HUE025502T2 - Ligand modified poly oxo-hydroxy metal ion materials, their uses and processes for their preparation - Google Patents

Ligand modified poly oxo-hydroxy metal ion materials, their uses and processes for their preparation Download PDF

Info

Publication number
HUE025502T2
HUE025502T2 HUE08709331A HUE08709331A HUE025502T2 HU E025502 T2 HUE025502 T2 HU E025502T2 HU E08709331 A HUE08709331 A HU E08709331A HU E08709331 A HUE08709331 A HU E08709331A HU E025502 T2 HUE025502 T2 HU E025502T2
Authority
HU
Hungary
Prior art keywords
ligand
oxo
solid
acid
hydroxy
Prior art date
Application number
HUE08709331A
Other languages
Hungarian (hu)
Inventor
Jonathan Joseph Powell
Sylvaine Francoise Aline Bruggraber
Nuno Jorge Rodrigues Faria
Dora Isabel Amaral Pereira
Original Assignee
Medical Res Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medical Res Council filed Critical Medical Res Council
Publication of HUE025502T2 publication Critical patent/HUE025502T2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/02Iron compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/76Metal complexes of amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

Description
Field of the Invention [0001] The present invention relates to ligand-modified poly oxo-hydroxy metal ion materials and their uses, in particular for nutritional, medical, cosmetic or biologically related applications for example for the treatment of a deficiency related to a component of the material or for the removal of an endogenous substance capable of binding to the material. The present invention further relates to processes for preparing the materials and optimising their physico-chemical properties and their medical uses.
Background of the Invention [0002] Iron deficiency is the most common micronutrient deficiency in the world today, affecting more than 4 billion people globally. It is estimated that 2 billion people - over 30% of the world’s population - are anaemic (WHO, ht-tp://www.who.int/nut/ida.htm, accessed 20 December 2005). Iron deficiency is not a problem solely confined to the developing world. Epidemiological surveys performed in European countries show that iron deficiency concerns 10-30% of menstruating women and iron deficiency anaemia (IDA) 1.5 to 14% (Hercberg et al., 2001 ; Goddard et al., 2005). Iron deficiency anaemia can result in decreased intellectual performance, decreased physical capacity, alterations in temperature regulation, alterations in the development of gestation, and compromised immune and metabolic functions, all of which impact upon quality of life and health economics (Edgerton et al, 1979; Hercberg et al, 2001 ; Scholz et al, 1997). The standard first line treatment for simple mild IDA is, commonly, supplementation with oral ferrous sulphate.
[0003] More complex or severe iron deficiencies may be treated with intravenous iron or blood transfusions, but subsequent management is with oral iron preparations. In spite of the widespread use of oral iron preparations their effectiveness is poor. This is due to: (i) variable absorption characteristics and (ii)side effects resulting in poor compliance. Strategies for the prevention of iron deficiency include the use of iron-fortified foods. Commonly used fortificants include ferrous sulphate, ferric chloride, ferric sodium EDTA and ferric pyrophosphates. However, despite fortification strategies, iron deficiency remains a common global problem and, thus, cheap and effective supplements are required.
[0004] WO 2005/000210 describes the synthesis of high molecular weight iron saccharidic complexes formed when freshly precipitated iron hydroxides are subsequently aggregated with sugar molecules to form secondary complexes. These complexes are acknowledged to be agglomerated mixtures.
[0005] WO 03/031635 relates to an enzymatic method to prepare calcium gluconate where the crystals are high purity and high solubility.
[0006] US 2005/0209322 describes a process for making sodium ferric gluconate complexes for i.v. iron administration that requires the initial step of preparing ferric hydroxide with a subsequent step of reacting with the ligand, sodium gluconate. US 2005/0209187 relates to a similar process for making iron sucrose complexes rather than iron gluconate complexes.
[0007] GB 1600449 describes the use of organic ligands for coating the surface of crystallite particles of metal oxo-hydroxides, principally for improving their solubility in hydrocarbon solvents in the field of catalysis.
[0008] US 2003/0049284 describes a method for increasing the solubility of salts of alpha hydroxy carboxylic acids, by reaction with an alpha amino acid, such that the material would have improved nutritional supplementation properties.
[0009] US 3,679,377 relates to the provision of an agronomically effective source of iron in a plant nutrient solution as a soluble ferric sulfato-hydroxyl complex anion. The materials produced are conventional ligand-metal ion complexes.
[0010] DE 20 2005 014332 U1 discloses metal-organic nanopowders for use in materials engineering such as the formation of polymeric composites through injection spraying or coating of the nanopowders into or onto an existing material.
[0011] Jugdaohsingh et al. (2004) describes a critical precipitation assay that utilises a solution phase reaction in which, at peri-neutral pH, organic acids compete with the formation of the oxo-bridges between aluminium atoms in the polymerisation process, limiting the growth and decreasing the branching of the polyhydroxy aluminium species (Jugdaohsingh et al. (2004); Powell et al. (2004)). The assay is usable because the efficiency of the ligand in interrupting this process is related to its affinity for aluminium. It was also noted in this work that during solution-phase growth of polyhydroxy aluminium species, the ’competing ligand’ becomes incorporated within the polymer.
Summary of the Invention [0012] Broadly, the present invention relates to processes for preparing solid ligand-modified poly oxo-hydroxy metal ion materials and optimising their physico-chemical properties. The compositions generally comprise solid ligand-modified poly oxo-hydroxy metal ion materials represented by the formula (MxLY(OH)n),wherein M represents one or more metal ions, L represents one or more ligands and OH represents oxo or hydroxy groups, and may be used in nutritional, medical, cosmetic or other biologically relevant applications. These include delivery of the materials per se, or the use of the materials for the delivery of a component of the material, such as the metal ion, as a supplement or fortificant or food additive, or the use of the material to remove or inhibit a component and ameliorate any undesirable effects that it may cause.
[0013] The solid ligand-modified poly oxo-hydroxy metal ion materials disclosed herein constitute new forms of matter that have not been described previously in the art for such uses and which can be defined, inter alia, with reference to structural, spectroscopic or compositional parameters (i.e. using the analytical signatures of the materials) or by the processes by which the materials have been obtained. Thus, while metal oxo-hydroxide powders are very well known in the field of inorganic chemistry, in the present invention they are modified by biologically compatible ligands (i.e. other than oxo or hydroxy groups) to alter their physical and/or chemical properties to produce new materials and for use in new applications. As part of the unique processes used to optimise and produce the materials, it is notable that (i) the materials are recovered as a solid following precipitation from solution (e.g. aqueous solution) and (ii) that the ligand incorporation into the poly oxo-hydroxy metal ion solid phase is, for at least one of the ligands involved, through formal, identifiable bonding.
[0014] Thus, by way of example, the present invention differs from the critical precipitation assay disclosed in Jugd-aohsingh et al. (2004) because that assay was carried out in solution and the precipitated material was not subsequently isolated or further employed. In contrast, in the present invention, the formation of the polymers continues to the point of precipitation and it is the solid materials that are then characterised and used in a variety of applications. Furthermore, the present inventors have found that the dried solid phase materials exhibit physico-chemical properties that are sensitively dependent upon the exact solution conditions used in the production of the material, for example the choice of ligand(s) and their concentration versus that of the metal ion. These materials are not, as might be expected, simply metal oxides/hydroxides with subtly differing degrees of crystallisation, and therefore subtly differing material properties, but instead the ligand(s) incorporate within the matrix of the poly oxo-hydroxy metal ion precipitate through substitution of oxo or hydroxyl groups. This is generally non-stoichiometric but, nonetheless, occurs through formal bonding, and leads to distinct and novel alterations in the chemistry, crystallinity and material properties of the solid. Thus, the compositions produced according to the present invention are chemically novel entities and are not simply the results of altering the degree of crystallinity of the metal oxides/hydroxides. Surprisingly, the conditions of precipitation do not easily predict the properties of the solid, such as the conditions of its re-dissolution and, for example, using this system it is perfectly possible to precipitate a material at pH 7 which can also be completely re-aquated at pH 7 using only a slightly larger volume of solution or by making a subtle change to the solution chemistry. Nonetheless, under the exact same reaction conditions, material is formed with highly reproducible properties. Thus, the idea underlying the present invention is that this process can be used to produce M:L:OH solids with precisely tailored physico-chemical characteristics for multiple biological applications such as in medicine, nutrition or cosmetics, where specific material characteristics are required. This approach has not been previously disclosed and it is surprising that such subtle changes in the precipitation process allow suitable changes in the solid phase that can be used to produce such precisely tailored physico-chemical (e.g. dissolution) characteristics or properties.
[0015] Accordingly, in a first aspect the present invention provides a process for producing a solid ligand-modified poly oxo-hydroxy metal ion material comprising metal ions (M), ligands (L) and oxo or hydroxy groups (OH), wherein: M represents one or more metal ions selected from Ag2+, Al3+, Au3+, Be2+, Ca2+, Co2+, Cr3+, Cu2+, Eu3+, Fe3+, Mg2+, Mn2+, Ni2+, Sr2+, V5+, Zn2+ and Zr2+, L represents one or more ligands which comprise a ligand selected from a carboxylic acid, maitól, ethyl maitól, vanillin, bicarbonate, sulphate, phosphate, silicate, borate, molybdate, selenate, tryptophan, glutamine, proline, valine, histidine, folate, ascorbate, pyridoxine, niacin, adipate, acetate, glutarate, dimethyl glutarate, pimelate, succinate, benzoate and propionate, and wherein the material has a polymeric structure in which the ligands are non-stoichiometrically substituted for the oxo or hydroxy groups and are distributed within the solid phase structure of the metal oxo-hydroxy material and so that the substitution of the oxo or hydroxy groups by the ligands is substantially random; wherein at least some of the ligand integrates into the solid phase so that it displays formal M-L bonding that can be detected by physical analytical techniques and the gross solid ligand-modified poly oxo-hydroxy metal ion material has one or more reproducible physico-chemical properties, the process comprising: (a) mixing the metal ions M and the ligands L at a first pH(A) at which the components are soluble; (b) changing the pH(A) to a second pH(B) to cause a solid precipitate of the solid ligand-modified poly oxo-hydroxy metal ion material to be formed; and (c) separating, and optionally drying, the solid ligand-modified poly oxo-hydroxy metal ion material produced in step (b).
[0016] By way of example, the materials produced by the processes of the present invention may be employed in nutritional, medical, cosmetic or other biologically relevant applications. A preferred example of such an application is the use of the material to deliver the material, or a part thereof such as a metal ion or a ligand, to a subject, for example to correct a deficiency in the component or so that the component provide a beneficial effect to the subject. An alternative example is the use of a material to bind or sequester a component that may be present in the system into which the material is introduced, thereby to remove or inhibit that component and ameliorate any undesirable effects that it may cause. In view of this, the process may comprise the further step of formulating the solid ligand-modified poly oxo-hydroxy-metal ion material in a composition for administration to a subject.
[0017] In any aspect of the present invention, the processes disclosed herein may be employed to engineer or optimise the physico-chemical properties of the material, for example to control the dissolution profile or the adsorption profile, or a similar property of the material, and it is a considerable advantage of the processes described herein that they are highly amenable to such optimisation studies.
[0018] Accordingly, in a further aspect, the present invention provide a process for producing a solid ligand-modified poly oxo-hydroxy metal ion material and optimising a desired physico-chemical property of the material to adapt it for a nutritional, medical, cosmetic or biologically related application, wherein the solid ligand-modified poly oxo-hydroxy metal ion material comprises metal ions (M), ligands (L) and oxo or hydroxy groups (OH), wherein M represents one or more metal ions selected from Ag2+, Al3+, Au3+, Be2+, Ca2+, Co2+, Cr3+, Cu2+, Eu3+, Fe3+, Mg2+, Mn2+, Ni2+, Sr2+, V5+, Zn2+ and Zr2+, L represents one or more ligands which comprise a ligand selected from a carboxylic acid, maitól, ethyl maitól, vanillin, bicarbonate, sulphate, phosphate, silicate, borate, molybdate, selenate, tryptophan, glutamine, proline, valine, histidine, folate, ascorbate, pyridoxine, niacin, adipate, acetate, glutarate, dimethyl glutarate, pimelate, succinate, benzoate and propionate, and wherein the material has a polymeric structure in which the ligands L are non-stoichiometrically substituted for the oxo or hydroxy groups and are distributed within the solid phase structure of the metal oxo-hydroxy material and so that the substitution of the oxo or hydroxy groups by the ligands is substantially random; wherein at least some of the ligand integrates into the solid phase so that it displays formal M-L bonding that can be detected by physical analytical techniques and the gross solid ligand-modified poly oxo-hydroxy metal ion material has one or more reproducible physico-chemical properties, the process comprising: (a) mixing the metal ion(s) M and the ligand(s) L in a reaction medium at a first pH(A) at which the components are soluble; (b) changing the pH(A) to a second pH(B) to cause a solid precipitate of the ligand-modified poly oxo-hydroxy metal ion material to be formed; (c) separating, and optionally drying, the solid ligand-modified poly oxo-hydroxy metal ion material produced in step (b). (d) testing the desired physico-chemical characteristic(s) of the precipitated solid ligand-modified poly oxo-hydroxy metal ion material; and (e) repeating steps (a) to (d) as required by varying one or more of: (i) the identity or concentration of the metal ion(s) (M) and/or the ligand(s) (L) supplied in step (a); and/or (ii) the ratio of metal ion(s) (M) to ligand(s) (L) supplied in (a); and/or (iii) pH(A); and/or (iv) pH(B); and/or (v) the rate of change from pH(A) to pH(B); and/or (vi) the presence or concentration of a buffer; thereby to produce a solid ligand-modified poly oxo-hydroxy metal ion material having the desired physico-chemical property.
[0019] Examples of possible metal ions and ligands are provided below. In some embodiments, the materials of the present invention may employ more than one species of metal ion or ligand, for example two, three, four or five different species of metal ion or ligand. In addition, in some embodiments, the ligand(s) L may also have some buffering capacity as described in more detail below.
[0020] As part of the process for optimising a desired physico-chemical property of the material to provide for its application, it may be desirable to vary physical or chemical reaction conditions used in the process for making the solid ligand-modified poly oxo-hydroxy metal ion material, for example the temperature of the reaction, the ionic content and strength of the solution, buffering capacity of the solution (e.g. using a buffer such as MOPS as in the examples), or the conditions and apparatus used to mix the reactants, to determine whether and how this affects one or more properties of the material.
[0021] In a further aspect, the present invention provides a process for making solid ligand-modified poly oxo-hydroxy metal ion materials for administration to a subject, the process comprising having optimised a solid ligand-modified poly oxo-hydroxy metal ion material according to the process as disclosed herein, the further step of manufacturing the solid ligand-modified poly oxo-hydroxy metal ion material in bulk and/or formulating it in a composition.
[0022] In one embodiment, the processes of the present invention have been employed by way of example to optimise and produce ferric iron compositions, e.g. for use as iron supplements, fortificants or therapeutics. As is generally used in the art, supplements are nutritional compositions that are taken by subjects to correct, prevent or insure against a deficiency in a mineral or other dietary component. A fortificant is somewhat similar to a supplement but is generally applied to compositions that are added routinely to foodstuffs to improve their nutritional value, for example the addition of iodide to table salt, B group vitamins to breakfast cereals or iron to cereal products. In addition, compositions may be used therapeutically, usually in the context of preventing or treating a pathology or condition caused by the deficiency in a mineral or other dietary component. In the case of iron, the ferric iron compositions disclosed herein may be employed as supplements, fortificants or as therapeutic compositions, for example in the treatment of iron deficiency in pregnant or pre-menopausal women, cancer or inflammatory disease. Such therapeutics are typically administered orally or intravenously.
[0023] Accordingly, in a further aspect, the present invention provides a ferric iron composition for use in therapy which comprises a solid ligand-modified poly oxo-hydroxy metal ion material comprising metal ions (M), ligands (L) and oxo or hydroxy groups (OH), wherein M represents one or more metal ions that comprise Fe3+ ions, L represents one or more ligands and wherein the material has a polymeric structure in which the ligands L are non-stoichiometrically substituted for the oxo or hydroxy groups and are distributed within the solid phase structure of the metal oxo-hydroxy material and so that the substitution of the oxo or hydroxy groups by the ligands is substantially random, wherein at least some of the ligand integrates into the solid phase so that it displays formal M-L bonding that can be detected by physical analytical techniques and the solid ligand-modified poly oxo-hydroxy metal ion material having one or more reproducible physico-chemical properties.
[0024] Generally a useful dietary iron supplement needs to share some characteristics of simple ferrous salts, namely cost relatively little and be reasonably well absorbed, but at the same time, be less redox active and hence lead to a low incidence of side-effects. Some ferric salts do not suffer from this disadvantage as they are already oxidised, and are therefore less prone to redox activity because the initiation of iron reduction in the gastrointestinal lumen is less favourable than the initiation of iron oxidation. Moreover, the controlled mucosal reduction of ferric iron, via the mucosal protein DcytB, may provide a rate-limiting step for the entry of iron to the circulation, which would lower the production of circulating non-transferrin bound iron (NTBI). NTBI may lead to oxidative damage in the circulation, endothelium and the more vascular organs. However, simple ferric salts are not efficient supplements because their rapid dissolution in the stomach is followed by concentration-dependent oxo-hydroxy polymerisation in the small bowel which inhibits their absorption. Thus, while ferric iron salts, typically ferric chloride, have been tried as fortificants in certain foods, these are poorly absorbed at supplemental or therapeutic doses due to uncontrolled delivery of ferric ions into the small bowel at bolus doses. Chelation of ferric iron, for example with maitól, may help overcome this small bowel solubility issue for bolus doses, but has not proven commercially viable due to production costs (WO 03/097627). In addition there are concerns over the safety of chelators such as maitól. The compositions disclosed herein are engineered to overcome such absorption, safety, side effect and production cost problems. Thus, these solid ligand-modified poly oxo-hydroxy metal ion materials can be tailored to have distinct dissolution profiles in the stomach environment compared to the small bowel environment. In this way, rapid dissolution in the stomach that then leads to undesirable bolus delivery of iron in the small bowel, as occurs for simple ferrous and ferric salts, can be avoided in the design of these materials. Both the pH of dissolution and the rate of dissolution can be engineered to match requirements. Potentially, these solid phase ligand-modified poly oxo-hydroxy ferric iron materials could be tailored to ’sense’ iron requirements. Absorption of iron from the gut lumen and into the circulation occurs in individuals who require iron. In those who do not require iron there will be little or no absorption and more iron will remain in the lumen. The dissolution or disaggregation of these solid phase ligand-modified poly oxo-hydroxy ferric iron materials could be ’set’ such that they dissolve or disaggregate efficiently in an environment that is low in aquated iron, but inefficiently in an environment that is high in aquated iron. This again would help to reduce side effects without compromising absorption in those who need iron. Whether these materials are designed to dissolve or disaggregate under gastrointestinal conditions depends upon the optimal mode of iron absorption in the gut as both soluble iron and very small aquated particulate iron could both be absorbed but, either way, the ligand-modified poly oxo-hydroxy ferric iron materials could be so designed.
[0025] In a further aspect, the present invention provides compositions for use in therapy comprising a solid ligand- modified poly oxo-hydroxy metal ion material as described herein. In a further aspect, the present invention provides the use of a composition comprising a solid ligand-modified poly oxo-hydroxy metal ion material as described herein for the preparation of a medicament for therapeutic delivery of the metal ion to a subject or for use the therapeutic removal or inhibition of an endogenous substance present in a subject that is capable of binding to the solid ligand-modified poly oxo-hydroxy metal ion material.
[0026] In a further aspect, the present invention provides a composition comprising a solid ligand-modified poly oxo-hydroxy metal ion material as described herein for use in therapy for delivery of the metal ion to the subject or for use the therapeutic removal or inhibition of an endogenous substance present in a subject that is capable of binding to the solid ligand-modified poly oxo-hydroxy metal ion material.
[0027] Examples of the uses of the solid ligand-modified poly oxo-hydroxy metal ion materials disclosed herein include, but are not limited to, uses as: dietary mineral supplements and fortificants; therapeutic mineral supplements (e.g. as administered by i.v. and oral routes); drugs, nutrients or cosmetic carriers/co-complexes; phosphate binding agents; other binding or sequestering applications; food additives; antiperspirants; sun-protection agents; vaccine adjuvants; immuno-modulatory agents; direct cosmetic applications including exfoliating agents; bone and dental filler/cements; implant materials including brachytherapy, and imaging and contrast agents.
[0028] Embodiments of the present invention will now be described by way of example and not limitation with reference to the accompanying figures and examples.
Brief Description of the Figures [0029]
Figure 1 : Examples of the effects of weak (succinate, closed square), intermediate (malate, open circle) and strong (maitól, closed triangle) ligands on the formation of solid ligand-modified poly oxo-hydroxy metal ion material (A) and the disaggregation of the wet solid materials in buffers at pH 6 (black bars) and pH 4 (grey bars) (B), using the method described in "screening assay". The ratios indicated are M:L ratios that were selected for formation of the materials. The iron concentration in the initial solution (prior to precipitation) was 27mM.
Figure 2: Effect of different ligands on the evolution of precipitation of solid ligand-modified poly oxo-hydroxy metal ion materials with increasing pH as described in titration protocol: no ligand (open circle), tartaric acid (closed square) and malic acid (closed triangle). All were prepared in 50mM MOPS and 0.9% w/v NaCI. The iron concentration in the initial solution (prior to precipitation) was 27mM.
Figure 3: Example of the effect of varying the pH of the final solution during the preparation of the solid ligand-modified poly oxo-hydroxy metal ion materials on the disaggregation of these wet materials at different pHs in the buffers indicated. The materials, namely FeOHM-1:2-MOPS50, were prepared following the preparation protocol described in Methods with 0.9% w/v NaCI and final pH 6 (grey bars), pH 7 (striped bars) or pH 8 (black bars). The percentage precipitation obtained was 10%, 30% and 48% respectively. The iron concentration in the initial solution (prior to precipitation) was 27mM.
