IE87391B1 - A gasification apparatus and method - Google Patents
A gasification apparatus and methodInfo
- Publication number
- IE87391B1 IE87391B1 IE20200185A IE20200185A IE87391B1 IE 87391 B1 IE87391 B1 IE 87391B1 IE 20200185 A IE20200185 A IE 20200185A IE 20200185 A IE20200185 A IE 20200185A IE 87391 B1 IE87391 B1 IE 87391B1
- Authority
- IE
- Ireland
- Prior art keywords
- chamber
- gases
- primary chamber
- fan
- controller
- Prior art date
Links
Landscapes
- Incineration Of Waste (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
A gasification apparatus (1) has a primary chamber (20) with a floor comprising a hearth (24) and feedstock augers (38), for gasification of feedstock. There is a mixing chamber (30) for receiving through an opening (25) synthetic gases (A) from the primary chamber (20) and comprising an air inlet fan (26) for adding oxygen for ignition. There is also a secondary chamber (35) linked with the mixing chamber to deliver heat from combustion of gases from the mixing chamber to the hearth (24). An outlet valve (40, 40A) delivers gases from the secondary chamber through a heat exchanger (60) and to an induce draft fan (80). A controller (100) dynamically controls flow of gases in the chambers according to sensed pressures and temperatures in said chambers.
Description
A Gasification Apparatus and Method
Introduction
The invention relates to a gasification apparatus and method for treatment of organic feedstocks
such as organic waste, and to a method for such treatment.
EP2063965 (Brookes) describes a gasifier, in which there is a primary chamber for waste
gasification, and synthetic gases from this gasification are fed into a secondary chamber to drive
the gasification process.
The invention is directed towards improving efficiency of such a gasifier type.
Summa
We describe a gasification apparatus comprising:
a primary chamber with a floor comprising a hearth and feedstock augers, for gasification
of feedstock,
a mixing chamber for receiving, through an opening, synthetic gases from the primary
chamber, and comprising an air inlet fan for adding oxygen for ignition,
a secondary chamber linked with the mixing chamber to deliver heat from combustion of
gases from the mixing chamber to the hearth, said hearth forming a roof of the secondary
chamber, and the secondary chamber including baffles for flow under the hearth,
an outlet valve for delivery of gases from the secondary chamber,
a fan downstream of the secondary chamber, and
a controller configured to dynamically control flow of gases in the chambers according to
sensed pressures and temperatures in said chambers, said controlled flow including flow
through the secondary chamber around said baffles to optimise combustion in an after-
bumer phase, and said control including controlling flow rate caused by the downstream
fan.
Preferably, the controller is configured to cause said after-bumer phase for passage through the
secondary chamber to have a duration of at least 3 seconds.
Preferably, the fan is an induced draft fan. Preferably, the outlet valve is arranged to direct gases
downstream under normal process conditions or to a safety vent through a diverter valve.
_ 2 _
Preferably, the safety vent comprises a flue with a barometric damper. Preferably, the apparatus
comprises a heat exchanger downstream of the secondary chamber, said heat exchanger being
linked to a heat recovery system. Preferably, the apparatus comprises a filter downstream of the
heat exchanger. Preferably, the filter comprises a reagent dosing apparatus followed by a ceramic
filter apparatus.
Preferably, the reagent dosing apparatus is configured to add controlled quantities of treatment
substances. Preferably, the substances are suitable to neutralise or remove potentially harmful
substances in the exhaust gases.
Preferably, the primary chamber comprises at least one air inlet for inlet of air over the hearth,
under control of the pressure created in the mixing chamber by a mixing chamber air inlet pump.
Preferably, the controller is configured to cause air flows through air inlet valves to maintain both
optimal synthetic gas to air ratio and a desired pressure differential between the primary chamber
and the mixing chamber for maintaining a negative pressure oxygen deprived environment within
the primary chamber.
Preferably, the controller is configured to maintain a pressure in the range of -50Pa to -200Pa (-
mm to -20mm H20) in said oxygen deprived environment.
Preferably, the controller is configured to control a mixing chamber air inlet pump to maintain
temperature in the secondary chamber in the range of 850°C and 105 0°C.
Preferably, the controller is configured such that if the temperature in the secondary chamber
begins to increase above a target, the mixing chamber air inlet pump increases the supply of air
until the temperature drops back to at or near a target temperature for steady-state operation.
