HRP980227A2 - Particulate products - Google Patents

Particulate products

Info

Publication number
HRP980227A2
HRP980227A2 HRP980227A HRP980227A2 HR P980227 A2 HRP980227 A2 HR P980227A2 HR P980227 A HRP980227 A HR P980227A HR P980227 A2 HRP980227 A2 HR P980227A2
Authority
HR
Croatia
Prior art keywords
fluticasone propionate
carrier
supercritical fluid
vessel
fluticasone
Prior art date
Application number
Other languages
Croatian (hr)
Inventor
Simon Murray Cooper
Original Assignee
Glaxo Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaxo Group Ltd filed Critical Glaxo Group Ltd
Priority to HRP980227 priority Critical patent/HRP980227A2/en
Publication of HRP980227A2 publication Critical patent/HRP980227A2/en

Links

Description

Ovaj se izum odnosi na čestičaste proizvode koji se mogu dobiti korištenjem superkritičnih fluida. Preciznije, izum se odnosi na nove kristalne oblike fluikason propionata, koji je S-fluorometil 6α,9α-difluoro-11β-hidroksi-16α-metil-3-okso-17α-propionil oksiandrosta-1,4-dien-17β-karbotiat. This invention relates to particulate products obtainable using supercritical fluids. More precisely, the invention relates to new crystalline forms of fluikasone propionate, which is S-fluoromethyl 6α,9α-difluoro-11β-hydroxy-16α-methyl-3-oxo-17α-propionyl oxyandrosta-1,4-diene-17β-carbotiate.

[image] [image]

Fluitikason propionat opisan je i zaštićen u britanskom patentu br. 2088877 (vidjeti njegov primjer 14). Ovaj spoj dokazao je anti-zapaljivu aktivnost, i naročito je koristan za tretman dišnih oboljenja, a posebno astme. Flutikason propionat dobiven je u kristalnom obliku, označen kao oblik 1, sa otapanjem sirovog proizvoda (dobiven, npr. kako je opisano u britanskom patentu br. 2088877) u etil acetatu i zatim ponovnim kristaliziranjem. Također je pokazano da standardne tehnike sprej-sušenja vode daju flutikason propionat isključivo u poznatom obliku 1. Prema ovom izumu može se dobiti flutikason propionat u novom polimorfnom obliku , označenom kao oblik 2. Oblik 2 može se karakterizirati na primjer sa uzorkom njegove difrakcije X-zraka (vidjeti infra). Fluticasone propionate is described and protected in British patent no. 2088877 (see his example 14). This compound has proven anti-inflammatory activity, and is particularly useful for the treatment of respiratory diseases, especially asthma. Fluticasone propionate was obtained in crystalline form, designated Form 1, by dissolving the crude product (obtained, e.g., as described in British Patent No. 2088877) in ethyl acetate and then recrystallization. It has also been shown that standard water spray-drying techniques yield fluticasone propionate exclusively in the known form 1. According to the present invention, fluticasone propionate can be obtained in a new polymorphic form, designated as form 2. Form 2 can be characterized for example with its X-ray diffraction pattern air (see infra).

Čestičasti proizvodi iz ovog izuma dobiveni su sa tehnikom superkritičnog fluida koju smo mi razvili. The particulate products of this invention are obtained with the supercritical fluid technique that we developed.

Primjena superkritičnih fluida (SCFs) i njihove osobine široko su dokumentirane, vidjeti na primjer, J. W. Tom i P. G. Debendetti: "Particle Formation with Supercritical Fluids - A Review", J. Aerosol. SCi., 22 (5), str. 555-584, (1991.). Ukratko, superkritični fluid može se definirati kao fluid na ili iznad njegovog gornjeg kritičnog tlaka (Pc) i kritične temperature (Tc), istovremeno. Superktirični fluidi bili su od značajnog interesa, zbog njihovih jedinstvenih osobina. Ove karakteristike uključuju: The applications of supercritical fluids (SCFs) and their properties are widely documented, see for example, J. W. Tom and P. G. Debendetti: "Particle Formation with Supercritical Fluids - A Review", J. Aerosol. SCi., 22 (5), p. 555-584, (1991). Briefly, a supercritical fluid can be defined as a fluid at or above its upper critical pressure (Pc) and critical temperature (Tc), simultaneously. Supercritical fluids have been of considerable interest due to their unique properties. These characteristics include:

- Visoku dufuzivnost, malu viskoznost i površinski tlak u usporedbi sa tekućinama. - High diffusivity, low viscosity and surface pressure compared to liquids.

- Veliku kompresibilnost superkritičnih fluida u usporedbi sa idealnim plinom izaziva velike promjene u gustoći fluida za male promjene u tlaku, koje redom rezultiraju u visoko kontroliranoj snazi solvacije. Gustoće superkritičnih fluida tipično su u opsegu od 0,1-0,9 g/ml pod normalnim radnim uvjetima. Tako je moguća selektivna ekstrakcija sa jednim superkritičnim fluidom. - The large compressibility of supercritical fluids compared to an ideal gas causes large changes in fluid density for small changes in pressure, which in turn result in highly controlled solvation power. Densities of supercritical fluids are typically in the range of 0.1-0.9 g/ml under normal operating conditions. Thus, selective extraction with one supercritical fluid is possible.

- Mnogi superkritični fluidi su normalni plinovi pod atmosferskim uvjetima, što eliminira fazu isparavanje/koncentracija potrebnu u konvencionalnoj tekućoj ekstrakciji. - Many supercritical fluids are normal gases under atmospheric conditions, which eliminates the evaporation/concentration phase required in conventional liquid extraction.

- Većina često korištenih superkritičnih fluida stvara ne-oksidirajuće ili ne-degradirane atmosfere za osjetljive i termolabilne spojeve, zbog njihove inertnosti i korištenja umjerenih temperatura u radnim uvjetima. Ugljični dioksid je obimno korišten kao SCF zbog njegove jeftinoće, ne-toksičnosti, ne-zapaljivosti i niske kritične temperature. - Most of the commonly used supercritical fluids create non-oxidizing or non-degrading atmospheres for sensitive and thermolabile compounds, due to their inertness and the use of moderate temperatures in operating conditions. Carbon dioxide has been extensively used as SCF due to its low cost, non-toxicity, non-flammability and low critical temperature.

Ove karakteristike vodile su ka razvoju nekih tehnika ekstrakcije i formiranja čestica korištenjem superkritičnih fluida. Posebno su identificirana dva postupka formiranja čestica: These characteristics led to the development of some extraction and particle formation techniques using supercritical fluids. Two processes of particle formation have been identified in particular:

Brza ekspanzija superkritčnog fluisa (RESS) (vidjeti, na primjer, J. W. i P. G. Debendetti: "supra") uključuje otapanje supstance od interesa, u superkritičnom fluidu praćeno sa brzom ekspanzijom rezultirajuće superkritične otopine na atmosferskom tlaku, što rezultira u taloženju čestica otopljene supstance. Rapid expansion of supercritical fluid (RESS) (see, for example, J. W. and P. G. Debendetti: "supra") involves dissolving a substance of interest in a supercritical fluid followed by rapid expansion of the resulting supercritical solution at atmospheric pressure, resulting in the precipitation of particles of the dissolved substance.

