HUE034718T2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
HUE034718T2
HUE034718T2 HUE10726891A HUE10726891A HUE034718T2 HU E034718 T2 HUE034718 T2 HU E034718T2 HU E10726891 A HUE10726891 A HU E10726891A HU E10726891 A HUE10726891 A HU E10726891A HU E034718 T2 HUE034718 T2 HU E034718T2
Authority
HU
Hungary
Prior art keywords
heat exchanger
inner conductor
conduit
conductor
outer conduit
Prior art date
Application number
HUE10726891A
Other languages
Hungarian (hu)
Inventor
Andreas Richard Hilgert
Peter Tobias Klug
Thomas Zenon Zakrzewski
Leonid Walter
Original Assignee
Eaton Ind Ip Gmbh & Co Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40902265&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=HUE034718(T2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Eaton Ind Ip Gmbh & Co Kg filed Critical Eaton Ind Ip Gmbh & Co Kg
Publication of HUE034718T2 publication Critical patent/HUE034718T2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/06Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/06Tubular elements of cross-section which is non-circular crimped or corrugated in cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/06Heat exchange conduits having walls comprising obliquely extending corrugations, e.g. in the form of threads

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

(12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: F28D 7110 <2006 01> F28F 1106 <200e 01> 19.07.2017 Bulletin 2017/29 F28F 1IO8<200601> B21D 53106 <2006 01> (21) Application number: 10726891.4 (86) International application number: PCT/EP2010/002656 (22) Date of filing: 30.04.2010 (87) International publication number: WO 2010/124871 (04.11.2010 Gazette 2010/44)(12) Date of publication and mention (51) Int Cl .: of the grant of the patent: F28D 7110 <2006 01> F28F 1106 <200e 01> 19.07.2017 Bulletin 2017/29 F28F 1IO8 < 200601> B21D 53106 <2006 01> (21) Application number: 10726891.4 (86) International application number: PCT / EP2010 / 002656 (22) Date of filing: 30.04.2010 (87) International publication number: WO 2010/124871 (04.11 .2010 Gazette 2010/44)

(54) HEAT EXCHANGER wArmetauscher(54) HEAT EXCHANGER wArmetauscher

ECHANGEUR DE CHALEUR (84) Designated Contracting States: · ZAKRZEWSKI, Thomas, Zenon AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 76437 Rastatt (DE) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL · WALTER, Leonid PT RO SE SI SK SM TR 76532 Baden-Baden (DE) (30) Priority: 30.04.2009 EP 09159260 (74) Representative: Eaton IP GroupECHANGEUR DE CHALEUR (84) Designated Contracting States: · ZAKRZEWSKI, Thomas, Zenon AT BE BG CH CY CZ DE DK EE ES MS IT MS EN NL EN PL · WALTER, Leonid PT RO SE SI SK SK TR 76532 Baden-Baden (DE) (30) Priority: 30.04.2009 EP 09159260 (74) Representative: Eaton IP Group

29.05.2009 GB 0909221 EMEA29.05.2009 GB 0909221 EMEA

c/o Eaton Industries Manufacturing GmbH (43) Date of publication of application: Route de la Longeraie 7 07.03.2012 Bulletin 2012/10 1110 Merges (CH) (73) Proprietor: Eaton Industrial IP GmbH &amp; Co. KG (56) References cited: 12529 Schonefeld (DE) EP-A1- 1 840 495 EP-A1-1 895 256 JP-A-2002 318 015 JP-A-2004 278 854 (72) Inventors: JP-A- 2006 162 241 US-A- 4 194 560 • HILGERT, Andreas, Richard US-A1- 2006 096 314 76547 Sinzheim (DE) • KLUG, Peter, Tobias 77933 Lahr (DE)Eaton Industries Manufacturing GmbH (43) Date of publication of application: Route de la Longeraie 7 07.03.2012 Bulletin 2012/10 1110 Girls (CH) (73) Proprietor: Eaton Industrial IP GmbH &amp; Co. KG (56) References: 12529 Schonefeld (DE) EP-A1- 1 840 495 EP-A1-1 895 256 JP-A-2002 318 015 JP-A-2004 278 854 (72) Inventors: JP-A - 2006 162 241 US-A-4 194 560 • HILGERT, Andreas, Richard US-A1- 2006 096 314 76547 Sinzheim (DE) • KLUG, Peter, Tobias 77933 Lahr (DE)

Descriptiondescription

TECHNICAL FIELDTECHNICAL FIELD

[0001] The invention relates generally to the technical field of heat exchangers and particularly, but not exclusively, to internal heat exchangers and more particularly those used for use air-conditioning systems for automotive applications.[0001] The invention relates to the use of air conditioning systems for automotive applications.

BACKGROUNDBACKGROUND

[0002] Air-conditioning systems of motor vehicles, for example, are frequently equipped with a so-called internal heat exchanger. Such heat exchangers may be used to increase the operating efficiency of the system by preheating the refrigerant supplied to the suction side of a compressor of the air-conditioning system and at the same time cooling the refrigerant (liquid side) being conveyed to an expansion device. One example of an inner heat exchanger is disclosed in DE10 2006 017 816 B4. This document discloses a single piece extruded aluminium heat exchanger element. In this one extruded profile channels are formed for conveying both liquid side and suction side refrigerant. Whilst, extruded heat exchanger elements of this type offer high levels of heat exchange between the suction and the liquid sides, they suffer from certain drawbacks: they require machining and/or cleaning before they can be used; welding or brazing must be used in order to connect the suction line to the profile; and, the geometry of the heat exchanger is fixed by the extrusion tool, meaning that new tools must be developed for a new applications requiring different extrusion profiles.[0002] Air-conditioning systems of motor vehicles, for example, are a so-called internal heat exchanger. This is an air-conditioning system that can be used as a heat transfer device. . One example of an inner heat exchanger is disclosed in DE10 2006 017 816 B4. This document discloses a single piece extruded aluminum heat exchanger element. In this one extruded profile channels are formed for both liquid and suction side refrigerant. Whilst the extruded heat exchanger elements of the exchange rates are the most common, they are suffering from certain drawbacks; welding or brazing must be used in order to connect to the profile; the extrusion tool is also an extrusion tool.

[0003] In order to achieve a desired heat transfer between the suction side and the liquid side the heat exchanger must have a given heat exchange area. Sometimes, space is at a premium, for example in automotive applications. In such cases it is desirable to be able to use heat exchangers of reduced outer dimensions. This often means that it is required to form or bend the heat exchanger as a U-shaped pipe or into other shapes so that it may be installed in a given space. This in turn requires that the heat exchanger pipe be designed in a sufficiently bendable manner so that it may be deformed without collapsing its fluid conveyance channels. Moreover, it may also mean thattheouterdiameterofthe heat exchanger is limited or constrained.[0003] In order to achieve the desired heat transfer, the heat exchanger must have a given heat exchange area. Sometimes, space is at a premium, for example in automotive applications. In such cases it is possible to use heat exchangers. U-shaped pipe or into other shapes so that it can be installed in a given space. This in-turn requires that the heat exchanger pipe be designed in a manner that is suffi- ciently free of collapsing its fluid conveyance channels. Moreover, it may also mean that the heat exchanger is limited or constrained.

[0004] In view of such design requirement it would therefore be desirable to provide a heat exchanger that overcomes at least some of the above mentioned problems.[0004] In this regard, it is necessary to provide a heat exchanger for the above mentioned problems.

[0005] A heat exchanger and a method in accordance with the preamble of claims 1 and 9 are known from US 4,194,560. Dent portions are alternately formed on the outside face of the inner tube. The inner tube is then fitted within the outer tube to form a space between outer tube and inner tube wherein oil flows in zigzag fashion to as sure heat transfer. Due to the dents formed in the inner tube, the cross-sectional area of the inner tube is reduced in relation to the original tube. This results in undesirable higher pressure drop in the inner tube. Moreover will the described increased contact area also increase the refrigerant pressure drop between the outer and inner tube.[0005] Heat exchanger and method in the preamble of claims 1 and 9 are known from US 4,194,560. Dent portions are alternately formed by the outside face of the inner tube. The inner tube is then fitted inside the outer tube to the inside tube and inner tube with oil flows in the zigzag fashion to as sure heat transfer. Due to the dents formed in the inner tube, the cross-sectional area of the inner tube is reduced in relation to the original rooms. Inside the inner tube. In addition, it is also known as the drop of the outer and inner tube.

SUMMARYSUMMARY

[0006] According to the present invention there is provided a heat exchanger and a method of manufacturing of a heat exchanger as defined in the appended claims.[0006] According to the present invention there is provided a heat exchanger and a method of manufacturing claims.

BRIEF DESCRIPTION OF THE DRAWINGSBRIEF DESCRIPTION OF THE DRAWINGS

[0007] The above and other aspects, features and advantages of the invention will be apparent from the following detailed description of illustrative embodiments which is to be read in connection with the accompanying drawings, in which:[0007] \ t [0007] \ t

Fig. 1 is a schematic diagram of an air conditioning system for an automotive application comprising an internal heat exchanger;Fig. 1 is a schematic diagram of an internal heat exchanger;

Fig. 2 shows a schematic illustration of the internal heat exchanger shown in Fig. 1 in a U-shaped configuration;Fig. 2 shows a schematic illustration of the internal heat exchanger shown in Fig. 1 in a U-shaped configuration;

Fig. 3a shows a perspective view of an internal heat exchanger according to a first embodiment of the invention in its assembled state but prior to being bent into a U-shaped configuration;Fig. 3a shows a perspective of the future;

Fig. 3b shows a photograph of the exterior of an internal heat exchanger according to the first embodiment;Fig. 3b shows the exterior of the exterior exterior of the exterior;

Fig. 3c shows a photograph of the exterior of a section of the deformed portion of the inner tube of the internal heat exchanger according to the first embodiment;Fig. 3c shows the exterior of the inner tube of the inner tube;

Fig. 3d shows a schematic illustration of the exterior of a section of the deformed portion of the inner tube of the internal heat exchanger according to the first embodiment, more clearly showing its helical structure;Fig. 3d shows a schematic illustration of the inner tube of the inner tube of the inner tube;

Fig. 4 is an image schematically illustrating part of the inner tube of the internal heat exchanger according to a first embodiment, which illustrates one exemplary method of creating a helical structure in a portion of the inner tube;Fig. 4 is an image schematically illustrating part of the inner tube, which illustrates one exemplary method of creating a portion of the inner tube;

Fig. 5a to Fig. 5c show cross sectional views of the internal heat exchanger according to the first embodiment, illustrating exemplary alternative profiles for the internal heat exchanger inner tube;Fig. 5a to FIG. 5c show cross sectional views of the internal heat exchanger;

Fig. 6 is a schematic illustration of the flow of refrigerant in the internal heat exchanger of the first embodiment;Fig. 6 is a schematic illustration of the internal heat exchanger of the first;

Fig. 7 shows part of an image of Fig. 4, showing how parameters of the inner tube may be varied to achieve different performance characteristics of theFig. 7 shows part of an image of Fig. 4, showing the performance of the inner tube

internal heat exchanger of the first embodiment; DETAILED DESCRIPTIONinternal heat exchanger of the firstaut; DETAILED DESCRIPTION

[0008] Referring now to the drawings, several embodiments of the present invention are shown in detail. The drawings are not necessarily to scale and certain features may be exaggerated to better illustrate and explain the present invention. Further, the embodiments set forth herein are not intended to be exhaustive or otherwise limit or restrict the invention to the precise configurations shown in the drawings and disclosed in the following detailed description.Referring now to the drawings, several embodiments of the present invention are shown in detail. The drawings are not to the point and can be exaggerated. Further, the embodiments set forth here are not intended to be exhaustive or otherwise restricted to the following detailed description.

