HUE033624T2 - Method and apparatus for homogenising and stabilising an iron-bearing residue - Google Patents
Method and apparatus for homogenising and stabilising an iron-bearing residue Download PDFInfo
- Publication number
- HUE033624T2 HUE033624T2 HUE11789313A HUE11789313A HUE033624T2 HU E033624 T2 HUE033624 T2 HU E033624T2 HU E11789313 A HUE11789313 A HU E11789313A HU E11789313 A HUE11789313 A HU E11789313A HU E033624 T2 HUE033624 T2 HU E033624T2
- Authority
- HU
- Hungary
- Prior art keywords
- reactor
- mixer
- residue
- section
- diameter
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 55
- 238000000034 method Methods 0.000 title claims description 53
- 229910052742 iron Inorganic materials 0.000 title claims description 19
- 230000003019 stabilising effect Effects 0.000 title description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 44
- 230000006641 stabilisation Effects 0.000 claims description 42
- 230000003472 neutralizing effect Effects 0.000 claims description 36
- 238000002156 mixing Methods 0.000 claims description 19
- 239000002002 slurry Substances 0.000 claims description 16
- 229910001385 heavy metal Inorganic materials 0.000 claims description 14
- 238000002386 leaching Methods 0.000 claims description 10
- 239000003381 stabilizer Substances 0.000 claims description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 6
- 229910052791 calcium Inorganic materials 0.000 claims description 6
- 239000011575 calcium Substances 0.000 claims description 6
- 150000002681 magnesium compounds Chemical class 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 3
- 230000000087 stabilizing effect Effects 0.000 claims 6
- 241000251468 Actinopterygii Species 0.000 claims 1
- XAEWZDYWZHIUCT-UHFFFAOYSA-N desipramine hydrochloride Chemical group [H+].[Cl-].C1CC2=CC=CC=C2N(CCCNC)C2=CC=CC=C21 XAEWZDYWZHIUCT-UHFFFAOYSA-N 0.000 claims 1
- 239000003337 fertilizer Substances 0.000 claims 1
- 238000011105 stabilization Methods 0.000 claims 1
- 239000002699 waste material Substances 0.000 description 30
- 238000006386 neutralization reaction Methods 0.000 description 17
- 239000000463 material Substances 0.000 description 14
- 239000007787 solid Substances 0.000 description 14
- 229910052935 jarosite Inorganic materials 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 10
- 235000011941 Tilia x europaea Nutrition 0.000 description 10
- 239000004571 lime Substances 0.000 description 10
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 9
- 229910052725 zinc Inorganic materials 0.000 description 9
- 239000011701 zinc Substances 0.000 description 9
- 238000009854 hydrometallurgy Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000000265 homogenisation Methods 0.000 description 7
- 239000012141 concentrate Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 239000005864 Sulphur Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 4
- 239000000920 calcium hydroxide Substances 0.000 description 4
- 235000011116 calcium hydroxide Nutrition 0.000 description 4
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 4
- 239000004568 cement Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910052598 goethite Inorganic materials 0.000 description 3
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229940043430 calcium compound Drugs 0.000 description 2
- 150000001674 calcium compounds Chemical class 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 229910052595 hematite Inorganic materials 0.000 description 2
- 239000011019 hematite Substances 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 150000002506 iron compounds Chemical class 0.000 description 2
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 2
- 239000011686 zinc sulphate Substances 0.000 description 2
- 235000009529 zinc sulphate Nutrition 0.000 description 2
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910001308 Zinc ferrite Inorganic materials 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 206010016256 fatigue Diseases 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 239000002920 hazardous waste Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- WGEATSXPYVGFCC-UHFFFAOYSA-N zinc ferrite Chemical compound O=[Zn].O=[Fe]O[Fe]=O WGEATSXPYVGFCC-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/80—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
- B01F27/92—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with helices or screws
- B01F27/921—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with helices or screws with helices centrally mounted in the receptacle
- B01F27/9213—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with helices or screws with helices centrally mounted in the receptacle the helices having a diameter only slightly less than the diameter of the receptacle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/05—Stirrers
- B01F27/09—Stirrers characterised by the mounting of the stirrers with respect to the receptacle
- B01F27/092—Stirrers characterised by the mounting of the stirrers with respect to the receptacle occupying substantially the whole interior space of the receptacle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/05—Stirrers
- B01F27/11—Stirrers characterised by the configuration of the stirrers
- B01F27/114—Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/05—Stirrers
- B01F27/11—Stirrers characterised by the configuration of the stirrers
- B01F27/114—Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections
- B01F27/1145—Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections ribbon shaped with an open space between the helical ribbon flight and the rotating axis
- B01F27/11451—Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections ribbon shaped with an open space between the helical ribbon flight and the rotating axis forming open frameworks or cages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/05—Stirrers
- B01F27/11—Stirrers characterised by the configuration of the stirrers
- B01F27/19—Stirrers with two or more mixing elements mounted in sequence on the same axis
- B01F27/191—Stirrers with two or more mixing elements mounted in sequence on the same axis with similar elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/80—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
- B01F27/92—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with helices or screws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/80—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
- B01F27/92—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with helices or screws
- B01F27/921—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with helices or screws with helices centrally mounted in the receptacle
- B01F27/9212—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with helices or screws with helices centrally mounted in the receptacle with conical helices
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0418—Geometrical information
- B01F2215/0431—Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B19/00—Obtaining zinc or zinc oxide
- C22B19/20—Obtaining zinc otherwise than by distilling
- C22B19/22—Obtaining zinc otherwise than by distilling with leaching with acids
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Processing Of Solid Wastes (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Mixers Of The Rotary Stirring Type (AREA)
- Fertilizers (AREA)
Description
Description
FIELD OF THE INVENTION
[0001] The invention relates to a method and apparatus for converting an iron-bearing residue containing small quantities of soluble heavy metals generated in a hydrometallurgical process into stable form by means of a neutralising agent. The residue is elutriated and the elutriated residue is fed into at least one stabilisation and homogenisation reactor, into which a neutralising agent is also routed. The homogenous mixing of the residue and neutralising agent takes place by means of a helix mixer, where the diameter of the mixer in relation to the diameter of the reactor is 0.75 - 0.99.
