IE19960647A1 - Method of potentiating an immune response and compositions therefor - Google Patents

Method of potentiating an immune response and compositions therefor Download PDF

Info

Publication number
IE19960647A1
IE19960647A1 IE1996/0647A IE960647A IE19960647A1 IE 19960647 A1 IE19960647 A1 IE 19960647A1 IE 1996/0647 A IE1996/0647 A IE 1996/0647A IE 960647 A IE960647 A IE 960647A IE 19960647 A1 IE19960647 A1 IE 19960647A1
Authority
IE
Ireland
Prior art keywords
microcapsules
composition
biocompatible
bioactive agent
size
Prior art date
Application number
IE1996/0647A
Other versions
IE960647L (en
IE83868B1 (en
Inventor
R Tice Thomas
M Gilley Richard
H Eldridge John
K Staas Jay
Original Assignee
Southern Research Institute
Filing date
Publication date
Priority claimed from US07/169,973 external-priority patent/US5075109A/en
Application filed by Southern Research Institute filed Critical Southern Research Institute
Publication of IE19960647A1 publication Critical patent/IE19960647A1/en
Publication of IE960647L publication Critical patent/IE960647L/en
Publication of IE83868B1 publication Critical patent/IE83868B1/en

Links

Abstract

ABSTRACT A method, and compositions for use therein capable, of delivering a bioactive agent to an animal entailing the steps of encapsulating effective amounts of the agent in a biocompatible excipient to form microcapsules having a size less than approximately ten micrometers and administering effective amounts of the mjcrocapsules to the animal. A pulsatile response is obtained, as well as mucosal and systemic immunity.