[0009] Referring to FIG. 1 an air conditioning system 1 suitable for use in a motor vehicle is schematically illustrated. The air conditioning system 1 includes a compressor 2, which may be driven, for example, by the engine of the vehicle or by a separate electric motor or the like. The compressor 2 has an inlet 4, connected to a low pressure line 21, via which where the compressor 2 takes in refrigerant, or coolant, at low pressure. The compressor 2 also has an outlet 3, via which pressurized refrigerant is output, into a high pressure line 5. The high pressure line 5 leads to a cooling device 6 where the compressed and thus heated refrigerant is cooled and condensed. Therefore, the cooling device 6 is also referred to as a condenser. In this example, the refrigerant used is R-134a that works at low pressure.Referring to FIG. 1 air conditioning system 1 suitable for use in a motor vehicle is schematically illustrated. The air conditioning system 1 includes a compressor 2, which may be driven, for example. The compressor 2 has an inlet 4, connected to a low pressure line, at low pressure. The compressor 2 also has an outlet 3, via pressurized refrigerant is output, in a high pressure line. Therefore, the cooling device 6 is also referred to as a condenser. In this example, the refrigerant used is R-134a that works at low pressure.

[0010] At an outlet 7 of the cooling device, the refrigerant is discharged to another high pressure line 8 that leads to a high-pressure inlet 9 of an internal heat exchanger 11. The internal heat exchanger 11 has a high-pressure outlet 12 that is in turn connected to an expansion valve 15 via a high pressure line 14. The expansion valve 15 relaxes the refrigerant that is introduced into an evaporator 16. The refrigerant evaporates in the evaporator 16 and, as a result, absorbs thermal energy from the environment; in this example, cooling the airsupplied to the interior of the motor vehicle. The resultant refrigerant vapor is then transported from the evaporator 16, via a low-pressure line 17, to the low-pressure inlet 18 of the internal heat exchanger 11. This refrigerant vapor flows through the internal heat exchanger 11 in a counter-current direction to the refrigerant that is being fed through the high-pressure inlet 9. In so doing, the refrigerant vapor cools the pressurized refrigerant, thus itself becoming heated. The refrigerant vapor is discharged, having been heated, at the low-pressure outlet 19 of the internal heat exchanger 11. It is then conducted, via a low-pressure line 21, to the inlet 4 of the compressor 2.11. The internal heat exchanger 11 has a high-pressure outlet 12. 14. The expansion valve 15 is the evaporator 16 and, as a result, absorbs thermal energy from the high pressure line. environment; in this example, cooling the airsupplied to the interior of the motor vehicle. The resultant refrigerant vapor is then transported from the evaporator 16, via the internal heat exchanger 11 in a counter-current direction. 9. In so doing, the refrigerant vapor cools the pressurized refrigerant, thus itself becoming heated. 11. It is then conducted, via the low-pressure line 21, to the inlet 4 of the compressor 2.

[0011] The internal heat exchanger 11 allows the temperature of the refrigerant flowing to the compressor 2 to be increased, which in turn increases the temperature of the refrigerant at the outlet 3 of the compressor. Therefore, the cooling device 6 releases a greater amount of thermal energy. At the same time, the internal heat exchanger 11 lowers the temperature of the refrigerant fed to the evaporator 16, thus providing an improved heat transfer between the evaporator 16 and ambient air. In this manner, the internal heat exchanger 11 may be used to increase the efficiency of the air conditioning system.[0011] The internal heat exchanger 11 allows for an increase in the temperature of the compressor. Therefore the cooling device 6 At the same time, the internal heat exchanger 11 lowers the temperature of the evaporator 16 and ambient air. In this continent, the internal heat exchanger 11 may be used.

[0012] Fig. 2 shows a further schematic illustration of the internal heat exchanger 11. In this example, it is shown as a U-shaped bent pipe 22. It will be appreciated that the exact shape of the heat exchanger will depend upon its application. However, in certain applications, but not all, bending of the heat exchanger 11 is required. Where it is required, the coaxial tube should be able to be bent sufficiently without causing the fluid flow channels or conduits to collapse or break. The bent pipe 22 has two legs 23, 24, that are bent away from each other at their upper ends.[0012] FIG. In this example, it will be appreciated that it will be appreciated. However, in certain applications, but not all, bending of the heat exchanger 11 is required. Where it is required, the coaxial tube should be able to be at least without the flow flow or collapse or break. The bent pipe 22 has two legs 23, 24, that are bent away from each other at their upper ends.

[0013] The high-pressure inlet 9 and the high-pressure outlet 12 are in fluid connection with the remainder of the system 1 at position 26a. The low-pressure inlet 18 and the low-pressure outlet 19 of the internal heat exchanger 11 are in fluid connection with the remainder of the system 1 at position 26b. As can be seen from the figure, positions 26a and 26b are located at or relatively close to the terminations of at the upper ends of the bent pipe 22.[0013] The high-pressure inlet of the system 1 at position 26a. The low-pressure inlet of the system 1 at position 26b. 26a and 26b are located at or close to the end of the pipe.

[0014] Referring now to Figs. 3a-3d, the structure of the internal heat exchanger 11 will be described in more detail. Fig. 3a shows a perspective view of the internal heat exchanger 11 ofafirst embodiment in its assembled state but prior to being bent into its final U-shaped configuration. As can be seen from the figure, the internal heat exchanger 11 includes an outer tube 30, and inner tube 32, of which end portions 32a and 32b are visible from this figure Both the outer tube 30 and inner tube 32 being designed as refrigerant conduits. The inner tube 32 is located inside and runs the entire length of the outer tube 30. The internal and external diameters of the outer tube 30 are 18mm and 20mm, respectively. The internal and external diameters of the parts of the inner tube 32 that extend beyond the outer tube 30 and can be seen in the figure are 12mm and 15mm, respectively. It will be understood that the dimensions of the outer tube 30 and inner tube 32 are selected for a given application and will therefore change in dependence upon application. The inner diameter of the outer tube 30 may from range 9-19m m for automotive or car applications, 20-39mm for bus applications and, 23-50mm for train applications. In one example having R-134a as the refrigerant, the outer tube is 24mm outer diameter with a 20mm inner diameter. The starting material, or base tube, for the inner tube is 18mm outer diameter with an inner diameter of 15mm.Referring now to Figs. 3a-3d, the structure of the internal heat exchanger 11 will be described in more detail. Fig. 3a shows a view of the internal heat exchanger 11 ofafirst in its assembled state but prior to being bent into its final U-shaped configuration. 30 years old, inside the tube 30 and the inner tube 32 being designed as refrigerant conduits . The inner tube 32 is located inside and out of the outer tube. 30 are 18mm and 20mm, respectively. 30 and can be seen in the figure are 12mm and 15mm, respectively. 30 and inner tube 32 are selected for the application. The inner diameter of the outer tube 30 may from range 9-19m for automotive or car applications, 20-39mm for bus applications and, 23-50mm for train applications. In one example having the refrigerant, the outer tube is 24mm outer diameter with a 20mm inner diameter. The starting material, or base tube, is an 18mm outer diameter with an inner diameter of 15mm.

[0015] Also shown in the figure are the high-pressure inlet 9 and the high-pressure outlet 12 of the internal heat exchanger 11. Each of these is connected to a suitable orifice in the outer tube 30 using a conventional process such as welding or brazing. The weld points are referenced 34 in the figure. In this manner, a fluid connection is formed between the high-pressure inlet 9 and the high-pressure outlet 12 via the outer tube 30. The connection orifices may be machined, or otherwise manufactured using any convenient process. In this manner, the outer tube 30 may be used as a connection sleeve which allows the system costs to be reduced. The extreme end points 36 of the outer tube 30 are joined to inner tube 32 to ensure that the joint is effectively sealed against leakage of the refrigerant. Again a conventional process may be used; for example o-rings, crimping and or welding or brazing. Fig. 3b shows a photograph of an example of an internal heat exchanger 11 similar to that shown in Fig. 3a [0016] In the figure the inner tube 32 has end portions 32a and 32b that are circular. These respectively form the low-pressure inlet 18 and the low-pressure outlet 19 of the internal heat exchanger 11. In this example, the end portions 32a and 32b are unmodified base tube material. Therefore end portions 32a and 32b may be configured to be the required lengths to provide the function of low pressure tubes 21 and 17, shown in Fig. 1. This in turn means that no suction side connection tubes are needed; thus obviating the need for costly connection processes, such as welding and eliminating the risk of refrigerant leakage at such connection points.11. Each of these is a suitable orifice in the outer tube 30 using a conventional process such as welding or brazing. The weld points are referenced 34 in the figure. A fluid connection is formed between the high-pressure inlet and the outer tube 30. In this continent, the outer tube 30 may be used as a connection. The Extreme End Points 36 of the Outer Tube 30 are joined to the inner tube. Again a conventional process may be used; for example o-rings, crimping and or brazing. Fig. 3b shows a photograph of an internal heat exchanger. 3a [0016] 32a and 32b that are circular. These are the types of material that can be found in the body. In this example, the end portions 32a and 32b are unmodified base tube material. Therefore, the end portions 32a and 32b may be configured to be the required lengths for the function of low pressure tubes 21 and 17, shown in FIG. 1. This is a means of turning connection tubes that were needed; thus obviating the need for costly connection processes, such as welding and eliminating risk.

[0017] Between the end portions 32a and 32b of the inner tube 32 is a central portion 32c that has been deformed into a helical shape along its longitudinal axis. A photograph of the exterior of a section of the deformed portion 32cofthe inner tube of the internal heat exchanger 11 according to the first embodiment is shown in Fig. 3c. The central portion 32c may be deformed using any convenient deforming procedure. In the present example it is deformed through a repeated clamping process. However, other deforming processes or apparatus, such as a press or hammer, may be used. In this example, the clamping process is implemented using shaped opposing clamping surfaces to achieve the desired exterior profile of the portion 38b. The marks 38a left in the outer surface of the deformed portion 32c by the action of the clamping process may be seen in Fig. 3c. Furthermore, it can be seen from Fig. 3c that the deformed portion 32c has a helical profile. This helical profile can be more clearly seen from the schematic illustration of a section of portion 32c illustrated in Fig. 3d.Between the end portions 32a and 32b of the inner tube 32c that has been deformed into a helical shape along its longitudinal axis. The inner tube of the internal heat exchanger is shown in FIG. 3c. The central portion 32c may be deformed using any convenient deforming procedure. This is a deformed through aart clamping process. However, other deforming processes or apparatus such as press or hammer may be used. In this example, the clamping process is using the opposing clamping surfaces to achieve the desired exterior profile of the portion 38b. The marks are shown in Fig. 38a. 3c. Furthermore, it can be seen from Fig. 3c that deformed portion 32c has a helical profile. Illustrated in Fig. 32c illustrated in Fig. 3d.