Figure 4: Example of how the presence of an electrolyte in the preparation of the solid ligand-modified poly oxo-hydroxy metal ion materials can affect the disaggregation of the material at four different pHs in the buffers indicated. Materials were prepared following the preparation protocol described in Methods and oven dried. The materials, namely FeOHT-4:1-MOPS50, were prepared at a final solution pH of 6.5 and formed in the absence of electrolyte (grey bars, n=2) or in the presence of 0.9% w/v NaCI (stripped bars, n=1); the percentage precipitation obtained was 97% and 98% respectively (A). The material, namely FeOHT-2:1-Niacin50, were prepared at a final solution pH of 3.2 in the absence of electrolyte (grey bars, n=2) or in the presence of 0.9% w/v KCI (black bars, n=2); the percentage precipitation obtained was 88% and 91% respectively (B). The iron concentration in the initial solution (prior to precipitation) was 27mM.
Figure 5: Example of how drying the solid ligand-modified poly oxo-hydroxy metal ion materials can affect its disaggregation at four different pHs in the buffers indicated. The materials, namely FeOHT-4:1-MOPS50, was prepared following the preparation protocol described in method with a final solution pH of 6.5 in the absence of electrolyte. The percentage precipitation obtained was 97%. The solid phase was divided into three aliquots and either oven dried (grey bars, n=2), or freeze-dried (black bars, n=2) or used wet (stripped bars, n=2). Note: some error bars are too small to be viewed. Data shown in grey bars have been shown previously in Figure 4A. The iron concentration in the initial solution (prior to precipitation) was 27mM.
Figure 6: Example of the effect of "ligand B" on the evolution of precipitation of the solid ligand-modified poly oxo-hydroxy metal ion material with increasing pH in presence (i) or absence (ii) of "ligand A", namely tartaric acid, at M:La ratio 4:1. "Ligand B" showed were either 50mM adipic acid (squares) or 50mM MOPS (triangles). All titrations were performed following the protocol described in the methods and in the absence of electrolyte. The iron concentration in the initial solution (prior to precipitation) was 27mM.
Figure 7: Example of the effect of ligand B on the disaggregation of oven dried solid ligand-modified poly oxo-hydroxy metal ion materials in four different buffers. Tartrate-modified poly oxo-hydroxy ferric materials at M:LA ratio 4:1, with tartrate being ligand A (LA), were prepared in the presence of different ligands B being 50mM MOPS (grey bars, n=2), 20 mM benzoic acid (black bars, n=3) or 50mM niacin (stripped bars, n=3) following the preparation protocol described in Methods in the absence of electrolyte. The percentage precipitation obtained was 97%, 94% and 100% respectively. Note: some error bars are too small to be viewed. The data indicated in grey bars have been shown previously in Figure 4A and 5.
Figure 8. Energy dispersive X-ray microanalysis (EDX) of a ligand-modified poly oxo-hydroxy metal ion material (FeOHT-3:1-Ad20) showing the composition of the material to be predominantly Fe and O with incorporation of C plus very small additions of Na and Cl from the electrolyte used (the Cu signal is due to the support grid).
Figure 9. Typical infrared spectra of solid ferric oxo-hydroxide in (A), the tartrate-modified ferric oxo-hydroxide in (B) (i.e. the ligand-modified poly oxo-hydroxy metal ion material; FeOHT-4:1) and tartaric acid in (C). The band corresponding to the C=0 stretch of tartaric acid (1712 cm-1 in spectrum C) is replaced by two bands (1356 and 1615 cm-1 in spectrum B) showing the presence of bonding between the carboxylate group of tartaric acid and iron in the FeOHT-4:1 material. Note also the presence of a broad band circa 3350 cm-1 due to - OH stretch in spectra A and B.
Figure 10. Percentage of iron disaggregation (without ultrafiltration, A) and dissolution (with ultrafiltration, B) after simulated passage through the stomach for the time indicated. Prior art is shown in closed symbols, namely ferric oxo-hydroxide (closed squares), Maltofer (closed circles), ferrous sulphate (closed triangles). The ligand-modified poly oxo-hydroxy metal ion materials are shown in open symbols, namely FeOHT-3:1-Ad20 (open diamonds) and FeOHM-4:1-Bic25 (open triangles). Error bars represent STDEV (note that certain error bars are too small to be visible).
Figure 11. Aberration corrected high angle annular dark field scanning transmission electron microscopy (super-STEM) high resolution images showing that organised, crystalline regions are less frequently discernible in ligand-modified poly oxo-hydroxy metal ion materials (e.g. FeOH-TRP15 (B) and especially in FeOHT-2:1-TRP15 (C)) than in similar sized unmodified ferric iron oxo-hydroxide (A).
Figure 12. X-ray diffraction pattern of Maltofer (A) and the ligand-modified poly oxo-hydroxy metal ion material FeOHT-3:1-Ad20 (B) showing a clear presence of iron oxo-hydroxide crystal structure in Maltofer and a clear lack of detectable crystalline structure in FeOHT-3:1-Ad20, apart from the co-precipitated electrolyte, sodium chloride. Reference lines for iron oxide and sodium chloride are shown below each graph for clarity.
Figure 13: Examples of the serum iron increase (A) and percentage iron absorption (B) in human volunteers following ingestion of ferrous sulphate, ferric oxo-hydroxide or different solid ligand-modified poly oxo-hydroxy ferric materials. A: ferrous sulphate (open triangle, n=30); FeOHT-3:1-Ad20 (+ symbol, n=4); FeOHT-2:1-TRP15 (- symbol, n=4); FeOHAdipatel00 (x symbol, n=2); FeOHHistidinelOO (closed square, n=2); FeOHM-4:1-Bic25 (open square, n=3); FeOHGIuconic20 (closed triangle, n=3); FeOHT-2:1-Niacin50 (open circle, n=3); FeOH (closed circle, n=2). B: Percentage iron absorption (calculated as the red blood cell incorporation of 58Fe divided by 0.80) from ferric oxo-hydroxide or the solid ligand-modified poly oxo-hydroxy ferric materials (black bars) compared with estimated absorption of iron from ferrous sulphate for the same group of study participants (open bars). Error bars represent the SEM. Number of each pairing vary from 2 to 4, except forferrous sulphate in the FeOH Histidinel 00 group which was 1.
Figure 14: Disaggregation of iron during simulated passage through the stomach and duodenum from (A) prior art compounds: ferric pyrophosphate (Closed diamond), ferric chloride (Closed square), ferric tri-maltol (Closed triangle), ferrous bisglycinate (Open square); and (B) a selection of compounds tested in our in vivo study in Figure 13: ferrous sulphate (Open square), FeOHT-3:1-Ad20 (Open diamond) and FeOHM-4:1-Bic25 (Closed circle). For details of the protocol see In vitro gastrointestinal digestion assay in the Methods.
Figure 15: Examples of the effect of different ligands, at differing M:L ratios, on the percentage of iron disaggregation (A) and on the percentage of iron dissolution (B) of solid ligand-modified poly oxo-hydroxy metal ion materials, after 30 minutes incubation at gastric pH 1.2 (black bars, n=3) or 60 minutes incubation at intestinal pH 7.0 (open bars, n=3); error bars represent standard deviations.
Figure 16: Evolution of the formation of the ligand-modified poly oxo-hydroxy ferric materials, namely FeOHT-2:1-Ad20, with increasing pH, as described in the titration protocol in Methods, and expressed as the percentage of total iron in the starting solution. Percentage iron in the aggregated material is shown by the closed triangles while the percentage of iron in both the aggregated and aquated particulate materials is shown by the closed square. Note: the remaining iron (i.e. the iron that is not in the aggregated or aquated particulate form) is in the soluble phase.
Figure 17: Example of the effect of ligand, M:L ratio, and final solution pH of formation on the disaggregation of the tartrate-modified poly oxo-hydroxy ferric materials through the modified in vitro gastrointestinal digestion assay described in methods. Bars represent the particle size distribution of the disaggregated materials as a percentage of total iron in solid phase. Size ranges determined were <5nm (stripped section), 5-20nm(grey section), 20-300 nm (black section), and 1-10 μίτι (white section).
Detailed Description
The Metal Ion (M) [0030] The solid ligand-modified poly oxo-hydroxy metal ion materials may be represented by the formula (MxLy(OH)n), where M represents one or more metal ions. Normally, the metal ion will originally be present in the form of a salt that in the preparation of the materials may be dissolved and then induced to form poly oxo-hydroxy co-complexes with ligand (L) some of which is integrated into the solid phase through formal M-L bonding, i.e. not all of the ligand (L) is simply trapped or adsorbed in the bulk material. The bonding of the metal ion in the materials can be determined using physical analytical techniques such as infrared spectroscopy where the spectra will have peaks characteristic of the bonds between the metal ion and the ligand (L), as well as peaks characteristic of other bonds present in the material such as M-O, O-H and bonds in the ligand species (L). Preferred metal ions (M) are biologically compatible under the conditions for which the materials are used and are readily precipitatable from aqueous solution by forming oxo-hydrox-ides. Examples of metal ions include iron, calcium, magnesium, zinc, copper, manganese, chromium and aluminium ions. A particularly preferred metal ion is ferric iron (Fe3+).
[0031] By way of reference to the ferric iron compositions disclosed herein, the presence of formal bonding is one aspect that mainly distinguishes the materials from other products such as "iron polymaltose" (Maltofer) in which particulate crystalline iron oxo-hydroxide is surrounded by a sugar shell formed from maltose and thus is simply a mixture of iron oxo-hydroxide and sugar at the nano-level (Heinrich (1975); Geisser and Müller (1987); Nielsen et al (1994; US Patent No: 3,076,798); US20060205691). In addition, the materials of the present invention are metal poly oxo-hydroxy species modified by non-stoichiometric ligand incorporation and should therefore not be confused with the numerous metal-ligand complexes that are well reported in the art (e.g., see WO 03/092674, WO 06/037449). Although generally soluble, such complexes can be precipitated from solution at the point of supersaturation, for example ferric trimaltol, Harvey et al. (1998), WO 03/097627; ferric citrate, WO 04/074444 and ferric tartrate, Bobtelsky and Jordan (1947) and, on occasions, may even involve stoichiometric binding of hydroxyl groups (for example, ferric hydroxide saccharide, US Patent No: 3,821,192). The use of hydroxyl groups to balance the charge and geometry of metal-ligand complexes is, of course, well reported in the art (e.g. iron-hydroxy-malate, WO 04/050031) and unrelated to the solid ligand-modified poly oxo-hydroxy metal ion materials reported herein.
[0032] Without modification, the primary particles of the materials have metal oxide cores and metal hydroxide surfaces and within different disciplines may be referred to as metal oxides or metal hydroxides. The use of the term ’oxo-hydroxy’ or ’oxo-hydroxide’ is intended to recognise these facts without any reference to proportions of oxo or hydroxy groups. Hydroxy-oxide could equally be used therefore. As described above, the materials of the present invention are altered at the level of the primary particle of the metal oxo-hydroxide with at least some of the ligand L being introduced into the structure of the primary particle, i.e. leading to doping or contamination of the primary particle by the ligand L. This may be contrasted with the formation of nano-mixtures of metal oxo-hydroxides and an organic molecule, such as iron saccharidic complexes, in which the structure of the primary particles is not so altered.
[0033] The primary particles of the ligand-modified poly oxo-hydroxy metal ion materials described herein are produced by a process referred to as precipitation. The use of the term precipitation often refers to the formation of aggregates of materials that do separate from solution by sedimentation or centrifugation. Here, the term "precipitation" is intended to describe the formation of all solid phase material, including aggregates as described above and solid materials that do not aggregate but remain as non-soluble moieties in suspension, whether or not they be particulate, colloidal or sub- colloidal (nanoparticulates). These latter solid materials may also be referred to as aquated particulate solids.
[0034] In the present invention, reference may be made to the modified metal oxo-hydroxides having polymeric structures that generally form above the critical precipitation pH. As used herein, this should not be taken as indicating that the structures of the materials are polymeric in the strict sense of having a regular repeating monomer unit because, as has been stated, ligand incorporation is, except by co-incidence, non-stoichiometric. The ligand species is introduced into the solid phase structure by substituting for oxo or hydroxy groups leading to a change in solid phase order. In some cases, for example the production of the ferric iron materials exemplified herein, the ligand species L may be introduced into the solid phase structure by the substitution of oxo or hydroxy groups by ligand molecules in a manner that decreases overall order in the solid phase material. While this still produces solid ligand modified poly oxo-hydroxy metal ion materials that in the gross form have one or more reproducible physico-chemical properties, the materials have a more amorphous nature compared, for example, to the structure of the corresponding metal oxo-hydroxide. The presence of a more disordered or amorphous structure can readily be determined by the skilled person using techniques well known in the art. One exemplary technique is X-ray diffraction (XRD) which will produce an X-ray diffraction pattern for the ferric iron materials exemplified herein having poorly identifiable peaks for Lor MO/MOH, XRD relying on a regular arrangement of atoms to diffract the X-rays and produce a pattern. Alternatively or additionally, a decrease in the crystallinity of the structure of the material may be determined by high resolution transmission electron microscopy. High resolution transmission electron microscopy allows the crystalline pattern of the material to be visually assessed. It can indicate the primary particle size and structure (such as d-spacing) and give some information on the distribution between amorphous and crystalline material. Using this technique, it is apparent that the chemistry described above increases the amorphous phase of our described materials compared to corresponding materials without the incorporated ligand. This may be especially apparent using high angle annular dark field aberration-corrected scanning transmission electron microscopy due to the high contrast achieved while maintaining the resolution thus allowing the surface as well as the bulk of the primary particles of the material to be visualised.
[0035] The reproducible physico-chemical property or characteristic of the materials of the present invention will be dependent on the application for which the material is intended. Examples of the properties that can be usefully modulated using the present invention include: dissolution (rate, pH dependence and pM dependence), disaggregation, adsorption and absorption characteristics, reactivity-inertness, melting point, temperature resistance, particle size, magnetism, electrical properties, density, light absorbing/reflecting properties, hardness-softness, colour and encapsulation properties. Examples of properties that are particularly relevant to the field of supplements, fortificants and mineral therapeutics are physico-chemical properties selected from one or more of a dissolution profile, an adsorption profile ora reproducible elemental ratio. In this context, a property or characteristic may be reproducible if replicate experiments are reproducible within a standard deviation of preferably ± 10%, and more preferably ± 5%, and even more preferably within a limit of ± 2%.
[0036] The dissolution profile of the solid ligand-modified poly oxo-hydroxy metal ion materials can be represented by different stages of the process, namely disaggregation and dissolution. The term dissolution is used to describe the passage of a substance from solid to soluble phase. More specifically, disaggregation is intended to describe the passage of the materials from a solid aggregated phase to an aquated phase that is the sum of the soluble phase and the aquated particulate phase (i.e. solution plus suspension phases). Therefore, the term dissolution as opposed to disaggregation more specifically represents the passage from any solid phase (aggregated or aquated) to the soluble phase.
[0037] Preferred specific examples of the metal ions (M) include, but are not restricted to, Groups 2, 3 and 5 metals of the periodic table, the transition metals, heavy metals and lanthanoids. Examples include, but are not restricted to: Ag2+, Al3+, Au3+, Be2+, Ca2+, Co2+, Cr3+, Cu2+, Eu3+, Fe3+, Mg2+, Mn2+, Ni2+, Sr2+, V5+, Zn2+, Zr2+. Moreover, many of these metal cations take on different oxidation states so it will also be appreciated that these examples are not restricted to the oxidation states shown. In many cases, the solid ligand-modified poly oxo-hydroxy metal ion materials comprise a single species of metal ion, for example Fe3+.
The Ligand (L) [0038] In the solid phase ligand-modified poly oxo-hydroxy metal ion-species represented by the formula (MxLy(OH)n), L represents one or more ligands or anions, such as initially in its protonated or alkali metal form, that can be incorporated into the solid phase ligand-modified poly oxo-hydroxy metal ion material. Typically, this is done to aid in the modification of a physico-chemical property of the solid material, e.g. as compared to a poly oxo-hydroxylated metal ion species in which the ligand(s) are absent. In some embodiments of the present invention, the ligand(s) L may also have some buffering capacity. Examples of ligands that may be employed in the present invention include, but are by no means limited to: carboxylic acids such as adipic acid, glutaric acid, tartaric acid, malic acid, succinic acid, aspartic acid, pimelic acid, citric acid, gluconic acid, lactic acid or benzoic acid; food additives such as maitól, ethyl maitól or vanillin; ’classical anions’ with ligand properties such as bicarbonate, sulphate and phosphate; mineral ligands such as silicate, borate, molybdate and selenate; amino acids such as tryptophan, glutamine, proline, valine, or histidine; and nutrient-based ligands such as folate, ascorbate, pyridoxine or niacin. Typically ligands may be well recognised in the art as having high affinity for a certain metal ion in solution or as having only low affinity or not be typically recognised as a ligand for a given metal ion at all. However, we have found that in poly oxo-hydroxy metal ion materials, ligands may have a role in spite of an apparent lack of activity in solution. Typically, two ligands of differing affinities for the metal ion are used in the production of these materials although one, two, three, four or more ligands may be useful in certain applications.
[0039] For many applications, ligands need to be biologically compatible under the conditions used and generally have one or more atoms with a lone pair of electrons at the point of reaction. The ligands include anions, weak ligands and strong ligands. Ligands may have some intrinsic buffering capacity during the reaction. Without wishing to be bound by a particular explanation, the inventors believe that the ligands have two modes of interaction: (a) substitution of hydroxy groups and, therefore, incorporation with a largely covalent character within the material and (b) non-specific adsorption (ion pair formation). These two modes likely relate to differing metal-ligand affinities (i.e. strong ligands for the former and weak ligands/anions for the latter). There is some evidence in our current work that the two types of ligand are synergistic in modulating dissolution characteristics of the materials and, perhaps, therefore, in determining other characteristics of the material. In this case, two ligand types are used and at least one (type (a)) is demonstrable as showing metal binding within the material. Ligand efficacy, probably especially for type (b) ligands, may be affected by other components of the system, particularly electrolyte.
[0040] The ratio of the metal ion(s) to the ligand(s) (L) is also a parameter of the solid phase ligand-modifiedpoly oxo-hydroxy metal iron material that can be varied according to the methods disclosed herein to vary the properties of the materials. Generally, the useful ratios of M Twill be between 10:1,5:1,4:1,3:1,2:1 and 1:1 and 1:2,1:3,1:4,1:5 or 1:10.
Hydroxy and oxo groups [0041] The present invention may employ any way of forming hydroxide ions at concentrations that can provide for hydroxy surface groups and oxo bridging in the formation of these poly oxo-hydroxy materials. Examples include but are not limited to, alkali solutions such as sodium hydroxide, potassium hydroxide and sodium bicarbonate, that would be added to increase [OH] in an ML mixture, or acid solutions such as mineral acids or organic acids, that would be added to decrease [OH] in an ML mixture.
Conditions used in the process [0042] The exact conditions of mixing and precipitation of the solid ligand-modified poly oxo-hydroxy metal ion material will vary depending upon the desirable characteristics of the solid material. Typical variables are: (1) Starting pH (i.e. the pH at which M and L are mixed). This is always a different pH to that at which oxo-hydroxy polymerisation commences. Preferably, it is a more acidic pH, more preferably below a pH of 2. (2) The pH at which oxo-hydroxy polymerisation commences. This is always a different pH to that of the starting pH. Preferably, it is a less acidic pH and most preferably above a pH of 2. (3) Final pH. This will always promote precipitation and may promote agglomeration of the solid ligand-modified poly oxo-hydroxy metal ion material and preferably will be a higher pH than the pH at which oxo-hydroxy polymerisation commences. It will be appreciated by the skilled person that where a pH difference exists between commencement of oxo-hydroxy polymerisation and the final pH value, addition of further M, L, OH-, H+, excipients or other substances may be undertaken before the final pH value is achieved. (4) Rate of pH change from commencement of oxo-hydroxy polymerisation to completion of reaction. This will occur within a 24 hour period, preferably within an hour period and most preferably within 20 minutes.
Concentrations of M and L. While the concentration of OH is established by the pH during oxo-hydroxy polymerisation, the concentrations of total M and total L in the system will be fixed by the starting amounts in the ML mix and the final solution volume. Typically, this will exceed 10-6 molar for both M and L and more preferably it will exceed 10-3 molar. Concentrations of M and L are independent and chosen for one or more desired characteristics of the final material and especially so that the concentration of M is not too high such that the rate of oxo-hydroxy polymerisation occurs too rapidly and prevents L incorporation. Similarly the concentration of L will not be too high to prevent metal oxo-hydroxy polymerisation. For example, the ligand-modified poly oxo-hydroxy materials in which M is ferric iron are produced preferably with iron concentrations of the initial solution below 300 mM and most preferably below 200 mM, providing ranges of ferric iron concentrations between between 1 mM and 300mM, more preferably between 20mM and 200mM, and most preferably of about 40mM. (5) Solution phase. The preferred solution for this work is aqueous and most preferably is water. (6) Buffer. The solution may have a buffer added to help stabilise the pH range of oxo-hydroxy polymerisation. Buffers may be inorganic or organic, and in some embodiments will not be involved in formal bonding with the metal ion(s) M of the solid phase material. Alternatively, one or more of the ligands L involved in formal bonding with the metal ion(s) M of the solid phase material may have some buffering capacity that is additionally favourable in achieving the desired composition of the final material. Buffer concentrations are less than 500 mM, preferably less than 200 mM and most preferably less than 100 mM. (7) Temperature. The preferred temperature is above 0 and below 100°C, typically between room temperature (20-30°C) and 100°C, most typically at room temperature. (8) Ionic strength. Electrolyte such as, but not limited to, potassium chloride and sodium chloride, may be used in the procedure. The ionic strength of the solution may thus range from that solely derived from the components and conditions outlined in (1)-(8) above orfrom the further addition of electrolyte which may be up to 10% (w/v), preferably up to 2%, and most preferably <1%. (9) Extent of mixing of the components. This issue mainly relates to degree of stirring and preferably stirring is achieved such that the starting solutions (i.e. M, L and buffer) are rapidly mixed and maintained homogenous throughout.
[0043] It will be apparent to those skilled in the art that while the above variables may all control the physico-chemical nature of the precipitate, further variables such as the collection system and/or excipients used for the recovery of the precipitate, which may involve purposeful inhibition of agglomeration, its drying and its grinding may subsequently affect the material properties. However, these are general variables to any such system for solid extraction from a solution phase. After separation of the precipitated material, it may optionally be dried before use of further formulation. The dried product may, however, retain some water and be in the form of a hydrated solid phase ligand-modified poly oxo-hydroxy metal ion material. It will be apparent to those skilled in the art that at any of the stages described herein for recovery of the solid phase, excipients may be added that mix with the ligand-modified poly oxo-hydroxy metal ion material but do not modify the primary particle and are used with a view to optimising formulation forthe intended function of the material. Examples of these could be, but are not limited to, glycolipids, phospholipids (e.g. phosphatidyl choline), sugars and polysaccharides, sugar alcohols (e.g. glycerol), polymers (e.g. polyethyleneglycol (PEG)) and taurocholic acid.