Reklistalizacija sa plinom anti-otapalom (GAS) (P. M. Gallagher, i dr.: "Supercritical Fluid Science and Technology", ACS Symp. Ser., 406, str. 134, (1989.)) naročito je korisna u situacijama kada supstanca od interesa nije topljiva, ili ima vrlo malu topljivost u superkritičnom fluidu ili modificiranom superkritičnom fluidu. U ovoj tehnici, otopljena supstanca otapa se u konvencionalnom otapalu. Superkritični fluid, takav kao što je ugljični dioksid, uvodi se u otopinu, što vodi u brzu ekspanziju njegovog volumena. Kao rezultat, snaga otapala drastično se smanjuje tokom kratkog perioda vremena, što uzrokuje taloženje čestica. Gas anti-solvent (GAS) recrystallization (P. M. Gallagher, et al.: "Supercritical Fluid Science and Technology", ACS Symp. Ser., 406, p. 134, (1989)) is particularly useful in situations where the substance of of interest is not soluble, or has very low solubility in supercritical fluid or modified supercritical fluid. In this technique, the solute is dissolved in a conventional solvent. A supercritical fluid, such as carbon dioxide, is introduced into the solution, which leads to a rapid expansion of its volume. As a result, the strength of the solvent is drastically reduced over a short period of time, causing the particles to settle.

Postoji potreba za tehnikama gdje se proizvod može dobiti sa dosljednim i kontroliranim fizičkim kriterijem, uključujući kontrolu veličine čestica i oblik, kvalitetu kristalne faze, kemijsku čistoću, te poboljšane osobine rukovanja i prevođena u fluid. There is a need for techniques where the product can be obtained with consistent and controlled physical criteria, including control of particle size and shape, quality of the crystalline phase, chemical purity, and improved handling and fluid translation properties.

Nadalje, bilo bi vrlo prikladno da se direktno dobiju čestice veličine mikrona, bez potrebe da se melju proizvodi u ovom opsegu veličine. Takvo mljevenje vodi ka višestrukim problemima, takvim kao što su povećana statička šarža i povećana kohezivnost čestica, isto kao i sniženi prinos proizvoda. To također vodi ka velikom trenju između čestica, što može utjecati na otapanje čestica posle unošenja. Furthermore, it would be very convenient to obtain micron-sized particles directly, without the need to grind products in this size range. Such grinding leads to multiple problems, such as increased static charge and increased particle cohesiveness, as well as reduced product yield. This also leads to high friction between the particles, which can affect the dissolution of the particles after introduction.

U WO95/01324 opisan je uređaj za formiranje čestičastog proizvoda na kontrolirani način, korištenjem sustava superkritičnog fluida formiranja čestica. Otkriće iz WO95/01324 uključeno je ovdje kao referenca. Uređaj obuhvaća posudu za formiranje čestica, sa sredstvom za kontrolu temperature spomenute posude i sredstvom za kontrolu tlaka spomenute posude, zajedno sa sredstvom za ko-uvođenje superkritičnog fluida u spomenuti nosač i nosač koji sadrži barem jednu supstancu u otopini suspenzije, tako da se disperzija i ekstrakcija nosača dešavaju u suštini istovremeno sa akcijom superkritičnog fluida. WO95/01324 describes a device for forming a particulate product in a controlled manner, using a supercritical fluid particle formation system. The disclosure of WO95/01324 is incorporated herein by reference. The device comprises a container for forming particles, with means for controlling the temperature of said container and means for controlling the pressure of said container, together with means for co-introducing a supercritical fluid into said carrier and a carrier containing at least one substance in the suspension solution, so that the dispersion and carrier extraction occurs essentially simultaneously with the action of the supercritical fluid.

Kako je ovdje korišteno, termin "superkritični fluid" označava fluid na ili iznad njegovog kritičnog tlaka (Pc) i kritične temperature (Tc), istovremeno. U praksi, tlak fluida vjerojatno će biti u opsegu 1,01 Pc - 7,0 Pc, a njegova temperatura u opsegu 1,01 Tc - 4,0 Tc. As used herein, the term "supercritical fluid" refers to a fluid at or above its critical pressure (Pc) and critical temperature (Tc), simultaneously. In practice, the pressure of the fluid is likely to be in the range 1.01 Pc - 7.0 Pc, and its temperature in the range 1.01 Tc - 4.0 Tc.

Termin "nosač" označava fluid koji otapa čvrsti materijal ili čvrste materijale tako da se formira otopina, ili koji formira suspenziju čvrstog ili čvrstih materijala koji se ne otapaju ili imaju nisku topljivost u fluidu. Nosač može sadržavati jedan ili više fluida. The term "carrier" means a fluid which dissolves a solid material or solid materials to form a solution, or which forms a suspension of a solid or solid materials which do not dissolve or have low solubility in the fluid. The carrier may contain one or more fluids.

Kako je korišteno ovdje, termin "superkritična otopina" označava superkritični fluid koji ima izveden i otopljen nosač. As used herein, the term "supercritical solution" refers to a supercritical fluid having a derived and dissolved carrier.

Termin "disperzija" označava formiranje kapi nosača koje sadrže barem jednu supstancu u otopini ili suspenziji. The term "dispersion" means the formation of carrier droplets containing at least one substance in solution or suspension.

Termin "čestičasti proizvod" uključuje proizvode u obliku jedne komponente ili više komponenti (npr. bliske smjese jedne komponente u matrici drugog). The term "particulate product" includes products in the form of a single component or multiple components (eg, intimate mixtures of one component in a matrix of another).

Ako je potrebno, uređaj može sadržavati i dodatno sredstvo za sakupljanje čestičastog proizvoda, na primjer sredstvo za zadržavanje proizvoda u posudi za formiranje čestica, takvo kao što je filter, čime se reducira gubitak proizvoda zajedno sa rezultirajućom superkritičnom otopinom. Alternativno sredstvo može koristiti i ciklonski uređaj za izdvajanje. If necessary, the device may also contain additional means for collecting the particulate product, for example means for retaining the product in the vessel for forming the particles, such as a filter, thereby reducing the loss of the product together with the resulting supercritical solution. An alternative means can use a cyclone separation device.

Gore spomenuti uređaj i njegova primjena prikladni su za proizvodnju suhih čestičastih proizvoda, sa kontroliranom veličinom i oblikom čestica, i mogućnosti kontrole preko radnih uvjeta, posebno tlaka, korištenjem, na primjer regulatora automatiziranog zadnjeg-tlaka, takvog kao što je Model br. 880-81 proizveden od Jasco Inc, . Tako, poboljšana kontrola eliminira fluktuaciju tlaka preko posude za formiranje čestica osigurava uniformniju disperziju nosača (koji sadrži barem jednu supstancu u otopini ili suspenziji) sa superkritičnim fluidom, za distribuciju male veličine kapi tokom procesa formiranja čestica. U formiranju čestica ima vrlo malo ili uopće nema mogućnosti, da se dispergirane kapi ponovo ujedine radi formiranja većih kapi jer se disperzija dešava sa djelovanjem superkritičnog fluida, što se također osigurava preko miješanja sa nosačem i brzim uklanjanjem nosača iz supstance(i) od interesa. The above-mentioned device and its application are suitable for the production of dry particulate products, with controlled particle size and shape, and the ability to control over operating conditions, especially pressure, using, for example, an automated back-pressure regulator, such as Model no. 880-81 manufactured by Jasco Inc, . Thus, improved control eliminates pressure fluctuation across the particle formation vessel providing more uniform dispersion of the carrier (containing at least one substance in solution or suspension) with the supercritical fluid, for small droplet size distribution during the particle formation process. In the formation of particles, there is very little or no possibility for the dispersed droplets to re-unite to form larger droplets because the dispersion occurs with the action of a supercritical fluid, which is also ensured through mixing with the carrier and rapid removal of the carrier from the substance(s) of interest.