[0018] Referring to Fig. 4 the method of manufacturing elliptical helix of central portion 32c, according to this example, will now be described. Fig. 4 shows an image schematically illustrating a part of the inner tube 32, including part of central portion 32c, arranged about its longitudinal axis 42. As can be seen from the figure, the left hand end 32a of the inner tube 32 is not deformed and is circular is cross section. Adjacent the left hand end 32a end of the inner tube 32 is portion 44a that has been deformed to an approximate elliptical shape of predetermined dimensions. These dimensions may be controlled using the parameters of the deforming process; for example the linear extent of the clamping operation and the shape, dimensions and material properties of the clamping surfaces.Referring to FIG. 4 the method of manufacturing elliptical helix of central portion 32c, will now be described. Fig. 4 shows an image schematically illustrating a part of the inner tube 32 is not deformed 32 is circular is cross section. Adjacent to the left hand end 32a end of the inner tube 32 is portion 44a that has been deformed to an approximate elliptical shape of predetermined dimensions. These dimensions may be controlled by the parameters of the deforming process; examples of the clamping surfaces of the clamping surfaces.

[0019] In the figure, the major axis 46a of the elliptical portion 44a is shown orientated vertically. When the clamp is removed from portion 44a of the inner tube 32, the inner tube 32 is advanced a fixed predetermined distance along its longitudinal axis 42 to bring the portion 44b of the tube adjacent the clamping surfaces and the inner tube 32 is rotated by a fixed angle in a given direction about its longitudinal axis; in this example 45 degrees. The clamping operation is then repeated. This process is then repeated along the desired length of central portion 32c of the inner tube 32, as is illustrated by deformed portions 44b - 44f. In this manner an approximate helical structure of approximately fixed helical pitch and approximately constant elliptical cross section may be formed. With the exception of its helical form, the central portion 32c of the inner tube 32 is free or substantially free of projections and is relatively smooth in both its circumferential direction and its longitudinal direction. The inventors have found that this process of manufacture may be largely automated by using a bending machine set to zero bend radius. Thus, the creation of the helical structure of the central portion 32c of the inner tube 32 may be a relatively rapid and inexpensive process.The figure of the elliptical portion 44a is shown orientated vertically. 32 is the best time to get the rest of the tube. fixed angle in a given direction about its longitudinal axis; in this example 45 degrees. The clamping operation is thenalt. 32b of the inner tube 32, as is illustrated by deformed portions 44b - 44f. This section is based on a fixed helical pitch and a constant elliptical cross section may be formed. 32 a free or project free of projections and a long-lasting direction. The inventors have found that the process of manufacturing can be found in a common bend radius. Thus, the process of the inner tube is a relatively rapid and inexpensive process.

[0020] Once the inner tube 32 is formed, it is assembled with the outer tube 30, by inserting the inner tube 32 inside the outer tube 30. The fit between the inner tube 32 and the outer tube 30 may be any convenient fit, such as a loose fit or a slight interference fit. Thus, inner tube 32 and the outer tube 30 may be assembled by hand or be automated. The welding or braising, including crimping if this is required, of the extreme end points 36 of the outer tube 30 to inner tube 32 may then be carried out. This may be done in the region where the non-de-formed end sections 32a and 32b of the inner tube 32 transition into the adjacent deformed portion 32c.Once the inner tube 32 is formed, it is assembled with the outer tube 30, by inserting the inner tube 32 inside the outer tube. such a loose fit or a slight interference fit. Thus, the inner tube 32 and the outer tube 30 may be assembled by hand or automated. 36 of the outer tube 32 may then be carried out. This is a non-de-formed end section 32a and 32b of the inner tube.

[0021] Fig. 5c shows a cross sectional view, in the direction of arrows A-A shown in Fig. 3a, of the internal heat exchanger 11, and illustrates the inner tube 32 and the outer tube 30 once assembled. As can be seen from the figure, the inner tube 32 forms an approximate ellipse, the major axis of which is approximately equal to the internal diameter of the outer tube 30; i.e. 18mm. It will be understood that the cross sectional profile of the inner tube 32 could be varied either to meet heat exchange requirements or in order to meet manufacturing requirements. For example as an ellipse, as is illustrated in Fig. 5a could be used. Other examples could include a triangular or quadrilateral shape, such as an approximate square as is illustrated in Fig. 5b could also be used. Indeed, other cross sectional profiles may be contemplated, which have increased numbers of sides.[0021] FIG. 5c shows a cross sectional view, in the direction of arrows A-A shown in Fig. 3a, of the internal heat exchanger 11, and illustrated the inner tube 30 once assembled. The can be seen from the figure, the inner tube 32 is an approximate ellipse; B.C. 18mm. It will be a cross section of the inner tube. As an ellipse, as is illustrated in Fig. 5a could be used. Other examples could include a triangular or quadrilateral shape as illustrated in Fig. 5b could also be used. Indeed, other cross sectional profiles may be contemplated, which have increased numbers of sides.

[0022] In this example shown in Fig. 5c, the inner tube 32 contacts the inner surface of outer tube 30 at points 56a and 56b, thus forming two substantially line contacts between the outer surface of the inner tube 32 and the inner surface of outer tube 30 which run the entire length of the helical structure of the central portion 32c of the inner tube 32. In this manner, two refrigerant fluid flow channels 52a and 52b are formed between the outer surface of the inner tube 32 and the inner surface of outer tube 30. The fluid flow channels 52a and 52b carry liquid side refrigerant. In some embodiments a certain degree of fluid connection between the fluid flow channels 52a and 52b may be permitted. The extent of this permitted fluid connection may be dependent upon the application. A third refrigerant fluid flow channel 50 lies on the inside of the inner tube 32. The third refrigerant fluid flow channel 50 carries refrigerant supplied to the suction side of the compressor. The three refrigerant fluid flow channels run substantially the entire length of the helical structure of the central portion 32c of the inner tube 32.In this example shown in FIG. 5c, the inner tube 32 contacts the inner surface of the outer tube 30 at points 56a and 56b, thus forming the two outer tubes of the outer tube 30 32. The fluid flow channels 52a. The fluid flow channels 52a. The fluid flow channels 52a. and 52b carry liquid side refrigerant. 52a and 52b may be permitted. The extent of this permit may be dependent upon the application. A third refrigerant fluid flow channel 50 is the third refrigerant flow channel 50. 32c of the inner tube 32c.

[0023] The third refrigerant fluid flow channel 50 has a cross sectional area which is substantially equal to, or is only marginally reduced relative to the cross sectional area of the base circular tube from which it is formed, and from which the remainder of the suction side, low pressure lines of the air conditioning system 1, are made. This means that the pressure drop caused per unit length of the fluid flow channel 50 is substantially the same as, or not significantly increased relative to, that of the base circular tube from which it is formed, such as low pressure line 21. By avoiding significant pressure loss on the suction side of the internal heat exchanger 11, a considerable loss in the efficiency of the air conditioning system 1 may be avoided, especially in systems operating at lower pressures.The third refrigerant fluid flow channel 50 has a cross sectional area which is equal to, or is only marginally reduced by the cross sectional area. suction side, low pressure lines of the air conditioning system 1, are made. This is a low-pressure line 21. By avoiding (a) loss of efficiency in the operation of the air conditioning system;

[0024] In addition, the inventors have surprisingly discovered that the creation of the helical structure of the central portion 32c of the inner tube 32 does not cause a significant or measurable drop in pressure in the fluid flow channel 50 relative to a correspondingly profiled tube with no helical structure. The surprising lack of pressure drop in the suction side of the internal heat exchanger 11 of the present embodiment may strongly contribute to the efficiency of the air conditioning system 1.In addition, the inventory is surprisingly discovered by the flow tube 32 does not cause a significant drop in pressure in the fluid flow channel 50 with no helical structure. The surprising lack of pressure drop in the suction side of the internal heat exchanger 11

[0025] Whilst in applications for which the internal heat exchanger 11 of the present embodiment is designed benefit from nosignificantdrop per unit length in pressure in the fluid flow channel 50 relative to a correspondingly profiled tube with no helical structure, it will be appreciated that in other applications of the invention a greater pressure drop may be permitted. This may be for example, 2%, 5% or 7% increase relative to a correspondingly profiled tube with no helical structure. However, in some embodiments for certain applications, the suction side pressure drop per unit length of the internal heat exchanger 11 may be up to 30% higher than that of the normal suction side line. In other embodiments this figure may be 10% or 20%.Whilst in the application of the internal heat exchanger 11, the present invention is designed to be useful in the field. other applications of greater pressure drop may be permitted. This may be for example, 2%, 5% or 7% increase with a helical profile with no helical structure. However, in the case of certain applications, the suction side pressure drop per unit of the internal heat exchanger can be up to 30% higher than the normal suction side line. In other embodiments this figure may be 10% or 20%.

[0026] It will be appreciated that in certain known heat exchangers, in which the design causes such a pressure drop, it may not be easy to remedy. One reason for this is that the technical characteristics of the low pressure fluid flow channel of the heat exchanger may not be easily changed to overcome this problem. For example, it may not be possible to change the cross sectional area of the channel due to space constraints or bending constraints. Additionally, this may not be possible due to the fact that manufacturing costs may be unduly increased due to increased operations being required. Furthermore, it may not be possible to change the internal geometry or flow characteristics of the low pressure fluid flow channel since this may adversely affect the heat exchanging characteristics of the device.It will be appreciated that in certain known heat exchangers, it may be appreciated. One of the reasons for this is that it is not easy to change the problem. For example, it may not be possible to change the cross-sectional area of the channel due to space constraints or bending constraints. Additionally, this may be due to the fact that there is an increase in the need for operations. Additionally, it may not be possible to change the characteristics of the device.

[0027] As can be see from Fig. 5c, the area across which heat may be exchanged between fluid flow channel 50 and each of fluid flow channels 52a and 52b is large, being approximately equivalent to half of the external area of the inner tube 32. Moreover, due to the cross sectional shape of the refrigerantfluid flow channels 52a and 52b the efficiency of heat exchange between the flow channel 50 and each of fluid flow channels 52a and 52b is increased. The fluid flow channels 52a and 52b are approximately crescent shaped, having a relatively small height or thickness in the radial direction and a relatively high length of contact with the external circumference of the inner tube 32. This length of contact is illustrated, in the case of fluid flow channels 52a by line 58 in the figure. It will be appreciated that this line of contact provides a convex heat transfer surface (the external surface of the inner tube 32) against which the fluid in fluid flow channels 52a and 52b flows; and thereby a large and efficient heat exchange surface over the length of the fluid flow channels 52a and 52b.As can be see from Fig. 5c, the area of the inner tube; 52a and 52b is the increase of the flow channel of the refrigerantfluid flow channels. The Flow Flow Channels 52a and 52b are roughly crescent shaped, with a low height of the height of the inner tube. of flow flow channels 52a by line 58 in the figure. It will be appreciated that the flow of fluid flow channels 52a and 52b flows; and a large amount of heat exchange channels 52a and 52b.