Description

This invention relates to a fomiulation for orally administering a bioactive agent encapsulated in one or more biocompatible polymer or copolymer excipients. preferably a biodegradable polymer or copolymer. The bioactive agent is encapsulated as microcapsules, which due to their proper size and physicalchemical properties. reach and are effectively taken up by the folliculli lymphatic aggregati, otherwise known as the "Peyer's patches". of the gastrointestinal tract in an animal without loss of effectiveness due to the agent having passed through the gastrointestinal tract. Similar folliculli lymphatic aggregati can be found in the respiratory tract, genitourinary tract. large intestine and other mucosal tissues of the body. Hereafter, the above—described tissues are referred to in general as mucosally-associated lymphoid tissues.
The use of microencapsulation to protect sensitive bioactive agents from degradation has become well-known. Typically, a bioactive agent is encapsulated within any of a l5 number of protective wall materials, usually polymeric in nature. The agent to be encapsulated can be coated with a single wall of polymeric material (microcapsules), or can be homogeneously dispersed within a polymeric matrix (microspheres). (Hereafter. the term microcapsules refers to both microcapsules and microspheres and the terms "encapsulation" and "microencapsulation" should be construed accordingly). The amount of agent inside the microcapsule can be varied as desired. ranging from either a small amount to as high as 95% or more of the microcapsule composition. The diameter of the microcapsule can also be varied as desired, ranging from less than one micrometer to as large as three millimeters or more.
Peyer's patches are aggregates of lymphoid nodules located in the wall of the small intestine, large intestine and appendix and are an important part of body's defense against the adherence and penetration of infectious agents and other substances foreign to the body. Antigens are substances that induce the antibody- producing and/or cell—mediated immune systems of the body, and include such things as foreign protein or tissue. The immunologic response induced by the interaction of an antigen with the immune system may be either positive or negative with respect to the body's ability to mount an antibody or cell—mediated immune response to a subsequent reexposure to the antigen.
Cell—mediated immune responses include responses such as the killing of foreign cells or tissues, "cell-mediated cytoxicity", and delayed—type hypersensitivity reactions. Antibodies belong to a class of proteins called immunoglobulins (Ig), which are produced in response to an antigen, and which combine specifically with the antigen. when an antibody and antigen combine, they form a complex. This complex may aid in the clearance of the antigen from the body, facilitate the killing of living antigens such as infectious agents and foreign tissues or cancers, and neutralize the activity of toxins or enzymes. In the case of the mucosal surfaces of the body the major class of antibody present in the secretions which bathe these sites is secretory immunoglobulin A (sIgA). Secretory IgA antibodies prevent the adherence and penetration of infectious agents and other antigens to and through the mucosal tissues of the body.
While numerous antigens enter the body through the mucosal tissues, commonly employed immunization methods, such as intramuscular or subcutaneous injection of antigens or vaccines, rarely induce the appearance of sIgA antibodies in mucosal secretions. Secretory IgA antibodies are most effectively induced through direct immunization of the mucosally-associated lymphoid tissues, of which the Peyer's patches of the gastrointestinal tract represent the largest mass in the body. intestinal plasma cells of germ-free mice after oral or . parenteral immunization with ferritin. 13o;723; 1969).
J. Exp. Med.
Subsequent studies have shown that oral administration of antigens leads to the production of sIgA antibodies in the gut and also in mucosal secretions distant to the gut, e.g., in bronchial washings, colostrum, milk, saliva and tears (Mestecky, J., Mcchee, J.R., Arnold, R.R., Michalek, S.M., Prince, S.J. and Babb, J.L. Selective induction of an immune response in human external secretions by ingestion of bacterial antigen. J. Clin. secretory antibody response. Anti—DNP antibodies induced by dinitrophenylated Type III pneumococcus.
Immunol. Commun. ;:143; 1974, and Hanson, L.A., Ahistedt, S., Carlsson, B., Kaijser, B., Larsson, P., MattsbyBaltzer, A., Sohl Akerlund, A., Svanborg Eden, C. and Dvennerholm, A.H. Secretory IgA antibodies to enterobacterial virulence antigens: their induction and possible relevance, Adv. Exp. Med. Biol. 1007:165; ). It is apparent, therefore, that Peyer's patches are an enriched source of precursor IgA cells, which, subsequent to antigen sensitization, follow a circular migrational pathway and account for the expression of IgA at both the region of initial antigen exposure and at distant mucosal surfaces. This circular pattern provides a mucosal immune system by continually transporting sensitized B cells to mucosal sites for responses to gut-encountered environmental antigens and potential pathogens.
Of particular importance to the present invention is the ability of oral immunization to induce protective antibodies. It is known that the ingestion of antigens by animals results in the appearance of antigen—specific sIgA antibodies in bronchial and nasal washings. For example, studies with human volunteers show that oral administration of influenza vaccine is effective at inducing secretory anti—influenza antibodies in nasal secretions.
Extensive studies have demonstrated the feasibility of oral immunization to induce the common mucosal immune system, but with rare exception the la doses require to achieve effective immunization have made this approach impractical. method or formulation involving oral administration o an ingredient be of such design that will protect the agent from degradation during its passage through the gastrointestinal tract and target the delivery of the ingredient to the Peyer's patches. If not, the ingredient will reach the Peyer's patches, if at all, in an inadequate quantity or ineffective condition.
Therefore, there exists a need for a method oral immunization which will effectively stimulate th immune system and overcome the problem of degradation the antigen during its passage through the gastrointestinal tract to the Peyer's patch. There It is apparent that any of e exists a more particular need for a method of targeting an antigen to the Peyer's patches and releasing that antigen once inside the body. There also exists a ne for a method to immunize through other mucosal tissue of the body which overcomes the problems of degradation of the antigen and targets the delivery to the mucosally—associated lymphoid tissues. In addition, need exists for the protection from degradation of mucosally applied bioactive agents, improves and/or targets their entrance into the body through the mucosally-associated lymphoid tissues and releases the bioactive agent once it has entered the body.
This invention relatesinter alia to a formulation for targeting to and then releasing a bioactive agent in the body of an animal by mucosal application, and in particular, oral and intratracheal administration. The agent is microencapsulated in a biocompatible polymer or copolymer, preferably a biodegradable polymer or copolymer which is capable of passing through the gastrointestinal tract or existing on a mucosal surface without degradation or with minimal degradation so that the agent reaches and enters the Peyer's patches or other mucosally-associated lymphoid tissues unaltered and in effective amounts. The term biocompatible is defined as a polymeric material which is not toxic to the body, is not carcinogenic, and which should not induce inflammation in body tissues. It is preferred that the microcapsule polymeric excipient be biodegradable in the sense that it should degrade by bodily processes to products readily disposable by the body and should not accumulate in the body. The microcapsules are also of a size and physicalchemical composition capable of being effectively and selectively taken up by the Peyer‘s patches. Therefore, the problems of the agent reaching the Peyer‘s patch or other mucosally-associated tissue and being taken up are solved.
It is an object of this invention to provide a method of orally administering an anfigentoanannnm _.7_. which results in the antigen reaching and being taken up by the Peyer‘s patches, and thereby stimulating the ' mucosal immune system, without losing its effectiveness as a result of passing through the animal's gastrointestinal tract.
It is also an object of this invention to provide a method of orally administering an antigen to an animal which results in the antigen reaching and being taken up by the Peyer's patches, and thereby stimulating the systemic immune system, without losing its effectiveness as a result of having passed through the gastrointestinal tract.
It is a further object of this invention to provide a method of administering an antigen to an animal which results in the antigen reaching and being taken up by the mucosally-associated lymphoid tissues, and thereby stimulating the mucosal immune system, without losing its effectiveness as a result of degradation on the mucosal surface.
It is a still further object of this invention to provide a method of administering an antigen to an animal which results in the antigen being taken up by the mucosally—associated lymphoid tissues, and thereby stimulating the systemic immune system, without losing its effectiveness as a result of degradation on the mucosal surface.
It is a still further object of this invention to provide a method of orally administering a bioactive agent to an animal which results in the agent reaching and being taken up by the Peyer‘s patches, and thereby resulting in an increased local or systemic concentration of the agent.
It is a still further object of this invention to provide a method of administering a bioactive agent to an animal which results in the agent reaching and being taken up by the mucosally—associated lymphoid tissues, and thereby resulting in an increased local or systemic concentration of the agent.
It is a still further object of this invention to provide a formulation consisting of a core bioactive ingredient and an encapsulating polymer or copolymer excipient which is biocompatible and preferably biodegradable as well, which can be utilized in the mucosal-administration methods described above.
It is another object of this invention to provide an improved vaccine delivery system which obviates the need for immunopotentiators.
It is a still further object of this invention to provide an improved vaccine delivery system for the induction of immunity through the pulsatile release of antigen from a single administration of microencapsulated antigen.
It is a still further object of this invention to provide an improved vaccine delivery system which both obviates the need for immunopotentiators and affords induction of immunity through pulsatile releases of antigen all from a single administration of microcapsulated antigen.
It is a further object of this invention to provide a composition capable of achieving these above- referenced objects.
IE950647 _.9._ BRIEF DESCRIPTION OF THE FIGURE Figure 1 represents the plasma IgA responses in mice determined by endpoint titration.
DETAILED DESCRIPTION OF THE INVENTION Illustrations of the methods performing embodiments of the invention follow. These illustrations demonstrate the mucosally—associated lymphoid tissue targeting and programmed delivery of the antigens (trinitrophenyl keyhole limpet hemocyanin and a toxoid vaccine of staphylococcal enterotoxin B), and a drug (etretinate) encapsulated in 50:50 po1y(DL-lactide- co—glycolide) to mice.
It should be noted, however, that other polymers besides poly(DL-lactide-co—glycolide) may be used. Examples of such polymers include, but are not limited to, poly(glycolide), po1y(DL-lactide—co- glycolide), copolyoxalates, polycaprolactone, poly(lactide-co—caprolactone), poly(esteramides), polyorthoesters and poly(8-hydroxybutyric acid), and polyanhydrides.
Also, other bioactive ingredients may be used.
Examples of such include, but are not limited to, antigens to vaccinate against viral, bacterial, protozoan, fungal diseases such as influenzae, respiratory syncytial, parainfluenza viruses, Hemophilus influenza, Bordetella pertussis, Neisseria gonorrhoeae, Streptococcus pneumoniae and Plasmodium falciparum or other diseases caused by pathogenic microorganisms or antigens to vaccinate against diseases caused by macroorganisms such as helminthic pathogens or antigens to vaccinate against allergies. Additional _1_O_ bioactive agents which may be used include limited to, but are not immunomodulators, nutrients, drugs, peptides, lymphokines and cytokines.
I. HICROENCAPSULATION A. Preparation of Dye—Loaded fiicrocapsules Coumarin, a water—insoluble fluorescent dye, was microencapsulated with polystyrene, which is a nonbiodegradable polymer, to afford fluorescent microcapsules that could be used to follow the penetration of microcapsules into the Peyer‘s patches.
The procedure used to prepare these microcapsules follows: First, a polymer solution is preparedlby dissolving 4.95 g of polystyrene (Type 6850, Dow Chemical Company, Midland, MI) in 29.5 g of methylene chloride (Reagent Grade, Eastman Kodak, Rochester, NY).
Next, about 0.05g of coumarin (Polysciences, Inc., warrington, PA) is added to the polymer solution and allowed to dissolve by stirring the mixture with a magnetic stir bar.
In a separate container, 10 wt% aqueous poly(vinyl alcohol) (PVA) solution, the processing medium, is prepared by dissolving 40 g of PVA (Vinol 2050, Air Products and Chemicals, Allentown, PA) in 360 g of deionized water. After preparing the PVA solution, the solution is saturated by adding 6 g of methylene chloride. Next, the PVA solution is added to a l—L resin kettle (Ace Glass, Inc., Vineland, NJ) fitted with a truebore stir shaft and a 2.S—in. teflon impeller and stirred at about 380 rpm by a Fisherqstedi speedflmotor.
The polystyrene/coumarin mixture is then added to the resin kettle containing the PVA processing media.
This is accomplished by pouring the polystyrene/coumarin mixture through a long—stem 7-mm bore funnel which directs the mixture into the resin kettle. A stable oil—in—water emulsion results and is subsequently stirred for about 30 minutes at ambient pressure to afford oil microdroplets of the appropriate size. Then the resin kettle is closed, and the pressure in the resin kettle is gradually reduced to 520 mm Hg by means of a water aspirator connected to a manometer and a bleed valve. The resin kettle contents are stirred at reduced pressure for about 24 hours to allow all of the After all of the methylene chloride has evaporated, the hardened methylene chloride to evaporate. microcapsules are collected by centrifugation and dried for 72 hours in a vacuum chamber maintained at room temperature.
B. Preparation of Antigen-Loaded Hicrocapsules TNP-KLH, a water-soluble antigen, was encapsulated in poly(DL-lactide—co—glycolide), a biocompatible, biodegradable polyester. The procedure used to prepare the microcapsules follows: First, a polymer solution was prepared by dissolving 0.5g of 50:50 poly(DL—lactide—co—g1ycolide) in 4.0 g of methylene chloride. Next, 300 microliters of an aqueous solution of TNP-KLH (46 mg TNP—LKH/mL; after dialysis) was added to and homogeneously dispersed in the poly(DL-lactide—co—glycolide) solution by vortexing the mixture with a Vortex-Genie 2 (Scientific Industries, Inc., Bohemia, NY).
E960647 In a separate container, an 8 wt% aqueous PVA solution was prepared by dissolving 4.8 g of PVA in 55.2 g of deionized water. After dissolution of the PVA, th PVA solution was added to a 100—mL resin kettle (Konteg Glass, Inc., Vineland, NJ) fitted with a truebore stirrer and a l.5—in.<3.8 cm)Teflon® turbine impeller. The polymer solution was then added to the PVA processing medium by pouring through a long—stem 7—mm bore funnel.
During this addition, the PVA solution was being stirred at about 650 rpm. After the resulting oil—in—water emulsion was stirred in the resin kettle for about 10 minutes, the contents of the resin kettle were transferred to 3.5 L of deionized water contained in a 4—L beaker and being stirred at about 800 rpm with a 2—in. stainless steel impeller. The resultant microcapsules were stirred in the deionized water for about 30 minutes, collected by centrifugation, washed twice with deionized water to remove any residual PVA, and were then collected by freeze drying. The microcapsule products consisted of spherical particles about 1 to 10 micrometers in diameter. Other microcapsules, such as staphylococcal enterotoxin B microcapsules, can be made in a similar manner.
The TNP-KLH content of the antigen—loaded microcapsules, that is, the core loading of the microcapsules, was determined by weighing out 10 mg of antigen—1oaded microcapsules in a l2—mL centrifuge tube.
Add 3.0 mL of methylene chloride to the tube and vortex to dissolve the poly(DL—lactide—co—glycolide). Next, add 3.0 mL of deionized water to the tube and vortex vigorously for 1 minute. Centrifuge the contents of the centrifuge tube to separate the organic and aqueous 'E9505’i7 layers. Transfer the aqueous layer to a lO—mL volumetric flask. Repeat the extraction combining the aqueous layers in the volumetric flask. to the mark with deionized water.
Fill the flask The amount of TNP-KLH in the flask, and subsequently the amount of TNP-KLH in the microcapsules, is then quantified using a protein assay. The microcapsules contained 0.2% TNP—KLH by weight. The staphylococcal enterotoxin B content of staphylococcal enterotoxin B microcapsules can be quantified in a similar manner.
II. BENETRATION OF DYE-LOADED HICROCAPSULES INTO THE PEYER'S PATCHES AFTER ORAL ADMINISTRATION By far the largest mass of tissue with the capacity to function as an inductive site for secretory IgA responses is the Peyer's patches. These discrete nodules of lymphoreticular tissue are located along the entire length of the small intestine and appendix. The targeted delivery of intact antigen directly into this tissue to achieve high local concentration is currently believed to be the most effective means of inducing a disseminated mucosal Igh response. Biodegradable microcapsules represent an ideal vehicle to achieve this targeted vaccination.
EXAMPLE 1 ~ Polystyrene Microcapsules The uptake of microcapsules into the gut- associated lymphoreticular tissues and the size restriction of this penetration was investigated by orally administering to mice polystyrene microcapsules, loaded with the fluorescent dye coumarin.
Unanesthetized, fasted BALB/c mice were administered _14_. .5 mL of a 100 mg/mL suspension of various sized fluorescent microcapsules (less than S micrometers or 8 to 50 micrometers in diameter) in tap water into the stomach using a feeding needle. At various times after administration (0.5, 1 and 2 hours), the mice were sacrificed and the small intestine excised. One- centimeter sections of gut containing a discrete Peyer‘s patch were isolated, flushed of lumenal contents, everted and snap frozen. Frozen sections were prepared and examined under a fluorescence microscope to observe the number, location and size of the microcapsules which were taken up into the Peyer's patch from the gut lumen.
Although some trapping of the microcapsules between the villi had prevented their removal during flushing, no penetration into the tissues was observed at any point except the Peyer's patch. At 0.5 hours after oral administration, microcapsules were observed in the Peyer's patch of the proximal, but not the distal, portion of the small intestine. with increasing time the microcapsules were transported by peristaltic movement such that by 2 hours they were throughout the gastrointestinal tract and could be found in the Peyer's patch of the ilium. The endocytosed microcapsules were predominantly located peripherally, away from the apex of the Peyer's patch dome, giving the impression that physical trapping between the dome and adjacent villi during peristalsis had aided in their uptake.
Comparison of the efficiency of uptake of the <5 micrometer versus the 8 to S0 micrometer preparations demonstrated that microcapsules >10 micrometers in diameter were not absorbed into the Peyer's patches while microcapsules of l to 10 micrometers in diameter were rapidly and selectively taken up. This suggested that microcapsules composed of biodegradable wall materials would serve as an effective means for the targeted delivery of antigens to the lymphoreticular tissues for the induction of immunity at mucosal surfaces.
EXAMPLE 2 — 85:15 Poly(DL—1actide-co—g1ycolide) Microcapsules . Uptake of Biocompatible and Biodegradable Microcapsules into the Peyer‘s Patches Groups of mice were administered biodegradable microcapsules containing the fluorescent dye coumarin-6 as a suspension in tap water via a gastric tube. The microcapsule wall material chosen for these studies consisted of 85:15 poly(DL-lactide—co-glycolide) due to its ability to resist significant bioerosion for a period of six weeks. At various times from 1 to 35 days after administration, three representative Peyer's patches, the major mesenteric lymph nodes and the spleens from individual mice were removed, processed and serial frozen sections prepared.
When viewed with a fluorescence microscope using appropriate excitation and barrier filters the coumarin exhibited a deep green fluorescence which allowed the visual detection of microcapsules substantially less than 1 micrometer in diameter. All sections were viewed in order that the total number of microcapsules within each tissue or organ could be quantified. The size of each internalized microcapsule was determined using a calibrated eyepiece micrometer and its location within the tissue or organ was noted. .5 960647 __l6_ Internalized microcapsules of various sizes were observed in the Peyer's patches at 24 hours post oral administration and at all time points tested out to days, as shown in Table 1. At no time were microcapsules of any size observed to penetrate into the tissue of the gut at any point other than the Peyer's patches. The total number of microcapsules within the Peyer's patches increased through Day 4 and then decreased over the following 31 days to approximately % of the peak number.
This is consistent with the observation that free microcapsules could be observed on the surface of the gut villi at the 1, 2 and 4 day time points. It is of interest that approximately 10 hours following oral administration of the microcapsule suspension the coumarin-loaded microcapsules were frankly observable in the passed feces. This clearance was followed with the aid of an ultraviolet light source and by 24 hours the vast majority of the ingested microcapsules had been passed. Thus, the continued uptake of microcapsules into the Peyer's patches observed at 2 and 4 days must be attributed to the minor fraction of the input dose which became entrapped within mucus between the gut villi. In addition, the efficiency of uptake for the entrapped microcapsules must be several orders of magnitude greater than that of the microcapsules present in the gut lumen, but above the mucus layer. These observations are important when these data are extrapolated to man; the tremendously larger mass of Peyer‘s patch tissue and the greatly increased transit time for the passage of material through the human small intestine relative to the mouse suggests that the E950647 efficiency of microcapsule uptake into the human Peyer's patches will be much higher.
Hicrocapsules of various sizes were observed within the Peyer's patches at all time points tested as shown in Table 1. At the 1, 2 and 4 day time points the proportion of <2 micrometers (45-47%), 2-S micrometers (31—3S%) and >5 micrometers (18-23%) microcapsules remained relatively constant. Evident at 7 days, and even more so at later time points, was a shift in the size distribution such that the small (<2 micrometers) and medium (2-S micrometers) microcapsules ceased to ‘predominate and the large (>5 micrometers) microcapsules became the numerically greatest species observed. This shift was concurrent with the decrease in total microcapsule numbers in the Peyer's patches observed on and after Day 7. These results are consistent with the preferential migration of the small and medium sizes of microcapsules from the Peyer's patches while the large (>5 micrometers) microcapsules are preferentially retained.
Consistent with the preferential migration of the small and medium microcapsules out of the Peyer‘s patches are the data pertaining to the location of microcapsules within the architecture of the Peyer's patches. when a microcapsule was observed within the Peyer‘s patch, it was noted to be either relatively close to the dome epithelium where it entered the Peyer‘s patch (within 200 micrometers) or deeper within the lymphoid tissue (3200 micrometers from the closest identifiable dome epithelium) (Table 1). Microcapsules observed deep within the Peyer‘s patch tissue were almost exclusively of small and medium diameter. At 1 day post—administration, 92% of the microcapsules were located close to the dome epithelium. The proportion of deeply located microcapsules increased through Day 4 to % of the total, and thereafter decreased with time to approximately 2% at Day 14 and later. Thus, the small and medium microcapsules migrate through and out of the Peyer's patches, while the large (>5 micrometers) microcapsules remain within the dome region for an extended period of time.
Microcapsule Migration to the Mesenteric Lymph Nodes and Spleen A small number of microcapsules were observed in the mesenteric lymph nodes at 1 day post- administration, and the numbers progressively increased through Day 7, as shown in Table 2. After Day 7, the numbers decreased but were still detectable on Day 35.
The size distribution clearly showed that microcapsules >5 micrometers in diameter did not enter this tissue, and the higher proportion of small (<2 micrometers) relative to medium (2-5 micrometers) microcapsules at the earlier time points indicated that the smaller diameter microcapsules migrate to this tissue with greatest efficiency. In addition, at the earlier time points, the majority of the microcapsules were located just under the capsule in the subcapsular sinus. Later time points showed a shift in the distribution to deep within the lymph node structure, and by day 14, 90% of the microcapsules were located within the cortex and medullary regions. The observation that the microcapsules are first detected in or near the subcapsular sinus is consistent with their entry into ; _.1_9._. this tissue via the lymphatics which drain the Peyer's patches. A progressive increase in the proportion of the microcapsules located deep in this tissue, clearly followed by a progressive drop in the total numbers on Day 14 and later, suggests that the microcapsules progress through this tissue and extravasate through the efferent lymphatic drainage.(*) Similar examination of the spleen showed that no microcapsules were detectable until Day 4 post- administration. discernable at Day 4, Peak numbers of microcapsules were not observed in this organ until Day 14. As in the case of the mesenteric lymph nodes, no microcapsules of >5 micrometers in diameter were observed. At all time the microcapsules were observed deep in this organ within the cortex. points, It should be noted that the peak number of microcapsules was observed in the spleen at a time when the majority of the microcapsules present in the mesenteric lymph nodes was deeply located and their total numbers falling. These data are consistent with the known pattern of lymph drainage from the Peyer's patches to the mesenteric lymph nodes and from the mesenteric lymph nodes to the bloodstream via the thoracic duct. Thus, it appears that the microcapsules present in the spleen have traversed the Peyer's patches and mesenteric lymph nodes and have entered the spleen via the blood circulation.
In additional experiments, from Peyer's patches, tissue sections mesenteric lymph node and spleen which contained absorbed 85:15 DL—PLG microcapsules were examined by histochemical and immunohistochemical techniques. these studies clearly showed that the microcapsules which were Among other observations, ._.20._. absorbed into the Peyer's patches were present within macrophage—like cells which were stained by periodic acid Schiff's reagent (PAS) for intracellular carbohydrate, most probably glycogen, and for major histocompatibility complex (MHC) class II antigen.
II positive cells. Thus, the antigen containing microcapsules have been internalized by antigen- presenting accessory cells (APC) in the Peyer's patches, and these APC have disseminated the antigen- microcapsules to other lymphoid tissues.
These data indicate that the quality of the immune response induced by orally administering a microencapsulated vaccine can be controlled by the size of the particles. Microcapsules <5 micrometers in diameter extravasate from the Peyer's patches within APC and release the antigen in lymphoid tissues which are inductive sites for systemic immune responses. In contrast, the microcapsules 5 to 10 micrometers in diameter remain in the Peyer's patches, also within APC, for extended time and release the antigen into this sIgA inductive site.
EXAMPLE 3 — Comparison of the Uptake of Microcapsules of Compositions by the Peyer's Patches Experiments were performed to identify microcapsule polymeric excipients that would be useful for a practical controlled release delivery system and which would possess the physicalchemical properties which would allow for targeted absorption of lE950647 particles are more readily phagocytized by the cells of the reticuloendothelial system. Therefore, the absorption into the Peyer‘s patches of 1- to 10—micrometer polymers that varied in water uptake, biodegradation, and hydrophobicity. These polymers included polystyrene, poly(L-lactide), poly(DL—lactide), 50:50 poly(DL—lactide—co-glycolide), 85:15 poly(DL—lactide—co— glycolide), poly(hydroxybutyric acid), poly(methyl methacrylate), ethyl cellulose, cellulose acetate hydrogen phthalate, and cellulose triacetate.
Microcapsules, prepared from 7 of the 10 excipients, were absorbed and were predominantly present in the dome region of the Peyer's patches 48 hours after oral administration of a suspension containing 20 mg of microcapsules, as shown in Table 3. None of the microspheres were seen to penetrate into tissues other than the Peyer's patches. with one exception, ethyl cellulose, the efficiency of absorption was found to correlate with the relative hydrophobicity of the excipient. Up to 1,500 microcapsules were observed in the 3 representative Peyer's patches of the mice administered the most hydrophobic group of compounds [poly(styrene), poly(methyl methacrylate), poly(hydroxybutyrate)], while 200 to 1,000 microcapsules polyesters [poly(L—lactide), poly(DL—lactide), IE95O647 _.22_ poly(DL-lactide-co—glycolide), glycolide)]. :50 poly(DL—lactide—co— As a class, the cellulosics were not absorbed.
It has been found that the physicalchemical characteristics of the microcapsules regulate the targeting of the microcapsules through the efficiency of their absorption from the gut lumen by the Peyer's patches, and that this is a surface phenomenon.
Therefore, alterations in the surface characteristics of the microcapsules, in the form of chemical modifications of the polymer or in the form of coatings, can be used to regulate the efficiency with which the microcapsules target the delivery of bioactive agents to mucosally—associated lymphoid tissues and to APC.
Examples of coatings which may be employed but are not limited to, chemicals, polymers, antibodies, bioadhesives, proteins, peptides, carbohydrates, and the like of both natural and man made origin. lectins III. ANTIBODY RESPONSES INDUCED WITH MICROENCAPSULATED VACCINES MATERIALS AND METHODS Mice, BALB/c mice, 8 to 12 weeks of age, were used in these studies.
Trinitrophenyl — Keyhole Limpet Hemocyanin. Hemocyanin from the keyhole limpet (KLH) Megathura crenulate was purchased from Calbiochem (San Diego, CA). It was conjugated with the trinitrophenyl hapten (TNP-KLH) using 2, 4, 6—trinitrobenzene sulfonic acid according to the procedure of Rittenburg and Amkraut (Rittenburg, M.B. and Amkraut, A.A. Immunogenicity of trinitrophenyl~hemocyanin: Production of primary and secondary anti—hapten precipitins. J. Immunol. 97:42l: -23..
). The substitution ratio was spectrophotometrically determined to be TNP86l—KLH using a molar extinction coefficient of 15,400 at a wavelength of 350 nm and applying a 30% correction for the contribution of KLH at this wavelength.
Staphylococcal Enterotoxin B Vaccine. A formalinized vaccine of staphylococcal enterotoxin 8 (SEE) was prepared as described by Warren et al.
Spero, L. and Metzger, J.F. (warren, J.R., Antigenicity of formalin- inactivated staphylococcal enterotoxin B. J. iii:ass: 1973).
Immunol.
In brief, 1 gm of enterotoxin was dissolved in 0.1 M sodium phosphate buffer, pH 7.5, to 2 mg/mL. Formaldehyde was added to the enterotoxin solution to achieve a formaldehydezenterotoxin mole ratio of 4300:1. The solution was placed in a slowly shaking 37‘C controlled environment incubator—shaker and the pH was monitored and maintained at 7.5 + 0.1 daily.
After 30 days, the toxoid was concentrated and washed into borate buffered saline (BBS) using a pressure filtration cell (Amicon), and sterilized by filtration.
Conversion of the enterotoxin to enterotoxoid was confirmed by the absence of weight loss in 3 to 3.5 kg rabbits injected intramuscularly with 1 mg of toxoided material.
Immunizations. Microencapsulated and nonencapsulated antigens were suspended at an appropriate concentration in a solution of 8 parts filter sterilized tap water and 2 parts sodium bicarbonate (7.5% solution). The recipient mice were fasted overnight prior to the administration of 0.5 mL of suspension via gastric intubation carried out with an intubation needle (Babb, J.L., Kiyono, H., Michalek, S.M. and Mcchee, J.R. LPS % I '57 "i ran "' w '1; @ _.24_ regulation of the immune response: Suppression of immune response to orally—administered T—dependent antigen. J. l27:lO52: 1981).
Collection of Biological Fluids.
. Elasma. Blood was collected in calibrated capillary pipettes following puncture of the retro-orbital plexus.
Following clot formation, the serum was collected, Immunol. centrifuged to remove red cells and platelates, heat- inactivated, and stored at —70'C until assayed.
. Intestinal Secretions. Mice were administered four doses (0.5 mL) of lavage solution [25 mM Nacl, 40 mM Na2SO4, 10 mM KCl, 20 mM NaHCO3, and 48.5 mM poly(ethylene glycol), osmolarity of S30 mosM) at 15- minute intervals (Elson, C.O., Ealding, W. and Lefkowitz, J. A lavage technique allowing repeated measurement of IgA antibody on mouse intestinal secretions. J. Immunol. Meth. 672101; 1984). Fifteen minutes after the last dose of lavage solution, the mice were anesthetized and after an additional 15 minutes they were administered 0.1 mg pilocarpine by ip injection. Over the next 10 to 20 minutes, a discharge of intestinal contents was stimulated. This was collected into a petri dish containing 3 mL of a solution of 0.1 mg/mL soybean trypsin inhibitor (Sigma, St. Louis, MO) in 50 mM EDTA, vortexed vigorously and centrifuged to remove suspended matter. The supernatant was transferred to a round—bottom, polycarbonate centrifuge tube and 30 microgliters of 20 millimolar phenylmethylsulfonyl fluoride (PMSF, Sigma) was added prior to clarification by high—speed centrifugation (27,000 x g, 20 minutes, 4°C). After clarification, 20 microliters each of PMSF and 1% sodium iE‘9fio6-57 _25__. azide were added and the solution made 10% in FCS to provide an alternate substrate for any remaining proteases.
. Saliva. Concurrent with the intestinal discharge, a large volume of saliva is secreted and 0.25 mL was collected into a pasteur pipette by capillary action.
Twenty microliters each of trypsin inhibitor, PMSF, sodium azide and FCS was added prior to clarification.
. Bronchial-Alveolar Wash Fluids. Bronchial-alveolar wash fluids were obtained by lavaging the lungs with 1.0 mL of PBS. An animal feeding needle was inserted intratracheally and fixed in place by tying with suture material. The PBS was inserted and withdrawn 5 times to obtain washings, to which were added 20 microliters each of trypsin inhibitor, PMSF, sodium azide, and FCS prior to clarification by centrifugation.
. Immunochemical Reagents. Solid—phase absorbed and affinity-purified polyclonal goat IgG antibodies specific for murine IgM, IgG and IgA were obtained commercially (Southern Biotechnology Associates, Birmingham, AL). Their specificity in radioimmunoassays was tested through their ability to bind appropriate purified monoclonal antibodies and myeloma proteins.
. Solid—Phase Radioimmunoassays. Purified antibodies were labeled with carrier—free Na 1251 (Amersham) using the chloramine T method [Hunter, w.M. Radioimmunoassay.
In: Handbook of Experimental Immunology, M. weir (editor). Blackwell Scientific Publishing, Oxford, p. 14.1; 1978). Immulon Removawell assay strips (Dynatech) were coated with TNP conjugated bovine serum albumin (BSA) or staphylococcal enterotoxin B at 1 microgram/mL IE96o647 ._.26_ in BBS overnight at 4‘C. Control strips were left uncoated but all strips were blocked for 2 hours at room temperature with 1% BSA in BBS, which was used as the diluent for all samples and l2Sl—labeled reagents.
Samples of biologic fluids were appropriately diluted, added to washed triplicate replicate wells, and incubated 6 hours at room temperature. After washing, ,000 cpm of l25l—labeled isotype-specific anti- immunoglobulin was added to each well and incubated overnight at 4‘C. Following the removal of unbound -antibodies by washing, the wells were counted in a Gamma 5500 spectrometer (Beckman Instruments, Ramon, CA).
Inc., San In the case of the assays for TNP specific antibodies, calibrations were made using serial twofold dilutions of a standard serum (Miles Scientific, Naperville, IL) containing known amounts of immunoglobulins, on wells coated with 1 microgram/well isotype-specific antibodies. Calibration curves and interpolation of unknowns was obtained by computer, using "Logit—log" or "Four Parameter Logistic" BASIC Technology Center (Vanderbilt Medical Center, Nashville, TN). In the case of antibodies specific to staphylococcal enterotoxin B, the results are presented as the reciprocal serum dilution producing a signal >3~ fold that of the group—matched prebleed at the same dilution (end—point titration).
A. Vaccine—Microcapsules Administered by Injection. 1. Adjuvant Effect Imparted by Microencapsulation.
EXAMPLE 1 — Adjuvant Effect Imparted by Microencapsulation—Intraperitoneal Administration.
Research in our laboratories has shown that microencapsulation results in a profoundly heightened immune response to the incorporated antigen or vaccine in numerous experimental systems. An example is provided by the direct comparison of the level and isotype distribution of the circulating antibody response to Staphylococcal enterotoxin B, the causative agent of Staphylococcal food poisoning, following immunization with either soluble or microencapsulated enterotoxoid. Groups of mice were administered various doses of the toxoid vaccine incorporated in 50:50 poly(DL-lactide-co—glycolide) microcapsules, or in soluble form, by intraperitoneal (IP) injection. on Days 10 and 20 following immunization, plasma samples were obtained and assayed for anti—toxin activity by end—point titrationin in isotype—specific immunoradiometric assays (Table 4). The optimal dose of soluble toxoid (25 micrograms) elicited a characteristically poor immune response to the toxin which was detected only in the IgM isotype. In contrast, the administration of 25 micrograms of toxoid incorporated within microcapsules induced not only an IgM response, but an IgG response which was detectable at a plasma dilution of 1/2,560 on Day 20 post immunization. In addition, larger doses of toxoid could be administered in microencapsulated form without decreasing the magnitude of the response, as is seen with the 50 microgram dose of soluble toxoid. In fact, the measured release achieved with the microcapsules allows for 4-5 times the dose to be administered without causing high zone paralysis, resulting in substantially heightened immunity. This adjuvant activity is even /E96o647 _28_ more pronounced following secondary (Table 5) and tertiary immunizations (Table 6).
The Day 20 IgG anti—toxin response following secondary immunization was 512 times higher in mice receiving 50 micrograms of microencapsulated toxoid than in mice receiving the optimal dose of soluble toxoid.
Further, tertiary immunization with the soluble toxoid at its optimal dose was required to raise an antibody response to the toxin which was equivalent to that observed following a single immunization with 100 micrograms of microencapsulated enterotoxoid. Adjuvant activity of equal magnitude has been documented to common laboratory protein antigens such as haptenated keyhole limpet hemocyanin and influenza virus vaccine.
EXAMPLE 2 — Adjuvant Effect Imparted by Microencapsulation—Subcutaneous Administration.
The present delivery system was found to be active following intramuscular or subcutaneous (SC) injection. This was investigated by directly comparing the time course and level of the immune response following IP and SC injection into groups of mice, as shown in Table 7.
One hundred micrograms of enterotoxoid in microspheres administered by SC injection at 4 sites along the backs of mice stimulated a peak IgG anti-toxin response equivalent to that observed following IP injection. Some delay in the kinetics of anti—toxin appearance was observed. However, excellent antibody levels were attained, demonstrating the utility of injection at sites other than the peritoneum. Following secondary immunization the IP and SC routes were again ._.29_ equivalent with respect to peak titer, although the delayed response of the SC route was again evident, shown in Table 8., Mechanism of the Adiuvant Effect Imparted by Microencapsulation.
EXAMPLE 1 — The Adjuvant Effect Imparted by Microencapsulation is Not the Result of Adjuvant Activity Intrinsic to the Polymer. when considering the mechanism through which 1-10 micrometer DL-PLG microspheres mediate a potentiated humoral immune response to the encapsulated antigen, three mechanisms must be considered as possibilities. First, the long term chronic release (depot), as compared to a bolus dose of nonencapsulated antigen, may play a role in immune enhancement. Second, our experiments have shown that microspheres in this size range are readily phagocytized by antigen processing and presenting cells. Therefore, targeted delivery of a comparatively large dose of nondegraded antigen directly to the cells responsible for the initiation of immune responses to T cell—dependent antigens must also be considered. Third, the microcapsules may possess intrinsic immunopotentiating activity through their ability to activate cells of the immune system in a manner'analogous to adjuvants such as bacterial lipopolysaccharide or muramyl—di—peptide.
Immunopotentiation by this latter mechanism has the characteristic that it is expressed when the adjuvant is administered concurrently with the antigen.
In order to test whether microspheres posses any inate adjuvancy which is mediated through the IE950647 _.30_ ability of these particles to nonspecifically activate the immune system, the antibody response to 100 micrograms of microencapsulated enterotoxoid was compared to that induced following the administration of an equal dose of enterotoxoid mixed with placebo microspheres containing no antigen. The various antigen forms were administered by IP injections into groups of BALB/c mice and the plasma IgM and IgG enterotoxin— specific antibody responses determined by end-point titration RIAS, as shown in Table 9.
The plasma antibody response to a bolus injection of the optimal dose of soluble enterotoxoid (25 micrograms) was characteristically poor and consisted of a peak IgM titer of 800 on day 10 and a peak IgG titer of 800 on day 20. Administration of an equal dose of microencapsulated enterotoxoid induced a strong response in both the IgM and IgG isotypes which was still increasing on day 30 after immunization.
Coadministration of soluble enterotoxoid and a dose of placebo microspheres equal in weight, size and composition to those used to administer encapsulated antigen did not induce a plasma anti-toxin response which was significantly higher than that induced by soluble antigen alone. This result was not changed by the administration of the soluble antigen 1 day before or 1, 2 or 5 days after the placebo microspheres. these data indicate that the immunopotentiation Thus, expressed when antigen is administered within 1-10 micrometer DL—PLG microspheres is not a function of the ability of the microspheres to intrinsically activate the immune system. Rather, the data are consistent with either a depot effect, targeted delivery of the antigen /E950647 .._3]__. to antigen—presenting accessory cells, or a combination of these two mechanisms.
Antibody Response and Delays the Time of the Peak Response.
Four enterotoxoid containing microcapsule preparations with a variety of antigen release rates were compared for their ability to induce a plasma anti- toxin response following IP injection. The rate of antigen release by the microcapsules used in this study is a function of two mechanisms; diffusion through pores in the wall matrix and hydrolysis (bioerosion) of the wall matrix. Batches #6051 and #5141 have varying initial rates of release through pores, followed by a second stage of release which is a function of their degradation through hydrolysis. In contrast, Batches #697—l43~2 and #92800 have been manufactured with a tight uniform matrix of wall material which has little release through pores and their release is essentially a function of the rate at which the wall materials are hydrolyzed. However, these latter two lots differ in the ratio of lactide to glycolide composing the microcapsules, and the greater resistance of the 85:15 DL—PLG to hydrolysis results in a slower rate of enterotoxoid release.