Istovremeno ko-uvođenje nosača koji sadrži barem jednu supstancu u otopini ili suspenziji i superkritični fluid, prema ovdje opisanom postupku, omogućava visok stupanj kontrole parametara takvih kao što je temperatura, tlak i brzina toka, ili obostranu kontrolu nosača fluida i sperkritičnog fluida na točnoj točki kada oni dolaze u kontakt jedan prema drugom. The simultaneous co-introduction of a carrier containing at least one substance in solution or suspension and a supercritical fluid, according to the procedure described here, enables a high degree of control of parameters such as temperature, pressure and flow rate, or mutual control of the carrier fluid and the supercritical fluid at an exact point when they come in contact with each other.

Daljnje prednosti za formiranja čestica prema ovom izumu, uključuju kontrolu kvalitete kristalne i polimorfne faze, jer će sve čestice pri formiranju imati iste stabilne uvjete temperature i tlaka, isto kao i potencijal poboljšane čistoće. Ova posljednja karakteristika može doprinijeti visokoj selektivnosti superkritičnih fluida pod različitim radnim uvjetima, omogućavajući ekstrakciju jedne ili više nečistoća iz nosača koji sadrži supstancu od interesa. Further advantages for forming particles according to this invention include quality control of the crystalline and polymorphic phases, as all particles will have the same stable temperature and pressure conditions during formation, as well as the potential for improved purity. This last characteristic can contribute to the high selectivity of supercritical fluids under different operating conditions, enabling the extraction of one or more impurities from the carrier containing the substance of interest.

Sredstvo za ko-uvođenje superkritičnog fluida i nosača u posudu za formiranje čestica, poželjno im omogućava da se uvedu u skladu sa pravcima toka, a poželjnije uzima oblik koaksijalnog otvora, kako je opisano niže. Ovo osigurava da nema kontakta između formiranih čestica i nosača fluida oko područja vrha mlaznice. Takav kontakt mogao bi reducirati kontrolu veličine i oblika finalnog proizvoda. Ekstra kontrola za veličinu kapi, dodatno onoj osiguranoj sa dizajnom otvora, postiže se kontrolom brzine toka superkritičnog fluida i nosača fluida. U isto vrijeme zadržavanje čestica u posudi za formiranje čestica, eliminira potencijal kontakta sa nosačem fluidom, što bi se inače moglo dešavati u depresuriziranju superkritične otopine. Takav kontakt mogao bi utjecati na oblik i veličinu, a potencijalno i na prinos proizvoda. The means for co-introducing the supercritical fluid and the carrier into the particle forming vessel preferably allows them to be introduced in accordance with the flow directions, and more preferably takes the form of a coaxial opening, as described below. This ensures that there is no contact between the formed particles and the fluid carrier around the nozzle tip area. Such contact could reduce control over the size and shape of the final product. Extra control over droplet size, in addition to that provided by the orifice design, is achieved by controlling the flow rate of the supercritical fluid and the fluid carrier. At the same time, keeping the particles in the particle formation vessel eliminates the potential for contact with the carrier fluid, which could otherwise occur in the depressurization of the supercritical solution. Such contact could affect the shape and size, and potentially the yield, of the product.

Tako, u uređaju ovdje opisanom u WO95/01324, sredstvo za ko-uvođenje superkritičnog fluida i nosača (koji sadrži barem jednu supstancu u otopini ili suspenziji) u posudi za formiranje čestica, poželjno sadrži krajnju izlaznu mlaznicu koja je povezana sa unutrašnjošću posude. Mlaznica ima koaksijalne prolaze koji se završavaju susjedno jedan na drugog na izlaznom kraju, gdje barem jedan od prolaza služi za nošenje toka superkritičnog fluida, i barem jedan od prolaza služi za nošenje toka nosača u kome se supstanca otapa ili suspendira. Thus, in the device described herein in WO95/01324, the means for co-introducing the supercritical fluid and the carrier (comprising at least one substance in solution or suspension) into the particle forming vessel preferably comprises an end outlet nozzle which is connected to the interior of the vessel. The nozzle has coaxial passages terminating adjacent to each other at the outlet end, where at least one of the passages serves to carry a stream of supercritical fluid, and at least one of the passages serves to carry a stream of carrier in which the substance is dissolved or suspended.

Poželjno, otvaranje izlaznog kraja (vrh) mlaznice imati će promjer u opsegu od 0,05 do 2 mm, poželjnije između 0,1 i 0,3 mm, a tipično oko 0,2 mm. Oštar kut krajnjeg izlaza zavisiti će od željene brzine fluida uvedenog preko mlaznice. Povećanje kuta može se koristiti, na primjer za povećanje brzine supserkitičnog fluida uvedenog preko mlaznice, čime se povećava veličina fizičkog kontakta između superkritičnog fluida i nosača. Tipično (ali ne i neophodno) oštar kut biti će u opsegu od oko 10 ° do oko 50 °, poželjno između oko 20 ° do oko 40 °, a najpoželjnije oko 30 °. Mlaznica može biti napravljena od bilo kojeg prikladnog materijala, na primjer od nehrđajućeg čelika. Preferably, the outlet opening (tip) of the nozzle will have a diameter in the range of 0.05 to 2 mm, more preferably between 0.1 and 0.3 mm, and typically about 0.2 mm. The sharp angle of the final outlet will depend on the desired speed of the fluid introduced through the nozzle. Increasing the angle can be used, for example, to increase the velocity of the supercritical fluid introduced through the nozzle, thereby increasing the amount of physical contact between the supercritical fluid and the carrier. Typically (but not necessarily) the acute angle will be in the range of about 10° to about 50°, preferably between about 20° to about 40°, and most preferably about 30°. The nozzle can be made of any suitable material, for example stainless steel.

U jednoj realizaciji, mlaznica ima dva koaksijalna prolaza, unutrašnji i vanjski. U drugoj, poželjnoj realizaciji, mlaznica ima tri koaksijalna prolaza, unutrašnji, srednji i vanjski. Ovaj posljednji dizajn omogućava veću raznovrsnost u primjeni uređaja, jer ako je potrebno u posudu za formiranja čestica mogu se uvoditi dva nosača sa superkritičnim fluidom. Poboljšana disperzija i finiji čestice, također se mogu dobiti ako se koristi takva mlaznica za uvođenje toka nosača uglavljenog između unutrašnjeg i vanjskog toka superkritičnog fluida, jer ovo osigurava da su obje strane nosača izložene superkritičnom fluidu. Međutim, treba primijetiti da mlaznica može imati bilo koji prikladan broj koaksijalnih prolaza. In one embodiment, the nozzle has two coaxial passages, an inner and an outer. In another, preferred embodiment, the nozzle has three coaxial passages, inner, middle and outer. This last design allows greater versatility in the application of the device, because if necessary, two carriers with supercritical fluid can be introduced into the vessel for particle formation. Improved dispersion and finer particles can also be obtained if such a nozzle is used to introduce the carrier stream sandwiched between the inner and outer supercritical fluid streams, as this ensures that both sides of the carrier are exposed to the supercritical fluid. However, it should be noted that the nozzle may have any suitable number of coaxial passages.

Unutrašnji promjeri koaksijalnih prolaza mogu biti prikladno izabrani za bilo koju određenu primjenu uređaja. Tipično, odnos unutrašnjih promjera vanjskih i unutrašnjih promjera može biti u opsegu od 2 do 5, poželjno između 3 i 5. Tamo gdje je uključen srednji prolaz, odnos vanjskih i srednjih promjera može biti u opsegu od 1 do 3, poželjno između oko 1,4 i 1,8. The inside diameters of the coaxial passages can be suitably chosen for any particular device application. Typically, the ratio of inner diameters to outer diameters can be in the range of 2 to 5, preferably between 3 and 5. Where an intermediate passage is included, the ratio of outer to inner diameters can be in the range of 1 to 3, preferably between about 1, 4 and 1.8.