Preferably, the mixing chamber includes a burner for process start-up and the controller is
configured to shut down the burner when an autothermic stage is reached with a target temperature
for the primary chamber.
Preferably, the burner is located in a lower portion of the mixing chamber. Preferably, said opening
between the primary chamber and the mixing chamber comprises an aperture in a dividing wall
_ 3 _
between said chambers, and said aperture is situated at least 250mm above a top level of the augers
in the primary chamber.
Preferably, the controller is configured to control said secondary chamber outlet valve to assist
with control of temperature in the secondary chamber during start-up.
Preferably, the controller is configured to modulate said valve between 0% and 100% opening by
the controller.
Preferably, the controller is configured to cause flow of gases from the secondary chamber at a
temperature in the range of 700°C and 900°C, and to control the heat exchanger to reduce the
temperature of the gases to a value in the range of 160°C to 200°C.
Preferably, the apparatus further comprises temperature sensors at an inlet of the heat exchanger
and at an outlet of the heat exchanger, and the controller is configured to modulate the downstream
fan and the mixing chamber air inlet fan to maintain exhaust gas temperatures from the secondary
chamber within a desired range.
Preferably, the controller is configured to actuate a diverter damper valve to divert exhaust gases
to atmosphere if temperature at the heat exchanger inlet exceeds a threshold.
Preferably, the controller is configured to maintain the temperature of the primary chamber in the
range of 500°C to 1000°C, and of the secondary chamber in the range of 550°C to 1200°C.
Preferably, the controller is configured to maintain the temperature of a heat exchanger inlet in the
range of 600°C to 850°C and of a heat exchanger outlet in the range of 160°C and 220°C.
Preferably, the apparatus further comprises a feedback circuit to feed back a portion of exhaust
gases which exit the heat exchanger to the secondary chamber.
Preferably, the controller is configured to feed back a portion in the range of 25% to 40% of said
gases from the heat exchanger.
Preferably, the controller is configured to perform said feedback when the temperature of gases
exiting the heat exchanger is in the range of 160 °C and 200°C.
We also describe a gasification method performed by an apparatus of any example, the method
comprising steps implemented by the controller, and said steps including dynamically controlling
flow of gases in the chambers according to sensed pressures and temperatures in said chambers,
said controlled flow including flow through the secondary chamber around said baffles to optimise
combustion in an after-burner phase, and said control including controlling flow rate caused by
the downstream fan.
Preferably, the controller causes said after-bumer phase for passage through the secondary
chamber to have a duration of at least 3 seconds.
Preferably, the apparatus comprises a heat exchanger downstream of the secondary chamber, said
heat exchanger being linked to a heat recovery system, and the controller controls the air supply
to the mixing chamber and to the primary chamber to maintain temperature of gases exiting the
secondary chamber within a desired range for entry to the heat exchanger, and controls the heat
exchanger to reduce temperature of said gases to a desired level.
Preferably, the controller controls air inlet to the primary chamber according to pressure created
in the mixing chamber by a mixing chamber inlet pump.
Preferably, the controller causes air flows through primary chamber air inlet valves to maintain
both optimal synthetic gas to air ratio and a desired pressure differential between the primary
chamber and the mixing chamber for maintaining a negative pressure oxygen deprived
environment within the primary chamber.
Preferably, the controller maintains a pressure in the range of -50Pa to -200Pa (-5mm to -20mm
H20) in said oxygen deprived environment.
Preferably, the controller controls the mixing chamber air inlet pump to maintain temperature in
the secondary chamber in the range of 850°C and 1050°C.
Preferably, the controller causes flow of gases from the secondary chamber at a temperature in the
range of 700°C and 900°C, and causes the heat exchanger to reduce the temperature of the gases
to a value in the range of 160°C to 200°C.
_ 5 _
Preferably, the controller modulates the downstream fan and the mixing chamber air inlet fan to
maintain exhaust gas temperatures from the secondary chamber within a desired range.
Preferably, the controller maintains the temperature of the primary chamber in the range of 500°C
to 1000°C, and of the secondary chamber in the range of 550°C to 1200°C.
Preferably, the controller maintains the temperature of the heat exchanger inlet in the range of
°C to 850°C and of the heat exchanger outlet in the range of 160°C and 220°C.
Preferably, the method further comprises feeding back a portion of exhaust gases which exit the
heat exchanger to the secondary chamber.
Preferably, the portion is in the range of 25% to 40% w/w.
Preferably, said feedback is performed when the temperature of gases exiting the heat exchanger
is in the range of 160 °C and 200°C.
