IE49758B1 - Process for the production of a dry inorganic ultrafiltration membrane and membrane produced by such a process - Google Patents
Process for the production of a dry inorganic ultrafiltration membrane and membrane produced by such a processInfo
- Publication number
- IE49758B1 IE49758B1 IE109080A IE109080A IE49758B1 IE 49758 B1 IE49758 B1 IE 49758B1 IE 109080 A IE109080 A IE 109080A IE 109080 A IE109080 A IE 109080A IE 49758 B1 IE49758 B1 IE 49758B1
- Authority
- IE
- Ireland
- Prior art keywords
- membrane
- coating
- support
- coating material
- liquid medium
- Prior art date
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
The invention relates to ultrafiltration membranes. More particularly, it relates to the production of dry, crackfree membranes having enhanced stability.
The production and use of inorganic, semipermeable 5 membranes for ultrafiltration purposes are well known in t the art. Most such inorganic membranes are of advantage in their resistance to temperature and solvent effects.
In some instances, the membranes also possess molecular perm-selectivity and ion-exchange properties.
US-A-3,497,394 thus disclosed an ion exchange membrane made by forcing a metal oxide gel into a porous support.
In the practical application of ultrafiltration membranes, high flux is an essential feature, and it has been found desirable to have a highly porous support and a thin, fine membrane. Colloidal particles thus should not be imbedded in depth into the filter body. In a dry, inorganic, semipermeable filter disclosed in French Patent ; No. 1,440,105, however, fine colloidal particles are said to create a thin membrane in the surface of a porous combined membrane-support formed from a suspension of coarse and colloidal size particles of -AlgOg by slip
- 3 casting in a plaster mold.
Ultrafiltration membranes having a porous support and a ceramic microporous layer can also be prepared by a process comprising depositing on a treated ceramic support the coating ceramic powder by electrophoresis from a suspension and thermally treating the coated support thus obtained, as it is disclosed in French patent 2 251 351.
Ultrafiltration membranes should also have good 10 mechanical and chemical stability for use in practical commercial applications. Dehydration of ordinary particulate membrane always results, however, in mud cracks that ruin the membranes' semipermeable characteristics. In the preparation of a support surface, the formation of cracks can, of course, be tolerated. In US-A-3,926,799, for example, a membrane support is made by coating a zirconia slurry onto a porous substrate, followed by drying and firing the resulting composite at high temperature to form a rugged precoat.
Large pores or cracks would be expected to form in this process and would be unacceptable in the formation of the membrane itself. Ultrafiltration membranes susceptible to such crack formation must be maintained wet at all times. Such membranes, include those taught
- 4 by US-A-3,977,967, which discloses hollow tubular members having a well defined porosity and a substantially uniform, continuous, adherent, porous coating of preformed, aggregated inorganic metal oxide particles deposited thereon through permeation means. The cohesiveness of membranes of this type is due to relatively weak physical forces, and the cohesive forces between the particles, and the stability of the particulate membrane, would be enhanced by the dehydration of the metal oxide particles. Such dehydration is precluded, however, by the necessity for maintaining the membranes wet at all times to avoid the formation of cracks that would destroy the semipermeable characteristies of the membrane.
Enhanced mechanical and chemical stability are, of course, desired characteristics for inorganic ultrafiltration membranes. In addition, enhanced flexibility would be achieved by the development of ultrafiltration membranes that need not be maintained wet at all times. Thus, the handling, transport and storage of membranes would be facilitated by the elimination of this requirement.
Microporous filters can also consist of thin, uncracked sheets of dry inorganic aerosols prepared by a process comprising floating a thin layer of an inorganic sol on an immiscible support liquid, gelling said sol layer and exchanging the sol liquid with a displacing liquid and
40758
- 5 separating said displacing liquid by vaporization, as it is disclosed in US-A-3 434 912.
However, this process is not used to form such sheets upon solid supports.
It is an object of the invention, therefore, to provide an improved ultrafiltration membrane, comprising a porous support.
It is another object of the invention, to provide a process for the production of a dry, crack-free, inorganic ultrafiltration membrane.
It is another object of the invention to provide a crackfree, mechanically and chemically stable membrane.
It is a further object of the invention to provide a stable, crack-free, dry ultrafiltration membrane having good permselectivity and flux.