Određeni primjeri takvih koaksijalnih mlaznica i njihove tipične dimenzije ilustrirane su na slikama 2A, 2B i 4. Certain examples of such coaxial nozzles and their typical dimensions are illustrated in Figures 2A, 2B and 4.

Temperatura posude za formiranje čestica može se održavati (poželjno ± 0,1 C°) pomoću toplinske obloge, ili poželjnije pomoću peći. Tlak posude za formiranje čestica konvencionalno se održava (poželjno ± 2 bara) pomoću regulatora donjeg tlaka. Treba primijetiti da će takav uređaj biti raspoloživ od, na primjer proizvođača opreme ekstrakcije superkritičnog fluida, npr. Jasco Inc., . The temperature of the particle forming vessel can be maintained (preferably ± 0.1 C°) by means of a thermal liner, or more preferably by means of an oven. The pressure of the particle forming vessel is conventionally maintained (preferably ± 2 bar) by means of a lower pressure regulator. It should be noted that such a device will be available from, for example, a manufacturer of supercritical fluid extraction equipment, eg, Jasco Inc., .

Izum osigurava postupak za formiranje čestičastog proizvoda flutikason propionata, koji obuhvaća ko-uvođenje superkritičnog fluida i nosača koji sadrži barem flutikason propionat u otopini ili suspenziji, u posudu za formiranje čestica, gdje su kontrolirani temperatura i tlak, tako da se diesperzija i ekstrakcija nosača dešava u suštini istovremeno sa djelovanjem superkritičnog fluida. The invention provides a process for the formation of a particulate product of fluticasone propionate, which comprises the co-introduction of a supercritical fluid and a carrier containing at least fluticasone propionate in solution or suspension, into a vessel for the formation of particles, where temperature and pressure are controlled, so that dispersion and extraction of the carrier occurs essentially simultaneously with the action of the supercritical fluid.

Disperzija i ekstrakcija tipično će se dešavati odmah po uvođenju fluida u posudu za formiranje čestica. Ko-uvođenje superkritičnog fluida i nosača koji sadrži barem flutikason propionat u otopini ili suspenziji, poželjno se vrši korištenjem mlaznice koaksijalnog dizajna. Dispersion and extraction will typically occur immediately upon introduction of the fluid into the particle forming vessel. Co-introduction of the supercritical fluid and the carrier containing at least fluticasone propionate in solution or suspension is preferably performed using a nozzle of coaxial design.

Prikladna posuda za formiranje čestica korištena ovdje, opisana je u WO95/01324. A suitable vessel for forming the particles used herein is described in WO95/01324.

Prikladne kemikalije za primjenu kao superkritični fluidi uključuju ugljični dioksid, dušik suboksid, sumpor heksafluorid, ksenon, etilen, klorotrifluoro metan, etan i trifluoro metan. Naročito je poželjan ugljični dioksid. Suitable chemicals for use as supercritical fluids include carbon dioxide, nitrogen suboxide, sulfur hexafluoride, xenon, ethylene, chlorotrifluoromethane, ethane, and trifluoromethane. Carbon dioxide is particularly preferred.

Superkritični fluid može opcionalno da sadržavati jedan ili više modifikatora (ali nije na njih ograničen), na primjer metanol, etanol, etil acetat, aceton, acetonitril, ili bilo koja njihova smjesa. Kada se koristi modifikator, on ne smije formirati više od 20 %, preciznije 1 % - 10 %, superkritičng fluida. The supercritical fluid may optionally contain (but is not limited to) one or more modifiers, for example methanol, ethanol, ethyl acetate, acetone, acetonitrile, or any mixture thereof. When a modifier is used, it must not form more than 20%, more precisely 1% - 10%, of the supercritical fluid.

Termin "modifikator" dobro je poznat stručnjacima. Modifikator (ili ko-otapalo) može se opisati kao kemikalija koja, kada se doda u superkritični fluid, mijenja bitne osobine superkritičnog fluida u ili oko kritične točke. The term "modifier" is well known to those skilled in the art. A modifier (or co-solvent) can be described as a chemical that, when added to a supercritical fluid, changes the essential properties of the supercritical fluid at or around the critical point.

Gledajući izbor nosača za flutikason propionat, gdje se flutikason propionatom treba obrađivat kao otopina, on treba biti topljiv u izabranom nosaču, a izabrani nosač treba biti topljiv u izabranom superkritičnom fluidu. Izbor prikladne kombinacije superkritičnog fluida, modifikatora (gdje se želi) i nosača za bilo koji željeni proizvod, sposoban je napraviti prosječni stručnjak. Looking at the choice of carrier for fluticasone propionate, where fluticasone propionate is to be treated as a solution, it should be soluble in the carrier chosen, and the carrier chosen should be soluble in the supercritical fluid chosen. The selection of a suitable combination of supercritical fluid, modifier (where desired) and carrier for any desired product can be made by the average person skilled in the art.

Prikladna otapala mogu biti, na primjer metanol, etanol, etil acetat, aceton, acetonitril, ili bilo koja njihova smjesa. Suitable solvents may be, for example, methanol, ethanol, ethyl acetate, acetone, acetonitrile, or any mixture thereof.

Kada se vrši postupak iz izuma kontrola parametara, takvih kao što je veličina, oblik i kristalna građa, zavisiti će od korištenih radnih uvjeta. Varijable uključuju brzine toka superkritičnog fluida i/ili nosača koji sadrži supstancu(e), korištenog nosača za otapanje supstance(i), koncentraciju supstance(i) u nosaču, te temperaturu i tlak unutar posude za formiranje čestica. When the process of the invention is carried out, control parameters, such as size, shape and crystal structure, will depend on the working conditions used. Variables include the flow rates of the supercritical fluid and/or carrier containing the substance(s), the carrier used to dissolve the substance(s), the concentration of the substance(s) in the carrier, and the temperature and pressure within the particle forming vessel.

Treba primijetiti da će precizni uvjeti rada ovog uređaja zavisiti od izbora superkritičnog fluida, te o prisutnosti ili neprisutnosti modifikatora. It should be noted that the precise operating conditions of this device will depend on the choice of supercritical fluid, and on the presence or absence of modifiers.

Tablica 1 pokazuje kritične tlakove i temperature za neke izabrane fluide: Table 1 shows critical pressures and temperatures for some selected fluids:

Tablica 1 Table 1

[image] [image]

U praksi može biti poželjno da se unutar posude za formiranje čestica održi tlak u suštini veći od Pc (npr. 100-300 bara za ugljični dioksid), dok je temperatura iznad Tc (npr. 35-75 °C za ugljični dioksid). In practice, it may be desirable to maintain a pressure substantially greater than Pc (eg 100-300 bar for carbon dioxide) while the temperature is above Tc (eg 35-75 °C for carbon dioxide) within the particle formation vessel.

Brzine toka superkritičnog fluida i/ili nosača mogu se kontrolirati tako da se postigne željena veličina čestica, oblik i/ili forma. Iako će odnos toka zavisiti od željenih karakteristika flutikason propionata, tipično će odnos brzine toka nosača prema brzini toka superkritičnog fluida biti između 0,001 i 0,1, poželjno između 0,01 i 0,07, a najpoželjnije oko 0,03. The supercritical fluid and/or carrier flow rates can be controlled to achieve the desired particle size, shape and/or form. Although the flow ratio will depend on the desired characteristics of fluticasone propionate, typically the ratio of carrier flow rate to supercritical fluid flow rate will be between 0.001 and 0.1, preferably between 0.01 and 0.07, and most preferably about 0.03.