BACKGROUND OF THE INVENTION
[0002] The solid waste generated in hydrometallurgical processes, such as different kinds of iron deposits and leach residues, usually contain small amounts of soluble heavy metals, like zinc, cadmium, cobalt, nickel, arsenic and antimony. These kinds of residues require pretreatment, in which they are stabilised before storage at a landfill site, so that the heavy metals do not dissolve from the waste. Known pre-treatment methods carried out either separately or together include for instance waste washing, neutralisation and precipitation of the metals as hydroxides, precipitation of the metals as sulphides, isolation of the waste site from the groundwater and binding the soluble compounds with for example, cement, phosphate or lime.
[0003] Sulphide precipitation is one effective method for binding heavy metals, but the additional costs incurred by the method as well as the large amount of water migrating to the landfill site may be considered a weakness. Due to the large quantity of water involved, multi-layered walls and a water collection system have to be constructed on the landfill site to prevent the water at the site from seeping into the groundwater.
[0004] The zinc production process is one typical process in which an iron-bearing waste is generated. The production process originating from zinc sulphide concentrate according to one approach comprises roasting of the concentrate, leaching of the calcine, i.e. zinc oxide that is obtained, where the zinc oxide is leached with a solution containing sulphuric acid to form a solution of zinc sulphate in what is called neutral leaching. The zinc sulphate solution is routed generally via solution purification to electrolytic recovery. The insoluble residue of neutral leaching consists of the zinc ferrite and sulphur formed in roasting, and the residue is treated in a strong acid leaching stage to leach the ferrite, so that the zinc bound to it is recovered. Iron is precipitated as jarosite, goethite or hematite, most commonly as jarosite. Often the residue is subjected to flotation to separate sulphur from the iron deposit. Zinc sulphide concentrate can also be routed for example to the strong acid leaching stage without roasting or the entire concentrate leaching can be performed without roasting and the waste residue that is generated contains both the iron and the sulphur of the concentrate.
[0005] The disposal of the iron residue generated in the leaching process of zinc concentrate and other equivalent metals should occur so that the final residue or reject is as poorly soluble as possible, whereby any small heavy metal residues that may have remained in it do not cause problems. Hematite is very poorly soluble, but its production generally requires autoclave conditions, which raise the costs of the process.
[0006] There have been attempts to solve the iron residue storage problem e.g. as presented in CA patent publication 1079496 and the publication by Ek, C. "Jarosite treatment and disposal by the ’Jarochaux’ process," Int. Symposium on Iron Control in Hydrometallurgy, Oct. 19-22, 1986, Toronto, Part. VII pages 719-729, which describe the Jarochaux process. According to this method, an iron residue, which may be jarosite or other possible iron compounds, is mixed with a calcium compound. The calcium compound may be for example quicklime, slaked lime or lime milk. As a result of the physicochemical reactions spherical lumps are formed, with a diameter of 1 - 20 cm. The sulphate in the iron residue reacts with the calcium and forms gypsum, which in turn forms a skeleton inside the jarosite lump and a shell around the lump. The method consists of the following stages: the first stage is filtration, followed by élutriation to a solids content of about 50 g/l, after this thickening and filtration of the thickener underflow (solids content approx. 200 g/l), air drying of the residue on a filter, after which the moisture content is about 35%. From the filter the residue is routed by belt conveyor to a screw mixer, into which dust-like lime is also fed. When the iron residue is mainly jarosite, the amount of lime (CaO) to be added is 6-16% of the quantity of dry solids of the waste residue. When the waste residue is goethite, the amount of lime required is smaller. According to the examples in the patent publication, the mixing reactor for the residue and lime is launder-shaped and equipped with two blade mixers rotating opposite each other.
[0007] According to the method described in IT patent publication 1290886, waste containing heavy metals is stabilised by adding calcium hydroxide, orthophosphoric acid or its salts into the waste as an aqueous solution, and if necessary water, in order to obtain a paste of uniform consistency. The drawback of this method is that the waste has to be dried before storage at the landfill site.
[0008] Lime neutralisation is suitable for almost all kinds of wastes and even old landfill sites can be treated by the addition of lime. However, the method has the disadvantage that the waste generated is not of uniform quality. As a result of non-uniform neutralisation, some of the material remains unneutralised and in some of the material the pH can rise so high that it causes the decomposition of the jarosite.
[0009] Yet another method intended for the disposal of iron residue, especially jarosite, is the Jarofix process, which is described for example in the article by Seyer, S. et al: "Jarofix: Addressing Iron Disposal in the Zinc Industry", JOM, December 2001, pages 32-35. The initial part of the method is similar to that of the Jarochaux process described above, i.e. the jarosite residue is elutriated, thickened and lime is mixed into the residue, but after this cement is further added to the residue to bind the residue. Cement enables the long-term physical and chemical stabilisation of iron residue. Of course the use of cement as a binding agent stabilises jarosite well, but it also causes extra costs for the process. Finnish patent publication FI 84787 B discloses an mixing reactor suitable for converting an iron-bearing residue containing small amounts of soluble heavy metals that are generated in a metallurgical leaching process into a stable form by means of a pH-regulated precipitation. A mixer is located inside the reactor and the apparatus is intended for mixing two liquids into each other or a liquid and solid and simultaneously separating from the liquid either the other liquid or the solid. The apparatus is made up of a three-part reactor, the upper section of which is cylindrical, the section below it conical and the lowest a tubular collection part. Baffles are positioned on the edges of the reactor. The mixer consists of two symmetricall tubular coils surrounding the shaft and a protective cone fixed in the lower section of the mixer, which is intended to prevent the flows from entering the reaction zone and sucking drops of liquid upwards. Liquids to be treated and the possible neutralizing agent are feed into the top part of the reactor. The treated materials are discharged from the bottom part of the reactor. The diameter of the mixer is 0.5 - 0.75 X the diameter of the reactor, which means that in practice the agitated zone is only half the volume of the reactor. The mixer also extends into the conical section of the reactor and the distance of the tubular coils from the mixer shaft decreases correspondingly so that the ratio of the mixer diameter to the reactor diameter remains at the previous level. The reactor and mixer are intended for mixing either two liquids or a liquid and a solid and the description of the equipment reveals that the solids content of any slurry that may be generated is notvery high. The mixing in the lower section of the mixer is weaker, so the phases separate after the reactions that have occurred during mixing. In the lower section of the reactor the aim is to prevent solids from migrating to the upper section of the reactor.