[0028] Fig. 6 illustrates the flow of refrigerant in the internal heat exchanger 11 according to the present embodiment. The refrigerant flowing in refrigerantfluid flow channel 50 is referenced 60 and the refrigerant flowing in refrigerant fluid flow channels 52a and 52b is referenced 62a and 62b, respectively. As can be seen from the figure, in this example the refrigerant flowing in refrigerant fluid flow channels 52a and 52b follows a helical path along the internal heat exchanger 11 and completes three complete cycles around the fluid in fluid flow channel 50.[0028] FIG. 6 illustrates the flow of refrigerant in the internal heat exchanger. The refrigerant flowing in the refrigerant flow channel is also referenced 62a and 62b, respectively. Factors of the Fluid Flow in a Flow Flow Channel 50

[0029] It will be understood that the heat exchange characteristics required for a different applications will vary. Accordingly, the heattransfersurface of the present embodiment may be varied. Clearly, the exterior dimensions, such as length and diameter, of the internal heat exchanger may be varied where space permits. Where this is not possible or not desired, parameters of the inner tube 32 may be varied as is illustrated in Fig. 7. Fig. 7 illustrates part of the image of Fig. 4 illustrating several deformed portions 44 of the inner tube 32; where: "a" = width of base form, determined by the height of the base form if the cross sectional area is equal to the base, or starting, material tube; "b" = height of base form: "c" = depth of the of base form along the longitudinal axis of the inner tube 32 "d" = distance between two deformations "e" = angle between symmetry axis of two deformations "f" = length of straight portion of the base form, which depends upon "a" and "b" and is zero if the form is elliptical.It will be understood that different applications will vary. , The heattransfersurface of the present may be varied. Clearly, the exterior dimensions, such as the length and diameter of the space. 32 may be varied as is illustrated in Fig. 7. FIG. 7 illustrates part of the image of Fig. 4 illustrating several deformed portions 44 of the inner tube 32; "a" = width of the base form, determined by the material or; "b" = height of base form: "c" = "distance between symmetry axis of two deformations"; = length of straight portion of the base form, which is zero if the form is elliptical.

[0030] The heat transfer surface, the flow velocity and therefore the heat transfer may be adjusted by modifying the geometry of the inner tube 32. The parameters "a", "b" and "f" determine the cross section of the liquid flow channels 52a and 52b and therefore the flow velocity and the heat transfer coefficient. The parameters "c" and "e" determine heat exchange, or contact length and therefore the liquid side heat transfer surface. In general: (i) the efficiency of the internal heat exchanger 11 may be increased by decreasing "c" and "e"; i.e. by increasing the number of deformations per unit length of the inner tube 32 and decreasing the slope of the helix; this may be in the range of 20 to 45 degrees for example; (ii) the efficiency of the internal heat exchanger 11 may be decreased by increasing "c" and "e"; i.e. by decreasing the number of deformations per unit length of the inner tube 32 and increasing the slope of the helix; this may be in the range of 45 to 90 degrees for example.32. The parameters "a", "b" and "f" determine the cross-section of the liquid flow channels 52a and 52b and therefore the flow velocity and heat transfer coefficient. The parameters "c" and "e" determine heat exchange surface. In general: (c) and "e"; B.C. by increasing the number of deformations per unit of the tube 32 and decreasing the slope of the helix; this may be in the range of 20 to 45 degrees for example; (ii) "c" and "e"; B.C. by decreasing the number of deformations per unit of the tube 32 and increasing the slope of the helix; this may be in the range of 45 to 90 degrees for example.

[0031] It will be appreciated that if the internal heat exchanger 11 is to be formed as U-shaped pipe or other shape, the internal heat exchanger 11 should have sufficient bending stability. The bending stability of the internal heat exchanger 11 may be increased by decreasing the value of parameter "f.It will be appreciated that if the internal heat exchanger 11 is to be formed, it should be a good bending stability. The bending stability of the internal heat exchanger 11 may be increased by the value of the parameter "f.

[0032] It will be understood that the above described embodiments give rise to certain advantages. The contours of the inner tube 32 can be placed anywhere along, or even along only a part of, the length of the inner tube 32. Moreover, heat transfer may be adjusted by changing the geometry of the interface between the inner tube 32 and the outer tube 30, and this may be done without significantly changing the forming tool, such as a clamp, or process used. This provides considerable flexibility in terms or manufacturing. Heat exchanger applications with different performance criteria may be achieved without having to significantly modify the manufacturing process or tooling. As the inner tube maybe made from standardtubing material, it is low cost. No expensive extrusions are required and no suction side connection tubes are needed, which may help to ensure that manufacturing is simplified and reliability of the system is increased. Bending flexibility may be adjusted by altering the geometry of the deformed tube. The outer tube 30 may be used as a connection sleeve which further allows the system costs to be reduced. Despite the fact that that low-pressure channel may be particularly large, reducing the tendency for suction side pressure drop, a relatively small outside diameter may be achieved.It will be understood that the above-mentioned embodiments give rise to certain advantages. 32 is the heat of the inner tube. outer tube 30, and this may be a clamp, or process used. This is provided by flexibility in terms or manufacturing. Heat exchanger applications with different performance criteria. The inner tube maybe made from low-cost material. No expensive extrusions are required and no suction side connection is needed, which may be a problem. Bending flexibility of the deformed tube. The outer tube 30 may be used as a connection sleeve. Despite the fact that the low-pressure channel may be too large, it is relatively small.

[0033] It will also be understood that various changes may be made to the above described embodiments. For example, whilst the internal heat exchangers of the embodiments have been described such that the high and low pressure fluid flows through the heat opposite directions, or "countercurrent", these embodiments could also be implemented using a "same direction" implementation. Furthermore, whilst the refrigerant used in the above described embodiments is R-134a, other refrigerants could equally be used. For example, other low pressure refrigerants or refrigerants that work at high pressures, such as carbon dioxide. Moreover, although the above described embodiments have been described in relation to automotive applications, it will be appreciated that the invention may be applied to a wide range of other applications. These may include for example, busses, lorries, trains and non-mobile applications. Additionally, whilst the above described embodiments have been described as utilizing base tube material that is circular in cross section, other cross sections could be used, such as elliptical cross sections.It will also be understood that the above described embodiments. For example, a "same direction" implementation. Additionally, the refrigerant used in the above described embodiments is R-134a, other refrigerants could equally be used. For example, other low pressure refrigerants or refrigerants that work at high pressures, such as carbon dioxide. Moreover, it is appreciated that it will be appreciated. These may include, for example, busses, lorries, trains and non-mobile applications. Additionally, cross sections could be used, such as elliptical cross sections.

[0034] The preceding description has been presented only to illustrate and describe exemplary embodiments of the methods and systems of the present invention. It is not intended to be exhaustive or to limit the invention to any precise form disclosed. It will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. The invention may be practiced otherwise than is specifically explained and illustrated without departing from its spirit or scope. The scope of the invention is limited solely by the following claims.[0034] Theid description has been presented only to illustrate and describe the present invention. It is not intended to be exhaustive or limited to invention. It will be a good idea of the invention. In addition, many modifications may be made to the scope of the invention. Therefore, it is intended to be the only means of enforcement of the claims. The invention may be in the form of a practice or not. The application is limited to the following claims.

Claims 1. A heat exchanger comprising an outer conduit and an inner conduit, arranged inside of and along the longitudinal axis of the outer conduit, the inner conduit and the outer conduit being arranged to form a fluid flow channel between the inner surface of the outer conduit and the outer surface of the inner conduit, the fluid flow channel having a cross sectional form, in a plane substantially perpendicular to the longitudinal axis of the outer conduit, that is elongate being substantially greater in the circumferential direction of the outer conduit than in the radial direction of the outer conduit, characterized in that the inner conduit has a plurality of zones distributed along its axial length at which the inner conduit is locally de- formed, each zone comprising (i) a region of decreased outerdimension of the inner conduit located at a first angular position in a plane substantially perpendicular its axial length, and (ii) a corresponding region of increased outerdimension of the inner conduit at a second angular position in a plane substantially perpendicular its axial length, the region of decreased outer dimension corresponding to the fluid flow channel and the region of increased outer dimension corresponding to a point of contact between the inner and the outer conduits, and that the fluid flow channel is arranged in a helical shape along the longitudinal axis of the outer conduit.. 2. A heat exchanger according to claim 1, wherein the inner conduit is deformed such that it has a cross sectional form, in a plane substantially perpendicular to the longitudinal axis of the outer conduit, that is substantially oval (non-circular ellipse), triangular or quadrilateral, providing respectively two, three or four fluid flow channels separated respectively by two, three or four points of contact between the outer conduit and the inner conduit. 3. A heat exchanger according to claim 1 or 2, wherein the cross sectional form of the fluid flow channel is substantially crescent-shaped. 4. A heat exchanger according any of claims 1 to 3, wherein the part of the outer surface of the inner conduit defining the fluid flow channel presents a substantially convex surface to the interior of the fluid flow channel. 5. A heat exchanger according to any of claims 1 to 4, wherein the deformations are discrete deformations. 6. A heat exchanger according any of claims 1 to 5, wherein the deformations are nonoverlapping. 7. A heat exchanger according to any one of claims 1 to 5, wherein the deformations are continuous along the longitudinal axis of the inner conduit. 8. A heat exchanger according to any of claims 1-7, wherein the inner refrigerant conduit, along the length of the outer refrigerant conduit, comprises a cross sectional area which is substantially equal to, or is only marginally reduced relative to an equivalent non-deformed conduit so that the pressure drop caused per unit length of the inner refrigerant conduit is substantially the same as, or not significantly increased relative to the pressure drop of the equivalent non-deformed conduit. 9. A method of manufacturing a heat exchanger comprising an outer conduit and an inner conduit arranged inside of and along the longitudinal axis of the outer conduit, the method comprising: locally deforming the inner conduit at a plurality of positions distributed along its axial length, such that at each position the outer dimension of the inner conduit is reduced; assembling the deformed inner conduit with the outer conduit such that the inner conduit substantially forms at least two line contacts with the outer conduit and at least two substantially separate fluid flow channels between the inner surface of the outer conduit and the outer surface of the inner conduit, characterized by applying a deformation operation at the inner conduit such that at each position the outer dimension of the inner conduit is reduced at a first angular position in a plane substantially perpendicular its axial length, and the outerdimension of the inner conduit is increased at a second angular position in a plane substantially perpendicular its axial length, and progressively rotating the inner tube relative to the deforming operation as the inner conduit is deformed at the plurality of positions along its axial length, such that the fluid flow channel in the assembled heat exchanger follows a helical path along the longitudinal axis of the outer conduit.. 10. A method according to claim 9, wherein the deforming operation at each of the plurality of positions is a discrete operation, such as a clamping or an impact operation. 11. A method according to claim 9, wherein the deforming operation at each of the plurality of positions is a continuous deforming process such as rolling. 12. A method according to any one of claims 9 to 11, wherein the base conduit material is a tube of substantially circular cross section. 13. A method according to any one of claims 9 to 12, wherein the deforming operation utilises one or more profiled deforming elements to provide the inner conduit with an oval, triangular or quadrilateral cross sectional profile. 14. Method according to any of claims 9 to 13, wherein the helix shape of the inner refrigerant conduit is manufactured by fixing a tube with a given cross-sectional shape, preferably a circular shape, at a fixed angle in a given direction of the longitudinal axis of the tube; forming, preferably clamping or sledging, the fixed tube in order to create a local deformation of the tube, rotating the tube to another a fixed angle in a given direction of its longitudinal axis, preferably rotating the tube by steps of 45°, deforming the tube at a new position along the longitudinal axis with the new fixed angle, and repeating this step until the desired helix or spiral shape is created. 15. Method according to any of claims 9 to 14, wherein the forming is automated by using a bending machine set to zero bend radius.Claims 1. The heat exchanger of the outer conduit and the outer conduit, the inner conduit and the outer conduit being the outer surface of the outer conduit and the outer surface of the outer conduit, with a cross sectional form of the outer conduit, the outer conduit of the inner conduit, the area of the outer conduit; located at a first angular position in a plane, and (ii) a corresponding region of increased outerdimension of the inner conduit at a second angular position in the plane, perpendicular to the axial length of the outer dimension; 2. A heat exchanger according to the requirements of the outer conduit. in the plan of the outer conduit, which is oval (non-circular ellipse), triangular or quadrilateral, providing two, three or four fluid flow channels, respectively, outer conduit and the inner conduit. 3. The heat exchanger according to claim 1 or 2 is a cross sectional form of the fluid flow channel. 4. The heat exchanger according to any of claims 1 to 3, which is the heat exchanger of the fluid flow channel. 5. The heat exchanger according to any of claims 1 to 4; 6. The heat exchanger according to any of claims 1 to 5, where the deformations are nonoverlapping. 7. The heat exchanger according to one of claims 1 to 5 8. The heat exchanger according to any of the requirements of the outside refrigerant conduit, including the length of the outer refrigerant conduit, -deformed conduit so that the pressure drop caused by the unit is the same as in the case of the non-deformed conduit. 9. The method of manufacturing the heat exchanger of the outer conduit, the method is: locally deforming the inner conduit at a plurality of positions distributed along its axial length, such that the external dimension of the inner conduit is reduced; close up of the outer conduit and the outer conduit and the outer surface of the outer conduit and the outer surface of the outer conduit ,. \ twhich has been the subject of an internal conduit. \ t second angular position in the plane, and the progressive rotation of the axial length of the axial length; follows a helical path along the longitudinal axis of the outer conduit .. 10. A me thod according to claim 9; 11. A method according to claim 9; 12. A method according to any one of claims 9 to 11, which is a tube of a circular cross section. 13. The method according to any one of the claims 9 to 12, which is one of the most important aspects of the present invention. 14. A method according to any of the claims, wherein the helix of the inner refrigerant is manufactured by means of a cross-sectional shape; longitudinal axis of the tube; deforming the tube, rotating the tube, rotating the tube, rotating the tube by steps of 45 °, deforming the tube a new position along the longitudinal axis with the new fixed angle; 15. A method for making any of the claims 9 to 14;