Ovdje opisan postupak poželjno dodatno uključuje sakupljanje čestičastog proizvoda praćenjem njegovog formiranja. Također se može uključiti dobivanje formirane superkritične otopine, izdvajanje komponenata otopine, te recikliranje jedne ili više ovih komponenata za buduću primjenu. The process described herein preferably additionally includes collecting the particulate product by monitoring its formation. It may also include obtaining the supercritical solution formed, separating the components of the solution, and recycling one or more of these components for future use.

Prema poželjnom aspektu ovog izuma, osigurano je dobivanje spoja flutikason propionata sa kojim je lako rukovati, u lako fluidiziranoj kristalnom formi, sa kontroliranom veličinom i oblikom čestica, a opcionalno i sa kontroliranom morfologijom i nivoom aglomeracije. According to a desirable aspect of this invention, obtaining a fluticasone propionate compound that is easy to handle, in an easily fluidized crystalline form, with controlled particle size and shape, and optionally with controlled morphology and level of agglomeration is ensured.

Izum također osigurava novi kristalni oblik flutikason propionata, označeni kao oblik 2 flutikason propionata, kako je ovdje opisano. Precizni uvjeti pod kojim se formira oblik 2 flutikason propionata mogu se odrediti empirijski. U daljnjem tekstu dato je više primjera postupaka (vidjeti primjer 5) za koje je nađeno da su prikladni u praksi. The invention also provides a novel crystalline form of fluticasone propionate, designated Fluticasone Propionate Form 2, as described herein. The precise conditions under which form 2 of fluticasone propionate is formed can be determined empirically. Below are several examples of procedures (see example 5) that have been found to be suitable in practice.

Kako je spomenuto gore, kontrola parametara takvih kao što je veličina, oblik i kristalna građa u čestičastom proizvodu, zavisiti će od korištenih radnih uvjeta kada se vrši postupak iz izuma. Pomoću prikladnog podešavanja varijabli postupka, relativne količine oblika 1 i 2 flutikason propionata dobivenog sa ovdje opisanim uređajem mogu se mijenjati od strane stručnjaka. Eksperimentalna područja za svaki polimerni oblik mogu se odrediti empirijski za određeni korišteni uređaj. As mentioned above, the control of parameters such as size, shape and crystal structure in the particulate product will depend on the operating conditions used when performing the process of the invention. By suitable adjustment of the process variables, the relative amounts of forms 1 and 2 of fluticasone propionate obtained with the apparatus described herein can be varied by those skilled in the art. The experimental ranges for each polymer form can be determined empirically for the particular device used.

Konvencionalno kristalizirani flutikason propionat, čak i posle mikronizacije (mljevenje fuida), postoji u obliku sa vrlo lošim karakteristikama toka. Na primjer on je kohezivno i statički šaržiran, što rezultira u poteškoćama u rukovanju sa supstancom lijeka u procesima farmaceutske formulacije. Conventionally crystallized fluticasone propionate, even after micronization (fluid milling), exists in a form with very poor flow characteristics. For example, it is cohesively and statically batched, which results in difficulties in handling the drug substance in pharmaceutical formulation processes.

U drugom aspektu ovog izuma, osiguran je flutikason propionat u obliku sa dinamičkom gustoćom manjom od 0,2 g/cm3. U poželjnom aspektu ovog izuma, osiguran je flutikason propionat u obliku sa dinamičkom gustoćom mase u opsegu između 0,05 i 0,17 g/cm3, a naročito u opsegu između 0,05 i 0,08 g/cm3. In another aspect of the present invention, fluticasone propionate is provided in a form with a dynamic density of less than 0.2 g/cm 3 . In a preferred aspect of the present invention, fluticasone propionate is provided in a form with a dynamic mass density in the range between 0.05 and 0.17 g/cm3, and particularly in the range between 0.05 and 0.08 g/cm3.

Dinamička gustoća mase (W) označava karakteristike fluida supstance, a definira se kao: The dynamic mass density (W) indicates the fluid characteristics of the substance, and is defined as:

[image] [image]

gdje P je pakirana gustoća mase (g/cm3), A je gustoća mase zasićene zrakom (g/cm3), i C je kompresibilnost (%); gdje se C računa pomoću jednadžbe: where P is the packed mass density (g/cm3), A is the air-saturated mass density (g/cm3), and C is the compressibility (%); where C is calculated using the equation:

[image] . [image] .

Jasno, broj za W odgovara visokom stupnju fluidnosti. Clearly, the number for W corresponds to a high degree of fluidity.

Kada se usporedi prema konvencionalno kristaliziranom flutikason propionatu, prije i posle mikronizacije, flutikason propionat iz ovog izuma pokazuje značajno manju dinamičku gustoću mase od konvencionalno kristaliziranog flutikason propionata, kako je ilustrirano u tablici 7 (vidjeti primjer 6 niže). When compared to conventionally crystallized fluticasone propionate, before and after micronization, the fluticasone propionate of this invention exhibits a significantly lower dynamic mass density than conventionally crystallized fluticasone propionate, as illustrated in Table 7 (see Example 6 below).

Treba primijetiti da u slučaju inhaliranog farmaceutskog materijala, takvog kao što je flutikason propionat, naročito je poželjno da se dobije supstanca lijeka koja se lako prevodi u fluid, čime se potencijalno poboljšavaju njene ihnalacijske osobine. It should be noted that in the case of an inhaled pharmaceutical material, such as fluticasone propionate, it is particularly desirable to obtain a drug substance that is easily translated into a fluid, thereby potentially improving its inhalation properties.

Zapaženo je da flutikason propionat iz ovog izuma ima poboljšane karakteristike rukovanja i prevođenja u fluid, u usporedbi sa konvencionalno kristaliziranim flutikason propionatom. The fluticasone propionate of this invention has been observed to have improved handling and fluidization characteristics compared to conventionally crystallized fluticasone propionate.

Nadalje, osigurana je mogućnost kristalizacije veličine i oblika čestica flutikason propionata iz ovog izuma, kako je ovdje ilustrirano sa elektronskim mikrografima. Furthermore, the possibility of crystallizing the size and shape of the fluticasone propionate particles of the present invention is provided, as illustrated herein with electron micrographs.

Poželjno, flutikason propionat iz ovog izuma je unutar opsega veličine čestica prikladnom za oblike farmaceutskog doziranja koje se isporučuje sa inhalacijom ili insuflacijom. Prikladan opseg veličine čestica za ovu primjenu je 1 do 10 mikrona, poželjno 1 do 5 mikrona. Čestice općenito imaju uniformnu raspodjelu veličine čestica, kako se mjeri sa koeficijentom od 1 do 100, tipično 1 do 20, npr. 5 do 20. Preferably, the fluticasone propionate of the present invention is within a particle size range suitable for pharmaceutical dosage forms delivered by inhalation or insufflation. A suitable particle size range for this application is 1 to 10 microns, preferably 1 to 5 microns. The particles generally have a uniform particle size distribution, as measured by a coefficient of 1 to 100, typically 1 to 20, eg 5 to 20.