Formulations and Uses [0044] The solid phase materials of the present invention may be formulated for use in a range of biologically relevant applications, including formulation for use as pharmaceutical, nutritional, cosmetic, or personal hygiene compositions. The compositions of the present invention may comprise, in addition to one or more of the solid phase materials of the invention, a pharmaceutically acceptable excipient, carrier, buffer, stabiliser or other materials well known to those skilled in the art. Such materials should be non-toxic and should not interfere with the efficacy of the solid phase materials for the application in question.
[0045] The precise nature of the carrier or other component may be related to the manner or route of administration of the composition. These compositions may be delivered by a range of delivery routes including, but not limited to: gastrointestinal delivery, including orally and per rectum; parenteral delivery, including injection; dermal delivery including patches, creamsetc; mucosal delivery, including nasal, inhalation and via pessary; or by implantatspecificsites, including prosthetics that may be used for this purpose or mainly for another purpose but have this benefit.
[0046] Pharmaceutical compositions for oral administration may be in a tablet, capsule, powder, gel or liquid form. A tablet may include a solid carrier such as gelatin or an adjuvant. Capsules may have specialised properties such as an enteric coating. Liquid pharmaceutical compositions generally include a liquid carrier such as water, petroleum, animal orvegetableoils, mineral oil or syntheticoil. Physiological saline solution, dextrose or other saccharide solution orglycols such as ethylene glycol, propylene glycol or polyethylene glycol may be included. Where the solid ligand-modified poly oxo-hydroxy metal ion material needs to be maintained in a solid form, e.g. to control the delivery of a component of the material, it may be necessary to select components of the formulation accordingly, e.g. where a liquid formulation of the material is made.
[0047] For intravenous, cutaneous or subcutaneous injection, or injection at the site of affliction, the active ingredient will be in the form of a parenterally acceptable aqueous solution or suspension which is pyrogen-free and has suitable pH, isotonicity and stability. Those of relevant skill in the art are well able to prepare suitable solutions using, for example, isotonic vehicles such as Sodium Chloride Injection, Ringer’s Injection, Lactated Ringer’s Injection. Preservatives, stabilisers, buffers, antioxidants and/or other additives may be included, as required.
[0048] The materials and compositions used in accordance with the present invention that are to be given to an individual are preferably administered in a "prophylactically effective amount" or a "therapeutically effective amount" (as the case may be, although prophylaxis may be considered therapy), this being sufficient to show benefit to the individual (e.g. bioavailability). The actual amount administered, and rate and time-course of administration, will depend on the nature and severity of what is being treated. Prescription of treatment, e.g. decisions on dosage etc, is within the responsibility of general practitioners and other medical doctors, and typically takes account of the disorder to be treated, the condition of the individual patient, the site of delivery, the method of administration and other factors known to practitioners. Examples of the techniques and protocols mentioned above can be found in Remington’s Pharmaceutical Sciences, 20th Edition, 2000, Lippincott, Williams &amp; Wilkins. A composition may be administered alone or in combination with other treatments, either simultaneously or sequentially, dependent upon the condition to be treated.
[0049] Examples of the uses of the solid ligand-modified poly oxo-hydroxy metal ion materials disclosed herein include, but are not limited to, uses as: dietary mineral supplements and fortificants; therapeutic mineral supplements (e.g. as administered by i.v. and oral routes); drugs, nutrients or cosmetic carriers/co-complexes; phosphate binding agents; other binding or sequestering applications; food additives; antiperspirants; sun-protection agents; vaccine adjuvants; immuno-modulatory agents; direct cosmetic applications including exfoliating agents; bone and dental filler/cements; implant materials including brachytherapy, and imaging and contrast agents.
[0050] Ligand-modified poly oxo-hydroxide materials may be used as supplements for nutritional or medical benefit. In this area, there are three main examples: (i) Therapeutic (prescription) supplements, which are generally administered by the oral or i.v. routes for the treatment of indications including iron deficiency anaemia, iron deficiency and anaemia of chronic disease. The therapeutic administration of materials of the present invention may be in conjunction with other therapies and especially with the concomitant use of erythropoietin. (ii) Nutritional (self prescribed/purchased supplements) which are usually for oral delivery. (iii) Fortificants. These may be traditional forms- in terms of being added to food prior to purchase - or more recent fortificant forms such as ’Sprinkles’ which are added (like salt or pepper) to food at the time of ingestion.
[0051] In all formats, but most especially for fortificants, subsequent formulation, such as addition of a protective coating (e.g. lipid), may be necessary to make the material compatible with its intended usage. In addition, any of these supplemental forms can be co-formulated, either by incorporation within the material through use of co-formulated material(s) as ligand(s) orthrough trapping/encapsulation of said materials, orsimply through co-delivery of said materials.
[0052] As described herein, one particular application of the solid ligand-modified poly oxo-hydroxy metal ion materials of the present invention is for the treatment of mineral deficiencies, for example iron deficiency. In an alternative application the materials may be employed to bind or sequester a component present in an individual. Byway of example, the ferric iron compositions disclosed herein may be used to deliver iron to an individual for use in the prophylaxis or treatment of iron deficiency or iron deficiency anaemia which may be suspected, or diagnosed through standard haematological and clinical chemistry techniques. Iron deficiency and iron deficiency anaemia may occur in isolation, for example due to inadequate nutrition or due to excessive iron losses, or they may be associated with stresses such as pregnancy or lactation, or they may be associated with diseases such as inflammatory disorders, cancers and renal insufficiency. In addition, there is evidence that the reduced erythropoiesis associated with anaemia of chronic disease may be improved or corrected by the effective delivery of systemic iron and that co-delivery of iron with erythropoietin or its analogues may be especially effective in overcoming reduced erthropoietic activity. Thus, byway of further example, the ferric iron compositions disclosed herein may be used to deliver iron to an individual for use in the treatment of sub-optimal erythropoietic activity such as in anaemia of chronic disease. Anaemia of chronic disease may be associated with conditions such as renal insufficiency, cancer and inflammatory disorders. As noted above, iron deficiency may also commonly occur in these disorders so it follows that treatment through iron supplementation may address iron deficiency alone and/or anaemia of chronic disease. It will be recognised by those skilled in the art that the above examples of the medical uses of iron supplements are by no means limiting.
Experimental Description
Introduction [0053] Inorganic mineral-based materials have widespread biological applications that include: dietary supplements, phosphate binding agents, antacids, immune adjuvants (alum) and antiperspirants (alum). These are often co-formulated in such a way that the mineral physico-chemical properties, such as rates of dissolution and/or disaggregation, are modestly altered in an attempt to improve their efficacy. We have however developed a procedure whereby the actual structure, at the level of the primary particle (the primary unit within the lattice structure), can be modified within oxide/hy-droxide minerals. This nano-structuring can lead to profound changes in mineral characteristics and can be tuned to provide mineral with precisely specified physico-chemical characteristics. Moreover the methodology is cheap and can be applied on as large a scale as required. The modifying agents are all biologically compatible, food grade ligands allowing rapid introduction of novel materials to human subjects. An exemplar of these materials is the production of a novel class of iron supplements that may have therapeutic parenteral and oral applications, as well as widespread roles as fortificants and dietary supplements.
[0054] With supplements, we believe that one desirable property is that the rate of nutrient absorption mimics that seen for the same nutrient when ingested in a food. For example, with iron, the rate of dietary iron absorption can be controlled through the rate of iron dissolution. In the following examples, we have produced a number of different solid ligand-modified poly oxo-hydroxy metal ion materials using the process of the present invention, with the aim of identifying compositions that release iron in a controlled fashion. The aim is that the rate of dissolution will allow the ferric iron to be donated to the mucosal reductase (DcytB) in a fashion that prevents build up of iron in the lumen or bolus absorption into the circulation- neither of which are desirable. Thus the ferric iron compositions of the present invention should have lower gastrointestinal side effects as they will not undergo facile redox cycling in the gut. In addition, there is scope to design the compositions to dissolve differently at gastric pH versus intestinal pH. There is also the possibility of tailoring the compositions to dissolve at different rates depending upon the concentration of iron in the local solution (e.g. the gut lumen), such that the compositions may ’sense’ iron requirements of the environment and thus iron requirements of the individual. The remaining, unabsorbed luminal iron would be largely unavailable for undesirable redox reactivity within the lumen and would pass harmlessly into the faeces.
Nomenclature of materials [0055] Throughout the examples the FeOHLA-i:j-LBk nomenclature was adopted to describe the preparation for ligand-modified poly oxo-hydroxy ferric iron materials; where LA refers to the ligand with higher solution affinity and LB to the ligand with lower solution affinity for iron. The ratio i:j refers to the molar ratio between iron (Fe) and ligand A (LA) and k refers to the concentration (mM) of ligand B(Lb) in solution prior to the precipitation of ligand-modified poly oxo-hydroxy ferric materials. Where only a weaker ligand (ligand B) was present the nomenclature used was FeOH LBk. For example, the material defined as FeOHT-3:1-Ad20 was prepared using a molar ratio of three Fe to one tartrate and a concentration of adipate of 20 mM. The iron concentration in solution was 40 mM unless stated otherwise in the figure legends.
Materials [0056] All chemicals were purchased from Sigma-Aldrich, Dorset, UK, unless otherwise specified. All laboratory ware was in polypropylene. The materials used in the preparation of the ligand-modified poly oxo-hydroxy ferric iron materials for the in vivo study were prepared with food grade chemicals or pharmaceutical grade chemicals also from Sigma-Aldrich, with the exception of the 58Fe elemental iron used in the preparation of the 58Fe ferric chloride which was purchased from Chemgas, Boulogne, France.
Methods
Screening assay [0057] A series of dietary ligands was tested in a screening assay for their effects on the formation of solid ligand-modified poly oxo-hydroxy metal ion materials. Briefly, in a centrifuge tube, a fixed volume of stock solution of ferric iron (400mM FeCI3 with 50mM MOPS, pH 1.4) was mixed with varying volumes of a stock solution of ligand (400mM with the exception of maitól which was 200mM, plus MOPS at 50mM and 0.9% NaCI) to obtain the desired metal: ligand ratio. The volumes were then equally adjusted to parity with a solution of 50mM MOPS and 0.9% NaCI. All the solutions obtained at this stage were fully soluble at pH < 2.0. A small aliquot was taken to confirm the starting iron concentration and then the pH was raised to ~6.5 by drop-wise addition of concentrated NaOH to avoid high volume changes. After centrifugation at 2500 rpm for 10 minutes, an aliquot of supernatant was taken to analyse the iron remaining in solution. The remaining supernatant was discarded and a fixed volume of dissolution buffer at pH 6 (MOPS 10mM) or pH 4 (Acetic acid 10mM) was then added to the wet solid of each tube and incubated overnight at room temperature. The tubes were then centrifuged (2500 rpm for 10 minutes) and an aliquot of supernatant taken to determine the iron that was disaggregated. The iron concentration in each aliquot was measured by ICPOES analysis.
Titration experiments [0058] An acidic concentrated stock solution of iron (as ferric chloride) was added to a solution containing either the ligand A, ligand B or both ligand A and B at appropriate concentrations to obtain the desired M:L ratios. In some cases 0.9% w/v of electrolyte (for example NaCI or KCI) was also added. The solution was mixed thoroughly and an aliquot collected for analysis of the "starting iron" concentration. The pH of the solution was always <2.0 and the iron fully solubilised. Next the pH was slowly increased by drop-wise addition of a concentrated solution of NaOH with constant agitation until the mixture reached a basic pH (generally >8.0). At different points during the titration, a homogeneous aliquot (1mL) of the mixture was collected and transferred to an Eppendorf tube. Any aggregate formed was separated from the solution by centrifugation (10 minutes at 13000 rpm). The iron concentration in the supernatant was assessed by ICPOES. In some cases the supernatant was analysed for the presence of aquated particulate iron and the size distribution was measured (see below). When aquated particulate iron was present, the supernatant was ultrafiltrated (Vivaspin 3,000 Da molecular weight cut-off polyethersulfone membrane, Sartorius Stedium Biotech GmbH, Goettingen, Germany) and the iron concentration in the filtrate, i.e. "soluble iron", was analysed by ICPOES.
Preparation of solid ligand-modified poly oxo-hydroxy ferric iron materials [0059] The materials were prepared following a protocol similar to the titration experiment described above. Briefly, an acidic concentrated stock solution of iron was added to a solution containing either the ligand A, ligand B or both ligand A and B. In some cases 0.9% w/v of electrolyte was also added. The "starting pH" of the solution was always <2.0, and the iron fully solubilised. The pH was then slowly increased by drop-wise addition of a concentrated solution of NaOH with constant agitation until reaching the desired final pH.
[0060] When preparing the solid material as a pellet, the entire mixture was then transferred to a centrifuge bottle and spun at 4500 rpm for 15 minutes. The supernatant was discarded and the aggregated solid phase collected in a petri dish. When necessary, the solid was then dried in an oven at 45 °C for a minimum of 8 hours. Alternatively, the mixture (precipitate and supernatant) was freeze-dried at -20 °C and 0.4 mbar.
[0061] When preparing the solid material as aquated particulate material, the total mixture was either freeze-dried as above, or concentrated by ultrafiltration (Vivaspin 3000 Da molecular weight cut-off polyethersulfone membrane, Sartorius Stedium Biotech GmbH, Goettingen, Germany) and then air dried in an oven at 45 °C for a minimum of 8 hours. In some cases the mixture was dialysed (1,000 Da regenerated cellulose membrane Spectra/pro 7, Cole-Parmer, London, UK) in water to remove excess iron, ligands and electrolytes before undergoing one of the drying processes described above.
[0062] When using bicarbonate as ligand B a variation of this protocol was used to avoid release of C02 from transformation of bicarbonate at acidic pH. The starting solution containing ligand A (when applicable) and bicarbonate was prepared at pH 8.5. The appropriate volume of acidic concentrated stock solution of iron was then added drop-wise in conjunction with NaOH pellets (progressively added to the mixture as required) in order to always maintain a pH >7.5. The final pH of the preparation was 8.5.
Disaggregation assay [0063] Known amounts of solid ligand-modified poly oxo-hydroxy ferric iron materials were added into tubes (about 3 mg iron pertube). Then, 3 mL of buffer (see below) were added and the tubes shaken vigorously and incubated at room temperature overnight. After centrifugation at 4500 rpm for 15 minutes to separate the aggregated solid phase from the aquated phase, an aliquot of supernatant was collected to measure the disaggregated iron concentration. The remaining supernatant was discarded. The mass of remaining material (i.e. the wet pellet) was recorded. Concentrated HN03 was added to this pellet and the new mass recorded. The tubes were left at room temperature until all the pellet dissolved and an aliquot was collected for ICPOES analysis to determine the iron concentration in the wet pellet.
[0064] The buffers were either 50mM MOPS with 0.9% NaCI at pH 7.0; 50mM Maleic acid with 0.9% NaCI at pH 5.8-6.0 and 1.8-2.2; 50mM sodium acetate/ 50mM acetic acid glacial with 0.9% NaCI at pH 4.0-4.5.
In vitro gastrointestinal digestion assay [0065] An amount of the solid ligand-modified poly oxo-hydroxy ferric iron materials or control iron materials namely ferrous sulphate, ferric chloride, or unmodified ferric oxo-hydroxide, equivalent to 60mg elemental iron, were added to a synthetic gastric (stomach) solution (50 mL of 2 g/L NaCI, 0.15 M HCI and 0.3mg/mL porcine pepsin) and incubated at 37°C for 30 minutes with radial shaking. Then 5 mL of the resulting gastric mixture was added to 30 mL of synthetic duodenal solution (containing 10g/L pancreatin and 2g/L NaCI in 50mM bicarbonate buffer pH 9.5). The final volume was 35 mL and the final pH was 7.0. The mixture was incubated at 37°C for 60 min with radial shaking. Homogeneous Aliquots (1mL) were collected at different time points during the process and centrifuged at 13,000 rpm for 10 minutes to separate the aggregate and aquated phases. The supernatant was analysed for iron content by ICPOES. At the end of the experiment, the remaining solution was centrifuged at 4,500 rpm for 15 min and the supernatant analysed for Fe content by ICPOES. The mass of remaining material (i.e. the wet pellet) was recorded. Concentrated HNOs was added to this wet pellet and the new mass recorded. The tubes were left at room temperature until all the pellet dissolved and an aliquot was collected for ICPOES analysis to determine the quantity of iron that did not disaggregate / dissolve. The starting amount of iron was calculated from the iron in the wet pellet plus the iron in the supernatant.
[0066] To differentiate between soluble iron and aquated particulate iron in the supernatant, at each time point, this fraction was also ultrafiltered (Vivaspin 3,000 Da molecular weight cut-off polyethersulfone membrane, Sartorius Stedium Biotech GmbH, Goettingen, Germany) and again analysed by ICPOES.
[0067] The gastrointestinal digestion of commercial iron preparations was also tested with this assay using the dose of total iron recommended by the manufacturers: Ferric pyrophosphate 14mg (Lipofer, Boots); ferrous bisglycinate 20mg (Gentle iron, Solgar); ferric-hydroxide polymaltose complex 80mg (Maltofer, Ferrum Hausmann); ferric tri-maltol 30mg (Trimaltol, Iron Unlimited).
Modified in vitro gastrointestinal digestion assay [0068] The particle size of the ligand-modified poly oxo-hydroxy ferric iron materials under simulated gastric and intestinal conditions was determined using an adapted "in vitro gastrointestinal digestion assay" in which no protein was in solution. The absence of proteins was required to measure particle size as these interfere with the measurement but the procedure was otherwise identical to the "in vitro gastrointestinal digestion assay" with extra aliquots being collected at various time points for the determination of particle size.
Inductively Coupled Plasma Optical Emission Spectroscopy analysis (ICPOES) [0069] Iron contents of solutions or solids (including wet solids) were measured using a JY2000-2 ICPOES (Horiba Jobin Yvon Ltd., Stanmore, U.K.) at the iron specific wavelength of 259.940 nm. Solutions were diluted in 5% nitric acid prior to analysis while solids were digested with concentrated HN03. The percentage of iron in solution or solid phase was determined by the difference between the starting iron content and either the iron in the soluble phase or the iron in the solid phase depending on the assay.
Determination of particle size [0070] The size distribution of micron-sized particles was determined using a Mastersizer 2000 with a Hydro-μΡ dispersion unit (Malvern Instruments Ltd, Malvern, UK) and nano-sized particles were determined with a Zetasizer Nano ZS (Malvern Instruments Ltd, Malvern, UK). Mastersizer measurements required no sample pre-treatment whereas centrifugation was needed to remove large particles prior to Zetasizer measurements.
Structural analysis
Transmission Electron Microscopy and Energy Dispersive X-ray Analysis (EDX) [0071] Powder samples were analysed by first dispersing the powder in methanol and then drop-casting on standard holey carbon TEM support films. Commercial tablets were similarly analysed but were first crushed to release the powder. Analysis were undertaken by the Institute for Materials Research, University of Leeds, UK.
Scanning Transmission Electron Microscopy [0072] Powder samples were analysed by first dispersing the powder in methanol and then drop-casting on standard holey carbon TEM support films. Commercial tablets were similarly analysed but were first crushed to release the powder. Analysis were undertaken by aberration-corrected scanning transmission electron microscopy (Daresbury; superSTEM).
Infrared Analysis (IR) [0073] IR spectra were collected using a DurasampllR diamond ATR accessory with a Nicolet Avatar 360 spectrometer with a wavelength range of 4000-650cnr1 and resolution of 4cm-1. Analysis were undertaken by ITS Testing Services (UK) Ltd, Sunbury on Thames, UK. X-Ray Diffraction Analysis [0074] Samples were analysed as dry powders. Commercial tablets were crushed to release the powder. Analysis was by X-ray diffraction analysis at the University of Cambridge using a Philips X’Pert PW3020 (theta/2theta, 2 motors) with up to 14 hour scan time and 5-70° 2theta on CuKalpha.
In vivo absorption study
Subjects [0075] Healthy young women (aged 18-45 years) with mild iron deficiency anaemia (defined as haemoglobin between 10-11.9 g/dL plus either serum ferritin below 20μg/L or transferrin saturation below 10%); or clear iron deficiency (defined as serum ferritin below 12μg/L) were recruited to take part in the study. Exclusion criteria were pregnancy or lactation and known coeliac disease, moderate/severe anaemia (haemoglobin levels <10 g/dL), cardiovascular disease, chronic respiratory disease, chronic liver disease, renal disease, chronic infection, or chronic inflammation. Other exclusion criteria were: surgery in the past three months, cancer diagnosis in the last ten years, known history of hereditary haemochromatosis or haemoglobinopathies, current medication that could alter iron metabolism, recent blood dona-tion/heavy blood loss (in the past 3 months). Subjects who regularly consume vitamin and mineral supplements were asked to discontinue supplementation 2 weeks before the screening for the study. Written informed consent was obtained from all subjects. The study protocol was approved by the Suffolk Local Research Ethics Committee.
Study design [0076] The experimental treatment was either a single dose of 58Fe labeled ligand-modified poly oxo-hydroxy ferric iron material (60 mg total iron) or ferrous sulphate (65 mg total iron). Ferrous sulphate is used as a reference dose to control for individuals who are poor absorbers (defined as those who have no significant net area under the curve (AUC) for plasma iron following ferrous sulphate ingestion). A crossover study design was used with each volunteer acting as her own control.
[0077] Fe absorption was based on erythrocyte incorporation of the 58Fe stable-isotope label 14 days after the intake of labelled iron test compounds. The test compounds and the reference compound (ferrous sulphate) were taken (with or without breakfast), under strictly standardised conditions and close supervision, after an overnight fast with 14 days interval. No intake of food or fluids (apart from water) was allowed for 4 h after the iron compound intake.
[0078] Ten blood samples (12 mL) were taken during each of the 2 visits to determine the absorption of Fe at the following times: before intake and 30, 60, 90, 120, 180, 210 and 240 minutes after intake of the iron compound. An additional blood sample was taken at baseline (before intake) to confirm iron status (full blood count, ferritin, soluble transferrin receptor, transferrin saturation) and determine erythrocyte 58Fe incorporation.