[0010] WO 2006/024691 discloses a method whereby iron residue generated in the hydrometallurgical production of zinc is neutralized and sulphidised in order to stabilise the harmful metals remaining in said residue. WO 2006/024691 discloses an alternative for reducing the moisture of the iron residue consequently increasing the solid content thereof. One of the alternatives for reducing the moisture of the iron residue is to perform neutralisation and sulphidation at a high slurry density, whereby the problems related to water removal can be at least partially eliminated. WO 2006/024691 states also that special mixer is needed for a high slurry density. Centrifuge is suggested as an alternative way to raise the solids content of iron residue.
PURPOSE OF THE INVENTION
[0011] The purpose of the invention presented here is to eliminate the drawbacks of the methods described above and to disclose a method and apparatus, which will enable the formation from an iron residue of a reject paste of uniform quality with a very high solids content that is easy to store, by means of a neutralising agent. If there are no harmful compounds in the reject, it can be utilised as a soil enhancer for instance. After processing, the homogenous reject paste is transported directly to the storage site, where it hardens into a solid mass without any separation of solution from the mass into the site. According to the method, an additional benefit of the stabilised material is that the contact surface of rainwater and the stabilised reject paste is considerably smaller in comparison with pulverous or dust-like wastes.
SUMMARY OF THE INVENTION
[0012] The invention relates to a method for converting an iron-bearing residue generated in a hydrometallurgical process that contains small amounts of heavy metals into a stable form by means of a neutralising agent, where the residue is first elutriated. The elutriated residue is fed into at least one stabilisation or homogenisation reactor, into which a neutralising agent is also routed, and the homogenous mixing together of the residue and neutralising agent takes place by means of a helix mixer, where the ratio of the diameter of the mixer to the diameter of the reactor is 0.75 - 0.99.
[0013] According to one embodiment of the invention, the neutralising agent is fed into the stabilisation reactor in powder form.
[0014] According to another embodiment of the invention, the neutralising agent is fed into the stabilisation reactor in slurry form.
[0015] It is typical of the method accordant with the invention that the neutralising agent is a calcium and/or magnesium compound.
[0016] The invention also relates to an apparatus for converting an iron-bearing residue generated in a hydro-metallurgical process that contains small amounts of heavy metals into a stable form by means of a neutralising agent, where the residue is first elutriated in an élutriation reactor. The elutriated residue is fed into at least one stabilisation or homogenisation reactor, the upper section of which is cylindrical and the lower section in the form of a downward-narrowing cone, and the residue and neutralising agent are fed into the upper section of the reactor, and the homogenous paste is removed from the lower section of the reactor; the reactor is equipped with a mixer, which contains at least two helical bars rotating around a shaft and supported on the shaft by means of support arms, and placed symmetrically in relation to each other and where the ratio of the diameter of the mixer to the diameter of the reactor is 0.75 - 0.99.
[0017] According to one embodiment of the invention, the mixer is made up of two parts, whereby the upper part, in which the distance of the helical bars from the shaft is the same along the entire height of the mixer section, is situated in the cylindrical part of the reactor and the lower section, in which the distance of the helical bars from the shaft decreases conically toward the lower section of the mixer, is located in the downward-narrowing conical part of the reactor.
[0018] According to one embodiment of the invention, the number of support arms supporting the helical bars at different heights is 4 - 8. It is typical of the mixer that the support arms are at an angle of 0 - 65 ° to the horizontal depending on the location of the support arms in the mixer or mixer section.
[0019] When the mixer accordant with the invention is made up of two parts, the helical bars of the upper and lower mixer section are preferably offset in relation to each other.
[0020] It is typical of the apparatus accordant with the invention that the helical bars of the reactor circle the shaft 0.5 - 2 times and that the angle of pitch of the helical bars is 15 - 45 "with respect to the horizontal, preferably 25-35°.
[0021] According to one embodiment of the invention, the ratio of the diameter of the mixer to the diameter of the reactor is 0.85 - 0.95.
[0022] According to one configuration of the apparatus accordant with the invention, guide plates that are directed obliquely inwards from the edge of the reactor are placed in the upper section of the neutralisation reactor to guide the flows of slurry, and they extend inwards for a distance that is 3 - 8 % of the diameter of the reactor.
LIST OF DRAWINGS
[0023]
Figure 1 presents a flow sheet of the process, and Figure 2 is a vertical section of an agitated reactor and mixer accordant with the invention.
DETAILED DESCRIPTION OF THE INVENTION
[0024] The invention relates to a method and apparatus for neutralising and stabilising a waste residue containing iron and small quantities of heavy metals. According to the invention, stabilisation occurs by a method in which the waste residue is stabilised into a homogenous reject paste so that the entire mass that is formed is of uniform size, and does not only form a skeleton and shell of lime. The waste residue may contain in addition to a jarositic iron residue for example a sulphur-bearing residue generated in the direct leaching of zinc. In addition tojarosite, the iron residue may also be made up of other iron compounds such as goethite or hydroxides. The ironbearing waste residue may also originate from other processes than the production of zinc, although it has been found that it is especially suitable for this. Since the reject paste does not contain any harmful compounds, it can be utilised as a soil enhancer for example.
[0025] The term neutralisation reactor and stabilisation reactor used in the text mean the same reactor, and likewise neutralising agent and stabilising agent mean the same substance.
[0026] A simple process chart of the method is presented in Figure 1. In the first stage of the method, a filter cake of waste residue 1 is elutriated in élutriation reactor 2 into a homogenous slurry. Depending on the moisture content of the residue, élutriation can be carried out in the water contained in the residue to be filtered or by feeding in additional water. The elutriated residue is fed for instance by means of a hose pump into stabilisation or homogenisation reactor 3, in which neutralisation takes place using a suitable neutralising or stabilising agent 4, such as a suitable calcium and/or magnesium compound. The stabilisation agent depends on the composition of the waste to be treated. The stabilisation agent can be fed in either dry or as an aqueous slurry and it is preferably fed inside the slurry. Besides a dry stabilising agent, water can also be fed into the reactor as required. There may be one or several stabilisation reactors in number. The stabilised and homogenous reject paste 6 is removed from the lower section of the reactor using a hose pump for example.
