the composite inlerlayer. The glass sheets can be any combination of any types of glass, including both clear glass and tinted glass, and including annealed, heat strengthened or tempered glass. The composite laminate of the present invention has the advantage that it can be used in the same manner and laminated employing the same equipment as that employed in forming conventional safety glass laminates; for example, process forming a safety glass laminate containing a single layer plasticized PVB safety film. The typical commercial safety glass lamination process comprises the following steps: (1) hand assembly of the two pieces of glass and the multilayer polymeric laminate; (2) passing the assembly through a pressure nip roll at room temperature to expel trapped air; (3) heating the assembly via IR. radiant or convective means for a short period, typically until reaching a glass surface temperature of about 100°C; (4) passing the hot assembly through a second pair of nip rolls to give the assembly enough temporary adhesion to seal the edge of the laminate and allow further handling and (5) autoclaving the assembly typically at temperatures between 130 to ]50°C and pressures between 1050 to 1275 kN/sq.m for about 30 to 90 minutes.
Other means for use in de-airktg and edge sealing of the plastic/glass interfaces (steps 2-4) known in the art and are commercially practiced include vacuum bag and vacuum ring processes in which vacuum is utilized to remove the air.
The present invention provides numerous advantages over prior art interlayers used in glass laminates. These improvements include high penetration resistance at high adhesion and much less sensitivity of penetration resistance to temperature. Additionally, the effect of moisture on adhesion is much less with the present invention.
EXAMPLES 1-6 A series of samples were tested to illustrate the relationships between adhesion and temperature vs. penetration resistance for various glass laminates. The following results ia Table I illustrate the effect of pummel adhesion and interlayer/composite type on penetration resistance at 23eC (73°F) and ~18°C (0°F), Table I Ex Description Gauge Pummel Test MBH Test MEET Un mm Temp Meters Temp Meters (inch) (ft) CQ (ft) 1 0.10 mm PU/0.56 mm PVB/0.10 mill PU 0.76 8.6 24°C 8.S -18 5.3 (.004" PU/.022" PVB/ .004" PU) (.030) (27.8) (17.4) 2 Plasticized PVB sheet 0.76 7.4 24eC 4.7 -18 1.3 (SaflewS> RB4i) (.030) (15.5) (4.3) 3 Plasticized PVB sheet 0.76 3.8 24PC 72 •18 2.1 (Saflex® RC41) (.030) (23.5) (6.9) 4 033 ram PVB 0.10 ram PU/ 0.33 mm PVB 0.76 7.1 24°C 4.0 -18 WO 03/006240 PCT/DS02/2llIi> Notes: 1. The AG8451 PU used for Examples 1, 4-6 in Table I above is an aliphatic isocyanate polyether based polyurethane film commercially available from Thermedics Inc. of Woburn, MA for use with laminated glass. It contains functional chemistry to provide for high adhesion to glass. 2. The penetration resistance tests shown in Table I were conducted on 3D cm x 30 cm (12 inches x 12 inches) glass laininates using the 2.27 kg (5 lb.) ball drop test (energy method). 3. The PVB sheet used for Examples 2 and 3 was standard, commercially available Saflex® PVB interlayer made by Solutia Inc. using 3GEH (triethylene glycol di-2-ethyl hexarioate) plasticizer. Other than the difference in thickness, the PVB sheet used for Examples 1, 4 and 5 was comparable to that used for examples 2 and 3. 4. The various composites described in Examples 1 , 4 and 5 were prepared by hand assembly of components. The corresponding glass laminates were fabricated using typical nip roll deair/ autoclave lamination conditions used for glass/PVB/glass laminates.
Comparison of test results between example 1 and examples 2 - 3 demonstrated the superior penetration resistance at high glass adhesion levels and at low test temperatures between the claimed inventive example (1) and standard glass PVB/glass comparative examples 2 and 3.
Examples 4 and 5 showed that the incorporation of polyurethane as a core layer did not significantly affect he expected relationship between PVB/glass adhesion and penetration resistance as compared to std. PVB laminates (examples 2 and 3). Also, the relationship between test temperature and penetration resistance for laminates made from such PVB/PU PVB multilayers was also similar to that found for single layer PVB laminates (compare example 5 vs. example 3 and example 4 vs. example 2). - 31 Example #6 which was a glass/PU/glass laminate using the same PU as Example # showed a low sensitivity of penetration resistance to test temperature but at a significantly lower level than inventive example # 1.
EXAMPLES 7- 10 The examples shown in Table Π illustrate the compositional changes (plasticizer migration) that occur in both the PVB and PU components after the layers are combined. The results shown are based upon an empirical model that was developed by separate measurements of plasticizer uptake for the PVB and PU polymers and then calculating a partition coefficient for each polymer- the method of which is explained below. These examples also highlight the changes in properties (glass transition temperature, Tg and refractive index, RI) that are important considerations for the composite. The examples also demonstrate how the use of different thicknesses will result in different composite structures (that is, different equilibrium plasticizer levels for each component) which will affect physical properties (modulus/ -rt-fmess), theological (e.g., handling characteristics during laminate assembly and flow properties during autoclave lamination) and optical properties (RI mismatch and accompanying effect on haze).
The Partition coefficient ( __) for each type of polyurethane polymer was determined by 24 hour immersion of individual polyurethane and plasticized PVB films in a volume of Methylene glycol di(2-ethyl hexanoate) plasticizer and detennination of relative equilibrium concentration using a gravimetric method. - pphr (PU)/ pphr (PVB)] Empirical confirmation of model was conducted by hand assembling of the PU/PVB PU composites, allowing equilibrium to take place, and then conducting plasticizer analysis of individual layers (via extraction method). The model was shown to be quite accurate and compositional equilibrium was found to occur quite rapidly and did not require autoclave lamination to effect changes.
Table Π Ex. PU PVB pphr pphr Tfe DC pphr AR1 # Thick Thick. PVB PVB (PVB) (fmal) PU (final) mm mm (initial) (final) (final) (inch) (inch) Notes: 1. A PU/PVB PU composite structure was used for all examples. Specified PU thickness is for each PU layer in the composite. 2. Partition coefficient - ¾ = Phr(PU)/ Phr (PVB) AG5050 = 1.37; AG8451 = 0.88 3. Initial refractive index (RJ of PU (unplasticized) and PVB (38 pphr) components are as follows: AG8451: 1.496 AG5050: 1.492 PVB (38 phr): 1.480 4. AG5050 PU is aliphatic isocyanate polyether based polyurethane film available from Thermedics Inc. of Woburn, MA. for use with laminated glass. Contains functional chemistry to provide for high adhesion to glass.
. Tg of PVB (38 pphr) before combination -31 eC.
While the present invention has been described with respect to the presently preferred embodiments, it will be appreciated by those skilled in the art that numerous changes can be made to the disclosed embodiments without departing from the spirit or scope of the invention. Aaxjidingly, the scope of the invention is defined by the following claims rather than by the foregoing description.