The immune response induced by Batch #605—O26— l (60% release at 48 hours) ,400 on day 20 (Table 10). reached a peak IgG titer of Batch #514—14o-1 (30% release at 48 hours) stimulated IgG antibodies which also peaked on day 20, but which were present in higher concentration both on days 20 and 30..>\ /E950647 _32_ levels on days 30 and 45 which were substantially higher (102,400) than those induced by either lot with early release. Further delaying the rate of antigen release through the use of an 85:15 ratio of lactide to glycolide, Batch #928—O60—00 (0% release at 48 hours) delayed the peak antibody levels until days 45 and 60, but no further increase in immunopotentiation was observed.
These results are consistent with a delayed and sustained release of antigen stimulating a higher antibody response. However, certain aspects of the pattern of responses induced by these various microspheres indicate that a depot effect is not the only mechanism of immunopotentiation. The faster the initial release, the lower the peak antibody titer.
These results are consistent with a model in which the antigen released within the first 48 hours via diffusion through pores is no more effective than the administration of soluble antigen. Significant delay LH the onset of release to allow time for phagocytosis of the microspheres by macrophages allows for the effective processing and presentation of the antigen, and the height of the resulting response is governed by the amount of antigen delivered into the presenting cells. However, delay of antigen release beyond the point where all the antigen is delivered into the presenting cells does not result in further potentiation of the response, it only delays the peak level. o~r4"" [E95054] -33..
. Pulsatile Release of Vaccines from Microcapsules for Programmed Boostinq Followin ,_..<1_a;3irigl_e_ Injection When one receives any of a number of vaccines by injection, two to three or more administrations of the vaccine are required to elicit a good immune response.
Typically, the first injection is given to afford a primary response, the second injection is given to afford a secondary response, and a third injection is given to afford a tertiary response. Multiple injections are needed because repeated interaction of the antigen with immune system cells is required to stimulate a strong immunological response. After receiving the first injection of vaccine, a patient, therefore, must return to the physician on several occasions to receive the second, third, and subsequent injections to acquire protection. Often patients never return to the physician to get the subsequent injections.
The vaccine formulation that is injected into a patient may consist of an antigen in association with an adjuvant. For instance, an antigen can be bound to alum. During the first injection, the use of the antigen/adjuvant combination is important in that the adjuvant aids in the stimulation of an immune response.
During the second and third injections, the administration of the antigen improves the immune response of the body to the antigen. The second and third administrations or subsequent administrations, however, do not necessarily require an adjuvant.
Alza Corporation has described methods for the continuous release of an antigen and an immunopotentiator (adjuvant) to stimulate an immune lE950647 __]4_ response (U-S_ Patent No. 4,455,142). differs from the Alza patent in at least two important This invention manners. First, no immunopotentiator is required to increase the immune response, and second, the antigen is not continuously released from the delivery system.
The present invention concerns the formulation of vaccine (antigen) into microcapsules (or microspheres) whereby the antigen is encapsulated in biodegradable polymers, such as poly(DL-lactide-co- glycolide). More specifically, different vaccine microcapsules are fabricated and then mixed together such that a single injection of the vaccine capsule mixture improves the primary immune response and then delivers antigen in a pulsatile fashion at later time points to afford secondary, tertiary, and subsequent responses.
The mixture of microcapsules consists of small and large microcapsules. The small microcapsules, less than 10 microns, preferably less than S micrometers, or more preferably 1 to 5 micrometers, potentiate the primary response (without the need of an adjuvant) because the small microcapsules are efficiently recognized and taken up by macrophages. The microcapsules inside of the macrophages then release the antigen which is subsequently processed and presented on the surface of the macrophage to give the primary response. The larger microcapsules, greater than S micrometers, preferably greater than 10 microns, but not so large that they cannot be administered for instance by injection, preferably less than 250 micrometers, are made with different polymers so that as they biodegrade ’E960647 _:]S._ at different rates, they release antigen in a pulsatile fashion.
Using the present invention, the composition of the antigen microcapsules for the primary response is basically the same as the composition of the antigen microcapsules used for the secondary, tertiary, and subsequent responses. That is, the antigen is encapsulated with the same class of biodegradable polymers. The size and pulsatile release properties of the antigen microcapsules then maximizes the immune response to the antigen.
The preferred biodegradable polymers are those whose biodegradation rates can be varied merely by altering their monomer ratio, for example, poly(DL— lactide-co—glycolide), so that antigen microcapsules used for the secondary response will biodegrade faster than antigen microcapsules used for subsequent responses, affording pulsatile release of the antigen.
In summary, by controlling the size of the microcapsules of basically the same composition, one can maximize the immune response to an antigen. Also important is having small microcapsules (microcapsules less than 10 micrometers, preferably less than S micrometers, most preferably 1 to S micrometers) in the mixture of antigen microcapsules to maximize the primary response. The use of an immune enhancing delivery system, such as small microcapsules, becomes even more important when one attempts to elicit an immune response to less immunogenic compounds such as killed vaccines, subunit vaccines, low-molecular-weight vaccines such as peptides, and the like.
IE 950647 ...36_ EXAMPLE 1 — Coadministration of Free and Microencapsulated Vaccine.
A Japanese Encephalitis virus vaccine (Biken) was studied. The virus used is a product of the Research Foundation for Microbial Disease of Osaka University, Suita, Osaka, Japan. The manufacturer recommends a three dose immunization series consisting of two doses of vaccine administered one to two weeks apart followed by administration of a third dose of vaccine one month after the initial immunization series.
We have compared the antiviral immune responses of mice immunized with a standard three dose schedule of JE vaccine to the antiviral response of mice immunized with a single administration of JE vaccine consisting of one part unencapsulated vaccine and two parts encapsulated vaccine. The JE microcapsules were >10 micrometers.
The results of immunizing mice with JE vaccine by these two methods were compared by measuring the serum antibody titers against JE vaccine detected through an ELISA assay. The ELISA assay measures the presence of serum antibodies with specificity of JE vaccine components, however, it does not measure the level of virus neutralizing antibody present in the serum. The virus neutralizing antibody activity was therefore measured by virus cytopathic effect (CPE) inhibition assays and virus plaque reduction assays. The results of those assays are presented here.
Four experimental groups consisting of (1) untreated control mice which receive no immunization; (2) mice which received 3.0 mg of JE vaccine (unencapsulated) on Day 0; (3) mice which received 3.0 mg of JE vaccine (unencapsulated) on Days 0, 14 and 42 (standard schedule) and (4) mice which received 3.0 mg /EW0647 __37__ of JE vaccine (unencapsulated) and 3.0 mg of JE Vaccine (encapsulated) on day 0 were studied. The untreated controls provide background virus neutralization titers against which immunized animals can be compared. The animals receiving a single 3.0 mg dose of JE vaccine on Day 0 provide background neutralization titers against which animals receiving unencapsulated vaccine in conjunction with encapsulated vaccine can be compared.
This comparison provides evidence that the administration of encapsulated vaccine augments the immunization potential of a single 3.0 mg dose of unencapsulated vaccine. The animals receiving 3 doses of unencapsulated vaccine provide controls against which the encapsulated vaccine group can be compared so as to document the ability of a single injection consisting of both nonencapsulated and encapsulated vaccine to produce antiviral activity comparable to a standard three dose immunization schedule.
Serum samples collected on Days 21, 49 and 77 from ten animals in each experimental group were tested for their ability to inhibit the cytopathic effects induced by a standard challenge (100 TCID ) of JE virus.
The results of the CPE inhibition assays, expressed as the highest serum dilution capable of inhibiting 50% of the viral CPE, are presented in Table 11. As is shown, the untreated control animals (Group 1) had no significant serum virus neutralizing activity at any point tested. Of the ten animals receiving a single 3.0 mg dose of JE vaccine on Day 0 (Group 2), one did not develop any detectable virus neutralizing antibody. achieved was 254 which occurred on Day 49. The Of the remaining nine mice, the highest titer \ '7') {J7 _38_ geometric mean antiviral titer for this experimental group peaked on Day 49. of the ten animals receiving a standard schedule of three vaccine doses (Group 3), y from Day 49 to Day 77. The geometric mean titer for this group decreased by greater than 50% from Day 40 to Day 77.
All ten animals receiving encapsulated JE vaccine (Group 4) developed serum antiviral activity. The geometric mean titer for this group increased from Day 21 to Day 77. The average titer occurring on Day 49 in this group was significantly lower than that occurring in the 3 vaccine dose group (Group 3) (p = 0.006): however, the titer continued to increase from Day 49 to Day 77 which is in contrast to the 3 vaccine dose group. There was no significant difference in the average titer for these two groups in the Day 77 samples (p = .75) indicating that the encapsulated vaccine group achieved comparable serum antiviral titers at Day 77. Unlike the 3 vaccine dose group (Group 3), the animals receiving encapsulated vaccine (Group 4) continued to demonstrate increases in serum virus neutralizing activity throughout the timepoints examined. In contrast to the standard vaccine treatment group, mice receiving encapsulated JE vaccine had a two-fold increase in the average serum neutralizing titer from Day 49 to Day 77. The Day 21 average antiviral titer from mice receiving microencapsulated vaccine was not significantly different from the Day 21 average titer of mice receiving a single dose of JE vaccine on Day 0 (p = .12); however, the day 49 and Day 77 average titers were significantly different for the two groups (p = .03 and P = -03. respectively). These data indicate that serum ._39_. virus neutralizing titers similar to those produced by standard vaccine administration can be achieved by administering a single dose of encapsulated JE vaccine.
Although the antiviral titers achieved with the excipient formulation used in this study did not increase as rapidly as those achieved with the standard vaccine, the serum neutralizing antibody activity did reach titers which are comparable to those achieved with the standard three dose vaccine schedule.
To further corroborate these findings, pooled samples produced by mixing equal volumes of each serum sample were prepared for each experimental group. These samples were submitted to an independent laboratory for determination of antiviral activity. The samples were tested by plaque reduction assay against a standard challenge of JE virus. The results of these assays, presented in Table 12, substantiate the findings described above. Although the animals receiving encapsulated vaccine did not reach peak titers as rapidly as did the standard vaccine group, the encapsulated vaccine did induce comparable virus neutralizing antibody activity. Furthermore, the encapsulated vaccine maintained a higher antiviral titer over a longer period of time than did the standard vaccine. These results further support the conclusion that a single administration of microencapsulated vaccine can produce results comparable to those achieved with a three dose schedule of standard vaccine." EXAMPLE 2 — Coadministration of <10 Micrometer and >10 Micrometer Vaccine Microcapsules.
One advantage of the copolymer microcapsule delivery system is the ability to control the time lE95064Zf and/or rate at which the incorporated material is released. In the case of vaccines this allows for scheduling of the antigen release in such a manner as to maximize the antibody response following a single administration. Among the possible release profiles which would be expected to improve the antibody response to a vaccine is a pulsed release (analogous to conventional booster immunizations).
The possibility of using a pulsed release profile was investigated by subcutaneously administering 100 micrograms of enterotoxoid to groups of mice either in 1-10 micrometer (50:50 DL-PLG: 1.51 wt% enterotoxoid), 20-125 mm (50:50 DL-PLG: 0.64 wt% enterotoxoid) or in a mixture of 1-10 micrometer and 20- 125 micrometer microcapsules in which equal parts of the enterotoxoid were contained within each size range. The groups of mice were bled at 10 day intervals and the plasma IgG responses were determined by endpoint titration in isotype-specific immunoradiometric assays employing solid-phase absorbed enterotoxin (Figure 1).
Following the administration of the 1-10 micrometer enterotoxoid microcapsules the plasma IgG response was detected on day 10, rose to a maximal titer of 102,400 on days 30 and 40, and decreased through day 60 to ,600. In contrast, the response to the toxoid administered in 20-125 micrometer microcapsules was delayed until day 30, and thereafter increased to a titer of 51,200 on days 50 and 60. The concomitant administration of equal parts of the toxoid in 1-10 and ~125 micrometer microcapsules produced an IgG response which was for the first 30 days essentially the same as that stimulated by the 1-10 micrometer microcapsules ...4l_ administered alone. However, beginning on day 40 the response measured in the mice concurrently receiving the 1-10 plus 20-125 micrometer microcapsules steadily increased to a titer of 819,200 on day 60, a level which was far more than the additive amount of the responses induced by the two size ranges administered singly.
The antibody response obtained through the coadministration of 1-10 and 20-125 micrometer enterotoxoid-containing microcapsules is consistent with The first pulse results from the rapid ingestion and accelerated a two phase (pulsed) release of the antigen. degradation of the 1-10 micrometer particles by tissue histiocytes, which results in a potentiated primary immune response due to the efficient loading of high concentrations of the antigen into these accessory cells, and most probably their activation. The second phase of antigen release is due to the biodegradation of the 20-125 micrometer microcapsules, which are too large to be ingested by phagocytic cells. This second pulse of antigen is released into a primed host and stimulates an anamnestic immune response. Thus, using the 50:50 DL-PLG copolymer, a single injection vaccine delivery system can be constructed which potentiates antibody responses (1-10 micrometer microcapsules), and which can deliver a timed and long lasting secondary booster immunization (20-125 micrometer microcapsules). In addition, through alteration of the ratio of the copolymers, it is possible to prepare formulations which release even later, in order to provide tertiary or even quaternary boostings without the need for additional injections.
IEM0647 Therefore, there exist a number of possible approaches to vaccination by the injectable microcapsules of the present invention. Among these include multiple injections of small microcapsules, preferably 1 to S micrometers, that will be engulfed by macrophages and obviate the need for immunopotentiators, as well as mixtures of free antigen for a primary response in combination with microcapsulated antigen in the form of microcapsules having a diameter of 10 micrometers or greater that release the antigen pulsatile to potentiate secondary and tertiary responses and provide immunization with a single administration. Also, a combination of small microcapsules for a primary response and larger microcapsules for secondary and later responses may be used, thereby obviating the need for both immunopotentiators and multiple injections.
B. Vaccine—Microcapsu1es Administered Orally EXAMPLE 1 — Orally—Administered Microspheres Containing TNP—KLH Induce Concurrent Circulating and Mucosal Antibody Responses to TNP.
Microcapsules containing the haptenated protein antigen trinitrophenyl—keyhole limpet hemocyanin (THP—KLH) were prepared using 50:50 DL—PLG as the excipient. These microcapsules were separated according to size and those in the range of 1 to 5 micrometers in diameter were selected for evaluation. These microcapsules contained 0.2% antigen by weight. Their ability to serve as an effective antigen delivery system when ingested was tested by administering 0.5 mL of a 10 mg/mL suspension (10 micrograms antigen) in bicarbonate- [E950547 ._.43_. buffered sterile tap water via gastric incubation on 4 consecutive days. For comparative purposes an additional group of mice was orally immunized in parallel with 0.5 mL of 20 micrograms/mL solution of unencapsulated TNP-KLH. Control mice were orally administered diluent only.
On Days 14 and 28 following the final immunization, serum, saliva and gut secretions were obtained from S fasted mice in each group. These samples were tested in isotype—specific radioimmunoassays to determine the levels of TNP— specific and total antibodies of the IgM, isotypes (Table 13).
IgG and IgA The samples of saliva and gut secretions contained antibodies which were almost exclusively of the IgA class. These results are consistent with previous studies and provide evidence that the procedures employed to collect these secretions do not result in contamination with serum. None of the immunization protocols resulted in significant changes in the total levels of immunoglobulins present in any of the fluids tested. Low but detectable levels of naturally—occurring anti~TNP antibodies of the IgM and IgG isotypes were detected in the serum and of the IgA isotype in the serum and gut secretions of sham immunized control mice. However, the administration of micrograms of microencapsulated TNP—KLH in equal doses over 3 consecutive days resulted in the appearance of significant antigen—specific IgA antibodies in the secretions, and of all isotypes in the serum by Day 14 after immunization (see the last column of Table 13).
These antibody levels were increased further on Day 28.
In contrast, the oral administration of the same amount $950642’ ...44._ of unencapsulated antigen was ineffective at inducing specific antibodies of any isotype in any of the fluids tested.f These results are noteworthy in several respects. First, significant antigen—specific IgA antibodies are induced in the serum and mucosal secretions, a response which is poor or absent following the commonly used systemic immunization methods.
Therefore, this immunization method would be expected to result in significantly enhanced immunity at the mucosa; the portal of entry or site of pathology for a number of bacterial and viral pathogens. Secondly, the microencapsulated antigen preparation was an effective immunogen when orally administered, while the same amount of unencapsulated antigen was not. Thus, the microencapsulation resulted in a dramatic increase in efficacy, due to targeting of and increased uptake by the Peyer's patches. Thirdly, the inductive phase of the immune response appears to be of long duration.
While systemic immunization with protein antigens in the absence of adjuvants is characterized by a peak in antibody levels in 7 to 14 days, the orally administered antigen—containing microcapsules induced responses were higher at Day 28 than Day 14. This indicates that bioerosion of the wall materials and release of the antigen is taking place over an extended period of time, and thus inducing a response of greater duration.
EXAMPLE 2 — Orally Administered Microcapsules Containing SEB Toxoid Induce Concurrent Circulating and Mucosal Anti—SEB Toxin Antibodies.
The results presented above which show that (a) strong adjuvant activity is imparted by [E9506-$7 ._4S_. microencapsulation, and (b) microcapsules <5 micrometers in diameter disseminate to the mesenteric lymph nodes and spleen after entering through the Peyer's patches, suggested that it would be feasible to induce a systemic immune response by oral immunization with vaccine incorporated into appropriately sized biodegradable microcapsules. This possibility was confirmed in experiments in which groups of mice were immunized with 100 micrograms of Staphylococcal enterotoxoid B in soluble form or within microcapsules with a 50:50 DL-PLG excipient. These mice were administered the soluble or microencapsulated toxoid via gastric tube on three occasions separated by 30 days, and plasma samples were obtained on Days 10 and 20 following each immunization. The data presented in Table 14 show the plasma end point titers of the IgM and IgG anti-toxin responses for the Day 20 time point after the primary, secondary and tertiary oral immunizations..
Mice receiving the vaccine incorporated in microcapsules exhibited a steady rise in plasma antibodies specific to the toxin with each immunization while soluble enterotoxoid was ineffective. This experiment employed the same lot of microcapsules and was performed and assayed in parallel with the experiments presented in Tables 4, 5 and 6 above.
Therefore, these data directly demonstrate that oral immunization with microencapsulated Staphylococcal enterotoxoid B is more effective at inducing a serum anti-toxin response than is the parenteral injection of the soluble enterotoxoid at its optimal dose.
IE; 9 6|0‘6"‘7 The secretory IgA response was examined in the same groups of mice. It was reasoned that the characteristics of this lot of enterotoxoid-containing microcapsules, a heterogeneous size range from <1 micrometer to approximately 10 micrometers, made it likely that a proportion of the microcapsules released the toxoid while fixed in the Peyer's patches.
Therefore, on Days 10 and 20 following the tertiary oral immunization saliva and gut wash samples were obtained and assayed for toxin—specific antibodies of the IgA isotype (Table 15). In contrast to the inability of the soluble toxoid to evoke a response when administered orally, the ingestion of an equal amount of the toxoid vaccine incorporated into microcapsules resulted in a substantial sIgA anti-toxoid response in both the saliva and gut secretions. It should be pointed out that the gut secretions from each mouse are diluted into a total of 5 mL during collection. Although it is difficult to determine the exact dilution factor this imposes on the material collected, it is safe to assume that the sIgA concentration is at minimum -fold higher in the mucus which bathes the gut, and this has not been taken into account in the measurements present here.
These data clearly demonstrate the efficacy of microencapsulated enterotoxoid in the induction of a sIgA anti—toxin response in both the gut and at a distant mucosal site when administered orally.
Furthermore, through the use of a mixture of microcapsules with a range of diameters from <1 to 10 micrometers it is possible to induce this mucosal response concomitant with a strong circulating antibody [£5 9 fiia 614‘? -47.. response. This suggests that a variety of vaccines can be made both more effective and convenient to administer through the use of microencapsulation technology. gyf Vaccine Microcapsules Administered lntratracheally.
Containing SEB Toxoid Induce Concurrent Circulating and Mucosal Anti—Toxin Antibodies.
Folliculi lymphatic aggregati similar to the Peyer's patches of the gastrointestinal tract are present in the mucosally—associated lymphoid tissues found at other anatomical locations, such as the respiratory tract. Their function is similar to that of the Peyer's patches in that they absorb materials from the lumen of the lungs and are inductive sites for antibody responses which are characterized by a high proportion of sIgA. The feasibility of immunization through the bronchial—associated lymphoid tissue was investigated. Groups of mice were administered 50 microliters of PBS containing 50 micrograms of SE8 toxoid in either microencapsulated or nonencapsulated form directly into the trachea. On days 10, 20, following the immunization, samples of plasma, and saliva, gut washings and bronchial-alveolar washings were collected.
Assay of the plasma samples for anti—toxin specific antibodies revealed that the administration of free SEB toxoid did not result in the induction of a detectable antibody response in any isotype (Table 16).
In contrast, intratracheal instillation of an equal dose of microencapsulated SEB vaccine elicited toxin specific antibodies of all isotypes. This response reached maximal levels on Day 30 and was maintained through day IE 960647 _.48_ with IgM, IgG and IgA titers of 400, respectively.’-1 ,300 and 400, Similar to the responses observed in the plasma, toxin—specific antibodies in the bronchial- alveolar washings were induced by the microencapsulated toxoid, but not by the nonencapsulated vaccine (Table 17). The kinetics of the appearance of the anti—toxin antibodies in the bronchial secretions was delayed somewhat as compared to the plasma response in that the Day 20 response was only detected in the IgG isotype and was low in comparison to the plateau levels eventually obtained. However, maximal titers of IgG and IgA anti~ toxin antibodies (1,280 and 320, respectively) were attained by Day 30 and were maintained through Day 40.
No IgM class antibodies were detected in the bronchial- alveolar washings using this immunization method, a result consistent with the absence of IgM secreting plasma cells in the lungs and the inability of this large antibody molecule to transudate from the serum past the approximately 200,000 molecular weight cut off imposed by the capillary—alveolar membrane.
These data demonstrate that microencapsulation allowed an immune response to take place against the antigen SEB toxoid following administration into the respiratory tract while the nonencapsulated antigen was ineffective. This response was observed both in the circulation and in the secretions bathing the respiratory tract. It should be noted that this immunization method was effective at inducing the appearance of IgA class antibodies. This antibody is presumably the product of local synthesis in the upper respiratory tract, an area which is not protected by the IEF 9 6 0 6:4‘? IgG class antibodies which enter the lower lungs from the blood circulation. Thus, intratracheal immunization with microencapsulated antigens, through the inhalation of aerosols, will be an effective means of inducing antibodies which protect the upper respiratory tract.
D. Vaccine Microcapsules Administered by Mixed Immunization Routes.
In both man and animals, it has been shown that systemic immunization coupled with mucosal presentation of antigen is more effective than any other combination in promoting mucosal immune responses (Pierce, N.F. and Gowans, J.L. Cellular kinetics of the intestinal immune response to cholera toxoid in rats.
J. Exp. Med. lgg:1SSO; 1975). Three groups of mice were primed by IP immunization with 100 micrograms of microencapsulated SE8 toxoid and 30 days later were challenged with 100 micrograms of microencapsulated SEB toxoid by either the IP, oral or IT routes. This was done to directly determine if a mixed immunization protocol utilizing microencapsulated antigen was advantageous with respect to the levels of sIgA induced.
Twenty days following the microencapsulated booster immunizations, samples of plasma, gut washings and bronchial—alveolar washings were obtained and the levels and isotype distribution of the anti—SEB toxin antibodies were determined in endpoint titration radioimmunoassays (Table 18). The IP boosting of IP primed mice led to the appearance of high levels of IgG anti—toxin antibodies in the samples of plasma and secretions, but was completely ineffective at the induction of detectable IgA antibodies in any fluid tested. In contrast, secondary immunization with !E 950547 _50._. microencapsulated SEB toxoid by either the oral or IT routes efficiently boosted the levels of specific IgG antibodies in the plasma (pre—secondary immunization titer in each group was 51,200) and also induced the appearance of significant levels of sIgA antibodies in the gut and bronchial—alveolar washings. Oral boosting of IP primed mice induced sIgA anti—SEB toxin antibodies to be secreted into the gut secretions at levels which were comparable with those requiring three spaced oral immunizations (Table 18 as compared to Table 15).
Intratracheal boosting of previously IP immunized mice was particularly effective in the induction of a disseminated mucosal response and elicited the appearance of high concurrent levels of IgG and sIgA antibodies in both the samples of bronchial—alveolar and gut secretions.
These results are particularly important with respect to immunization against numerous infectious agents which exert their pathophysiologic effects through acute infections localized to the respiratory tract. Antibodies present within the respiratory tract originate from two different sources. Secretory IgA predominates in the mucus which bathes the nasopharynx and bronchial tree (Soutar, C.A. Distribution of plasma cells which are located in the lamina propria of These data indicate that mixed route immunization protocols utilizing microencapsulated antigens will prove the most efficient in the induction of concurrent circulating and mucosal antibody responses. Although the experiments reported here examine discrete priming and boosting steps which each required an administration of microencapsulated antigen, it will be possible to use the flexibility in controlled pulsatile release afforded by the microcapsule delivery system to design a single time of administration regimen which will stimulate maximum concurrent systemic and secretory immunity. As an example, microencapsulated antigen could be administered by both injection and ingestion during a single visit to a physician. By varying the lactide to glycolide ratio in the two doses, the systemically administered dose could be released within a few days to prime the immune system, and the second (oral) dose could be released in the Peyer's patches at a later time to stimulate a boosted mucosal response.
IV. ABSORPTION OF PHARMACEUTICALS.
The following example shows that small microcapsules (less than 5 micrometers, preferably 1 to microns) can also improve the absorption of pharmaceuticals as well as antigens into the body.
Etretinate, (A11—E)(4—methoxy—2,3,6,—trimethyl) phenyl—3, 7—dimethyl—2,4,8—nonatetraenoic acid, ethyl ester) was microencapsulated in 50:50 poly(DL—lactide— co-glycolide). The microcapsules were 0.5 to 4 micrometers in diameter and contained 37.2 wt% etretinate. These etretinate microcapsules, as well as unencapsulated etretinate, was administered to mice by oral gavage using 1 wt% Tween 80 in water as a vehicle.
Only single doses of 50 mg etretinate/kg were given.
Blood from the dosed mice was collected at specific time intervals and the serum of this blood was quantified for etretinate and/or its metabolites using a high performance chromatographic procedure (Table 19). The results show that mice treated with the etretinate microcapsules had significantly higher blood levels of etretinate than mice treated with unencapsulated etretinate. Like the less than S—micrometer vaccine microcapsules, it is believed that the microcapsules carry the etretinate to the blood stream via the lymphoidal tissue (Peyer‘s patches) in the gastrointestinal tract. This same approach should be applicable to increasing the absorption of other drugs, where its application would be especially useful for the delivery of biological pharmaceuticals such as peptides, proteins, nucleic acids, and the like.
Tables 1 to 19 follow:- Name Table 19. Concentration of Etretinate in Mouse Serum After Oral Dosing with Microencapsulated and Unencapsulated Etretinate Etretinate Concentration, ng/mL Timesghr Microcagsules Uncapsulated Drug 1 4,569 191 3 634 158 6 242 <31 24 ND ND ND = None detected The invention includes the compositions and methods set out in the following paragraphs: 1. A composition for delivering a bioactive agent to the mucosally associated lymphoreticular tissues of an animal, the composition comprising an effective amount of said agent encapsulated in a biocompatible excipient to form microcapsules having a size less than approximately 10 micrometers.
. The composition of paragraph 1 wherein said microcapsules have a size between approximately 1 micrometer and approximately 10 micrometers.
. The composition of paragraph 1 or paragraph 2 wherein said agent is selected from the group consisting of a drug, nutrient, immunomodulator, lymphokine, monokine, cytokine, antigen and allergen.
. The composition of any one of paragraphs 1 to 3 wherein said microcapsules have a size ranging from between approximately 5 micrometers and approximately 10 micrometers so that said microcapsules can be retained in said mucosally associated lymphoreticular tissues.
. The composition of any one of paragraphs 1 to 3 wherein said microcapsules have a size ranging from between approximately 5 micrometers so that said microcapsules can pass through said mucosally associated lymphoreticular tissues.
. The composition of paragraph 5 wherein said microcapsules have a size from approximately 1 micrometer and approximately 5 micrometers.
. The composition of paragraph 3 wherein said microcapsules comprise 21 mixture of a plurality of first microcapsules having a size less than approximately 5 micrometers and a plurality of second microcapsules having a size between IE Qfig approximately 5 micrometers and approximately 10 micrometers for providing both a systemic immunity and a mucosal immunity to said animal.
. The composition of paragraph 7 wherein said first microcapsules have a size between approximately l micrometer and approximately 5 micrometers.
. A composition for providing systemic immunity in an animal, the composition comprising an effective amount of a bioactive agent encapsulated in a biocompatible excipient to form microcapsules having a size between approximately 1 micrometer and approximately l0 micrometers in diameter.
. The composition of paragraph 9 wherein said bioactive agent is selected from the group consisting of an antigen, allergen, lymphokine, monokine and immunomodulator.
. A composition for potentiating the immune response of an animal, the composition comprising a mixture of effective amounts of first biocompatible microcapsules having a size less than approximately 10 micrometers and containing a first bioactive agent and second biocompatible microcapsules having a size greater than approximately 10 micrometers and containing a second bioactive agent. said first microcapsules providing a primary immunological response and said second microcapsules releasing said second agent pulsatily to potentiate a subsequent immunological response.
. The composition of paragraph 1 1 wherein at least one of said bioactive agents is selected from the group consisting of an antigen, allergen, lymphokine, monokine, cytokine and immunomodulator.
. A composition for increasing the bioavailability of a bioactive agent through oral administration and comprising biocompatible microcapsules containing effective amounts of said agent and having a size less than approximately 10 micrometers.
. The composition of paragraph 13 wherein said agent is selected from the group consisting of a drug, immunomodulator, lymphokine, monokine, cytokine_ nutrient, antigen and allergen.
. A composition for potentiating the immune response of an animal, the composition comprising a mixture ofa first, free bioactive agent to provide a primary response and microcapsules having a biocompatible excipient wall and containing a second bioactive agent for release pulsatily to potentiate a subsequent response.
. The composition of paragraph 15 wherein said first and second agents are an antigen or wherein said first and second agents are an allergen.
. The composition of paragraph 15 wherein at least one of said agents is an antigen, an allergen, a lymphokine, a cytokine, a monokine, or an immunomodulator.
. The composition of any one of paragraphs 15 to 17 wherein said microcapsules have a size greater than approximately 1 micrometer.
. The composition of any one of paragraphs ll to 17 wherein said microcapsules have a size between approximately 1 micrometer and approximately 10 micrometers.
. The composition of any one of paragraphs 15 to 17 wherein said microcapsules have a size greater than approximately 10 micrometers.
. A method of delivering a bioactive agent to the mucosally associated lymphoreticular tissues of an animal, comprising the steps of:- (a) encapsulating effective amounts of said agent in a biocompatible excipient to form microcapsules having a size less than approximately 10 micrometers, and \\i:}’\ (b) administering an effective amount of said microcapsules to said animal so that a therapeutic amount of said microcapsules reach and are taken up by said mucosally associated lymphoreticular tissues.
. The method of paragraph 21 wherein said administering step is selected from oral, nasal, rectal and ophthalmic administration.
. The method of paragraph 21, wherein said administering step is by oral inhalation.
. The method of any one of paragraphs 21 to 23 wherein said agent is selected from the group consisting of a drug, nutrient, immunomodulator, lymphokine, monokine, cytokine, antigen and allergen.
. The method of any one of paragraphs 21 to 24 wherein said microcapsules have a size between approximately 1 micrometer and approximately 10 micrometers.
. The method of paragraph 25 wherein said microcapsules have a size ranging from between approximately 5 micrometers and approximately 10 micrometers so that microcapsules can be retained in said mucosally associated lymphoreticular tissues.
. The method of any one of paragraphs 21 to 24 wherein said microcapsules have a size less than approximately 5 micrometers so that said microcapsules can pass through said mucosally associated lymphoreticular tissues.
. The method of paragraph 25 wherein said microcapsules have a size between approximately 1 micrometer and approximately 5 micrometers so that said microcapsules can pass through said mucosally associated lymphoreticular tissues. #53‘ J . The method of paragraph 26 wherein said bioactive agent is an antigen to provide a mucosal immunity for said animal or an allergen to provide a mucosal immunity for said animal.
. The method of paragraph 27 wherein said bioactive agent is an antigen to provide a systemic immunity for said animal or an allergen to provide a systemic immunity for said animal.
. The method of paragraph 24 wherein said microcapsules comprise a plurality of first microcapsules having a size less than approximately 5 micrometers and a plurality of second microcapsules having a size between approximately 5 micrometers and approximately 10 micrometers, and wherein said administering step comprises the delivery of a mixture of said first and second microcapsules to said animal to provide both a systemic immunity and a mucosal immunity.
. The method of paragraph 31 wherein said first microcapsules have a size between approximately 1 micrometer and approximately 5 micrometers.
. The method of paragraph 31 wherein said microcapsules have a size of less than approximately 5 micrometers so that said microcapsules can pass through said mucosally associated lymphoreticular tissues.
. The method of paragraph 33 wherein said microcapsules have a size between approximately 1 micrometer and approximately 5 micrometers.
. A method of immunising an animal, the method comprising the step of administering to said animal a mixture of an effective amount of a first free bioactive agent and microcapsules having a biocompatible excipient wall material and containing a second bioactive agent, wherein said microcapsules are of a size greater than approximately 10 micrometers and wherein said first bioactive agent provides a ’E 95primary immunological response and said microcapsules release said second bioactive agent pulsatily to potentiate a subsequent immunological response.
. A method of potentiating the immune response of an animal, the method comprising the step of administering to said animal a mixture of effective amounts of first biocompatible microcapsules having a size less than approximately l0 micrometers and containing a first bioactive agent and second biocompatiblc microcapsules having a size greater than approximately 10 micrometers and containing a second bioactive agent, said first microcapsules providing a primary immunological response and said second microcapsules releasing said second agent pulsatily to potentiate a subsequent immunological response.
. The method of paragraph 36 wherein said first microcapsules have a size between approximately 1 micrometer and approximately 10 micrometers.
. The method of any one of paragraphs 35 to 37 wherein at least one of said bioactive agents is selected from the group consisting of an antigen, allergen. lymphokine, monokine, cytokine and immunomodulator.
. A method of providing systemic immunity in an animal, the method comprising the steps oft- (a) encapsulating effective amounts of an antigen in a biocompatible excipient to form microcapsules having a size less than approximately 5 micrometers, and (b) administering said microcapsules to said animal orally, nasally, by oral inhalation, rectally or ophthalmically.
. A method as claimed in paragraph 39 wherein said microcapsules have a size between approximately 1 micrometer and approximately 5 micrometers.
. A method of providing mucosal immunity in an animal, the method comprising the steps of: (a) encapsulating effective amounts of an antigen in a biocompatible excipient to form microcapsules having a size from between approximately 5 micrometers and approximately 10 micrometers, and (b) administering said microcapsules to said animal orally, nasally, by oral inhalation, rectally or ophthalmically.
. A method of providing systemic and mucosal immunity to an animal, the method comprising administering to said animal a plurality of first microcapsules containing antigen and having a size less than approximately 5 micrometers and a plurality of second microcapsules containing antigen and having a size between approximately 5 micrometers and approximately 10 micrometers, and wherein said administering step comprises the delivery of a mixture of said first and second microcapsules to said animal to provide both a systemic immunity and a mucosal immunity.
. The method of paragraph 42 wherein said administering step is selected from the group consisting of oral administration, nasal administration, oral inhalation, rectal administration, and ophthalmic administration.
. The method of paragraph 42 or paragraph 43 wherein said first microcapsules have a size between approximately 1 micrometer and 5 micrometers.
. A method of providing a composition for delivering a bioactive agent to the mucosally associated lymphoreticular tissues of an animal, the method comprising the steps of encapsulating effective amounts of said agent in a biocompatible excipient to form microcapsules having a size less than approximately 10 micrometers. '5 950646. The method of paragraph 45 wherein said microcapsules are comprised of a plurality of first microcapsules having a size less than approximately 5 micrometers and a plurality of second microcapsules having a size between approximately 5 micrometers and approximately 10 micrometers, said first and second microcapsules being administered to said animal to provide both a systemic and a mucosal immunity.
. A method of preparing a composition for potentiating the immune response of an animal, the method comprising the step of adding together effective amounts of a first, free bioactive agent and microcapsules having a biocompatible excipient wall and containing a second bioactive agent to form a mixture which is administered to an animal wherein said first agent provides a primary response and wherein said microcapsules release said second agent pulsatily to potentiate a subsequent response.
. The method of paragraph 47 wherein at least one of said bioactive agents‘ is an antigen or an allergen.
. The method of paragraph 47 or paragraph 48 wherein said microcapsules have a size greater than approximately 10 micrometers.
. A method of preparing a composition for providing systemic immunity in an animal, the method comprising the step of encapsulating effective amounts of an antigen in a biocompatible excipient to form microeapsules having a size less than approximately 5 micrometers wherein said microcapsules are to be administered to said animal.
. A method of increasing the bioavailability of a bioactive agent to an animal comprising the steps of:- (a) encapsulating effective amounts of said agent in a biocompatible excipient to form microcapsules having a size less than approximately 10 micrometers; and (b) administering an effective amount of said microcapsules to said animal orally.
. A method for delivering a bioactive agent to an animal to initiate an immune response the method comprising the step of parenterally administering to said animal a bioactive agent encapsulated in a biocompatible excipient forming a microcapsule having a size less than 10 micrometers.
. The method of paragraph 52 wherein said step of parenterally administering comprises a single injection or comprises multiple injections.

