IE842326L - Induction motor control - Google Patents

Induction motor control

Info

Publication number
IE842326L
IE842326L IE842326A IE232684A IE842326L IE 842326 L IE842326 L IE 842326L IE 842326 A IE842326 A IE 842326A IE 232684 A IE232684 A IE 232684A IE 842326 L IE842326 L IE 842326L
Authority
IE
Ireland
Prior art keywords
phase angle
firing delay
phase
offset
measured
Prior art date
Application number
IE842326A
Other versions
IE56461B1 (en
Original Assignee
Chesebrough Ponds
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chesebrough Ponds filed Critical Chesebrough Ponds
Publication of IE842326L publication Critical patent/IE842326L/en
Publication of IE56461B1 publication Critical patent/IE56461B1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1892Arrangements for adjusting, eliminating or compensating reactive power in networks the arrangements being an integral part of the load, e.g. a motor, or of its control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/26Power factor control [PFC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Single-phase and three-phase AC induction motors are controlled in accordance with the equation y = mx + b, where y is the motor voltage-current phase angle, m is the slope, x is the triac firing delay and b is the offset. Subsequently, the firing delay is increased by predetermined amounts, the behaviour of the phase angle is evaluated for several cycles, and the motor is controlled based on the results of the evaluation, thereby minimizing energy consumption. The method may be carried out using a programmed digital computer, or otherwise. <IMAGE> [GB2149536A]