Detailed Description of the Invention
The invention will be more clearly understood from the following description of some
embodiments thereof, given by way of example only with reference to the accompanying drawings
in which:
Figs. 1 and 2 are perspective views of a gasifier system of the invention;
Fig. 3 is a flow diagram illustrating the major steps implemented by the system;
Figs. 4(a), (b), (c) and (d) are side, end, plan and perspective views respectively of an
upstream unit of the system including primary, mixing and secondary gasifier chambers;
Fig. 5 illustrates patterns of gaseous flows in the gasifier in an elevational view,
Fig. 6 is a cross-sectional plan view in the direction of the arrows A-A in Fig. 5, also
showing flows in the gasifier; and
Fig. 7 is a flow diagram illustrating a modified system.
Figs. 1 to 3 show a gasifier system including a gasifier 10 and downstream components as
described below. The gasifier 10 comprises a generally rectangular unit housing a primary
chamber 20, a mixing chamber 30 and a secondary chamber 35. As viewed in Fig. 1, a hopper 21
on the left feeds the feedstock into the primary chamber 20 in the upper portion extending to the
right from the hopper 21. There are valved air inlets 27 in the side wall of the primary chamber
. Augers 38, the motors of which are shown in Figs. 1 and 2, are individually driven in the
primary chamber 20 and at the end of the augers there is an ash removal chute 36 with a pumped
ash outlet 37.
On the top right of the gasifier 10, as viewed in Fig. 1, there is a pumped air inlet 26 delivering air
into the mixing chamber 30 to the far side of the primary chamber and running from right to left
in this view. This feeds a secondary chamber 35 underneath the primary chamber 20 and there is
a gasifier outlet, not visible in Fig. 1, leading to valves 40 and 40A.
Under normal operation, the valve 40 is open to allow flow of hot exhaust gases to a heat
exchanger 60. In the event of a fault the valve 40 closes and the valve 40A opens to route the
gases upwardly into a flue 50 incorporating a barometric damper 41, as best shown in Fig. 3.
The barometric damper 41 is not included in the process under normal operating conditions. The
gas flow through the process is entirely regulated by an induced draft extraction fan 80 which is
installed downstream of a filter stage 70. The barometric damper 41 cools the exhaust gases in a
safety by-pass manner before discharge to atmosphere in the event that the heat exchanger and
filter are not being used.
As shown specifically in Fig. 3, the heat exchanger 60 is in a heat exchange system 61 including
also:
— a head tank 62,
— a vent tank 63,
— an Organic Rankine Cycle Engine ORC 64,
— a dry cooler 65, and
— an expansion tank 66.
_ 7 _
Advantageous aspects of the heat exchange system 61 are its flexibility and versatility of energy
output devices. It is possible to generate electricity, provide steam or hot water, provide chilling
and refrigeration and combinations of these to meet the user’s requirements.
Downstream of the heat exchanger 60 the filter stage 70 has a reagent dosing station 71 followed
by a ceramic filter 72. Downstream of the filter stage 70 there is the induced draft fan 80 which
sucks gas through the whole plant in a dynamic manner according to sensors, as described in more
detail below.
The fan 80 delivers cooled and clean draft out a flue 90.
Upstream of the primary chamber 20 the feed- hopper 21 delivers the organic feedstock into the
primary chamber 20 by means of a series of independently-driven augers 38. The loading hopper
21 is configured to provide an air lock function to eliminate uncontrolled air entering the primary
chamber 20.
The primary chamber 20 has an open lid section for ease of access for servicing and maintenance.
This is achieved by unbolting and mechanically lifting (forklift). However, it is envisaged that it
may include hydraulic rams for opening and closing.
An access and inspection hatch is provided adjacent to the mixing chamber 30 at the inlet of the
secondary chamber 35.
The primary chamber 20 augers 38 are for conveying the feedstock being gasified, at a required
rate. The augers have individual auger motors, which enables better control of flow of waste
materials in the primary chamber 20 and also have a reverse function for quick and non-disruptive
clearance of blockages and jamming that can occur from time to time in normal operation.
Removable bearings and mounts at the ash end (right hand side as viewed in Fig. 1) of the primary
chamber 20 allow access to the augers for removal and replacement of the augers which can be
facilitated without shutting down the process entirely, thus minimizing down time and shut-
down/start-up cycles.