Raspodjela veličine čestica flutikason propionata prema izumu može se mjeriti sa konvencionalnim tehnikama, na primjer sa difrakcijom lasera, sa "Twin Impinger" analitičkim procesom, ili sa "Cascade Impaction" analitičkim procesom. Kako je korišteno ovdje, referenca na "Twin Impinger" pokus označava "Preparations for Inhalation: Aerodynamics assessment of fine particle using apparatus A" kako je definirano u British Pharmacopoeia 1993., Dodatak 1996., str. A522-527, primijenjeno za formulaciju inhalacije suhog praha. Kako je korišteno ovdje, referenca na "Cascade Impaction" pokus označava "Preparations for Inhalation: Aerodynamics assessment of fine particle using apparatus D" kako je definirano u British Pharmacopoeia 1993., Dodatak 1996., str. 527, primijenjeno na formulaciju inhalatora mjerene doze. Poželjni flutikason propionat prema izumu je srednje veličine čestica između 1 i 10 mikrona, a nađeno je da ima respiratorni dio od 14 masenih % ili više. The particle size distribution of fluticasone propionate according to the invention can be measured with conventional techniques, for example with laser diffraction, with the "Twin Impinger" analytical process, or with the "Cascade Impaction" analytical process. As used herein, reference to the "Twin Impinger" test means "Preparations for Inhalation: Aerodynamics assessment of fine particles using apparatus A" as defined in British Pharmacopoeia 1993, Supplement 1996, p. A522-527, applied to a dry powder inhalation formulation. As used herein, reference to the "Cascade Impaction" test means "Preparations for Inhalation: Aerodynamics assessment of fine particles using apparatus D" as defined in British Pharmacopoeia 1993, Supplement 1996, p. 527, applied to a metered dose inhaler formulation. The preferred fluticasone propionate of the invention is of medium particle size between 1 and 10 microns, and has been found to have a respirable fraction of 14% by weight or greater.

Flutikason propionat iz ovog izuma tipično ima malu kohezivnost, na primjer od 0 do 20 %, a poželjno 0 do 10 %, korištenjem postupaka mjerenja baziranih na onima opisanim u R .L. Carr: "Chemical Engineering", str.163-168, (1965.). Fluticasone propionate of the present invention typically has a low cohesiveness, for example from 0 to 20%, and preferably from 0 to 10%, using measurement procedures based on those described in R.L. Carr: "Chemical Engineering", pp. 163-168, (1965).

Flutikason propionat prema izumu može se koristiti za dobivanje farmaceutskog preparata koji se može pripremiti za primjenu na konvencionalan način, pomoću farmaceutski prihvatljivog nosača ili ekscipijenta, opcionalno sa dodatnim medicinskim sredstvima. Poželjni nosači uključuju, na primjer polimere (npr. škrob) i hidroksipropilcelilozu, silicijev dioksid, sorbitol, manitol i laktozu (npr. laktoza monohidrat). Preparati mogu biti u obliku prikladnom za unošenje sa inhalacijom ili insuflacijom, ili za oralno, usno, parenteralno, mjesno (uključujući nosno) ili rektalno unošenje. Poželjno je unošenje sa inhalacijom ili insuflacijom. Fluticasone propionate according to the invention can be used to obtain a pharmaceutical preparation that can be prepared for use in a conventional way, using a pharmaceutically acceptable carrier or excipient, optionally with additional medical means. Preferred carriers include, for example, polymers (eg, starch) and hydroxypropylcellulose, silica, sorbitol, mannitol, and lactose (eg, lactose monohydrate). The preparations may be in a form suitable for administration by inhalation or insufflation, or for oral, oral, parenteral, topical (including nasal) or rectal administration. Inhalation or insufflation is preferred.

U poželjnom farmaceutskom preparatu prema izumu flutikason propionat i nosač su ko-kristalizirani zajedno, korištenjem ovdje opisanog procesa i uređaja, radi formiranja multikomponentnih čestica koje sadrže fluikason propionat i nosač. Takve multikomponentne čestice predstavljaju daljnji aspekt izuma. In a preferred pharmaceutical preparation according to the invention, fluticasone propionate and carrier are co-crystallized together, using the process and apparatus described herein, to form multicomponent particles containing fluikasone propionate and carrier. Such multicomponent particles represent a further aspect of the invention.

U poželjnom aspektu izum osigurava farmaceutski preparat u obliku suhog praha prikladnog za inhalaciju ili insuflaciju, koji sadrži flutikason propionat prema ovom izumu i prikladnu bazu praha, takvu kao što je laktoza ili škrob (prikladno laktoza), kao nosač. Specijalno su poželjni preparati koji sadrže flutikason propionat i laktozu u obliku multikomponentnih čestica. Preparat suhog praha može se predstaviti u obliku jedinice doziranja, na primjer u kapsulama ili patronama (od npr. želatine), ili pakiranjima melema iz kojih se prah može unositi pomoću inhalatora ili insuflatora. In a preferred aspect, the invention provides a pharmaceutical preparation in the form of a dry powder suitable for inhalation or insufflation, containing the fluticasone propionate according to the invention and a suitable powder base, such as lactose or starch (suitably lactose), as a carrier. Preparations containing fluticasone propionate and lactose in the form of multicomponent particles are especially preferred. The dry powder preparation can be presented in the form of a dosage unit, for example in capsules or cartridges (from, for example, gelatin), or ointment packages from which the powder can be taken in using an inhaler or insufflator.

Za unošenje sa inhalacijom flutikason propionat napravljen prema izumu, može se prikladno isporučivati u obliku prezentacije aerosolnog spreja iz pakiranja pod pritiskom, takvih kao što su inhalatori mjerene doze, sa primjenom prikladnog pogonskog sredstva takvog kao što je diklorofluorometan, ili poželjno fluorougljik, ili fluorougljik koji sadrži vodik takav kao što je HFA134a (1,1,1,2-tetrafluoroetan), HFA227 (1,1,1,2,3,3,3-heptafluoro-n-propan), ili njihove smjese. Takve prezentacije aerosolnog spreja mogu uključivati surfaktante (npr. oleinska kiselina ili lecitin), ko-otapala (npr. etanol), ili druge ekscipijente, prikladne za korištenje u takvim formulacijama. For administration by inhalation, the fluticasone propionate made according to the invention may conveniently be delivered in an aerosol spray presentation from a pressurized pack, such as a metered dose inhaler, using a suitable propellant such as dichlorofluoromethane, or preferably fluorocarbon, or a fluorocarbon which contains hydrogen such as HFA134a (1,1,1,2-tetrafluoroethane), HFA227 (1,1,1,2,3,3,3-heptafluoro-n-propane), or mixtures thereof. Such aerosol spray presentations may include surfactants (eg, oleic acid or lecithin), co-solvents (eg, ethanol), or other excipients suitable for use in such formulations.

Formulacije za unošenje sa inhalacijom ili insuflacijom namijenjene su za unošenje na profilastičkoj osnovi kod ljudi koji pate od alergijskih i/ili upalnih stanja nosa, grla ili pluća, takvih kao što su astma i rinitis, uključujući hunjavicu izazvanu mirisom sjena. Aerosolne formulacije napravljene su tako da svaka izmjerena doza ili "puff" aerosola sadrži od 20 do 1000 mikrograma, poželjno 25 do 150 mikrograma flutikason propionata iz izuma. Unošenje može biti nekoliko puta dnevno, na primjer 2, 3, 4 ili 8 puta, dajući na primjer 1, 2 ili 3 doze svaki put. Ukupna dnevna doza sa aerosolom biti će unutar opsega 100 mikrograma do 10 mg, poželjno 100 mikrograma do 1,5 mg. Inhalation or insufflation formulations are intended for prophylactic administration in humans suffering from allergic and/or inflammatory conditions of the nose, throat or lungs, such as asthma and rhinitis, including hay fever. Aerosol formulations are made so that each metered dose or "puff" of aerosol contains from 20 to 1000 micrograms, preferably 25 to 150 micrograms of fluticasone propionate of the invention. Administration may be several times a day, for example 2, 3, 4 or 8 times, giving for example 1, 2 or 3 doses each time. The total daily dose with the aerosol will be within the range of 100 micrograms to 10 mg, preferably 100 micrograms to 1.5 mg.