Description

The present invention relates to a method of operating and induction motor control system and, in its preferred embodiment, to an improved digital induction motor control system.
A prior art digital induction motor control ayst«ie ie shown in U. S. Patent Ho. 4,361,792 issued November 30, 1982 and asui).',ned to Lhe assignee of th« present application. The system disclosed in that prior art patent derives a calibrated phase alible and then controls the operation of the motor based on that phase angle, irrespective of variations in motor loading. In this way energy consumption is reduced. Referring to Ki£. 1 or U. S. Patent No. A,361,792, after the motor has gotten up to speed the count in incremental counter 38 and delay counter lib is zero. The number in phase angle counter 34 corresponds to the phase angle between motor voltage and motor current zero crossings. The count in the Incremental counter is incremented every other cycle, which causes the count in the delay counter to be similarly increased. This increased delay in riLLiig the triac reduces the phase angle and, therefore, the count in the phuie an&le counter. Eventually, the number in the phase angle counter will b& approaimgcaly equal to the number In Cha da lay counter. Th® number in the phase angle eouaeasf can then be stored In the phase angle register as the calibrated phase angle and used to operate the system.
Deriving the calibrated phase angle in this manner, however, means that the number stored in the phase angle register as che calibrated phase angle depends, in part, on che inicial motor loading. Greater power savings can be obtained if che motor happens Co be heavily loaded when the calibrated phase angle was derived. The prior art also discloses how to modify che initial calibrated phase angle so as co yield a refined calibrated phase angle. See colisnn 5, line 3 through column 6, line 3 of U. S. Patent No. 4,361,792.
The present invention represents an improvement over the invention o£ U. S. Patent No. 4,361,792. As noted in that patent, the application was based on limited experimentation. Based on extensive experimental work applicants have developed a new and improved method for controlling AC induction motors. Applicants have discovered that changes in both tha phase angle and the firing delay result from changes in motor load and that these changes occur in a characteristic manner which is common co AC induction motors. This characteristic may be approximated by an equation of Che form y -mat + b, where y is che phase angle, x is the firing delay, m is the slope and b is the offset. Applicants have also discovered how this characteristic may be used to control AC induction motors with substantial energy savings.
In addition, applicants have discovered a way to optimize energy savings by means of a "perturbation" technique in which the firing delay is increased by a predetermined amount and Che behavior of che phase angle is evaluaced for several cycles. If che resulc of che evaluacion indicates thac addicional energy savings are possible, Che firing delay is again increased by a predetermined amount and the behavior of the phase angle is again monicored for several cycles. This process is repeaced until energy savings are maximized.
Accordingly, the invention provides a method for operating an induction motor con-trol system comprising the steps of: (a) energizing an induction motor using a firing delay; (b) measuring the phase angle between motor voltage and current zero crossings; (c) determining a phase angle in accordance with the equation y=nBt + b, where y is the phase angle, m is the slope, x is the firing delay find b is the offset, m and b being predetermined constants; (d) comparing the measured phase angle with the determined phase angle; and (e) altering the firing delay based on the comparison to reduce the difference between the measured and determined phase angles.
The invention will be further illustrated with Tsfareace to the accompanying drawings in which: Fig. 1A is a flow diagram depicting Che opexstion of a motor control system In accordance with Che present invencion; Fig. IB comprises graphs of typical motor responses when concrolled in accordance wich che presenc invenciont Fig. 2 is a schematic diagram of a preferred Kocor control system which may be used co implement: the present Invention; Fig. 3 is a schematic diagram of another motor concrol system which may be used to Implement the present invention; and Figs. 3A to 3F show details of the diagram of Fig. 3. 8 As already noted, the present invention is based on applicants' discovery that AC induction motors share a ccmsnon characteristic, namely, that changes in phase angle and firing delay with variations in motor load can be spprossiraatad by the 5' formula y « nut 4- b, where y is the phase angle, m is th«a slope, x is the firing delay and b is the offset. A preferred equation which has been found applicable to all single-phase AC induction motors tested is FA - - 0.12 DLY + 70. Implementation of this equation permits control of the motor with substantial energy lo savings. In che equation, FA and DLY are expressed in units of count. In the illustrative embodiment of the invention shown herein, 1 count is equal to 30 microseconds or 0.648 electrical degrees at 60 Hertz.
Figure 1A discloses generally how the motor is eontrol-15 led in accordance wich Che equation PA ™ - 0.12 DLY + 70. At event N, the motor is energized using a firing delay Dn. The phase angle PAn is then measured. The sisn of Sn of the delay Dn and che phase angle PAn is then used as che address for a computer-generated look-up table. The contents of that address PAc (phase 20 angle cable) is compared with the previous phase angle PAn and the result used either to increase or decrease the delay.
Initially, PAn will be greater than PAt and the delay will be increased in accordance with the formula Dn+i - (PA^ - PAc)/2 + Dn. This increased delay in energizing the motor results in energy 25 savings. The process is repeated until PAt and PAn are approximately equal. If the motor load increases, PAc will exceed PAn. Now the delay will be reduced in accordance wich tha fonaulfl - Dn - 4(PAC - PA^). Thio saducad delay In energising che motor results in more power being delivered to che motor to handle the increased load and ensures that the motor continues to operate at its designed, constant speed.
V 5 Table I, set forth on the nest page, is a computer generated look-up Cable based on the equation PA ~ - 0.12 DLY -i- 70. The sum of the phase angle FA and che delay DLY is used as the table entry point for initial motor control. The entries in the table are phase angles, i.e., PAt- Thus, if the sum of PA lO and DLY is 100 (100 + 0), the phase angle from the table is 65. If PA + DLY - 106 (100 4- 6), PAC - 6k. Similarly, if PA + DLY -193, FAC » 53; whereas if PA + DLY « 194, PAt ™ 52. The table provides for 256 sum entry points and these 256 entry points are divided into 16 groups or levels, with 16 entry points in 15 each level. Thus, sisn 0 through 15 form Level 1, sums 16 through 32 form Level 2, etc. IC should be noted that small entry sums indicate high mocor loads whereas large sums indicate low mocor loads. Ic should also be noced that the firing delay is never less Chan 1. Thus, in Levels 1 through 2o ^ che 100 indicates that a firing delay of 1 is to be maintained.
TABLE 1 (PA - - .12 BUf -i- 70) LEVEL Sua -M) +1 ■?2 4-3 +4 45 +6 4-7 4*8 <|gQ 5 1 0 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 2 10 20 30 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 3 30 40 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 4 40 50 60 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 15 5 60 70 69 69 69 69 100 69 100 69 100 69 100 68 100 68 100 68 6 80 90 68 67 68 67 68 66 68 66 67 66 67 66 67 67 67 67 20 7 90 100 110 65 64 65 64 65 65 65 65 66 64 66 64 36 64 65 64 8 110 120 63 62 64 62 64 62 63 62 63 62 63 62 63 62 63 63 25 9 120 130 140 61 60 61 60 61 60 61 59 61 61 60 60 61 60 61 60 10 140 150 58 58 58 58 59 58 59 58 59 58 59 58 59 57 59 57 11 160 170 57 56 57 56 57 55 57 55 57 55 56 55 56 56 56 56 30 12 170 180 190 54 53 54 53 54 54 54 54 55 54 55 53 55 53 55 53 13 190 200 52 52 53 51 53 51 52 51 52 51 52 51 52 51 52 52 35 14 200 210 220 50 49 50 49 50 49 50 49 50 50 49 49 51 49 50 49 15 220 230 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 40 16 240 250 48 48 48 48 48 48 48 48 48 48 48 0 48 48 48 48 © It will be appreciated that a different table can be generated by varying the slope from - 0.12 to aoaa othor value such as - 0.18 or by varying che offset froia 70 to some othes" value such as 68. A differenc table could also be generated by 5 varying both che slope and the offset. For example, applicants have controlled single-phase AC induction motors based on a table generated in accordance with the formula PA - - 0.18 DLY + 72. The slope may vary between about - 0.2 and about - 0.1, while the offset may vary between about 65 and about 72. Appli-cants will now show, by means of a specific example, how the mocor is concrolled using chis type of equation.
Initially, che computer determines the existing phase angle PA, adds che scarc-up firing delay of 1 co PA, and uses chis sum to encer che table. The computer chen reads che phase 15 angle in che cable, which corresponds co chis table entry sum and calculates a new firing delay. If PAi - 99, then PA^ + DLYl " 99 1 » 100. Referring to Table 1, address 100 contains a PAC of 65. Since PA], is greater than PAC, the new firing delay is calculated as follows.- new delay - (PAI - PAt)/2 -r old delay 20 ~ (99 - 65)/2 + 1 - 18. The new firing delay of 18 is now 'implemented and the resulting phase angle is measured, in this case 95. The new entry sum is 95 + 18 " 113, which gives a PAc of 64. The new delay is (95 - 64)/2 + 18 ■ 33. This process concinues and eventually, assuming that the motor load 25 does not change, a point in the table will be reached where che sum remains fairly constant, i.e., PAt approximately equals PAn. If, however, PAc exceeds PA^, this indicates an increase in mocor loading. The firing delay is Chen reduced by che amount 4(PAc - PAn). See Fig. 1A. £0 The foregoing motor control technique provides a smooch response r.o clutched loads without risk of motor stall ®»d without having to respond with full power, which is mci inefficient response unless absolutely necessary. The motor automatically responds to 5 load changes, in either direction, finding its proper position in che cable for increased energy efficiency. While chis basic approach has been proven effective in increasing the energy efficiency of all motors tested, many motors possess the potential for even greater energy savings. This is due co the fact that 10 such motors deviate from che empirical formula FA ■-> - 0.12 DLY + 70: (1) having a slope other than - 0.12; (2) having an offset other chan 70; (3) having the phase angle and/or delay vary non-linearly wich load; or (4) a combination of the foregoing.
In order to optimize che energy efficiency of all motors, & 15 further mocor concrol technique has been developed. This involves "perturbing" the motor operation by introducing an additional predetermined delay in energizing the motor, observing the behavior of the phase angle for several cycles in response to che delay, and then controlling the motor.based on the nature 20 of the phase angle response.
After initial control of che motor has been accomplished in accordance wich Fig. 1A and Table 1, an additional firing delay of 20 counts is added to the existing delay. The effect of this additional delay on Che phase angle is Chen determined. 25 This is accomplished by measuring and storing Che valus of PA at T0 (when che 20 counc firing delay is added) and at Tl, T2, T3, l»- T4 and T5 (the nexc 5 positive-going zero crossings of motor current). PA0 is the phase angle at To, PAl the phase angle ac Ti, ecc. \ 11 As shown in Fig. IB, there are three basic types of responses to increasing the firing delay by a predetermined B amount. In a Type I responoa, the phase angle is reduced from PAq to PA], and then remains between PA3, and (PAo - PAD/3, i.e., 5 it recovers Co less than 1/3 of che difference betwaen PAo and PAl. In a Type II response, che phase angle is reduced from PAo to PAl and chen recovers to more than 1/3 of the difference between PAo and PAl. In a Type III response, the phase angle is initially reduced from PA0 to PAl and then further decreases 10 to a level of PAl - 2. In the event of a Type III response, the calibration procedure is aborted and che compucer controls che mocor based on che condicions in effect at time To. In the event of a Type II response, che computer temporarily classifies the delay at To (the delay in effect before introducing the 15 addlcional 20 counc delay) as the optimtan delay for maximum energy savings ac that load and at those operating conditions (e.g., temperature, supply voltage, etc.). The computer will, however, repeat che process several times to verify that a Type II response continues to be obtained. A Type 1 response indicates 20 that it may be possible to obtain additional energy savings.