[0079] Total serum iron concentration was analysed by a standard clinical chemistry procedure based on the method by Smith et al using the Chromophore Ferene®.
[0080] RBC incorporation of 58Fe was determined using an Elan DRC Plus Inductively Coupled Plasma Mass Spectrometer (Perkin Elmer Sciex, Beaconsfield, UK). The sample introduction system consisted of a V-groove nebuliser, a double-pass spray chamber, a demountable quartz torch, and a quartz injector (2 mm internal diameter). Platinum-tipped sampler and skimmer cones (Perkin Elmer Sciex, Beaconsfield, UK) were used for all analyses. Baseline whole blood samples were collected from participants in the study immediately prior to administration of a 60 mg oral Fe supplement labelled with 2mg 58Fe, and a second blood sample was collected 14 days after administration. Whole blood was diluted 100-fold with an aqueous solution containing 0.5% Triton X-100, 1% butan-1-ol, 0.5% ammonia, and 0.007 % nitric acid. Instrument conditions were tuned for optimum signal sensitivity (via the measurement of 24Mg, 115ln and 238U isotopes), minimum oxide formation (via the measurement of the 140Ce and 155Gd isotopes to allow monitoring of the degree of CeO formation at m/z = 155) and minimum doubly charged ion formation (via the measurement of the 138Ba and 69Ga isotope signals to allow monitoring of the degree of 138Ba2+formation at m/z = 69). Further adjustment was then performed to reduce mass bias between 58Fe and 57Fe (approximately 5%). Detector voltages were dropped from the typical -2400 and 1550 V to -1725 and 1050 V for analogue and pulse stages, respectively.
Preparation of 58Fe labelled ferric chloride solution [0081] A solution of 58Fe labelled ferric chloride was prepared by dissolving 100 mg 58Fe enriched elemental iron (Chemgas, Boulogne, France) in 4 mL 37% HCI in a pear-shaped glass flask attached to a condenser and heated at 48°C in a water bath. The temperature was raised gradually over time to keep the solution boiling as the concentration of chlorine dropped. When the elemental iron powder was dissolved, 0.5 mL of 30% hydrogen peroxide were added to oxidize ferrous iron to ferric iron. The flask was then sealed, once the oxidation reaction finished, i.e once the formation of 02 bubbles stopped. The concentration of iron in the final solution was determined by ICPOES and the Ferrozine assay was used to confirm the absence of ferrous iron.
Preparation of the 58Fe labelled ligand modified poly oxo-hydroxy ferric iron material [0082] The chosen ligand-modified poly oxo-hydroxy ferric iron materials enriched with 58Fe were prepared following the protocol described above (see Preparation of solid ligand-modified poly oxo-hydroxy ferric iron materials) using a ferric chloride stock solution containing 3.5% w/w 58Fe (2 mg of 58Fe per 60 mg total iron in the ingested solid material) from the 58Fe labelled ferric chloride solution discussed above.
Results and discussion
Effect of Ligand A
[0083] A series of ligands, namely maitól, succinic acid, citric acid, lactic acid, tartaric acid, malic acid, gluconic acid, aspartic acid, glutamic acid, histidine and glutamine, were studied for their effect on ferric poly oxo-hydroxide precipitation from solution.
[0084] Initially, the ligands were all tested using the screening assay described above at ratios of 1:1 to 1:5 and classified in three groups. The first group, "strong ligands", were ligands found to inhibit the formation of 80% of the solid material at ratio 1:1 and included gluconic acid, citric acid and maitól. The second group, "weak ligands", were ligands found to have little effect on the amount of solid material formed (<10% at all the ratios tested) and included aspartic acid, succinic acid, lactic acid, glutamic acid and histidine. The third group, "intermediate ligands", were ligands found to have an influence, between strong and weak ligands, on the amount of solid material formed at, at least, one of the ratios tested and included malic acid, tartaric acid and glutamine.
[0085] In a second instance, six ligands from the three groups described above were re-screened for their effects on both the formation of ferric poly oxo-hydroxide precipitation at varying M:L ratios, and the dissolution of the solid materials formed in pH 6 and pH 4 buffers (see screening assay above). As expected, the ligands had variable effects on the percentage of poly oxo-hydroxy iron that was precipitated depending upon (a) the group the ligand belonged to and (b) the M:L ratio. Yet, the solid materials formed, showed variable re-aquation properties that were not predictable from the precipitation behaviours. Examples of results using a strong affinity ligand, namely maitól, a weak affinity ligand, namely succinate, and an intermediate affinity ligand, namely malate, are shown in Figures 1A and B. Re-dissolution clearly depends upon the ligand and its ratio to iron which may be expected. What is not expected is that the strong ligand, maitól, did not promote any re-dissolution of the iron at pH 6.0 in spite of the fact that soluble iron-maltol complexes can be formed (for at least a proportion of the iron) at this pH. Moreover, the intermediate ligand, malate, allowed greater dissolution of iron from the solid phase at pH 6.0 than the strong ligand maitól - even when ratios were matched (c.f. 1:1). Examples of further results with other ligands or ratios are shown in Table 1.
Table 1: The effect of single ligands on poly oxo-hydroxy iron precipitation and the re-dissolution ofthat iron.
[0086] Two ligands, namely malate and tartrate, that showed most effects in the screening assay, were chosen for study in greater detail. The re-dissolution profile was studied using a more defined assay in four different buffers (see Disaggregation Assay in Methods). The buffers contained 0.9% w/v electrolyte so that the results obtained would reflect the behaviour of the material in a biological ionic strength environment. Also the pH environments were chosen to reflect different parts of the gastrointestinal tract from gastric (pH 1.8) to intestinal (pH 7.0). Firstly, the results shown in Table 2 confirmed that the two ligands affected not only the precipitation but also the disaggregation profile depending on the ratio used in the preparation of the ferric poly oxo-hydroxide materials as seen in the screening assay above. Generally, increasing the ligand ratio decreased the formation of the ligand-modified poly oxo-hydroxy ferric iron solid material and increased the disaggregation profile. However, the extent of the effect seen with one ligand did not reflect the extent of the effect seen with another ligand as illustrated here with malate and tartrate. The results observed were reproducible as indicated in table 2 with malate at M:L ratio 1:2.
Table 2: Effect ofmalate and tartrate ratios on the percentage of iron precipitated as ligand-modified poly oxo-hydroxy ferric iron materials and the disaggregation of the materials. % Fe
[0087] Ligand-modified poly oxo-hydroxy ferric iron materials were prepared at pH 6.5 in 50mM MOPS and 0.9% NaCI. Starting iron concentrations were 26.7mM. Precipitation steps were either carried out in individual tubes (a) as per the precipitation procedure described in Screening Assay, or as a batch (b) as per the preparation of solid ligand-modified poly oxo-hydroxy ferric iron materials (see methods). Disaggregation of all materials was performed according to the method outline in Dissagregation assay (see methods).
[0088] Secondly, the effect of the ligand on the rate of formation of the ligand-modified poly oxo-hydroxy ferric iron materials was studied using the titration protocol described in the methods section. Figure 2 shows the rate of formation of the solid material with increasing pH. The addition of malate was found to delay the formation of the solid material compared to the absence of ligand. This scenario is to be expected when a ligand competes with the polymerisation of the poly oxo-hydroxy ferric iron entity that results in the formation of the solid material. However, unexpectedly, tartrate was found to have a promoting effect on the formation of the solid material at lower pH. This does not correlate with the competition.scenario described above. In this case the ligand, tartrate, appears to be enhancing the precipitation. Another observation was that tartrate, at basic pH (>7.5), did promote disaggregation of this material. Indeed, Figure 16 shows a typical profile of the formation of two solid phases, namely aggregated and aquated tartrate-modified ferric poly oxo-hydroxide with increasing pHs following the titration protocol described in Methods. These results were also observed with other ligands A and ligands B (results not shown).
[0089] The disaggregation profile of the ligand-modified poly oxo-hydroxy ferric iron solid material formed at different pHs was shown to vary as illustrated in Figure 3 for malate. As the pH of preparation of the material increases, the disaggregation profile decreases. This is in accordance with an increase of polymerisation and formation of oxo-bridges with increasing pH, probably limiting the modification effect of the ligand on the material.
[0090] The presence of 0.9% w/v electrolyte, as sodium (NaCI) or potassium chloride (KCI), in the preparation of the ligand-modified poly oxo-hydroxy ferric iron solid materials was also studied. Figure 4A shows that the presence of 0.9% NaCI did not affect the disaggregation profile of the tartrate-modified poly oxo-hydroxy ferric iron material at M:L ratio 4:1 compared to the same material prepared without NaCI. Similarly, Figure 4B shows that the presence of 0.9% KCI did change the disaggregation profile of the tartrate-modified poly oxo-hydroxy ferric iron material at M:L ratio 2:1 (solution containing 50mM niacin).
[0091] Finally, the effect of drying ligand-modified poly oxo-hydroxy ferric iron solid materials was studied with respect to disaggregation. Drying the material generally lead to a modest reduction in its disaggregation as exemplified by the tartrate-modified poly oxo-hydroxy ferric iron material at M:L ratio 4:1 which is illustrated in Figure 5. Small, inconsistent differences were observed between oven-drying and freeze-drying methods (Figure 5).
Effect of ligand B
[0092] Almost all of the studies described above were carried out with ligand-modified poly oxo-hydroxy ferric iron solid materials produced in MOPS buffer. MOPS is often used in metal spéciation studies due to its very weak interaction with most metal ions and hence it rarely interferes in the formation of metal complexes. However, MOPS has a pKa of 7.2 and so has a buffering capacity around neutral pH. Thus, although MOPS would not interact directly with iron or prevent the formation of the solid material, it may indirectly influence the formation of the solid by controlling the rate of change in environmental pH. In addition, the buffer used in the preparation of the ligand-modified poly oxo-hydroxy ferric iron solid materials should be safe for human consumption which MOPS is not. Therefore, to study the influence of the buffer, or ligand B, on the formation and re-dissolution properties of the ligand-modified poly oxo-hydroxy ferric iron solid materials, we selected a series of compounds with buffering capacity at varying pH ranges; namely, adipate, bicarbonate, acetate, glutarate, dimethyl glutarate, pimelate, succinate, vanillin, tryptophan, benzoate, propionate, borate, niacin and pyridoxine hydrochloride. Figure 6 illustrates the effect of changing MOPS for adipate on the rate of formation of the tartrate-modified poly oxo-hydroxy ferric iron solid material at M:L ratio 4:1 (Figure 6(i)), as well as its effect on the otherwise un-modified poly oxo-hydroxy ferric iron solid material (Figure 6(ii)). In both cases, adipate had a promoting effect on the rate of formation of the solid material.
[0093] Following these observations, the formation and disaggregation profiles of the tartrate-modified oxo-hydroxy ferric iron solid materials were studied using varying M:L ratios. Adipate reduced the disaggregation capacity of the materials formed (Table 3) compared to MOPS (Table 2), except at gastric pH (pH 1.8) which showed low disaggregation capacity with both buffers. In contrast, in the case of malate-modified poly oxo-hydroxy ferric iron materials, bicarbonate had a negative influence on the percentage of precipitation and the disaggregation capacity of the material (Table 2 and 3). These effects fell off with lower concentrations of adipate but not bicarbonate (Table 3, data in bold).
[0094] The influence of ligand B on the disaggreagtion profile of the tartrate-modified poly oxo-hydroxy ferric iron solid material is further illustrated in Figure 7 with niacin and benzoate.
Table 3
[0095] Tartrate-modified poly oxo-hydroxy ferric iron solid materials were prepared following the protocol "preparation of solid ligand-modified poly oxo-hydroxy ferric iron materials" (see methods) at pH 4.0 in either 50mM adipate (Ad50) or20mM adipate (Ad20) without the presence of an electrolyte. Malate-modified poly oxo-hydroxy ferric iron solid materials were prepared following the same procedure at pH 8.5 in either 100mM bicarbonate (Bid 00) or 25mM bicarbonate (Bic25) without the presence of an electrolyte. The disaggregation of the materials was performed according to the method outlined in Disaggregation assay (see method) using the non-dried material for FeOHT-Ad50 and FeOHM-BidOO and the oven-dried material for FeOHT-Ad20 and FeOHM-Bic25.
Structural analysis of the solid ligand-modified poly oxo-hydroxy ferric iron materials [0096] The solid ligand-modified poly oxo-hydroxy ferric iron materials prepared above differ from currently available iron formulations in that they are not a simple inorganic ferrous ion salt (e.g. ferrous sulphate), an iron complex in which the metal is coordinated with organic ligand (e.g. ferric trimaltol), nor an organic ligand coated iron mineral particle (e.g. iron polymaltose or ’Maltofer’).
[0097] The elemental analysis of particles from our solid ligand-modified poly oxo-hydroxy ferric iron materials measured by Energy dispersive X-ray analysis (EDX) clearly shows the presence of carbon atoms in the iron- and oxygen-containing particles (an example is shown in Figure 8). Furthermore, the infrared spectrum of the material demonstrates the presence of a covalent-like bond between the ligand and the metal (Figure 9) in addition to the abundant presence of hydroxy groups. This illustrates that the ligand is incorporated into the structure of the metal oxo-hydroxide lattice through formal bonding and not simply adsorption or ’entrapment’. The changes to the dissolution characteristics of the material can be readily explained by the manner in which the ligand alters the metal-oxo-hydroxide lattice. In freshly precipitated iron oxo-hydroxide a ferrihydrite-like structure is observed with some clear crystalline regions: the addition of ligand B, in this case tryptophan, reduces the extent of crystallinity while the addition of ligand A and B, in this case trypotphan and tartrate, almost negate the crystallinity entirely (Figure 11). Maltofer, which is an organic ligand coated iron mineral particle, appeared more like freshly precipitated iron oxo-hydroxide, indicating that the ligand had not significantly modified its primary structure. This comparison is best observed using X-ray diffraction where iron hydroxide peaks are not detected for a ligand-modified poly oxo-hydroxy ferric iron material, but they are seen in Maltofer (Figure 12) albeit broad and noisy peaks due to the very small size of the primary particles (a few nanometres).
Gastrointestinal digestion of the solid ligand-modified poly oxo-hydroxy ferric iron materials [0098] We compared the disaggregation of some prior art and commercial iron compounds to that of the ligand-modified poly oxo-hydroxy ferric iron materials under simulated gastrointestinal conditions (see Methods). The gastric disaggregation (pH1.2) and the gastric dissolution profiles of two of the ligand-modified poly oxo-hydroxy ferric iron materials, in comparison with ferrous sulphate, ferric oxo-hydroxide and iron polymaltose (Maltofer), are shown in Figure 10. Ferrous sulphate disaggregates and dissolves very well at acidic pH as is expected for a metal salt. Conversely, Maltofer disaggregates very rapidly in the gastric conditions (after 5 minutes almost 80% of the iron is disaggregated) but remains in an aquated particulate form (typically around 20 nm diameter: results not shown) (Figure 10). Percentage iron dissolution from Maltofer was less than 5% although it should be noted that there can be a loss of up to 10% of iron through binding to the ultrafiltration membrane. In comparison, the two novel ligand-modified poly oxo-hydroxy ferric iron materials had an intermediate disaggregation profile compared to ferric oxo-hydroxide and ferrous sulphate. In addition, the dissolution of these materials closely paralleled the disaggregation profile under gastric conditions although this need not be the case for these novel materials. These data show a clear difference between un-modified ferric oxo-hydroxide, Maltofer, ferrous sulfate, and our ligand-modified poly oxo-hydroxy ferric iron materials.
[0099] Disaggregation of some of our novel ligand-modified poly oxo-hydroxy ferric iron materials under gastric and intestinal conditions was also compared to dissagregation of other commercially available iron compounds, namely ferric pyrophosphate, ferric chloride, ferric trimaltol and ferrous bisglycinate. The commercial compounds either failed to disaggregate properly (e.g. ferric pyrophosphate), or they disaggregated very rapidly (Figure 14). This rapid disaggregation, if paralleled by dissolution, is believed to be responsible for giving rise to bolus delivery of iron ions in the gut lumen and likely, therefore, the occurrence of side effects. The novel ligand-modified poly oxo-hydroxy ferric iron materials showed a degree of controlled release although, clear differences can be seen in the rates of disagreggation for the novel materials, indicating that their properties can be tailored as required (Figure 14). It should be noted in Figure 14 that whether iron remains in solution or not at pH 7.0 is merely a function of whether chelators/ligands are present (as they will naturally be in the gut) and so the data for ferrous sulphate and ferric chloride (where no ligand is present in the compound) should not be over-interpreted.
[0100] Iron disaggregation and dissolution under both gastric and intestinal conditions for some ligand-modified poly oxo-hydroxy ferric iron materials that were tested further in human volunteers (see below) are presented in Figure 15. Again we show a range of different disaggregation and dissolution profiles for the novel materials, illustrating the possibility of tailoring them as required.
[0101] A study of the particle size distribution after passage through the modified gastrointestinal digestive assay of some tartrate-modified poly oxo-hydroxy ferric iron material is shown in Figure 17. Changing the M:L ratio (first vs second bar), pH of preparation (second vs third bar) and type of ligand B (fourth bar) clearly affects the size of particles obtained and therefore disaggregation/dissolution profiles. There is especially an increase in smaller particle sizes with increasing tartrate concentrations indicating less aggregation of the primary particles with increasing L content. In addition, the higher the pH of preparation, the smaller the resulting particle size.
Iron absorption in humans of the solid ligand-modified poly oxo-hydroxy iron ferric materials [0102] Seven ligand-modified poly oxo-hydroxy ferric iron materials have been assessed further for their absorption in human volunteers and the results compared with unmodified ferric oxo-hydroxide. A summary of the results is shown in Table 4.
Table 4: In vivo absorption of different ligand-modified poly oxo-hydroxy ferric iron materials:
(continued)
[0103] The serum absorption profiles of the compounds (Figure 13) show that the novel ligand-modified poly oxo-hydroxy ferric iron materials have much lower rates of iron absorption than ferrous sulphate which may be advantageous as this will prevent systemic exposure and potential damage from transiently high levels of iron. There was clear iron absorption from all formulations (Figure 13) and for at least one preparation this is estimated to be equivalent to ferrous sulphate. It is especially noteworthy that literature reports indicate that ferric polymaltose yields no detectable rise in serum iron following ingestion and, that absorption of iron is very low (Kaltwasser et al, 1987) and would be consistent with our data for ferric oxo-hydroxide.
[0104] The compounds FeOHT-2:1-TRP15 and FeOHGIuconic20 are examples of how changing the composition of these novel materials changes their serum iron profile but maintains the same percentage of iron absorption (Figure 13) again indicating that the materials can be tailored to achieve desired outcomes.
[0105] Bobtelsky M and Jordan J. The structure and behaviour of ferric tartrate and citrate complexes in dilute solutions. Journal of the American Chemical Society 1947; 69:2286-2290.
[0106] Edgerton VR, Gardner GW, Ohira Y, Gunawardena KA, Senewiratne B. Iron-deficiency anaemia and its effect on worker productivity and activity patterns. British Medical Journal 1979; 2(6204):1546-1549.
[0107] Geisser P and Muller A. Pharmacokinetics of iron salts and ferric hydroxide-carbohydrate complexes. Arznei-mittelforschung/Drug Research 1987; 37 (1): 100-104.
[0108] Goddard AF, James MW, McIntyre AS and Scott BB. Guidelines for the management of iron deficiency anaemia. BSG Guidelines in Gastroenterology. 2005 [0109] Flarvey RSJ, Reffitt DM, Doig LA, Meenan J, Ellis RD, Thompson RPFI, and Powell JJ. Ferric trimaltol corrects iron deficiency anaemia in patients intolerant to iron. Alimentary Pharmacology &amp; Therapeutics 1998; 12(9):845-848.
[0110] Heinrich FIC. Bioavailability of trivalent iron in oral preparations. Arzneimittelforschung /Drug Research 1975; 25(3): 420-426.
[0111] Europe. Public Health Nutrition 2001; 4, 537-545. Jugdaohsingh R, Afsharrad S, McCrohan CR, White KN, Thompson RPH and Powell JJ. A rapid non-equilibrium critical precipitation assay to assess aluminium-ligand interactions. Chemical Spéciation and Bioavailability 2004; 16(3):87-96.
[0112] Kaltwasser JP; Werner, E; Niechzial, M (1987). Bioavailability and therapeutic efficacy of bivalent and trivalent iron preparations. Arzneimittelforschung/ Drug Research, 37(1a): 122-129.
[0113] Nielsen P, Gabbe EE, Fisher R, and Heinrich HC. Bioavailability of iron from oral ferric polymaltose in humans. Arzneimittelforschung /Drug Research 1994; 44(1): 743-748.
[0114] Powell JJ,Jugdaohsingh R, Piotrowicz A, White KN, McCrohan CR and Thompson RPH. Application of the critical precipitation assay to complex samples: aluminium binding capacity of human gastrointestinal fluids. Chemical Spéciation and Bioavailability 2004; 16(3):97-104.
[0115] Smith, FE; Herbert, J; Gaudin, J; Hennessy, J; Reid, GR. Serum iron determination using ferene triazine. Clinical Biochemistry 1984; 17:306-310.
[0116] Scholz BD, Gross R, Schultink W, Sastroamidjojo S. Anaemia is associated with reduced productivity of women workers even in less-physically-strenuous tasks. British Journal of Nutrition 1997; 77(1):47-57.