Patentansprüche 1. Wärmetauscher umfassend eine äußere Leitung und eine innere Leitung, die innerhalb und entlang der Längsachse der äußeren Leitung angeordnet ist, wobei die innere Leitung und die äußere Leitung angeordnet sind, um einen Fluidströmungskanal zwischen der inneren Fläche der äußeren Leitung und der äußeren Fläche der inneren Leitung zu bilden, wobei der Fluidströmungskanal eine Querschnittsform in einer zur Längsachse der äußeren Leitung im Wesentlichen senkrechten Ebene aufweist, die länglich ist, die in der Umfangsrichtung der äußeren Leitung im Wesentlichen größer als in der radialen Richtung der äußeren Leitung ist, dadurch gekennzeichnet, dass die innere Leitung mehrere Zonen aufweist, die entlang ihreraxialen Länge verteiltsind, an welchen die innere Leitung lokal verformt ist, wobei jede Zone (i) einen Bereich mit verringerter äußerer Abmessung der inneren Leitung, der in einer ersten Winkelstellung in einer zu ihreraxialen Länge im Wesentlichen senkrechten Ebene liegt, und (ii) einen entsprechenden Bereich mit vergrößerter äußerer Abmessung der inneren Leitung in einer zweiten Winkelstellung in einer zu ihreraxialen Länge im Wesentlichen senkrechten Ebene umfasst, wobei der Bereich mit verringerter äußerer Abmessung dem Fluidströmungskanal entspricht und der Bereich mit vergrößerter äußerer Abmessung einer Kontaktstelle zwischen der inneren und äußeren Leitung entspricht, und dass der Fluidströmungskanal in einer Spiralform entlang der Längsachse der äußeren Leitung angeordnet ist. 2. Wärmetauscher nach Anspruch 1, wobei die innere Leitung derart verformt ist, dass sie eine Querschnittsform in einer zur Längsachse der äußeren Leitung im Wesentlichen senkrechten Ebene aufweist, die im Wesentlichen oval (nicht-kreisförmige Ellipse), dreieckig oder viereckig ist, vorausgesetzt, jeweils zwei, drei oder vier Fluidströmungskanäle sind jeweils durch zwei, drei oder vier Kontaktstellen zwischen der äußeren Leitung und der inneren Leitung getrennt. 3. Wärmetauscher nach Anspruch 1 oder 2, wobei die Querschnittsform des Fluidströmungskanals im Wesentlichen sichelförmig ist. 4. Wärmetauscher nach einem der Ansprüche 1 bis 3, wobei der Teil der äußeren Fläche der inneren Leitung, der den Fluidströmungskanal definiert, eine im Wesentlichen konvexe Fläche zum Inneren des Fluidströmungskanals aufweist. 5. Wärmetauscher nach einem der Ansprüche 1 bis 4, wobei die Verformungen separate Verformungen sind. 6. Wärmetauscher nach einem der Ansprüche 1 bis 5, wobei die Verformungen sich nicht überlagern. 7. Wärmetauscher nach einem der Ansprüche 1 bis 5, wobei die Verformungen entlang der Längsachse der inneren Leitung durchgehend sind. 8. Wärmetauscher nach einem der Ansprüche 1-7, wobei die innere Kältemittelleitung entlang der Länge der äußeren Kältemittelleitung einen Querschnittsbereich umfasst, welcher bezüglich einer entsprechenden nicht verformten Leitung im Wesentlichen gleich oder nur geringfügig verkleinert ist, so dass der Druckabfall, der pro Längeneinheit der inneren Kältemittelleitung verursacht wird, im Wesentlichen derselbe ist wie der Druckabfall der entsprechenden nicht verformten Leitung oder bezüglich diesem nicht deutlich vergrößert ist. 9. Verfahren zum Herstellen eines Wärmetauschers umfassend eine äußere Leitung und eine innere Leitung, die innerhalb und entlang der Längsachse der äußeren Leitung angeordnet ist, wobei das Verfahren Folgendes umfasst: lokales Verformen der inneren Leitung in mehreren Positionen, die entlang ihrer axialen Länge verteilt sind, so dass in jeder Position die äußere Abmessung der inneren Leitung verringert ist;Dissertation 1. Wärmetauscher umfassend meals with dumplings and meals Innovations of the angiordnet, wobei die innere Leitung und die äußere Leitung angeordnet you, e e Fluidströmungskanal zwischen der inneren Fläche der äußeren Leitung und der äußeren Fläche der inneren Leitung zu bilden, wobei der Fluidströmungskanal eine Querschnittsform in einer zur Längsachse der äußeren Leitung im Wesentlichen senkrechten Ebene aufweist, , dass die innere Leitung mehrere zonen aufweist, die entlang ihreraxialen Western hernia, wobei jede Zone (i) Bereich mit verringerter Äußerer Abmessung der inneren Leitung, der in einer ersten Winkelstellung in einer zu ihreraxialen West im Wesentlichen senkrechten Ebene liegt, und (ii) einen entsprechenden Bereich mit vergrößerter Ausserer Dimension der inneren Leitung in einer zweiten Winkelstellung in einer zu ihreraxialen Länge im Wesentlichen senkrechten Ebene umfasst, wobei der Bereich mit verringerter Ausserer Dimension dem Fluidströmungskanal entspricht und der Bereich mit vergrößerter Ausserer Abmessung einer For contact with the patient, the patient is in contact with the Spiralform entanglement of the Längsachse der äußeren Leitung angeordnet. 2. Wärmetauscher nach Anspruch 1, wobei die innere Leitung derart verformt ist, dass sie eine Querschnittsform in einer zur Längsachse der äußeren Leitung im Wesentlichen senkrechten Ebene aufweist, die im Wesentlichen oval (nicht-greiförmige Ellipse), dreieckig oder sveteckig ist, vorausgesetzt, jeweils zwei, drei oder Vier Fluidströmungskanäle sind jeweils durch zwei, drei oder Vier Contact us about the Leitung getrennt. 3. Wärmetauscher nach Anspruch 1 or 2, wobei die Querschnittsform des Fluidströmungskanals im Wesentlichen sichelförmig ist. 4. Wärmetauscher nach einem der Ansprüche 1 bis 3, wobei der Teu der äußeren Fläche der inneren Leitung, der den Fluidströmungskanal definiert, eu im Wesentlichen convex Fläche zum Inneren des Fluidströmungskanals aufweist. 5. Wärmetauscher nach einem der Ansprüche 1 bis 4, wobei die Verformungen separate Verformungen sind. 6. Wärmetauscher nach einem der Ansprüche 1 bis 5, wobei die Verformungen sich nicht überlagern. 7. Wärmetauscher nach einem der Ansprüche 1 bis 5, wobei die Verformungen entlang der Längsachse der inneren Leitung durchgehend you. 8. Wärmetauscher nach einem der Ansprüche 1-7, wobei die innere Tongschlung en llg der Länge der äußeren, e. Inneren Teeth of the verursacht wird, im Wesentlichen derselbe ist wie der Druckabfall der entsprechenden nicht verformten Leitung oder bezüglich diesem nicht deutlich vergrößert ist. 9. Verfahren zum Herstellen Eine Wärmetauschers umfassend eine äußere leitung und eine innere Leitung, an inner cord, Wigei das Verfahren Folgendes umfasst: locales , i.e. dass in jeder Position of the abmessung der inneren Leitung verringert ist;