With these and other objects in mind, the invention is hereinafter described in detail.
These and other objects of the invention have been attained by providing a process for the production of a dry, inorganic ultrafiltration membrane which comprises coating a microporous membrane support by contacting it with a suspension in a first liquid medium of a membrane coating material, wherein said microporous membrane support is essentially saturated with a second volatile liquid medium miscible with said first liquid medium, nonsolvating to said coating material and capable of drawing said coating material into said support and of desolvating said coating material; and said coated support is exposed to a temperature capable of volatilizing said second liquid medium to remove said second liquid medium from the microporous membrane support and said membrane coating material, whereby the desolvation of said coating material prior to completion of removal of said second liquid medium results in a shrinking of said coating material and the consequent filling, by said coating material, of voids produced as a result of said shrinking.
So, the objects of the invention are accomplished by the coating of a microporous support with an inorganic membrane coating material in the presence of a volatile liquid capable of drawing the coating material into the support and desolvating said coating. The desolvation of the coating, prior to the complete removal of the volatile liquid, results in a shrinking of the coating and the consequent filling of voids resulting from such shrinkage by the coating material. As a result, the development of cracks during desolvation of the coated membrane is avoided. The membrane thus produced is a dry, essentially crack-free inorganic membrane of enhanced mechanical and chemical stability. The membrane support may be pretreated with the volatile liquid prior to application of the coating.
Following removal of the volatile liquid from the treated membrane, as by air drying, firing or thermal treatment to a desolvating temperature further enhances the stability of the membrane.
The ultrafiltration membrane of the invention comprises a crack-free, dry, inorganic coating anchored to a microporous membrane. The membrane has desirable mechanical and chemical stability, exhibiting good physical coherence, resistance to acid, alkali, soap and detergent washing and the ability to withstand ultrasonic stress and abrasion. Unlike prior art membranes that develop cracks tending to destroy their semi permeable characteristics when dry, the membranes of the invention remain essentially crack-free upon drying with their physical stability actually being improved by drying and firing.
In the process of the invention, a volatile liquid medium miscible with the membrane coating suspension is employed to draw the coating material into the membrane support and to desolvate said coating material. As a result of
758
- 8 such desolvation, a shrinking of the coating material occurs, accompanied by a consequent filling of the voids produced as a result of said shrinkage by said coating material. Such action, made possible by the desolvation of the coating material prior to complete removal of said liquid medium, avoids the development of microscopic cracks that otherwise occur upon desolvation of the coated membrane.
In one embodiment of the process of the invention, a microporous membrane support is pretreated with a volatile liquid medium nonsolvating to the coating material and capable of drawing said material into the support and of desolvating said coating material. The pretreated support is then contacted with a suspension of the coating material. After draining excess suspension from the surface of the membrane, the thus treated membrane is exposed to a temperature capable of volatilizing the liquid medium to remove said liquid from the microporous membrane support and said coating material. As indicated above, the treated membrane may thereafter be fired, if desired, to a dehydration or desolvation temperature to enhance the stability of the membrane by sintering the coating material. The pretreatment can be carried out by wetting the entire microporous support with the volatile liquid medium until the support is saturated. This usually takes a
- 9 very short time, e.g., less than a minute. While still wet, the support is contacted, on one surface, with the coating suspension, usually again for about one minute. When the porous support is of convenient tubular shape, it is generally preferred to wet the inside surface with the support tube positioned in a vertical manner. The suspension can be fed conveniently through the bottom opening of the tubular support, by gravity, injection means or vacuum so entrapped air can be avoided. The tube is filled to the top with the coating suspension, and the supply of suspension is replenished as liquid is drawn into the porous support. The coating procedure can be completed in about one minute. In treating a number of tubes at one time, sufficient space should desirably be maintained between the tubes to assure that the volatile liquid medium vaporizes freely. After the support has been coated as indicated above, excess suspension can be drained therefrom in a few seconds time. The treated tube is then air dried or otherwise exposed to a temperature capable of volatilizing the liquid medium while the tube is conveniently maintained in its vertical position. Air drying is usually carried out for about an hour.