[0027] In the first stage of the method accordant with the invention, the residue exiting the filter is elutriated in élutriation reactor 2 into a homogenous slurry. No stabilising agent is added into this stage. In this way we can ensure that the waste to be stabilised is always of uniform quality before it is brought in to contact with the stabilising agent. For this reason the reactions between the waste and the stabilising chemicals in the stabilisation reactor take place in a controlled way. The method accordant with the invention allows the elimination of the drawbacks in the methods described above, such as variations in pH caused by uneven neutralisation. Too high a pH value can cause the decomposition of the material to be stabilised e.g. jarosite.
[0028] Controlled stabilisation reactions result in a homogenous reject paste, which can be transported directly to the landfill site, where it will harden into a solid mass without any separation of solution from the mass at the waste site. In the methods described above, poorly controlled reactions lead to the generation of non-uniform lumps, which may have a diameter of as much as 20 cm, but on the other hand also dusty pulverous material. According to the method, an additional advantage of stabilised, homogenous material is a considerably smaller contact surface between rainwater and the stabilised waste in comparison with pulverous or dust-like waste.
[0029] As Figure 2 shows in more detail, the uppersec-tion 5 of stabilisation reactor 3 consists preferably of a vertical cylinder and the lower section 6 of a downwardnarrowing cone. The angle of the cone is preferably 45 - 75 The slurry to be neutralised is fed into the upper section of the reactor, into which guide plates 7 are advantageously placed to guide the flow towards the centre. The plates extend from the edge of the reactor obliquely inwards for a distance that is around 3-8 % of the reactor diameter. The neutralised and stabilised reject paste is removed from the bottom of the conical lower section either by gravity or by force. The neutralisation reactor is equipped with mixer8, which in the embodimentshown in Figure 2 is two-part, consisting of upper mixing section 9 and lower mixing section 10. Both parts of the mixer are attached to the same vertical shaft 11. According to a second alternative, the mixer parts are integrated.
[0030] (Both) parts of the mixer are made of at least two helical bars 12 and 13 encircling and supported on a shaft. The helical bars are placed symmetrically in relation to each other so that the distance from the shaft is the same when looking at the same height. The angle of pitch of the helical bars is 15 - 45 ° to the horizontal, preferably 25 - 35 °. The helical bars are supported on shaft 11 by means of support arms 14, which are located at 2 - 6 different heights in each mixer section depending on the height of the mixer section. In particular the number of support arms in the upper section is around 3 - 6. When the mixer is one-part, the support arms are located at 4 - 8 different heights. In each mixer section the support arms are at an angle of 0 - 65 ° to the horizontal depending on the location of the support arm in the mixer. The support arms act not only as support elements for the helical bars, but also as mixing members in the central section of the reactor and they promote the attainment of homogenous mixing.
[0031] In the upper mixer section the distance of the helical bars from the shaft is the same throughout the mixer section, but in the lower mixer section the distance of the helical bars from the shaft decreases conically towards the lower part of the mixer. Mixer 8 is placed in reactor 3 so that its lower conical mixer section 10 is located in conical section 6 of the reactor. When the mixer is integrated, the helical bars are continuous from bottom to top. When the mixer is made up of two mixer sections, the helical bars in the lower mixer section are preferably offset in relation to the helical bars of the upper mixer section. The ratio of the diameter of the mixer or mixer parts to that of the reactor is around 0.75 - 0.99, preferably 0.85 - 0.95, so that the whole of the material in the reactor is mixed evenly.
[0032] There are no baffles or protective cones in the stabilisation reactor, because the materials mixed together are either paste-like or the neutralising agent is a pulverous solid and the product to be generated is pastelike. Depending on the height of the reactor, the helical bars circle the shaft 0.5 - 2 times. The mixer is preferably coated with some suitable non-stick material such as Te-flon.
[0033] The tests performed have shown that a mixer consisting of helical bars and their support arms allows the iron residue to be treated and the neutralising agent to be mixed very homogenously into a paste-like mass, in which individual particles of iron residue and neutralising agent cannot be distinguished. Likewise it has been found that the waste residue formed is very stable, so that the amount of heavy metals dissolving thereof is below the set guideline values.
EXAMPLES
Example 1 [0034] A filter cake of waste residue, which contained both jarosite and elemental sulphur, was elutriated in an élutriation reactor into a homogenous slurry. The moisture content of the waste residue was 39 %. The slurry was pumped at 120 l/h from the élutriation reactor into the stabilisation reactor, into which 29 kg/h of dry calcium hydroxide was fed. 8 l/h of water was fed into the stabilisation reactor during the feed of calcium hydroxide. The effective volume of the stabilisation reactor was 30 dm3. Stabilisation was carried out at room temperature. The continuous run was continued for five hours. During the run, 200 I of the stabilised waste that was formed was collected in barrels. Samples were collected of the stabilised waste during the run. The stabilised material was poured onto a flat base, in which the behaviour of the material was monitored. The material was allowed to harden overnight. The material had hardened and no water had come out of it. It was not possible to distinguish separate particles of iron residue and neutralising agent in a split and hardened piece. A solubility test in accordance with EL) standard EN-12457-3 was made on the hardened, stabilised reject paste. The test results were below the hazardous waste limits set in the EL) directive.
Example 2 [0035] In the example one of the test arrangements described was repeated with the difference that the stabilisation reactor accordant with the invention was replaced with a screw mixer. The result was a lumpy un-homogenous waste, in which unreacted lime was clearly detectable.