Referring also to Figs. 4 to 6, the primary chamber 20 has an external length of 4.0m and in general
preferably in the range of 3.75m to 5.0m to ensure adequate retention time of the material within
the gasification zone. The feedstock is gasified in the primary chamber 20 by heat conducted
_ g _
through the floor, or hearth, 24 (Fig. 5). At the end of the primary chamber 20, distal from the
hopper 21, the synthetic gases are generated by the gasification flow (arrow A) through an opening
into the mixing chamber 30, where they mix with a controlled quantity of air supplied by the
secondary fan 26 mounted vertically in the mixing chamber 30 in a typical proportion of 1 part
synthetic gas to 9 to 12 parts air by weight. This fan 26 has a variable-speed motor and is used to
control the temperature in the secondary chamber 35 about a set point.
The action of the downstream fan 80 causes the flow A to become a flow B of synthetic gases and
air downwards along the vertical length of the mixing chamber 30 and then laterally into the
secondary chamber 35 where it is directed through several 90° turns by means of baffles 29 (Figs.
and 6, flow C) before discharge to the heat exchanger 60. It will be noted that the roof of the
secondary chamber forms the bed, or hearth, 24 of the primary chamber. During their passage
through the secondary chamber 35, the combusted gases transfer heat to the hearth 24 to further
the gasification in the primary chamber 20.
Under normal operation, combustion occurs in the mixing chamber 30 between the oxygen (air)
supplied by the secondary fan 26 and the gases coming off the gasifying material in the primary
chamber 20. In addition, small quantities of air can be drawn into the primary chamber through
three 75mm diameter automatically-actuated air control (e.g. BelimoTM) valves 27. These valves
are positioned strategically along the side wall of the primary chamber 20 and are operated
intermittently from the central control processor 100 in conjunction with the induced draft (“ID”)
fan 80 to control the temperature in the primary chamber 20 about a set point using signals from
temperature probes in the primary chamber 20.
The mixed gases enter the mixing chamber 30 where they ignite and are conveyed vertically
downwards (Flow B). The mixing chamber may also be referred to as "the cracking zone", where
further oxidation occurs in a turbulent combustion phase. This turbulence is continued into the
secondary chamber (Flow C) or afterbumer chamber 35 where the gases are made to abruptly
change direction several times before exiting the secondary chamber.
The hearth 24 comprises high temperature resistant modular precast concrete units that interlock
and are scalloped to accommodate the augers 38 used to propel the feedstock through the primary
chamber. The heat generated by combustion of synthetic gases in the secondary chamber is
conducted through the hearth 24 and generates the heat in the primary chamber 20 that sustains
the autothermic gasification reaction and destruction of the feedstock. The manner in which the
_ 9 _
feedstock is conveyed by the augers 38 exposes the feedstock to heat that is absorbed and
conducted through the hearth 24.
There is a flow of high temperature exhaust gases C which are the products of combustion of the
synthetic gases controlled by the induced draft (ID) fan 80 (located downstream of the ceramic
filter stage 70) which draws the exhaust gases out into the valve 40 from the secondary chamber
The primary, mixing and secondary chambers 20, 30 and 35 respectively have pressure sensors
linked with the controller 100. The fan 80 is controlled according to pressure differences across
these chambers, which are designed to regulate the velocities of the exhaust gases throughout the
process within the range of 0.6 to 1.2m/ s. This flow rate is designed to at least achieve the retention
of exhaust gases within the gasifier for significantly longer than the regulatory (EU) stipulation of
greater than 2.0 seconds at 850°C.
Typically, in the primary chamber 20 the temperature provided by the bed or hearth 24 is greater
than 850°C and there is typically a dwell time of the feedstock in the range of 30 to 90 minutes in
the primary chamber 20 depending on the auger speed and resultant feed rate. Waste feedstock of
high calorific value will require slower feed rates and vice versa.
The control of flow of the mixed gas (Flow C) through the secondary chamber 35 and out to the
valve 40 is achieved by modulating the ID fan 80. The temperature in the secondary chamber 35
is controlled by modulating the air coming from the secondary fan 26. Under normal operation,
the temperature in the secondary chamber is maintained at about 95 0°C. If the temperature in the
secondary chamber begins to increase, the secondary fan 26 increases the supply of air until the
temperature drops back to at or near the control temperature of 950°C. In this way, steady-state
operation is maintained.