Claims 1. A process for producing a solid ligand-modified poly oxo-hydroxy metal ion material comprising metal ions (M), ligands (L) and oxo or hydroxy groups (OH), wherein: M represents one or more metal ions selected from Ag2+, Al3+, Au3+, Be2+, Ca2+, Co2+, Cr3+, Cu2+, Eu3+, Fe3+, Mg2+, Mn2+, Ni2+, Sr2+, V5+, Zn2+ and Zr2+, L represents one or more ligands which comprise a ligand selected from a carboxylic acid, maitól, ethyl maitól, vanillin, bicarbonate, sulphate, phosphate, silicate, borate, molybdate, selenate, tryptophan, glutamine, proline, valine, histidine, folate, ascorbate, pyridoxine, niacin, adipate, acetate, glutarate, dimethyl glutarate, pimelate, succinate, benzoate and propionate, and wherein the material has a polymeric structure in which the ligands are non-stoichiometrically substituted for the oxo or hydroxy groups and are distributed within the solid phase structure of the metal oxo-hydroxy material and so that the substitution of the oxo or hydroxy groups by the ligands is substantially random; wherein at least some of the ligand integrates into the solid phase so that it displays formal M-L bonding that can be detected by physical analytical techniques and the gross solid ligand-modified poly oxo-hydroxy metal ion material has one or more reproducible physico-chemical properties, the process comprising: (a) mixing the metal ions M and the ligands L at a first pH(A) at which the components are soluble; (b) changing the pH(A) to a second pH(B) to cause a solid precipitate of the solid ligand-modified poly oxo-hydroxy metal ion material to be formed; and (c) separating, and optionally drying, the solid ligand-modified poly oxo-hydroxy metal ion material produced in step (b). 2. The process of claim 1, further comprising formulating the solid ligand-modified poly oxo-hydroxy metal ion material in a composition for administration to a subject. 3. The process of claim 2, wherein the step of formulating the material comprises adding an excipient. 4. The process of claim 2 or claim 3, wherein: (i) the composition is for use as a nutritional, medical, cosmetic or other biologically applicable composition; and/or (ii) the composition is for delivery of the metal ion or the ligand to a subject; and/or (iii) the composition is for sequestering or inhibiting a component present in the subject using the solid ligand-modified poly oxo-hydroxy metal ion material. 5. The process of any one of the preceding claims, wherein the pH(A) is above a pH at which oxo-hydroxy polymerisation of the corresponding metal oxo-hydroxide commences. 6. The process of any one of the preceding claims, wherein the pH is changed from pH(A) to pH(B) by the addition of alkali, and preferably wherein the alkali is added as a solution of sodium hydroxide, potassium hydroxide or sodium bicarbonate to increase the concentration of OH in the mixture of step (b) and/or wherein pH(A) is less than or equal to pH 2 and pH(B) is greater than or equal to pH 2. 7. The process of any one of claims 1 to 4, wherein the pH is changed from pH(A) to pH(B) by the addition of acid, and preferably wherein the acid is added as a mineral acid or an organic acid to decrease the concentration of OH in the mixture of step (b), and/or wherein pH(B) is less than or equal to pH 2 and pH(A) is greater than or equal to pH 2. 8. The process of any one of the preceding claims, wherein the one or more reproducible physico-chemical properties are selected from dissolution (rate, pH dependence and pM dependence), adsorption and absorption characteristics, reactivity-inertness, melting point, temperature resistance, particle size, magnetism, electrical properties, density, light absorbing/reflecting properties, hardness-softness, colour and encapsulation properties. 9. The process of claim 8, wherein the reproducible physico-chemical property is reproducible within a limit of preferably ± 10%, and more preferably ± 5%, and even more preferably within a limit of ± 2%. 10. The process of any one of the preceding claims, wherein the metal ion (M) is Fe3+. 11. The process of any one of the preceding claims, wherein the carboxylic acid ligand is selected from adipic acid, glutaric acid, tartaric acid, malic acid, succinic acid, aspartic acid, pimelic acid, citric acid, gluconic acid, lactic acid and benzoic acid. 12. The process of any one of the preceding claims, wherein the ligand has buffering properties or a buffer is present in a medium for carrying out the process. 13. The process of claim 12, wherein the buffer is selected from an inorganic buffer, such as borate, silicate or bicarbonate, or an organic buffer such as MOPS, HEPES, PIPES or TRIS, or a buffer selected from adipic acid, pimelic acid, tryptophan or hydroxymethylcellulose. 14. The process of any one of the preceding claims, wherein the composition is for use an iron supplement. 15. A process for producing a solid ligand-modified poly oxo-hydroxy metal ion material and optimising a desired physicochemical property of the material to adapt it for a nutritional, medical, cosmetic or biologically related application, wherein the solid ligand-modified poly oxo-hydroxy metal ion material comprises metal ions (M), ligands (L) and oxo or hydroxy groups (OH), wherein M represents one or more metal ions selected from Ag2+, Al3+, Au3+, Be2+, Ca2+, Co2+, Cr3+, Cu2+, Eu3+, Fe3+, Mg2+, Mn2+, Ni2+, Sr2+, V5+, Zn2+ and Zr2+, L represents one or more ligands which comprise a ligand selected from a carboxylic acid, maitól, ethyl maitól, vanillin, bicarbonate, sulphate, phosphate, silicate, borate, molybdate, selenate, tryptophan, glutamine, proline, valine, histidine, folate, ascorbate, pyridoxine, niacin, adipate, acetate, glutarate, dimethyl glutarate, pimelate, succinate, benzoate and propionate, and wherein the material has a polymeric structure in which the ligands L are non-stoichiometrically substituted for the oxo or hydroxy groups and are distributed within the solid phase structure of the metal oxo-hydroxy material and so that the substitution of the oxo or hydroxy groups by the ligands is substantially random; wherein at least some of the ligand integrates into the solid phase so that it displays formal M-L bonding that can be detected by physical analytical techniques and the gross solid ligand-modified poly oxo-hydroxy metal ion material has one or more reproducible physico-chemical properties, the process comprising: (a) mixing the metal ion(s) M and the ligand(s) L in a reaction medium at a first pH(A) at which the components are soluble; (b) changing the pH(A) to a second pH(B) to cause a solid precipitate of the ligand-modified poly oxo-hydroxy metal ion material to be formed; (c) separating, and optionally drying, the solid ligand-modified poly oxo-hydroxy metal ion material produced in step (b). (d) testing the desired physico-chemical characteristic(s) of the precipitated solid ligand-modified poly oxo-hydroxy metal ion material; and (e) repeating steps (a) to (d) as required by varying one or more of: (i) the identity or concentration of the metal ion(s) (M) and/or the ligand(s) (L) supplied in step (a); and/or (ii) the ratio of metal ion(s) (M) to ligand(s) (L) supplied in (a); and/or (iii) pH(A); and/or (iv) pH(B); and/or (v) the rate of change from pH (A) to pH(B); and/or (vi) the presence or concentration of a buffer; thereby to produce a solid ligand-modified poly oxo-hydroxy metal ion material having the desired physico-chemical property. 16. The process of claim 15, which further comprises varying a physical or chemical reaction condition used in the process for making the solid ligand-modified poly oxo-hydroxy metal ion material. 17. The process of claim 16, wherein the physical or chemical reaction condition is selected from the temperature of the reaction, the rate of pH change or the use or the conditions used to mix the reactants. 18. The process of any one of claims 15 to 17, wherein the first pH(A) is a pH below the pH at which oxo-hydroxy polymerisation of the corresponding metal oxo-hydroxide commences, and optionally pH(A) is less than or equal to pH 2 and pH(B) is greater than or equal to pH 2. 19. The process of any one of claims 15 to 18, wherein the pH is changed from pH(A) to pH(B) by the addition of acid, and optionally wherein the acid is added as a mineral acid or an organic acid to decrease the concentration of OH in the mixture of step (b). 20. The process of any one of claims 15 to 17, wherein pH(B) is less than or equal to pH 2 and pH(A) is greater than or equal to pH 2. 21. The process of any one of claims 15 to 20, wherein: (a) the pH change from pH(A) to pH(B) occurs in a 24 hour period or less, more preferably within an hour period and most preferably within 20 minutes; and/or (b) the concentrations of total metal ions (M) and total ligand (L) are greater than 10-6 molar, and more preferably are greater than 10-3 molar; and/or (c) the reaction medium is an aqueous solution; and/or (d) the buffer stabilises the pH range of oxo-hydroxy polymerisation; and/or (e) the buffer is selected from an inorganic buffer, such as borate, silicate or bicarbonate, or an organic buffer such as MOPS, HEPES, PIPES or TRIS, or a buffer selected from adipic acid, pimelic acid, tryptophan or hydroxymethylcellulose and /or (f) the buffer concentrations are less than 500 mM, preferably less than 200 mM and most preferably less than 100 mM; and/or (g) the temperature of the reaction is between 0 and 100°C, and more preferably between room temperature (20-30°C) and 100°C; and/or (h) the ionic strength of the reaction medium is varied by addition of electrolyte; and/or (i) the components are mixed in step (a) to for a homogeneous solution. 22. A process for making a solid ligand-modified poly oxo-hydroxy metal ion material for administration to a subject, the process comprising having optimised a solid ligand-modified poly oxo-hydroxy metal ion material according to the process of any one of claims 15 to 21 as disclosed herein, the further step of manufacturing the solid ligand-modified poly oxo-hydroxy metal ion material in bulk and/or formulating it in a composition. 23. A composition for use in therapy comprising a solid ligand-modified poly oxo-hydroxy metal ion material comprising metal ions (M), ligands (L) and oxo or hydroxy groups (OH), wherein: M represents one or more metal ions selected from Ag2+, Al3+, Au3+, Be2+, Ca2+, Co2+, Cr3+, Cu2+, Eu3+, Fe3+, Mg2+, Mn2+, Ni2+, Sr2+, V5+, Zn2+ and Zr2+, L represents one or more ligands which comprise a ligand selected from a carboxylic acid, maitól, ethyl maitól, vanillin, bicarbonate, sulphate, phosphate, silicate, borate, molybdate, selenate, tryptophan, glutamine, proline, valine, histidine, folate, ascorbate, pyridoxine, niacin, adipate, acetate, glutarate, dimethyl glutarate, pimelate, succinate, benzoate and propionate, and wherein the material has a polymeric structure in which the ligands are non-stoichiometrically substituted for the oxo or hydroxy groups and are distributed within the solid phase structure of the metal oxo-hydroxy material and so that the substitution of the oxo or hydroxy groups by the ligands is substantially random; wherein at least some of the ligand integrates into the solid phase so that it displays formal M-L bonding that can be determined by physical analytical techniques and the gross solid ligand-modified poly oxo-hydroxy metal ion material has one or more reproducible physico-chemical properties. 24. The composition of claim 23, wherein delivery of the metal ion provides therapeutic benefit to the subject. 25. The composition of claim 24, wherein the material is for use in the therapeutic removal or inhibition of an endogenous substance present in the subject that is capable of binding to the solid ligand-modified poly oxo-hydroxy metal ion material. 26. A ferric iron composition for use in therapy which comprises a solid ligand-modified poly oxo-hydroxy metal ion material comprising metal ions (M), ligands (L) and oxo or hydroxy groups (OH), wherein M represents one or more metal ions that comprise Fe3+ ions, L represents one or more ligands and wherein the material has a polymeric structure in which the ligands L are non-stoichiometrically substituted for the oxo or hydroxy groups and are distributed within the solid phase structure of the metal oxo-hydroxy material and so that the substitution of the oxo or hydroxy groups by the ligands is substantially random, wherein at least some of the ligand integrates into the solid phase so that it displays formal M-L bonding that can be detected by physical analytical techniques and the solid ligand-modified poly oxo-hydroxy metal ion material having one or more reproducible physico-chemical properties. 27. The ferric iron composition of claim 26, wherein M is Fe3+ ions. 28. The ferric iron composition of claim 26 or claim 27, wherein: (i) the substantially randomly solid phase structure of the material produced by substitution of hydroxy or oxo groups by the ligand L is determinable by an X-ray diffraction pattern having no identifiable peaks for L or MO/MOH; and/or (ii) the substantially randomly solid phase structure of the material produced by substitution of hydroxy or oxo groups by the ligand L is an increase in the amorphousness of the structure of the material as determinable by high resolution transmission electron microscopy; and/or (iii) the reproducible physico-chemical property is selected from one or more of a dissolution profile, an adsorption profile or a reproducible elemental ratio; and/or (iv) the reproducible elemental ratio is reproducible within a limit of preferably ± 10%, and more preferably ± 5%, and even more preferably within a limit of ± 2%. 29. The ferric iron composition of any one of claims 26 to 28, wherein the infrared spectra further comprises one or more peaks for the bonds between M-O, O-H, and L alone. 30. The ferric iron composition of any one of claims 26 to 29, wherein: (i) the ligand L comprises tartarate or adipate or succinate; or (ii) the ligand L comprises tartarate and adipate; or (iii) the ligand L comprises tartrate and succinate. 31. The ferric iron composition of any one of claims 26 to 30, wherein the ratio M:L is between about 1:5 and 5:1. 32. The ferric iron composition of any one of claims 26 to 31 which is FeOHAdlOO and FeT-3:1-Ad20. 33. The ferric iron composition of any one of claims 26 to 32, wherein the composition is a supplement, a fortificant or a food additive. 34. Use of a composition comprising a solid ligand-modified poly oxo-hydroxy metal ion material as defined in any one of claims 23 to 33 for the preparation of a medicament for therapeutic delivery of the metal ion to a subject or for use the therapeutic removal or inhibition of an endogenous substance present in a subject that is capable of binding to the solid ligand-modified poly oxo-hydroxy metal ion material. 35. A composition comprising a solid ligand-modified poly oxo-hydroxy metal ion material as defined in any one of claims 23 to 33 for use in therapy for delivery of the metal ion to the subject or for use the therapeutic removal or inhibition of an endogenous substance present in a subject that is capable of binding to the solid ligand-modified poly oxo-hydroxy metal ion material. 36. The use or composition for use in therapy of claim 34 or claim 35, wherein: (i) the metal ion (M) is Fe3+; and/or (ii) the carboxylic acid ligand is selected from adipic acid, glutaric acid, tartaric acid, malic acid, succinic acid, aspartic acid, pimelic acid, citric acid, gluconic acid, lactic acid and benzoic acid; and/or (iii) the ligand has buffering properties or a buffer is present in a medium for carrying out the process. 37. The use or the composition for use in therapy of claim 36, wherein the buffer is selected from an inorganic buffer, such as borate, silicate or bicarbonate, or an organic buffer such as MOPS, FIEPES, PIPES or TRIS, or a buffer selected from adipic acid, pimelic acid, tryptophan or hydroxymethylcellulose.
Patentansprüche 1. Verfahren zur Fierstellung eines festen, ligandenmodifizierten Polyoxohydroxymetallionenmaterials, das Metallionen (M), Liganden (L) und Oxo- oder Flydroxygruppen (OFH) umfasst, wobei: M für ein oder mehrere Metallionen steht, die aus Ag2+, Al3+, Au3+, Be2+, Ca2+, Co2+, Cr3+, Cu2+, Eu3+, Fe3+, Mg2+, Mn2+, Ni2+, Sr2+, V5+, Zn2+, und Zr2+ ausgewählt sind, L für einen oder mehrere Liganden steht, die einen Liganden umfassen, der aus Carbonsäure, Maitól, Ethyl-maltol, Vanillin, Bicarbonat, Sulfat, Phosphat, Silicat, Borat, Molybdat, Selenat, Tryptophan, Glutamin, Prolin, Valin, Histidin, Folat, Ascorbat, Pyridoxin, Niacin, Adipat, Acetat, Glutarat, Dimethylglutarat, Pimelat, Succinat, Benzoat und Propionat ausgewählt ist, und wobei das Material eine polymere Struktur aufweist, in der die Oxo- oder Hydroxygruppen nichtstöchiometrisch durch die Liganden substituiert sind und innerhalb der Festphasenstruktur des Metalloxohydroxymaterials verteiltsind, sodass die Substitution der Oxo- oder Hydroxygruppen durch die Liganden im Wesentlichen zufällig ist; wobei zumindest einige der Liganden in die Festphase integriert werden, sodass sie formale M-L-Bindung aufweist, die durch physikalische Analysetechniken detektiert werden kann, und das gesamte feste, ligandenmodifizierte Polyoxohydroxymetallionenmaterial eine oder mehrere reproduzierbare physikochemische Eigenschaften aufweist, wobei das Verfahren Folgendes umfasst: (a) Vermischen der Metallionen M und der Liganden L bei einem ersten pH(A), bei dem die Bestandteile löslich sind; (b) Ändern des pH(A) zu einem zweiten pH(B), um zu bewirken, dass ein fester Niederschlag des festen, ligandenmodifizierten Polyoxohydroxymetallionenmaterials gebildet wird; und (c) Trennen, und gegebenenfalls Trocknen, des festen, ligandenmodifizierten Polyoxohydroxymetallionen-materials, das in Schritt (b) hergestellt wurde. 2. Verfahren nach Anspruch 1, das weiters das Formulieren des festen, ligandenmodifizierten Polyoxohydroxymetal-lionenmaterials in einer Zusammensetzung zur Verabreichung an ein Individuum umfasst. 3. Verfahren nach Anspruch 2, wobei der Schritt des Formulierens des Materials das Zusetzen eines Exzipienten umfasst. 4. Verfahren nach Anspruch 2 oder Anspruch 3, wobei: (i) die Zusammensetzung zur Verwendung als ernährungsbezogene, medizinische, kosmetische oder andere biologisch anwendbare Zusammensetzung bestimmt ist; und/oder (ii) die Zusammensetzung zur Verabreichung des Metallions oder des Liganden an ein Individuum dient; und/oder (iii) die Zusammensetzung zur Maskierung oder Hemmung einer Komponente, die im Individuum vorhanden ist, unter Verwendung des festen, ligandenmodifizierten Polyoxohydroxymetallionenmaterials dient. 5. Verfahren nach einem der vorangegangenen Ansprüche, wobei der pH(A) über einem pH liegt, bei dem die Oxo-hydroxypolymerisation des entsprechenden Metalloxohydroxids beginnt. 6. Verfahren nach einem der vorangegangenen Ansprüche, wobei der pH durch Zusatz einer Base von pH(A) zu pH(B) geändert wird und wobei vorzugsweise die Base als Lösung von Natriumhydroxid, Kaliumhydroxid oder Natriumbi-carbonat zugesetzt wird, um die Konzentration von OH im Gemisch aus Schritt (b) zu erhöhen, und/oder wobei pH(A) niedriger als oder gleich pH 2 ist und pH(B) höher als oder gleich pH 2 ist. 7. Verfahren nach einem der Ansprüche 1 bis 4, wobei der pH durch Zusatz von Säure von pH(A) zu pH(B) geändert wird, wobei die Säure vorzugsweise als Mineralsäure oder organische Säure zugesetzt wird, um die Konzentration von OH im Gemisch aus Schritt (b) zu verringern, und/oder wobei pH(B) niedriger als oder gleich pH 2 ist und pH(A) höher als oder gleich pH 2 ist. 8. Verfahren nach einem dervorangegangenen Ansprüche, wobei die eine oder mehreren reproduzierbaren physikochemischen Eigenschaften aus Auflösung (Geschwindigkeit, pH-Abhängigkeit und pM-Abhängigkeit), Adsorptionsund Absorptionseigenschaften, Reaktivitätsträgheit, Schmelzpunkt, Temperaturresistenz, Teilchengröße, Magnetismus, elektrischen Eigenschaften, Dichte, Lichtabsorptions-/-reflexionseigenschaften, Härte-Weichheit, Farbe und Verkapselungseigenschaften ausgewählt sind. 9. Verfahren nach Anspruch 8, wobei die reproduzierbare physikochemische Eigenschaft innerhalb einer Grenze von vorzugsweise ±10 %, noch bevorzugter ± 5 % und noch bevorzugter innerhalb einer Grenze von ± 2 %, reproduzierbar ist. 10. Verfahren nach einem dervorangegangenen Ansprüche, wobei das Metallion (M) Fe3+ ist. 11. Verfahren nach einem dervorangegangenen Ansprüche, wobei der Carbonsäureligand aus Adipinsäure, Glutar-säure, Weinsäure, Äpfelsäure, Bernsteinsäure, Asparaginsäure, Pimelinsäure, Citronensäure, Gluconsäure, Milch- säure und Benzoesäure ausgewählt ist. 12. Verfahren nach einem der vorangegangenen Ansprüche, wobei der Ligand Puffereigenschaften aufweist oder ein Puffer in einem Medium vorhanden ist, um das Verfahren auszuführen. 13. Verfahren nach Anspruch 12, wobei der Puffer aus einem anorganischen Puffer, wie z.B. Borat, Silicat oder Bicar-bonat, oder einem organischen Puffer, z.B. MOPS, HEPES, PIPES oder TRIS, oder einem Puffer, ausgewählt aus Adipinsäure, Pimelinsäure, Tryptophan oder Hydroxymethylcellulose, ausgewählt ist. 14. Verfahren nach einem der vorangegangenen Ansprüche, wobei die Zusammensetzung zur Verwendung als Eisenergänzung bestimmt ist. 15. Verfahren zur Herstellung eines festen, ligandenmodifizierten Polyoxohydroxymetallionenmaterials und Optimierung einer gewünschten physikochemischen Eigenschaft des Materials, um es für eine ernährungsbezogene, medizinische, kosmetische oder biologisch verwandte Anwendung anzupassen, wobei das feste, ligandenmodifizierte Po-lyoxohydroxymetallionenmaterial Metallionen (M), Liganden (L) und Oxo- oder Hydroxygruppen (OH) umfasst, wobei: M für ein oder mehrere Metallionen steht, die aus Ag2+, Al3+, Au3+, Be2+, Ca2+, Co2+, Cr3+, Cu2+, Eu3+, Fe3+, Mg2+, Mn2+, Ni2+, Sr2+, V5+, Zn2+, und Zr2+ ausgewählt sind, L für einen oder mehrere Liganden steht, die einen Liganden umfassen, der aus Carbonsäure, Maitól, Ethyl-maltol, Vanillin, Bicarbonat, Sulfat, Phosphat, Silicat, Borat, Molybdat, Selenat, Tryptophan, Glutamin, Prolin, Valin, Histidin, Folat, Ascorbat, Pyridoxin, Niacin, Adipat, Acetat, Glutarat, Dimethylglutarat, Pimelat, Succinat, Benzoat und Propionat ausgewählt ist, und wobei das Material eine polymere Struktur aufweist, in der die Oxo- oder Hydroxygruppen nichtstöchiometrisch durch die Liganden L substituiert sind und innerhalb der Festphasenstruktur des Metalloxohydroxymaterials verteilt sind, sodassdie Substitution der Oxo- oder Hydroxygruppen durch die Liganden im Wesentlichen zufällig ist; wobei zumindest einige der Liganden in die Festphase integriert werden, sodass sie formale M-L-Bindung aufweist, die durch physikalische Analysetechniken detektiert werden kann, und das gesamte feste, ligandenmodifizierte Polyoxohydroxymetallionenmaterial eine oder mehrere reproduzierbare physikochemische Eigenschaften aufweist, wobei das Verfahren Folgendes umfasst: (a) Vermischen des/der Metallions/en (M) und des/der Liganden (L) in einem Reaktionsmedium bei einem ersten pH(A), bei dem die Bestandteile löslich sind; (b) Ändern des pH(A) zu einem zweiten pH(B), um zu bewirken, dass ein fester Niederschlag des ligandenmodifizierten Polyoxohydroxymetallionenmaterials gebildet wird; und (c) Trennen, und gegebenenfalls Trocknen, des festen, ligandenmodifizierten Polyoxohydroxymetallionen-materials, das in Schritt (b) hergestellt wurde; (d) Testen der gewünschten physikochemischen Eigenschaft(en) des ausgefällten festen, ligandenmodifizierten Polyoxohydroxymetallionenmaterials; und (e) Wiederholen der Schritte (a) bis (d) je nach Bedarf, indem eines oder mehrere der Folgenden geändert werden: (i) die Identität oder Konzentration des/der Metallions/en (M) und/oder des/der Ligands/en (L), die in Schritt (a) bereitgestellt werden; und/oder (ii) das Verhältnis zwischen Metallion(en) (M) und Ligand(en) (L), die in (a) bereitgestellt werden; und/oder (iii) pH(A); und/oder (iv) pH(B); und/oder (v) die Änderungsgeschwindigkeit von pH(A) zu pH(B); und/oder (vi) die Gegenwart oder Konzentration eines Puffers; um so ein festes, ligandenmodifiziertes Polyoxohydroxymetallionenmaterial mit der gewünschten physikochemischen Eigenschaft herzustellen. 16. Verfahren nach Anspruch 15, das weiters das Variieren einer physikalischen oder chemischen Reaktionsbedingung umfasst, die im Verfahren zur Herstellung des festen, ligandenmodifizierten Polyoxohydroxymetallionenmaterials verwendet wird. 17. Verfahren nach Anspruch 16, wobei die physikalische oder chemische Reaktionsbedingung aus der Temperatur der Reaktion, der Geschwindigkeit der pH-Änderung oder der Verwendung oder den Bedingungen beim Vermischen der Reaktanten ausgewählt ist. 18. Verfahren nach einem der Ansprüche 15 bis 17, wobei der erste pH(A) ein pH unter dem pH ist, bei dem eine Oxohydroxypolymerisation des entsprechenden Metalloxohydroxids beginnt, und gegebenenfalls pH(A) niedriger als oder gleich pH 2 ist und pH(B) höher als oder gleich pH 2 ist. 19. Verfahren nach einem der Ansprüche 15 bis 18, wobei der pH durch Zusatz von Säure von pH(A) zu pH(B) geändert wird und wobei die Säure gegebenenfalls als Mineralsäure oder organische Säure zugesetzt wird, um die Konzentration von OH im Gemisch aus Schritt (b) zu verringern. 20. Verfahren nach einem der Ansprüche 15 bis 17, wobei pH(B) niedriger als oder gleich pH 2 ist und pH(A) höher als oder gleich pH 2 ist. 21. Verfahren nach einem der Ansprüche 15 bis 20, wobei: (a) die pH-Änderung von pH(A) zu pH(B) innerhalb eines Zeitraums von 24 Stunden oder weniger, noch bevorzugter innerhalb eines Zeitraums von einer Stunde und insbesondere innerhalb von 20 Minuten, stattfindet; und/oder (b) die Konzentration aller Metallionen (M) und aller Liganden (L) mehr als 10-6 M beträgt, noch bevorzugter mehr als 10"3 M; und/oder (c) das Reaktionsmedium eine wässrige Lösung ist; und/oder (d) der Puffer den pH-Bereich der Oxohydroxypolymerisation stabilisiert; und/oder (e) der Puffer aus einem anorganischen Puffer, wie z.B. Borat, Silicat oder Bicarbonat, oder einem organischen Puffer, z.B. MOPS, HEPES, PIPES oder TRIS, oder einem Puffer, ausgewählt aus Adipinsäure, Pimelinsäure, Tryptophan oder Hydroxymethylcellulose, ausgewählt ist; und/oder (f) die Pufferkonzentrationen unter 500 mM liegen, vorzugsweise unter 200 mM und insbesondere unter 100 mM; und/oder (g) die Temperatur der Reaktion zwischen 0 und 100 °C liegt, noch bevorzugter zwischen Raumtemperatur (20-30 °C) und 100 °C; und/oder (h) die lonenstärke des Reaktionsmediums durch den Zusatz eines Elektrolyts variiert wird; und/oder (i) die Bestandteile in Schritt (a) zu einer homogenen Lösung vermischt werden. 22. Verfahren zur Herstellung eines festen, ligandenmodifizierten Polyoxohydroxymetallionenmaterials zur Verabreichung an ein Individuum, wobei das Verfahren umfasst, dass das feste, ligandenmodifizierte Polyoxohydroxyme-tallionenmaterial gemäß einem Verfahren nach einem der Ansprüche 15 bis 21 wie hierin offenbart optimiert wird, und den weiteren Schritt zur Herstellung des festen, ligandenmodifizierten Polyoxohydroxymetallionenmaterials in großer Menge und/oder ihr Formulieren zu einer Zusammensetzung umfasst. 23. Zusammensetzung zur Verwendung in einer Therapie, die ein festes, ligandenmodifiziertes Polyoxohydroxymetal-lionenmaterial umfasst, das Metallionen (M), Liganden (L) und Oxo- oder Hydroxygruppen (OH) umfasst, wobei: M für ein oder mehrere Metallionen steht, die aus Ag2+, Al3+, Au3+, Be2+, Ca2+, Co2+, Cr3+, Cu2+, Eu3+, Fe3+, Mg2+, Mn2+, Ni2+, Sr2+, V5+, Zn2+, und Zr2+ ausgewählt sind, L für einen oder mehrere Liganden steht, die einen Liganden umfassen, der aus Carbonsäure, Maitól, Ethyl-maltol, Vanillin, Bicarbonat, Sulfat, Phosphat, Silicat, Borat, Molybdat, Selenat, Tryptophan, Glutamin, Prolin, Valin, Histidin, Folat, Ascorbat, Pyridoxin, Niacin, Adipat, Acetat, Glutarat, Dimethylglutarat, Pimelat, Succinat, Benzoat und Propionat ausgewählt ist, und wobei das Material eine polymere Struktur aufweist, in der die Oxo- oder Hydroxygruppen nichtstöchiometrisch durch Liganden substituiert sind und innerhalb der Festphasenstruktur des Metalloxohydroxymaterials verteilt sind, sodass die Substitution der Oxo- oder Hydroxygruppen durch die Liganden im Wesentlichen zufällig ist; wobei zumindest einige der Liganden in die Festphase integriert werden, sodass sie formale M-L-Bindung aufweist, die durch physikalische Analysetechniken detektiert werden kann, und das gesamte feste, ligandenmodifizierte Polyoxohydroxymetallionenmaterial eine oder mehrere reproduzierbare physikochemische Eigen- schäften aufweist. 24. Zusammensetzung nach Anspruch 23, wobei die Zufuhr des Metallions dem Individuum therapeutischen Nutzen bereitstellt. 25. Zusammensetzung nach Anspruch 24, wobei das Material zur Verwendung bei der therapeutischen Entfernung oder Hemmung einer endogenen Substanz dient, die im Individuum vorhanden ist und in der Lage ist, an das feste, ligandenmodifizierte Polyoxohydroxymetallionenmaterial zu binden. 