Claims 1. An apparatus for converting an iron-bearing residue containing small amounts of soluble heavy metals that is generated in a hydrometallurgical process into a stable form by means of a neutralising agent, whereby the residue is first elutriated in an élutriation reactor (2), and the elutriated residue is routed to at least one stabilisation or homogenisation reactor (3), the upper section (5) of which is cylindrical, and the lower section (6) shaped like a downward-narrowing cone, and where the residue and neutralising agent are fed into the upper section of the reactor and the homogenised paste is removed from the lower section of the reactor; the reactor is equipped with a mixer (8), which contains at least two helical bars (12,13) that circle the shaft and are supported on the shaft (11) by means of support arms (14), where said helical bars are located symmetrically in relation to each other and where the ratio of the mixer diameter to the diameter of the stabilisation reactor is 0.75 -0.99 and there are no baffles or protective cones in the stabilisation reactor. 2. Apparatus according to claim 1, characterised in that the mixer (8) is made up of two sections (9,10), whereby the upper mixer section (9), where the distance of the helical bars thereof (12,13) from the shaft (11 ) is the same throughout the height of the mixer section, is placed in the cylindrical part (5) of the stabilisation reactor and the lower mixer section (10), where the distance of the helical bars thereof (12,13) from the shaft gets smaller conically towards the bottom part of the mixer, is located in the section of the reactor shaped like a downward-narrowing cone. 3. Apparatus according to claim 1 or 2, characterised in that the number of support arms (14) supporting the helical bars (12,13) at different heights is 4 - 8. 4. Apparatus according to claim 2, characterised in that the helical bars of the upper and lower mixer section are offset in relation to each other. 5. Apparatus according to claim 1 or 2, characterised in that the helical bars (12,13) circle the shaft (11) 0.5 - 2 times. 6. Apparatus according to claim 1 or 2, characterised in that the angle of pitch of the helical bars to the horizontal is 15 - 45 °, preferably 25 - 35 °. 7. Apparatus according to claim 1 or 2, characterised in that the support arms (14) in the mixer (9,10) are at an angle of 0 - 65 ° to the horizontal depending on the location of the support arm in the mixer or mixer section. 8. Apparatus according to claim 1 or 2, characterised in that the ratio of the diameter of the mixer to the diameter of the stabilisation reactor is 0.85-0.95. 9. Apparatus according to claim 1, characterized in that guide plates are placed in the upper section of the stabilisation reactor (3), directed obliquely inwards from the edges of the reactor to guide the slurry flow and extending inwards for a distance that is 3 - 8 % of the reactor diameter. 10. A method performed in the apparatus according to any one of claims 1 to 9 for converting an iron-bearing residue generated in a hydrometallurgical process, containing small amounts of soluble heavy metals, into stable form by means of a neutralising agent, wherein the method comprises the following steps - elutriating (2) first the residue, - feeding the elutriated residue into at least one stabilisation or homogenisation reactor (3), - routing into the stabilisation or homogenisation reactor (3) a neutralising agent (4), and - mixing homogenously togetherthe residue and the neutralising agent by means of a helix mixer (8), wherein the ratio of the diameter of the mixer (8) to the diameter of the reactor (3) is 0.75-0.99. 11. A method according to claim 10, characterised in that the neutralising agent is fed into the stabilisation reactor in powder form. 12. A method according to claim 10, characterised in that the neutralising agent is fed into the stabilisation reactor in slurry form. 13. A method according to claim 10, characterised in that the neutralising agent is a calcium and/or magnesium compound.
Patentansprüche 1. Vorrichtung zum Umwandeln eines eisenhaltigen Rückstands, der kleine Mengen löslicher Schwermetalle aufweist und in einem hydrometallurgischen Prozess erzeugt wird, in eine stabile Form mittels eines Neutralisierungsmittels, wobei der Rückstand zuerst in einem Auslaugungsreaktor (2) ausgelaugt wird und der ausgelaugte Rückstand an mindestens einen Stabilisierungs- oder Homogenisierungsreaktor (3) weitergeleitet wird, dessen oberer Abschnitt (5) zylindrisch ist, und dessen unterer Abschnitt (6) wie ein sich nach unten verjüngender Konus geformt ist, und wobei der Rückstand und das Neutralisierungsmittel in den oberen Abschnitt des Reaktors eingebracht werden und die homogenisierte Paste aus dem unteren Abschnitt des Reaktors entnommen wird; wobei der Reaktor mit einem Mischer (8) ausgestattet ist, der mindestens zwei spiralförmige Stäbe (12,13) aufweist, diedieWelle umrunden und durch Tragarme (14) an der Welle (11) gelagert sind, wobei die spiralförmigen Stäbe in Bezug aufeinander symmetrisch angeordnet sind und wobei das Verhältnis des Durchmessers des Mischers zum Durchmesser des Stabilisierungsreaktors 0,75 -0,99 beträgt und keine Schikanen oder Schutzkonusse im Stabilisierungsreaktor vorhanden sind. 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der M ischer (8) aus zwei Abschnitten (9, 10) besteht, wobei der obere Mischerabschnitt (9), in dem der Abstand der spiralförmigen Stäbe (12,13) davon zurWelle(11) überdiegesamte Höhe des Mischerabschnitts gleich ist, im zylindrischen Teil (5) des Stabilisierungsreaktors platziert ist und der untere Mischerabschnitt (10), in dem der Abstand der spiralförmigen Stäbe (12, 13) davon zur Welle hin zum Bodenteil des Mischers konisch kleiner wird, im Abschnitt des Reaktors angeordnet ist, der wie ein sich nach unten verjüngender Konus geformt ist. 3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Anzahl derTragarme (14), die die spiralförmigen Stäbe (12, 13) auf unterschiedlichen Höhen tragen, 4-8 beträgt. 4. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die spiralförmigen Stäbe des oberen und des unteren Mischerabschnitts in Bezug aufeinander versetzt sind. 5. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die spiralförmigen Stäbe (12, 13) die Welle (11) 0,5 - 2-mal umrunden. 6. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Steigungswinkel der spiralförmigen Stäbe zur Horizontalen 15-45° beträgt, vorzugsweise 25 - 35°. 7. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Tragarme (14) im Mischer (9, 10) abhängig von der Position des Tragarms im Mischer oder Mischerabschnitt in einem Winkel von 0 - 65 zur Horizontalen stehen. 8. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Verhältnis des Durchmessers des Mischers zum Durchmesser des Stabilisierungsreaktors 0,85 - 0,95 beträgt. 9. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass Lenkungsplatten im oberen Abschnitt des Stabilisierungsreaktors (3) platziert sind, die von den Kanten des Reaktors schräg nach innen gerichtet sind, um den Schlammfluss zu lenken, und sich über eine Distanz nach innen erstrecken, die 3 - 8 % des Reaktordurchmessers beträgt. 10. Verfahren, durchgeführt in der Vorrichtung nach einem der Ansprüche 1 bis 9 zum Umwandeln eines eisenhaltigen Rückstands, der in einem hydrometallurgischen Prozess erzeugt wird und kleine Mengen löslicher Schwermetalle aufweist, in eine stabile Form mittels eines Neutralisierungsmittels, wobei das Verfahren die folgenden Schritte umfasst - zuerst Auslaugen (2) des Rückstands, - Einbringen des ausgelaugten Rückstands in mindestens einen Stabilisierungs- oder Homogenisierungsreaktor (3), - Weiterleiten eines Neutralisierungsmittels (4) in den Stabilisierungs- oder Homogenisierungsreaktor (3), und - homogenes Vermischen des Rückstands und des Neutralisierungsmittels mittels eines Spiralmischers (8), wobei das Verhältnis des Durchmessers des Mischers (8) zum Durchmesser des Reaktors (3) 0,75 - 0,99 beträgt. 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Neutralisierungsmittel in Pulverform in den Stabilisierungsreaktor eingebracht wird. 12. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Neutralisierungsmittel in Schlammform in den Stabilisierungsreaktor eingebracht wird. 13. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Neutralisierungsmittel eine Calcium- und/oder Magnesiumverbindung ist.