Claims (74)

1. A composition adapted exclusively for oral inhalation, nasal, rectal, or ophthalmic administration for delivering a bioactive agent to mucosally associated lymphoreticular tissue of a human or other animal, the composition comprising biocompatible microcapsules comprising a bioactive agent encapsulated in a biocompatible excipient and having a size of from 1 mm to less than 5 pm for absorption by and passage through mucosally associated lymphoreticular tissue.
2. A composition of claim 1 in which the bioactive agent is an antigen, a lymphokine, a cytokine, a monokine or an immunomodulator.
3. A composition of claim 2 in which the bioactive agent is influenza antigen, Staphylococcus antigen, respiratory syncytial antigen, parainfluenza virus antigen, Hemophilos influenza antigen, Bordetella pertussis antigen, Neisseria gonorrhoeae antigen, Streptococcus pneumoniae antigen, Plasmodium falciparurn antigen, helminthic pathogen antigen, viral antigen, bacterial antigen, fungal antigen or protozoan antigen or an antigen to vaccinate against allergy.
4. A composition of claim 3 in which the bioactive agent comprises an influenza virus or staphylococcal enterotoxin B.
5. A composition of claim 1, wherein the bioactive agent comprises a nutrient, a peptide, a protein or a nucleic acid or is etretinate or another drug.
6. A composition of any of claims 1 to 5, wherein the excipient comprises a polymer or copolymer.
7. A composition of claim 6, wherein the excipient comprises a poly(dl—lactide—co— glycolide), a poly(lactide), a po1y(glycolide), a copolyoxalate, a polycaprolactone, a po1y(lactide—co-caprolactone), a poly(esteramide), a polyorthoester, a poly([3— hydroxybutyric acid) or a polyanhydride or a mixture thereof.
8. The use in the manufacture of a composition for absorption by and passage through mucosally associated lymphoreticular tissue of a bioactive agent of biocompatible microcapsules comprising a bioactive agent encapsulated in a biocompatible excipient and having a size from 1 pm to less than 5 pm.
9. The use of claim 8, wherein the composition is adapted exclusively for oral inhalation, nasal, rectal, genitourinary or ophthalmic administration.
10. The use of claim 8, wherein the composition is for oral inhalation, nasal, rectal. genitourinary or ophthalmic administration.
11. The use of any of claims 8 to 10 which further includes the specific feature(s) recited in one or more of claims 2 to 7.
12. A composition adapted exclusively for oral inhalation, nasal, rectal. genitourinary or ophthalmic administration for delivering a bioactive agent to mucosally associated lymphoreticular tissue of a human or other animal, the composition comprising biocompatible microcapsules comprising a bioactive agent encapsulated in Ll biocompatible excipient and having a size of between 5 um and 10 pm for absorption and retention by mucosally associated lymphoreticular tissue.
13. The use in the manufacture of a composition for absorption and retention by mucosally associated lymphoreticular tissue of a bioactive agent of biocompatible microcapsules comprising bioactive agent encapsulated in a biocompatible excipient and having a size of between 5 pm and 10 pm.
14. The use of claim 13, wherein the composition is adapted exclusively for oral inhalation, nasal, rectal, genitourinary or ophthalmic administration. 78
15. The use of claim 13, wherein the composition is for oral inhalation, nasal, rectal, genitourinary or ophthalmic administration.
16. A composition of claim 12 or the use of any of claims 13 to 15 which further includes the specific feature(s) recited in one or more of claims 2 to 7.
17. A composition for delivering a bioactive agent to mucosally associated lymphoreticular tissue of a human or other animal and adapted exclusively for oral inhalation, nasal, rectal, genitourinary or ophthalmic administration to human or other animals, comprising biocompatible microcapsules comprising a bioactive agent encapsulated in a biocompatible excipient and having a size of between less than 10 um.
18. A composition of claim 17, wherein the microcapsules have a size of between 1 um and 10 um.
19. A composition for potentiating the immune response of a human or other animal and adapted exclusively for administration by a route other than oral administration to the gastrointestinal tract to human or other animals, comprising biocompatible microcapsules comprising a bioactive agent encapsulated in a biocompatible excipient and having a size of between 1 pm and 10 um, provided that either (i) the excipient is neither a proteinoid nor a polyacryl starch or (ii) the composition is adapted exclusively for oral inhalation, nasal, rectal, genitourinary or ophthalmic administration.
20. The use in the manufacture of a composition for delivering a bioactive agent to mucosally associated lymphoreticular tissue of a human or other animal by oral inhalation, nasal, rectal, genitourinary or ophthalmic administration of biocompatible microcapsules comprising a bioactive agent encapsulated in a biocompatible excipient and having a size of less than 10 pm. 79
21. The use of claim 20, wherein the biocompatible microcapsules have a size of between 1 um and 10 um.
22. The use of claim 21, wherein said microcapsules have a size between 5 pm and 10 um so that said microcapsules can be retained in said mucosally associated lymphoreticular tissues.
23. The use of claim 21, wherein said microcapsules have a size between 1 pm and 5 um so that said microcapsules can pass through said mucosally associated lymphoreticular tissues.
24. The use of claim 21, wherein the composition is for providing immunity.
25. A composition of any of claims claim 17 to 19 or the use of any of claims 20 to 24 which further includes the specific feature(s) recited in one or more of claims 2 to 7.
26. A composition for potentiating the immune response of a human or other animal, comprising a mixture of effective amounts of first biocompatible microcapsules having a size of less than 10 um and containing a bioactive agent encapsulated in a biocompatible excipient and second biocompatible microcapsules containing a bioactive agent encapsulated in a biocompatible excipient, the first microcapsules providing a primary immunological response and the second microcapsules releasing the agent contained in the second microcapsules in a pulsed manner to potentiate a subsequent immunological response.
27. A composition of claim 26, wherein the first microcapsules have a size of between 1 um and less than 10 um.
28. A composition of claim 27, wherein the second microcapsules comprise microcapsules having a size greater than 10 um.
29.’E 950629. A composition of claim 27, wherein said first biocompatible microcapsules have a size of between 1 pm and 5 pm.
30. A composition of claim 27, wherein said first biocompatible microcapsules have a size of between 5 pm and less than 10 um.
31. A composition of claim 27, wherein the second microcapsules comprise microcapsules having a size between 1 mm and 10 um.
32. A composition of any of claims 26 to 31, wherein the biocompatible excipient of the first biocompatible microcapsules comprises a poly(lactide-co—glycolide) having a first monomer ratio and the biocompatible excipient of the second biocompatible microcapsule comprises a poly(lactide) or a poly(lactide-co-glycolide) having a second monomer ratio, the first and second monomer ratios being chosen so as to provide different biodegradation rates for the first and second biocompatible microcapsules.
33. A composition of any one of claims 26 to 32, which comprises third and optionally fiirther biocompatible microcapsules containing a bioactive agent, the third and any further microcapsules releasing the agent contained therein in a pulsed manner after the second microcapsules release the agent contained therein.
34. A composition of any of claims 26 to 33, which further includes independently for the first and second microcapsules the specific feature(s) recited in one or more of claims 2 to 7.
35. A composition of any one of claims 22 to 27, which is adapted exclusively for oral inhalation, oral, nasal, rectal, genitourinary or ophthalmic administration or is adapted exclusively for parenteral administration.
36. The use in the manufacture of a composition for potentiating the immune response of a human or other animal of effective amounts of first biocompatible microcapsules having a size of less than 10 um and containing a bioactive agent encapsulated in a biocompatible excipient and second biocompatible microcapsules containing a bioactive agent encapsulated in a biocompatible excipient, the first microcapsules providing a primary immunological response and the second microcapsules releasing the agent contained in the second microcapsules in a pulsed manner to potentiate a subsequent immunological response, the composition comprising the first and second microcapsules as a combined preparation.
37. The use of claim 36 wherein the first microcapsules have a size of between 1 pm and less than 10 um.
38. The use of claim 37, wherein the second microcapsules comprise microcapsules having a size greater the 10 pm.
39. The use of claim 37, wherein the second microcapsules comprise microcapsules having a size between 1 um and 10 pm.
40. The use of claim 37, wherein said first biocompatible microcapsules have a size of between 1 um and 5 um.
41. The use of claim 37. wherein said first biocompatible microcapsules have a size of between 5 pm and less than 10 um.
42. The use of claim 39, wherein said first and said second biocompatible microcapsules are for parenteral administration together in a mixture.
43. The use of claim 39, wherein said administration of said first and said administration of said second biocompatible microcapsules is by separate parenteral administrations. U1 82
44. The use of any one of claims 36 to 43 which further includes independently for the first and second microcapsules the specific feature(s) recited in one or more of claims 2 to 7, 32, 33 and 35.
45. A product comprising: an immunogenically effective amount of first biocompatible microcapsules first route, and an immunogenically effective amount of second biocompatible microcapsules comprising the bioactive agent encapsulated in a biocompatible excipient and having a size of between 1 pm and 10 um and for administration to a human or other animal by a second route different from the first route, as a combined preparation for potentiating the immune response of an animal provided either that at least one of the routes of administration is oral inhalation, nasal. rectal, genitourinary or ophthalmic or that the excipient of at least one of the first and second microcapsules is not a proteinoid.
46. A product of claim 45, wherein the first microcapsules are adapted to release thc bioactive agent in the human or other animal before the second microcapsules do so.
47. A product of claim 45 or claim 46, in which the bioactive agent is an antigen or an allergen or is as defined in claim 3 or claim 4 and/or in which the excipient of the first microcapsules is as defined in claim 6 or claim 7 and the excipient of the second microcapsules is as defined in claim 6 or claim 7.
48. A product of any of claims 45 to 47 in which the first microcapsules are adapted exclusively for systemic administration and the second microcapsules are adapted exclusively for oral inhalation, oral, nasal, rectal, genitourinary or ophthalmic administration. L/I 83
49. The use in the manufacture of a combined preparation for potentiating the immune response of a human or other animal of first biocompatible microcapsules comprising a bioactive agent encapsulated in a biocompatible excipient and having a size ofbetween 1 pm and 10 um and for administration to a human or other animal by a first route, and second biocompatible microcapsules comprising the bioactive agent encapsulated in a biocompatible excipient and having a size of between 1 pm and 10 pm and for administration to a human or other animal by a second route different from the first route.
50. The use of claim 49 which further include(s) the specific feature(s) recited in claim 46, claim 47 and/or claim 48.
51. A method of preparing a pharmaceutical composition, comprising encapsulating a bioactive agent in a biocompatible excipient to form microcapsules having a size of from 1 pm to less than 5 um, and formulating the microcapsules into a composition idapted exclusively for administration by a route other than oral administration to the gastrointestinal tract, provided that either (i) the excipient is neither a proteinoid nor a polyacryl starch or (ii) the composition is adapted exclusively for oral inhalation, nasal, rectal. genitourinary or ophthalmic administration.
52. A method of claim 51 which further includes the specific feature(s) recited in one or more of claims 2 to 7.
53. A method of preparing a pharmaceutical composition, comprising encapsulating a bioactive agent in a biocompatible excipient to fonn microcapsules having a size of between 5 pm and 10 pm, and fonnulating the microcapsules into a composition adapted exclusively for administration by a route other than oral administration to the gastrointestinal tract, provided that either (i) the excipient is neither a proteinoid nor a polyacryl starch or (ii) the composition is adapted exclusively for oral inhalation, nasal, rectal, genitourinary or ophthalmic administration. U1 ’E 9605
54. A method of claim 53 which further includes the specific feature(s) recited in one or more ofclaims 2 to 7.
55. A method ofpreparing a pharmaceutical composition, comprising encapsulating a bioactive agent in a biocompatible excipient to form microcapsules having a size between 1 pm and 10 pm and formulating the microcapsules into a composition adapted exclusively for oral inhalation, nasal, rectal, genitourinary or ophthalmic administration.
56. A method of claim 55 which further includes the specific feature(s) recited in one or more of claims 2 to 7.
57. A method of preparing a pharmaceutical composition, comprising encapsulating a bioactive agent in a biocompatible excipient to form first microcapsules having a size between 1 pm and 10 pm, encapsulating a bioactive agent in a biocompatible excipient to form second microcapsules adapted to release their contained bioactive agent after the first microcapsules do, and formulating the microcapsules into the composition.
58. A method of claim 57 which further includes the specific feature(s) recited in one or more of claims 27 to 35.
59. A method of preparing a pharmaceutical composition, comprising encapsulating a bioactive agent in a biocompatible excipient to form microcapsules having a size of between 1 pm and 10 pm and formulating the resultant microcapsules for administration by a first route, encapsulating a bioactive agent in a biocompatible excipient to form microcapsules having a size of between 1 um and 10 um and formulating the resultant microcapsules for administration by a second route different from the first route, and forming the microcapsules for administration by the first and second routes into a combined pharmaceutical preparation, provided either that at least one of the routes of administration is oral inhalation, nasal, rectal, genitourinary or ophthalmic or that the excipient of at least one of the first and second microcapsules is not a proteinoid.
60. A method of claim 59 which further includes the specific feature(s) recited in claim 46, claim 47 and/or claim 48.
61. The use in the manufacture of a composition for potentiating the immune response of a human or other animal of effective amounts of a priming bioactive agent and first biocompatible microcapsules having a size of less than 10 um and containing a bioactive agent encapsulated in a first biocompatible excipient, the first microcapsules releasing said bioactive agent contained in the first microcapsules in a pulsed manner to potentiate a subsequent immune response relative to said priming, the composition comprising priming bioactive agent and first microcapsules as a combined preparation.
62. The use in the manufacture of a composition for delivering a bioactive agent to a human or other animal by parenteral administration of biocompatible microcapsules to initiate an immune response comprising a bioactive agent encapsulated in a biocompatible excipient and having a size of less then 10 um.
63. The use of claim 62, wherein said microcapsules have a size of between 1 pm and 10 um.
64. The use of claim 63, wherein said microcapsules have a size of between 1 and 5 pm.
65. The use of claim 63, which further includes the specific feature(s) recited in one or more of claims 2 to 7.
66. The use of claim 63, wherein the composition is for administration by intraperitoneal, intramuscular, or subcutaneaous injection.
67. The use in the manufacture of a composition for increasing the bioavailability of a bioactive agent to a human or other animal by oral, nasal, rectal, genitourinary, ’E 9605ophthalmic or oral inhalation of biocompatible microcapsules comprising a bioactive agent encapsulated in a biocompatible excipient and having a size of less than 10 um.
68. The use of claim 67, wherein the microcapsules have a size of between 1 pm and 10 um.
69. The use of claim 67, wherein said microcapsules have a size of between 1 pm and 5 um.
70. The use of any of claims 8, 13, 21, 62 or 63 or the composition of any of claims 1, 12, 17, or 18, wherein said bioactive agent is a mixture of an antigen and a cytokine.
71. The use of claim 70, wherein the bioactive agent further includes an adjuvant.
72. The use of any of claims 8, 13, 21, 62 or 63 or the composition of any of claims 1, 12, 17 or 18, wherein said bioactive agent is a mixture of a cytokine and an adj uvant.
73. A composition substantially as described herein with reference to the Examples and/or the accompanying drawings.
74. Use of a composition as claimed in claim 73 in the manufacture of a pharmaceutical composition.
IE960647A 1988-03-18 1989-03-15 Method of potentiating an immune response and compositions therefor IE83868B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
USUNITEDSTATESOFAMERICA18/03/19880
US07/169,973 US5075109A (en) 1986-10-24 1988-03-18 Method of potentiating an immune response

Publications (3)

Publication Number Publication Date
IE19960647A1 true IE19960647A1 (en) 1989-09-18
IE960647L IE960647L (en) 1989-09-18
IE83868B1 IE83868B1 (en) 2005-04-20

Family

ID=22617981

Family Applications (1)

Application Number Title Priority Date Filing Date
IE960647A IE83868B1 (en) 1988-03-18 1989-03-15 Method of potentiating an immune response and compositions therefor

Country Status (20)

Country Link
US (1) US5075109A (en)
EP (3) EP0333523B1 (en)
JP (1) JP2521827B2 (en)
KR (1) KR0126823B1 (en)
CN (3) CN1070697C (en)
AT (2) ATE253901T1 (en)
AU (1) AU633483B2 (en)
CA (1) CA1340692C (en)
DE (2) DE68929499T2 (en)
DK (1) DK175851B1 (en)
ES (2) ES2088890T3 (en)
GR (1) GR3020569T3 (en)
HK (1) HK38897A (en)
IE (1) IE83868B1 (en)
IL (1) IL89602A (en)
IN (1) IN169330B (en)
NZ (1) NZ228376A (en)
RU (3) RU2127118C1 (en)
WO (1) WO1989008449A1 (en)
ZA (1) ZA892103B (en)