In thac event the computer increments the firing delay and evaluates the response of che phase angle uncil a Type II or Type III response is obcained, i.e., until operating energy efficiency has been maximized. 25 Referring again to Table 1, che calibration process 4 for optimizing energy efficiency is generally conducced ac Levels 6 - 13. For convenience Table 1, which has an offset of 70, is referred to as a "70 Table." Experimentation to date has shown chat all single-phase AC induction motors tested will -\ operate satisfactorily, at all loads, using tha 70 Table. Motors chat produce a Type I raspoaee, which tadics.sa@ eh,as addleloaal energy savings may be possible, are assigned smaller phase eaglan corresponding to their look-up table entry awns. This is done, each time there is a Type I response, by decrementing the offset. In other words, when a Type I response is obtained the equation is changed from PA - - 0.12 DLY 4- 70 to PA « 0.12 DLY -!- 69.
For example, assuming that the motor is operating at a look-up table entry sum of 140, this corresponds to a PAc of 60. If a Type I response is obtained, a new calculation is mads based on the equation PA » - 0.12 DLY + 69. This yields a PAt of 59 for a look-up table entry sum of 140. If another Type. 1 response is obtained, a n®w calculation is made based on eha aquation PA - - 0.12 DLY 4- 68. This yields a PAc o£ 58 for a look-up cable entry sum of 140. The effect of this procedure, for a constant look-up table entry sum, is to increase the firing delay and reduce the power delivered to the motor, thereby increasing energy savings. This procedure is repeated until a Type IX response is obtained, indicating that energy savings have been Maximized. In the illustrative embodiment of the invention disclosed herein, the minimum allowable offset (maximum energy savings point) has been limited to 60. A Type III response indicates either that the motor load is increasing or that maximum energy savings have been obtained. In either case, further calibration is halced until stable operation resumes.
Referring to Table I, the calibration process for maximizing operating energy efficiency is limited to Levels 6-13. It is possible that some motors, in certain applications, 13 i will operate at one constant load point, thus limiting calibration to e look-up table entry sua corresponding to that load poise.
Even wich a constant load, however, fluctuations in supply voltage, operating temperature, motor friction, etc. will cause the table entry sums to vary somewhat, thus creating the likelihood a motor varying from one level to another. When this occurs experimentation has shown that whan the offsets between adjacent levels differ by more than 5, and che mocor is oscillating between such levels, a discernable "bump" is produced which could be disconcerting co the user. Accordingly, applicants have devised Che following technique for adjusting Che offsets of adjacenc levels so Chat they never differ by more than 3.
Returning co the preceding example, the table entry 15 sum was 140. This corresponds to Level 9 in Table 1. When the calibration procedure is commenced and a Type 1 response is obtained, the computer changes Che offset for Level 9 to 69.
None of the other levels is affected. If another Type I response is now obtained, the Level 9 offset is dropped co 68. 2o 'This continues until one half the difference between the offsets of adjacent levels is equal to or exceeds 3. When that occurs, one half the difference is applied to the adjacent level, differences being rounded up. In Che foregoing example, * che firsc adjustment of adjacenc levels occurs when che offset 25 for Level 9 reaches 65. Then 70 - 65 « 2.5, which is rounded up 2 •4 to 3. At this point, Levels 8 and 10 are assigned offsets of 67.
When the offset for Level 9 reaches 62, the offsets for Levels 8 and 10 are adjusted to 64. Since Levels 7 and 11 now differ from Levels 8 and 10 by more than the permitted amount, the 10 "A offsets for Levels 7 and 11 are adjusted to 67. The offset for Level 9 caa now go down to 60 (the lowest pssraitted in this illustrative embodiment of the invention), without necessitating any further adjustments of the offsets of the adjacent levels.
If the motor continues to operate at Level 9, no other calibration attempt will occur. If, however, the eotor load changes, causing entry to another level, the computer will compare the new offset with 60 (the previous offset) and will permit a sufficient number of calibration steps to occur so that an offset of 60 could be reached. For example, if the motor shifts to Level 7, which has an offset of 67, the computer will permit 7 calibration attempts to be executed. Levels 1 through 4 never deviate from a maximum firing delay of 1 while Levels 5, 14, IS and 16 are never calibrated. They are, however, allowed to have their offsets adjusted based on the calibration of an adjacent level.
Fig. 2 discloses one motor control ayatea which say be used to implement the present invention. Fig. 2 of the present application is the same as Fig. 2 of U. S. Patent No. 4,361,792 and the description of Fig. 2 is incorporated herein by reference. The present invention has been employed to control single-phase AC induction motors using the system shown in Fig. 2. A suitable computer program for practicing the presenc invention with che syscem shown in Fig. 2 is included ac che end of the present specification.
While the present invention has been described in terms of its application to single-phase AC induction motors, 15 lc may also be applied Co 3-phe.ae Induction aotorn. For a. deocription of a 3-phaee digital motor control syaeeas sao Column 6, lines 25-38 of U. S. Patent No. 4,361,792, which Is incorporated herein by reference. Based on more limited experimentation applicants have discovered that 3-phase AC induction motors also experience changes in phase angle and firing delay as a function of changes in motor load which vary in a characteristic manner and may be approximated by the expression y - + b. Again y is the phase angle, m is the slope, x is the firing delay and b is the offset. Unlika the case of single-phase AC induction motors, with a 3-phase AC induction motor m is positive. A preferred equation for controlling 3-phase AC induction motors is PA m + 0.62 DLY + 24. With 3-phase AC induction motors the slope may vary from 0.5 to 0.7, while the offset may vary from 10 to 30.
It will be appreciated by those skilled in the art that the present invention is not limited to the specific illustrative embodiment disclosed herein. Thus, while applicants have disclosed that for single-phase AC induction motors value for m can be selected between - 0.1 and - 0.2 and values for b c&n be selected between 65 and 72, values can also be selected outside these ranges and still successfully control many motors." Similarly, while applicants have disclosed chat for 3-phase AC induction motors values for m can be selected between 0.5 and 0.7 and values for b can be selected between 10 and 30, values can also be selected outside these ranges and still successfully control many motors. Other modifications and improvements within the scope of the present invention will also be apparent co persons skilled in che arc. For example, the present >! "} i6 invention may be implemented without using a psogr tsmad digiesl computer.
Fig. 3 of che present application discloses such a motor control system. In Fig. 3 Q1 through Q15 are FET transistors which conduct when a positive voltage is applied to their gates, while Q16 is a trlac such as a Teccor Q4025V5 and Q17 is a diode bridge. The components designated U1 - U6, U8 - U12, U14 - U16, U20, U21, U26. U27, U28 - U30, U38 - U39, U41 - U44, U60, U64, U72, U73 and U78 are operational amplifiers. U13, U31 - U33, U48, U53, U65 and U79 are inverters, while U56 is a non-inverting amplifier. U17, U22, U24, U25, U35, U36, U46, U47, U49, U66, U68, U71, U74 and U80 are AND gates, while U50, U52, U61 and U69 are OR gates. U45 is a NOR gate. U54, U55, U57 - U59, U75 and U81 are CMOS Schmidt trigger amplifiers. U18, U51, U67 and U70 are latches, with U67 configured to divide by two. U19, U23, U37 and U62 are counters, U62 being an up/down binary counter. U63 is a four-line decoder which performs a D/A conversion based on the output from U62. U76 is a buffer amplifier, such as a Tl 7406, and U77 may be a Monsanto 6200 IC chip comprising a pair of optically coupled SCRs connected as a triac. A brief description of the operation of the motor control system of Fig. 3 is set forth below.
U64 is connected to the line voltage and develops a squared-up voltage waveform. Q17 and U78 develop a square waveform which is positive when Q16 is off. U66 produces a positive pulse which is synchronized with the line voltage. The output from U66 is used to derive two system timing signals. The first is produced by U53. The second is produced ') by U54 and U55 and CoXIowa closely in eirae eha ousput of U53. Two additional timing signals are derived from eho output from U64. One is produced by U56, U57 and U81 while the other is produced by U58 and U59 and follows closely in time the output of U57. The timing for the sample-and-hold circuits Q11/U26 and Q12/U27 is provided by U13 and U22 - U25. Finally, U35. U36 and U37 control the gating of the various types of responses (Type I, Type II or Type III) when the motor operation is perturbed to maximize operating efficiency.
Converting the phase angle pulse width to a voltage is performed by Ql, Q9 and Ul. The output of U1 is PAn which is supplied, inter alia, to the sample-and-hold circuits. The "delay" pulse width is converted to a voltage by Q2, Q10 and U2. U3 and U4 take the output of U2 and multiply it by "m" and add "b," respectively. The output of U4 is therefore PAC. U5 compares PAn with PAt. The output of U5 is positive when PAn is greater than PAc and negative when PAc is greater than PAn. (J5 controls whether the firing dalay is Increased or decreased. When che output of U5 is positive, Q3 is enabled and Q13 is disabled and U6 and U8 perform the operation (PAn - PAt)/2 4- Dn-When che output of US is negative, Q3 is disabled and Q13 is enabled and U28, U29 and U30 perform che operacion Dn - 4(PAC - PAn).
The combinacion of U14, U15 and U16 function as a zero error detector, i.e., Chey determine when PAn equals PAt. When the output of both U16 and U15 are positive, the perturbation sequence is initiated. The perturbation sequencing circuitry is formed by U17, U18, U19, U50, U51, U20, U21, U32, i 8 "\ Q4 and Q5. U18 functions as a "perturbation in progress" latch. U19 keeps crack of che number of perturbations that have been initiated. U38 and U39 perform the operation (PAq - PAi)/3 4- PA].. U41 compares the output of U40 wich PAn* If PAn is greater than PAi plus (PAq - PAi)/3, then the output of U41 is positive and indicates a Type II response. U43 and U42 perform che oper&Cion PAi - 2 and U44 compares this with PAn. If PAn is greater than PAl - 2, then the output of U44 is positive and indicates a Type III response. The outputs of U41 and U44 are supplied to NOR gate U45 which produces a positive output indicative of a Type I response in the absence of both a Type II and a Type III response.
The gating of che various responses is controlled by U46, U47, U49 and U68. Type I and Type II responses are gated by U49 and U68 respectively. A Type III response which occurs during the first perturbation is gated by U47 while one chat occurs in a subsequent perturbation is gated by U46. An output from either U46 or U47 will produce an output from U52 which will reset the "perturbation in progress" latch U18 via OR gate U69. When U49 indicates a Type I response, chis causes counter U62 co decrement the offset.