The primary chamber 20 relies solely on the gasification reaction to break down and destroy the
organic material received at the intake hopper 21. There are no points of ingress of uncontrolled
unregulated air, leaving only the controlled automated modulating valves 27 which are actuated
to control the pressure difference between the primary chamber 20 and the secondary chamber 35.
The controller (programmable logic controller, PLC) 100 controls the valves according to pressure
differentials so that the primary chamber valves 27 allow sufficient air into the zones of the
_ 10 _
primary chamber to maintain a pressure difference that maintains the target exhaust gas flow rates
and velocities. The pressure differential sensor levels respond according to the throughput of the
feedstock and the calorific value of that feedstock.
The synthetic gases are extracted from the primary chamber 20 by means of the modulating
induced draft (ID) fan 80 located at the downstream point of the whole process (after the heat
recovery 60/61 and filter 70 stages). The ID fan 80 is therefore integral to the control of flow of
all the gases generated in the process.
The valve 40 has a default position of venting to atmosphere via the valve 40A and the flue 50 so
that the hot gases exit safely in the event of a fault in the pneumatic air supply or electrical
components, or other components of the system. The main control valve 40 and the diverter valve
40A are pneumatically activated. In the event of power failure, an accumulator will provide
sufficient pressure to position the valves in the default position until power is restored.
The ash collection system 36 eliminates potential ingress of uncontrolled air via the exit end of
the primary chamber 20. This is by way of a series of baffles that become sealed by the flow of
exiting ash and the enclosed sealed ash removal system.
The products of combustion of the synthetic gas (exhaust gases) are drawn by the ID fan 80
through the secondary chamber 35 via the series of 90° bends formed by baffle walls 29 within
the chamber, as shown in Figs. 5 and 6. The abrupt changes of direction of flow created by the
baffle walls 29 generate turbulent flows that offer better combustion and heat transfer via the
hearth 24.
The hearth 24 heat sustains the autothermic gasification reaction in the primary chamber 20 and
the distance travelled and velocity of the exhaust gases are controlled to retain the exhaust in the
secondary chamber 35 for at least 3 seconds, i.e. longer than the standards stipulated in most
international emissions quality standards for thermal oxidation of harmful pollutant substances.
This achieves an excellent quality of combustion. The ID fan 80 is the principal means of
regulating the quality of combustion, using inputs from sensors of the temperatures and pressures
throughout the process. The controller 100 determines the required fan speed to optimise both the
quality of combustion and the thermal energy recovered.
_ 11 _
On start-up of the process, an auxiliary burner and fan 28, located at the bottom of the mixing
chamber 30, is switched on using an external energy source. The mixing chamber 30 is in fluid
communication with the primary chamber 20 via the aperture 25 in the dividing wall (Flow A).
This aperture is 1.5 metres wide and is situated at least 250mm above the top level of the augers
38 in the primary chamber 20. The mixing chamber 30 is in fluid communication with the mixing
zone (Flow B) followed by the secondary chamber 35 (Flow C, Fig. 5).
The heat generated by the auxiliary burner slowly heats the secondary chamber 35. The roof of
the secondary chamber 24 constitutes the floor of the primary chamber and is made of heat-
conductive materials. Heat from the secondary chamber 35 is conducted through this floor, or
hearth, to heat the primary chamber. When the temperature in the primary chamber exceeds
500°C, material to be gasified is drawn into the primary chamber 20 by means of a series of augers
which connect the feed-hopper 21 with the primary chamber 20.
As the temperature increases in the primary chamber 20, the material begins to gasify and the
synthetic gases are carried through the aperture 25 to combust in the flame from the auxiliary
burner 28 in the mixing chamber 30. This causes the temperature in the secondary chamber 35 to
increase filrther. As the temperatures in both the primary and secondary chambers begin to reach
target levels, the auxiliary burner 28 is switched off and the process becomes fully autothermic.
During the start-up cycle, the valve 40 is closed and the diverter valve 40A at the base of the stack
maintains temperature in the secondary chamber 35. The operation of this valve is modulated
between 0 and 100% opening by the controller 100. On completion of the start-up phase, the valve
A is closed and will only open on emergency to divert the hot gases to the stack 50.
Flows of air and gases through the system are primarily controlled by the induced draft fan 80
downstream which maintains constant negative pressure throughout the system. The air valves 27
along the side-wall of the primary chamber 20 allow the ingress of oxygen (air) into the primary
chamber 20 so that minor adjustment of temperatures and pressure can be achieved. The operation
of these valves and the ID fan 80 are automatically controlled from the central controller 100 via
pressure sensors and temperature probes deployed in the primary and secondary chambers.