Claims (4)

13 159763 /2 C L A I M S:
1. A process for forming a multilayer composite suitable for use in glass laminates, said process comprising: coextruding a first layer comprising a plasticized polyvinyl butyral and a second layer adjacent to said first layer comprising polyurethane under conditions wherein plasticizer can migrate from said polyvinyl butyral to said polyurethane.
2. The process of claim 1 wherein the polyurethane layer has a thickness of less than 5 mils.
3. The process of claim 1 further comprising coextruding a third layer comprising polyurethane on a side of the polyvinyl butyral layer opposite the second layer.
4. The process of claim 3 wherein the second and third polyurethane layers each have a thickness of less than 5 mils. P-6483-IL
IL159763A 2001-07-11 2004-01-07 Composite interlayer for laminated glass IL159763A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US30459401P 2001-07-11 2001-07-11
PCT/US2002/021119 WO2003006240A1 (en) 2001-07-11 2002-07-05 Composite interlayer for laminated glass

Publications (1)

Publication Number Publication Date
IL159763A true IL159763A (en) 2006-12-31

Family

ID=23177154

Family Applications (2)

Application Number Title Priority Date Filing Date
IL15976302A IL159763A0 (en) 2001-07-11 2002-07-05 Composite interlayer for laminated glass
IL159763A IL159763A (en) 2001-07-11 2004-01-07 Composite interlayer for laminated glass

Family Applications Before (1)

Application Number Title Priority Date Filing Date
IL15976302A IL159763A0 (en) 2001-07-11 2002-07-05 Composite interlayer for laminated glass

Country Status (22)