In another embodiment, the coating material is dispersed directly in the liquid medium that is non-solvating to said coating material and is capable of drawing the
- 10 coating material into the support and of desolvating the coating material. The resulting suspension is applied to the membrane support without pretreatment of the support. Excess suspension is drained away from the membrane, as in the previous embodiment, and the membrane is dried and, if desired, fired at a desolvation temperature to enhance the stability of the membrane.
It will be understood that the desolvation of the 10 coating material by the volatile liquid medium includes not Only the removal of a separate liquid employed to form a suspension of the coating material, as in the support pretreatment embodiment described above, but the possible removal of water of hydration associated with the coating material.
Removal of such water by dehydration upon drying and/or firing of conventional membranes would result in shrinkage and of the development of cracks as noted above. In the latter embodiment, the particles of coating in the suspension are drawn into the porous surface as the solvent evaporates. The thickness of the membrane increases with contact time, however, so time control must be observed to avoid excess membrane thickness.
- 11 The membrane of the invention is formed from suspensions of inorganic refractory materials. Most such inorganic refractory materials are in the form of oxides, e.g. metal oxides. In particular, the oxides of metals of
Groups III-A, IV-A, IV-B, V-A, V-B, VI-B, VII-B and VIII and lanthanides and actinides, as described in US-A-3,497,394, can be employed in the practice of the present invention. Zirconia is a particularly preferred coating material, as it is known to be chemically inert to strong and weak acids, alkalis and solvents, even at high temperature, and advantageous for practical commercial applications.
The finely dispersed colloidal oxides employed in the invention usually are solvated or have hydrous or hydroxyl surfaces. When deposited to form a filtration membrane, only weak van der Waals or hydrogen bonding interactions in close proximity are responsible for the cohesive force holding the membrane together. Upon heat treatment to a desolvating or dehydrating temperature, or to a sintering temperature, strong metal-oxygen-metal bonds can be formed, thus increasing the cohesion between the membrane coating particles. Unlike previous wet particulate membranes that developed macroscopic cracks due to shrinkage upon dehydration, the present invention inherently overcomes the problem of shrinkage because most of the dehydration of the particulate surface occurs
497 58
- 12 by the use of said miscible, dehydrating liquid, i.e., solvent, during deposition of the membrane material.
The desolvated particles are thus preshrunk and coating particles continue to fill the voids produced by solvent removal. The formation of cracks during the subsequent drying of the membrane is thereby avoided, resulting in the production of a heat-treated membrane composed mainly of dehydrated oxide, that is microporous in nature, and free of observable cracks.
The coating particles employed are in the particle size range that will form a good semipermeable filter. Typically, such particles are in the range of from 5 nm to io pm, with a range of from 10 nm to pm being generally preferred for ultrafiltration purposes. While it is generally preferred that the dispersion be in an aqueous medium for convenience in handling and good stability, it will be appreciated that other liquid media can also be employed. When the support pretreatment embodiment is employed, the suspension itself should be miscible with the pretreatment solvent. If the medium used for coating material dispersion is a volatile, nonsolvating liquid, compatible with said dispersion so as to preclude the flocculation thereof, then the alternate embodiment can be employed with direct contact of the suspension with the untreated microporous support. As noted above, however, the contact
- 13 time must be carefully controlled in this embodiment as such suspensions would continue to coat the support substrate as long as they maintain contact with said substrate. An undesired thickness can thereby be formed if contact of the suspension with the support substrate is unduly prolonged. The thickness of the membrane is also influenced by the concentration of coating particles in the suspension. Concentrations of from 0.5 to
% by weight based on the total weight of the suspension are generally satisfactory, depending on the type of coating material employed, with a concentration of about 6% by weight being generally preferred to form an optimum coating thickness. The membrane coating will generally be from submicron up to about 2-micron, i.e, pm thickness.
The microporous support, or substrate, should consist of a material as chemically and thermally resistant as the membrane itself. Sintered metal inorganic oxides, such as metal oxides, carbon and graphite are illustrative examples of suitable substrate materials. The substrate should have a high porosity with pore sizes that can support the colloidal particles used to form the membrane coating. Thus, it is generally desirable that the substrate have a pore volume of from 5 to
60% with pore sizes of from 5 nm to 40 pm.