Revendications 1. Appareil de conversion d’un résidu ferrifère contenant de petites quantités de métaux lourds solubles qui est généré dans un traitement hydro-métallurgique en une forme stable au moyen d’un agent de neutralisation, moyennant quoi le résidu est d’abord élutrié dans un réacteur d’élutriation (2), et le résidu élutrié est acheminé à au moins un réacteur de stabilisation ou d’homogénéisation (3), dont la section supérieure (5) est cylindrique, et la section inférieure (6) est en forme de cône se rétrécissant vers le bas, et où le résidu et l’agent de neutralisation sont introduits dans la section supérieure du réacteur et la pâte homogénéisée est extraite à partir delà section inférieure du réacteur; le réacteur est équipé d’un mélangeur (8), qui contient au moins deux barres hélicoïdales (12, 13) qui encerclent l’arbre et sont supportées sur l’arbre (11 ) au moyen de bras de support (14), où lesdites barres hélicoïdales sont disposées symétriquement l’une par rapport à l’autre et où le rapport du diamètre du mélangeur au diamètre du réacteur de stabilisation est de 0,75 - 0,99 et il n’existe pas de déflecteurs ou de cônes de protection dans le réacteur de stabilisation. 2. Appareil selon la revendication 1, caractérisé en ce que le mélangeur (8) est constitué de deux sections (9,10), moyennantquoilasectionsupérieuredemé- langeur (9), où la distance des barres hélicoïdales de celui-ci (12, 13) à partir de l’arbre (11) est identique surtoute la hauteur de la section de mélangeur, est disposée dans la partie cylindrique (5) du réacteur de stabilisation et la section inférieure de mélangeur (10), où la distance des barres hélicoïdales de celui-ci (12, 13) à partir de l’arbre se réduit de manière conique vers la partie inférieure du mélangeur, est disposée dans la section du réacteur en forme de cône se rétrécissant vers le bas. 3. Appareil selon la revendication 1 ou 2, caractérisé en ce que le nombre de bras de support (14) supportant les barres hélicoïdales (12,13) à des hauteurs différentes est de 4 - 8. 4. Appareil selon la revendication 2, caractérisé en ce que les barres hélicoïdales de la section supérieure et inférieure de mélangeur sont décalées l’une par rapport à l’autre. 5. Appareil selon la revendication 1 ou 2, caractérisé en ce que les barres hélicoïdales (12,13) encerclent l’arbre (11) 0,5 - 2 fois. 6. Appareil selon la revendication 1 ou 2, caractérisé en ce que l’angle d’hélice des barres hélicoïdales par rapport à l’horizontale est de 15 - 45°, de préférence de 25 - 35°. 7. Appareil selon la revendication 1 ou 2, caractérisé en ce que les bras de support (14) dans le mélangeur (9, 10) sont à un angle de 0 - 65° par rapport à l’horizontale en fonction de l’emplacement du bras de support dans le mélangeur ou la section de mélangeur. 8. Appareil selon la revendication 1 ou 2, caractérisé en ce que le rapport du diamètre du mélangeur au diamètre du réacteur de stabilisation est de 0,85 -0,95. 9. Appareil selon la revendication 1, caractérisé en ce que les plaques de guidage sont disposées dans la section supérieure du réacteur de stabilisation (3), orientées obliquement vers l’intérieur à partir des bords du réacteur pour guider l’écoulement de la suspension et s’étendant vers l’intérieur sur une distance qui est de 3 - 8 % du diamètre du réacteur. 10. Procédé exécuté dans l’appareil selon l’une quelconque des revendications 1 à 9 pour convertir un résidu ferrifère généré dans un traitement hydro-métallurgique, contenant de petites quantités de métaux lourds solubles, en une forme stable au moyen d’un agent de neutralisation, dans lequel le procédé comprend les étapes de - l’élutriation (2) en premier lieu du résidu, - l’introduction du résidu élutrié dans au moins un réacteur de stabilisation ou d’homogénéisation (3), - l’acheminement dans le réacteur de stabilisation ou d’homogénéisation (3) d’un agent de neutralisation (4), et - le mélange homogène du résidu et de l’agent de neutralisation au moyen d’un mélangeur à hélice (8), dans lequel le rapport du diamètre du mélangeur (8) au diamètre du réacteur (3) est de 0,75 - 0,99. 11. Procédé selon la revendication 10, caractérisé en ce que l’agent de neutralisation est introduit dans le réacteur de stabilisation en forme de poudre. 12. Procédé selon la revendication 10, caractérisé en ce que l’agent de neutralisation est introduit dans le réacteur de stabilisation en forme de suspension. 13. Procédé selon la revendication 10, caractérisé en ce que l’agent de neutralisation est un composé de calcium et/ou de magnésium.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • CA 1079496 [0006] · FI 84787 B [0009] • IT 1290886 [0007] · WO 2006024691 A [0010]