The delay timing for controlling the delay in firing the triac comprises U9, U10, Ull, U12, U33, Q6, Q7, Q8, Q14 and Q1S. U10 and U12 are ramp generators which produce the same fixed ramp starting when the triac current goes to zero during each half cycle of the line voltage. Ull compares these ramps with the new delay in U9. The output of Ull goes positive ac che end of the new delay. The output from Ull is 1 9 buffered by U76 and fires triac Q16 via trigger U77. U72, U73 and U75 determine when a change in line voltage or motor loading is great enough to merit a new perturbation sequence, and initiate same.
As already noted, this and other circuitry for implementing applicants' invention will be apparent to persons skilled in the art. Applicants' invention is defined by the claims which follow.
I -ASM48 :F1: PFCNTL.SRC MACROFILE XREF PRINT (:F9:PFCNTL.LST) 1SIS-11 hCS-49/UPI-41 rtACRD ASSEMBLER- V3 0 FACE 1 FULLY AUTOMATIC SINGLE-PHASE DIGITAL t1070& CCwTRDLL£R V. 5 - LOC OBJ LINE SOURCE STATEMENT I STin.e< 'FULL* AUTCPMTIC SINft-E-PHASE 0ISITAL MOTCfl CGN7*G-LER V. 5'> 3 3 INCLUDE*.FO: CRISTA BOl) ■ 3 1EJECT . . < o> *1 i QC 3 JC © S „ &<5~§i -OH IK ui M, fc» ■* o a. a q sj m m •«w> .«0)0 CO It K 2 J 2 — 111 « O < 3 < AC II 2 rinj u ui« a K z as ~ 2! M& 3 i *H 35 t G. ti 8 &£S « 5 ? S £ - lfiS £3St . 5 g »- .4u|hy .
Zmccft -> o < > ui H - *- ujdcaiKi^^ (ft o > f D uJ i - (il IL<>Id?B!§ ku£u S«?1-0 U^C&MUHi . Hiih z mSr r a. ui hi « . So uacou-J IE «-» -ul < E «t KJ BJ D at ►• 82 in a it Ti ^w kll — si £ f-i > 2i cnSj — u.
I. _ Ed" unnauwujfloaQH-ridjouiii lXX^jQL" 1516-I1 MCS-46/UPX-41 MACRO assembler, V3 0 PACE FULLY AUTOMATIC SINGLE-PHASE DIGITAL ??OT0?i CCsfTROLLER V. S»9. 3 BOUNCE STATE? SWT FFTF 0003 FFFF 0000 23 9N0C0ND 33 t 34 TRUE 33 FALSE 36 i 37 DEMO 38 DEBUG 30 SELECT EOU £0U EOU EOU OF FTTH OOOCJ* TRUE FALSS I5IS-II KCS-46/UFI-41 MACRO AS5En8_ER. V3 0 PAGE FULLY AUTGriATIC SIW9LE-PHASE DIGITAL nOTCft C&*TRCU.E8 V i —.,n 31 33 33 34 39 36 49 30 31 3S N SO^CE STATEPSMT e€'6Baspseeeaa?&»5ftseBasB'6>'S'&S'5>g'essae'Sa'a'Sessas'SiS"i>&&sea3Bfte'esBsg'Ba'eS'S&ssee FOR SiEFEREWCS P131POSSS THE PROTOTYPE CG?4TRQLL5R MAS A DIP SWITCH CE^ 1>€ BUS PC5»T, l>Si FOLLGUIM9 DIA^RAR CEFIMES T>« LCS1C CT n® SWITCHES: 37 i ©US • FUNCTION...- 26 » F-T ©17 TRUE - F&L6S 39 i +—♦ 40 i 8 1 - 1 7 UWUSED 41 i 7 1 - 1 6 U4U5EQ 42 » & 1 - I 0 3 UKUSSD 43 j & 1 - 1 P 9 UIU6S0 44 t 4 1 - * £ 3 UNUSED 43 i 3 1 - t M 2 OFFSETS USED C&FBSTB DISABLED '16 i 3 1 - 1 1 TABLE COMTRCL FULL POUER 17 j 1 1 - 1 0 8TA3T STEP 48 i «——♦ F PALEST T»tm£ SWITCH ESPRE68ED I ft F CGLWS* El* ITCH DEPRESSED !BJ T COLUMN BEeeaa'ffsEeaa^sE'ESiaaS'aaisssaaeaaeg'a-BB e e s e e e aa-a 0 e & e 3'a ssesesseosfiaasaaaaaasssa-a SEJSCT i > ! i *> :P i ■ J r ISIS-ll WCS-40/UPI-S1 MACRO ASSEMBLER. V3 0 PASS .
Ftf.LV AUTOMATIC S1W0LE-PMASE DIGITAL HOTCS CONTROLLER V. 5 LItS SOURCE STATEfSiWT §5 I SSS923flBB0&BB9 3 3 3fEea3'3 9aBE'B'BEES S-B B E 6 6 8 S S S 3 S S & 8 B S 9 3 ® 9 3 5 >3 3 S i) 'B J S 8' S B 9 9 3 '8 s E s B S 3 36 » 57 » H A C R 0 D J F H I TS O J! 3 SB > 59 FILL MACRO gMDAD 60 i FILL HACRO V. R»|. 0 41 ISAVE NOGEM - • - 69 KEPT 2?ID AD-8 63 OB 0 64 ENDrt 63 6RE9T0RE 66 DB O 67 EMEW - • - 68 MSG MACRO 69 i C-iEG MACRO V. M«|. 0 70 CPL A 71 IKC A 73 EMKS 7 - PQf!T I BIT 7 BIT 6 BIT 3 BIT * SIT 3 BIT ft BIT g BIT 0 BPS3QTH START/STOP BIT SIT BIT BIT BIT 0 START/STCB71 1 PULL MESB or*»V a BASIC TA3LE 0?i.V 3 TO 7 U-3USE9 -> SF DOS) . £8 TRUE -> IF 0SO . £3. TRUE -> EF OSffi) .EG. TRUE -> SF DS3K3 . E€. TRUe TtPlSR/COUKTEft 33. 3 &HZ CLOCK s a % at e e e e e a s-s a a a» r a e s 3 a e s 0 a «t * a a e- & e e e ® s s a * 2 e 9 s a- b e s a ; h 1. > !) j-} ~.0 i' i:."J i* I; H3 • i •J ") !j > ■h' li 8 8 J u8sS O uJ Z JQ £ ° « < e e ui w t-S(s(3a:a inhOikOO n k iu oe (V-UhQU I- > K 6 « O §x > o o ac H X U K Ul a. t- m »- IL oc u & QQA an* U » M i- h- wj« li saal^ a»a It. tk. W U lei &isr alSaS'icS t^2JSOh — jislii lissg mil atdH > =tus« SxSgS is -"-Sis is • 5 S 2 SI !W JO. > : km ; 1 -figs"- 'a . a^iel ill • i" 3 «! 3 j&Ccn§ . ■ 5»*e 8aa§ e 3bsS»-8S W <* *5 U S S * HI C Edgi VYVrff^Y eeesesKR & I H h- S 8 O a Si s O 0 e: « LOU nsion VEC?096 184 i JB5 t •Ea39aS9CaeBEEe3 3BBS09aBBeeeE£'£aBE&BaBBi!Sfl'SEaee5 3e'0BEe89S3S'2a'S'S3'3BESB5 3S9S'3'a 186 j 0000 187 on© CM »PRO&RAPt START-£?J •TXTftERi'lAl. &EBST- — 0000 043F 188 IMIT ) START UP VSCT&t OOOS 40 169 D8 06 DH I FILLSR 0003 4483 190 JOP EST! • i E3TERWM. IWTERR^T VSCTC3 0005 6A 191 03 06AH. 057H i FORCES CH£Cft8U4 0006 57 0007 4483 193 Js& TIFJT — - jTliro/COUNTER-VECTCH --- - r- 193 I 19$ 4 e b b b 3 9 9 3 3 3 3 3 0-3 b 3 s' e 6 3 9 3 3 3 ebbe-e-seee's 3 & 5 e'ebssbs 8- e s 9 9 3 £• 3' b b § 09-33393333'1 '3 & b b b 0 3 3 3 193 i ........ ... _ ... 196 i COP H 1 1 H 1 ^ d T 2 C us* 197 i £96 OS 'it> -4952. i?02 asrsssRQyert-PC&©iS -ir^c,-£_ 199 » 200 » a a a s s i g r e e &a-9 a ae a a a* s-b 9 a aa-s a a a a a a a a a a a g-s-s & e s a a a & & e s a «-i a ■£■ s s s r1 g & e a a a a a a a- s s e SOI SSJSsCT '81? «C :5s ' .8 c £ 5 »- n 01 S°B * e # m *5 g a: SO K M |> HOM 01 *- °. fc! •"• < « OKh-!i!«: « ce c Hiueu >• ®► srst^ss 33 a o _ 3 J t U«CBS b( inSS IM Ul 13 tt < o 2£u apm a - o> 38"" ®!»gs •*-*sS 3&*sL .
I pal-1 « -7 h* «• Ul H 25s5f Ul Otaia.2O«0< o •"* S ft til (K»- 3" ujwwx<{-3wiw_i ui &<<»•£ 51» ttnous(9^M!it"Uu Mffiec isasssa si^' ¥«.. .. Zi o . 5 &M<{ ^«;«iiii o <•! o a >»•#>. . . . . ■ .« . a .cto<* wnwm Sil?fcil§333iiii si ta ih « J 4 s E K « p; PS S9 111 $5 O in Sue b & 1 3 a 9 IH r gSfa -33fc IS! KG b. c 5 Si o 5t- H O SiaS ce P oe o W "S2 - IS Ss£3 5 " 3 bv «id * ■ * 0 ■ _l H o in S3 2t u nao^ii'>>orvOff>o-"d<»>(^o^renvwi-4jh»iDO'0»*rin&i'rfi-of,»coiho««fHn M TOfyftJWiaftjiwfMnicufurufHCiicyfWfBrafaOiiWfyftfttojfWOjrucirijCsrviriiiCiirtijrflii) »«>i!ii«Mh»g<«Airi«>vin4N0»0» <#>• nt» u> if> if» is* m ^ -o (DftjfHfucjfanitfwrartsniirwfHOafMftiwrotv (3 ® ^ u at ~ <• ►- 1 3 tns !l 1 > 10 _j 'Sd , «• li.
BO* O 00 — UJ 0 on o« tftnOOM\in © S3 8 S 5 O 6* A — UJ t O fJ D « tfl K fr «J « O Q 1:1 u. « ftpinnnnoftriririrtFlS* 0 tft h ih now 888888888888888 8 8 i§ 888 j * '* ft § 8 8 8 afiuoitono wca« ♦! 0076 boao 279 rvw £ROi IMASDFS bhl 3 i =13 0070 18 280 inc • - RO - - .. — i*l — 0079 boao 281 fsdv mo, smxoFs bf"l. $ lei's ' j 0078 18 282 iwc ao i* 8 007C boao 283 fov @r0. smaxofs en. t I Bjg .. . . 007e 18 204 iwc ro 1 *1 007f boao 285 30JL , . . nov sro. srtaxofb 8hl * » °16 ZOO 1 207 I NOU HAIT PROXIMATELY 10 BSCOMDS TO ASSUME tms «13tc5l 28 388 i UP TO SPEED. nsr SO 6SC&4D I3AIT TlfS 38 ARBITRARY AND 2b9 t cam readily BE chamtses) TO &CCGs30DATE AMY 8TA!IT-U> TlfSi. 290 i 39} bait: 0091 EA81 392 DJN2 83* jiait - • - i ccufct dos£« » 336 a -356 • 3& 0083 eb81 293 djnz.
R3. WAIT i LQ3PS tXI ASOUT oob3 ed81 394 djnz R3.iis.lf f\ 10 SECONDS 00b7 d3 293 bel r3fi I ..... oosa bfoo 296 R7» iO i PRESET 337 oosa c3 397 BEL 9)00 i 311 i 008b 0498 313 PHASE *@0 to main loop 314 i 313 i THIS RBUT1K2L 8t0pb 1>e mtca and baits foa r>e start/stop 316 t switch to 00 TRl£ ThEN 2t starts up with initialization. 317 » in scs1e applications this hay be an XHPQRTMrr feature. 318 j 319 HSTGJV 006d 9af7 330 anl P2. STRtFF iTUJM OT THE thysistcsl 321 wstcp1 008f 08 322 ins a. sus i load tks switc^s 0090 122f 323 JBO IWIT i IF sw is true p&n 00 sta^t tldtcl 0093 04BF 32'(} JtS* RSTGP1 J WAIT »-£RE 323 i 326 i this routine forces t« thyr1stc31 DM UvfTIL tut fuj-ffirf switch 327 ; IS TRUE 328 i 329 fullp.
ISlS-ll HCS-48/UPJ-4I MACRO A5S£nBL£R. V3 0 PAOE 13 FULLY AUTOMATIC S1W&LE-PHASE DIGITAL MOTOR CONTROLLER V.M»9 3 LCC OBJ L1K£ SOURCE STATEfENT 0094 9A0S 330 Ate.
P2> 3 TROW 33! FUi-LP 1' 0096 08 33a INS A. BUS 0097 323F 333 JB1 IWIT 009? 0496 33* JHP FULLP 1 33$ i 337 i 330 t 339 i ese s e s e s s e 9' e s « 3 3 6 e s ® «I e ff s e e t a a e 340 3EJECT itu?** ch tf£ thyrjstoa j LOAD Tf-£ SWITCHES I IP SWITCH TRUE T>'STtf START OVER /ttfcIT ►ERE JSJS-II MCS-46/UP1-41 MACRO ASSEMBLER, V3 0 PACE 13 FULLY AUTOMATIC SINGLE-PHASE DIGITAL. ROTOR CONTROLLER V M«9. 9 LOC OBJ I SHE SOURCE STATEMENT 341 , SS>fr»»9$B&BB&3>36fl6£3£'Si3-S&£ge?S3>&9e>'3 9 3a>g*01SE 9E ►CRATED ERRCSCUS PHASE AM9LE HEASURftENTS IT 399 t •M-SO HAS THE EFFECT DT S&EWIW9 THE PHASE ANGLE MEASL^ErSNTS 360 1 THIS SHEWING IS ACCOUNTED FCft IN T*iS CONTROL ALOOTITHTS 362 DBNCE: 00 A 4 OA 363 IW t A* P3 >C>£Cf» VOLTAGE LEVEL 00A5 DF 364 CRL A* f?7 — »OPPOSITE OF LAST LEVEL 00A6 929B 365 w«B3 PHASE »N0. &EEP LCC*IW® OOAS EAA4 '366 DJNZ R2 DBNCE iVE9i OEBGUNCE IT OOAA FF 367 WOV - 00A3 37 368 CPL A 1 AMD OOAC AF 369 HOv 87, A l BAV2 OOAD C3 370 6€l *B0 . - -i RESTORE RBO FOB MCffHAL CP9 - - 371 i 373 i MOM IS HAVE THE VCS-TA^Z ZERO CROSSIfJS 60 START THE 373 i TJfSEFl C0UMTIfS3-30US GLIC&S ^ tiAIT FOR TH2 CU51REWT - 374 ; TO CROSS JERO. Ift EFFECT ARE 'sZLASyPJ^ TH£ 7J;S£ BETfciSEEW 373 1 TVSI TtiO igl-fAT IS CALL PHASE AW^LE 376 t ooae 87 377 CLR A 'CLEAR PHASE A>$®l£ COUMT 00 af 63 378 T.A (CLEAR PHASE AWGLE CCCWT OOBO $5 379 STRT cnt - tBTf£7 courrr - --- 0091 9af7 380 MS, P2»fTR0FF J TURN GrF THYR1STC3I 00b3 8932 381 KDV Rl.i&O i Fcei »&>ISE ISTMUUTY kS. DELAY 383 i • LOOMMO fct T>S CURRENT CP> OSSIFY 383 i 461 i 482 > 4B3 > 484 i 4S5 i '966 » 487 BAITC. -see 469 490 491 491 i 496 i 497 i $98 i 499 DELO: 503 30$ 903 906 907 308 > 509 t 510 i 911 CUftOX 913 DJNZ Pi£V Rl.WAlTP iHAIT 390U6 TO LOGft FOB CURRENT Ml. SflAjrWT i TKS n*ft I HUH i4AIT FOR A 2ER0 CROSSING t 16 AL50 SET. IF IT DQSS'MT OCCUR ; IN APPROXIMATELY 3WS IJE ABORT AND » CD^T lf'W; WITH A DELAY CF 1 WW LOOK FOR THE CURRENT 2££0 CR0S9IW3 BUT THIS WILL MOT 60 ON FOREVER, THE VALUE OF hA»6fr DETERMINED TIC L0N0E5T TIHE TO CONTINLJE L0£»1N©. IF THE «AXWT PERIOD IS E*CEEC£D THEM ©U1T LOOKING AND EKIT IN CPL J95 DJNI A. P3 ' A CU303 ftl.UAITC » CVSCK FCj! 2E30 CROSS OF CWiREMT I SHIFT FLAVOR i ®0T IT iNO, ftEEP LOOKING m CERENT ZERO CROSSJWS IN THE ALLOTEO TlfC 90 FOflCE THE THYRISTd ON AND SEJT - - ■ - ;ov ?©v QflL STtP J?5P A, 11 R4. A P2. 8TROW TCWT - -PHASE ( ZERO DSLAY PROCEEDS 1USE HIN 2 CC&&JT C£LAY ; SAVE THAT DELAY fCSi «EXT TIr$ j TLftN ON THYRISTOsl -i STCs1 US COUNTER &?3>- — I RETURN TO MAIN LCC* ZERO CROSS u*q ha8 8EEK DETECTED •iSTCT CDUffTER 0113 43 913 ROV A. T l AMD SAVE PHASE AN9LS - 0114 AB 911 fSJV R3. A i IN RS0R3 919 j 916 .
MOW we HAVE THE PHASE ANGLE 80 BESIh TVS: D5LAY COU4TDOt£< 517 . 0119 FC 518 f3)V A. RS - - iLOAD TrE CU&REMT BELAY IWTO ■ 519 :£0 930* * r.$e . flACRO V H«l. 0 0116 37 321* CPL A »KAK£ VALUE IN «E® A 0117 17 933+ IMC A i TUO'B cciPLifa^fT one 62 933 ?aos/ 7. A i ftMD 0119 49 924 STRT CMT f 8TAAT TKE TI«ER 939 936 537 928 939 01IA OA 930 IW A.P2 0113 37 531 CPL A one 93 3E 933 JB4 C£LAY 01 IE B6F3 933 JPO CAL 3 0130 76F0 S3 4 JsFl CAL3 939 536 ALL CHANGES IN TVS APPLICATION CF THE PHASE &««_£ AMD (SLAY OCCUR Oft TKS POSITIVE HALF CYCLE' THIS AVOIDS PROBLEMS ASSOCIATED KITH TV'S ASSYMETRY CF T»S fciAVEFCSr» » LCOs AT T>S VCLTMJE I SEE IF POS HALF CYCLE iNO> SO ©0 DELAY At53 FILE THYR1ST0R/SCR i TEST FtSl READY TO DO SRD CAL SECTION iTEST FOR READY TO DO 2ND CAL SECTION , NOW CHECK IF INTERVAL HAS LAPSED TO i TRy FOR FIRST CAL ISJS-I1 MCS-48/UPI-41 nACRQ ASSEMBLER. V3 O PACE FULLY AUTOMATIC SINCLE-PHASE DIGITAL ROTOR CON! ROLLER V. N«=9. 5 LOC OBJ LIW SOURCE 0122 K U. Ui 537 DJNZ 538 539 0124 BF3C 540 nov 541 03 26 FB 542 rtOV 0127 6C 943 ADD 544 0)26 53F0 545 ANL 012A 47 546 SWAP 0I2B 0330 547 ADD 012D BS2F 548 NOV 012F AO 549 J-OV 0130 AS 550 MOV 0131 FO 551 NOV 0133 47 533 SWAP 0133 530F 553 AWL 013$ C63E 554 JZ 555 0137 FO 556 KOV 0138 47 557 SWAP 0139 07 558 DSC 013A 47 559 SWAP 0)38 AO 560 NOV 013C S4EE 561 JWP 563 J 563 i 569 p 565 DELAY. 013E 1642 566 JTF 0140 343E 567 568 FIRE: 0143 8A0S 569 OR L 0144 65 < 570 STCF 0145 OA 571 IN 0146 9250 573 JB* 573 974 0148 &64E S73 J5F0 014A 764E 576 JFI 0I4C 24)93 577 jtv 570 » 579 i &80 i 581 JS1PPHS 0I4€ 049B 583 j5*p 583 i 584 i 585 » 586 i 587 i 588 i 589 > 590 DISPA: 0)50 FB 591 rlOV R?» 81NTV*_C A, S3 A, R4 A. 80FCH A A< BCSTFTAB RO.80FFPT 6R0. A — RO. A A. «RO A, iOFH DELAY A, «RO A A A £RO» A CM.! - IF RBO:R7 CINTERVAL) 16 ZERO THEN Ch£C* FCR FIRST CAL as JUST 00 WAIT FOR DELAY AND FIRE THYRISTOR/SCR RESET INTERVAL IN CASE L£ EKIT FOR ZERO COUNT CALC CURRENT SUN BY ADDING RBO: R3 SAVE CURRENT POINT FDR CALIBRATE < A=ADDRE88 OF OFFBET TABEL SET COUNT* OFFSET LOOK AT COUNT IF COUNT 3 ZERO THEN DO $£3T TRY TO CALIBRATE AMY FURTHER . ..