More preferably, the substrate should have a pore volume of from 20% to 40% with pore sizes of from 100 nm to 2 pm .
The microporous membrane support of the invention is not limited to any particular shape. Thus, the support can be flat, spiral, hollow-fiber, or any other convenient shape although tubular shapes are generally preferred. Porous carbon tubing has been found to be particularly convenient, having excellent resistance to both chemicals and high temperature. When firing such tubing, appropriate care should be taken to avoid its oxidation or the reduction of some metal oxide particles. A carbon tube having a pore volume of about 0.19 ml/g with a pore size distribution peaked at about 0.3 pm has been found to constitute an especially preferred membrane support material. In coating the support, the direction of flow of the coating suspension can be inside-out or outside in depending on various design parameters such as hydraulic flows, pressure and the like.
The volatile liquid medium used to pretreat the microporous support should be nonsolvating to the coating material and capable of drawing said material into the support end of desolvating the coating material. Said volatile liquid should thus be miscible with the coating suspension medium so as to draw the coating material into the support. It is also preferred that said liquid
- 15 be volatile at a convenient temperature, such as from 15°C to 100°C. Most ketones and alcohols are suitable pretreatment liquids, with acetone and methanol being preferred liquids, and with acetone being particularly preferred and highly suitable for use in conjunction with aqueous suspensions of the coating material. In the embodiment in which the coating material suspension medium is volatile and is a nonsolvating liquid to the particles the coating operation can be carried out directly without membrane support pretreatment, the suspension medium serving to draw the coating material into the support and to desolvate said coating material particles. Methanol is a suitable suspension medium for use in this embodiment of the invention, and can readily be employed as a suspension medium for the preferred zirconia coating material without pretreatment of the supporting substrate.
The exposing of the treated membrane to a temperature capable of volatilizing the liquid medium to remove it from the membrane support and coating material can readily be accomplished in the atmosphere, i.e., by air drying as at from 15°C to 100°C. If prolonged and high temperature is required for an oxidizable material, such as carbon and metals, the baking can be carried out in an inert atmosphere. The temperature should be above the desolvation or
- 16 dehydration temperature. When firing to enhance the stability of the membrane, temperatures above that at which the particles will be sintered should advantageously be employed. Firing will generally be at a dehy5 dration or desolution temperature in the range of from 25°C to l,500°C, more particularly from 60°C to l,200°C. Firing temperatures in the range of from 400°C to 600°C, with firing times on the order of thirty minutes, have been preferred. The furnace can be preheated to a desired temperature, or the temperature can be raised gradually while the membrane and support are in place. The temperature is usually brought gradually up to a preset maximum and then held for a period of from ten minutes to a couple of hours.
Fired zirconia membranes prepared in accordance with the invention have been found to maintain the coating after exposure to a circulating wash employing acidic, base, detergent and soap washes, and to abrasion and ultra20 sonic tests. A conventional wet membrane as described above, on the other hand, was found to have only partial retention in acidic, base and detergent circulating washes. The coating of the conventional membrane was found also to have sloughed off upon exposure to a circulating soap wash and upon exposure to abrasion and ultrasonic tests. Whereas the membrane of the invention
4-8758
- 17 had good rejection properties on drying, the conventional wet membrane had poor rejection properties when dry. Because of its superior stability, a stable hydrous zirconia coating can be permanently deposited onto the membrane of this invention to provide it with a hyperfiltration characteristic that can be used for the retention of low molecular weight macromolecules. The invention is further illustrated by the following examples.
Example 1
A microporous carbon tube having a length of 63.5 cm, an inside dia. of 6 mm, an outside dia. of 10 mm, and a 3 pore volume of 0.185 cm /g was employed as the membrane support. 75% of the pores were between 0.1 nm and 1.0 nm, with the peak distribution at about 0.3 nm. About
0.025 cm /g of the tube had pores of from 2 to nm. The air permeation rate of the tube was about 1,500 cm3/min at 25°C and 0.68 atm. differential pressure. Water flux was measured at about 200 ml/min at 38°C and 6.8 atm. The tube was tilted on one end, and sufficient acetone was introduced from the top opening until the tube was full, with additional acetone being supplied as the level decreased due to absorption. Upon saturation in about 30 seconds, the acetone was drained from the tube, A suspension of zirconia was then
- 18 quickly injected through the bottom cork seal until the tube was full. The suspension was held in the tube in the vertical position for one minute with the level of the suspension maintained at the top opening continuously, after which the suspension was drained from the tube.