Zusammenbauen der verformten inneren Leitung mitderäußeren Leitung, so dass die innere Leitung im Wesentlichen mindestens zwei Linienberührungen mit der äußeren Leitung und mindestens zwei im Wesentlichen getrennte Fluidströmungskanäle zwischen der inneren Fläche der äußeren Leitung und der äußeren Fläche der inneren Leitung bildet, gekennzeichnet durch das Anwenden eines Verformungsvorgangs an der inneren Leitung, so dass in jeder Position die äußere Abmessung der inneren Leitung in einer ersten Winkelstellung in einer zu ihrer axialen Länge im Wesentlichen senkrechten Ebene verringert wird, und die äußere Abmessung der inneren Leitung in einer zweiten Winkelstellung in einer zu ihrer axialen Länge im Wesentlichen senkrechten Ebene vergrößert wird, und progressives Drehen des inneren Rohrs bezüglich des Verformungsvor- gangs, wenn sich die innere Leitung in den mehreren Positionen entlang ihrer axialen Länge verformt, so dass der Fluidströmungskanal in dem zusammengebauten Wärmetauscher einem schraubenförmigen Weg entlang der Längsachse der äußeren Leitung folgt. 10. Verfahren nach Anspruch 9, wobei der Verformungsvorgang in jeder der mehreren Positionen ein separater Vorgang, wie zum Beispiel ein Klemmoder ein Einschlagvorgang, ist. 11. Verfahren nach Anspruch 9, wobei der Verformungsvorgang in jeder der mehreren Positionen ein durchgehender Verformungsprozess, wie zum Beispiel Walzen, ist. 12. Verfahren nach einem der Ansprüche 9 bis 11, wobei das Grundleitungsmaterial ein Rohr mit im Wesentlichen kreisförmigem Querschnitt ist. 13. Verfahren nach einem der Ansprüche 9 bis 12, wobei der Verformungsvorgang ein oder mehrere profilierte Verformungselemente verwendet, um die innere Leitung mit einem ovalen, dreieckigen odervierecki-gen Querschnittsprofil zu versehen. 14. Verfahren nach einem der Ansprüche 9 bis 13, wobei die Schraubenform der inneren Kältemittelleitung durch Fixieren eines Rohrs mit einer gegebenen Querschnittsform, vorzugsweise einer kreisförmigen Form, in einem fixierten Winkel in einer gegebenen Richtung der Längsachse des Rohrs; Bilden, vorzugsweise Klemmen oder Hämmern, des fixierten Rohrs, um eine lokale Verformung des Rohrs zu schaffen, Drehen des Rohrs in einen anderen fixierten Winkel in einer gegebenen Richtung seiner Längsachse, vorzugsweise Drehen des Rohrs in 45°-Schritten, Verformen des Rohrs in einer neuen Position entlang der Längsachse mit dem neuen fixierten Winkel und Wiederholen dieses Schritts, bis die gewünschte Schrauben- oder Spiralform geschaffen wird, hergestellt wird. 15. Verfahren nach einem der Ansprüche 9 bis 14, wobei das Bilden durch Verwenden einer Biegemaschine, die auf einen Biegeradius von Null eingestellt ist, automatisiert wird.Zusammenbauen der verformten inneren Leitung mitderäußeren Leitung, dass die innere Leitung im Wesentlichen mindestens zwei Linienberührungen mit der äußeren Winkelstellung in einer zu ihrer axialen Winkelstellung in einer zu ihrer West im Wesentlichen senkrechten Ebene vergrößert wird, und progressives Drehen des inneren Rohrs bezüglich des Verformungsvorgangs, wenn sich die innere Leitung in den mehreren Positionen entlang ihrer axialen Western verformt, ie dass der Fluidströmungskanal in dem zusa mmengebauten Wärmetauscher einem schraubenförmigen Weg entlang der Längsachse der äußeren Leitung folgt. 10. Verfahren nach Anspruch 9, wobei der Verformungsvorgang in jeder der mehreren Positionen ein separater Vorgang, wie zum Beispiel ein Klemmoder ein Einschlagvorgang, ist. 11. Verfahren nach Anspruch 9, wobei der Verformungsvorgang in jeder der mehreren positionen ein durchgehender Verformungsprozess, wie zum Beispiel Walzen, ist. 12. Verfahren nach einem der Ansprüche 9 bis 11, Wigei das Grundleitungsmaterial ein Rohr mit im Wesentlichen, Chief Marshal of Querschnitt. 13. Verfahren nach einem der Ansprüche 9 bis 12, wobei der Verformungsvorgang ein oder mehrere profierte Verderungselemente verwendet, die die innere Leitung mit einem ovalen, dreieckigen odervierecki-gen Querschnittsprofil zu versehen. 14. Verfahren nach einem der Ansprüche 9 bis 13; Bilden, vorzugsweise Klemmen oder or Hämmern, des fixierten Rohrs, m e n e n g in Verformung des Rohrs zu schaffen, Drehen des Rohrs et al. neuen Position entlang der Längsachse mit dem neuen fixierten Winkel und Wiederholen dieses Schritts, bis die gewünschte Schraubener Spiralform geschaffen wird, hergestellt wird. 15. Verfahren nach einem der Ansprüche 9 bis, wobei das Bilden durch Verwenden einer Biegemaschine, Biegeradius von Null eingestellt ist, automatisiert wird.

Revendications 1. Echangeurde chaleur comprenant une conduite extérieure et une conduite intérieure, agencée à l’intérieur et le long de l’axe longitudinal de la conduite extérieure, la conduite intérieure et la conduite extérieure étant agencées pour former un canal d’écoulement fluidique entre la surface intérieure de la conduite extérieure et la surface extérieure de la conduite intérieure, le canal d’écoulement fluidique ayant une forme en coupe transversale, dans un plan sensiblement perpendiculaire à l’axe longitudinal de la conduite extérieure, qui est allongée sensiblement plus grande dans la direction circonférentielle de la conduite extérieure que dans la direction radiale de la conduite extérieure, caractérisée en ce que la conduite intérieure aune pluralité de zones réparties le long de sa longueur axiale au niveau desquelles la conduite intérieure est déformée localement, chaque zone comprenant (i) une région de dimension extérieure diminuée de la conduite intérieure située à une première position angulaire dans un plan sensiblement perpendiculaire à sa longueur axiale, et (ii) une région correspondante de dimension extérieure augmentée de la conduite intérieure à une seconde position angulaire dans un plan sensiblement perpendiculaire à sa longueur axiale, la région de dimension extérieure diminuée correspondant au canal d’écoulement fluidique et la région de dimension extérieure augmentée correspondant à un point de contact entre les conduites intérieure et extérieure, et en ce que le canal d’écoulement fluidique est agencé selon une forme hélicoïdale le long de l’axe longitudinal de la conduite extérieure. 2. Echangeurde chaleur selon la revendication 1, dans lequel la conduite intérieure est déformée de façon à avoir une forme en coupe transversale, dans un plan sensiblement perpendiculaire à l’axe longitudinal de la conduite extérieure, qui est sensiblement ovale (ellipse non circulaire), triangulaire ou quadrilatérale, fournissant respectivement deux, trois ou quatre canaux d’écoulement fluidique séparés respectivement par deux, trois ou quatre points de contact entre la conduite extérieure et la conduite intérieure. 3. Echangeur de chaleur selon la revendication 1 ou 2, dans lequel la forme en coupe transversale du canal d’écoulement fluidique est sensiblement en croissant. 4. Echangeur de chaleur selon l’une quelconque des revendications 1 à 3, dans lequel la partie de la surface extérieure de la conduite intérieure définissant le canal d’écoulementfluidique présente une surface sensiblement convexe vers l’intérieur du canal d’écoulement fluidique. 5. Echangeur de chaleur selon l’une quelconque des revendications 1 à 4, dans lequel les déformations sont des déformations discrètes. 6. Echangeur de chaleur selon l’une quelconque des revendications 1 à 5, dans lequel les déformations sont non chevauchantes. 7. Echangeur de chaleur selon l’une quelconque des revendications 1 à 5, dans lequel les déformations sont continues le long de l’axe longitudinal de la conduite intérieure. 8. Echangeur de chaleur selon l’une quelconque des revendications 1 à 7, dans lequel la conduite intérieure de fluide frigorigène, le long de la longueur de la conduite extérieure de fluide frigorigène, comprend une aire en coupe transversale qui est sensiblement égale à, ou n’est que légèrement réduite par rapport aune conduite non déformée équivalente de sorte que la chute de pression provoquée par unité de longueur de la conduite intérieure de fluide frigorigène soit sensiblement la même que, ou non augmentée de façon significative par rapport à la chute de pression de la conduite non déformée équivalente. 9. Procédé de fabrication d’un échangeur de chaleur comprenant une conduite extérieure et une conduite intérieure agencée à l’intérieur et le long de l’axe longitudinal de la conduite extérieure, le procédé comprenant : la déformation locale de la conduite intérieure à une pluralité de positions réparties le long de sa longueur axiale, de sorte qu’à chaque position la dimension extérieure de la conduite intérieure soit réduite ; l’assemblage de la conduite intérieure déformée avec la conduite extérieure de sorte que la conduite intérieure forme sensiblement au moins deux contacts linéaires avec la conduite extérieure et au moins deux canaux d’écoulement fluidique sensiblement séparés entre la surface intérieure de la conduite extérieure et la surface extérieure de la conduite intérieure, caractérisé par l’application d’une opération de déformation au niveau de la conduite intérieure de sorte qu’à chaque position, la dimension extérieure de la conduite intérieure soit réduite à une première position angulaire dans un plan sensiblement perpendiculaire à sa longueur axiale, et la dimension extérieure de la conduite intérieure soit augmentée à une seconde position angulaire dans un plan sensiblement perpendiculaire à sa longueur axiale, et la rotation progressive du tube intérieur par rapport à l’opération de déformation à mesure que la conduite intérieure est déformée à la pluralité de positions le long de sa longueur axiale, de sorte que le canal d’écoulement fluidique dans l’échangeur de chaleur assemblé suive un chemin hélicoïdal le long de l’axe longitudinal de la conduite extérieure. 10. Procédé selon la revendication 9, dans lequel l’opération de déformation à chacune de la pluralité de positions est une opération discrète, telle qu’une opération de serrage ou de frappe. 11. Procédé selon la revendication 9, dans lequel l’opération de déformation à chacune de la pluralité de positions est un processus de déformation continu tel que le laminage. 12. Procédé selon l’une quelconque des revendications 9 à 11, dans lequel le matériau de conduite de base est un tube de coupe transversale sensiblement circulaire. 13. Procédé selon l’une quelconque des revendications 9 à 12, dans lequel l’opération de déformation utilise un ou plusieurs éléments de déformation profilés pour doter la conduite intérieure d’un profil en coupe transversale ovale, triangulaire ou quadrilatérale. 14. Procédé selon l’une quelconque des revendications 9 à 13, dans lequel la forme hélicoïdale de la conduite intérieure de fluide frigorigène est fabriquée par la fixation d’un tube avec une forme en coupe transversale donnée, de préférence une forme circulaire, à un angle fixe dans une direction donnée de l’axe longitudinal du tube ; le formage, de préférence le serrage ou le calage, du tube fixe afin de créer une déformation locale du tube, la rotation du tube à un autre angle fixe dans une direction donnée de son axe longitudinal, de préférence la rotation du tube par étapes de 45°, la déformation du tube à une nouvelle position le long de l’axe longitudinal avec le nouvel angle fixe, et la répétition de cette étape jusqu’à ce que la forme hélicoïdale ou en spirale souhaitée soit créée. 15. Procédé selon l’une quelconque des revendications 9 à 14, dans lequel le formage est automatisé par l’utilisation d’une machine à cintrer réglée à un rayon de courbure nul.Revendications 1. Echangeurde chaleur comprenant une conduite extérieure et al. la surface intérieure de la conduite extérieure de la conduite de la condéite de la coupé transversale, dans and plan sensiblement perpendiculaire à l'axe longitudinal de la conduite extérieure, qui est allongée sensiblement plus grande dans la direction circonférentielle de la conduite extérieure que dans la direction radiale de la conduite extérieure, de la conduite de la conduite de la pluralité de pluralité de la ré de la de la de la de la longueur axiale au niveau desquelles la conduite intérieure est déformée localement, chaque zone comprenant ( i) une région de dimension extérieur (ii) une région correspondence de dimension extérieure augmentée de la conduite intérieure en une seconde position de la conduite intérieure située à une premiere axiale, la-dio de dimension extenrieure diminuée correspondant au canal d'écoulement fluids de la résidence de extenrieure augmentée correspondant à and point de contact d'en déeurée des lière et en ete en ete en en et le que le le etal le le de lée d'etoulement fluidique est agencé selon une forme hélicoïdale le long de l'axe longitudinal de la conduite extérieure. 2. Echangeurde chaleur selon la revendication 1, dans lequel la conduite en déformée de façon à avoir une forme en coupe transversale, dans and plan sensiblement perpendiculaire à l'axe longitudinal de la conduite extérieure (ellipse non circulaire) , triangulaire ou quadrilatérale, fournissant respectivement deux, trois ou quatre canaux d'écoulement fluidique separé para de deux, trois ou quatre points de contact entre la conduite extérieure et la conduite intérieure. 3. Echangeur de chaleur selon la revendication ou 2, dans lequel la forme en coupe transversale du canal d’écoulement fluidique est sensiblement en croissant. 4. Echangeur de chaleur selon l quelconque des revendications 1 à 3, dans lequel la partie de la surface extérieure de la conduite intérieure définissant le canal d’écoulementfluidique présente une surface sensiblement convexe vers l'intérieur du canal d’écoulement fluidique. 5. Echangeur de chaleur selon l quelconque des revendications 1 à 4, dans lequel les déformations sont des déformations discrètes. 6. Echangeur de chaleur selon l'quelconque des revendications 1 à 5, dans lequel les déformations sont non chevauchantes. 7. Echangeur de chaleur selon l quelconque des revendications 1 à 5, dans lequel les déformations sont continues le long de l'axe longitudinal de la conduite. 8. Echangeur de chaleur selon l'une quelconque des revendications 1 à 7, dans lequel la conduite de la conduite de fluide de la liqueur de la conduite de la flué de liqueur, concend une aire en coupe transversale qui est sensiblement heaale à, ou n'est que atmosèrement réduite par rapport aune conduite de déformée de valte que la chute de pressio de la feu de la conde de la condéite de la feu de la feu de la chêtre de la chêté de la chême que, ou non augmentée de façon significative for rapport à la chute de pression de la conduite non déformée équivalente. 9. Procédé de fabrication d'unchangeur de chaleur comprenant une conduite extérieure en une conduite intérieure agencée à l'intérieur et le long de l'axe longitudinal de la conduite extérieure, la procéé de la condée de la conduite intérieure à une pluralité de positions répartie le long de sa longueur axiale, de sorte qu'à chaque position la dimension extérieure de la conduite intérieure te réduite; l'assemblage de la conduite en déformée avec la conduite extérieure de la que la conduite de la condéite de la condiite de la condiite de la condiite de la conduite de la conduite deux canaux d'écoulement. de la condéite de la condéite de la condéite de la condéite de la condéite de la condéite de la condéite de la condéite de la condéite de la condaite de la conduite de la conduite de la conduite de la première à la résué à la prère de la première position angulaire dans un plan sensiblement perpendiculaire à sa longueur axiale, et la dimension extérieure de la conduite intérieure en augmentée une seconde position angulaire dans and plan sensiblement perpendiculaire à sa longueur axiale, et la rotation progressive du tube intérieur on rapport à léopération de déformation à mesure que la conduite intérieure est défo rmée à la pluralité de poste le long de sa longueur axiale de flué de dans l'é changeur de chaleur assemblé suiv and chemin hélicoïdal le long de l'axe longitudinal de la conduite extérieure. 10. Procédé selon la revendication 9, dans lequel l'opération de déformation à chacune de la pluralité de positiones un une opération discrète, tel. 11. Procédé selon la revendication 9, dans lequel l'opération de déformation à chacune de la pluralité de positions est and process de deformation continu tel que le laminage. 12. Procédé selon l'ie quelconque des revendications 9 à 11 dans lequel le matériau de conduite de base est and tube de coupe transversale sensiblement circulaire. 13. Procédé selon l'e quelconque des revendications 9 à 12, dans lequel l'opération de déformation utilis and ou plusieurs de déformation prof. De la déire de conduite intérieure d’un profil en coupe transversale ovale, triangulaire ou quadrilatérale. 14. Procédé selon l'une quelconque des revendications 9 à 13, dans lequel la forme hélicoïdale de la conduite de la feu de la feu de la la fédéré de feu de la la fédération d'un tube avec une forme en coupe transversale donnée, de préférence une forme circulaire, à and angle fixe dans une direction donnée de l'axe longitudinal du tube; le formage, but fuss le le serrage ou le calage, du tube fixe afin de créer une déformation locale du tube, la rotation du tube à la carte de de longitudinal, de la résidence la rotation du tube par étapes de 45 °, la déformation du tube à une nouvelle position le long de l'axe longitudinal avec le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le le léeuvre, lé de l'hôtel. 15. Procédé selon l'e quelconque des revendications 9 à 14, dans lequel le formage est automatisé par l'utilisation d'une machine à cintrer réglée à and rayon de courbure nul.