OTHERWISE DECREfiSNT CAL COUNT BEFG?E ATTEMPTING TO CAL AWD SAVE IN OFFSET TABLE 90 CALIBRATE - au. OTtSa PR0CES81 ftj© 18 60 WAIT »FDft TlfER TO LAPSE AND *IRE Tl« THYR 2 STQf) FI&E DELAY — ?2, STRC?« TCNT A, P2 DISPA JI^PHS Jv^PHS Bf?COTH #DELAY DOM£» --*no i fire thyristces i 8tc t>c tlf^r ictl-ck p08 half cycle i if positive half cycle * t>sn 00 zkplehsmt table - • t elbe check fob cal phase's t17 cal active then do mot i smooth t eu.se smooth ESTRA JW^S @0 PAST PACE BOUNDARY phase <00 'back and uait for voltage at this point it ib 1>e positive half cycle and it is woi tips: to calibrate eo ns current sm; is checkeb and IF it does mot exceed the bottgj limit the phase am3le 18 compared with the current TABLE entry and adjusted if afpropiate -CALC THE SUN OF PHASE AMQLE ISIS-II MCS-4S/UPI-41 MACRO ASSEMBLER' V3 0 PAOE 16 FU-LY AUTOMATIC SIN©LE-PHAS£ DIGITAL ROTOS CONTROLLER V. M®9 S LDC OBJ LINE 60JRCE STATEMENT 0151 6C 593 ADD A. R4 - » AMD DELAY 01 53 AD 593 MOV R3, A iSAVE IN RBO:R5 FOR LATER 0633 37 594 CPL A i IF THE BUM . ©T. THAW TKE &';94 17 595 INC A i ^RECALCULATED BOTTOM LIBIT 9195 03E4 596 ADD A. IHINPT j OFFSET TABLE ENTRY 0157 FD 397 nov , A» 315 » 0158 <57 596 'swap A - - J U53-ES9 ThE 0FF8ST 18 ALREADY 013? 530F 599 am.
A. IOFH i AT ZERO 0196 F66A 600 JC PHSOftl i THE BOTTOM LIMIT HAS NOT BEEN EXCEEDED 015D 0330 601 ADD A, SOFFTAB ■ OTHERWISE DECREMENT THE OFFSET 015F A8 602 110V RO, A »POINT AT THE APPROPIATE OFFSET TABLE 0160 FO 603 MOV A. SRO i LOAD THE ENTRY 0161 530F 604 AWL A, 80FH — ■» IF TKS CTFS2T 18 IERO THEM 0163 C66D 605 JZ pnsca i DCTJ'T ADJUST 0169 FO 606 MOV A, &R0 i ELSE DECRErSNT BECAUSE THE TABLE 0166 07 607 DEC A i is too Ley 0167 AO 608 MOV £R0, A iREPLACE IH RAM 0166 3f6D 609 JtSP PHSG& iQO USE OFFSET 610 PHS0K1 .
— - • ...... .. — J 016A 0330 611 ADD A. 80FFTA3 t USE THE CURRENT OFFSET TABLE 016C A8 613 MOV RO. A iRBO; aO=CFFTAB<8U4/16) ... 613 PH80K: • • . : - 0160 3400 614 CALL H0DCF9 i ©0 RODIFY CALCULATED OFFSET 016F E3 615 M0VP3 A, ?A i A®9UWTAB(OFFTAB(SUM/16)> 0170 AO 616 r*OV R5» A - — - ->SAV£ PHASE.AMSLE 617 » 618 » THI6 18 T>£ M£A3T OF T>32 CONTROL AL0ORITHK* H£RE" 619 i THE BASIC surras 19 U8£8> TO OSTERMIPS THE E>TIft£4 620 i PHASE AMSLE Ai^D IT 16 CClFARED TO THE CERENT PHASE 631 t Mt9L£ Af® Tt£ CURRENT ©SLAV IB flODlFIO ACCGRDIK3LY. 0171 37 623 ' CPL A • (C09&ARS COUCT TO OPTIMUM 0172 17 624 !?X A I FROM T>S TABLE » OFFSET 0173 68 625 ADD A. RO I ADJJST OJTCOtil WITH OFFSET 0174 68 636 ADD A. R3 i IF Tt-S CURRENT PHASE ANGLE 18 0175 C685 627 JZ PKABJ i EQUAL This CTIiSJ^ THEM DO JgaTHlMS 0177 F687 638 JC CSTO » SF IT IB ©T. THEN ADD DELAY 629 » ELSE KCREABS DELAY 630 j 631 i BDWtVER T»S DECREASED DSTLAY IS MOT IMPOSED IrtMEDlATELV 633 i . IT 18 DELAYED TO FORCE DMVENIU9 TO PREVENT OSCILLATIONS 633 i 0179- BE1E 634 MOV R6. BHLDOFF - « ELSE DECREASE DELAY • 0173 IF 635 INC R7 i AMD DELAY NEXT SAPTLE PERIOD 017C F7 636 RLC A i DOUBLE RECOVER CSi LOADING 0170 97 ■ 637 CLR C 1 017E F7 639 RLC A i DCU3LE AGAIN Q17F 6C 639 ADD A.R4 i 0160 E60A 640 DELO iTCO iSJCHi USE 0 DSL AY 0182 C60A 611 JZ D&LO i 0184 AC 642 rcN R1. A i SAVE DATED DELAY 643 PHASJ: 0183 049B 644 JMP PHASE 645 CCrO: 0187 97 646 CLR C » DIVIDE D1FF BY 3 JSIS-U *CS-48/"JP!-41 KACRC ASSEMBLER. V3 0 PAGE 17 FULLY AUTOMATIC 51*©LE-PHASE DIGITAL ROTOR CONTROLLER V. f*»9 S LOC OBJ LINE SOURCE STATEMENT OJBB 67 647 RRC A cie? C*B9 648 JZ PHASJ i IF RESULT 0 THEN C2\ O10B EEB9 649 DJNZ W6. PHASJ i IS IT Q& TO UNLOAD OIBD BE01 650 MOV R6. 91 > YES OIBF 6C 631 ADD A. R4 >INCREASE DELAY 0190 AC 692 nov R4. A ; SAVE UPDATED DELAY 0191 049B 693 jmp PHASE 694 i 655 , 6^6 i ®3«®flfisa&a33ffiiseflaBes4®'iafi3E90se9e33as£a2e'fiflBe'Baes9ao29fflaa3saas3g®Bti!EBB ISIS-II MCS-4B/UP I-41 MACRO ASSEMBLER. V3 0 PAGE !G FULLY AUTOMATIC SINGLE-PHASE D16ITAL HO TOR CONTROLLER V. M®9. 9 line SOURCE STATE^NT 698 / B(?sa5sesBa'S5asssfi9S5eae®ae'ei5®£'£'ess®asa30!KrB5®2Sffiff"2sa3"SBSec3'e'»es«a'a90esfis®5fl 699 i 660 i 661 i 662 J 663 i 664 i 665 > 666 i 667 > 666 i 669 SMOOTH: GFF6ET 8 H O C T H ! ;H THIS ROUTINE SMOOTHS T>£ OFFSET TABLE ACCCSIDINC TO TKE FOLLOWING ALGORITHM: ADJACENT POINTS ARE ADJVBTED SUCH THAT TKE DIFFERENCE BETWEEN THEM 19 EQUAL TO HALF THE DIFFERENCE IF TKE ABSOLUTE DIFFERENCE WAS GREATER THAN 3 0193 D5 673 8EL R91 *USE RBI FOR W0S4 674 SrtO: 0194 BS34 679 MOV RO. ft&HSTAD i START ADDRESS FO?* SMOOTHIE 0196 BEOA 676 nov R6.ftSMNURB JKAXIHUK fifJHBER Or ELEMENTS TO S710QTH 677 SHI: 0196 FO 676 MOV A- IR0 >GFFTA3 A 1 SAVE IN RB1. R4 01A1 FB 689 MOV A. R3 - t- — »0FFTA3<1-I> - -- - - - - 01A2 C6AA 686 JZ 8M3 iBET FLAG FOR ADD CF ZERO 687 WE© 688*< NE@ TIACRO V.TpIO 01 A$ 37 689+ CPL iHA&E VALlXT IN REG A 01 AS 17 690* IMC A » TWO'S COKPLIHEtJT 01A6 9C 691 XCH A»R4 -«&=>GFFTA5<1> 01A7 6C 692 ADD A.Rt i AsQFFTAS 8M3 t 694 8M2: 01AA PC 699 MOV A.R4 i A^CFFTAB (1 > 01 A3 97 . 696 CLR C >esr 0 LAC *7 697 CPL C ...... 1 CMRY IF ADD CF ZE$*0 • 698 8M3: 01 AD E6D9 699 JNC SM5 ifrSSATIVS DIFFERED 01AF 97 700 CLR c . »FORCE CARRY OFF 01B0 67 701 RRC A i A»(OFFTAS-0FFTA3<]-1> >/2 OlBt 1300 702 ADDC A. 30 i ROUNDED 01B3 AD 703 HOV R9. A (SAVE A IN RBI:R5 01B$ 03FD 701 ADD A. 1-3 » IF A . EQ - G1 . LT. 3 T»«N IGNORE 01B6 F66A 709 JC SM4 i ST IS , ST. BO PROCESS 0108 24E9 706 JMP SKNKT i ELSE IGNORE 707 SMS: 01BA C8 708 DEC RO J1*1-1 OIBB FO 709 MOV A. &R0 * A=* OFFTAS < I'll 01SC 6D 710 ADD A. R9 i A»CFFTAS* 711 i 1 TO EQUAL THE OFFSET LIBIT <10) LESS TKE TOTAL 717 J SMOOTHED OFFSET 71 a > 719 FIXCNT: 01C1 530F 720 ANL A. 300001 W1B iMAS3 OFF PREVIOUS C0UWT 01C3 AD 721 MOV R5. A • SAVE ZN RB1.R3 722 NE@ - • • — . - - - 723+> NEC MACRO V. H-l.O OICi 37 724+ CPL A iMAKE VALUE IN REG A OIC3 17 725+ INC • A i TWO'S CCKPLIMEWT 01C6 030A 726 ADD A. SHAX0F8 i TOTAL MAXOFFSET - TOTAL OFFSET 0)C8 47 727 SWAP ' A iPUT DIFFERENCE IM UPPER NIBBLE 0IC9 &3F0 728 AMI- A.£111)00008 - - i IMSURE LSM ZERO- — -- OICB 6D 729 ADD A, A3 1 ADD SACK OFFSET OICC AO 730 fX)V ?R0. A »STEVE IN OFFSET TABLE 731 i 732 i . THE COUNT FIELD IN TVS OFFSET TABLE IS MOM ECUAL TO TKE 733 » DIFFERENCE BETWEEN TVS TOTAL OFFSET AND TVS MAX 2HUM 734 » OFFSET. - - - — — .. 735 i 736 ) , NOW PLU£ THE MEW CrFSO INTO TV'S: CALLlft TABLE NOTE THAT 737 » THIS CODE ASSUMES THAT TVS CALLIB TASLS 18 E3ACTLV 16 « 738 i ADDRESSES LESS THAN TVE CFFTAB 739 i OICD 38 740 2CH A, RO =■ — — -1 PUT TVE ADDRESS IH RBIsftO - - - - OICE 33E.F 741 AM- A. I I11011113 i ADDRESS TtS CALLIK OIDO se 743 KCH A/ AO i A AftAI» SB T>S TOTAL CB7BET AND COUffT OID1 530? 7*3 *L A, 30000111 IB (HAS* OFF TVS COUNT 01D3 AO 744 MQV £R0» A »MAME CALL IK OlDS 28 745 XCH A. RO (RETUtW TVE ADBRE88 TO TVE QFFTAB 0103 $3)0 746 OSL A. S000100003 -f-- — - - —— — — — ( • 01D7 38 747 KCH a, so j«MD RETIS1M IT TO RBI: SO 01D8 83 748 RET i KETUSUI , 7*9 i ..... 790 1 72,1 , THE DIFFERENCE MAS MEGA TIVS SO CALC HITH TV$ A3S(DIFF) / 91 1 752 SMS: __ . 733 N2G 754+i NEC MACRO V. K=1.0 01D9 37 73S* CPL A iHAKE VALUE 1ft A 01DA 17 736$ IWC A > TWOS COPPLIMENT OlDB 67 757 RRC A iDIVIDE 0V 2 01DC 1300 758 ADDC A. SO i R0UKD OIDE AD 7S9 MOV 83. A »SAVE IN 301:85 OlDF 03FD 760 ADD A. 8-3 t IF ABS4DIFF) .LT. . 03. £G 3 IOMORE 01EI F6E5 761 JC 8M6 J ELSE IF . ©T. 3 THEM PROCESS 01E3 2?E9 763 JP? BKWKT » ELSE leNCHE 763 SH6 OIES FO 764 ROV A. «R0 i AeOFFTA9 o 766 1 < 4 0FFTABCI>-G"FTAB<1-1>)/2 0IE7 34C1 767 CALL FI2CNT i©o Fia t>s coukt 768 5mnxt 0IE9 EE 98 769 DJNZ Rfc.SMl J IF I>10 THEN DC*£ 7 70 DONE 1816-11 f*CS-46''UPt-4l MACRO ASSEMBLER, V3 0 PAGE 20 PULLY AUTCflAT JC SJN0LE-PHABE DIGI7AL JSQTOR CONTROLLER V. M-9. 5 LOC OBJ LINE SOCAGE STATEPCMT Ol£B CS 771 SEL R90 —i RESET REGISTER SttK 01EC 049B 775 JFf> PHASE i ©0 BACK TO HAJT FOR VOLTAGE CROSS IN© 776 i 777 t 778 i s e ae»s«* a ®«£ a-ff as»®e«es« a s y»®®«e« s easc$a ssccc«a« a a a« a a s«-E e«« *ssascs®* ae 8 ® ® »* s 77* 3EJEC7 JSI6-II HC5-4B/JPI-41 MACRC ASScIPLER, V3 0 PACE FULLY AUTOrtATIC SINGLE-PHASE DIGITAL KOTCR CONTROLLER V P1»9. 9 l.C-'l ; LOC OBJ LINE SOURCE STATEPSTNT 760 i ®3«®43fl«&fr3)9 £. Baeac«'SseB89»s.4isa«ociji0aaise8a-9as.asft»fi6aB»®»®®aaBaaia®fl6e3as3 761 i 782 i CAL IBRAT10N ROUT I N E B 783 * 784 i 01CE 4 40B 783 CALI: Jrt> CAL 1A »JUMPS TO PASS PA£E BOJWDARY OtFO 4416 786 CAL2 jrF CAL3A - -- — - _ . . 01F2 442F 787 CAL3 JMP CAL3A 788 i 789 » FORCE CODE INTO NEXT PACE 790 » 791 FILL 30 OH 792*i FILL MACRO -V C ■ _ - - ... ..... 0200 00 eio* DB 0 iNEHORY FILLED TO TH18 POINT WITH 0200 811 ORG 200H 812 MGD0F8 0200 FO B13 HOV A. iRO 1 LOAD LAST OFFSET 0201 93GF 814 ANL A. iOFH 0203 fifQ 813 MOV ROr A - - . - - I SAVE OFFSET IN RO - - 0204 08 817 IMS A. BUS (LOAD SWITCHES 0203 320*5 818 JB2 moosi t IF TRUE THEN USE OFFSETS 0207 B8G-4 B19 HOV RO. SO * ELSE FORCE OFFSET TO ZERO 820 H0D0S1: j 02a? FD 822 HOV A,R9 i ADJUST WITH OFFSET 020A 63 833 RET i RETURN — - — 824 i 829 i THIS IB T»-E FIRST PHASE OF CALIBRATION 826 i . 827 » THIS ROUTINE IS ENTERED TO BE6IN THE CALIBRATION PROCESS 828 i T»SL CURRENT PHASE AM0LE IS SAVED IN RBO: R2 FD1 THE ?SST 839 i PHASE. - TKE DELAY COUNTER. RBO: R4. IS K£REt334TSD 3V SO 830 i AND T»S FLAPS *WE SET TO CAUSE ThE ?SKT ENTRY TO @0 TO 831 i CAL2, 832 i 833 CAL1A: 0208 F3 833 rW A. S3 iBAVe Cflf# PA 020C AA 833 rtov R3.A -- « IN RBO: R2 020D 63 836 CLR FO > BET CALI FLAQ QrF 020E A3 837 CLR F1 1 AND 020F 83 838 CPL F1 i BET CAL2 FLAG Ofi 0210 FC 839 HOV A, R4 » LOAD CURRENT DELAY 0211 0314 840 ADD Aj 920 » ANO ADD 30 0213 AC 841 KOV R4. A i AND RESTORE TO RBO.RS 0314 MTE 843 JPip CALC lNCU 00 DELAY AND FILE 843 i 644 > 343 i 846 i 847 i 848 > 959 j. 830 i 831 t 832 j 833 ' THIS IS THE SECOND CALIBRATE PHASE T^ DELAY HAS EXPIRED AMD A NEU PHASE AN9LE HAS BEEN READ. THE CURRENT PHASE ANGLE 18 SAVED IN RBO. R5 AND RBO. R6.
THEN THE.CURRENT PHASE AT&LE IS SUBTRACTED FRGft THE INITIAL PHASE ANCLE S&vED JUST BEFORE THE IMPOSITION G? THE 30 COUNT DELAY IF Tt£ CURRENT PHASE ANGLE 18 GREATER THAN THE PREVIOUS ONE THEN IT IS ASSUrtED THAT THE CURRENT OFFSET (TABLE) IS TOO LOW I- THE CALIBRATION PROCESS IS TERMINATED HERE WITH A BRANCH TO THE APPROBATE ADwVST ROUTINE. ib p i b ■ : i -j) il f-i 3 I' j j .; ; b i > 4 m- . !l:i 1SIS-II MCS-*6'UPI-4J MACRO ASSEMBLER' V3. o FAGE FULLY AUTOMATIC SlNGLE-PhASE DIGITAL PSOTOR CONTROLLER V M»9. 5 y ■ LOC OBJ 0316 A3 0217 99 0216 F8 0219 AD C21A AC 02IB 37 031C 17 021D 6A 02IE E666 0220 03FD 0222 E627 0229 IE 0229 4420 0227 37 0228 9fe2B 022A IE 022B BF05 022D 4*SE 0T2F EF3F 0531 A62F 0233 r-o 0234 A3 0239 FO 0236 53CF 0238 03F6 023A C65S 023C 10 023D 445S 023F FD LINE 894 . 659 i 836 i 837 < 638 ■ 859 CAL2A. 860 861 863 863 864 665 866 867 866 669 D1V3 870 071 872 673 874 N003 679 676 877 676 nCj30: 879 660 881 * 682 ; 663 » 684 i 685 i 666 i 687 > 868 i 669 -690 < 891 i 693 » 893 . 894 i 699 C AL.3A 696 697 698 B99 900 901 903 903 904 903 90fc CAL3 907 905 SOURCE STATEMENT CLR CPL MOV MOV MOV CPL INC ADD JNC ADD JWC INC JflP CPL JNZ INC CJNZ f*OV MOV MOV MOV ANL ADD JZ INC JMP MOV NEC IF Tt-S CURRENT PHASE ANGLE 16 LESS THAW THE PREVIOUS THEM THE DIFFERENCE 16 DIVIDED BY 3 AND SAVED IN RBO: R6, TH18 VALUE WILL BECOME TKE T>S*E5H0tD WHICH WILL DETERNIhS IF T>E TABLE SHOULD BE ADJUSTED. IE: PT=P2+/3 F1 FO A. R3 R3. ft R6. A A, US TOCLO A. i-3 PI0D3 R6 D1V3 A MDD30 R6 R7. »C*i.CYC CAL4 i ADJUST T^£ FLAG TO FCSCE CAL3 j BET 3RD CAL SECTION I LOAD CURRENT PHASE ANGLE i ALSO SAVE IN RBO:R9 i AND RBO R6 ; SUBTRACT PREVIOUS t FR0P? CURRENT i AMD CKEC* FOR CURRENT . ©T. PREV i IF 60 T>EM THIS POIPfT 16 TOO LOW i DIVIDE THE DIFFERENCE 3Y 3 i AND ROUH0 i BET NUWER OP CYCLES 70 LOOK FCfl j RECOVERY THS LAST PHASE CF CALIBRATION MONITORS T>$ ^ST '.V CVCLES AND LOOKS FC?l TKS PHASE AN9LC TO E3CEED TKE THIS8H0L0. IF IT DDES Tt-£N TKS CURRENT CTFSET IS TOO LCK 60 T>£ OPFSET - - -IN THIS REGION 18 EFFECTIVELY DECREASED r$TTI?*@ A HIGHER CR 6AFER TABLE. IF TVS RESULTING PH&SE AWGLE STAYED BELOW THE THRESHOLD THEN TKE OFFSET IS INCREASED EFFECTING A LOfER TABLE 4>BiICH KILL RESULT IN GREATER ENERGY SAVINGS.
THIS SECTION ALSO fSGHITORS THE PHASE AKGLE FOR A ftAR&ED DECREASE. IF THE PHASE ANOLE DECREASES FRCn 7>H IttlTlJM. v PHASE ANOLE AFTER THE STEP DELAY BY MORE THAN TWO THEM IT 16 ASSUMED THAT TVS KOTOS IS BElKfc LOADED 80 T>£ PROGRAM BEATS A HASTY RETREAT ANO EXITS TKE CALIBRATION EARLY.
R7. CALS RO.IOFFPT A. IRO RO. A A. SRO A. SOFH A, ICFSLtfl CALE31 ©RO CALEB2 A. RS i SEE IF CAL PERIOD UP ,SINCE PA HELD* PULL TABLE DQStf I INC OFFSET IF NOT 19 >INSURE HO OFFSET CALCULATES OVER 1 iIF 80 EEIT h$RE i ELSE INCREMENT OFFSET i THEN GET OUT » SEE IF PHASE ANGLE fENT ANY LOWER - n . i J i. j r|J vi ;i > Hi !■; ) r i', 0 b F' i • ■P 11 i: N ; 3 n i 19JB-JJ HC6-4B/UPJ-A1 M*C*0 assembler, v3 0 j fully automatic single-phase digital motor controller v.