Families Citing this family (612)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410056B1 (en) 1984-03-16 2002-06-25 The United States Of America As Represented By The Secretary Of The Army Chemotherapeutic treatment of bacterial infections with an antibiotic encapsulated within a biodegradable polymeric matrix
US5693343A (en) 1984-03-16 1997-12-02 The United States Of America As Represented By The Secretary Of The Army Microparticle carriers of maximal uptake capacity by both M cells and non-M cells
US6217911B1 (en) 1995-05-22 2001-04-17 The United States Of America As Represented By The Secretary Of The Army sustained release non-steroidal, anti-inflammatory and lidocaine PLGA microspheres
US6309669B1 (en) 1984-03-16 2001-10-30 The United States Of America As Represented By The Secretary Of The Army Therapeutic treatment and prevention of infections with a bioactive materials encapsulated within a biodegradable-biocompatible polymeric matrix
USRE40786E1 (en) 1984-03-16 2009-06-23 The United States Of America As Represented By The Secretary Of The Army Vaccines against intracellular pathogens using antigens encapsulated within biodegradable-biocompatible microspheres
NZ217821A (en) * 1985-10-10 1989-07-27 Biotech Australia Pty Ltd Oral delivery system; complex of active agent and vitamin b12 or analogue thereof
US5811128A (en) * 1986-10-24 1998-09-22 Southern Research Institute Method for oral or rectal delivery of microencapsulated vaccines and compositions therefor
US5807832A (en) * 1987-06-09 1998-09-15 Biotech Australia Pty Limited Oral delivery of biologically active substances bound to vitamin B12
US5116612A (en) * 1987-06-23 1992-05-26 Allergy Immuno Technologies, Inc. Immunotherapy agents for treatment of IgE mediated allergies
AU639903B2 (en) * 1989-01-20 1993-08-12 University Of Melbourne, The Fibrinolysis
EP0454736A4 (en) * 1989-01-20 1993-05-12 The University Of Melbourne Fibrinolysis
US4990336A (en) * 1989-02-08 1991-02-05 Biosearch, Inc. Sustained release dosage form
DE69024953T3 (en) * 1989-05-04 2005-01-27 Southern Research Institute, Birmingham encapsulation
US6126945A (en) * 1989-10-03 2000-10-03 Pharmacia Ab Tumor killing effects of enterotoxins, superantigens, and related compounds
DK546289D0 (en) * 1989-11-02 1989-11-02 Danochemo As carotenoid
JP2571874B2 (en) * 1989-11-06 1997-01-16 アルカーメス コントロールド セラピューティクス,インコーポレイテッド Protein microsphere composition
US5882649A (en) * 1990-04-24 1999-03-16 Flustat Pty. Ltd. Oral vaccine comprising antigen surface-associated with red blood cells
CA2080477A1 (en) * 1990-04-24 1991-10-25 Flustat Pty. Ltd. Oral vaccine comprising antigen surface-associated with red blood cells
US5780012A (en) * 1990-06-21 1998-07-14 Huland; Edith Method for reducing lung afflictions by inhalation of cytokine solutions
EP0462305B1 (en) * 1990-06-21 1994-11-02 Huland, Edith, Dr. Dr. Aerosol containing cytokines and use thereof
NZ242220A (en) * 1991-04-02 1994-04-27 Biotech Australia Pty Ltd Complex for oral delivery of a substance to the circulatory or lymphatic drainage system comprising microparticle coupled to at least one carrier, the substance being encapsulated by the microparticle
AU8303691A (en) 1991-04-24 1992-12-21 United States Of America, As Represented By The Secretary Of The Army, The Oral-intestinal vaccines against diseases caused by enteropathogenic organisms using antigens encapsulated within biodegradable-biocompatible microspheres
US5283066A (en) * 1992-02-19 1994-02-01 Development Center For Biotechnology Method of stimulating an immune response by using a hapten
US5352461A (en) * 1992-03-11 1994-10-04 Pharmaceutical Discovery Corporation Self assembling diketopiperazine drug delivery system
US6235313B1 (en) 1992-04-24 2001-05-22 Brown University Research Foundation Bioadhesive microspheres and their use as drug delivery and imaging systems
US6197346B1 (en) 1992-04-24 2001-03-06 Brown Universtiy Research Foundation Bioadhesive microspheres and their use as drug delivery and imaging systems
PT659073E (en) * 1992-09-10 2002-06-28 Childrens Medical Center BIODEGRADABLE POLYMERIC MATRICES FOR SUSTAINED DELIVERY OF LOCAL ANESTHETIC AGENTS
US5700485A (en) * 1992-09-10 1997-12-23 Children's Medical Center Corporation Prolonged nerve blockade by the combination of local anesthetic and glucocorticoid
US5922340A (en) 1992-09-10 1999-07-13 Children's Medical Center Corporation High load formulations and methods for providing prolonged local anesthesia
WO1994007469A1 (en) * 1992-09-25 1994-04-14 Dynagen, Inc. An immunobooster for delayed release of immunogen
WO1994010980A1 (en) * 1992-11-16 1994-05-26 Corporation Of Mercer University Compositions using microencapsulated neutralizing antibodies
ES2095001T5 (en) * 1992-12-22 2001-03-16 Univ Cincinnati AN ORALALLY ADMINISTRABLE THERAPEUTIC COMPOSITION AND ITS METHOD OF OBTAINING.
US6090925A (en) 1993-03-09 2000-07-18 Epic Therapeutics, Inc. Macromolecular microparticles and methods of production and use
US6939546B2 (en) 1993-05-21 2005-09-06 The United States Of America As Represented By The Secretary Of The Army Model for testing immunogenicity of peptides
US5603960A (en) * 1993-05-25 1997-02-18 O'hagan; Derek T. Preparation of microparticles and method of immunization
US5562909A (en) * 1993-07-12 1996-10-08 Massachusetts Institute Of Technology Phosphazene polyelectrolytes as immunoadjuvants
US6004534A (en) * 1993-07-23 1999-12-21 Massachusetts Institute Of Technology Targeted polymerized liposomes for improved drug delivery
WO1995003035A1 (en) * 1993-07-23 1995-02-02 Massachusetts Institute Of Technology Polymerized liposomes with enhanced stability for oral delivery
WO1995011010A1 (en) * 1993-10-22 1995-04-27 Genentech, Inc. Methods and compositions for microencapsulation of antigens for use as vaccines
EP0724433B1 (en) * 1993-10-22 1998-12-30 Genentech, Inc. Method for preparing microspheres comprising a fluidized bed drying step
JPH09504523A (en) * 1993-10-22 1997-05-06 ジェネンテク,インコーポレイテッド Adjuvant microencapsulation methods and compositions
US6913767B1 (en) 1993-10-25 2005-07-05 Genentech, Inc. Compositions for microencapsulation of antigens for use as vaccines
US5643605A (en) * 1993-10-25 1997-07-01 Genentech, Inc. Methods and compositions for microencapsulation of adjuvants
US6080429A (en) * 1993-10-25 2000-06-27 Genentech, Inc. Method for drying microspheres
HU219487B (en) * 1993-11-19 2001-04-28 Janssen Pharmaceutica Nv. Microparticles containing risperidone, process for producing them, their use, medicaments containing the same and their production
US5902565A (en) * 1993-12-24 1999-05-11 Csl Limited Spray dried vaccine preparation comprising aluminium adsorbed immunogens
US6531156B1 (en) 1994-04-15 2003-03-11 Temple University Aqueous solven encapsulation method, apparatus and microcapsules
US6013268A (en) 1994-04-22 2000-01-11 Corixa Corporation Methods for enhancement of protective immune responses
US5876735A (en) * 1994-04-22 1999-03-02 Corixa Corporation Methods for enhancement of protective immune responses
US6855331B2 (en) 1994-05-16 2005-02-15 The United States Of America As Represented By The Secretary Of The Army Sustained release hydrophobic bioactive PLGA microspheres
US6447796B1 (en) 1994-05-16 2002-09-10 The United States Of America As Represented By The Secretary Of The Army Sustained release hydrophobic bioactive PLGA microspheres
US5571531A (en) * 1994-05-18 1996-11-05 Mcmaster University Microparticle delivery system with a functionalized silicone bonded to the matrix
US20030026782A1 (en) * 1995-02-07 2003-02-06 Arthur M. Krieg Immunomodulatory oligonucleotides
US6207646B1 (en) 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US5696087A (en) * 1994-12-01 1997-12-09 Oklahoma Medical Research Foundation Method and compositions for reducing cholesterol absorption
US5681819A (en) * 1994-12-01 1997-10-28 Oklahoma Medical Research Foundation Method and compositions for reducing cholesterol absorption
US5821226A (en) * 1994-12-01 1998-10-13 Oklahoma Medical Research Foundation BAL C-tail drug delivery molecules
US7033608B1 (en) 1995-05-22 2006-04-25 The United States Of America As Represented By The Secretary Of The Army “Burst-free” sustained release poly-(lactide/glycolide) microspheres
US6902743B1 (en) 1995-05-22 2005-06-07 The United States Of America As Represented By The Secretary Of The Army Therapeutic treatment and prevention of infections with a bioactive material(s) encapuslated within a biodegradable-bio-compatable polymeric matrix
ATE267587T1 (en) 1995-06-09 2004-06-15 Euro Celtique Sa FORMULATIONS AND METHODS FOR PROLONGED LOCAL ANESTHESIA
US6143211A (en) * 1995-07-21 2000-11-07 Brown University Foundation Process for preparing microparticles through phase inversion phenomena
EP0840623B1 (en) 1995-07-21 2007-07-18 Brown University Research Foundation Compositions for gene therapy comprising nucleic acid loaded polymeric microparticles
US6248720B1 (en) 1996-07-03 2001-06-19 Brown University Research Foundation Method for gene therapy using nucleic acid loaded polymeric microparticles
IL123506A (en) 1995-09-01 2004-12-15 Corixa Corp Polypeptide compounds and compositions for immunotherapy and diagnosis of tuberculosis
EP0862419B2 (en) 1995-11-09 2010-11-17 Microbiological Research Authority Microencapsulated dna for vaccination and gene therapy
US6270795B1 (en) 1995-11-09 2001-08-07 Microbiological Research Authority Method of making microencapsulated DNA for vaccination and gene therapy
US5985312A (en) * 1996-01-26 1999-11-16 Brown University Research Foundation Methods and compositions for enhancing the bioadhesive properties of polymers
US6368586B1 (en) 1996-01-26 2002-04-09 Brown University Research Foundation Methods and compositions for enhancing the bioadhesive properties of polymers
US6342218B1 (en) 1997-02-14 2002-01-29 Oklahoma Medical Research Foundation Method for treatment of SLE
US6015576A (en) * 1997-08-29 2000-01-18 Bio-Sphere Technology, Inc. Method for inducing a systemic immune response to an antigen
US6117449A (en) * 1996-03-22 2000-09-12 Bio-Sphere Technology, Inc. Method for inducing a systemic immune response to a hepatitis antigen
US6207185B1 (en) 1996-03-22 2001-03-27 Bio-Sphere Technology Method for inducing a systemic immune response to an HIV antigen
US6652837B1 (en) 1996-05-24 2003-11-25 Massachusetts Institute Of Technology Preparation of novel particles for inhalation
US5985309A (en) * 1996-05-24 1999-11-16 Massachusetts Institute Of Technology Preparation of particles for inhalation
US5874064A (en) * 1996-05-24 1999-02-23 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
US20020052310A1 (en) 1997-09-15 2002-05-02 Massachusetts Institute Of Technology The Penn State Research Foundation Particles for inhalation having sustained release properties
JPH11511763A (en) 1996-06-24 1999-10-12 ユーロ―セルティーク,エス.エイ. How to provide safe local anesthesia
US5955096A (en) * 1996-06-25 1999-09-21 Brown University Research Foundation Methods and compositions for enhancing the bioadhesive properties of polymers using organic excipients
US6344202B1 (en) * 1996-07-12 2002-02-05 University Of Manitoba DNA immunization against chlaymdia infection
US5980948A (en) * 1996-08-16 1999-11-09 Osteotech, Inc. Polyetherester copolymers as drug delivery matrices
US6046187A (en) 1996-09-16 2000-04-04 Children's Medical Center Corporation Formulations and methods for providing prolonged local anesthesia
US5783567A (en) * 1997-01-22 1998-07-21 Pangaea Pharmaceuticals, Inc. Microparticles for delivery of nucleic acid
ES2286845T3 (en) * 1997-01-22 2007-12-01 Mgi Pharma Biologics, Inc. MICROPARTICLES TO SUPPLY NUCLEIC ACIDS.
US20020182258A1 (en) * 1997-01-22 2002-12-05 Zycos Inc., A Delaware Corporation Microparticles for delivery of nucleic acid
WO1998035045A2 (en) 1997-02-12 1998-08-13 Corixa Corporation Leishmania antigens for use in the therapy and diagnosis of leishmaniasis
US6261562B1 (en) 1997-02-25 2001-07-17 Corixa Corporation Compounds for immunotherapy of prostate cancer and methods for their use
US6406705B1 (en) 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
ATE290375T1 (en) 1997-04-02 2005-03-15 Brigham & Womens Hospital USE OF AN AGENT FOR REDUCING THE RISK OF CARDIOVASCULAR DISEASES
ZA982968B (en) 1997-04-09 1998-10-27 Corixa Corp Compositions and methods for the treatment and diagnosis of breast cancer
US6060082A (en) 1997-04-18 2000-05-09 Massachusetts Institute Of Technology Polymerized liposomes targeted to M cells and useful for oral or mucosal drug delivery
BR9815499A (en) 1997-07-02 2001-01-02 Euro Celtique Sa Prolonged anesthesia in joints and body spaces.
EP1579851A3 (en) * 1997-08-29 2009-09-02 Corixa Corporation Rapid release encapsulated bioactive agents for inducing or potentiating an immune response and methods of use thereof
ES2248914T3 (en) * 1997-08-29 2006-03-16 Corixa Corporation BIOACTIVE AGENCIES ENCAPSULATED OF FAST RELEASE THAT ALLOWS TO INDUCE OR POTENTIATE AN IMMUNE RESPONSE AND METHODS TO USE THE SAME.
US7052678B2 (en) 1997-09-15 2006-05-30 Massachusetts Institute Of Technology Particles for inhalation having sustained release properties
US20060165606A1 (en) 1997-09-29 2006-07-27 Nektar Therapeutics Pulmonary delivery particles comprising water insoluble or crystalline active agents
US6183746B1 (en) 1997-10-09 2001-02-06 Zycos Inc. Immunogenic peptides from the HPV E7 protein
US6013258A (en) * 1997-10-09 2000-01-11 Zycos Inc. Immunogenic peptides from the HPV E7 protein
US6197229B1 (en) * 1997-12-12 2001-03-06 Massachusetts Institute Of Technology Method for high supercoiled DNA content microspheres
US7393630B2 (en) 1997-12-16 2008-07-01 Novartis Vaccines And Diagnostics, Inc. Use of microparticles combined with submicron oil-in-water emulsions
DE69804671T2 (en) * 1997-12-16 2002-11-21 Chiron Corp USE OF MICROPARTICLES WITH SUBMICRON OIL / WATER EMULSIONS
WO1999033869A2 (en) 1997-12-24 1999-07-08 Corixa Corporation Compounds for immunotherapy and diagnosis of breast cancer and methods for their use
EP1792988A3 (en) 1998-03-18 2007-08-22 Corixa Corporation Compounds and methods for therapy and diagnosis of lung cancer
US20020147143A1 (en) 1998-03-18 2002-10-10 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
CA2326598C (en) 1998-04-07 2014-06-10 Corixa Corporation Fusion proteins of mycobacterium tuberculosis antigens and their uses
EP1079967A4 (en) 1998-04-13 2003-07-23 Luminex Corp Liquid labeling with fluorescent microparticles
SE9801288D0 (en) 1998-04-14 1998-04-14 Astra Ab Vaccine delivery system and method of production
GB9810236D0 (en) 1998-05-13 1998-07-08 Microbiological Res Authority Improvements relating to encapsulation of bioactive agents
US6406719B1 (en) 1998-05-13 2002-06-18 Microbiological Research Authority Encapsulation of bioactive agents
DK1077722T3 (en) 1998-05-22 2006-11-27 Ottawa Health Research Inst Methods and products for the induction of mucosa immunity
CA2335460A1 (en) 1998-06-18 1999-12-23 Johns Hopkins University School Of Medicine Polymers for delivery of nucleic acids
US20030022854A1 (en) 1998-06-25 2003-01-30 Dow Steven W. Vaccines using nucleic acid-lipid complexes
EP1102790B1 (en) 1998-08-07 2014-05-07 University of Washington Immunological Herpes Simplex Virus antigens and methods for use thereof
US6264991B1 (en) 1998-08-18 2001-07-24 Southern Research Institute Compositions and methods for treating intracellular infections
US6956021B1 (en) 1998-08-25 2005-10-18 Advanced Inhalation Research, Inc. Stable spray-dried protein formulations
EP1107782B1 (en) 1998-09-01 2009-12-23 Merrion Research III Limited Oral vaccine compositions
US7087236B1 (en) 1998-09-01 2006-08-08 Merrion Research I Limited Method for inducing a cell-mediated immune response and improved parenteral vaccine formulations thereof
US20030235557A1 (en) 1998-09-30 2003-12-25 Corixa Corporation Compositions and methods for WT1 specific immunotherapy
FR2786098B1 (en) 1998-11-20 2003-05-30 Flamel Tech Sa POLYAMINOACID-BASED PARTICLES (S) THAT MAY BE USED AS ACTIVE INGREDIENTS (VECTORS), COLLOIDAL SUSPENSION COMPRISING SAME AND METHODS OF MAKING SAME
US20040009535A1 (en) 1998-11-27 2004-01-15 Celltech R&D, Inc. Compositions and methods for increasing bone mineralization
CA2746535A1 (en) 1998-12-08 2000-06-15 Corixa Corporation Compounds and methods for treatment and diagnosis of chlamydial infection
US20020119158A1 (en) 1998-12-17 2002-08-29 Corixa Corporation Compositions and methods for the therapy and diagnosis of ovarian cancer
US6579973B1 (en) 1998-12-28 2003-06-17 Corixa Corporation Compositions for the treatment and diagnosis of breast cancer and methods for their use
AU776672B2 (en) 1998-12-30 2004-09-16 Beth Israel Deaconess Medical Center Characterization of a calcium channel family
US6395714B1 (en) 1999-02-24 2002-05-28 Aventis Pasteur Limited Expressing gp140 fragment of primary HIV-1 isolate
JP2002543769A (en) 1999-04-02 2002-12-24 コリクサ コーポレイション Compounds and methods for treatment and diagnosis of lung cancer
US20050158856A1 (en) * 1999-04-20 2005-07-21 Edelson Richard L. Methods for producing functional antigen presenting dendritic cells using biodegradable microparticles for delivery of antigenic materials
US6521431B1 (en) * 1999-06-22 2003-02-18 Access Pharmaceuticals, Inc. Biodegradable cross-linkers having a polyacid connected to reactive groups for cross-linking polymer filaments
US7678364B2 (en) 1999-08-25 2010-03-16 Alkermes, Inc. Particles for inhalation having sustained release properties
US6749835B1 (en) 1999-08-25 2004-06-15 Advanced Inhalation Research, Inc. Formulation for spray-drying large porous particles
US20020009466A1 (en) * 1999-08-31 2002-01-24 David J. Brayden Oral vaccine compositions
AU7574700A (en) 1999-09-03 2001-04-10 Brigham And Women's Hospital Methods and compositions for treatment of inflammatory disease using cadherin-11modulating agents
US6811783B1 (en) * 1999-09-07 2004-11-02 Aventis Pasteur Limited Immunogenic compositions for protection against chlamydial infection
US20050100928A1 (en) * 1999-09-16 2005-05-12 Zycos Inc., A Delaware Corporation Nucleic acids encoding polyepitope polypeptides
US6458387B1 (en) * 1999-10-18 2002-10-01 Epic Therapeutics, Inc. Sustained release microspheres
US20050037086A1 (en) * 1999-11-19 2005-02-17 Zycos Inc., A Delaware Corporation Continuous-flow method for preparing microparticles
FR2801226B1 (en) 1999-11-23 2002-01-25 Flamel Tech Sa COLLOIDAL SUSPENSION OF SUBMICRONIC PARTICLES FOR VECTORIZATION OF ACTIVE INGREDIENTS AND METHOD OF PREPARATION
PT1265915E (en) 2000-02-23 2011-02-07 Glaxosmithkline Biolog Sa Novel compounds
US20040002068A1 (en) 2000-03-01 2004-01-01 Corixa Corporation Compositions and methods for the detection, diagnosis and therapy of hematological malignancies
US20030129251A1 (en) 2000-03-10 2003-07-10 Gary Van Nest Biodegradable immunomodulatory formulations and methods for use thereof
US20030060487A1 (en) * 2000-04-12 2003-03-27 Bamdad R. Shoshana Treatment of neurodegenerative disease
US20030175700A1 (en) 2000-04-21 2003-09-18 Ajay Bhatia Compounds and methods for treatment and diagnosis of chlamydial infection
US7871598B1 (en) 2000-05-10 2011-01-18 Novartis Ag Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery and methods of use
DK1280521T3 (en) 2000-05-12 2005-08-08 Pharmacia & Upjohn Co Llc Vaccine composition, method of preparation thereof and method of vaccination of vertebrates
EP1292285A4 (en) * 2000-06-02 2009-07-22 Eisai Corp North America Delivery systems for bioactive agents
FR2814952B1 (en) 2000-10-06 2004-01-02 Flamel Tech Sa COLLOIDAL SUSPENSION OF SUBMICROMIC PARTICLES FOR VECTORIZATION OF ACTIVE INGREDIENTS AND THEIR METHOD OF PREPARATION
ATE442866T1 (en) 2000-06-20 2009-10-15 Corixa Corp FUSION PROTEINS FROM MYCOBACTERIUM TUBERCULOSIS
DE60139689D1 (en) 2000-06-22 2009-10-08 Univ Iowa Res Found Combination of CpG and antibodies against CD19, CD20, CD22 or CD40 for the prevention or treatment of cancer.
ATE396265T1 (en) 2000-06-28 2008-06-15 Corixa Corp COMPOSITIONS AND METHODS FOR THERAPY AND DIAGNOSIS OF LUNG CANCER
US6565888B1 (en) 2000-08-23 2003-05-20 Alkermes Controlled Therapeutics, Inc. Methods and compositions for the targeted delivery of biologically active agents
US6797704B2 (en) 2000-10-06 2004-09-28 The Johns Hopkins University Systemic delivery of compounds through non-invasive bladder administration
US7374782B2 (en) 2000-10-27 2008-05-20 Baxter International Inc. Production of microspheres
EP2386859B1 (en) 2000-11-27 2015-11-11 Minerva Biotechnologies Corporation Treatment of cancer
ES2307568T3 (en) * 2000-12-08 2008-12-01 Coley Pharmaceutical Gmbh CPG TYPE NUCLEIC ACIDS AND SAME USE METHODS.
CA2433335C (en) * 2000-12-29 2010-04-20 Advanced Inhalation Research, Inc. Particles for inhalation having sustained release properties
US20030125236A1 (en) * 2000-12-29 2003-07-03 Advenced Inhalation Research, Inc. Particles for inhalation having rapid release properties
RU2420537C2 (en) 2001-01-17 2011-06-10 Трабьон Фармасьютикалз Инк. Fused proteins binding immunoglobulin domain
US7754208B2 (en) 2001-01-17 2010-07-13 Trubion Pharmaceuticals, Inc. Binding domain-immunoglobulin fusion proteins
US7829084B2 (en) 2001-01-17 2010-11-09 Trubion Pharmaceuticals, Inc. Binding constructs and methods for use thereof
US7491394B2 (en) 2001-02-15 2009-02-17 The Board Of Trustees Of The University Of Illinois Cytotoxic factors for modulating cell death
US7618939B2 (en) 2001-02-15 2009-11-17 The Board Of Trustees Of The University Of Illinois Compositions and methods to prevent cancer with cupredoxins
WO2002089747A2 (en) 2001-05-09 2002-11-14 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
NZ530315A (en) 2001-07-10 2007-01-26 Corixa Corp Compositions and methods for delivery of proteins and adjuvants encapsulated in microspheres
EP1423175B1 (en) * 2001-08-08 2013-10-02 Brown University Research Foundation Methods for micronization of hydrophobic drugs
ES2307779T3 (en) * 2001-08-16 2008-12-01 Baxter International Inc. FORMULATIONS OF PROPELLENT-BASED MICROPARTICLES.
AU2002346960A1 (en) 2001-10-06 2003-04-22 Merial Limited Methods and compositions for promoting growth and innate immunity in young animals
CN101724075B (en) 2001-10-10 2014-04-30 诺和诺德公司 Remodeling and glycoconjugation of peptides
EP2298354B1 (en) 2001-10-10 2014-03-19 ratiopharm GmbH Remodelling and glycoconjugation of interferon-beta
AU2002340662B2 (en) * 2001-11-07 2008-07-03 Tekmira Pharmaceuticals Corporation Mucosal adjuvants comprising an oligonucleotide and a cationic lipid
CN1607941A (en) 2001-11-19 2005-04-20 贝克顿迪肯森公司 Pharmaceutical compositions in particulate form
AU2002352836B2 (en) 2001-11-20 2005-09-29 Alkermes, Inc. Improved particulate compositions for pulmonary delivery
WO2003043603A1 (en) * 2001-11-20 2003-05-30 Advanced Inhalation Research, Inc. Particulate compositions for improving solubility of poorly soluble agents
CA2469718A1 (en) * 2001-12-10 2003-06-19 Spherics, Inc. Methods and products useful in the formation and isolation of microparticles
KR101124363B1 (en) 2001-12-11 2012-03-21 앵스티띠 나셔날 드 라 쌍뜨 에 드 라 르셰르슈 메디깔 Gram positive bacteria preparations for the treatment of diseases comprising an immune dysregulation
ES2405790T3 (en) 2001-12-17 2013-06-03 Corixa Corporation Compositions and methods for therapy and diagnosis of inflammatory bowel disease
JP2005514393A (en) 2001-12-19 2005-05-19 ネクター セラピューティクス Supplying aminoglycosides to the lung
WO2003078448A1 (en) 2002-03-13 2003-09-25 Signum Biosciences, Inc. Modulation of protein methylation and phosphoprotein phosphate
NZ573064A (en) 2002-04-04 2011-02-25 Coley Pharm Gmbh Immunostimulatory G,U-containing oligoribonucleotides
PT1492511E (en) 2002-04-09 2009-04-09 Flamel Tech Sa Oral pharmaceutical formulation in the form of aqueous suspension for modified release of active principle(s)
ES2685697T3 (en) 2002-05-09 2018-10-10 The Brigham And Women's Hospital, Inc. 1L1RL-1 as a marker of cardiovascular diseases
US20040013649A1 (en) * 2002-05-10 2004-01-22 Inex Pharmaceuticals Corporation Cancer vaccines and methods of using the same
US20040009944A1 (en) * 2002-05-10 2004-01-15 Inex Pharmaceuticals Corporation Methylated immunostimulatory oligonucleotides and methods of using the same
FR2840614B1 (en) 2002-06-07 2004-08-27 Flamel Tech Sa POLYAMINOACIDS FUNCTIONALIZED BY ALPHA-TOCOPHEROL AND THEIR PARTICULARLY THERAPEUTIC APPLICATIONS
EP2865386B1 (en) 2002-07-18 2017-07-05 University of Washington Pharmaceutical compositions comprising immunologically active herpes simplex virus (HSV) protein fragments
WO2004035028A1 (en) * 2002-10-17 2004-04-29 Gosudarstvenny Nauchny Tsentr Virusologii I Biotekhnologii 'vektor' Method for producing the microcapsulated form of a live viral vaccine
AU2003284239B2 (en) * 2002-10-21 2008-08-21 Eisai Inc. Compositions and methods for treating human papillomavirus-mediated disease
ATE544466T1 (en) 2002-10-29 2012-02-15 Coley Pharm Group Inc USE OF CPG OLIGONUCLEOTIDES TO TREAT HEPATITIS C VIRUS INFECTION
JP2007531505A (en) 2002-11-27 2007-11-08 ミネルバ バイオオテクノロジーズ コーポレーション Techniques and compositions for diagnosis and treatment of cancer (MUC1)
NZ603330A (en) 2003-02-11 2015-02-27 Shire Human Genetic Therapies Diagnosis and treatment of multiple sulfatase deficiency and other sulfatase deficiencies
CA2517287C (en) 2003-02-28 2022-12-13 The Johns Hopkins University Regulation of t cells by lag-3 (cd223)
US8524899B2 (en) * 2003-03-04 2013-09-03 California Institute Of Technology Alternative heterocycles for DNA recognition
CA2519092C (en) 2003-03-14 2014-08-05 Neose Technologies, Inc. Branched water-soluble polymers and their conjugates
US20070026485A1 (en) 2003-04-09 2007-02-01 Neose Technologies, Inc. Glycopegylation methods and proteins/peptides produced by the methods
WO2005019819A1 (en) 2003-08-20 2005-03-03 Biosite, Inc. Methods and compositions for measuring biologically active natriuretic peptides and for improving their therapeutic potential
US8071645B2 (en) 2003-06-12 2011-12-06 The Regents Of The University Of Colorado Systems and methods for treating human inflammatory and proliferative diseases and wounds, with fatty acid metabolism inhibitors and/or glycolytic inhibitors
EP1636270B1 (en) 2003-06-16 2016-07-20 UCB Pharma S.A. Antibodies specific for sclerostin and methods for increasing bone mineralization
DE10329087B4 (en) 2003-06-27 2014-02-13 Biomedical International R + D Gmbh Antigen-containing microspheres for allergy therapy
US20050142205A1 (en) * 2003-07-18 2005-06-30 Julia Rashba-Step Methods for encapsulating small spherical particles prepared by controlled phase separation
US20070092452A1 (en) * 2003-07-18 2007-04-26 Julia Rashba-Step Methods for fabrication, uses, compositions of inhalable spherical particles
MXPA06000720A (en) * 2003-07-18 2006-08-23 Baxter Int Methods for fabrication, uses and compositions of small spherical particles prepared by controlled phase separation.
EP1646354A4 (en) * 2003-07-22 2010-03-17 Baxter Int Small spherical particles of low molecular weight organic molecules and methods of preparation and use thereof
US7663017B2 (en) 2003-07-30 2010-02-16 Institut Pasteur Transgenic mice having a human major histocompatability complex (MHC) phenotype, experimental uses and applications
US20060173171A1 (en) * 2003-08-26 2006-08-03 Bamdad Cynthia C Techniques and compositions for diagnosis and treatment of cancer (muci)
JP2007509040A (en) * 2003-10-11 2007-04-12 イネックス ファーマシューティカルズ コーポレイション Methods and compositions for enhancing innate immunity and antibody-dependent cytotoxicity
AU2004299457B2 (en) 2003-12-12 2011-03-24 Government Of The United States Of America, As Represented By The Secretary Department Of Health And Human Services A human cytotoxic T-lymphocyte epitope and its agonist epitope from the non-variable number of tandem repeat sequence of MUC-1
EP2248895B8 (en) 2003-12-19 2016-09-21 Autotelic LLC Combination therapy associating a TGF-beta antagonist with a chemotherapeutic agent
US7452730B2 (en) * 2004-01-16 2008-11-18 California Institute Of Technology DNA-binding polymers
EP1722823A2 (en) * 2004-02-27 2006-11-22 Antisense Pharma GmbH Pharmaceutical composition
EP1568383A3 (en) 2004-02-27 2005-11-16 Antisense Pharma GmbH Use of an oligonucleotide or its active derivative for the preparation of a pharmaceutical composition for inhibiting the formation of metastases in cancer treatment
SI1745075T1 (en) 2004-04-21 2013-07-31 The Brigham And Women's Hospital, Inc. Poly-n-acetyl glucosamine (pnag/dpnag)-binding peptides and methods of use thereof
US20050239723A1 (en) * 2004-04-27 2005-10-27 Amin Avinash N Compositions and methods useful for treatment of acne
AU2005244851B2 (en) 2004-05-12 2010-08-26 Baxter Healthcare S.A. Oligonucleotide-containing microspheres, their use for the manufacture of a medicament for treating diabetes type 1
ES2313350T3 (en) 2004-05-12 2009-03-01 Baxter International Inc. MICROSPHERAS OF NUCLEIC ACID, PRODUCTION AND SUPPLY OF THE SAME.
CA2566075A1 (en) * 2004-05-12 2005-12-01 Baxter Healthcare S.A. Microspheres comprising protein and showing injectability at high concentrations of said agent
US8728525B2 (en) 2004-05-12 2014-05-20 Baxter International Inc. Protein microspheres retaining pharmacokinetic and pharmacodynamic properties
EP1766096B1 (en) 2004-05-25 2013-01-02 Oregon Health and Science University Hiv vaccination usingand hcmv-based vaccine vectors
EP1789805B1 (en) 2004-07-14 2010-09-15 The Regents of The University of California Biomarker for early detection of ovarian cancer
US7604978B2 (en) 2004-07-14 2009-10-20 Sequoia Sciences, Inc. Inhibition of biofilm formation
US20060264411A1 (en) * 2005-05-20 2006-11-23 Eldridge Gary R Control of biofilm formation
US20060014285A1 (en) * 2004-07-14 2006-01-19 Eldridge Gary R Methods and compositions for inhibiting biofilms
AU2005274937B2 (en) 2004-07-15 2011-08-18 Medivir Ab IAP binding compounds
US7927594B2 (en) 2004-07-30 2011-04-19 Rinat Neuroscience Corp. Antibodies directed against amyloid-beta peptide
US9132116B2 (en) * 2004-08-02 2015-09-15 Willowcroft Pharm Inc. Mast cell stabilizers to prevent or treat laminitis
JP5070052B2 (en) 2004-08-17 2012-11-07 ザ・ジョンズ・ホプキンス・ユニバーシティ PDE5 inhibitor composition and method for treating heart disease
EP2298897B1 (en) 2004-09-02 2013-08-14 Yale University Regulation of oncogenes by microRNAs
WO2006031943A1 (en) 2004-09-14 2006-03-23 Eldridge Gary R Compounds, compositions and methods for controlling biofilms and bacterial infections
AU2005336092B2 (en) * 2004-09-14 2010-05-27 Cynthia C. Bamdad Methods for diagnosis and treatment of cancer
RU2419628C2 (en) * 2004-09-22 2011-05-27 ГлаксоСмитКлайн Байолоджикалз с.а. Immunogenic composition for use in vaccination against staphylococci
WO2006034454A1 (en) * 2004-09-23 2006-03-30 The Trustees Of The University Of Princeton Bcl-2 family member and bh-3 only proteins for use in development of peptidomimetics
EP1809759B1 (en) 2004-10-06 2013-09-11 The Brigham And Women's Hospital, Inc. Relevance of achieved levels of markers of systemic inflammation following treatment
EP2808384B1 (en) 2004-10-08 2017-12-06 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services Modulation of replicative fitness by using less frequently used synonymous codons
WO2007001448A2 (en) 2004-11-04 2007-01-04 Massachusetts Institute Of Technology Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals
US20060275230A1 (en) 2004-12-10 2006-12-07 Frank Kochinke Compositions and methods for treating conditions of the nail unit
KR20070095921A (en) 2004-12-10 2007-10-01 탈리마 테라퓨틱스 인코포레이티드 Compositions and methods for treating conditions of the nail unit
US8137907B2 (en) * 2005-01-03 2012-03-20 Cold Spring Harbor Laboratory Orthotopic and genetically tractable non-human animal model for liver cancer and the uses thereof
EP1858543B1 (en) 2005-01-10 2013-11-27 BioGeneriX AG Glycopegylated granulocyte colony stimulating factor
US8221804B2 (en) 2005-02-03 2012-07-17 Signum Biosciences, Inc. Compositions and methods for enhancing cognitive function
US7923041B2 (en) 2005-02-03 2011-04-12 Signum Biosciences, Inc. Compositions and methods for enhancing cognitive function
EP1858542A4 (en) * 2005-02-24 2009-08-19 Joslin Diabetes Center Inc Compositions and methods for treating vascular permeability
EP2385038A1 (en) * 2005-02-25 2011-11-09 Tetralogic Pharmaceuticals Corporation Dimeric IAP inhibitors
US7851189B2 (en) * 2005-03-07 2010-12-14 Boston Scientific Scimed, Inc. Microencapsulated compositions for endoluminal tissue engineering
EP1701165A1 (en) 2005-03-07 2006-09-13 Johannes Dr. Coy Therapeutic and diagnostic uses of TKTL1 and inhibitors and activators thereof
EP1875244B1 (en) 2005-03-30 2019-01-23 Minerva Biotechnologies Corporation Proliferation of muc1 expressing cells
ES2720288T3 (en) 2005-03-30 2019-07-19 Minerva Biotechnologies Corp Proliferation of cells expressing MUC1
EP2392347A3 (en) 2005-03-31 2012-01-18 GlaxoSmithKline Biologicals S.A. Vaccines against chlamydial infection
US20060228384A1 (en) * 2005-04-06 2006-10-12 Sequoia Sciences, Inc. Control of biofilm with a biofilm inhibitor
US9187546B2 (en) 2005-04-08 2015-11-17 Novo Nordisk A/S Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants
AU2006236294A1 (en) 2005-04-19 2006-10-26 Eli Lilly And Company Monovalent and polyvalent synthetic polysaccharide antigens for immunological intervention in disease
UY29504A1 (en) 2005-04-29 2006-10-31 Rinat Neuroscience Corp DIRECTED ANTIBODIES AGAINST BETA AMYLOID PEPTIDE AND METHODS USING THE SAME.
CN101273055B (en) 2005-04-29 2016-03-16 葛兰素史密丝克莱恩生物有限公司 For preventing or treat the novel method of m tuberculosis infection
AU2006243218B2 (en) 2005-05-05 2009-09-17 Antisense Pharma Gmbh Use of low doses of oligonucleotides antisense to TGF-beta, VEGF, interleukin-10, c-jun, c-fos or prostaglandin E2 genes in the treatment of tumors
US20080193543A1 (en) * 2005-05-17 2008-08-14 Brown University Research Foundation Drug Delivery Formulations For Targeted Delivery
US8354384B2 (en) * 2005-06-23 2013-01-15 Yale University Anti-aging micrornas
EP2305701A1 (en) 2005-07-01 2011-04-06 Forsyth Dental Infirmary for Children Tuberculosis antigen detection assays and vaccines
US20070014739A1 (en) * 2005-07-14 2007-01-18 Eldridge Gary R Compositions and methods for controlling biofilms and bacterial infections
CN101282994B (en) 2005-07-22 2013-09-18 Y's治疗有限公司 Anti-CD26 antibodies and methods of use thereof
SI2298815T1 (en) 2005-07-25 2015-08-31 Emergent Product Development Seattle, Llc B-cell reduction using CD37-specific and CD20-specific binding molecules
KR20080033463A (en) 2005-07-27 2008-04-16 유니버시티 오브 플로리다 리서치 파운데이션, 아이엔씨. Small compounds that correct protein misfolding and uses thereof
US20100256046A1 (en) * 2009-04-03 2010-10-07 Tetralogic Pharmaceuticals Corporation Treatment of proliferative disorders
US20070042428A1 (en) * 2005-08-09 2007-02-22 Stacy Springs Treatment of proliferative disorders
TWI404537B (en) 2005-08-19 2013-08-11 Array Biopharma Inc 8-substituted benzoazepines as toll-like receptor modulators
WO2007027559A2 (en) 2005-08-29 2007-03-08 Shashoua Victor E Neuroprotective and neurorestorative methods and compositions
US20080021198A1 (en) * 2005-10-12 2008-01-24 Yigong Shi Modulators of protein phosphatase 2A and PP2A methyl esterase
US8658608B2 (en) * 2005-11-23 2014-02-25 Yale University Modified triple-helix forming oligonucleotides for targeted mutagenesis
CN102517292B (en) 2005-11-25 2014-12-24 佐蒂斯比利时股份有限公司 Immunostimulatory oligoribonucleotides
CA2631731A1 (en) * 2005-12-01 2007-06-07 University Of Pittsburgh Of The Commonwealth System Of Higher Education Compounds and methods for inhibiting apoptosis
WO2007070682A2 (en) 2005-12-15 2007-06-21 Massachusetts Institute Of Technology System for screening particles
US8859209B2 (en) * 2006-01-12 2014-10-14 Carviar Aps Reimmunization and antibody design
EP1981905B1 (en) 2006-01-16 2016-08-31 THE GOVERNMENT OF THE UNITED STATES OF AMERICA as represented by THE SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES Chlamydia vaccine
WO2007109583A2 (en) 2006-03-17 2007-09-27 The Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services Compositions and methods for prevention or treatment of neoplastic disease in a mammalian subject
CA2648099C (en) 2006-03-31 2012-05-29 The Brigham And Women's Hospital, Inc System for targeted delivery of therapeutic agents
EP2010226B1 (en) 2006-04-07 2014-01-15 The Research Foundation of State University of New York Transcobalamin receptor polypeptides, nucleic acids, and modulators thereof, and related methods of use in modulating cell growth and treating cancer and cobalamin deficiency
EP2027158B1 (en) 2006-05-02 2012-09-19 Carviar ApS Method for immunizing an avian species
US10522240B2 (en) 2006-05-03 2019-12-31 Population Bio, Inc. Evaluating genetic disorders
US7702468B2 (en) 2006-05-03 2010-04-20 Population Diagnostics, Inc. Evaluating genetic disorders
NZ573646A (en) 2006-06-12 2012-04-27 Wyeth Llc Single-chain multivalent binding proteins with effector function
US20100129403A1 (en) 2006-06-20 2010-05-27 Transgene S.A. Recombinant viral vaccine
WO2007150030A2 (en) 2006-06-23 2007-12-27 Massachusetts Institute Of Technology Microfluidic synthesis of organic nanoparticles
WO2008014238A2 (en) * 2006-07-24 2008-01-31 Tetralogic Pharmaceuticals Corporation Dimeric iap inhibitors
CA2657706A1 (en) 2006-07-24 2008-01-31 Tetralogic Pharmaceuticals Corporation Dimeric iap antagonists
WO2008014240A2 (en) 2006-07-24 2008-01-31 Tetralogic Pharmaceuticals Corporation Dimeric iap inhibitors
US8143426B2 (en) * 2006-07-24 2012-03-27 Tetralogic Pharmaceuticals Corporation IAP inhibitors
WO2008014236A1 (en) * 2006-07-24 2008-01-31 Tetralogic Pharmaceuticals Corporation Dimeric iap inhibitors
AU2007281737B2 (en) 2006-08-04 2013-09-19 Baxter Healthcare S.A. Microsphere-based composition for preventing and/or reversing new-onset autoimmune diabetes
US20080153773A1 (en) * 2006-08-08 2008-06-26 Yigong Shi Modulators of phosphotyrosyl phosphatase activator
US20090181078A1 (en) 2006-09-26 2009-07-16 Infectious Disease Research Institute Vaccine composition containing synthetic adjuvant
AU2007354917B2 (en) 2006-09-26 2013-06-06 Access To Advanced Health Institute Vaccine composition containing synthetic adjuvant
CA2665480C (en) 2006-10-04 2019-11-12 Shawn Defrees Glycerol linked pegylated sugars and glycopeptides
WO2008147426A2 (en) * 2006-10-04 2008-12-04 The Brigham And Women's Hospital, Inc. Methods and compositions for immunomodulation
US20100092480A1 (en) * 2006-10-13 2010-04-15 The Trustees Of The University Of Princeton Modulators of protein phosphatase 2a
RU2373957C2 (en) 2006-10-13 2009-11-27 Александр Метталинович Тишин Therapeutic and diagnostic drug and biologically active substance carrier and application thereof for making drugs and method of regulated controlled drug or biologically active substance delivery with regulated desorption
US7645616B2 (en) * 2006-10-20 2010-01-12 The University Of Hong Kong Use of lipocalin-2 as a diagnostic marker and therapeutic target
US8202967B2 (en) 2006-10-27 2012-06-19 Boehringer Ingelheim Vetmedica, Inc. H5 proteins, nucleic acid molecules and vectors encoding for those, and their medicinal use
EP2134830A2 (en) 2007-02-09 2009-12-23 Massachusetts Institute of Technology Oscillating cell culture bioreactor
US20100119474A1 (en) * 2007-03-06 2010-05-13 Cornell University Chronic obstructive pulmonary disease susceptibility and related compositions and methods
WO2008116216A1 (en) * 2007-03-22 2008-09-25 Medical College Of Georgia Research Institute, Inc. Compositions and methods for inhibiting cancer metastasis
US7960139B2 (en) 2007-03-23 2011-06-14 Academia Sinica Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells
WO2008122039A2 (en) * 2007-04-02 2008-10-09 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Selenocysteine mediated hybrid antibody molecules
WO2008124639A2 (en) 2007-04-04 2008-10-16 Massachusetts Institute Of Technology Poly (amino acid) targeting moieties
EP2644205B1 (en) 2007-04-12 2018-06-13 The Brigham and Women's Hospital, Inc. Targeting ABCB5 for cancer therapy
EP2146691A2 (en) 2007-04-17 2010-01-27 Baxter International Inc. Nucleic acid microparticles for pulmonary delivery
US20100179158A1 (en) * 2007-04-20 2010-07-15 Hoffman Charles S Inhibitors of cyclic amp phosphodiesterases
EP2152304B1 (en) 2007-05-02 2018-08-22 The Regents of the University of Michigan Nanoemulsion therapeutic compositions and methods of using the same
AU2008252577A1 (en) * 2007-05-17 2008-11-27 Coley Pharmaceutical Gmbh Class A oligonucleotides with immunostimulatory potency