The gasification and exhaust extraction process only reduces the exhaust gases to about 800°C at
the point of egress from the secondary chamber 35 . This excess heat is then recovered via the heat
recovery unit 60/61. On exit from the heat exchanger 60, the exhaust gases are between 160°C
_ 12 _
and 200°C and therefore can be finally treated and filtered by the filter 70 for removal of any
remaining particulates and substances to ensure total compliance with the prevailing emissions
standards at the location of installation.
The reagent dosing 71 involves adding controlled quantities of treatment substances such as (but
not limited to) urea, calcium carbonate, sodium bicarbonate and activated carbon. These
substances neutralise or remove harmful substances in the exhaust gases that are regulated by law
such as (but not limited to) NOX, SOX, HCL, Dioxins, Phthalates, heavy metals.
The exhaust gases are processed initially by the heat pipe heat exchanger 60 to cool the outlet
temperature from a range of 740°C to 800°C to 160°C to 180°C.
The output from the heat exchanger 60 provides the thermal energy in a variety of formats to suit
the end user’s requirements, such as hot water, steam, and thermal oil. This gives the end user the
ability to utilize the thermal energy for a variety of applications:
— Heating
— Cooling / refrigeration
— Process steam
— ORC (Organic Rankine Cycle) power generation
— Micro steam turbine / engine power generation.
On exiting the heat pipe heat exchanger 60, the remaining exhaust gases are further processed by
the ceramic filter unit 70 with reagent dosing system 71. The ceramic filter 72 removes the fine
particulate content to comply with the regulatory standards of less than 10mg/Nm3 while the
reagent dosing introduces a prescribed blend of additives to remove any remaining toxic
constituents in the exhaust gas in compliance with the regulatory industrial emissions standards.
The apparatus may include a CO2/NO2 fire suppression system. Fires are extremely unlikely due
to the absence of air, but in the event of an uncontrolled ingress of oxygen leading to combustion
in the primary chamber, the PLC system will identify this and initiate an automated rapid shut
down procedure where a compressed inert gas suppression system will extinguish and rapidly cool
the primary chamber. Using water to extinguish a fire would be dangerous for the operator and
potentially catastrophic for the equipment.
_ 13 _
It will be appreciated that the invention provides an integrated waste-to-energy system based on
the gasification of various organic waste streams having an inherent energy content (calorific
value) that can be exploited to produce useable energy in various forms such as hot water, steam
and/or electricity by the use of an Organic Rankine Cycle (ORC) engine downstream of the heat-
exchanger.
The system offers a very advantageous method of waste treatment and disposal for many small to
medium-sized industries with troublesome waste streams. In particular it offers a safe and
environmentally friendly way of dealing with agricultural waste such as poultry manure/litter and
many other animal by-products (ABP). It also has applications in the medical waste sector where
the cost of treatment has escalated to alarming proportions in recent years.
The filter stage 70 can be designed to cope with emissions from both hazardous and non-hazardous
waste streams and to provide for compliance with the most stringent European Industrial
Emissions Standards. The ash residue which exits the end of the primary chamber is completely
mineralised and may be used beneficially in many applications.
Control Scheme
The controller 100 receives inputs from the following sensors:
Temperature sensors in each of the primary, mixing, and secondary chambers and
subsequently before and after both the heat exchanger 60 and the ceramic filter 72.
Pressure sensors in each of the chambers 20, 30, and 35.
The controller 100 controls the following to control operation of the gasifier to optimum
conditions:
The mixing chamber 30 air inlet fan 26.
The valves 27 regulating flow of air over the augers in the primary chamber
The valve 40 for flow of air downstream from the secondary chamber towards the heat
exchanger 60.
The induced draft fan 80.
The PLC controller 100 is programmed to respond to changes in parameters within the system to
maintain optimum temperatures required to sustain the gasification reaction and both the quantity
of thermal energy consumed within the process and generated for heat recovery at the heat
exchanger.
A reduction in temperature in the secondary chamber 35 may signify a reduction in calorific value
of the organic material in the primary chamber. The PLC identifies this from the temperature
sensors in the primary chamber 20 and increases the speed of the augers 38 to maintain a constant
calorific content in the primary chamber 20. This may also then result in changes in pressure and
temperature in the primary and secondary chambers which the PLC 100 will identify from the
pressure sensors and temperature sensors in both chambers. In response the PLC can modulate
the ID fan 80, the secondary fan and the primary chamber air valves 27 to balance the system and
maintain optimum performance.