REFERENCES CITED IN THE DESCRIPTIONREFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.This is a list of references for the reader. It does not form part of the European patent document. Even though they have been taken in compiling the references, errors or omissions cannot be ruled out.

Patent documents cited in the description • DE 102006017816 B4 [0002] · US 4194560 A [0005]Patent documents cited in the description • DE 102006017816 B4 [0002] · US 4194560 A

Claims (9)

HŐCSERÉLŐ SZABADALMI ISÉMjfPObfaK 1, · Hőcserélő,, amely magában foglal egy külső vezetőket, valamint egy, a külső vezetékben és annak hossztengelye mentén elhelyezett belső vezetéket, amely belső vezeték és külső vezeték úgy van elhelyezve., hogy fluidumáramlási csatornát képezzenek a külső vezeték belső felülete és a belső vezeték külső felülete között, amely fúidumáramlásí csatornának a keresztmetszete a külső vezeték hossztengelyére nagyjából merőleges síkban hosszúkás alakú azáltal, hogy a külső vezeték kerüléi Irányiban aíipjéban véve nagyobb, mint a külső vezeték radiális irányában, azzal jellemezve, hegy á belső vezetéknek tengelyirányú hosszá: mentén elosztva van több olyan zónája:, ahol a belső vezeték helyileg deformálva van, amely zónák mindegyike magában foglal (i) egy, a belső vezeték tengelyirányú hosszára nagyjából merőleges síkban egy első szögheiyzetben elhelyezkedő területet, a hő! a belső vezeték külső mérete csökkentve van, és (is) egy ennek megfelelő, a belső vezeték tengelyirányú hosszára nagyjából merőleges síkban egy második szög helyzetben lévő területet, ahol a belső vezeték külső mérete meg van növelve, amely csökkentett külső méretű terület a fluiőumáramlási csatornának felel meg, és amely megnövelt külső méretű terület egy, a belső és a kiüsö vezetek közötti érintkezési pontnak felei meg, valamint azzal, hogy a i'lu-dumárarníási csatorna a külső vezeték hossztengelye mentén spirál alakban van elhelyezve,THERMAL EXCHANGE PATTERN WPPbfaK 1, · Heat exchanger, which includes an external conductor, and an inner conductor located in the outer conduit and along its longitudinal axis, which is arranged to form a fluid flow channel on the inner surface of the outer conduit. and between the outer surface of the inner conduit, the cross-section of the fusion flow channel being oblong in a plane approximately perpendicular to the longitudinal axis of the outer conduit, such that the circumference of the outer conduit in the direction of the direction is greater than in the radial direction of the outer conduit, characterized in that it has an axial length axial length for the outer conduit : distributed over several zones: where the inner conductor is deformed locally, each of which includes (i) a first angular position in a plane approximately perpendicular to the axial length of the inner conductor area, heat! the outer diameter of the inner conductor is reduced, and (also) an area in the second angle position corresponding to the axial length of the inner conductor, in which the outer diameter of the inner conductor is increased, the reduced outer area corresponding to the flux flow channel and wherein the enlarged outer area corresponds to a point of contact between the inner and outer conduits, and that the i'-lumen channel is arranged in a spiral along the longitudinal axis of the outer conduit; 2, Az X, igénypont szerinti hőcserélő, amelyben a belső vezeték úgy van deformálva, hogy keresztmetszete a külső vezeték hossztengelyére nagyjából merőleges síkban alapjában véve ovális (nem kör alakú ellipszis), háromszög vagy négyszög alakú, miáltal két, három, illetve négy fiuldtímáramiási csatornát biztősl|, amelyeket kát, három, illetve négy, a külső és a belső vezeték közötti érintkezési pont választ el egymástól,2, The heat exchanger according to claim X, wherein the inner conductor is deformed so that its cross-section is substantially oval (non-circular ellipse), triangular or rectangular in a plane substantially perpendicular to the longitudinal axis of the outer conduit, thereby providing two, three, or four tubular flow channels. which are separated by three, four or four points of contact between the outer and inner conductors, 3, Az. í. vagy a 2, igénypont szerinti hőcserélő, amelyben a flusdumárarnlásí csatorna keresztmetszete alapjában véve sarló alakú.3, Az. or a heat exchanger according to claim 2, wherein the cross-section of the flushing channel is substantially sickle-shaped. 4, Az X'3. igénypontok bármelyike szerinti hőcserélő, amelyben· a belső vezeték külső felületének a floidumáramlésf csatornát meghatározó része rendelkezik egy, a huidumáramlási csatorna belseje felé alapjában véve dombom felülettel.4, X'3. The heat exchanger according to any one of claims 1 to 4, wherein the portion of the inner conduit defining the floid flow channel has a hump surface substantially facing the inside of the hid flow. 5, .Az 1 - 4. igénypontok bármelyike szeri oh hőcserélő, amelyben a deformációk nem összefüggő deformációk.A heat exchanger according to any one of claims 1 to 4, wherein the deformations are non-coherent deformations. 6, Az X -5, igénypontok bármelyike szerinti hőcserélő, amelyben a deformációk nem fedik át egymást6, The heat exchanger according to any one of claims 5 to 5, wherein the deformations do not overlap '7. A? ,t-$< igénypontok bármelyike szerinti hőcserélő., amelyben a defőrmádók a belső vezeték hossztengelye mentén folytonosak.'7th THE? Heat exchanger according to any one of claims 1-4, wherein the deflector wads are continuous along the longitudinal axis of the inner conductor. 8. Aíí 1-7. igénypontok bármelyike szerinti hőcserélő, amelyben a belső hűtőközeg-vezeték a külső hűtőközeg·vezetek hossza mentén akkora keresztmetszet* területet foglal magában, amely nagyjából egyenlő egy ekvivalens, nem deformált vezetékével., vagy annál csak kis mértékben kisebb, úgyhogy a belső hűtőközeg-vezeték egységnyi hossza által okozott nyomásesés nagyjából ugyanakkora, mint az ekvivalens, nem deformált vezeték nyomásesése,, vagy annál nem jelentős ménekben nagyobb,8. Aíi 1-7. The heat exchanger according to any one of claims 1 to 3, wherein the internal refrigerant line comprises a cross-sectional area * along the length of the external refrigerant conductor, which is approximately equal to, or slightly smaller than, an equivalent, non-deformed conductor so that the internal refrigerant line is a unit the pressure drop caused by the length of the length is about the same as the pressure drop of the equivalent, non-deformed wire, or in a larger stall, 9. Eljárás hőcserélő síMSIifcáSál% amely magában foglal egy külső vezetőket,, valamint egy, a külső vezetékben és annak hossztengelye mentéri elhelyezett belső vezetéket, és amely eljárás magában foglalja, hogy; helyileg deformáljuk a belső vezetéket több, a tengelyirányú hossza mentén elosztott helyen úgy, hogy a belső vezeték külső mérete mindegyik helyen csökkentett legyen; összeszereljük a deformált belső vezetéket a külső vezetékkel úgy, hogy á belső vezeték a külső vezetékkel legalább két vonalérintkezést,, valamint a külső vezetik belső felülete és a belső vezeték külső felülete között legalább két, alapjában vévé; kilön fluídumázamíási csatornát képezzen, azzal jellemezve, hogy daforméiási mőVeleltet végzünk a belső vezetéken úgy, hegy mindegyik helyen a belső vezeték külső mireté; égy, a belső vezeték tengelyirányú hosszára nagyjából merőleges síkban egy első szögheiyzetfeen csökkentett legyen, és a belső vezeték külső mérete egy, a belső vezetik; tengelyirányú hosszára nagyjából merőleges síkban egy első saögheiyzeíben megnövelt: lágyén, majd fokozatosan forgatjuk a belső csövet a daformáiási művelethez képeb| ahogy a belső vezeték a tengelyirányú hossza mentén lévő több helyen defornplpdlkv hogy a iluiclumáramiási csatorna az összeszerelt hőcserélőben a külső vezeték hossztengelye mentéi! egy spirális utat képezzen, li. Ά 9, igénypont szerinti eljárás, amelynél az egyes helyeken végzett déformilási iiuváíet különálló művelet, például osszeszorltási vagy ütés! művelet. 11, ;&amp; '9·. igénypont izerjoti eljárás# amelynél m egyéi hilyekan végzett deformáiás* művelet folytonos deformáiáss eljárás, például hengerlés. 12, A 9-11. igénypontok bármelyike szerinti eljárás, amelynél az alap vezetékanyag egy nagyjából kör kefésztnietszetői cső, 13, A 9·· 12, igénypontok bármelyike szerinti eljárás, amelynél a deformáiás! művelet során egy vagy több, alakos deformáló elemet használunk, hogy a belső vezetéket ovális, háromszög vagy négyszög alakú kere-sztmetszeO profillal lássuk el. 14, A 9-13. igénypontok bármelyike szerinti eljárás, amelynél a belső hűtőközeg-vezeték spiráns alakját úgy állítjuk elő, hogy egy adott keresztmetszeti alaké, előnyös módon Kör koísso4rnuts2otö csövei a csó hossstengalyénvk adott irányában roa oltott saógberi mgdtáekj: alakltjak; eliityóe mában ásMeááontjyk vagy kalapálják a tögaáalt müvet, hogy eláíbámök a oeó helyi áefanTilláálalá elíüppityk a müvet bemeiehgalyÉáak abett rtanyádan :é$f mé®$k rb#áítot| eaogbm eiooyóe igáüén a oéóvót 45^-os lápéiekbeti jál^iaiják, deformáljuk a csövet bosoctenpelyo: mentén ggy új belyüb aa áj róg kitett saággék ke yteglsmátejják eat a: litpisá aoklg ki nem alakéi a kívánt: caavatYöoál vagy spirális alak, Ü, A 9-14, Igénypoafbk elcmelyike éMtlátl áljérlm ametpái m alakítáét: nulla Ipjltáal spf áiTá állított áyjltég óppal aoteinebtillan hajtjuk vág re.A method of heat exchanger heat exchanger% comprising an outer conductor and an inner conductor disposed within the outer conduit and its longitudinal axis, and comprising:; locally deforming the inner conductor in a plurality of locations distributed along the axial length so that the outer diameter of the inner conductor is reduced at each location; assembling the deformed inner conductor with the outer conduit such that the inner conductor has at least two line contacts between the outer conductor and the outer surface of the outer conductor and the inner surface of the inner conductor; to form a fluidized-bed ducting channel, characterized in that the deformation molding is carried out on the inner conductor so that the outer conduit of the inner conduit at each location; be in a plane approximately perpendicular to the axial length of the inner conductor, a first angular clearance is reduced, and the outer dimension of the inner conductor is one, the inner conductor; in an axially longitudinal plane approximately perpendicular to the first sleeve: softened, and gradually rotated, the inner tube is formed for the deformation operation | as in the plurality of locations along the axial length defornplpdlkv that the ilu flow flow in the assembled heat exchanger is the longitudinal axis of the outer conduit! to form a spiral path, li. A method according to claim 9, in which the deformation step at each location is a separate operation, such as a split or blow! operation. 11, &amp; '· 9. The method of claim 1 wherein m is a deformation operation performed in a manner which is a continuous deformation process, such as rolling. 12, A 9-11. The method according to any one of claims 1 to 3, wherein the base wire material is a method according to any one of the preceding claims, wherein the deformation! In operation, one or more shaped deformation elements are used to provide the inner conductor with an oval, triangular or rectangular body profile. 14, A 9-13. A method according to any one of claims 1 to 3, wherein the spiral shape of the internal refrigerant line is produced by forming a plurality of saberberries, which have been inoculated in a given direction of the vessel, in a particular cross-sectional shape, preferably a circular cross-sectional tube; Elite's Mama and Mate's Mate or Hail the Garbage Gun to Come to the Oeo Local OefanTillahalah Gets the Behind The Behind The Behind The Behind Themselves: é $ f mé® $ k rb # drank | eaogbm eiooyóe yao oouvoo 45 -os lábebeti jáli iaiaia, deform the tube bosoctenpelyo: along ggy new baip in the ya rog exposed exposed legends, eat the: litpisá aoklg ki not form the desired: caavatYoal or spiral shape, Ü, A 9 -14, The shape of the pseudopods of the request is driven by a nourishment with zero Ibouta spf.
HUE10726891A 2009-04-30 2010-04-30 Heat exchanger HUE034718T2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09159260 2009-04-30
GBGB0909221.4A GB0909221D0 (en) 2009-04-30 2009-05-29 Heat exchanger