Slijedi kratak opis crteža: The following is a brief description of the drawing:

- Slika 1 pokazuje shematski dizajn ovdje opisanog uređaja. - Figure 1 shows the schematic design of the device described here.

- Slika 2A pokazuje poprečni presjek koaksijalne mlaznice za korištenje u ovdje opisanom uređaju. - Figure 2A shows a cross-section of a coaxial nozzle for use in the device described herein.

- Slika 2B pokazuje longitudinalni presjek kraja koaksijalne mlaznice za korištenje u ovdje opisanom uređaju. - Figure 2B shows a longitudinal section of the end of a coaxial nozzle for use in the device described herein.

- Slike 3A i 3B pokazuju shematske dizajne alternativnih uređaja. - Figures 3A and 3B show schematic designs of alternative devices.

- Slika 4 pokazuje longitudinalni presjek kraja alternativne koaksijalne mlaznice. - Figure 4 shows a longitudinal section of the end of an alternative coaxial nozzle.

- Slike 5 do 7 su fotografije skaniranja elektronske mikroskopije (SEM) flutikason propionata, kako je dobiveno u primjeru 2. - Figures 5 to 7 are scanning electron microscopy (SEM) photographs of fluticasone propionate as obtained in Example 2.

- Slika 8 je fotografija (SEM) flutikason propionata, kako je dobiveno u primjeru 3. - Figure 8 is a photograph (SEM) of fluticasone propionate, as obtained in Example 3.

- Slika 9 je uzorak difrakcije X-zraka praha (XRPD) fluikason propionata, kako je dobiveno u primjeru 2. - Figure 9 is an X-ray powder diffraction (XRPD) pattern of fluikasone propionate, as obtained in Example 2.

- Slika 10 je uzorak difrakcije X-zraka praha (XRPD) fluikason propionata, kako je dobiveno u primjeru 3. - Figure 10 is an X-ray powder diffraction (XRPD) pattern of fluikasone propionate, as obtained in Example 3.

- Slika 11 je profil diferencijalne kalorimetrije skaniranja (DSC) flutikason propionata, kako je dobiveno u primjeru 2. - Figure 11 is a differential scanning calorimetry (DSC) profile of fluticasone propionate, as obtained in Example 2.

- Slika 12 je profil diferencijalne kalorimetrije skaniranja (DSC) flutikason propionata, kako je dobiveno u primjeru 3. - Figure 12 is a differential scanning calorimetry (DSC) profile of fluticasone propionate, as obtained in Example 3.

- Slika 13 je fourierova transformacija infra-crvenog (FTIR) spektra flutikason propionata, kako je dobiveno u primjeru 2. - Figure 13 is the fourier transform infrared (FTIR) spectrum of fluticasone propionate, as obtained in example 2.

- Slika 14 je fourierova transformacija infra-crvenog (FTIR) spektra flutikason propionata, kako je dobiveno u primjeru 3. - Figure 14 is the fourier transform infrared (FTIR) spectrum of fluticasone propionate, as obtained in example 3.

- Slike 15 do 19 su HPLC kromatogrami za proizvode fluikason propionata, kako je opisano u primjeru 4. - Figures 15 to 19 are HPLC chromatograms for fluikasone propionate products, as described in example 4.

- Slike 20 do 24 su XRPD uzorci za proizvode flutikason propionata, kako je opisano u primjeru 5. - Figures 20 to 24 are XRPD patterns for fluticasone propionate products, as described in Example 5.

Slijedi detaljni opis poželjne realizacije ovdje opisanog uređaja i postupka, sa referencom na slike 1, 2, 3 i 4. Slike 1 i 3 su pojednostavljeni dijagrami toka uređaja, a slike 2A, 2B i 4 pokazuju mlaznice koje se tu mogu koristiti. The following is a detailed description of a preferred embodiment of the apparatus and method described herein, with reference to Figures 1, 2, 3 and 4. Figures 1 and 3 are simplified flow diagrams of the apparatus, and Figures 2A, 2B and 4 show nozzles that may be used therein.

Referiranje na sliku 1, uređaj sadrži posudu 6 za formiranje čestica. Ovo je tipična standardna reakcijska posuda, na primjer tipa raspoloživog od Keystone Scientific Inc., prikladnog kapaciteta za određenu primjenu, u koju se stavlja materijal. Temperatura i tlak posude održavaju se na konstantnom željenom nivou, pomoću peći 7 i regulatora 8 donjeg tlaka, respektivno. Referring to Figure 1, the device comprises a container 6 for forming particles. This is a typical standard reaction vessel, for example of the type available from Keystone Scientific Inc., of suitable capacity for the particular application, into which the material is placed. The temperature and pressure of the vessel are maintained at a constant desired level, using the furnace 7 and the lower pressure regulator 8, respectively.

U primjeni, sustav se početno podvrgava tlaku, da se postižu se stabilni uvjeti. Prikladni plin, na primjer ugljični dioksid, vodi se izvora 1 preko vodiča 11 u hladnjak 2, radi osiguranja prelaska u tekuće stanje, i vodi se sa vodičem 12 na pumpu 4. On se odatle vodi sa vodičem 13 u posudu 6 preko mlaznice 20. Otopina ili disperzija čvrstog materijala od interesa, u ovom slučaju flutikason propionat u prikladnom nosaču, na primjer metanolu, vodi se iz izvora 5 sa vodičem 14 u pumpu 3, i vodi se sa vodičem 15 u posudu 6 preko mlaznice 20. In application, the system is initially subjected to pressure, to achieve stable conditions. A suitable gas, for example carbon dioxide, is led from the source 1 through the conductor 11 to the cooler 2, in order to ensure the transition to the liquid state, and is led with the conductor 12 to the pump 4. From there, it is led with the conductor 13 into the container 6 through the nozzle 20. A solution or dispersion of the solid material of interest, in this case fluticasone propionate in a suitable carrier, for example methanol, is led from source 5 with guide 14 to pump 3, and led with guide 15 to container 6 via nozzle 20.

Mlaznica 20 može biti kako je pokazano na slici 2 (A i B), ili slici 4. Ona pokazana na slici 2 sadrži koaksijalne unutrašnje i vanjske cijevi 30 i 40, respektivno. One definiraju unutrašnji prolaz 31 i vanjski prolaz 41. Cijevi 30 i 40 imaju konusne naoštrene završne dijelove 32 i 42, respektivno. Krajevi završnih dijelova 32 i 42 definiraju respektivne otvore 33 i 43, sa otvorom 43 koji je na kratkoj udaljenosti nizvodno od otvora 33. Kako je naznačeno na slici 2B, kut naoštrenog završnog dijela 42 je oko 30 ° u ovom primjeru (nije ograničenje). The nozzle 20 may be as shown in Figure 2 (A and B), or Figure 4. The one shown in Figure 2 comprises coaxial inner and outer tubes 30 and 40, respectively. These define an inner passage 31 and an outer passage 41. The tubes 30 and 40 have tapered tapered end portions 32 and 42, respectively. The ends of the end portions 32 and 42 define openings 33 and 43, respectively, with the opening 43 being a short distance downstream of the opening 33. As indicated in Figure 2B, the angle of the sharpened end portion 42 is about 30° in this example (not a limitation).