PACE M-9. 5 "i Ln it il 3- hj ■i' LINE SOURCE STATEMENT 909 *■; WEC MACRO V.^l 0 . - 0240 37 *910* CPL A . MAKE VALUE IN REO A 0241 17 911 + INC A ( TUO'S CG31PLIKENT 0242 6B 912 ADD A, R3 0243 F640 913 JC same j NO. §0 ON 0249 17 914 INC a »SEE IF LOWER BY &S.Y 1 0246 C64& 915 JZ SAME - - - i YES. ISNQR6 AND ©0 ©4 0249 17 916 IMC A (SEE IF LOWER by c?*-y 3 034? c647 917 J2 SAME i YES. IGNORE AMD 90 cn 0248 4«5 919 Jtt? CALEX3 j NO) ASSUME MOTOR BE INS LOADED 919 SAME: 024D FE 920 f4DV A. R6 iSEE IF PW > PT 024E 37 921 CPL A , SUBTRACT AMD - - 024F 17 922 lt*C A i COTTARS. 0250 ifi 923 add A. R3 j 0291 Mt 924 JMC CAL 4 4 NO CONTINUE * 0293 446 6 923 JW TOCLO » YES THE CURRENT CUTSET IS TOO LOU 926 CALEXI: 932 CALEX2: : ■ - .... 938 CALEX3; 944 CALEX4: 950 CALEff. 025!? 69 931 CLR FO i YES. MO CHAN6E, TUWN OFF 33D CAL SEC 02 5 i BF3C 953 MOV R7. IIWTVLC >END CAL PERIOD 025B FC 953 &ov - Ar R4 s RESTORE DELAY - 0239 03EC 934 add A. $-30 t TO IT'S VALUS UPCti ENTRY 025b AC 933 MOV R'3» A ' i 035C 3A3E 996 delay . tSET CUT . . 937 1 938 CAL4. 939 DELY1: —. — . - . - - 025E' 1662 960 JTF F1RE1 iWAIT FOR DELAY TO EXPIRED 02 bfr 961 wS'f* D£LY1 962 F1RE1: 0262 BAoe 963 CftL P2. STRON » TURN C?J TRIAC 0264 W9B 964 J?<& PHASE 963 i 966 i THE PHASE ANGLE CONTINUED TO DROOP SO IT IS ASSUMED 967 i THAT THE CURRENT TABLE IS TOO LOU AND fcSL INCREMENT 968 j THE OFFSET 969 i 970 TGOLO 0266 BB2F 971 MOV RO. 80FFPT tLOAD RBO;RO HITH ADDRESS OF QFFPT 0268 FO 972 MOV ■ A. feRO ■ LOAD A WITH ADDRESS OF OFFTAfi(CALPT> 0269 a8 973 MOV RO. A »PUT TKE CURRENT QFFTAB IN RO 026A FO 974 riov A. ERO iWOW INTO A 026B 530F 975 A^3_ a, SOFH i HASX OTF CALIBRATION C^T 036D C695 976 JZ CALEX i IF OFFSET ALREADY ZERO DON'T ADvUST 026F 3d 9 77 XCH A. RO j PUT ADDRESS 0? OFFTAB(CALPT> INTO A 978 j 979 i THIS NEXT SECTION ASSUMES THAT THE ADDRESS OF THE CALL IF? 980 j TABLE IS EXACTLY 16 LESS THAN THE ADDRESS CF THE OFFTAS 991 i ADDRESS WHERE THE CALIBRATION STARTS. IF IT IS NOT THE 982 , RES'JLTS ARE UNPREDICATA8LE '53 ;P ■ 0 3 i; .> ; i ) !l J |j , f; f I I t i : ') %r ISIS-I1 HC5-46 (JPI-41 fWVCRO ASSEHBLER. V3 0 PA©E FULLY AUTOi'lATIC 5IWfiLE-PHASE DIGITAL HOT Oft CONTROLLER V. rs=9. 5 LOC 06J LIME SOURCE STATER3LWT 0370 33EF 994 A?i&_ a. giuomisr 0272 36 989 SCH A< RO 986 937 c-&e 986+1 t&e AACRO V. P^l 0373 37 1 *89+ CPL A 027% 17 990* IWC A 0273 60 991 ADD A> iRO 0276 E67A 992 JMC ADJOS 0378 ♦ 4 55 993 CALEH 999 ADJOS: 027A 3d 995 KCH A, RO 0376 $310 996 GIL A. £000100003 0270 FO 997 ?*DV A. &R0 027E 07 998 DEC A 027F AO 999 P10V ERO.A • 0380 •? 455 1000 CALES? 1001 i 1003 i ... 1003 ( s b ® a e a h a « 3'S s a s 2 a s a s s 9 a s a a a a g e e s a 3-S' a e 84 »fJODIFV TME ADDRESS t PUT THE PSODIFIED ADDRESS INTO RO i AMD TKE CURRENT OFFSET IS IN A i HAXE VALUE IN REO A * TKO'S COMPLIANT jCOMPARE THE CURRENT OFFSET AND LIMIT iIF CURRENT OFFSET ©T. LIMIT ADJUST t ELSE DO NOT ADJUST TKE OFFSET •PUT CALLlti ADDRESS INTO A (HAKE CPFTASICALPT) (LOAD OFFSET i ADJU9T OOUN 03? LESS OF AM OFFSET * RESTORE I WTO TABLE f EXIT JSIS-11 HCS-46/UPI-4I MACRO ASSEMBLES. V3 0 PASS: 2S FULLY AUTOMATIC SJNOLS-PHASE DIS1TAL MOTOR CONTROLLER V. i LOC OBJ LINE SOURCE STATEMENT 1005 , a^«-B2.a3ijfle-es39®j"S'S'S'SSBe'8'8®flsa£'3Bessa3«S'j;'3 3-«fiaB33S!Dsa'Sa9923'Sa'fia-0'&'3a'Sfl«Bt>sa.zis 1 006 i 1007 » i NTEUUPT' HUHHS 1008 I 1009 » 10J0 TINT: ' 0302 93 1011 RETH - — -iftETURM - 1012 EXTI 0363 93 1013 RETR 1414 i 1019 i 3016 i ®SfiB»9 5aSSaa6$3aBB8*99®9e«B«tEBgaa33SaB'B'BE>3S'999anaSSfl'BI 1027 > 1036 . 1039 I030*» SOURCE STATEMENT •5B€CS99e®'S9fl0ma&ce'tsa'Sae&a'5>BsfiBe6eeiB,saas0as9a38i5s®H2effie«a»sa-3B»ece®Beffa0fiee 3 A S I C OF E ATI Kg TS3LI THI8 TABLE CONTAINS TK5E OPERATING PHASE AW0LES BASED ON TKE SL*1 OF HEA5UHED PHASE ANGLE AND T»£ DELAY FOUND VJHICH MILL £EK£R£TE TK*T PHASE AMCLE T^S PHASE ANGLES ARE LOOKED UP IN THIS TABLE BV ADD I MS THL f&ASURED PHASE AN5LE TO THE GENERATED DSLAY AMD OFFSETTING THE BASE ADDRESS TO POINT TO Tt£ PROPER ENTRY.
FILL FILL 30CM MACRO 0300 00 1160+ DB 0 j^EPQav FILLED TO THIS 0300 1161 ORG 30CH 1163 SINCLUDE< FO AUTOT& SRC) °1163 ; Auto c si i brats control tabls el164 t °l16? i R°- 12 - —r • el 166 I B<= 70 B1167 ) D1168 i KA3DLYB 180 - - -•• •• atS69 j hl^T- 336. 4 =1170 - - ( < 4| HAJlPTa 70. 88 00E4 BJ J 71 / a 1173 HI*S>T EOU 2S8 0047 = 1173 fsAXPT EGU 71 0300 6$ = 1171 dfc 100 toffisi: a • • - 0301 64 *1173 rife 100 toffa i'i: 9 0303 64 S1176 tb 100 t of ful: 2 0303 64 S1177 rib 100 - i • $ ■ — - - - — — - -- 030? 64 °H78 tb ICO i ePfsei: 3 030i 64 al 179 rib 100 » 6 * 0306 64 °1180 rib too ioffsfffc: 7 0307 64 -1161 ri* 100 i offasi: 8 0306 64 °1183 rib 100 j o??es4: 9 0309 64 = 1133 rib 100 > o?fset: so 030A 64 «U84 too ; 0 " / 030B 64 <=1185 rii) 100 i o?f s©i: ia 1 030C 64 <=J1B6 rib 100 » o£f bs4: 13 030D 64 = 1187 ria 100 »off«e4: 14 030E 64 al 168 rib 100 • of#&®t: 13 ©30F 64 = 1189 rib 100 t o?#as4: 16 0310 64 -1 V90 rib 100 ioffset: 17 0311 64 »119» rib 100 » of fosi: 18 0313 64 *U9» rib 100 ieffect: 19 0313 64 ®1»93 rib 100 i Off*Bet: so 031$ 64 «1194 rib 100 i 0 P 3) 3 t • 21 0313 64 °l 193 rib 100 t e f i? s S: 33 0316 64 31196 rib too ioffsefl: 33 0317 64 <=1197 db too i offsst* 34 0316 6$ -1198 rib too t offast 39 0319 6$ ®1199 db 100 i offish' 36 031A 64 ■1200 rib 100 i offish: 37 031B 64 -130I rib 100 , offset 38 POINT WITH OOH --,n " 5-J -1 I'i 1'b ui -Jj H Q 1 sis-11 hcs-40 up 1-41 macro assembler . too &32c 6-4 siaie db 100 0320 64 = 1319 4% 100 032e 64 el 320 it 100 - 032f 64 =>1231 dfc too 0330 64 ■ 1223 4& £00 0331 64 «1233 dfc too - 0333 64 B>334 i* 100 0333 64 « 1225 4% too 0334 64 91236 i» 100 - - - — 0333 64 *1237 din 100 0336 64 = 1238 4b 100 0337 64 = 1229 *• 4b £00 0338 64 «t 330 rfS too 0339 64 = 1231 46 100 033a 64 3 1233 is - ICO 0339 64 £>1233 4* 100 gq3c 64 a 1234 4b 100 €330 64 31339 db 100 &33e 64 *1236 tb 100 q33f 6i «1237 65 too 0340 64 a 1238 4* 100 - 0341 64 «1339 6*3 too 0343 64 ">1240 db 100 0343 64 *1341 db 100 0344 64 =>1343 gb 100 0343 6% e|343 41 too 034* 43 = 1244 di 69 0347 43 • 1243 it 69 0348 49 = 1346 4b 69 0349 43 m347 4% 69 034a 49 =>1348 db 69 034B 43 o!3*9 db 69 034c 49 = 1250 db 69 0340 44 ®13»1 db 63 034e 44 *1293 n a 66 034f 44 «i353 d& 68 0390 44 = 1254 db 68 0391 44 •1395 db 63 03)2 44 •1256 db 68 p*©€ 37 •offsat" I offsst. t offset » offset' joff&et i offsat: t offsst-i ofPsst. ioffset ioffset i offset ioffset - I OfP03I I offsat »offset ioffset i offset i offsst -» offsat iof feat ioffset - »0??9et joffset » offSft « o^fe?t I offoot »offset '> offset /offset i OffBEt -* ofPc 3 S f OffS3 ft ioffset ioffast ioffset ioffset tof?oefc < offaet i offBSO ioftest I offset » p offsat iof fast » offset > offset ioffset »offast t offset ioffset ioffast I offset toff33t > offsat toffset 29 30 3a 32 33 34 39 36 37 38 39 40 41 - 43 43 44 45 46 - 47 •• 48 49 • 30 - as 32 -33-II 93 96 -57 &0 §9 - 60 61 63 63 64 69 66 67 66 69 70 71 73 73 74 79 76 77 78 79 CO 81 32 83 1SIS-1I 1CS-4S UPI-41 MACRO ASSEMBLER. V3 0 PA9E 38 FULLY AUTOMATIC SIWi-E-PhASE DIGITAL hGTCR CONTROLLER V. »-1 5 LOC OBJ LINE SOJRCE STATEPSMT 0353 44 = 1257 ib 66 » of fset- 8? 0354 43 "1256 db 67 t offset: 85 0355 47 =*1259 tfi 67 *offset: 86 0356 «.J *1260 db 67 \ offsst: 87 0357 43 B1261 db 67 » o f f a e t: 88 0356 43 = 1262 tl 67 ioffsst: 89 0339- 43 °1263 di 67 ioffset: 90 0391 43 31269 d&- 67 > offset: 91 011-5 43 = 1263 dt 67 ;offset: 92 035C 42 = 1266 db 66 toffset: 93 035D 42 ■1267 db 66 1Offsst: 94 C35E 4? *136$ dfe 66 »offset: 95 C35F $3 c! St>9 db 66 i offset: 96 0*160 42 -1270 db 66 » o f P a ? t: 97 £061 42 = 1571 db 66 »of f sst: 98 0362 42 ■U72 6i 66 »offset: 99 1363 41 <=1£73 da 63 i offset: 100 0364 41 = S'I74 £b 61 t offsst: 101 3365 41 *1575 ib 69 • — »offset: 102 -1366 41 = 1276 db 6d i offset: 103 0367 41 ®;277 6h 65 »offirt: 101 0368 41 ° 1278 db 65 > offset:' 105 0349 41 • 1279 db 65 ioffsst: 106 036A 40 ■ 1260 db 64 » of fset: 107 0368 40 > 1361 . 4% ■ 6$ - • - - • — i o f ff » ® t r SOG 036C 40 * :382 tk 6C i offset!: 209 036D 40 • .283 db 64 toffset: 110 036E 10 °>!284 db 6$ • * • - i offsst: 111 036F 40 ®S289 db 64 * of feat: 113 0370 40 «I286 db 6$ i offsefc: 183 0371 40 = S387 db 64 - ■ - i offeefl:- -!S4 0372 3F »1286 , db 63 iof#ss4: Hi 1373 3F =1289 db 63 i o f f s a 4: 116 C374 3F a 1290 db 63 joffsat: 117 ■3379 3F »tS9l db 63 I of P £8$: 118 0-176 3F db 63 ioffsat: 119 C377 3F =>1293 db 63 t of 9sei: 130 0578 3F - *13*4 db 63 i offsst: t3i 0379 3E *1293 db 63 1306 db 6! i offft@3: 133 0385 3D = 1307 db 61 1 0 f f 8 3t • 134 0386 3D °1306 db 61 iOfaBSt- 135 0307 3D = 1309 db 61 i offsat' 136 0386 3C • J 310 db 60 . of'eet: 137 0369 3C *1311 db 60 i o'ftat 138 n¥f- aOlf-iiMl . ;*•*> f". ^ O O < 0- "-,1 bi«fl(iiii!ininnci(iiiiiai( )00Qaoaaaeooaoooooo o is! -2 K CD I— Ss w a < ui a (h(>i>>Q(p(A w nj> ^ w rf> m di e> 10 tfi a> ei eft »o tft (ft eA fo i'i> tii tft eft ot eS tn o> in f.?i t-is fft cji on irt ij» u> (•» tn is> (jf» oi* oi» ':)> w ot 01 irt irt £ t w ran^-t/>>4)r«>a>(ro^rari«'ci,i-or>.ai^o^njri^in^KOO'0"«n;ri«tfn>oio-~mp)^m-rtn>o "4 ^ — ^«^cyr*w*yni(y c\iCtiNPy»nnnnrir»nn"ri^^«r'a>'Sf^«>®''s>'?■»«"> vi* tSnr»iJiij»i-04' Sj m 5 « u.
L ; 5 vu(2UuaBgaatgttra<<<<<<<<(n(ncn o rtftnonnnnnnnnnnnrtrtnnnnnnnnnnfinrtnpifirinpinopiripifinrtnfifinftnnnnrin © — (UnVA4Mtt(' offsst: 030A 31 = 1392 db *9 i offart: 0306 31 ®1393 db ioffsst: 03DC 31 E1394 •$9 - • -■ » offsst: 03DD 31 -1395 db 49 i offsat* 03DE 31 *1396 49 1 01 f E 31: 03DP 31 el 397 db 19 ioffsstr 03E0 30 M396 ih 48 ' » offsst: 03E1 30 "1399 db 48 »offset: 03E2 30 s1400 db 48 i offset: 03E3 30 31401 db 48 >offset: 03E4 30 *1402 db 48 > offset. 03ES 30 ®1 403 db S, 8 - - i of f s st: 03E6 30 a 1 404 db $8 i offsrt: 03E7 30 = 1405 db $8 i effsst: 03E8 30 (=1406 db 38 ioffset: 03E9 30 °1407 db 48 ioffset: 03EA 30 = 1400 db 48 ioffsst: 03EB 30 1 =1409 db 48 i offsst: 03EC 30 = 1510 db 48 » offsst: 03ED 30 *1411 db 48 » off set: 03EE 30 -1413 db 48 i off let: 03EF 30 *1413 d» 48 J offs st: 03F0 30 slili db 48 ioffsst. 03F1 30 = 1413 db 48 > offsst: 03F3 30 s1416 db $8 j offsat. 03F3 30 • U17 db SB .offset: 03F* 30 °i4ie db 98 « of fsst: 03F9 30 «I419 db 48 t of f B@t' 03F6 30 * 1430 db 48 r Off»9t 03F7 30 *1 421 db 48 'of*»fft' 30 194 199 196 197 196 199 200 201 203 303 30$ 305 306 307 308 309 310 311 313 313 31$ 315 316 317 918 319 330 331 333 333 -33$ 335 336 227 338 339 330 331 333 333 33$ 239 336 337 338 339 310 341 3*3 343 2U 245 346 247 248 UJ ;.f-> '! "> h1 r I6IS-II MC6-48/UP1-41 MACRO ASSEMBLER, V3 0 PACE 31 FULLY AUTOMATIC SINOLE-PHASE DIGITAL NOT03 CONTROLLER V H»9. 5 LOC OBJ LINE SOURCE STATEMENT 03F8 30 = 1423 db 48 »offeat: 249 - — 03F9 30 ■ ®1423 4b 38 i of Past' 350 03FA 30 3J424 db 48 > Q??33t' 351 03FB 30 a 1425 ib 48 f offsat' 252 03FC 30 •1426 ib 48 i offset. 293 03FC- 3 CJ *1427 db 48 effsvt. 2S4 03FS 3e© oooi BAI^ OS'ID BHftJHB OOOA TRUE FFFF CAL3 0IF2 CAL3A 022F CALES3 0235 - CALEX4 0239 DELO 01OA DELAY 013E ESTI 0233 FALSE 0000 HLDOFF 001E IWIT 002F hIMPT 00E4 ps0d3 0227 CFFPT 002F OTFTAB 0030 •SP90 - 019* SMI 0198 SttNXT 01E9 ' SMOOTH 0193 VLTDBH 0005 HAIT 0081 —,..T. 81 } I r £ * *n N h O <► 4 <► 4ft eta Q> « - oa ift n «• •9 tf> •* Cfl •* >«» ra n (V) n ift n » rtS® «0Md> _ rs.ps.v (>f> D V> A n 4iD(v - - -.. .« ft) •« ft •« 44(«(DO nrj70tiMo^v k 9>9,(Dn>h>oinnQ «r«r — °>? —faflp-o-o-^iftrtrjonrur^ -4 K^ror^ — fti — fa ui oft f~ (DMBMsiBo>Qa>o>o-»o 4 (n tnn •• 4 a a> ii><0 ojo ntno»r^nrtfwoifuftJuf»n) oisnn . j _t «>» — CD £ Ul BU oi M no m iqiiii!!I sis son siii (515 w w w ui ™i in w m t/t ni«Minv-anNni«tf>on(niD«ii)Q}r)0(MaiD'riiakrsCiO'Of4»4<4i*il)MMi&o-^iho-«>onjvn »to ^ *1 a) •«« »• ^ C , o ~ re n «=? e — s" t- «u. u yj a — n£ 1 C * < < 4 >• K M K K M H K H |U Q| >- *4 < $ Ul •< Z & ft. In , J I III t ^ ^ ® ® !» G( ^ " .» 28** ******* *-"-^3*52 tJ#s~§S8|5»8fcfcft -« — ) t t EC C iSt il^Oafl BET es!i n ists-li asschbler s^kbol c*3ss reference. v3 1 PHASE phasj PHSOX PHSCttl SWS SrsO 3h1 Srt2 sm3 SMS 3*5 s*6 s»v*ut1b smmxt smooth smstad TINT tgolo TROFF IRON TRUE vlt08n tiAlT haitc haitp 313 637 605 600 913 6749 677# 6b6 693 705 699 761 1268 706 577 19i& 192 064 117! 1 ifi* £4$ is-a 3-91 a S6E73 354 347® 6439 609 610* 91s 753 769 i942 6985 7078 7528 7635 676 762 669s 675 10103 939 320 330 27 359 29? %9| 369 64B 413 s &07 649 502 9703 380 505 cross rfcf-sfence complete *!S S3