WO2008153997A1 (en) * 2007-06-07 2008-12-18 Brookwood Pharmaceuticals, Inc. Reduced-mass, long-acting dosage forms
US8465917B2 (en) 2007-06-08 2013-06-18 The Ohio State University Research Foundation Methods for determining heptocellular carcinoma subtype and detecting hepatic cancer stem cells
EP2190440A1 (en) 2007-08-13 2010-06-02 Pfizer Inc. Combination motif immune stimulatory oligonucleotides with improved activity
US8932558B2 (en) * 2007-10-05 2015-01-13 Plaxgen Inc Multi-subunit biological complexes for treatment of plaque-associated diseases
ES2627292T3 (en) 2007-10-12 2017-07-27 Massachusetts Institute Of Technology Vaccine Nanotechnology
US8619257B2 (en) 2007-12-13 2013-12-31 Kimberley-Clark Worldwide, Inc. Recombinant bacteriophage for detection of nosocomial infection
US20090274682A1 (en) * 2008-02-05 2009-11-05 The Trustees Of Princeton University Demethylation and inactivation of protein phosphatase 2a
WO2009108745A1 (en) * 2008-02-26 2009-09-03 The Trustees Of Princeton University Structure of a protein phosphatase 2a holoenzyme: insights into tau dephosphorylation
CA2717169A1 (en) * 2008-03-01 2009-09-17 Abraxis Bioscience, Llc Treatment, diagnostic, and method for discovering antagonist using sparc specific mirnas
AU2009234389B2 (en) 2008-04-10 2014-08-21 Cell Signaling Technology, Inc. Compositions and methods for detecting EGFR mutations in cancer
CN102144163A (en) 2008-04-10 2011-08-03 麻省理工学院 Methods for identification and use of agents targeting cancer stem cells
WO2009126944A1 (en) 2008-04-11 2009-10-15 Trubion Pharmaceuticals, Inc. Cd37 immunotherapeutic and combination with bifunctional chemotherapeutic thereof
EP2982753B1 (en) 2008-04-18 2018-06-06 Baxter International Inc. Microsphere-based composition for preventing and/or reversing new-onset autoimmune diabetes
US20100227853A1 (en) * 2008-04-18 2010-09-09 Trustees Of Boston College Inhibitors of cyclic amp phosphodiesterases
US20110076296A1 (en) 2008-04-25 2011-03-31 Innate Pharma S.A. TLR3 Agonist Compositions
US20090280167A1 (en) * 2008-05-07 2009-11-12 Abraxis Bioscience, Llc Enhancement of drug therapy by mirna
EP2123748A1 (en) 2008-05-20 2009-11-25 Institut Pasteur 2'-5'-oligoadenylate synthetase 3 for preventing and treating positive-sense single-stranded rna virus infection
US8598342B2 (en) 2008-06-12 2013-12-03 President And Fellows Of Harvard College Methods and compounds for antimicrobial intervention
WO2010009271A2 (en) 2008-07-15 2010-01-21 Academia Sinica Glycan arrays on ptfe-like aluminum coated glass slides and related methods
AU2009274512A1 (en) 2008-07-25 2010-01-28 The Regents Of The University Of Colorado Clip inhibitors and methods of modulating immune function
WO2010017103A2 (en) * 2008-08-04 2010-02-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Servic Fully human anti-human nkg2d monoclonal antibodies
US8323685B2 (en) * 2008-08-20 2012-12-04 Baxter International Inc. Methods of processing compositions containing microparticles
US8367427B2 (en) 2008-08-20 2013-02-05 Baxter International Inc. Methods of processing compositions containing microparticles
US8323615B2 (en) 2008-08-20 2012-12-04 Baxter International Inc. Methods of processing multi-phasic dispersions
EP2328412A4 (en) 2008-09-17 2012-03-14 Tetralogic Pharm Corp Iap inhibitors
US8729053B2 (en) * 2008-09-22 2014-05-20 The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services Nuclear factor kappa B pathway inhibitor composition and use of same
WO2010042759A2 (en) 2008-10-08 2010-04-15 Kyphia Pharmaceuticals Inc Gaba conjugates and methods of use thereof
KR20170110740A (en) 2008-10-09 2017-10-11 미네르바 바이오테크놀로지 코포레이션 Method for inducing pluripotency in cells
US8277812B2 (en) 2008-10-12 2012-10-02 Massachusetts Institute Of Technology Immunonanotherapeutics that provide IgG humoral response without T-cell antigen
US8591905B2 (en) 2008-10-12 2013-11-26 The Brigham And Women's Hospital, Inc. Nicotine immunonanotherapeutics
EP2356446A4 (en) 2008-11-14 2014-03-19 Brigham & Womens Hospital Therapeutic and diagnostic methods relating to cancer stem cells
EP2376089B1 (en) 2008-11-17 2018-03-14 The Regents of the University of Michigan Cancer vaccine compositions and methods of using the same
WO2010075417A1 (en) 2008-12-23 2010-07-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Survivin specific t cell receptor for treating cancer
WO2010075303A1 (en) 2008-12-23 2010-07-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Splicing factors with a puf protein rna-binding domain and a splicing effector domain and uses of same
US8309356B2 (en) * 2009-04-01 2012-11-13 Yale University Pseudocomplementary oligonucleotides for targeted gene therapy
DK2418945T3 (en) 2009-04-15 2019-02-25 Bmg Pharma S P A Mineral salt-sulfonic acid compositions and methods of use
US9316646B2 (en) 2009-04-23 2016-04-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-human ROR1 antibodies
EP3375441A1 (en) 2009-04-30 2018-09-19 The U.S.A. as represented by the Secretary, Department of Health and Human Services Schweinfurthins and uses thereof
JP5679589B2 (en) 2009-05-14 2015-03-04 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH Enhanced immune response in birds
WO2010132532A1 (en) 2009-05-15 2010-11-18 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services B cell surface reactive antibodies
CA2764374C (en) 2009-06-05 2019-11-19 Infectious Disease Research Institute Synthetic glucopyranosyl lipid adjuvants
US20110038852A1 (en) * 2009-06-10 2011-02-17 3-V Biosciences, Inc. Antivirals that target transporters, carriers, and ion channels
EP2442827B1 (en) 2009-06-16 2016-01-06 The Regents of the University of Michigan Nanoemulsion vaccines
IN2012DN00352A (en) 2009-06-16 2015-08-21 Bikam Pharmaceuticals Inc
US8283372B2 (en) 2009-07-02 2012-10-09 Tetralogic Pharmaceuticals Corp. 2-(1H-indol-3-ylmethyl)-pyrrolidine dimer as a SMAC mimetic
WO2011011092A1 (en) 2009-07-22 2011-01-27 University Of Massachusetts Methods and compositions to reduce oxidative stress
BR112012002102A2 (en) 2009-07-30 2017-05-02 Antisense Pharma Gmbh pharmaceutical composition and method for preparing a pharmaceutical composition
EP2292260A1 (en) 2009-08-13 2011-03-09 Institut Pasteur Use of mycobacterium bovis BCG killed by extended freeze drying (EFD) for preventing or treating atherosclerosis
EP2287304A1 (en) 2009-08-17 2011-02-23 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Novel treatment of patients after stent implantation or balloon dilatation and novel drug eluting stents
EP2467380B1 (en) 2009-08-18 2016-11-30 Ventirx Pharmaceuticals, Inc. Substituted benzoazepines as toll-like receptor modulators
EP2467377B1 (en) 2009-08-18 2016-12-28 Ventirx Pharmaceuticals, Inc. Substituted benzoazepines as toll-like receptor modulators
DK2477652T3 (en) 2009-09-16 2015-07-20 Vaxart Inc Immunization strategy for the prevention of infection H1Ni
WO2011041093A1 (en) 2009-10-01 2011-04-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-vascular endothelial growth factor receptor-2 chimeric antigen receptors and use of same for the treatment of cancer
US20110104138A1 (en) 2009-11-03 2011-05-05 Institut Pasteur Use of the innate immunity gene oasl for preventing or treating infection with negative strand rna viruses
EP2905332B1 (en) 2009-11-19 2018-09-12 Solis BioDyne OÜ Compositions for increasing polypeptide stability and activity, and related methods
US10087236B2 (en) 2009-12-02 2018-10-02 Academia Sinica Methods for modifying human antibodies by glycan engineering
US11377485B2 (en) 2009-12-02 2022-07-05 Academia Sinica Methods for modifying human antibodies by glycan engineering
CN102812023A (en) 2010-01-13 2012-12-05 韩国巴斯德研究所 Anti - infective pyrido (1,2 -a) pyrimidines
WO2011092253A1 (en) 2010-01-27 2011-08-04 Glaxosmithkline Biologicals S.A. Modified tuberculosis antigens
US9556248B2 (en) 2010-03-19 2017-01-31 The Board Of Trustees Of The Leland Stanford Junior University Hepatocyte growth factor fragments that function as potent met receptor agonists and antagonists
WO2011130332A1 (en) 2010-04-12 2011-10-20 Academia Sinica Glycan arrays for high throughput screening of viruses
US20110262406A1 (en) 2010-04-21 2011-10-27 Yale University Compositions and methods for targeted inactivation of hiv cell surface receptors
US20110293585A1 (en) 2010-04-21 2011-12-01 Helix Therapeutics, Inc. Compositions and methods for treatment of lysosomal storage disorders
CA2805267C (en) 2010-05-04 2019-07-30 The Brigham And Women's Hospital, Inc. Detection and treatment of fibrosis
WO2011138032A2 (en) 2010-05-05 2011-11-10 Artemev, Timur Universal influenza vaccines and methods for their generation
US8658603B2 (en) 2010-06-16 2014-02-25 The Regents Of The University Of Michigan Compositions and methods for inducing an immune response
WO2012012627A1 (en) 2010-07-22 2012-01-26 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Method of preventing or treating viral infection
DK2601609T3 (en) 2010-08-02 2017-06-06 Population Bio Inc COMPOSITIONS AND METHODS FOR DISCOVERING MUTATIONS CAUSING GENETIC DISORDERS
AR083533A1 (en) 2010-10-22 2013-03-06 Boehringer Ingelheim Vetmed PROTEINS OF HEMAGLUTININ 5 (H5) FOR THE TREATMENT AND PREVENTION OF INFLECTIONS OF FLU
CN108744262A (en) 2010-11-23 2018-11-06 普莱萨格生命科学公司 Treatment and composition for for physical delivery
EP2646469B1 (en) 2010-12-01 2017-11-01 The United States of America, as represented by The Secretary, Department of Health and Human Services Chimeric rabbit/human ror1 antibodies
US20130295167A1 (en) 2010-12-22 2013-11-07 Bayer Intellectual Property Gmbh Enhanced immune response in bovine species
EP2663550B1 (en) 2011-01-12 2016-12-14 VentiRx Pharmaceuticals, Inc. Substituted benzoazepines as toll-like receptor modulators
US20140088085A1 (en) 2011-01-12 2014-03-27 Array Biopharma, Inc Substituted Benzoazepines As Toll-Like Receptor Modulators
SG192252A1 (en) 2011-02-03 2013-09-30 Mirna Therapeutics Inc Synthetic mimics of mir-34
CN103459598B (en) 2011-02-03 2016-08-10 米尔纳医疗股份有限公司 The synthesis analogies of MIR-124
BR122015005121B1 (en) 2011-03-08 2022-01-25 Sagimet Biosciences Inc Heterocyclic lipid synthesis modulating compounds, pharmaceutical composition comprising the same, as well as uses of said compounds to treat a viral infection, a condition that has as a characteristic the dysregulation of a fatty acid synthase function and cancer
KR101938343B1 (en) 2011-03-09 2019-01-14 셀 시그널링 테크놀러지, 인크. Methods and reagents for creating monoclonal antibodies
NZ616304A (en) 2011-04-08 2016-01-29 Immune Design Corp Immunogenic compositions and methods of using the compositions for inducing humoral and cellular immune responses
CN103596981B (en) 2011-04-08 2017-06-16 美国卫生和人力服务部 Anti-epidermal growth factor receptor variant III Chimeric antigen receptors and its purposes for treating cancer
CA2833879C (en) 2011-04-21 2023-03-14 David L. Kaplan Compositions and methods for stabilization of active agents
AU2012262021B2 (en) 2011-06-01 2016-07-28 Janus Biotherapeutics, Inc. Novel immune system modulators
JP6093759B2 (en) 2011-06-01 2017-03-08 ジャナス バイオセラピューティクス,インク. Novel immune system modulators
EP2720539B1 (en) 2011-06-14 2018-10-24 Bikam Pharmaceuticals, Inc. Opsin-binding ligands, compositions and methods of use
WO2012174455A2 (en) 2011-06-17 2012-12-20 University Of Tennessee Research Foundation Group a streptococcus multivalent vaccine
CN103608030A (en) 2011-06-21 2014-02-26 昂科发克特公司 Compositions and methods for therapy and diagnosis of cancer
US8759313B2 (en) 2011-08-03 2014-06-24 The Charlotte-Mecklenburg Hospital Authority Treatment of fibrosis using microRNA 19b
EP2734843A2 (en) 2011-07-18 2014-05-28 President and Fellows of Harvard College Engineered microbe-targeting molecules and uses thereof
US10765654B2 (en) 2011-07-19 2020-09-08 University Of Vermont And State Agricultural College Methods and compounds for treating cancer
US8324264B1 (en) 2011-07-22 2012-12-04 Sequoia Sciences, Inc. Inhibitors of bacterial biofilms and related methods
AR088028A1 (en) 2011-08-15 2014-05-07 Boehringer Ingelheim Vetmed PROTEINS H5, FROM H5N1 FOR MEDICINAL USE
US9873694B2 (en) 2011-10-04 2018-01-23 Janus Biotherapeutics, Inc. Imidazole quinoline-based immune system modulators
EP2766483B1 (en) 2011-10-10 2022-03-23 The Hospital For Sick Children Methods and compositions for screening and treating developmental disorders
RU2644243C2 (en) 2011-10-20 2018-02-08 Дзе Юнайтед Стейтс Оф Америка, Эз Репрезентед Бай Дзе Секретари, Департмент Оф Хелс Энд Хьюман Сёрвисез Chimeric antigenic receptors to cd22
SG11201401851UA (en) 2011-10-28 2014-05-29 Presage Biosciences Inc Methods for drug delivery
EP2773779B1 (en) 2011-11-04 2020-10-14 Population Bio, Inc. Methods and compositions for diagnosing, prognosing, and treating neurological conditions
CN104080797A (en) 2011-11-11 2014-10-01 弗雷德哈钦森癌症研究中心 Cyclin A1-targeted T-cell immunotherapy for cancer
WO2013082275A1 (en) 2011-11-30 2013-06-06 Trustees Of Boston College Inhibitors of phosphodiesterases 11 (pde11) and methods of use to elevate cortisol production
JP6126118B2 (en) 2011-11-30 2017-05-10 ビカム ファーマスーティカルス,インコーポレイテッド Opsin binding ligands, compositions and methods of use
TR201908003T4 (en) 2012-02-07 2019-06-21 Infectious Disease Res Inst Advanced adjuvant formulations containing TLR4 agonists and their method of use.
CA2863887C (en) 2012-02-09 2023-01-03 Population Diagnostics, Inc. Methods of screening low frequency gdna variation biomarkers for pervasive developmental disorder (pdd) or pervasive developmental disorder - not otherwise specified (pdd_nos)
CN103251941A (en) * 2012-02-16 2013-08-21 海南大学 Animal viral vaccine pulsatile release system, and preparation method and application thereof
US9173910B2 (en) 2012-02-29 2015-11-03 The General Hospital Corporation Compositions of microbiota and methods related thereto
US20130236484A1 (en) 2012-03-08 2013-09-12 Detectogen Inc. Leishmaniasis antigen detection assays and vaccines
AU2013235726B2 (en) 2012-03-23 2017-04-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-mesothelin chimeric antigen receptors
US10130714B2 (en) 2012-04-14 2018-11-20 Academia Sinica Enhanced anti-influenza agents conjugated with anti-inflammatory activity
US9790278B2 (en) 2012-05-07 2017-10-17 The Trustees Of Dartmouth College Anti-B7-H6 antibody, fusion proteins, and methods of using the same
SI2850431T1 (en) 2012-05-16 2018-08-31 Immune Design Corp. Vaccines for hsv-2
WO2014011742A1 (en) 2012-07-11 2014-01-16 University Of Vermont And State Agricultural College Method and composition for metabolic regulation
WO2014010718A1 (en) 2012-07-13 2014-01-16 株式会社新日本科学 Chiral nucleic acid adjuvant
JP6302909B2 (en) 2012-08-18 2018-03-28 アカデミア シニカAcademia Sinica Cell-permeable probes for sialidase identification and imaging
WO2014031649A1 (en) 2012-08-21 2014-02-27 Genesys Research Institute Compositions and methods for treating or preventing anthracycline induced cardiotoxicity
WO2014043519A1 (en) 2012-09-14 2014-03-20 Population Diagnostics Inc. Methods and compositions for diagnosing, prognosing, and treating neurological conditions
WO2014052855A1 (en) 2012-09-27 2014-04-03 Population Diagnostics, Inc. Methods and compositions for screening and treating developmental disorders
US9228184B2 (en) 2012-09-29 2016-01-05 Dynavax Technologies Corporation Human toll-like receptor inhibitors and methods of use thereof
EP3795694A3 (en) 2012-10-02 2021-06-23 The General Hospital Corporation d/b/a Massachusetts General Hospital Methods relating to dna-sensing pathway related conditions
EP2912061B1 (en) 2012-10-24 2019-02-06 The United States of America, as represented by The Secretary, Department of Health and Human Services M971 chimeric antigen receptors
WO2014074805A1 (en) 2012-11-08 2014-05-15 Whitehead Institute For Biomedical Research Selective targeting of cancer stem cells
EP2931273A1 (en) 2012-12-12 2015-10-21 The Charlotte-Mecklenburg Hospital Authority D/B/A Carolinas Healthcare System Methods of treating portal hypertension
US9750718B2 (en) 2012-12-12 2017-09-05 The Charlotte-Mecklenburg Hospital Authority Methods of treating hepatic fibrosis and associated diseases by regulating Rev-ERB activity
EP2958586B1 (en) 2013-02-21 2018-09-05 Boehringer Ingelheim Vetmedica GmbH H5 proteins of h5n1 influenza virus for use as a medicament
JP6457999B2 (en) 2013-03-14 2019-01-23 ザ チルドレンズ メディカル センター コーポレーション Use of CD36 to identify cancer subjects for treatment
RU2015143995A (en) 2013-03-14 2017-04-20 Халлюкс, Инк. METHOD FOR TREATING INFECTIONS, DISEASES OR DISEASES OF THE NAIL LODGE
ES2935659T3 (en) 2013-03-15 2023-03-09 Tufts College Low Molecular Weight Silk Compositions and Stabilizing Silk Compositions
US11376329B2 (en) 2013-03-15 2022-07-05 Trustees Of Tufts College Low molecular weight silk compositions and stabilizing silk compositions
WO2014160627A1 (en) 2013-03-25 2014-10-02 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-cd276 polypeptides, proteins, and chimeric antigen receptors
US20160052985A1 (en) 2013-04-04 2016-02-25 Ieo - Istituto Europeo Di Oncologia Srl Thymic stromal lymphopoietin fragments and uses thereof
EA032326B1 (en) 2013-04-18 2019-05-31 Иммьюн Дизайн Корп. Gla monotherapy for use in cancer treatment
WO2014182635A1 (en) 2013-05-08 2014-11-13 Baldwin Megan E Biomarkers for age-related macular degeneration (amd)
US9463198B2 (en) 2013-06-04 2016-10-11 Infectious Disease Research Institute Compositions and methods for reducing or preventing metastasis
EP3013329B1 (en) 2013-06-25 2020-08-05 The Walter and Eliza Hall Institute of Medical Research Smac mimetics for the treatment of persistent intracellular hbv infection
US10086054B2 (en) 2013-06-26 2018-10-02 Academia Sinica RM2 antigens and use thereof
WO2014210564A1 (en) 2013-06-27 2014-12-31 Academia Sinica Glycan conjugates and use thereof
WO2014210546A1 (en) 2013-06-27 2014-12-31 University Of Washington Through Its Center For Commercialization Biocompatible polymeric system for targeted treatment of thrombotic and hemostatic disorders
WO2015006543A1 (en) 2013-07-10 2015-01-15 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Method for predicting and detecting tumor metastasis in kidney cancer
US10208125B2 (en) 2013-07-15 2019-02-19 University of Pittsburgh—of the Commonwealth System of Higher Education Anti-mucin 1 binding agents and uses thereof
US10633714B2 (en) 2013-07-21 2020-04-28 Pendulum Therapeutics, Inc. Methods and systems for microbiome characterization, monitoring and treatment
CA2923579C (en) 2013-09-06 2023-09-05 Academia Sinica Human inkt cell activation using glycolipids with altered glycosyl groups
US9925241B2 (en) 2013-10-21 2018-03-27 Salk Institute For Biological Studies Mutated fibroblast growth factor (FGF) 1 and methods of use
WO2015063611A2 (en) 2013-11-01 2015-05-07 University Of Oslo Albumin variants and uses thereof
DK3069138T3 (en) 2013-11-15 2019-04-08 Univ Oslo Hf CTL PEPTID EPITOPES AND ANTIGEN-SPECIFIC T-CELLS, METHODS OF RECOGNITION THEREOF, AND APPLICATIONS THEREOF
EP3077416B1 (en) 2013-12-06 2019-06-19 The United States of America, as represented by The Secretary, Department of Health and Human Services Thymic stromal lymphopoietin receptor-specific chimeric antigen receptors and methods using same
EP3546474B1 (en) 2013-12-18 2021-07-07 President and Fellows of Harvard College Crp capture/detection of gram positive bacteria
US10226449B2 (en) 2013-12-20 2019-03-12 3-V Biosciences, Inc. Heterocyclic modulators of lipid synthesis and combinations thereof
CA2935767C (en) 2014-01-07 2023-01-31 3-V Biosciences, Inc. Heterocyclic modulators of lipid synthesis for use against cancer and viral infections
WO2015108047A1 (en) 2014-01-15 2015-07-23 株式会社新日本科学 Chiral nucleic acid adjuvant having immunity induction activity, and immunity induction activator
US10322173B2 (en) 2014-01-15 2019-06-18 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having anti-allergic activity, and anti-allergic agent
JPWO2015108048A1 (en) 2014-01-15 2017-03-23 株式会社新日本科学 Chiral nucleic acid adjuvant and antitumor agent having antitumor activity
CA2937123A1 (en) 2014-01-16 2015-07-23 Academia Sinica Compositions and methods for treatment and detection of cancers
US10150818B2 (en) 2014-01-16 2018-12-11 Academia Sinica Compositions and methods for treatment and detection of cancers
US20160030459A1 (en) 2014-01-21 2016-02-04 Immune Design Corp. Compositions and methods for treating allergic conditions
US20170224805A1 (en) 2014-02-20 2017-08-10 Vaxart, Inc. Formulations for small intestinal delivery
BR112016019837A2 (en) 2014-02-28 2017-10-17 Bayer Animal Health Gmbh immunostimulatory plasmids
WO2015138852A1 (en) 2014-03-14 2015-09-17 University Of Washington Genomic insulator elements and uses thereof
AU2015235978B2 (en) 2014-03-26 2019-08-08 Children's Medical Center Corporation Cyclic prosaposin peptides and uses thereof
CN106415244B (en) 2014-03-27 2020-04-24 中央研究院 Reactive marker compounds and uses thereof
CN113403338A (en) 2014-03-28 2021-09-17 华盛顿大学商业中心 Breast and ovarian cancer vaccines
WO2015168255A1 (en) 2014-04-29 2015-11-05 Whitehead Institute For Biomedical Research Methods and compositions for targeting cancer stem cells
PL3140269T3 (en) 2014-05-09 2024-03-11 Yale University Hyperbranched polyglycerol-coated particles and methods of making and using thereof
US11918695B2 (en) 2014-05-09 2024-03-05 Yale University Topical formulation of hyperbranched polymer-coated particles
EP4116329A1 (en) 2014-05-27 2023-01-11 Academia Sinica Anti-her2 glycoantibodies and uses thereof
TWI717319B (en) 2014-05-27 2021-02-01 中央研究院 Fucosidase from bacteroides and methods using the same
US10118969B2 (en) 2014-05-27 2018-11-06 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
EP3149036A4 (en) 2014-05-27 2017-12-27 Academia Sinica Anti-cd20 glycoantibodies and uses thereof
TWI732738B (en) 2014-05-28 2021-07-11 中央研究院 Anti-tnf-alpha glycoantibodies and uses thereof
WO2016011386A1 (en) 2014-07-18 2016-01-21 University Of Washington Cancer vaccine compositions and methods of use thereof
US20170275287A1 (en) 2014-08-22 2017-09-28 Janus Biotherapeutics, Inc. Novel n2, n4, n7, 6-tetrasubstituted pteridine-2,4,7-triamine and 2, 4, 6, 7-tetrasubstituted pteridine compounds and methods of synthesis and use thereof
WO2016036403A1 (en) 2014-09-05 2016-03-10 Population Diagnostics Inc. Methods and compositions for inhibiting and treating neurological conditions
CA2960712A1 (en) 2014-09-08 2016-03-17 Academia Sinica Human inkt cell activation using glycolipids
CA2961609C (en) 2014-09-17 2023-03-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-cd276 antibodies (b7h3)
WO2016054240A1 (en) 2014-09-30 2016-04-07 Sean Dalziel Fixed dose combinations for the treatment of viral diseases
JP7158853B2 (en) 2014-10-10 2022-10-24 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン An immunogenic composition for treating food or respiratory allergies in a subject and for intranasal administration to said subject
CA2964467A1 (en) 2014-10-14 2016-04-21 Research Development Foundation Methods for generating engineered enzymes
EP3212001A4 (en) 2014-10-31 2018-04-25 Whole Biome Inc. Methods and compositions relating to microbial treatment and diagnosis of disorders
WO2016079527A1 (en) 2014-11-19 2016-05-26 Tetralogic Birinapant Uk Ltd Combination therapy
WO2016097773A1 (en) 2014-12-19 2016-06-23 Children's Cancer Institute Therapeutic iap antagonists for treating proliferative disorders
US9975965B2 (en) 2015-01-16 2018-05-22 Academia Sinica Compositions and methods for treatment and detection of cancers
US10495645B2 (en) 2015-01-16 2019-12-03 Academia Sinica Cancer markers and methods of use thereof
CA2972072A1 (en) 2015-01-24 2016-07-28 Academia Sinica Novel glycan conjugates and methods of use thereof
CN107660213B (en) 2015-02-10 2023-01-13 米纳瓦生物技术公司 Humanized anti-MUCl antibodies
CN107592866A (en) 2015-02-18 2018-01-16 佛蒙特大学及州农业学院 MCJ activators and application thereof
WO2016141320A2 (en) 2015-03-05 2016-09-09 Northwestern University Non-neuroinvasive viruses and uses thereof
EP3277675B1 (en) 2015-03-19 2022-01-19 Sagimet Biosciences Inc. Heterocyclic modulators of lipid synthesis
EP3270937A4 (en) 2015-03-26 2018-09-12 The Trustees Of Dartmouth College Anti-mica antigen binding fragments, fusion molecules, cells which express and methods of using
US10718022B2 (en) 2015-04-15 2020-07-21 University Of Massachusetts Compositions and methods for XI chromosome reactivation
WO2016176155A1 (en) 2015-04-25 2016-11-03 Poznansky Mark C Anti-fugetactic agent and anti-cancer agent combination therapy and compositions for the treatment of cancer
CN107849117B (en) 2015-06-05 2022-08-26 艾比欧公司 Endostatin fragments and variants for the treatment of fibrosis
AU2016274599B2 (en) 2015-06-12 2021-09-02 Vaxart, Inc. Formulations for small intestinal delivery of RSV and norovirus antigens
EP3831844B1 (en) 2015-06-26 2024-03-13 Prindex S.r.l. Diagnosis and therapy of multiple sclerosis
JP2018521130A (en) 2015-07-10 2018-08-02 ユニバーシティ・オブ・バーモント・アンド・ステイト・アグリカルチュラル・カレッジUniversity Of Vermont And State Agricultural College Methods and compositions for treating drug diseases and conditions
MX2018001251A (en) 2015-07-31 2018-03-26 Bayer Animal Health Gmbh Enhanced immune response in porcine species.
US10435457B2 (en) 2015-08-06 2019-10-08 President And Fellows Of Harvard College Microbe-binding molecules and uses thereof
CN108026528A (en) 2015-08-20 2018-05-11 比奥基内生物科学协会合作研究中心 Treat the method and composition of liver disease and illness
US11819554B2 (en) 2015-09-17 2023-11-21 University Of Massachusetts Compositions and methods for modulating FMR1 expression
CA2999083A1 (en) 2015-09-18 2017-03-23 The General Hospital Corporation Dba Massachusetts General Hospital Localized delivery of anti-fugetactic agent for treatment of cancer
JP7002446B2 (en) 2015-09-21 2022-03-04 アプティーボ リサーチ アンド デベロップメント エルエルシー CD3 binding polypeptide
EP3383418B1 (en) 2015-12-04 2021-10-20 Board of Regents, The University of Texas System Slc45a2 peptides for immunotherapy
BR112018014615A2 (en) 2016-01-20 2018-12-11 The Scripps Research Institute ror1 antibody compositions and related methods
KR20180099887A (en) 2016-01-20 2018-09-05 더 스크립스 리서치 인스티튜트 ROR2 antibody compositions and related methods
US20200308590A1 (en) 2016-02-16 2020-10-01 Yale University Compositions and methods for treatment of cystic fibrosis
EP3416976A2 (en) 2016-02-16 2018-12-26 Yale University Compositions for enhancing targeted gene editing and methods of use thereof
CA3016170A1 (en) 2016-03-08 2017-09-14 Academia Sinica Methods for modular synthesis of n-glycans and arrays thereof
US20190046638A1 (en) 2016-04-01 2019-02-14 Checkmate Pharmaceuticals, Inc. Fc RECEPTOR-MEDIATED DRUG DELIVERY
CN116333140A (en) 2016-04-08 2023-06-27 埃缇健康公司D/B/A泽尔拜尔 Reticulin-1 binding antibodies and uses thereof
AU2017259821A1 (en) 2016-05-04 2018-12-13 Abilita Bio, Inc. Methods and platform for preparing multispanning membrane proteins
EP4112638A1 (en) 2016-05-16 2023-01-04 Access to Advanced Health Institute Formulation containing tlr agonist and methods of use
BR112018073676B1 (en) 2016-05-16 2023-10-03 University Of Virginia Patent Foundation PEGYLATED LIPOSOMES AND METHODS OF USE
WO2017207623A1 (en) 2016-05-31 2017-12-07 Université de Lausanne Mirna as biomarkers and regulators of cancer stem cells
CN109195587A (en) 2016-06-01 2019-01-11 传染病研究所 Nanometer pellet alum containing cementing agent
US20190322643A1 (en) 2016-06-29 2019-10-24 Georgia State University Research Foundation, Inc. Histone deacetylase and histone methyltransferase inhibitors and methods of making and use of the same
US20190201414A1 (en) 2016-07-01 2019-07-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Serv Inhibitor of heme degradation for use to improve antibiotic treatment of mycobacterium tuberculosis infection
CA3031778A1 (en) 2016-07-26 2018-02-01 Bayer Animal Health Gmbh Increased fertility in bovine species
CA3034057A1 (en) 2016-08-22 2018-03-01 CHO Pharma Inc. Antibodies, binding fragments, and methods of use
WO2018049120A1 (en) 2016-09-09 2018-03-15 The General Hospital Corporation Ex vivo antigen-presenting cells or activated cd-positive t cells for treatment of cancer
WO2018049124A1 (en) 2016-09-09 2018-03-15 The General Hospital Corporation Hsp fusion protein with anti-chemorepellant agent for treatment of infectious disease
JP2019534249A (en) 2016-09-09 2019-11-28 ザ ジェネラル ホスピタル コーポレイション HSP fusion protein with anti-chemical repellent for the treatment of cancer
CN110035763B (en) 2016-09-27 2022-11-15 瑞阳公司 Composition for treating parasitic diseases
US11725232B2 (en) 2016-10-31 2023-08-15 The Hong Kong University Of Science And Technology Compositions, methods and kits for detection of genetic variants for alzheimer's disease
WO2018085842A1 (en) 2016-11-07 2018-05-11 University Of Massachusetts Therapeutic targets for facioscapulohumeral muscular dystrophy
WO2018096396A1 (en) 2016-11-22 2018-05-31 University Of Oslo Albumin variants and uses thereof
US10240205B2 (en) 2017-02-03 2019-03-26 Population Bio, Inc. Methods for assessing risk of developing a viral disease using a genetic test
US10786471B2 (en) 2017-02-06 2020-09-29 Massachusetts Institute Of Technology Methods and products related to glutaminase inhibitors
EP3600395A4 (en) 2017-03-23 2021-05-05 The General Hospital Corporation Cxcr4/cxcr7 blockade and treatment of human papilloma virus-associated disease
BR112019020151A2 (en) 2017-03-27 2020-05-05 Tenfold Tech Llc methods to control plant disease and to improve a plant's resistance to disease, agricultural composition, and plant seed.
WO2018187493A1 (en) 2017-04-04 2018-10-11 Yale University Compositions and methods for in utero delivery
US11225512B2 (en) 2017-04-27 2022-01-18 University Of New Hampshire Compositions and methods for ceramide-elevating therapeutic strategies
WO2018213612A1 (en) 2017-05-18 2018-11-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-mesothelin polypeptides and proteins
SG11201911930SA (en) 2017-06-11 2020-01-30 Molecular Express Inc Methods and compositions for substance use disorder vaccine formulations and uses thereof
US11141377B2 (en) 2017-06-15 2021-10-12 Infectious Disease Research Institute Nanostructured lipid carriers and stable emulsions and uses thereof
US11642362B2 (en) 2017-07-06 2023-05-09 National University Of Singapore Methods of inhibiting cell proliferation and METTL8 activity
GB201710973D0 (en) 2017-07-07 2017-08-23 Avacta Life Sciences Ltd Scaffold proteins
WO2019014611A2 (en) 2017-07-14 2019-01-17 University Of Massachusetts Methods and compositions for treating inflammation
US11447546B2 (en) 2017-07-20 2022-09-20 Nbe-Therapeutics Ag Human antibodies binding to ROR2
CA3071212C (en) 2017-08-07 2023-12-12 Nbe-Therapeutics Ag Anthracycline-based antibody drug conjugates having high in vivo tolerability
WO2019046646A1 (en) 2017-08-30 2019-03-07 Whole Biome Inc. Methods and compositions for treatment of microbiome-associated disorders
EP3678699A1 (en) 2017-09-07 2020-07-15 University Of Oslo Vaccine molecules
US20220118076A1 (en) 2017-09-07 2022-04-21 University Of Oslo Vaccine molecules
WO2019108656A1 (en) 2017-11-28 2019-06-06 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Microbicidal composition
WO2019154884A1 (en) 2018-02-07 2019-08-15 Ecole Polytechnique Federale De Lausanne (Epfl) Method for determining cancer invasiveness and patient prognosis
KR20200141986A (en) 2018-02-12 2020-12-21 다이어비티스-프리, 인크. Improved antagonistic anti-human CD40 monoclonal antibody
WO2019204154A1 (en) 2018-04-18 2019-10-24 Reyoung Corporation Compositions and methods for treating liver cancer
PL3773537T3 (en) 2018-04-19 2022-05-23 Tvardi Therapeutics, Inc. Stat3 inhibitors
WO2019217164A1 (en) 2018-05-09 2019-11-14 Reyoung Corporation Compositions and methods for treating cancer and other diseases
WO2019236673A1 (en) 2018-06-06 2019-12-12 Massachusetts Institute Of Technology Circular rna for translation in eukaryotic cells
KR102627561B1 (en) 2018-06-29 2024-01-24 우한 뉴로프스 바이오테크놀로지 리미티드 컴퍼니 Compositions and methods for the treatment of Leber hereditary optic neuropathy
WO2020033700A1 (en) 2018-08-08 2020-02-13 Pml Screening, Llc Mathods for assessing the risk of developing progressive multifocal leukoencephalopathy caused by john cunningham virus by genetic testing
CN112584874A (en) 2018-08-20 2021-03-30 武汉纽福斯生物科技有限公司 Compositions and methods for treating leber's hereditary optic neuropathy
BR112021003818A2 (en) 2018-08-31 2021-05-25 Yale University composition, pharmaceutical composition and method for modifying the genome of a cell
SG11202101984PA (en) 2018-08-31 2021-03-30 Univ Yale Compositions and methods for enhancing triplex and nuclease-based gene editing
JP7320601B2 (en) 2018-09-11 2023-08-03 上▲海▼市公共▲衛▼生▲臨▼床中心 Broad-spectrum anti-influenza vaccine immunogen and its use
WO2020081737A1 (en) 2018-10-16 2020-04-23 Massachusetts Institute Of Technology Compositions and methods for inducing intestinal stem cell regeneration
EP3867365A1 (en) 2018-10-19 2021-08-25 Board of Regents, The University of Texas System Engineered long interspersed element (line) transposons and methods of use thereof
WO2020102454A1 (en) 2018-11-13 2020-05-22 Regents Of The University Of Minnesota Cd40 targeted peptides and uses thereof
EP3883562A4 (en) 2018-11-21 2022-08-03 Tremeau Pharmaceuticals, Inc. Purified forms of rofecoxib, methods of manufacture and use
EP3677693A1 (en) 2019-01-03 2020-07-08 Ecole Polytechnique Federale De Lausanne (EPFL) EPFL-TTO Transpochimeric gene trancripts (tcgts) as cancer biomarkers
CN113597433A (en) 2019-01-18 2021-11-02 詹森生物科技公司 GPRC5D chimeric antigen receptors and cells expressing these receptors
AU2020215177A1 (en) 2019-01-30 2021-08-12 Janssen Pharmaceutica Nv Methods of treating prostate cancer based on molecular subtypes
WO2020186187A1 (en) 2019-03-13 2020-09-17 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Methods for treating bladder and urethra dysfunction and disease
AU2020242043A1 (en) 2019-03-21 2021-10-14 Mitotherapeutix Llc Multivalent ligand clusters for targeted delivery of therapeutic agents
JP2022526194A (en) 2019-04-10 2022-05-23 エレベートバイオ テクノロジーズ,インコーポレイテッド FLT3-specific chimeric antigen receptor and its usage
BR112021023411A2 (en) 2019-05-22 2022-02-01 Massachusetts Inst Technology Compositions and methods of circular rna
WO2020239478A1 (en) 2019-05-28 2020-12-03 Pharma Mar, S.A. Trabectedin for treating sarcomas based on genomic markers
US20220243211A1 (en) 2019-06-21 2022-08-04 Yale University Peptide nucleic acid compositions with modified hoogsteen binding segments and methods of use thereof
WO2020257779A1 (en) 2019-06-21 2020-12-24 Yale University Hydroxymethyl-modified gamma-pna compositions and methods of use thereof
CA3147233A1 (en) 2019-07-15 2021-01-21 Rovaxa, Inc. Opioid growth factor receptor (ogfr) antagonists, in particular naloxone and/or naltrexone for treating cancer
TW202118792A (en) 2019-07-26 2021-05-16 美商健生生物科技公司 Anti-hk2 chimeric antigen receptor (car)
WO2021019389A1 (en) 2019-07-26 2021-02-04 Janssen Biotech, Inc. Proteins comprising kallikrein related peptidase 2 antigen binding domains and their uses
WO2021022161A1 (en) 2019-07-31 2021-02-04 Yale University Compositions and methods for treating sickle cell disease
CA3149494A1 (en) 2019-08-12 2021-02-18 Purinomia Biotech, Inc. Methods and compositions for promoting and potentiating t-cell mediated immune responses through adcc targeting of cd39 expressing cells
CN112390894A (en) 2019-08-12 2021-02-23 广东东阳光药业有限公司 Chimeric antigen receptor and uses thereof
EP4013883A1 (en) 2019-08-16 2022-06-22 Janssen Biotech, Inc. Therapeutic immune cells with improved function and methods for making the same
EP4021496A1 (en) 2019-08-30 2022-07-06 Yale University Compositions and methods for delivery of nucleic acids to cells
TW202128775A (en) 2019-10-16 2021-08-01 英商阿法克塔生命科學有限公司 Pd-l1 inhibitor - tgfβ inhibitor bispecific drug moieties
US10945992B1 (en) 2019-11-13 2021-03-16 Tremeau Pharmaceuticals, Inc. Dosage forms of rofecoxib and related methods
AU2020387709A1 (en) 2019-11-18 2022-07-07 Janssen Biotech, Inc. Anti-CD79 chimeric antigen receptors, CAR-T cells, and uses thereof
CN113025633A (en) 2019-12-09 2021-06-25 武汉纽福斯生物科技有限公司 Nucleic acid for coding human NADH dehydrogenase subunit 1 protein and application thereof
EP3868396A1 (en) 2020-02-20 2021-08-25 Enthera S.R.L. Inhibitors and uses thereof
US20230092615A1 (en) 2020-02-21 2023-03-23 Mitotherapeutix Llc Compositions and methods for inhibiting expressing of methylation-controlled j-protein (mcj)
WO2021181366A1 (en) 2020-03-13 2021-09-16 Janssen Biotech, Inc Materials and methods for binding siglec-3/cd33
WO2021225781A2 (en) 2020-05-07 2021-11-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Aberrant post-translational modifications (ptms) in methyl- and propionic acidemia and a mutant sirtuin (sirt) to metabolize ptms
JP2023527309A (en) 2020-05-19 2023-06-28 オルナ セラピューティクス インコーポレイテッド Circular RNA compositions and methods
US20230212256A1 (en) 2020-05-21 2023-07-06 Board Of Regents, The University Of Texas System T cell receptors with vgll1 specificity and uses thereof
WO2021245285A1 (en) 2020-06-05 2021-12-09 Janssen Pharmaceutica Nv Methods of treating prostate cancer based on molecular subtypes
GB202101299D0 (en) 2020-06-09 2021-03-17 Avacta Life Sciences Ltd Diagnostic polypetides and methods
US20230265214A1 (en) 2020-08-31 2023-08-24 Yale University Compositions and methods for delivery of nucleic acids to cells
WO2022051023A1 (en) 2020-09-04 2022-03-10 Infectious Disease Research Institute Live-attenuated rna hybrid vaccine technology
US20230310323A1 (en) 2020-09-04 2023-10-05 Access To Advanced Health Institute Co-lyophilized rna and nanostructured lipid carrier
AU2021335334A1 (en) 2020-09-04 2023-04-20 Access To Advanced Health Institute Genetically-adjuvanted rna vaccines
MX2023004395A (en) 2020-10-16 2023-05-22 Univ Georgia Glycoconjugates.
EP4059498A1 (en) 2021-03-16 2022-09-21 Centre Hospitalier Universitaire Vaudois (CHUV) Methods and compositions for treating conditions associated with hypermineralization
US20220306738A1 (en) 2021-03-24 2022-09-29 Janssen Biotech, Inc. Antibody targeting cd22 and cd79b
US11161833B1 (en) 2021-04-09 2021-11-02 Tremeau Pharmaceuticals, Inc. Deuterated etoricoxib, methods of manufacture, and use thereof
WO2022234003A1 (en) 2021-05-07 2022-11-10 Avacta Life Sciences Limited Cd33 binding polypeptides with stefin a protein
WO2022237974A1 (en) 2021-05-12 2022-11-17 Ecole Polytechnique Federale De Lausanne (Epfl) Krab-containing zinc finger protein and cancer
CN115404240A (en) 2021-05-28 2022-11-29 上海环码生物医药有限公司 Constructs, methods for making circular RNA and uses thereof
EP4352226A1 (en) 2021-06-07 2024-04-17 Yale University Peptide nucleic acids for spatiotemporal control of crispr-cas binding
WO2022271955A1 (en) 2021-06-23 2022-12-29 Musc Foundation For Research Development Novel targeted shrna nanoparticles for cancer therapy
WO2023280157A1 (en) 2021-07-05 2023-01-12 武汉纽福斯生物科技有限公司 Construction and use of anti-vegf antibody in-vivo expression system
CN116024266A (en) 2021-08-06 2023-04-28 武汉纽福斯生物科技有限公司 Compositions and methods for treating leber's hereditary optic neuropathy due to ND4 mutations
WO2023046322A1 (en) 2021-09-24 2023-03-30 Janssen Pharmaceutica Nv Proteins comprising cd20 binding domains, and uses thereof
WO2023057567A1 (en) 2021-10-07 2023-04-13 Avacta Life Sciences Limited Pd-l1 binding affimers
WO2023057946A1 (en) 2021-10-07 2023-04-13 Avacta Life Sciences Limited Serum half-life extended pd-l1 binding polypeptides
WO2023081526A1 (en) 2021-11-08 2023-05-11 Orna Therapeutics, Inc. Lipid nanoparticle compositions for delivering circular polynucleotides
WO2023218243A1 (en) 2022-05-12 2023-11-16 Avacta Life Sciences Limited Lag-3/pd-l1 binding fusion proteins
WO2023231959A2 (en) 2022-05-30 2023-12-07 Shanghai Circode Biomed Co., Ltd Synthetic circular rna compositions and methods of use thereof
WO2024052882A1 (en) 2022-09-09 2024-03-14 Access To Advanced Health Institute Immunogenic vaccine composition incorporating a saponin
WO2024055034A1 (en) 2022-09-09 2024-03-14 Yale University Proteolysis targeting antibodies and methods of use thereof
WO2024081736A2 (en) 2022-10-11 2024-04-18 Yale University Compositions and methods of using cell-penetrating antibodies
US11957676B1 (en) 2023-08-07 2024-04-16 Zetagen Therapeutics, Inc. Controlled release formulation and minimally invasive method of administration to locally treat cancer