26. Eisen(lll)-Zusammensetzung zur Verwendung in einer Therapie, die ein festes, ligandenmodifiziertes Polyoxohyd-roxymetallionenmaterial umfasst, das Metallionen (M), Liganden (L) und Oxo- oder Hydroxygruppen (OH) umfasst, wobei M für ein oder mehrere Metallionen steht, die Fe3+-lonen umfassen, L für einen oder mehrere Liganden steht, und wobei das Material eine polymere Struktur aufweist, in der die Oxo- oder Hydroxygruppen nichtstöchiometrisch durch die Liganden L substituiert sind und innerhalb der Festphasenstruktur des Metalloxohydroxymaterials verteilt sind, sodass die Substitution der Oxo- oder Hydroxygruppen durch die Liganden im Wesentlichen zufällig ist, wobei zumindest einige der Liganden in die Festphase integriert werden, sodass sie formale M-L-Bindung aufweist, die durch physikalische Analysetechniken detektiert werden kann, und das feste, ligandenmodifizierte Polyoxohydro-xymetallionenmaterial eine oder mehrere reproduzierbare physikochemische Eigenschaften aufweist. 27. Eisen(lll)-Zusammensetzung nach Anspruch 26, wobei M Fe3+-lonen ist. 28. Eisen(lll)-Zusammensetzung nach Anspruch 26 oder Anspruch 27, wobei: (i) die im Wesentlichen zufällige Festphasenstruktur des Materials, das durch Substitution von Hydroxy- oder Oxogruppen durch den Liganden L hergestellt wird, durch ein Röntgendiffraktionsmuster ohne identifizierbare Reflexe für L oder MO/MOH bestimmbar ist; und/oder (ii) die im Wesentlichen zufällige Festphasenstruktur des Materials, das durch Substitution von Hydroxy- oder Oxogruppen durch den Liganden L hergestellt wird, eine Steigerung der Amorphität der Struktur des Materials ist, wie durch hochauflösende Transmissionselektronenmikroskopie bestimmbar ist; und/oder (iii) die reproduzierbare physikochemische Eigenschaften aus einem oder mehreren aus einem Auflösungsprofil, einem Adsorptionsprofil oder einem reproduzierbaren Elementarverhältnis ausgewählt ist; und/oder (iv) das reproduzierbare Elementarverhältnis innerhalb einer Grenze von vorzugsweise ±10 %, noch bevorzugter ± 5 % und noch bevorzugter innerhalb einer Grenze von ± 2 %, reproduzierbar ist. 29. Eisen(lll)-Zusammensetzung nach einem der Ansprüche 26 bis 28, wobei das Infrarotspektrum weiters einen oder mehrere Peaks für die Bindungen zwischen M-O, O-H und L alleine umfasst. 30. Eisen(lll)-Zusammensetzung nach einem der Ansprüche 26 bis 29, wobei: (i) der Ligand L Tartrat oder Adipat oder Succinat umfasst; oder (ii) der Ligand L Tartrat und Adipat umfasst; oder (iii) der Ligand L Tartrat und Succinat umfasst. 31. Eisen(lll)-Zusammensetzung nach einem der Ansprüche 26 bis 30, wobei das Verhältnis M:L zwischen etwa 1:5 und 5:1 liegt. 32. Eisen(lll)-Zusammensetzung nach einem der Ansprüche 26 bis 31, die FeOHAdlOO und FeT-3:1-Ad20 ist. 33. Eisen(lll)-Zusammensetzung nach einem der Ansprüche 26 bis 32, wobei die Zusammensetzung ein Ergänzungsmittel, ein Anreicherungsmittel oder ein Nahrungsmittelzusatz ist. 34. Verwendung einer Zusammensetzung, die ein festes, ligandenmodifiziertes Polyoxohydroxymetallionenmaterial umfasst, nach einem der Ansprüche 23 bis 33 zur Herstellung eines Medikaments zur therapeutischen Zufuhr des Metallions zu einem Individuum oder zur Verwendung zur therapeutischen Entfernung oder Hemmung einer endogenen Substanz, die in einem Individuum vorhanden ist und in der Lage ist, an das feste, ligandenmodifizierte Polyoxohydroxymetallionenmaterial zu binden. 35. Zusammensetzung, die ein festes, ligandenmodifiziertes Polyoxohydroxymetallionenmaterial umfasst, nach einem der Ansprüche 23 bis 33 zur Verwendung in einer Therapie zur Zufuhr des Metallions zum Individuum oder zur Verwendung zur therapeutischen Entfernung oder Hemmung einer endogenen Substanz, die in einem Individuum vorhanden ist und in der Lage ist, an das feste, ligandenmodifizierte Polyoxohydroxymetallionenmaterial zu binden. 36. Verwendung oder Zusammensetzung zur Verwendung in einer Therapie nach Anspruch 34 oder Anspruch 35, wobei: (i) das Metallion (M) Fe3+ ist; und/oder (ii) der Carbonsäureligand aus Adipinsäure, Glutarsäure, Weinsäure, Äpfelsäure, Bernsteinsäure, Asparagin-säure, Pimelinsäure, Citronensäure, Gluconsäure, Milchsäure und Benzoesäure ausgewählt ist; und/oder (iii) der Ligand Puffereigenschaften aufweist oder ein Puffer in einem Medium vorhanden ist, um das Verfahren auszuführen. 37. Verwendung oder Zusammensetzung zur Verwendung in einer Therapie nach Anspruch 36, wobei der Puffer aus einem anorganischen Puffer, wie z.B. Borat, Silicat oder Bicarbonat, oder einem organischen Puffer, z.B. MOPS, HEPES, PIPES oder TRIS, oder einem Puffer, ausgewählt aus Adipinsäure, Pimelinsäure, Tryptophan oder Hydro-xymethylcellulose, ausgewählt ist.
Revendications 1. Procédé de production d’une matière poly oxo-hydroxy ion métallique modifiée par ligand solide comprenant des ions métalliques (M), des ligands (L) et des groupes oxo ou hydroxy (OH), dans lequel : M représente un ou plusieurs ions métalliques choisis parmi Ag2+, Al3+, Au3+, Be2+, Ca2+, Co2+, Cr3+, Cu2+, Eu3+, Fe3+, Mg2+, Mn2+, Ni2+, Sr2+, V5+, Zn2+ et Zr2+, L représente un ou plusieurs ligands qui comprennent un ligand choisi parmi un acide carboxylique, le maitól, l’éthylmaltol, la vanilline, un bicarbonate, un sulfate, un phosphate, un silicate, un borate, un molybdate, un sélénate, le tryptophane, la glutamine, la proline, la valine, l’histidine, un folate, un ascorbate, la pyridoxine, la niacine, un adipate, un acétate, un glutarate, le glutarate de diméthyle, un pimélate, un succinate, un benzoate et un propionate, et dans lequel la matière présente une structure polymère dans laquelle les ligands sont substitués de manière non stoechiométrique aux groupes oxo ou hydroxy et sont répartis dans la structure en phase solide de la matière oxo-hydroxy métallique et de sorte que la substitution des groupes oxo ou hydroxy par les ligands soit sensiblement aléatoire ; dans lequel au moins une partie du ligand est intégrée dans la phase solide de manière à ce qu’elle présente une liaison M-L formelle qui puisse être détectée par les techniques analytiques physiques et que la matière poly oxo-hydroxy ion métallique modifiée par ligand solide brute présente une ou plusieurs propriétés physicochimiques reproductibles, le procédé comprenant les étapes consistant à : (a) mélanger les ions métalliques M et les ligands Là un premier pH(A) auquel les corn posants sont solubles ; (b) modifier le pH(A) par un deuxième pH(B) pour entraîner la formation d’un précipité solide de la matière poly oxo-hydroxy ion métallique modifiée par ligand solide ; et (c) séparer, et optionnellement sécher la matière poly oxo-hydroxy ion métallique modifiée par ligand solide produite à l’étape (b). 2. Procédé selon la revendication 1, comprenant en outre la formulation de la matière poly oxo-hydroxy ion métallique modifiée par ligand solide dans une composition pour l’administration à un sujet. 3. Procédé selon la revendication 2, dans lequel l’étape de formulation de la matière comprend l’addition d’un excipient. 4. Procédé selon la revendication 2 ou la revendication 3, dans lequel : (i) la composition est destinée à une utilisation en tant que composition nutritionnelle, médicale, cosmétique ou autre composition biologiquement applicable ; et/ou (ii) la composition est destinée à la distribution de l’ion métallique ou du ligand à un sujet ; et/ou (iii) la composition est destinée à la séquestration ou à l’inhibition d’un composant présent chez le sujet en utilisant la matière poly oxo-hydroxy ion métallique modifiée par ligand solide. 5. Procédé selon l’une quelconque des revendications précédentes, dans lequel le pH(A) est supérieur à un pH auquel la polymérisation oxo-hydroxy de l’oxo-hydroxyde métallique correspondant commence. 6. Procédé selon l’une quelconque des revendications précédentes, dans lequel le pH passe du pH (A) au pH (B) suite à l’addition d’un alcali, et de préférence dans lequel l’alcali est ajouté sous la forme d’une solution d’hydroxyde de sodium, d’hydroxyde de potassium ou de bicarbonate de sodium pour augmenter la concentration d’OH dans le mélange de l’étape (b) et/ou dans lequel le pH(A) est inférieur ou égal au pH 2 et le pH(B) est supérieur ou égal au pH 2. 7. Procédé selon l’une quelconque des revendications 1 à 4, dans lequel le pH passe du pH(A) au pH(B) suite à l’addition d’acide, et de préférence dans lequel l’acide est ajouté sous la forme d’un acide minéral ou d’un acide organique pour réduire la concentration d’OH dans le mélange de l’étape (b), et/ou dans lequel le pH(B) est inférieur ou égal au pH 2 et le pH(A) est supérieur ou égal au pH 2. 8. Procédé selon l’une quelconque des revendications précédentes, dans lequel la ou les propriétés physico-chimiques reproductibles sont choisies parmi la dissolution (vitesse, dépendance au pH et dépendance au pM), les caractéristiques d’adsorption et d’absorption, la réactivité-inertie, le point de fusion, la résistance à la température, la granulométrie, le magnétisme, les propriétés électriques, la densité, les propriétés d’absorption/réflexion de la lumière, la dureté-mollesse, la couleur et les propriétés d’encapsulation. 9. Procédé selon la revendication 8, dans lequel la propriété physico-chimique reproductible est reproductible dans une limite de préférence de ± 10 %, et plus préférablement de ± 5 %, et encore plus préférablement dans une limite de ± 2 %. 10. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’ion métallique (M) est Fe3+. 11. Procédé selon l’une quelconque des revendications précédentes, dans lequel le ligand acide carboxylique est choisi parmi l’acide adipique, l’acide glutarique, l’acide tartrique, l’acide malique, l’acide succinique, l’acide aspartique, l’acide pimélique, l’acide citrique, l’acide gluconique, l’acide lactique et l’acide benzoïque. 12. Procédé selon l’une quelconque des revendications précédentes, dans lequel le ligand présente des propriétés de tamponnage ou un tampon est présent dans un milieu pour réaliser le procédé. 13. Procédé selon la revendication 12, dans lequel le tampon est choisi parmi un tampon inorganique, tel qu’un borate, un silicate ou un bicarbonate, ou un tampon organique tel que le MOPS, l’HEPES, le PIPES ou le TRIS, ou un tampon choisi parmi l’acide adipique, l’acide pimélique, le tryptophane ou l’hydroxyméthylcellulose. 14. Procédé selon l’une quelconque des revendications précédentes, laquelle composition est destinée à une utilisation en tant que supplément en fer. 15. Procédé de production d’une matière poly oxo-hydroxy ion métallique modifiée par ligand solide et d’optimisation d’une propriété physico-chimique souhaitée de la matière pour l’adapter à une application nutritionnelle, médicale, cosmétique ou une application biologiquement apparentée, dans lequel la matière poly oxo-hydroxy ion métallique modifiée par ligand solide comprend des ions métalliques (M), des ligands (L) et des groupes oxo ou hydroxy (OH), dans lequel M représente un ou plusieurs ions métalliques choisis parmi Ag2+, Al3+, Au3+, Be2+, Ca2+, Co2+, Cr3+, Cu2+, Eu3+, Fe3+, Mg2+, Mn2+, Ni2+, Sr2+, V5+, Zn2+ etZr2+, L représente un ou plusieurs ligands qui comprennent un ligand choisi parmi un acide carboxylique, le maitól, l’éthylmaltol, la vanilline, un bicarbonate, un sulfate, un phosphate, un silicate, un borate, un molybdate, un sélénate, le tryptophane, la glutamine, la proline, la valine, l’histidine, un folate, un ascorbate, la pyridoxine, la niacine, un adipate, un acétate, unglutarate, leglutaratedediméthyle, un pimélate, un succinate, un benzoate et un propionate, et dans lequel la matière présente une structure polymère dans laquelle les ligands L sont substitués de manière non stoechiométrique aux groupes oxo ou hydroxy et sont répartis dans la structure en phase solide de la matière oxo-hydroxy métallique et de sorte que la substitution des groupes oxo ou hydroxy par les ligands soit sensiblement aléatoire ; dans lequel au moins une partie du ligand est intégrée dans la phase solide de manière à ce qu’elle présente une liaison M-L formelle qui puisse être détectée par les techniques analytiques physiques et que la matière poly oxo-hydroxy ion métallique modifiée par ligand solide brute présente une ou plusieurs propriétés physico-chimiques reproductibles, le procédé comprenant les étapes consistant à : (a) mélanger l’ion (les ions) métallique(s) M et le(s) ligand(s) L dans un milieu réactionnel à un premier pH(A) auquel les composants sont solubles ; (b) modifier le pH(A) par un deuxième pH (B) pour entraîner la formation d’un précipité solide de la matière poly oxo-hydroxy ion métallique modifiée par ligand ; (c) séparer, et optionnellement sécher la matière poly oxo-hydroxy ion métallique modifiée par ligand solide produite à l’étape (b). (d) tester la (les) caractéristique(s) physico-chimique(s) souhaitée(s) de la matière poly oxo-hydroxy ion métallique modifiée par ligand solide précipitée ; et (e) répéter les étapes (a) à (d) selon les besoins en faisant varier un ou plusieurs de : (i) l’identité ou la concentration de l’ion (des ions) métallique(s) (M) et/ou du (des) ligand(s) (L) apporté(s) à l’étape (a) ; et/ou (ii) le rapport de l’ion (des ions) métallique (s) (M) au (x) ligand(s) (L) apporté(s) en (a) ; et/ou (iii) le pH(A) ; et/ou (iv) le pH (B) ; et/ou (v) le taux de modification du pH (A) par le pH (B) ; et/ou (vi) la présence ou la concentration d’un tampon ; pour produire de cette façon une matière poly oxo-hydroxy ion métallique modifiée par ligand solide présentant la propriété physico-chimique souhaitée. 16. Procédé selon la revendication 15, qui comprend en outre la variation d’une condition de réaction physique ou chimique utilisée dans le procédé de préparation de la matière poly oxo-hydroxy ion métallique modifiée par ligand solide. 17. Procédé selon la revendication 16, dans lequel la condition de réaction physique ou chimique est choisie parmi la température de la réaction, le taux de modification du pH ou l’utilisation ou les conditions utilisées pour mélanger les réactifs. 18. Procédé selon l’une quelconque des revendications 15 à 17, dans lequel le premier pH (A) est un pH inférieur au pH auquel la polymérisation oxo-hydroxy de l’oxo-hydroxyde métallique correspondant commence, et éventuellement le pH(A) est inférieur ou égal au pH 2 et le pH(B) est supérieur ou égal au pH 2. 19. Procédé selon l’une quelconque des revendications 15 à 18, dans lequel le pH passe du pH (A) au pH (B) suite à l’addition d’acide, et éventuellement dans lequel l’acide est ajouté sous la forme d’un acide minéral ou d’un acide organique pour réduire la concentration d’OH dans le mélange de l’étape (b). 20. Procédé selon l’une quelconque des revendications 15 à 17, dans lequel le pH(B) est inférieur ou égal au pH 2 et le pH(A) est supérieur ou égal au pH 2. 21. Procédé selon l’une quelconque des revendications 15 à 20, dans lequel : (a) la modification du pH du pH(A) au pH(B) se produit dans un délai de 24 heures ou moins, plus préférablement dans un délai d’une heure et de manière préférée entre toutes dans un délai maximal de 20 minutes ; et/ou (b) la concentration des ions métalliques totaux (M) et du ligand total (L) est supérieure à 10-6 en mole, et plus préférablement est supérieure à 10-3 en mole ; et/ou (c) le milieu réactionnel est une solution aqueuse ; et/ou (d) le tampon stabilise la plage de pH de la polymérisation oxo-hydroxy ; et/ou (e) le tampon est choisi parmi un tampon inorganique, tel qu’un borate, un silicate ou un bicarbonate, ou un tampon organique tel que le MOPS, l’HEPES, le PIPES ou le TRIS, ou un tampon choisi parmi l’acide adipique, l’acide pimélique, le tryptophane ou l’hydroxyméthylcellulose et/ou (f) les concentrations de tampon sont inférieures à 500 mM, de préférence inférieures à 200 mM et de manière préférée entre toutes inférieures à 100 mM ; et/ou (g) la température de la réaction est située entre 0 et 100 °C, et plus préférablement entre la température ambiante (20-30 °C) et 100 °C ; et/ou (h) la force ionique du milieu réactionnel est modifiée par addition d’électrolyte ; et/ou (i) les composants sont mélangés à l’étape (a) pour former une solution homogène. 22. Procédé de préparation d’une matière poly oxo-hydroxy ion métallique modifiée par ligand solide pour l’administration à un sujet, le procédé comprenant l’optimisation d’une matière poly oxo-hydroxy ion métallique modifiée par ligand solide selon le procédé de l’une quelconque des revendications 15 à 21 tel que décrit ici, l’étape supplémentaire de fabrication de la matière poly oxo-hydroxy ion métallique modifiée par ligand solide en vrac et/ou sa formulation dans une composition. 23. Composition pour l’utilisation en thérapie comprenant une matière poly oxo-hydroxy ion métallique modifiée par ligand solide comprenant des ions métalliques (M), des ligands (L) et des groupes oxo ou hydroxy (OH), dans laquelle : M représente un ou plusieurs ions métalliques choisis parmi Ag2+, Al3+, Au3+, Be2+, Ca2+, Co2+, Cr3+, Cu2+, Eu3+, Fe3+, Mg2+, Mn2+, Ni2+, Sr2+, V5+, Zn2+ et Zr2+, L représente un ou plusieurs ligands qui comprennent un ligand choisi parmi un acide carboxylique, le maitól, l’éthylmaltol, la vanilline, un bicarbonate, un sulfate, un phosphate, un silicate, un borate, un molybdate, un sélénate, le tryptophane, la glutamine, la proline, la valine, l’histidine, un folate, un ascorbate, la pyridoxine, la niacine, un adipate, un acétate, un glutarate, le glutarate de diméthyle, un pimélate, un succinate, un benzoate et un propionate, et dans laquelle la matière présente une structure polymère dans laquelle les ligands sont substitués de manière non stoechiométrique aux groupes oxo ou hydroxy et sont répartis dans la structure en phase solide de la matière oxo-hydroxy métallique et de sorte que la substitution des groupes oxo ou hydroxy par les ligands soit sensiblement aléatoire ; dans laquelle au moins une partie du ligand est intégrée dans la phase solide de manière à ce qu’elle présente une liaison M-L formelle qui puisse être déterminée par les techniques analytiques physiques et que la matière poly oxo-hydroxy ion métallique modifiée par ligand solide brute présente une ou plusieurs propriétés physicochimiques reproductibles. 24. Composition selon la revendication 23, dans laquelle la distribution de l’ion métallique offre un bénéfice thérapeutique au sujet. 25. Composition selon la revendication 24, dans laquelle la matière est destinée à l’utilisation dans l’élimination ou l’inhibition thérapeutique d’une substance endogène présente chez le sujet qui est capable de se lier à la matière poly oxo-hydroxy ion métallique modifiée par ligand solide. 26. Composition à base de fer ferrique pour l’utilisation en thérapie qui comprend une matière poly oxo-hydroxy ion métallique modifiée par ligand solide comprenant des ions métalliques (M), des ligands (L) et des groupes oxo ou hydroxy (OH), dans laquelle M représente un ou plusieurs ions métalliques qui comprennent des ions Fe3+, L représente un ou plusieurs ligands et dans laquelle la matière présente une structure polymère dans laquelle les ligands L sont substitués de manière non stoechiométrique aux groupes oxo ou hydroxy et sont répartis dans la structure en phase solide de la matière oxo-hydroxy métallique et de sorte que la substitution des groupes oxo ou hydroxy par les ligands soit sensiblement aléatoire, dans laquelle au moins une partie du ligand est intégrée dans la phase solide de manière à ce qu’elle présente une liaison M-L formelle qui puisse être détectée par les techniques analytiques physiques et la matière poly oxo-hydroxy ion métallique modifiée par ligand solide présentant une ou plusieurs propriétés physico-chimiques reproductibles. 27. Composition à base de fer ferrique selon la revendication 26, dans laquelle M représente des ions Fe3+. 28. Composition à base de fer ferrique selon la revendication 26 ou la revendication 27, dans laquelle : (i) la structure en phase solide sensiblement aléatoire de la matière produite par substitution des groupes hydroxy ou oxo par le ligand L est déterminable par un spectre de diffraction des rayons X ne présentant pas de pics identifiables pour L ou MO/MOH ; et/ou (ii) la structure en phase solide sensiblement aléatoire de la matière produite par substitution des groupes hydroxy ou oxo par le ligand L est une augmentation du caractère amorphe de la structure de la matière tel que déterminable par microscopie électronique à transmission haute résolution ; et/ou (iii) la propriété physico-chimique reproductible est choisie parmi un ou plusieurs d’un profil de dissolution, d’un profil d’adsorption ou d’un rapport élémentaire reproductible ; et/ou (iv) le rapport élémentaire reproductible est reproductible dans une limite de préférence de ± 10 %, et plus préférablement de ± 5 %, et encore plus préférablement dans une limite de ± 2 %. 29. Composition à base de fer ferrique selon l’une quelconque des revendications 26 à 28, dans lequel le spectre infrarouge comprend en outre un ou plusieurs pics pour les liaisons entre M-O, O-H, et L seul. 30. Composition à base de fer ferrique selon l’une quelconque des revendications 26 à 29, dans laquelle : (i) le ligand L comprend un tartrate ou un adipate ou un succinate ; ou (ii) le ligand L comprend un tartrate et un adipate ; ou (iii) le ligand L comprend un tartrate et un succinate. 31. Composition à base de fer ferrique selon l’une quelconque des revendications 26 à 30, dans laquelle le rapport M/L est situé entre environ 1/5 et 5/1. 32. Composition à base de fer ferrique selon l’une quelconque des revendications 26 à 31 qui est FeOHAdl 00 et FeT-3:1-Ad20. 33. Composition à base de fer ferrique selon l’une quelconque des revendications 26 à 32, laquelle composition est un supplément, un fortifiant ou un additif alimentaire. 34. Utilisation d’une composition comprenant une matière poly oxo-hydroxy ion métallique modifiée par ligand solide telle que définie dans l’une quelconque des revendications 23 à 33 pour la préparation d’un médicament pour la distribution thérapeutique de l’ion métallique à un sujet ou pour l’utilisation de l’élimination ou de l’inhibition thérapeutique d’une substance endogène présente chez un sujet qui est capable de se lier à la matière poly oxo-hydroxy ion métallique modifiée par ligand solide. 35. Composition comprenant une matière poly oxo-hydroxy ion métallique modifiée par ligand solide telle que définie dans l’une quelconque des revendications 23 à 33 pour l’utilisation en thérapie pour la distribution de l’ion métallique au sujet ou pour l’utilisation de l’élimination ou de l’inhibition thérapeutique d’une substance endogène présente chez un sujet qui est capable de se lier à la matière poly oxo-hydroxy ion métallique modifiée par ligand solide. 36. Utilisation ou composition pourl’utilisation en thérapie de la revendication 34 ou de la revendication 35, dans laquelle : (i) l’ion métallique (M) est Fe3+ ; et/ou (ii) le ligand acide carboxylique est choisi parmi l’acide adipique, l’acide glutarique, l’acide tartrique, l’acide malique, l’acide succinique, l’acide aspartique, l’acide pimélique, l’acide citrique, l’acide gluconique, l’acide lactique et l’acide benzoïque ; et/ou (iii) le ligand présente des propriétés de tamponnage ou un tampon est présent dans un milieu pour réaliser le procédé. 37. Utilisation ou composition pour l’utilisation en thérapie de la revendication 36, dans laquelle le tampon est choisi parmi un tampon inorganique, tel qu’un borate, un silicate ou un bicarbonate, ou un tampon organique tel que le MOPS, l’FIEPES, le PIPES ou le TRIS, ou un tampon choisi parmi l’acide adipique, l’acide pimélique, le tryptophane ou l’hydroxyméthylcellulose.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • WO 2005000210 A [0004] · WO 03097627 A [0024] [0031] • WO 03031635 A [0005] · US 3076798 A [0031] • US 20050209322 A[0006] · US 20060205691 A [0031] • US 20050209187 A [0006] · WO 03092674 A [0031] • GB 1600449 A [0007] · WO 06037449 A [0031] • US 20030049284 A [0008] · WO 04074444 A [0031] • US 3679377 A [0009] · US 3821192 A [0031] • DE 202005014332 U1 [0010] · WO 04050031 A [0031]
Non-patent literature cited in the description • Remington’s Pharmaceutical Sciences. Lippincott, · JUGDAOHSINGH R ; AFSHARRAD S ; MCCRO-
Williams &amp; Wilkins, 2000 [0048] HAN CR ; WHITE KN ; THOMPSON RPH ; POW- • BOBTELSKY M ; JORDAN J. The structure and be- ELL JJ. A rapid non-equilibrium critical precipitation haviour of ferric tartrate and citrate complexes in di- assay to assess aluminium-ligand interactions, lute solutions. Journal of the American Chemical So- Chemical Spéciation and Bioavailability, 2004, vol. ciety, 1947, vol. 69, 2286-2290 [0105] 16 (3), 87-96 [0111] • EDGERTON VR ; GARDNER GW; OHIRA Y; · KALTWASSER JP ; WERNER, E ; NIECHZIAL, M. GUNAWARDENA KA ; SENEWIRATNE B. Iron-de- Bioavailability and therapeutic efficacy of bivalent and ficiency anaemia and its effect on worker productivity trivalent iron preparations. Arzneimittelforschungl and activity patterns. British Medical Journal, 1979, Drug Research, 1987, vol. 37 (1a), 122-129 [0112]
vol. 2 (6204), 1546-1549 [0106] · NIELSEN P ; GABBE EE ; FISHER R ; HEINRICH • Arzneimittelforschungl Drug Research, 1987, vol. 37 HC. Bioavailability of iron from oral ferric polymaltose (1), 100-104 [0107] in humans. Arzneimittelforschung IDrug Research, • GODDARD AF; JAMES MW; MCINTYRE AS; 1994, vol. 44 (1), 743-748 [0113]
SCOTT BB. Guidelines for the management of iron · POWELL JJ ; JUGDAOHSINGH R ; PIOTROWICZ
deficiency anaemia. BSG Guidelines in Gastroenter- A; WHITE KN ; MCCROHAN CR ; THOMPSON ology, 2005 [0108] RPH. Application of the critical precipitation assay to • HARVEY RSJ ; REFFITT DM ; DOIG LA ; MEENAN complex samples: aluminium binding capacity of hu- J; ELLIS RD ; THOMPSON RPH; POWELL JJ. man gastrointestinal fluids. Chemical Spéciation and
Ferrictrimaltol corrects iron deficiency anaemia in pa- Bioavailability, 2004, vol. 16 (3), 97-104 [0114] tients intolerant to iron. Alimentary Pharmacology &amp; · SMITH, FE ; HERBERT, J; GAUDIN, J; HEN-
Therapeutics, 1998, vol. 12 (9), 845-848 [0109] NESSY, J ; REID, GR. Serum iron determination us- • HEINRICH HC. Bioavailability of trivalent iron in oral ing ferene triazine. Clinical Biochemistry, 1984, vol. preparations. Arzneimittelforschung IDrug Re- 17, 306-310 [0115] search, 1975, vol. 25 (3), 420-426 [0110] · SCHOLZ BD ; GROSS R ; SCHULTINK W ; SAS- • Europe. Public Health Nutrition, 2001 ,vol. 4, 537-545 TROAMIDJOJO S. Anaemia is associated with re- 10111] duced productivity of women workers even in less-physically-strenuous tasks. British Journal of Nutrition, 1997, vol. 77 (1), 47-57 [0116]