Claims (25)

CLAIMS:
1. A method for operating an induction motor control system comprising the steps of: (a) energizing an induction motor using a 5 firing delay; (b) measuring the phase angle between motor voltage arid current zero crossings; (c) determining a phase angle in accordance with the equation y - mx 4- b, where y is the phase angle, m is lo the slope, x is the firing delay and b is the offseti m and b being predetermined constants; (d) comparing the measured phase angle with the determined phase angle; and (e) altering the firing delay based on the 15 comparison to reduce the difference between the measured and determined phase angles.
2. A method according to Claim 1 wherein the amount by which said firing delay is altered is proportional to the difference between the measured and determined phase 20 angles.
3. A method according to Claim 2 wherein said firing delay is increased by an amount equal to one half the di-f It-rence between the measured and determined phase angles. S 4
4. A method according to Claim 2 wherein said firing delay is decreased by an amount equal to four times the difference between the measured and determined phase angles.
5. 5. . A method for operating an induction motor control system comprising the steps of: (a) energizing an induction motor using a firing delay: (b) measuring the phase angle between motor lO voltage and current zero crossings; (c) determining a phase angle in accordance with the equation y « mx + b, where y is the phase angle, m is the sLope, x is the firing delay and b is the offset, m and b being predetermined constants; 15 (d) comparing the measured phase angle with the determined phase angle; (e) increasing the firing delay based on the comparison to reduce the difference between the measured and determined phase angles; and 2o (f) repeating steps (a) through (e) until the determined phase angle and the measured phase angle are approximately equal. 4
6. A method according to any of Claims 1-5 wherein m is negative.
7. A method according to Claim 5 wherein m is between about - 0.1 and about - 0.2.
8. A method according to any of Claims 1-5 wherein m is positive.
9. A method according to Cleim 8 wherein m is between about 0.5 and about 0.7.
10. A method according to any of Claims 1-5 wherein m is negative and b is between about 65 and about 72.
11. A method according to any of Claims 1-5 wherein m is positive and b is between about 10 and about 30. S6
12. A digital method for operating an induction motor control system comprising the steps of: (a) energizing an induction motor using a firing delay; (b) measuring the phase angle between motor voltage and current zero crossings; (c) computing the sum of the measured phase angle and the firing delay; (d) using said sum to select a phase angle generated in accordance with the equation y » nx + b, where y is the phase angle, m is the slope, x is the firing delay and b is the offset> m and b being predetermined constants; (e) comparing the measured phase angle with the determined phase angle; and (f) altering the firing delay based on the comparison to reduce the difference between the measured and determined phase angles.
13. S7 1J. A digital method for operating an AC induction motor control system comprising the steps of: (a) energizing an induction motor using a firing delay; (b) measuring the phase angle between motor voltage and current zero crossings; (c) computing the sum of the measured phase angle and the firing delay; (d) using said sua) to select a phase angle generated in accordance with the equation y = mx + b, where y is the phase angle, m is the slope, x is the firing delay and b is the offset, m and b being predetermined constants; (e) comparing the measured phase angle with the determined phase angle; (f) increasing the firing delay based on the comparison to reduce the difference between the measured and determined phase angles; and (g) repeating steps (a) through (f) until the measured phase angle and the determined phase angle are approximately equal. 58
14. A method according to Claim 13 comprising the additional steps of: (a) measuring and storing en initial phase angle at time To; (b) increasing the firing delay by a predetermined amount; (c) measuring and storing the resulting phase angle at times T]_, T2 ... Tn; (d) comparing said initial phase angle with the resulting phase angles; and (e) altering said firing delay based on said comparisons.
15. A method according to Claim 14 wherein the phase angle at tn is less than the phase angle at and said firing delay is reduced.
16. A method according to Claim 14 wherein the difference between the phase angle at Tn and the phase angle at Ti is less than one third of the difference between the phase angle at T0 and the phase angle at Tl and s&id firing delay is reduced.
17. A method according to Claim 14 wherein the difference between the phase angle at Tn and the phase angle at is greater than one third of the difference between the phase angle at T0 and the phase angle at and the firing delay is increased.
18. SB 13. A sethod according to Claim 17 therein said firing delay is increased by decrementing the offsec.
19. A method according to any of Clainss 12-18 wherein m is negative.
20. A method according to Claim 19 whereis mis between about - 0.1 and about - 0.2.
21. A method according to any of Claims 12-18 wherein m is positive.
22. A method according to Claim 21 wherein m is between about 0.5 and about 0.7.
23. A method according to any of Claims 12-18 wherein m is negative and b is between about 65 and about 72.
24. A method according to any of Claims 12-18 wherein m is positive and b is between about 10 and about 30.
25. A method for operating an induction motor control system, substantially as hereinbefore described with reference to and as illustrated in Pig 1A and IB, Pig 2 and Fig 3 and Figs. 3A to 3F of the accompanying drawings. Dated this the 12th day of September, 1984 F. K. KELLY & CO. BY: — EXECUTIVE
IE2326/84A 1983-11-04 1984-09-12 Method of operating and induction motor control system IE56461B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US54870183A 1983-11-04 1983-11-04