The tube was then air dried in a vertical position for one hour. It was then fired in a furnace, starting at 25°C and with the temperature increased to 650°C in about 15 minutes and maintained at that temperature for an additional 15 minutes. The coating suspension was a 6% weight/per volume aqueous suspension of zirconia (88%) stabilized with yttria (12%). The particle surface area was about 45 m /g having an aggregate size of 0.1 to 1.0 2 pm. The coated tube was found to have about 1.7 mg/cm of zirconia on the carbon tube. The essentially crackfree membrane coating remained intact after washing for 10 minutes with circulating water, then with 0.5% aqueous oxalic acid for 20 minutes, and then with 0.1 M NaOH for 10 minutes, and finally again with water for 10 minutes.
The coating likewise remained intact in an ultrasonic test in which a one inch (25.4 mm) piece of the coated tube was broken open, submerged in a 200 ml beaker half filled with water and subjected to an ultrasonic stress of 2 χ 104 cps at about 70 watts for 15 minutes. After
-2 -1 measuring the water flux which was 0.69 1 . cm . d at 420 kPa and 40°C, the membrane was tested with a 1%
48758
- 19 soluble oil in water emulsion using Texaco C® cutting oil as a feed at a flux of 0.69 1 . cm’2 . d’1* at 420 kPa and 40°C, with 9.5 1 . min’^ circulation. Rejection of emulsified oil by turbidity testing was 99.5%.
Concentration was carried out until a 5% oil concentration -2 was reached. The flux at this point was 0.67 1 . cm j’l at 420 kPa and 40°C with 9.5 1 . min^ circulation.
Rejection of emulsified oil, by turbidity test, was 99.7%,
A separate zirconia membrane prepared in the same manner on the same type tube was tested with dyed Ficoll ® 400 M, a 400 000 mol wt hydrolyzed starch. Rejection of better than 99% was observed.
Example 2
A membrane was prepared by the procedure of Example 1 except that the acetone pretreatment was omitted. The suspension was prepared by diluting one volume of a 30% aqueous zirconia suspension with methanol to a total of five volumes. Using the evaluation procedures and conditions of Example 1, the crack-free membrane of the invention achieved the following results: water flux
0.72 1 . cm-2 . d’1 flux at the beginning feed
-2 -1 concentration of 1% oil 0.71 1 . cm . d with a rejection of 99.8%; and flux after concentration to 5% oil 0.69 1 . cm’2 . d’1 with a rejection of 99.8%.
- 20 Example 3
A fired zirconia membrane was prepared as in Example 1 except that an alumina tube was employed as the membrane support. The tube had an initial water-wetted bubble point pressure of 154 kPa in air. Performance under the same conditions and procedures as in Example 1, for said 1% cutting oil, were: flux - 1.36 1 . cm-2 . d”^ rejection - 98.4%.
Example 4
A zirconia membrane was prepared on a carbon tube, as in Example 1, except that the maximum furnace temperature for firing was 1 100°C for one hour under a nitrogen atmosphere. Performance under the conditions and procedures of Example 1 gave a water flux of 1.9 1 .
cm-2 . d”^ and a flux for 1% oil of 1.22 1 . cm-2 . d-^ with a rejection of 99.4%.
Example 5
The procedures of Example 1 were again employed, except that the coating suspension was made from 5% tantalum oxide. The particles had an initial surface area of o
.14 m /g, and were ground with ceramic balls at a pH Of 4 for 72 hours. Performance under the conditions and
48758
- 21 procedures of Example 1 were: water flux - 1.03 1 .
cm2 . d”) flux for 1% oil 0.8 1 . cm^ . d\ with a rejection of 96%.
In other applications of the invention, various other alternatives were employed, e.g. employing methyl ethyl ketone as the pretreatment volatile liquid 1n the preparation of a zirconia membrane in accordance with the procedures of Example 1 and, likewise employing said procedures, except for the substitution of silica in place of zirconia for the production of a silica membrane. In other applications, zirconia membranes can be prepared in a variety of porous support materials, such as a porous sintered metal tube, a fiber glass tube, a paper tube and the like.