Energy recovered from the input material starts by being introduced from the hopper 21 into the
(preheated) primary chamber 20 by the series of rotating screws 38. The preheating is done by
the fossil fuel burner 28. As the material travels along this negative pressure chamber and having
the correct temperature, syngas is released which then travels to the secondary chamber 35 for
final combustion assisted by the secondary air injection point 26. The remaining material now in
the form of ash is extracted by means of the rotating auger 36 to a final ash storage bin 37. The
heated gas then is pulled to the heat exchanger 60 by means of the induced draft fan 80 where the
energy is transferred for power and heat production. The remaining gas is then cleaned by the
filter 70.
This controller 100 is responsible for safety, temperature, material level control, energy output
control, ash removal, chamber pressure control, gas cleaning, start-up, shut-down procedures, data
logging, fault diagnosis, alerts messaging and remote monitoring.
Table 1 describes function of some of the apparatus’ components in more detail.
Table l
Controlled Component Function
Auger motors (38) Propel the rotation of the feed augers and reverse to clear
blockages as required
Air Valves (27) Control pressure differential between primary and secondary
chamber. Control of temperature in primary chamber to aid in
production of synthetic gases
Ash End Motor / Auger
(37)
Ash removal
Secondary Fan (26)
Introduction of clean air for combustion of synthetic gases
Burner (28)
Starting of gasifier and maintaining the secondary chamber above
degree C during operation
Flu gas by-pass stack
damper valve (40A)
Control of release of exhaust during preheat and safety release of
hot exhaust gases in the event of downstream component failure
Heat exchanger flu gas
inlet damper valve (40)
Isolation of heat exchanger, filter and downstream equipment
Air Compressor
Control of flu gas damper valves. Cleaning of filter housing.
System ID Fan (80)
Induced draft of all gases in the system
Auxiliary Systems (61 -
69)
Electrical Power / refrigeration as required
Shredding / Loading /
feed system (21)
Provide material as dictated by hopper level indicators
Table 2 is an example controller 100 logic flow.
M
Example PLC logic sequence
Function: Safety Protection of Heat Exchanger Device
T5 (HE 60 inlet gas
temp.), T6 (HE outlet
Inputs gas temp.)
Modulate fans 26 and 80
Manage exhaust gas temperatures
within nominal operating range by
Action T5>/= 875°C addition of dilution air
Audio / visual alarm. Alert operator
Alarm T5>/=900°C via remote telemetry
Modulate fans (26, 80)
Manage exhaust gas temperatures
Action T5>/=900°C within nominal operating range
Actuate diverter damper valves (40,
Action T5>/=925°C 40A)
Exhaust gases diverted to atmosphere
to protect heat exchanger and filter
devices
Table 3 below gives preferred temperature ranges maintained by the controller 100 for operation
of various components.
M
Temp. Sensor Location Tem erature Ran e °C
Inlet hopper (ambient) 0-40
Primary Chamber Inlet 20-600
Primary Chamber Gasification Zone 500-1000
Primary Chamber Ash Zone 550-1200
Secondary Chamber 700-1200
Heat Exchanger Exhaust Gas Inlet 600-850
Heat Exchanger Exhaust Gas Outlet 160-220
Heat Exchanger Cold Side Inlet 160-220
Heat Exchanger Cold Side Outlet 140-200
Filter Inlet 160-220
Filter Outlet (stack) 140-200
In another embodiment, and referring to Fig. 7, between 25% and 40% w/w of the exhaust gases
which exit the heat exchanger 60 (in the range of 160°C to 200°C) will be recirculated back into
the secondary chamber 35 at the mixing chamber to reduce the oxygen content in the process in
order to reduce the content of oxides of nitrogen thus further improving the emissions performance
of the system. Fig. 7 shows a feedback circuit 110 with a feedback conduit 111 and a high
temperature recirculating fan 112 linked to the controller, to achieve this. This reduces the 02
content in the secondary chamber, which assists in the reduction of production of oxides of
nitrogen (NO). The speed of the recirculation fan 112 can be set and fixed independently of the
PLC controller by the operator or can be controlled via the controller depending on the nature of
the material being processed
The invention is not limited to the embodiments described but may be varied in construction and
detail according to the claims. For example, the system may be provided in a mobile containerised
format. This type of configuration facilitates the rapid transportation of the system to the site of
_ 17 _
an emergency or to a remote location where it might help to solve a temporary waste problem in
a military or industrial context.