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2738303A (en) * 1952-07-18 1956-03-13 Smith Kline French Lab Sympathomimetic preparation
US3823228A (en) * 1971-09-29 1974-07-09 Univ Illinois Tge virus vaccine
CH594444A5 (en) * 1972-12-04 1978-01-13 Gerd Birrenbach
FR2287216A1 (en) * 1974-10-09 1976-05-07 Narcisse Guy Capsules contg. free and micro encapsulated ingredients - giving immediate and sustained release of drugs esp. aspirin
DK143689C (en) * 1975-03-20 1982-03-15 J Kreuter PROCEDURE FOR THE PREPARATION OF AN ADVERTISED VACCINE
DE2702952A1 (en) * 1976-02-04 1977-08-11 Medichemie Ag CIRCULATORY ORAL MEDICINAL PRODUCT
US4291016A (en) * 1976-07-27 1981-09-22 Sandoz Ltd. Enteric coated mixture of 4-(2-hydroxy-3-isopropylamino-propoxy) indole and sodium lauryl sulphate
US4123519A (en) * 1976-08-17 1978-10-31 Philips Roxane, Inc. Injectable contraceptive vaccine and method
JPS58318B2 (en) * 1977-07-11 1983-01-06 住友化学工業株式会社 Method for producing anticancer substances
US4166800A (en) * 1977-08-25 1979-09-04 Sandoz, Inc. Processes for preparation of microspheres
US4152413A (en) * 1978-08-18 1979-05-01 Chromalloy American Corporation Oral vaccine for swine dysentery and method of use
US4152414A (en) * 1978-08-18 1979-05-01 Iowa State University Research Foundation, Inc. Combination vaccine for swine dysentery and method of use
US4203968A (en) * 1978-08-18 1980-05-20 Iowa State University Research Foundation, Inc. Combination vaccine for swine dysentery and method of use
US4152415A (en) * 1978-08-18 1979-05-01 Iowa State University Research Foundation, Inc. Method of increasing the effectiveness of oral vaccination for swine dysentery
US4585651A (en) * 1978-10-17 1986-04-29 Stolle Research & Development Corporation Active/passive immunization of the internal female reproductive organs
US4732763A (en) * 1978-10-17 1988-03-22 Stolle Research And Development Corporation Active/passive immunization of the internal female reproductive organs
US4309406A (en) * 1979-07-10 1982-01-05 American Home Products Corporation Sustained release pharmaceutical compositions
US4309405A (en) * 1979-08-09 1982-01-05 American Home Products Corporation Sustained release pharmaceutical compositions
US4298002A (en) * 1979-09-10 1981-11-03 National Patent Development Corporation Porous hydrophilic materials, chambers therefrom, and devices comprising such chambers and biologically active tissue and methods of preparation
GB2058562B (en) * 1979-09-14 1983-11-30 Beecham Group Ltd Pharmaceutical compositions containing paracetamol and ascorbic acid
DE3000979A1 (en) * 1980-01-12 1981-07-23 Dr. Karl Thomae Gmbh, 7950 Biberach NEW DIPYRIDAMOL RETARD FORMS AND METHOD FOR THEIR PRODUCTION
US4439199A (en) * 1980-02-19 1984-03-27 Alza Corporation Method for administering immunopotentiator
US4384975A (en) * 1980-06-13 1983-05-24 Sandoz, Inc. Process for preparation of microspheres
US4455142A (en) * 1980-07-07 1984-06-19 Alza Corporation Method of coadministering an antigen and an immunopotentiator
JPS5719662A (en) * 1980-07-09 1982-02-01 Fuji Photo Film Co Ltd Preparation of microcapsule reagent for immune reaction
JPS5719660A (en) * 1980-07-09 1982-02-01 Fuji Photo Film Co Ltd Microcapsule for immune reaction
US4326524A (en) * 1980-09-30 1982-04-27 Minnesota Mining And Manufacturing Company Solid dose ballistic projectile
US4389330A (en) * 1980-10-06 1983-06-21 Stolle Research And Development Corporation Microencapsulation process
US4349530A (en) * 1980-12-11 1982-09-14 The Ohio State University Implants, microbeads, microcapsules, preparation thereof and method of administering a biologically-active substance to an animal
ZA822995B (en) * 1981-05-21 1983-12-28 Wyeth John & Brother Ltd Slow release pharmaceutical composition
IT1220979B (en) * 1981-06-04 1990-06-21 Lofarma Farma Lab CAPSULES CONTAINING AN ALLERGEN AND PROCEDURE FOR THEIR PREPARATION
IL63220A (en) * 1981-07-01 1985-09-29 Yeda Res & Dev Process for production of polyacrolein microspheres
SE8204244L (en) * 1982-07-09 1984-01-10 Ulf Schroder Crystallized Carbohydrate Matrix for BIOLOGICALLY ACTIVE SUBSTANCES
US4428926A (en) * 1981-12-18 1984-01-31 Key Pharmaceuticals, Inc. Sustained release propranolol system
US4428925A (en) * 1981-12-18 1984-01-31 Key Pharmaceuticals, Inc. Sustained release glycerol trinitrate
US4479911A (en) * 1982-01-28 1984-10-30 Sandoz, Inc. Process for preparation of microspheres and modification of release rate of core material
US4434153A (en) * 1982-03-22 1984-02-28 Alza Corporation Drug delivery system comprising a reservoir containing a plurality of tiny pills
US4484923A (en) * 1982-03-25 1984-11-27 Alza Corporation Method for administering immunopotentiator
ATE37983T1 (en) * 1982-04-22 1988-11-15 Ici Plc DELAYED RELEASE AGENT.
JPS58209984A (en) * 1982-05-28 1983-12-07 Japan Synthetic Rubber Co Ltd Carrier composed of granular polymer
US4530840A (en) * 1982-07-29 1985-07-23 The Stolle Research And Development Corporation Injectable, long-acting microparticle formulation for the delivery of anti-inflammatory agents
US4542025A (en) * 1982-07-29 1985-09-17 The Stolle Research And Development Corporation Injectable, long-acting microparticle formulation for the delivery of anti-inflammatory agents
US4525339A (en) * 1982-10-15 1985-06-25 Hoffmann-La Roche Inc. Enteric coated oral dosage form
JPS59163313A (en) * 1983-03-09 1984-09-14 Teijin Ltd Peptide hormone composition for nasal administration
AU567155B2 (en) * 1983-04-15 1987-11-12 Damon Biotech Inc. Capsules for releasing core material at constant rate
US4690682A (en) * 1983-04-15 1987-09-01 Damon Biotech, Inc. Sustained release
DE3465888D1 (en) * 1983-06-22 1987-10-15 Univ Ohio State Res Found Small particle formation and encapsulation
US4608278A (en) * 1983-06-22 1986-08-26 The Ohio State University Research Foundation Small particule formation and encapsulation
GB2160312B (en) * 1984-04-13 1987-09-16 South African Inventions Adjuvant for immunisation
US4764359A (en) * 1984-05-25 1988-08-16 Lemelson Jerome H Drug compositions and their use in treating human or other mammalian patients
US4610870A (en) * 1984-10-05 1986-09-09 E. R. Squibb & Sons, Inc. Controlled release formulation
WO1987003197A1 (en) * 1985-11-29 1987-06-04 Fisons Plc Pharmaceutical composition including sodium cromoglycate
JPH01500034A (en) * 1986-04-10 1989-01-12 ダラテック プロプライエタリー リミテッド Vaccines and implants
ES2053549T3 (en) * 1986-08-11 1994-08-01 Innovata Biomed Ltd A PROCESS FOR THE PREPARATION OF AN APPROPRIATE PHARMACEUTICAL FORMULATION FOR INHALATION.
US4925673A (en) * 1986-08-18 1990-05-15 Clinical Technologies Associates, Inc. Delivery systems for pharmacological agents encapsulated with proteinoids
IL84167A (en) * 1986-10-24 1991-04-15 Southern Res Inst Oral delivery of bioactive agents to and through the peyer's patch by use of microencapsulation
GB8712176D0 (en) * 1987-05-22 1987-06-24 Cosmas Damian Ltd Drug delivery system