Publications (1)

Publication Number Publication Date
HUE034718T2 true HUE034718T2 (en) 2018-02-28

Family

ID=40902265

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE10726891A HUE034718T2 (en) 2009-04-30 2010-04-30 Heat exchanger

Country Status (9)

Country Link
US (1) US20120097380A1 (en)
EP (1) EP2425193B1 (en)
CN (1) CN102460054B (en)
ES (1) ES2643324T3 (en)
GB (1) GB0909221D0 (en)
HU (1) HUE034718T2 (en)
PL (1) PL2425193T3 (en)
SI (1) SI2425193T1 (en)
WO (1) WO2010124871A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034112A1 (en) * 2010-08-12 2012-02-16 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Internal heat exchanger for a motor vehicle air conditioning system
KR101600296B1 (en) * 2010-08-18 2016-03-07 한온시스템 주식회사 Double pipe heat exchanger and manufacturing method the same
GB2523107A (en) * 2014-02-12 2015-08-19 Eaton Ind Ip Gmbh & Co Kg Heat exchanger
BR112017001575B1 (en) * 2014-07-25 2021-01-19 Hutchinson heat exchanger, such as an internal exchanger for a motor vehicle air conditioning system, and system that includes the same
DE102014220403A1 (en) * 2014-10-08 2016-04-14 Mahle International Gmbh Method for mounting a heat exchanger device and heat exchanger device
EP3306248B1 (en) * 2016-10-05 2019-03-06 Hs R & A Co., Ltd. Double pipe heat exchanger and method for manufacturing the same
CN107449147B (en) * 2017-09-25 2019-11-15 江苏来德福汽车部件有限公司 A kind of Fryer heat exchanger
CN112437860B (en) * 2019-10-15 2022-01-11 安美(北京)汽车工程技术有限公司 Refrigerant liquefier and refrigeration cycle device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3730229A (en) * 1971-03-11 1973-05-01 Turbotec Inc Tubing unit with helically corrugated tube and method for making same
US4194560A (en) * 1976-03-19 1980-03-25 Nihon Radiator Co., Ltd. Oil cooler and method for forming it
JP2002318015A (en) * 2001-04-17 2002-10-31 Orion Mach Co Ltd Freezer
JP2004278854A (en) * 2003-03-13 2004-10-07 Toyo Radiator Co Ltd Double-walled pipe heat exchanger and its manufacturing method
US20040244958A1 (en) * 2003-06-04 2004-12-09 Roland Dilley Multi-spiral upset heat exchanger tube
US7011150B2 (en) * 2004-04-20 2006-03-14 Tokyo Radiator Mfg. Co., Ltd. Tube structure of multitubular heat exchanger
JP4350079B2 (en) * 2004-11-09 2009-10-21 株式会社デンソー Double tube, manufacturing method thereof, and refrigeration cycle apparatus including the same
DE102005052974B4 (en) * 2004-11-09 2013-03-21 Denso Corporation Double walled pipe
WO2006077657A1 (en) * 2005-01-21 2006-07-27 T.Rad Co., Ltd. Double pipe heat exchanger and method of manufacturing the same
JP3953074B2 (en) * 2005-05-16 2007-08-01 ダイキン工業株式会社 Heat exchanger
DE102006017816B4 (en) 2006-04-13 2008-04-24 Eaton Fluid Power Gmbh Inner chiller heat exchanger

Also Published As

Publication number Publication date
GB0909221D0 (en) 2009-07-15
WO2010124871A2 (en) 2010-11-04
SI2425193T1 (en) 2018-02-28
CN102460054B (en) 2016-04-20
ES2643324T3 (en) 2017-11-22
WO2010124871A3 (en) 2011-02-17
US20120097380A1 (en) 2012-04-26
CN102460054A (en) 2012-05-16
EP2425193A2 (en) 2012-03-07
PL2425193T3 (en) 2018-01-31
EP2425193B1 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
HUE034718T2 (en) Heat exchanger
EP2232187B1 (en) Heat transfer tube
US5311661A (en) Method of pointing and corrugating heat exchange tubing
EP2312254B1 (en) Heat exchanger and air conditioner having the heat exchanger
US20130192804A1 (en) Double pipe for heat exchanger
US5404942A (en) Heat exchanger and method of making the same
SE517450C2 (en) Fluid transport tubes and methods and apparatus for producing the same
KR19980068555U (en) Refrigerant pipe for heat exchanger
JP3567133B2 (en) How to assemble a heat exchanger
US20090255656A1 (en) Brazed Pipe and Method of Manufacturing the Same
KR20170131848A (en) Double tube for heat-exchange
US9174266B2 (en) Manifold bending support
US5535820A (en) Method for assembling a heat exchanger
EP1316773A2 (en) High pressure header and heat exchanger and method of making the same
EP2959251B1 (en) Tube structures for heat exchanger
AU1373000A (en) Regulating device for a coolant circuit of an air conditioning system
CN110612426B (en) Heat transfer tube for heating, ventilating, air conditioning and refrigerating system
US20040079522A1 (en) Folded, bent and re-expanded heat exchanger tube and assemblies
WO2015004156A1 (en) Heat exchanger and method of manufacturing a heat exchanger
JP5202776B2 (en) Fluid transport tube and method and apparatus for manufacturing the same
EP0538846A1 (en) A method for manufacturing a heat - exchange system
US20220228817A1 (en) Indirect Heat Exchanger Pressure Vessel with Controlled Wrinkle Bends
US20090120626A1 (en) Heat exchanger for vehicles and process for producing the same
EP0881008A2 (en) Method of making refrigerant tubes for heat exchangers
JP2022008718A (en) Double pipe for heat exchange