Claims
A gasification apparatus (1) comprising:
a primary chamber (20) with a floor comprising a hearth (24) and feedstock augers
(38), for gasification of feedstock,
a mixing chamber (30) for receiving, through an opening (25) synthetic gases (A)
from the primary chamber (20), and comprising an air inlet fan (26) for adding
oxygen for ignition,
a secondary chamber (35) linked with the mixing chamber to deliver heat from
combustion of gases from the mixing chamber to the hearth (24), said hearth
forming a roof of the secondary chamber (35), and the secondary chamber
including baffles (29) for flow under the hearth,
an outlet valve (40, 40A) for delivery of gases from the secondary chamber,
a fan (80) downstream of the secondary chamber (35), and
a controller (100) configured to dynamically control flow of gases in the chambers
according to sensed pressures and temperatures in said chambers, said controlled
flow including flow through the secondary chamber around said baffles (29) to
optimise combustion in an after-bumer phase, and said control including
controlling flow rate caused by the downstream fan (80).
A gasification apparatus as claimed in claim 1, wherein the controller is configured to cause
said after-bumer phase for passage through the secondary chamber to have a duration of at
least 3 seconds.
A gasification apparatus as claimed in claims 1 or 2, wherein the fan (80) is an induced
draft fan.
A gasification apparatus as claimed in claims 1 or 2 or 3, wherein the outlet valve (40) is
arranged to direct gases downstream under normal process conditions or to a safety vent
(50) through a diverter valve (40A).
A gasification apparatus as claimed in claim 4, wherein the safety vent comprises a flue
with a barometric damper (41).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IE20190143 | 2019-08-21 |
Publications (3)
Publication Number | Publication Date |
---|---|
IE20200185A2 IE20200185A2 (en) | 2022-09-14 |
IE20200185A3 IE20200185A3 (en) | 2023-04-12 |
IE87391B1 true IE87391B1 (en) | 2023-04-26 |
Family
ID=83547440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IE20200185A IE87391B1 (en) | 2019-08-21 | 2020-08-19 | A gasification apparatus and method |
Country Status (1)
Country | Link |
---|---|
IE (1) | IE87391B1 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201518848D0 (en) * | 2015-10-23 | 2015-12-09 | Gromadzki Michal And Mcbride Donna | Thermal treatment device |
-
2020
- 2020-08-19 IE IE20200185A patent/IE87391B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
IE20200185A3 (en) | 2023-04-12 |
IE20200185A2 (en) | 2022-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9109172B2 (en) | Low temperature gasification facility with a horizontally oriented gasifier | |
EP1269077B1 (en) | Method and device for combustion of solid fuel | |
JP6490466B2 (en) | Waste treatment facility and method of operating waste treatment facility | |
EP2313686B1 (en) | A furnace system with internal flue gas recirculation | |
AU2001244880A1 (en) | Method and device for combustion of solid fuel, especially solid waste | |
US11781080B2 (en) | Gasification apparatus with controller for negative pressure | |
JP2008275179A (en) | Combustion system of flame retardant high-viscosity waste such as pcb | |
IE87391B1 (en) | A gasification apparatus and method | |
US20180313538A1 (en) | Thermal treatment device | |
JP2009139087A (en) | Control method of waste thermal decomposition apparatus | |
JP2010065861A (en) | Waste supply device and waste supply method | |
JP3377359B2 (en) | Waste treatment equipment | |
JP3419292B2 (en) | Waste treatment system | |
EP3792553B1 (en) | Catalytic oxidizer | |
EP4202299A1 (en) | Method and device for incineration of hazardous solid waste and obtained combustion products | |
JP2004256598A (en) | Method and apparatus for gasifying combustibles and gasification and melting system | |
US20240189876A1 (en) | Biosolid treatment process and system | |
JP2002147726A (en) | Incinerator apparatus | |
JP2020016397A (en) | Waste incineration device and waste incineration method | |
JP2002286217A (en) | Incinerator | |
JPH09229324A (en) | Waste treatment device and operation method for the device | |
CN115493147A (en) | Small-size modularization multiple rubbish coprocessing's incineration disposal module | |
JP2020016399A (en) | Waste incineration device and waste incineration method | |
JP2003294226A (en) | Heat treatment method and its facilities | |
JP2002081621A (en) | Waste-disposal method and gasification and melting apparatus |