The ultrafiltration membrane of the invention, in its various embodiments, represents a significant advance in the art. In addition to having good flux and rejection properties, the membrane resists chemicals, detergents and extremes of pH and temperature and has a superior stability to previously available particulate membranes.
By providing these advantages in a dry, crack-free membrane, the invention overcomes the appreciable limitations and restrictions heretofore encountered and provides greatly enhanced flexibility 1n the handling, storage and application of inorganic ultrafiltration membranes.
Claims (30)
1. A process for the production of a dry, inorganic ultrafiltration membrane comprising coating a microporous membrane support by contacting it with a suspension in a 5 first liquid medium of a membrane coating material wherein saidmicroporous membrane support is essentially saturated with a second volatile liquid medium miscible with said first liquid medium, non-solvating to said coating material and capable of drawing said coating 10 material into said support and of desolvating said coating material; and said coated support is exposed to a temperature capable of volatilizing said second liquid medium to remove said second liquid medium from the microporous membrane support and said membrane coating 15 material, whereby the desolvation of said coating material prior to completion of removal of said second liquid medium results in a shrinking of said coating material and the consequent filling, by said coating material, of voids produced as a result of said shrinking.
2. material The process of claim 1 in which said coating is applied to one side of said membrane support.
3. The process of claim 2 in which said coating material is applied as a coating of up to about 20 pm thickness. -234. The process of claim 1 including thermally treating said membrane at a temperature of from 25°C to 1500°C.
4. 5. The process of claim 4 in which said temperature 5 is from 60°C to 1200°C.
5. 6. The process of claim 5 in which said temperature is from 400°C to 600°C.
6. 7. The process of claim 1 in which said membrane coating material is taken from the group consisting 10 of the oxides of the metals of Groups III-A, IV-A, IV-B, V-A,V-B,VI-B,VII-B and VIII, lanthanides and actinides.
7. 8. The process of claim 7 in which said coating material comprises zirconia.
8. 9. The process of claim 1 in which said membrane 15 support has a pore size of from 5 nm to 40 pm and a pore volume of from 5% to 60%.
9. 10. The process of claim 9 in which said membrane support has a pore size of from 100 nm to 2 pm and a pore volume of from 20% to 40%. 2o
10. 11. The process of claim 9 in which said membrane - 24 support comprises a porous carbon tubing.
11. 12. The process of claim 9 in which said membrane support consists of a material chemically and thermally resistant. . v; - · . ~ 5
12. 13. The process of claim 9 in which said membrane support consists of metal oxides. \ .· - . '
13. 14. The process of claim 4 or claim 9 in which said coating material comprises, zirconia and-.said .membrane support comprises a porous carbon tube. - · 10 15. The process of claim 5 or claim 10 in which said coating material comprises zirconia and said membrane support comprises a porous carbon tube. - 16. The process of claim 14 in which said second volatile liquid medium comprises acetone.
14. 15 17. The process of claim-14 ih which, said second, volatile liquid medium comprises methanol.
15. 18. The process of any one of claims 1 to 7, 9,.101. 12 and 13 and including pretreating said membranesupport with said second volatile liquid medium prior to
16. 20 coating said support with membrane coating material. . -2519. The process of claim 18 in which the coating suspension comprises an aqueous suspension. 20. The process of claim 18 and including draining excess suspension from the surface of said membrane support, said exposing of the coated membrane support to a temperature capable of volatilizing said second liquid medium comprising air drying said membrane support at a temperature of from 15°C to 100°C.
17. 21. The process of claim 18 in which said coating material comprises zirconia.
18. 22. The process of claim 21 in which said zirconia has a particle size of from 5 nm to 10 pm.
19. 23. The process of claim 22 in which said particle size is from 10 nm to 1 pm. 15
20. 24. The process of claim 18 in which said second liquid medium comprises an alcohol or ketone volatile at a temperature of from 15°C to l00°C.
21. 25. The process of claim 24 in which said second liquid medium comprises acetone. 20
22. 26. The process of claim 19 or claim 21 in which said 49758 . - 26 second liquid medium comprises acetone.