Country Link
US (3) US6921509B2 (en)
EP (1) EP1409246B1 (en)
JP (2) JP4234587B2 (en)
KR (1) KR100909114B1 (en)
CN (1) CN100418762C (en)
AT (1) ATE407798T1 (en)
BR (1) BR0211100B1 (en)
CA (1) CA2453355A1 (en)
DE (1) DE60228843D1 (en)
DK (1) DK1409246T3 (en)
ES (1) ES2310599T3 (en)
IL (2) IL159763A0 (en)
MX (1) MXPA04000304A (en)
NO (1) NO20040073L (en)
NZ (1) NZ542970A (en)
PL (1) PL207260B1 (en)
PT (1) PT1409246E (en)
RO (1) RO122534B1 (en)
RS (1) RS50294B (en)
RU (1) RU2289510C2 (en)
UA (1) UA77680C2 (en)
WO (1) WO2003006240A1 (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1322467T3 (en) * 2000-09-28 2008-03-31 Solutia Inc Burglary-proof glass laminate
US6824868B2 (en) * 2002-04-30 2004-11-30 Solutia, Inc. Digital color-design composite for use in laminated glass
US20050202198A1 (en) * 2004-03-12 2005-09-15 Hogan Richard M. Adhesive sheets and methods for their use
DE102004000023A1 (en) * 2004-08-17 2006-02-23 Kuraray Specialities Europe Gmbh Process for the production of film laminates for laminated glazing from partial films of different composition
AU2011213732B2 (en) * 2005-03-17 2012-05-10 Solutia Inc. Sound reducing wedge shaped polymer interlayers
US7510771B2 (en) * 2005-03-17 2009-03-31 Solutia Incorporated Sound reducing polymer interlayers
US7846532B2 (en) * 2005-03-17 2010-12-07 Solutia Incorporated Sound reducing wedge shaped polymer interlayers
US20070071983A1 (en) * 2005-09-23 2007-03-29 Solutia, Inc. Multiple layer glazing bilayer
US20070098964A1 (en) * 2005-11-01 2007-05-03 Solutia, Inc. Interlayers comprising an embossed polymer film
US7842395B2 (en) * 2006-11-01 2010-11-30 Solutia Inc. Multiple layer interlayers having a gradient region
US8530542B2 (en) * 2007-01-12 2013-09-10 Ppg Industries Ohio, Inc. Automotive window interlayer with solar control properties
US9150763B2 (en) * 2007-03-14 2015-10-06 Dow Global Technologies Llc Adhesive polymers for forming laminate structures
US20080268270A1 (en) * 2007-04-30 2008-10-30 Wenjie Chen High impact polymer interlayers
DE102007000816A1 (en) * 2007-10-05 2009-04-09 Kuraray Europe Gmbh Photovoltaic modules with plasticized films based on polyvinyl acetal with high specific resistance
DE102007000818A1 (en) * 2007-10-05 2009-04-09 Kuraray Europe Gmbh Photovoltaic modules with plasticized films with low moisture absorption
US8349458B2 (en) * 2007-11-06 2013-01-08 Solutia Inc. Interlayers comprising glycerol based plasticizer
EP2257994B1 (en) * 2008-04-04 2018-01-17 Kuraray America Inc. Solar cell modules comprising high melt flow poly(vinyl butyral) encapsulants
FR2944521B1 (en) 2009-04-20 2012-08-24 Saint Gobain METHOD FOR DIMENSIONING LAMINATED GLAZING AND LAMINATED GLAZING
CN103080037B (en) * 2010-09-01 2015-07-01 积水化学工业株式会社 Interlayer film for laminated glass, and laminated glass
WO2012116316A1 (en) 2011-02-25 2012-08-30 Schott Corporation Transparent laminate structures
US10173396B2 (en) 2012-03-09 2019-01-08 Solutia Inc. High rigidity interlayers and light weight laminated multiple layer panels
US20150140301A1 (en) * 2012-06-08 2015-05-21 Corning Incorporated Laminated glass structures having high glass to polymer interlayer adhesion
DE102012105900A1 (en) * 2012-07-03 2014-01-09 Schott Ag Bullet resistant laminated glass
JP6070969B2 (en) * 2012-08-03 2017-02-01 コーニング インコーポレイテッド Multilayer transparent lightweight safety glazing
EP3085510A4 (en) * 2013-12-16 2017-07-26 Asahi Glass Company, Limited Glass-resin laminate and method for producing same
US9925746B2 (en) * 2014-12-08 2018-03-27 Solutia Inc. Poly(vinyl acetal) resin compositions, layers, and interlayers having enhanced optical properties
US9809009B2 (en) * 2014-12-08 2017-11-07 Solutia Inc. Multiple layer interlayer having improved optical and sound insulation properties
US10293580B2 (en) 2016-03-11 2019-05-21 Solutia Inc. Cellulose ester multilayer interlayers
US10293579B2 (en) 2016-03-11 2019-05-21 Solutia Inc. Cellulose ester multilayer interlayers
US10293584B2 (en) 2016-03-11 2019-05-21 Solutia Inc. Cellulose ester multilayer interlayers
US10300682B2 (en) 2016-03-11 2019-05-28 Solutia Inc. Cellulose ester multilayer interplayers
US10293582B2 (en) 2016-03-11 2019-05-21 Solutia Inc. Cellulose ester multilayer interlayers
US10293583B2 (en) 2016-03-11 2019-05-21 Solutia Inc. Cellulose ester multilayer interlayers
US10195826B2 (en) 2016-03-11 2019-02-05 Solutia Inc. Cellulose ester multilayer interlayers
US10293585B2 (en) 2016-03-11 2019-05-21 Solutia Inc. Cellulose ester multilayer interlayers
US10737470B2 (en) 2016-06-21 2020-08-11 Solutia Inc. Polymeric interlayers and multiple layer panels made therefrom exhibiting enhanced properties and performance
US10611906B2 (en) 2016-06-21 2020-04-07 Solutia Inc. Polymeric interlayers and multiple layer panels made therefrom exhibiting enhanced properties and performance
US10668691B2 (en) 2016-06-21 2020-06-02 Solutia Inc. Polymeric interlayers and multiple layer panels made therefrom exhibiting enhanced properties and performance
US10926516B2 (en) 2016-06-21 2021-02-23 Solutia Inc. Polymeric interlayers and multiple layer panels made therefrom exhibiting enhanced properties and performance
US10589495B2 (en) 2016-06-21 2020-03-17 Solutia Inc. Polymeric interlayers and multiple layer panels made therefrom exhibiting enhanced properties and performance
US11966113B2 (en) 2018-10-26 2024-04-23 Saint-Gobain Glass France Composite pane with functional element which can be switched in segments and has electrically controllable optical properties
WO2020169339A1 (en) * 2019-02-21 2020-08-27 Saint-Gobain Glass France Composite pane with an integrated light sensor and holographic optical element