Claims (10)

LiGÄRDÖIÄÄt MÓDOSÍTOTT POU-OXO-HIB^OXI-FÉPIOII-AMYÂOOK, ALKALMAZÁSAIK ÉS ELJÁRÁSOK ELŐÁLLÍTÁSUKRA Szabadalmi igénypontok:DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE PREFERRED EMBODIMENTS OF APU OXO-HIBO OXI-PHYSIUMI-AMYAMOO, APPLICATIONS AND PROCEDURES 1, Eljárás szilárd, ligandummal módosított poH-oxo-Ndroxi-fémipn-atiyag előállítására, amely tartalmaz fémionokat (M), ligandumokat íL) és oxo- vagy hidroxicsopadokat (OH), ahol: M jelentése egy vagy több fémion, amelyet az Ag2*, Af*, Au3* , 8e2í', Ca2*', Co2\ Crs<', Cu2*, Eu3*.. Fe3*, Mg2*. tvfn2*, Ni2*, Sr2*, VSÁ Zn2* és Zr2* közül választunk, L jelentése egy vagy több figandum, amely tartalmaz karbonsav, maitól, etil-maitól, vanillin, hidrogén-karbonát, szulfát, foszfát, szilikét, borát, mollbdát, szelénét, lépteién, giutamin, prolin, valsrr, hisztidin, félét, aszkorbát, piridoxin, niadn, adipát, acetáf, glutarát, dimetii-gfutaráí, pimeiát szukoináí, benzoáf és prüpionát közül választod ligandumot, és ahol az anyagnak polimer szerkezete van, amelyben a ligandumok nem-sztochiomethkusan helyettesítik az oxo- vagy hidroxícsoportokat, és elosztanak a fém-oxo-hid roxi-anyag szilárd fázisú szerkezetében, és úgy, hogy az oxo· vagy hldroxlesopoftok ügandumokkal való helyettesítése lényegében véletlenszerű (statisztikus, random); ahol a ligandernok közül legalább néhány a szilárd fázisba integrálódik úgy, hogy formális M-L kötést mutat, amely fizikai analitikai módszerekkel kimutatható, és az egész (teljes), szilárd, ligandummal módosított poll-oxo-hidroxHem ionanyagnak van egy vagy több reprodukálható fizika-kémiai tulajdonsága, az eljárás tartalmazza: (a) az M fémionok és az L hgandumok keverését egy első pH-η, pH(A)-n, amelyen a komponensek oldhatok: (b) a pH(A) egy második pH-ra, pH(8)-re történő változtatását, ami az előállítandó szilárd, ligandummal módosított poli-oxo-hidroxi-fémion-anyag szilárd csapadékának képződését váltja ki; és (ο) ab) lépésben előállton szilárd, Bandiimmal módosítóit pöí|-oxö4ifd:roxí-· fémion-aoyag elkülönítését és adott esetben szárítását.A process for the preparation of a solid ligand-modified H-oxo-Ndrox-metallipn material comprising metallic ions (M), ligands ΔL, and oxo or hydroxy doped (OH), wherein: M is one or more metal ions, which is Ag2 *. , Af *, Au3 *, 8e2 ', Ca2 *', Co2 Cr '', Cu2 *, Eu3 * .. Fe3 *, Mg2 *. selected from tvfn2 *, Ni2 *, Sr2 *, VSÁ Zn2 * and Zr2 *, L is one or more figs containing carboxylic acid, lactic acid, ethylene, vanillin, hydrogen carbonate, sulfate, phosphate, silicate, borate, mollbate , selenium, stepene, glutamine, proline, valsrr, histidine, halftone, ascorbate, pyridoxine, niadn, adipate, acetate, glutarate, dimethylfutarate, pimate succinate, benzoate and prypionate, and wherein the material has a polymer structure in which the ligands substitute the non-stoichiometric moieties for the oxo or hydroxyl groups and distribute in the solid phase structure of the metal oxo hydroxy hydroxide, and such that the substitution of the oxo or hlhydroxyoptoms with the primers is essentially random (statistic, random); wherein at least some of the ligands are integrated into the solid phase by displaying a formal ML binding which is detectable by physical analytical methods, and the whole (solid) solid ligand-modified pollen oxo hydroxy hydroxide has one or more reproducible physicochemical properties , the method comprises: (a) mixing the metal ions M and the L handands at a first pH η, pH (A) on which the components can be dissolved: (b) pH (A) at a second pH, 8) which results in the formation of a solid precipitate of the solid ligand-modified polyoxyhydroxy metal ion material to be prepared; and (ο) isolating and optionally drying the solid Bandiim modifiers of the oxy-oxo-4-fluoro: ions obtained in step b). 2. Az 1. Igénypont szerinti eljárás, amely tartalmazza továbbá a szilárd, ilgandummal módosított pölí-őxobídröXi-fémien-anyag készítménnyé alakítását alanynak történő beadásra. 3. A 2. igénypont szedni eljárás,, áltól az anyag készítménnyé alakítása tartalmazza segédanyag hozzáadását. 4. Ä 2. vagy 3. igénypont szerinti eljárás, ahol: (I) a készítmény táplálkozási, gyógyászati, kozmetikai vagy más biológiailag alkalmazható készítményként való alkalmazásra van szánva; és/vagy (ií) a készítmény a fémion vagy a ligandymok alanyba történd bevitelére van szánva; és/vagy (Ili) a készítmény az alanyban levő komponens szekvesztrálására vagy gátlására van szánva a szilárd, Ugandámmal módosított poli~oxo~hidroxí-íémion~ anyag alkalmazásával. S< Az előző igénypontok bármelyike szerinti eljárás, ahol a pH(A) értéke olyan pB-érték feletti érték, amelynél a megfelelő fém-oxo-bidroxid oxo-hidroxh poimerizádíófa beindul.The method according to claim 1, further comprising converting the solid, long-modified, polyoxyethyl metal compound into a composition for administration to a subject. 3. The method of claim 2, comprising converting the substance into a formulation, comprising adding an excipient. A method according to claim 2 or 3, wherein: (I) the composition is intended for use as a nutritional, therapeutic, cosmetic or other biologically applicable composition; and / or (ii) the composition is intended for introduction of metal ions or ligands into the subject; and / or (III) the composition is intended for sequencing or inhibiting the component in the subject using a solid Ugandam-modified polyoxyhydroxy ionium material. A process according to any one of the preceding claims, wherein the pH (A) is a value above pB at which the corresponding metal oxo-hydroxydoxide oxydhydryl primer is started. 8. Az előző igénypontok bármelyike szerinti eljárás, ahol a pH-t pH (A )-ról pH{B) re alkáli hozzáadásával változtatjuk, és előnyösen, ahol az alkálit nátnym-bidroxíd-, káliunvhidroxíd vagy nátrium-hidrogén-karbonát-oldatkénf adago|uk a (b) lépés szerinti elegyben levő OH koncentráció növelésére és/vagy ahol a pH(A) pH 2-néí alacsonyabb vagy azzal egyenlő, és a pB(B) pH 2-nél magasabb vagy azzal egyenlő.The method according to any one of the preceding claims, wherein the pH is adjusted from pH (A) to pH (B) by alkaline addition, and preferably wherein the alkali is sodium hydroxide, potassium hydroxide or sodium hydrogen carbonate solution. or to increase the OH concentration in the mixture of step (b) and / or where the pH (A) is lower than or equal to pH 2 and pB (B) is greater than or equal to pH 2. 1, Az 1-4. igénypontok bármelyike szerinti eprás, aboi a pH-t pH(A)~ról pH(B)-re sav adagolásával változtatjuk, és előnyösen, aboi a savat ásványi savként vagy szerves savként adagóljuk a (b) lépés szerinti elegy OH koncentrációjának csökkentésére·: és/vagy ahoi a pH(8) pH 2-nél alacsonyabb vag y aszal egyenlő, és a pH(A) pH 2-né! magasabb vagy azzal egyenlő.1, 1-4. The pH of the clay as claimed in any one of claims 1 to 3 is varied by the addition of acid from pH (A) to pH (B), and preferably, the acid is added as mineral acid or organic acid to reduce the OH concentration of the mixture of step (b). and / or where the pH (8) is lower than pH 2 and the pH (A) is pH 2. higher or equal to. 8, Az előző igénypontok bármelyike szerinti eljárás, ahol az egy vagy több reprodukálható fizíko-kémial tulajdonságot a következők közül választjuk: oldódás (sebesség. pH függőség és piVI függőség), adszorpciős és abszorpciós jellemzők, reakfivitásánertsag, olvadáspont, hőreziszteneía, részecskeméret, mágnesesség, elektromos tulajdonságok, sűrűség, fé nyel n ye lő/visszavero tulajdonságok, keménység-puhaság, szín és kapszulázásf tulajdonságok, 9» A 8. igénypont szerinti eljárás., ahol a reprodukálható iziko-kémiai tulajdonság bizonyos határon beiül reprodukálható,., előnyösen ±10 %, és előnyösebben ±5 és még előnyösebben ±2 % határon beiül.The method according to any one of the preceding claims, wherein the one or more reproducible physicochemical properties are selected from the group consisting of dissolution (rate, pH dependence and piVI dependence), adsorption and absorption characteristics, reactivity anertag, melting point, heat resistance, particle size, magnetism, electrical properties, density, semiconductor / refractive properties, hardness-softness, color and encapsulation properties, 9 The method of claim 8, wherein the reproducible isochemical property is reproducible within a certain limit, i. and more preferably ± 5 and more preferably within ± 2%. 10. Az előző igénypontok bármelyike szerinti eljárás, ahol a fémion (M) Fér*. 11« Az előző igénypontok bármelyike szerinti eljárás, ahol a karbonsav igandemo! az adipinsav, glutársav, borkősav, almasav, borostyánkősav, aszparaginsav, pimelinsav, dtromsav, glükonsav, tejsav és a benzoesav közül választjuk.The method according to any one of the preceding claims, wherein the metal ion (M) is *. The method according to any one of the preceding claims, wherein the carboxylic acid is igandemo! selected from adipic acid, glutaric acid, tartaric acid, malic acid, succinic acid, aspartic acid, pimelic acid, trimetic acid, gluconic acid, lactic acid and benzoic acid. 12. Az előző igénypontok bármelyike szerinti eljárás, ahol a Ugandámnak pufferet© tulajdonságai vannak vagy puffer van jelen a közegben az eljárás kivitelezéséhez. 13. A 12. igénypont szerinti eljárás, ahol a puffért szervetlen puffer, így például borét szifikát vagy hidrogén-karbonát, vagy szerves puffér, így például MOPS, HERES, PIPES vagy TRIS közül választjuk, vagy a púiért az adipinsav, pimelinsav, triptofán vagy a hldroximeticelfulöz közül választjuk.The method according to any one of the preceding claims, wherein the Ugandam has buffering properties or a buffer is present in the medium for carrying out the process. The method of claim 12, wherein the buffer is selected from the group consisting of inorganic buffer, such as borate, or hydrogen carbonate, or organic buffer such as MOPS, HERES, PIPES or TRIS, or the adipic acid, pimelic acid, tryptophan, or selected from the group of hydroxymethicelfuls. 14. Az előző igénypontok bármelyike szerinti eljárás, ahol a készítmény vaspótlóként való alkalmazásra van szánva.A method according to any one of the preceding claims, wherein the composition is for use as a iron substitute. 15. Eljárás szilárd, ligandummal módosítói poli-oxo-hidroxí-fémion-anyag előállítására és az anyag kívánt fiz íko~ kémiai tulajdonságának optimalizálására, hogy alkalmas legyen táplálkozási, gyógyászati, kozmetikai vagy biológiai vonatkozású alkalmazásra, ahol a szilárd, ligandummal módosított pofi-oxo-hidroxí-férnlon-anyag tartalmaz fémionokat (M), íigandumokat (L) és oxo- vagy hidroxlcsoportokat (OH}; ahol M Jelentése egy vagy főbb fémion, amelyet az Ag2*, Aí3\ Au3*, Be2', Ga2", Gs2+, Gr", Cu2" Eu3", Fe3+< Mg2", Mn2", Mi2", Sr2" Vs", Zn2" és Zr2* közül választunk, L jelentése egy vagy több iigaodum, amely tartalmaz a karbonsav, maitol, eil-maiol, vanillin, hidrogén-karbonát, szulfát, foszfát, szilkát, borát, mofibdái, szelenái thptofán, gíutamfn, prolin, vafln, hisztiéin, folát, aszkorbát, plddoxin, niacin, adipáf, acélát, glutarát, dlmetll-gíetarát, pímelát, szűkeinél benzoát és a proplonát közöl választott llgandumot, és ahol az anyagnak polimer szerkezete van, amelyben az L llgandumok nem-sztöcbíometrikusan helyettesítik az oxo- vagy hldroxlesoportokat, és elosztanak a fém-oxo-hídroxl-anyag szilárd: fázisú szerkezetében, és úgy, hogy az oxo- vagy hidroxicsoportok ligandummal való helyettesítése lényegében véletlenszerű; aboi a llgandumok közül legalább néhány integrálódik a szilárd fázisba úgy, hogy formális M-1 kötést mutat, amely fizikai analitikai módszerekkel kimutatható, és az egész, szilárd, ligandummal módosított poíí-oxo- hidroxi-férn ion-anyag nak egy vagy több reprodukálható fizika-kémiai tulajdonsága van, az eljárás tartalmazza: |a) az M: fémion (ok) és az L ligandum{okj keverését egy reakcióközegben egy első pH-η, pH(A)-n, amelyen a komponensek oldhatók; (b) a pH (A) egy második pH-ra, pH(8)-re történő változtatását, ami az előállítandó szilárd, ligandummal módosított pol-oxo-bidroxl-fémiomanyag szilárd csapadékának képződését váltja ki; és (c) a b) lépésben előállított szilárd, ligandummal módosított poli-oxo-hidfoxí-fémion-anyag elkülönítését és adott esetben szárítását. (d) a kicsapódott szilárd ligandummal módosított poii-oxo-hidroxi~fémlon~ anyag kívánt hziko-kémiai jellemzójénekfjellemzőinek vizsgálatát; és (e) az fa) - (d) lépések szükség; szerinti Ismétlését a következők közül egynek vagy többnek a módosításával: (í) az (a) lépésben alkalmazott fèmson(ok) (M) és/vagy L ligandumfok) azonossága vagy koncentrációja; és/vagy (si) az (a) lépésben alkalmazott fémlon(ok) (Ivl) és Itgandumíok) CL) aránya; és/vagy (Ili) pH(A); és/vagy (ívj pH(8}; és/vagy |v) a pH(A)~ról pH(B)-re történő változtatás sebessége; és/vagy (vi) puffer jelenléte vagy koncentrációja; hogy ezáltal olyan szilárd, ilgandurnmal módosítói poíi-oxo-hidroxi-fémien-anyagot állítsunk ele, amely a kívánt fizíko-kémial tulajdonsággal rendelkezik. 1S, A. 15. igénypont szerinti eljárás, amely tartalmazza továbbá az eljárásban alkalmazott fizikai vagy kémiai reakció körülményének módosítását a szilárd, llgandummal módosított poii-oxo-hidraxi-fémion-anyag előállítására. 17. A 16. igénypont szerinti eljárás, ahol a fizikai vagy kémiai reakció körülményét a raakcióhomérsékiei a pH-változtatás sebessége vagy az alkalmazás vagy a reaktánsoik keveréséhez alkalmazói feltételek közül választjuk. 18. Ä 15-17. igénypontok bármelyike szerinti eljárás, ahol az első pH, a pH(A), olyan pH, amely alatta van annak a pH-nak, amelynél a megfelelő fém-oxo-hidroxid oxo-hídroxi pollmerizációja beindul, és adott esetben a pH (A) pH 2-nél alacsonyabb vagy azzal egyenlő, és a pH(B) pH 2-nél magasabb vagy azzal egyenlő. it, A 15-18, igénypontok bármelyike szerinti eljárás, ahol a pH-t pH(A)-ról pH(B)-re sav hozzáadásával változtatjuk, és adott esetben. ahol a savat ásványi savként vagy szerves savként adjuk a (b) lépés szerinti eíegyben levő OH koncentráció csökkentésére. 20. A 15-17. igénypontok bármelyike szerinti eljárás, ahol pH(8) pH 2-nél alacsonyabb vagy azzá! egyenlő, és a pH|Ä> pH 2-nél magasabb vagy azzal egyenlő. 21, A 15-20. igénypontok bármelyike szerinti eljárás, ahol: (a) a pH val tozas pHIAi-rol pHfBbre 24 órás vagy rövidebb periódusban, előnyösebben egy órás periódusén belül, és legelőnyösebben 20 percen beiül történik: és/vagy $>} az összes fém io n (M) és az összes l ig a n d urn (D koncentrációja 1£P moi/í-nél nagyobb, és előnyösebben 1öf* mol/1-nél nagyobb; és/vagy (c) a reakelókozeg vizes ol>da!; és/vagy (dj a püfer stabflzál|a az oxo-hidroxi polimerizáoié pB-tartományáí; és/vagy (e) a puffert szervetlen puffer. így például borát, szakái vagy hidrogén-karbonát, vagy szerves puffer, így például MOPS, HERES, PIPES vagy TRIS közül választjuk, vagy a puffert az adpnsav, plmelinsav, triptofán vagy a hidroximetilcellulóz közül választjuk és /vagy (f) a puffer koncentrációk 500 niM-nál kisebbek, előnyösen 2ÖÖ mM-nál kisebbek, és legelőnyösebben 1ÖÖ ml/l-nál kisebbek;; és/vagy (g) a reakdőhőmérséklet Ö és 1ÖÖ °C, és előnyösebben szobahőmérséklet (20-30 °C| és 100 °C között van; és/vagy fhj a reakcióközeg íoeerösségét elektrolit adagolásával módosftjuk; és/vagy (I) a komponenseket az (a) lépésben homogén oldat előállítására keverjükA process for preparing a solid ligand modifier polyoxyhydroxy metal ion material and optimizing the desired physiochemical properties of the material for use in nutritional, pharmaceutical, cosmetic, or biological applications wherein the solid ligand-modified chewing oxo -hydroxy-malonone contains metal ions (M), ligands (L) and oxo or hydroxyl groups (OH}; where M means one or major metal ions, which is Ag2 *, Al3u3u, Be2 ', Ga2', Gs2 + , Gr ", Cu2" Eu3 ", Fe3 + <Mg2", Mn2 ", Mi2", Sr2 "Vs", Zn2 "and Zr2 *, L is one or more iigodomes containing carboxylic acid, lactol, r-maize , vanillin, hydrogen carbonate, sulphate, phosphate, silate, borate, mofibdates, selenates thptophan, gutamfn, proline, waffle, hysterine, folate, ascorbate, plddoxin, niacin, adipate, steel, glutarate, dlmethylgetarate, pimel, benzoate and proplona tells you a choice and wherein the material has a polymeric structure in which the L1 ligands replace the oxo or hydroxy groups in a non-stoichiometric manner and are distributed in the solid-phase structure of the metal oxo-hydroxylic material, and the oxo or hydroxyl groups are liganded its substitution is essentially random; at least some of the ligands are integrated into the solid phase by showing a formal M-1 binding that can be detected by physical analytical methods, and the whole solid, ligand-modified polyoxyhydroxy-ion ion material is one or more reproducible physics has a chemical property, the method comprising: a) mixing M: metal ion (s) and L ligand {okj in a reaction medium at a first pH η, pH (A) on which the components are soluble; (b) varying the pH (A) to a second pH, pH (8), resulting in the formation of a solid precipitate of the solid ligand-modified poloxo-hydrobromide material to be prepared; and (c) isolating and optionally drying the solid ligand-modified polyoxyhydroxy metal ion material prepared in step b). (d) examining the desired properties of the desired chicochemical properties of the polyoxyhydroxy metal ion compound modified with the precipitated solid ligand; and (e) steps (f) to (d) are required; by repeating one or more of the following: (i) the identity or concentration of the femmsone (s) (M) and / or L ligand used in step (a); and / or (si) the ratio of the metal ion (s) (Iv1) and Itgandum (CL) used in step (a); and / or (III) pH (A); and / or (curve pH (8}; and / or | v) the rate of change from pH (A) to pH (B); and / or (vi) the presence or concentration of buffer; 1S, A method according to claim 15, further comprising modifying the physical or chemical reaction conditions used in the process with the solid, llgandum modified polymer. A process according to claim 16, wherein the condition of the physical or chemical reaction is selected from the conditions of application for the pH change rate or for mixing the application or the reactant with the gravitational matrix. A method according to any one of claims 17 to 17, wherein the first pH, pH (A), is a pH below the pH at which the corresponding oxo-oxide of the metal oxo-hydroxide is and the pH (A) may be less than or equal to pH 2, and the pH (B) is greater than or equal to pH 2. The method of any one of claims 15-18, wherein the pH is changed from pH (A) to pH (B) by addition of acid and optionally. wherein the acid is added as a mineral acid or organic acid to reduce the OH concentration in the mixture of step (b). 20. The 15-17. The method of any one of claims 1 to 3, wherein the pH (8) is less than or equal to pH 2. is equal to and equal to or higher than pH 2. 21, A 15-20. A method according to any one of claims 1 to 4, wherein: (a) pH-adjusted pHIAi is carried out at pHfBb for a period of 24 hours or less, more preferably within one hour, and most preferably 20 minutes: and / or $>} for all metal i (n ) and all lg and urns (D concentrations greater than 1 µM moi and more preferably greater than 1 mol / mol; and / or (c) aqueous solution of the reactor and / or and / or (e) the buffer is inorganic buffer such as borate, trades or hydrogen carbonate, or organic buffer such as MOPS, HERES, PIPES or TRIS. or the buffer is selected from the group consisting of adipic acid, plmelic acid, tryptophan, or hydroxymethylcellulose and / or (f) the buffer concentrations are less than 500 µM, preferably less than 2 µM, and most preferably less than 1 µm / L; / or (g) the reaction temperature is Ö and 1 ° C; and more preferably room temperature (20-30 ° C to 100 ° C; and / or the reaction medium is modified by the addition of an electrolyte; and / or (I) mixing the components in step (a) to form a homogeneous solution 22, Eljárás alanynak vető beadásra szánt, szilárd, ügandummal módosított poli-oxo-hldroxl-fémion-anyag előállítására, az eljárás tartalmazza szilárd, ligandumma! módosított poíi-oxo-hidroxi-fémion-anyag egy a 15-21, igénypontok bármelyike szerinti eljárással való optimalizálását, amint azt itt leírtuk, továbbá a szilárd, ílgandummal módosított poii-öxo-bidroxl·fémionι anyag ömlesztett formában való előállításának és/vagy készítménnyé alakításának lépését.22, a process for the preparation of a solid, ligand-modified poly-oxy-hydroxyl metal ion material for administration to a subject, the method comprising a solid, ligand. optimization of a modified polyoxyhydroxy metal ion material according to the process of any one of claims 15-21 as described herein, as well as the preparation and / or formulation of the solid, ligand-modified polyxhydroxyl metal ion material. step of shaping it. 23. Készítmény terápiában való alkalmazásra, amely tartalmaz szilárd, llgandummal módosított poli-oxo-hidroxí-fémion-anyagot, amely tartalmaz fémionokat (M), ligandomokat (L) és oxo- vagy hidroxscsoportokat (OH), ahol: y jelentése egy vagy több fémion, amelyet az Ag2*, Ab4, Au"”, Be2*, Ca2í, Co2:\ Cr\ Cu?ö Eu3+, Fe3*, Mn2\ Ni2", Sr2*, νδ\ Zn2" és ZP közül választunk, L. jelentése egy vagy több ligandum, amely tartalmaz karbonsav, maitól, etil-maitol, vanillin, hidrogén-karbonát, szulfát, foszfát, szikét, borát, molíbdáf, szelenát, triptofán, gfutamín, prolin, valin. hísztiáín, falát, aszkorbát piridoxin, niacin, adipáf, acetàf, glutarái, dimetsf-gfufarát, plmeíát, szukcinát, benzoéí és a propionát közöl választott hgand úrnőt, ás ahol az anyagnak polimer szerkezete van, amelyben a Iigandumok nem· sztochíometrikusan helyettesítik az oxo- vagy hidroxlcsoportokat, és eloszlanak a fém-oxo-hidroxí-anyag szilárd fázisú szerkezetében, és úgy, hogy az m®~ vagy hidroxicsopodok ligandumokkal való helyettesítése lényegében véletlenszerű, ahol a Iigandumok közöl legalább néhány a szilárd fázisba integrálódik úgy, hogy formális M-i kötést mutat, amely fizikai analitikai módszerekkel kimufaíhafö, és az egész, szilárd, ligandummaí módosítóit poii-oxo-hidroxi-femion-anyagnak van egy vagy több reprodukálható fiziko-kémiai tulajdonsága. 24. A 23 Igénypont szerinti készítmény, ahol a tendon bevitele terápiás előnyt jelent az alany számára. 2$. A 24. igénypont szerinti készítmény, ahol az anyagi az alanyban jelenlevő olyan endogén anyag terápiás eltávolításában vagy gátlásában történő alkalmazásra való, amely képes a szilárd, ligandummaf módosított polboxo-hidroxí-íémion-anyaghoz kötődniA composition for use in therapy comprising a solid, ligand-modified polyoxyhydroxy metal ion comprising metal ions (M), ligands (L) and oxo or hydroxy groups (OH), wherein: y is one or more metal ion selected from Ag2 *, Ab4, Au ", Be2 *, Ca2i, Co2: Cu? Eu3 +, Fe3 *, Mn2 Ni2", Sr2 *, νδnn "and ZP. means one or more ligands containing carboxylic acid, lactic acid, ethyl lactose, vanillin, hydrogen carbonate, sulfate, phosphate, scalpel, borate, molybdenum, selenate, tryptophan, gfutamine, proline, valine thiostin, wall, ascorbate pyridoxine, niacin , adipate, acetal, glutarate, dimethphofufarate, pseudate, succinate, benzoate and propionate selected by the hgand mistress, and wherein the material has a polymeric structure in which the ligands do not stoichiometrically replace the oxo or hydroxyl groups and are dispersed in the metal. oxo-hydroxide solid phase s and that the substitution of m® ~ or hydroxyopods with ligands is essentially random where at least some of the ligands are integrated into the solid phase such that they show a formal Mi linkage, which is physically assayed by kimufaíhafhaf, and the whole, solid, ligand silicon modifiers. polyoxyhydroxy femion material has one or more reproducible physicochemical properties. 24. The composition of claim 23, wherein administering the tendon is a therapeutic benefit for the subject. $ 2nd The composition of claim 24, wherein the material is for use in the therapeutic removal or inhibition of an endogenous substance present in a subject that is capable of binding to a solid ligand-fused modified polboxohydroxide ion ion. 26. Vas(lif) készítmény terápiában való alkalmazásra, amely tartalmaz szilárd, ligandummaí médositot poií-oxo-hidroxi-fémion-anyagot. amely tartalmaz fémionokat (M), ügandurnokaf (L) és oxo- vagy hidroxicsoporíokat (OH), ahol y jelentése egy vagy több fémion, amely tartalmaz f e3*' ionokat, L jelentése egy vagy több ligandum, és ahol az anyagnak polimer szerkezete van, amelyben a Iigandumok nem-sztőchio,metrikusan helyettesítik az oxo- vagy hidroxlcsoportokat:, és eloszlanak a fém-oxo-hídroxíanyag szilárd fázisú szerkezetében, és úgy, hogy az oxo- vagy hidroxicsoportok ligandumokkal való helyettesítése lényegében véletlenszerű; ahol a Iigandumok közül legalább néhány a szilárd fázisba integrálódik úgy, hogy formális M-L kötést mutât, amely fizikai analitikai módszerekkel kimutatható, és a szilárd, ligandummaí módosított polí-oxo-hidroxi fémion-anyagnak van egy vagy több reprodukálható fíziko-kémlai tulajdonsága. 27. Ä 26. igénypont szerinti vas (Ili) készítmény, ahol M Fe-yí Ionokat jelent 28,. A 28, vagy 27. Igénypont szériái vas(líl) készítmény, ahol: fi) az anyag lényegében random szilárd fázis szerkezete, amelyet bkfroxi-vagy oxocsoportok L Hgandummai való helyettesítésével álltánk el6; meghatározható röntgensugár-diffraktogranimal, amelyben nincsenek azonosítható csecsük SL-re vagy y O/MÖB-ra; és/vagy (li) az anyag lényegében random szilárd fázis szerkezete, amelyet hidroxí-vagy OoXöcsoportofc L Ugandámmal való helyettesítésével álltunk elő, növekedést jelent az anyag szerkezetének amorfiíásban, amint az meghatározható nagyfelbontású transzmissziós elektron mikroszkóp segítségével; és/vagy (íií) a reprodukálható fiziko-kémlai tulajdonság egy vagy több az oldódási profik az adszorpciés profil vagy a reprdukáíható elem-arány közül választott (ív) a reprodukálható elem-arány előnyösen ±10 %·, és előnyösebben ±5 %, és még előnyösebben £2 % határon belül reprodukálható. 29. A 26-28. igénypontok bármelyike szerinti vasfll I) készítmény, ahol az infravörös spektrum továbbá tartalmaz egy vagy több csúcsot az lvl-0, O-H közötti kötésekre, és önmagában az L-re. 30. A 26-29. igénypontok bármelyike szerinti vasfii) készítmény, ahol: (i) az L lígandum tartalmaz tadarátöt vagy adspátot: vagy szukcinátot; vagy {«) az L ligandum tartalmaz tartatétól és adipátot; vagy (síi) az L lígandum tartalmaz tartrátot és szukoiinátot. 31. Ä 28-30. igénypontok bármelyike szenntí vasfű!) készítmény, ahoi az M:t arány kb. 1:5 és 5:1 közötti. 32. Â 28-31. igénypontok bármelyike szerinti vasfűi) készítmény, amely FeOHAdlOö és Feí-3:1-Ad2Ö, 33. A 28-32. igénypontok bármelyike szedni vasfűi) készítmény, ahol a készítmény kiegészítő, erősítő vagy élelmiszer-adalék 34. A 23-33. igénypontok bármelyikében meghatározott, szilárd, ligandummal módosított políi~öXü-hidr'oxí--temi;on-anyagot tartalmazó készítmény alkalmazása olyan gyógyszer előállítására, amely a fémion alanynak történő terápiás bevitelére van szánva, vagy amely alanyban jelenlevő olyan endogén anyag: terápiás eltávolításában vagy gátlásában való alkalmazásra van szánva, amely endogén anyag képes kötődni a szilárd, Igandornmal módosított polimxo-hldroxMamion- 35. A 23-33. igénypontok bármelyikében meghatározott, szilárd, ligandommal módosított polnoxo-liidroxi-fémion-anyagot tartalmazó készítmény terápiában való alkalmazásra a fémion alanyba történő bevitelére vagy olyan, alanyban jelenlevő endogén anyag terápiás eltávolításában vagy gátlásában való alkalmazásra, amely endogén anyag képes kötődni a szilárd, ligandommal módosított potboxo-h id roxi-íém ío n-a n y ag hoz. 36. A 34, vagy 35. Igénypont szerinti alkalmazás vagy készítmény terápiában való alkalmazásra, ahol: (i) a fémion (M) Feá+; és/vagy (il) a karbonsav ligandumot az adlplnsav, glutársav, borkősav, almasav, borostyánkősav, aszparaginsav, pimelínsav, cítromsav, glükonsav, tejsav és a benzoesav közül választjuk; és/vagy (Ili) a Ugandámnak pufferelö tulajdonságai vannak, vagy puffer van leien a közegben a folyamat kivitelezéséhez. 37. A 38. igénypont szerinti alkalmazás vagy készítmény terápiában való alkalmazásra, ahoi a puffert szervetlen pufferek, így például borát, sziíikát vagy hidrogén-karbonát, vagy szerves pufferek, Így például MOPS, HERES. PIPES vagy TRIS közűi választjuk, vagy a puffért az adipinsav, pimeiinsav, tríptofán vagy hldroximetilcellulöz közöl választjuk.26. An iron composition for use in therapy comprising a solid ligand-monomeric polyoxyhydroxy metal ion material. containing metallic ions (M), ligandurf (L) and oxo or hydroxy (OH), wherein y is one or more metal ions containing f e3 * ions, L is one or more ligands, and wherein the material has a polymer structure in which the ligands are non-stoichiometric, substitute metric or hydroxy: and are dispersed in the solid phase structure of the metal oxo-hydroxyl material and such that the substitution of the oxo or hydroxyl groups with the ligands is substantially random; wherein at least some of the ligands are integrated into the solid phase such that a formal M-L binding is detected by physical analytical methods and the solid ligand-modified polyoxyhydroxy metal ion has one or more reproducible physicochemical properties. 27. A iron (III) composition according to claim 26, wherein M is Fe-yi. A series of claims 28 or 27 is a iron (III) composition, wherein: fi) the structure of the substance is a substantially random solid phase, which is replaced by the substitution of Bfrox or oxo groups by L Hgandum6; a detectable X-ray diffraktogranimal in which there are no identifiable babies for SL or y O / MOB; and / or (li) the structure of the substantially random solid phase of the material produced by substitution of hydroxyl or OoXo group F by Ugandam means an increase in the amorphous structure of the material as determined by a high resolution transmission electron microscope; and / or (ii) the reproducible physicochemical property one or more of the solubility profiles selected from the adsorption profile or the replicable element ratio (arc) is preferably ± 10%, and more preferably ± 5%, and more preferably, it can be reproduced within a limit of £ 2%. 29. A 26-28. The iron compound according to any one of claims 1 to 5, wherein the infrared spectrum further comprises one or more peaks for the bonds between lvl-0, O-H, and L alone. 30. As described in Figures 26-29. A composition according to any one of claims 1 to 4, wherein: (i) L-ligand contains tadarate or adspate: or succinate; or {") the L ligand contains and includes an adipate; or (plural) L ligand contains tartrate and succinate. 31. Ä 28-30. A composition according to any one of claims 1 to 3, wherein the ratio of M: t is about 1 to about 5. Between 1: 5 and 5: 1. 32. Â 28-31. A ferric acid composition according to any one of claims 1 to 3, which is FeOHAdO6 and Fe1-3: 1-Ad2Ö, 33. A 28-32. A composition according to any one of claims 1 to 3, wherein the composition is a supplement, a boost or a food additive. Use of a composition comprising a solid ligand-modified poly (xylhydroxide) material as defined in any one of claims 1 to 5 for the manufacture of a medicament for therapeutic administration to a subject of a metal ion, or an endogenous substance present in a subject: therapeutic removal or which is capable of binding to an endogenous substance capable of binding to a solid Igandorn-modified polymorphoxamion-35 A-23-33. A composition comprising a solid ligand-modified polynoxylhydroxy metal ion material as defined in any one of claims 1 to 5 for use in therapy for administering a metal ion to a subject or for use in the therapeutic removal or inhibition of endogenous substance present in a subject which is capable of binding to a solid ligand-modified potbox. -h idoxylic acid. The use or composition for use in therapy according to claim 34 or 35, wherein: (i) the metal ion (M) is Fe +; and / or (IIa) the carboxylic acid ligand is selected from the group consisting of adipic acid, glutaric acid, tartaric acid, malic acid, succinic acid, aspartic acid, pimelic acid, citric acid, gluconic acid, lactic acid and benzoic acid; and / or (III) the Ugandam has buffering properties or a buffer is present in the medium to carry out the process. Use or composition for use in therapy according to claim 38, wherein the buffer is inorganic buffers such as borate, silicon or hydrogen carbonate, or organic buffers, such as MOPS, HERES. PIPES or TRIS is selected, or the buffer is selected from adipic acid, pimic acid, tryptophan, or hydroxymethylcellulose.
HUE08709331A 2007-02-06 2008-02-06 Ligand modified poly oxo-hydroxy metal ion materials, their uses and processes for their preparation HUE025502T2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88838607P 2007-02-06 2007-02-06
GBGB0702270.0A GB0702270D0 (en) 2007-02-06 2007-02-06 Ligand modified poly oxo-hydroxy metal ion materials, their uses and processes for their preparation