23. 27, The process of claim 19 or 26 in which said support comprises a porous carbon tubing and said coating material is coated on the inner surface of said 5 tube.
24. 28. A dry, inorganic ultrafiltration membrane compri si ng: (a) a porous carbon tube having a pore size of from 100 nm to 2 pm and a pore volume of from 10 20% to 40 %; (b) a microporous, dehydrated inorganic coating essentially free of cracks, said coating comprising a dry, water insoluble oxide selected from the group consisting of the metals of Groups III-A, III-B, 15 IV-A, IV-B, V-A, VI-B, VII-B and VIII and lanthanides and actinides, the particles of said coating having a particle size within the range of from 10 nm to 1 pm, said coating having a thickness of up to about 20 pm whereby said 20 membrane has a dehydrated, essentially crack-free coating of enhanced mechanical and chemical stability.
25. 29. The membrane of claim 28 in which said coating - 27 comprises zirconia.
26. 30. The membrane of claim 28 or 29 in which said coating has a particle size of from 10 to 30 nm. 5
27. 31. The membrane of claim 28 in which said coating particles comprise sintered particles.
28. 32. The membrane of claim 29 in which said zirconia particles comprise sintered zirconia.
29. 33. A process substantially as hereinbefore described 10 with reference to the examples.
30. 34. A membrane substantially as hereinbefore described with reference to the examples.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IE109080A IE49758B1 (en) | 1980-05-26 | 1980-05-26 | Process for the production of a dry inorganic ultrafiltration membrane and membrane produced by such a process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IE109080A IE49758B1 (en) | 1980-05-26 | 1980-05-26 | Process for the production of a dry inorganic ultrafiltration membrane and membrane produced by such a process |
Publications (1)
Publication Number | Publication Date |
---|---|
IE49758B1 true IE49758B1 (en) | 1985-12-11 |
Family
ID=11021773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IE109080A IE49758B1 (en) | 1980-05-26 | 1980-05-26 | Process for the production of a dry inorganic ultrafiltration membrane and membrane produced by such a process |
Country Status (1)
Country | Link |
---|---|
IE (1) | IE49758B1 (en) |
-
1980
- 1980-05-26 IE IE109080A patent/IE49758B1/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0040282B1 (en) | Process for the production of a dry inorganic ultrafiltration membrane and membrane produced by such a method | |
US4412921A (en) | Dry, particulate, inorganic ultrafiltration membranes and the production thereof | |
US5089299A (en) | Composite ceramic micropermeable membrane, process and apparatus for producing such membrane | |
US4711719A (en) | Process for the production of crack-free semi-permeable inorganic membranes | |
JP2873293B2 (en) | Composite membrane and method for producing the same | |
CA1325389C (en) | Sintered coating for porous metallic filter surfaces | |
CA1336872C (en) | Composite membranes | |
US5190654A (en) | Process for producing an ultra-thin and asymmetric mineral membrane | |
KR930005940A (en) | Supported Microporous Ceramic Membrane | |
JPH05192546A (en) | Metal/ceramic composite membrane and method for its production | |
Melnikova et al. | Structure and mechanical properties of ultrafiltration membranes modified with Langmuir–Blodgett films | |
Okubo et al. | Preparation of a sol-gel derived thin membrane on a porous ceramic hollow fiber by the filtration technique | |
US4078112A (en) | Coating modification process for ultrafiltration systems | |
US4980062A (en) | Inorganic membrane | |
KR100946821B1 (en) | Novel inorganic nanofiltration membranes | |
Chu et al. | Microporous silica membranes deposited on porous supports by filtration | |
JPS63287504A (en) | Separation membrane | |
CA1140003A (en) | Dry, particulate, inorganic ultrafiltration membranes and production thereof | |
Kulkarni et al. | Janus silica film with hydrophobic and hydrophilic surfaces grown at an oil–water interface | |
JPH0251658B2 (en) | ||
IE49758B1 (en) | Process for the production of a dry inorganic ultrafiltration membrane and membrane produced by such a process | |
KR0139817B1 (en) | Composite membranes | |
JPH05184889A (en) | Method for producing micro- or ultra-filtration ceramic membrane | |
JPH02119924A (en) | Ultra-percolating membrane | |
EP0242209A1 (en) | Composite membranes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Patent lapsed |