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3388032A (en) * 1965-01-13 1968-06-11 Mobay Chemical Corp Laminated safety glass
US3476627A (en) * 1966-04-12 1969-11-04 Du Pont Process for coextruding multiple-layered thermoplastic sheeting
US3458388A (en) * 1967-08-01 1969-07-29 Du Pont Glass-polyurethane-polyvinylbutyral-polyurethane-glass laminate
US3864204A (en) * 1969-04-24 1975-02-04 Ppg Industries Inc Multilayered safety glass
US4121014A (en) * 1973-03-12 1978-10-17 Ppg Industries, Inc. Haze-free transparent laminate having a plasticized polyvinyl acetal sheet
US3958245A (en) * 1973-09-26 1976-05-18 Ppg Industries, Inc. Antenna windshield
IT1027377B (en) * 1974-04-01 1978-11-20 Ppg Industries Inc LAMINATED WINDSHIELD FOR AIRCRAFT
US3971864A (en) * 1974-09-30 1976-07-27 Ppg Industries, Inc. Polyurethane laminates
US4073986A (en) * 1975-05-14 1978-02-14 Ppg Industries, Inc. Laminated glazing unit with composite interlayer
US4027061A (en) * 1975-11-18 1977-05-31 Monsanto Company Laminated safety glass
DE2629779C3 (en) * 1976-07-02 1985-04-04 Saint Gobain Process for the production of a two-layer film with self-healing properties using polyurethanes as a shatterproof layer on safety glass
FR2464139B1 (en) * 1979-09-03 1986-03-07 Saint Gobain PLASTIC INTERMEDIATE LAYER AND SHEET WINDOWS USING THE SAME
US4436784A (en) * 1982-02-25 1984-03-13 Armstrong World Industries, Inc. Process for preparing plasticized polyvinyl chloride substrates comprising a moisture-cured polyurethane coating and the products resulting therefrom
EP0117770B1 (en) * 1983-02-04 1991-08-07 SOLAR CONTROL FRANCE Société à responsabilité limitée dite: Impact- and bullet-resistant glass, and method of manufacturing the same
JPS60115441A (en) * 1983-11-29 1985-06-21 旭硝子株式会社 Laminated safety glass
US4592947A (en) * 1984-06-04 1986-06-03 Sierracin Corporation Low temperature laminatable polyurethane
US4666758A (en) * 1984-06-04 1987-05-19 Sierracin Corporation Low temperature laminatable polyurethane
FR2577934B1 (en) * 1985-02-26 1988-01-08 Saint Gobain Vitrage POLYURETHANE-BASED ADHESIVE LAYER AND ITS USE IN LAMINATED GLAZING
US4879183A (en) * 1987-07-08 1989-11-07 Mannheim Jose R Method to manufacture a blindaged glass
US4923757A (en) * 1987-12-16 1990-05-08 Ppg Industries, Inc. Bilayer windshield with an abrasion and solvent resistant polyurethane protective coating
US4973511A (en) * 1988-12-01 1990-11-27 Monsanto Company Composite solar/safety film and laminated window assembly made therefrom
US4952457A (en) * 1988-12-05 1990-08-28 Monsanto Company Laminated safety glass and polymeric laminate for use therein
US4937147A (en) * 1989-04-10 1990-06-26 Monsanto Company Transparent polymeric laminate
US5002820A (en) * 1989-05-25 1991-03-26 Artistic Glass Products Laminated safety glass
FR2656491B1 (en) * 1989-12-21 1996-06-07 Saint Gobain Vitrage Int HEATED GLAZING.
US5145744A (en) 1990-11-26 1992-09-08 Monsanto Company Bilayer glazing panel
US5142744A (en) * 1990-12-10 1992-09-01 Caterpillar Inc. Ignition system wiring harness and spring clip retainers therefor
FR2680364B1 (en) * 1991-08-14 1994-02-25 Saint Gobain Vitrage Internal GLASS SAFETY SHEET FOR AIRPLANE.
DE4406097A1 (en) * 1994-02-25 1995-08-31 Dornier Gmbh glazing
FR2725399B1 (en) * 1994-10-06 1996-11-08 Saint Gobain Vitrage SAFETY GLASS
JP3135197B2 (en) * 1994-11-29 2001-02-13 タキロン株式会社 Glass resin composite board
DE19529943C1 (en) * 1995-08-16 1997-03-20 Sekurit Saint Gobain Deutsch Laminated glass with IR reflective properties
JPH10119184A (en) * 1996-10-16 1998-05-12 Asahi Glass Co Ltd Transparent laminate
JP4439782B2 (en) * 1999-11-25 2010-03-24 出光興産株式会社 Multilayer structure