Publications (1)

Publication Number Publication Date
HUE025502T2 true HUE025502T2 (en) 2016-02-29

Family

ID=37891395

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE08709331A HUE025502T2 (en) 2007-02-06 2008-02-06 Ligand modified poly oxo-hydroxy metal ion materials, their uses and processes for their preparation

Country Status (9)

Country Link
KR (1) KR20140097492A (en)
CN (1) CN101627047B (en)
DK (1) DK2125847T3 (en)
ES (1) ES2544960T3 (en)
GB (1) GB0702270D0 (en)
HU (1) HUE025502T2 (en)
PT (1) PT2125847E (en)
SI (1) SI2125847T1 (en)
ZA (1) ZA200905083B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0814326D0 (en) * 2008-08-05 2008-09-10 Medical Res Council Phosphate binding materials and their uses
GB201101299D0 (en) * 2011-01-25 2011-03-09 Medical Res Council Oxygen sensors and their uses
CN103487430B (en) * 2013-08-29 2018-08-14 中国科学院宁波材料技术与工程研究所 A kind of trivalent aluminium ion detection reagent and detection method
GB201507002D0 (en) * 2015-04-24 2015-06-10 Medical Res Council Copper Oxo-hydroxide nanoparticles and their uses as biocidal agents
GB201517893D0 (en) * 2015-10-09 2015-11-25 Medical Res Council Methods for producing carboxylate ligand modified ferric iron hydroxide colloids
JP7426927B2 (en) * 2017-09-11 2024-02-02 ファーマコスモス ホールディング エー/エス Iron complex compounds for therapeutic use
CN115161253B (en) * 2022-05-30 2022-12-02 微康益生菌(苏州)股份有限公司 Probiotic inactivation method for keeping cell structural integrity and application thereof

Also Published As

Publication number Publication date
DK2125847T3 (en) 2015-09-14
KR20140097492A (en) 2014-08-06
CN101627047A (en) 2010-01-13
PT2125847E (en) 2015-09-21
ES2544960T3 (en) 2015-09-07
GB0702270D0 (en) 2007-03-14
CN101627047B (en) 2014-09-10
SI2125847T1 (en) 2015-10-30
ZA200905083B (en) 2010-04-28

Similar Documents

Publication Publication Date Title
EP2125847B1 (en) Ligand modified poly oxo-hydroxy metal ion materials, their uses and processes for their preparation
HUE025502T2 (en) Ligand modified poly oxo-hydroxy metal ion materials, their uses and processes for their preparation
EP2320884B1 (en) Phosphate binding materials and their uses
JPS5942683B2 (en) Essential metal ion complex
IE54572B1 (en) Pharmaceutically active succinylated proteins comprising iron
US11684572B2 (en) Methods for producing carboxylate ligand modified ferric iron hydroxide colloids and related compositions and uses
CN109790138B (en) Method for producing iron maltol compositions from ligand-modified and ligand-coated iron hydroxide
CN109311837B (en) Method for producing a maltoferric composition from ferrous hydroxide
CN109071481B (en) Method for producing a maltoferric composition from elemental iron
JPS61172821A (en) Manufacture of novel hemine complex compound for medicinal use
RU2409375C1 (en) Method for preparing microelement drug based on iron-dextrin complex
DK2320884T3 (en) Phosphate-binding materials and uses thereof