Non-patent literature cited in the description • EK, C. Jarosite treatment and disposal by the ’Jaro- · SEYER, S. et al. Jarofix: Addressing Iron Disposal chaux’ process. Int. Symposium on Iron Control in in the Zinc Industry. JOM, December 2001, 32-35
Hydrometallurgy, Oct. 19-22, 1986,19 October 1986, [0009] 719-729 [0006]
Claims (5)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20100237A FI123266B (en) | 2010-06-04 | 2010-06-04 | Method and apparatus for homogenizing and stabilizing an ferrous precipitate |
Publications (1)
Publication Number | Publication Date |
---|---|
HUE033624T2 true HUE033624T2 (en) | 2017-12-28 |
Family
ID=42308046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HUE11789313A HUE033624T2 (en) | 2010-06-04 | 2011-05-31 | Method and apparatus for homogenising and stabilising an iron-bearing residue |
Country Status (17)
Country | Link |
---|---|
US (1) | US9085020B2 (en) |
EP (1) | EP2576039B1 (en) |
JP (1) | JP5588063B2 (en) |
KR (1) | KR101473595B1 (en) |
CN (1) | CN102939148B (en) |
AU (1) | AU2011260149B2 (en) |
BR (1) | BR112012030918B1 (en) |
CA (1) | CA2799447C (en) |
EA (1) | EA024374B1 (en) |
ES (1) | ES2629350T3 (en) |
FI (1) | FI123266B (en) |
HU (1) | HUE033624T2 (en) |
MX (1) | MX344135B (en) |
PE (1) | PE20130964A1 (en) |
PT (1) | PT2576039T (en) |
WO (1) | WO2011151521A1 (en) |
ZA (1) | ZA201208771B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI678231B (en) * | 2015-07-01 | 2019-12-01 | 日商住友重機械過程機器股份公司 | Agitator |
CN107875893A (en) * | 2017-11-24 | 2018-04-06 | 洛阳新远大冶金成套设备有限公司 | Agitating device and aluminium ash disposal system |
MX2022013154A (en) * | 2020-04-20 | 2023-02-09 | Metso Outotec Finland Oy | Mixing arrangement, mixer settler unit and use. |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2080779A (en) * | 1937-05-18 | Purification of combustion gases | ||
US2120634A (en) * | 1933-01-11 | 1938-06-14 | Great Western Electro Chemical Co | Process for treating sewage |
US2294697A (en) * | 1938-05-13 | 1942-09-01 | John J Seip | Clarification and decoloration of liquids |
US3105041A (en) * | 1960-09-09 | 1963-09-24 | Albert L Genter | Sewage sludge digestion process |
US3875046A (en) * | 1974-04-09 | 1975-04-01 | William J Rosenbloom | Recovery of oil from tar sand by an improved extraction process |
JPS5529725B2 (en) | 1974-05-13 | 1980-08-06 | ||
JPS51136556U (en) * | 1975-04-17 | 1976-11-04 | ||
FR2332246A1 (en) * | 1975-11-20 | 1977-06-17 | Prayon | PROCESS FOR TREATING WASTE CONTAINING AT LEAST 3% SULFUR IN THE FORM OF BASIC IRON SULPHATES |
IT1123931B (en) | 1975-11-20 | 1986-04-30 | Prayon | Stabilising ferrous residues - by mixing with cpd. contg. active calcium oxide |
JPS5437068A (en) * | 1977-08-30 | 1979-03-19 | Ogasawara Tetsunori | Method of treating industrial wastes |
US4424126A (en) * | 1978-09-08 | 1984-01-03 | Arthur D. Little, Inc. | Apparatus for removing heavy metals from aqueous liquids |
JPS6054118B2 (en) * | 1979-04-07 | 1985-11-28 | 荏原インフイルコ株式会社 | Processing method for fine powder waste |
JPS5920825U (en) * | 1983-05-30 | 1984-02-08 | ヤマトボ−リング株式会社 | Continuous mixer for powder and liquid |
DE3327770A1 (en) | 1983-08-02 | 1985-02-14 | Bayer Ag, 5090 Leverkusen | METHOD FOR PROCESSING SULFURIC ACIDS CONTAINING METAL SULFATE |
DE3724677A1 (en) * | 1987-07-25 | 1989-02-02 | Kronos Titan Gmbh | PROCESS FOR PROCESSING IRON (II) SULFATE-CONTAINING METAL SULFATE MIXTURES |
JPH0344254Y2 (en) * | 1987-09-10 | 1991-09-18 | ||
JPH0763603B2 (en) | 1990-03-16 | 1995-07-12 | 株式会社日立製作所 | Vertical stirrer |
FI84787C (en) | 1990-04-04 | 1992-01-27 | Outokumpu Oy | Ways to mix two liquids or one liquid and one solid, together with at the same time separating from the liquid another liquid or another substance |
IT1290886B1 (en) | 1997-01-08 | 1998-12-14 | Ecotec Srl | METHOD FOR THE INERTIZATION OF WASTE CONTAMINATED BY HEAVY METALS |
JPH11138135A (en) * | 1997-11-13 | 1999-05-25 | Chiyoda Corp | Treatment of heavy metal-containing fly ash |
JPH11151432A (en) * | 1997-11-19 | 1999-06-08 | Asahi Glass Co Ltd | Agitating device |
US6214237B1 (en) * | 1999-06-29 | 2001-04-10 | Allegheny Energy Supply Company | Process for treating solid waste slurry |
FI115223B (en) * | 2001-12-13 | 2005-03-31 | Outokumpu Oy | Method of precipitating iron in the form of hematite from a zinc sulphate solution containing iron |
FI115699B (en) * | 2003-04-17 | 2005-06-30 | Outokumpu Oy | Method and apparatus for separating into foam and using a spiral rotor screw |
DE10331952A1 (en) * | 2003-07-15 | 2005-02-10 | Degussa Ag | Apparatus and process for discontinuous polycondensation |
FI20041132A (en) * | 2004-08-31 | 2006-03-01 | Outokumpu Oy | Procedure for the treatment of iron precipitation |
CN100393896C (en) | 2007-01-22 | 2008-06-11 | 中国科学院过程工程研究所 | New method for soaking out enriched ores of high indium, high iron, and high sulfur zinc |