Also Published As

Publication number Publication date
KR20040037058A (en) 2004-05-04
RS50294B (en) 2009-09-08
UA77680C2 (en) 2007-01-15
EP1409246B1 (en) 2008-09-10
JP2009001480A (en) 2009-01-08
RU2289510C2 (en) 2006-12-20
BR0211100B1 (en) 2012-03-06
CA2453355A1 (en) 2003-01-23
NO20040073L (en) 2004-02-23
YU2004A (en) 2006-08-17
DK1409246T3 (en) 2008-11-10
PT1409246E (en) 2008-09-30
CN1553858A (en) 2004-12-08
US20090029158A1 (en) 2009-01-29
US20030118840A1 (en) 2003-06-26
US6921509B2 (en) 2005-07-26
PL207260B1 (en) 2010-11-30
JP4234587B2 (en) 2009-03-04
NZ542970A (en) 2006-10-27
BR0211100A (en) 2004-06-22
MXPA04000304A (en) 2004-05-04
EP1409246A1 (en) 2004-04-21
ATE407798T1 (en) 2008-09-15
US20050106398A1 (en) 2005-05-19
PL367611A1 (en) 2005-03-07
JP2004534674A (en) 2004-11-18
WO2003006240A1 (en) 2003-01-23
IL159763A0 (en) 2004-06-20
RU2004103863A (en) 2005-03-27
CN100418762C (en) 2008-09-17
KR100909114B1 (en) 2009-07-23
ES2310599T3 (en) 2009-01-16
RO122534B1 (en) 2009-08-28
DE60228843D1 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
IL159763A (en) Composite interlayer for laminated glass
US9114595B2 (en) Multiple layer polymer interlayers having a melt fractured surface
CN103029394B (en) There is polyvinyl alcohol contracting (just) aldehyde layer and the high-strength membrane layered product of plasticizer-containing polyvinyl alcohol contracting (different) aldehyde layer of plasticizer-containing
CA2600881C (en) Sound reducing wedge shaped polymer interlayers
IL185922A (en) Polymer interlayers and multiple layer glass panels comprising them
US10946621B2 (en) Multiple layer panels having reduced levels of edge defects
JP2008518806A (en) Refractory polymer sheet
AU2002320265B2 (en) Composite interlayer for laminated glass
AU2002320265A1 (en) Composite interlayer for laminated glass
AU2012201271B2 (en) Multiple layer polymer interlayers having a melt fractured surface

Legal Events

Date Code Title Description
KB Patent renewed
MM9K Patent not in force due to non-payment of renewal fees