Publications (2)

Publication Number Publication Date
IE842326L true IE842326L (en) 1985-05-04
IE56461B1 IE56461B1 (en) 1991-08-14

Family

ID=24190034

Family Applications (1)

Application Number Title Priority Date Filing Date
IE2326/84A IE56461B1 (en) 1983-11-04 1984-09-12 Method of operating and induction motor control system

Country Status (14)

Country Link
JP (1) JPS60249887A (en)
AU (1) AU575866B2 (en)
BE (1) BE900967A (en)
BR (1) BR8405504A (en)
CA (1) CA1254612A (en)
DE (1) DE3440021A1 (en)
FR (1) FR2554655B1 (en)
GB (1) GB2149536B (en)
HK (1) HK19288A (en)
IE (1) IE56461B1 (en)
IT (1) IT1206710B (en)
NL (1) NL8403339A (en)
SG (1) SG99087G (en)
ZA (1) ZA846307B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008608A (en) * 1989-12-26 1991-04-16 Allen-Bradley Company, Inc. Controller for starting and stopping electric motors
DE19857695C2 (en) * 1998-12-14 2001-01-25 Siemens Ag Method and device for controlling the outlet of an induction machine
AUPQ720800A0 (en) 2000-05-02 2000-05-25 Mason, James Herbert Magnetic reference assembly for use with vehicle gauging apparatus
US6420848B1 (en) * 2000-05-19 2002-07-16 Eaton Corporation Method and controlling the starting of an AC induction motor with closed loop current control
US6380708B1 (en) * 2000-05-19 2002-04-30 Eaton Corporation Method for controlling the starting of an AC induction motor
CN113014170B (en) * 2021-04-21 2022-08-12 昆明理工大学 Permanent magnet synchronous motor minimum loss control method based on whale optimization algorithm

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052648A (en) * 1976-07-19 1977-10-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Power factor control system for ac induction motors
US4361792A (en) * 1980-05-06 1982-11-30 Chesebrough-Pond's Inc. Digital induction motor control system
US4413217A (en) * 1980-07-07 1983-11-01 Cynex Manufacturing Corporation Power factor controller
GB2113876B (en) * 1982-01-21 1985-03-13 Neha International Power factor controller for a.c. induction motor

Also Published As

Publication number Publication date
GB2149536A (en) 1985-06-12
IE56461B1 (en) 1991-08-14
DE3440021A1 (en) 1985-05-15
FR2554655B1 (en) 1989-12-15
CA1254612A (en) 1989-05-23
BR8405504A (en) 1985-09-03
IT8422471A0 (en) 1984-08-30
AU3471084A (en) 1985-05-09
IT1206710B (en) 1989-04-27
NL8403339A (en) 1985-06-03
JPS60249887A (en) 1985-12-10
AU575866B2 (en) 1988-08-11
BE900967A (en) 1985-02-15
FR2554655A1 (en) 1985-05-10
GB8427685D0 (en) 1984-12-05
HK19288A (en) 1988-03-25
ZA846307B (en) 1985-03-27
GB2149536B (en) 1987-07-08
SG99087G (en) 1988-09-23

Similar Documents

Publication Publication Date Title
CN110212564B (en) Method for preventing and controlling commutation failure of direct-current power transmission system under power grid fault
CN104600733B (en) Phase changing control method and phase changing control device
SE466036B (en) PROCEDURES BEFORE REPLACING A TRANSMISSION MOTOR BETWEEN A TRANSMISSION DRIVER AND A TRANSMISSION CIRCUIT
IE842326L (en) Induction motor control
US4950970A (en) Induction motor control system
PL114650B1 (en) Method for adjustment of asynchronous electric machine speed and device therefor
SE466723B (en) CONTROL SYSTEM AND PROCEDURES FOR CONTROL OF TWO INDEPENDENT PARALLEL AC / DC CONVERTERS
CN105656389A (en) Power frequency and variable frequency switching method
EP2044684B3 (en) Variable voltage supply system
JP7012513B2 (en) Hydropower system
US3684945A (en) Reversible converter
WO2020013015A1 (en) Variable-speed generator-motor device
US7511446B2 (en) System and method for starting a wound rotor motor
US3477014A (en) Electrical control systems with stabilizing control means
CN114430881A (en) Motor driving method and motor driving device
RU2440663C2 (en) Method of ac motor braking
JP3038225B2 (en) Reverse power flow prevention device for grid-connected power generator
US2925545A (en) Motor control system
CN108448885B (en) Closed-loop charging method of modular multilevel converter
GB2085204A (en) Motor control system
US7834577B2 (en) System and method for starting a wound rotor motor
CA2166862A1 (en) Efficient control system for electric motors
US11637514B2 (en) Method for controlling the speed of a three-phase permanent magnet machine having a soft starter by means of a controller cascade, and three-phase machine
Pirmatov et al. Energy saving by ensuring steady operation of asynchronous motor of fodder grinding devices in static and dynamic modes
SU658692A1 (en) Induction motor control method

Legal Events

Date Code Title Description
MM4A Patent lapsed