CN101555551B (en) | 2009-05-22 | 2011-05-18 | 昆明理工大学 | Method for comprehensively recovering Fe, Cu and Si from copper smelting slag |
CN101596440B (en) | 2009-06-30 | 2011-09-21 | 四川晨光科新塑胶有限责任公司 | Macromolecular material polymerization reaction kettle |
-
2010
- 2010-06-04 FI FI20100237A patent/FI123266B/en active IP Right Grant
-
2011
- 2011-05-31 HU HUE11789313A patent/HUE033624T2/en unknown
- 2011-05-31 CA CA 2799447 patent/CA2799447C/en not_active Expired - Fee Related
- 2011-05-31 PE PE2012002256A patent/PE20130964A1/en active IP Right Grant
- 2011-05-31 BR BR112012030918-8A patent/BR112012030918B1/en not_active IP Right Cessation
- 2011-05-31 WO PCT/FI2011/050508 patent/WO2011151521A1/en active Application Filing
- 2011-05-31 US US13/698,467 patent/US9085020B2/en active Active
- 2011-05-31 EP EP11789313.1A patent/EP2576039B1/en not_active Not-in-force
- 2011-05-31 CN CN201180027500.9A patent/CN102939148B/en not_active Expired - Fee Related
- 2011-05-31 JP JP2013512955A patent/JP5588063B2/en not_active Expired - Fee Related
- 2011-05-31 AU AU2011260149A patent/AU2011260149B2/en not_active Ceased
- 2011-05-31 MX MX2012014036A patent/MX344135B/en active IP Right Grant
- 2011-05-31 PT PT117893131T patent/PT2576039T/en unknown
- 2011-05-31 EA EA201291251A patent/EA024374B1/en not_active IP Right Cessation
- 2011-05-31 ES ES11789313.1T patent/ES2629350T3/en active Active
- 2011-05-31 KR KR1020137000308A patent/KR101473595B1/en active IP Right Grant
-
2012
- 2012-11-21 ZA ZA2012/08771A patent/ZA201208771B/en unknown
Also Published As
Publication number | Publication date |
---|---|
ES2629350T3 (en) | 2017-08-08 |
CA2799447A1 (en) | 2011-12-08 |
BR112012030918B1 (en) | 2020-09-29 |
FI20100237A0 (en) | 2010-06-04 |
EP2576039A1 (en) | 2013-04-10 |
KR101473595B1 (en) | 2014-12-16 |
EP2576039B1 (en) | 2017-05-24 |
EA024374B1 (en) | 2016-09-30 |
AU2011260149B2 (en) | 2014-06-12 |
BR112012030918A2 (en) | 2016-11-08 |
AU2011260149A1 (en) | 2013-01-10 |
MX344135B (en) | 2016-12-06 |
MX2012014036A (en) | 2013-02-07 |
JP2013533106A (en) | 2013-08-22 |
ZA201208771B (en) | 2013-07-31 |
CA2799447C (en) | 2014-10-21 |
KR20130020913A (en) | 2013-03-04 |
US9085020B2 (en) | 2015-07-21 |
WO2011151521A1 (en) | 2011-12-08 |
EP2576039A4 (en) | 2014-06-04 |
PT2576039T (en) | 2017-06-29 |
FI20100237L (en) | 2011-12-05 |
FI123266B (en) | 2013-01-15 |
EA201291251A1 (en) | 2013-06-28 |
US20130060075A1 (en) | 2013-03-07 |
CN102939148B (en) | 2015-11-25 |
JP5588063B2 (en) | 2014-09-10 |
PE20130964A1 (en) | 2013-09-19 |
CN102939148A (en) | 2013-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0805786B1 (en) | Method of utilizing dusts produced during the reduction of iron ore | |
WO2013153115A2 (en) | Process and apparatus for obtaining material of value from a bauxite residue | |
HUE033624T2 (en) | Method and apparatus for homogenising and stabilising an iron-bearing residue | |
EP0786288B1 (en) | Process for granulating sludges | |
DE2835553A1 (en) | FLOCKER THICKENER | |
DE2044669A1 (en) | Method and apparatus for the recovery of the ferrous solids contained in aqueous slurries from blast furnaces and steel converters | |
DE19625264A1 (en) | Reactor for corrosive reaction mixtures | |
DE2911399A1 (en) | Treating metal-contg. sewage sludge - by adding metal complexing agent, decanting and re-precipitating solubilised metal | |
DE2537941A1 (en) | PROCESS FOR EXTRACTION OF METALS FROM MANGANE NUMBERS | |
JP3765032B2 (en) | Purification method for contaminated soil | |
EP2836462A2 (en) | Process and apparatus for obtaining material of value from a bauxite residue | |
EP0606291B1 (en) | Process and device for recovering components from dyestuff dispersions | |
WO2019120368A1 (en) | Method, unit and precious metal extraction unit for improving the yield in precious metal extraction by sorption-leaching processes | |
DE3047165A1 (en) | METHOD FOR EXTRACTING METALS | |
DE201082C (en) | ||
DE148702C (en) | ||
Taggart | Evaluating the effect of alternative neutralising agent and seeding on the zinc recovery through the Zincor iron removal circuit | |
AT61765B (en) | Device for the extraction of precious metals. | |
JP2022087368A (en) | Preparation method of nickel oxide ore slurry | |
DE307648C (en) | ||
Ruiz et al. | Arsenic and Antimony Removal from Copper Concentrates by Digestion with NaHS-NaOH | |
US527473A (en) | Cyanid and chlorination process | |
DE10353863B4 (en) | Process for large-scale separation of industrial waste sludge | |
EP1155732A1 (en) | Process for treating residues from flue gas purification and/or flue gas desulphurisation plant | |
DD275622A1 (en) | METHOD AND DEVICE FOR IMPLEMENTING COARSE-SOLID SOLIDS WITH LIQUID MEDIA |