Similar Documents

Publication Publication Date Title
EP0333523B1 (en) Method of potentiating an immune response and compositions therefor
US5820883A (en) Method for delivering bioactive agents into and through the mucosally-associated lymphoid tissues and controlling their release
IE19960647A1 (en) Method of potentiating an immune response and compositions therefor
Challacombe et al. Enhanced secretory IgA and systemic IgG antibody responses after oral immunization with biodegradable microparticles containing antigen.
AU607439B2 (en) Method and formulation for orally administering bioactive agents to and through the peyer&#39;s patch
Eldridge et al. Vaccine-containing biodegradable microspheres specifically enter the gut-associated lymphoid tissue following oral administration and induce a disseminated mucosal immune response
Eldridge et al. Biodegradable microspheres: vaccine delivery system for oral immunization
Eldridge et al. Biodegradable microspheres as a vaccine delivery system
O'hagan et al. Biodegradable microparticles as controlled release antigen delivery systems.
Challacombe et al. Salivary, gut, vaginal and nasal antibody responses after oral immunization with biodegradable microparticles
US5340588A (en) Liposphere carriers of vaccines
US6287604B1 (en) Biodegradable targetable microparticle delivery system
Hanes et al. Polymer microspheres for vaccine delivery
NZ241320A (en) Delivery of bioactive agent to the mucosally associated lymphoreticular tissues of non-human animals
DK175960B1 (en) Microcapsules for targetted delivery of agents to Peyers patches - esp. antigens for oral immunisation, inducing both systemic and mucosal immune responses