Alternativna mlaznica na slici 4 sadrži tri koaksijalne cijevi 50, 60 i 70 koje definiraju unutrašnji prolaz 51, srednji prolaz 61, i vanjski prolaz 71, respektivno. Cijevi 60 i 70 imaju konusne naoštrene završne dijelove 62 i 72, a kut naoštrenog završnog dijela 72 je oko 30 ° u ovom primjeru. The alternate nozzle in Figure 4 comprises three coaxial tubes 50, 60, and 70 defining an inner passage 51, an intermediate passage 61, and an outer passage 71, respectively. The tubes 60 and 70 have tapered tapered end portions 62 and 72, and the angle of the tapered end portion 72 is about 30° in this example.

Mlaznica sa slike 4 omogućava da se u posudu 6 u istovemeno uvedu tri fluida, što vodi ka povećanju mogućnosti u primjeni uređaja. Na primjer, moguće je da se doda preko jednog od tri prolaza željeni nosač ili drugi dodatak namijenjen da čini dio, ili da se pomiješa sa finalnim čestičastim proizvodom. Dodatak se zatim dispergira istovremeno sa supstancom od primarnog interesa. Također, neposredno prije disperzije sa superkritičnim fluidom mogu se vršiti reakcije in situ, sa uvođenjem dva ili više reaktanata u dva posebna nosača preko dva prolaza mlaznice, gdje se reakcija dešava na izlazu prolaza ili neposredno prije, ili u disperziji. The nozzle from Figure 4 enables three fluids to be introduced into the container 6 at the same time, which leads to an increase in the possibilities of using the device. For example, it is possible to add via one of the three passes a desired carrier or other additive intended to form a part, or to be mixed with the final particulate product. The additive is then dispersed simultaneously with the substance of primary interest. Also, immediately before dispersion with supercritical fluid, reactions can be performed in situ, with the introduction of two or more reactants in two special carriers through two nozzle passages, where the reaction takes place at the exit of the passage or immediately before, or in the dispersion.

Alternativno, mlaznica sa slike 4 može se koristiti za uvođenje toka nosača (prolaz 61) umetnutog između unutrašnjeg i vanjskog toka superkritičnog fluida (prolazi 51 i 71). Alternatively, the nozzle of Figure 4 may be used to introduce a carrier stream (passage 61) interposed between the inner and outer supercritical fluid streams (passes 51 and 71).

Ovo vodi ka poboljšanoj disperziji nosača, i tako većoj kontroli i uniformnosti veličine čestica finalnog proizvoda. To zaista čini mogućim formiranje finijih proizvoda od onih koji se mogu postići korištenjem mlaznice sa dva prolaza. This leads to improved dispersion of the carrier, and thus greater control and uniformity of the particle size of the final product. This indeed makes it possible to form finer products than can be achieved using a two-pass nozzle.

U pokazanoj mlaznici, unutrašnja cijev 50 ima unutrašnji promjer od 0,25 mm; srednja cijev 60 ima unutrašnji promjer od 0,53 mm; a vanjska cijev 70 ima unutrašnji promjer od 0,8 mm i vanjski promjer od 1,5 mm. Otvor vrha (73) ima unutrašnji promjer od 0,2 mm. Sve su cijevi napravljene od nerđajućeg čelika. In the nozzle shown, the inner tube 50 has an inner diameter of 0.25 mm; the middle tube 60 has an inner diameter of 0.53 mm; and the outer tube 70 has an inner diameter of 0.8 mm and an outer diameter of 1.5 mm. The tip opening (73) has an inner diameter of 0.2 mm. All pipes are made of stainless steel.

Međutim, mlaznica se može napraviti od bilo kojeg prikladnog materijala, te imati bilo koje prikladne dimenzije. Na primjer, unutrašnji promjeri mogu da budu u opsezima 0,05-0,35 mm (unutrašnji); 0,25-0,65 (srednji); i 0,65-0,95 (vanjski), a poželjno 0,1-0,3 mm (unutrašnji); 0,3-0,6 mm (srednji); i 0,07-0,9 mm (vanjski). Vjerojatno je da otvor vrha ima unutrašnji promjer u opsegu od 0,1-0,3 mm, a poželjno 0,18-0,25 mm. However, the nozzle can be made of any suitable material and have any suitable dimensions. For example, internal diameters may range from 0.05-0.35 mm (internal); 0.25-0.65 (medium); and 0.65-0.95 (external), and preferably 0.1-0.3 mm (internal); 0.3-0.6 mm (medium); and 0.07-0.9 mm (external). It is likely that the tip opening has an internal diameter in the range of 0.1-0.3 mm, preferably 0.18-0.25 mm.

U uređaju sa slike 1, superkritični fluid vodi se pod tlakom (sa velikom brzinom toka kada se usporedi sa brzinom toka nosača) preko na primjer prolaza 31 mlaznice, od mlaznice pokazane na slici 2, a otopina ili suspenzija čvrstog materijala od interesa u nosaču (dalje označena kao "tekućina") istovremeno se vodi pod tlakom preko vanjskog prolaza 41. Vjeruje se da velika brzina superkritičnog fluida koja nastaje od otvora 33 uzrokuje da se tekućina od kraja vanjskog prolaza 41 razbije u kapi, iz koji se nosač u suštini ekstrahira istovremeno sa superkritičnim fluidom, što rezultira u formiranje čestica čvrstog materijala prethodno držanog u nosaču. Međutim, treba razumjeti da iako se vjeruje da se ovo dešava, mi se ne želimo ograničiti sa ovim teoretskim objašnjenjem, a dešavanje stvarnih fizičkih procesa ne mora biti precizno kako je upravo naznačeno. In the apparatus of Figure 1, a supercritical fluid is fed under pressure (at a high flow rate when compared to the flow rate of the carrier) through, for example, a nozzle passage 31, from the nozzle shown in Figure 2, and a solution or suspension of the solid material of interest in the carrier ( hereinafter referred to as "fluid") is simultaneously guided under pressure through the outer passage 41. It is believed that the high velocity of the supercritical fluid arising from the orifice 33 causes the liquid from the end of the outer passage 41 to break up into a drop, from which the carrier is essentially extracted simultaneously with supercritical fluid, which results in the formation of particles of solid material previously held in the carrier. However, it should be understood that although this is believed to occur, we do not want to limit ourselves to this theoretical explanation, and the occurrence of actual physical processes need not be precisely as indicated.

Također, iako je opisana konfiguracija u kojoj superkritični fluid prolazi preko unutrašnjeg prolaza 31, a nosač prolazi preko vanjskog prolaza 41, konfiguracija može biti i obrnuta, odnosno sa superkritičnim fluidom u vanjskom prolazu 41 i nosačem u unutrašnjem prolazu 31. Slično u mlaznici sa slike 4, bilo koji od tri prolaza može biti korišten za nošenje bilo kojeg od više željenih fluida, kako je prikladno. Also, although the configuration described is in which the supercritical fluid passes through the inner passage 31, and the carrier passes through the outer passage 41, the configuration can also be reversed, i.e. with the supercritical fluid in the outer passage 41 and the carrier in the inner passage 31. Similarly in the nozzle from the picture 4, any of the three passages may be used to carry any of the more desired fluids, as appropriate.

Mlaznica 20 osigurava disperziju nosača koji sadrži čvrsti materijal od interesa, djelovanje vučenja pod tlakom superkritičnog fluida velike brzine, a također i potpuno miješanje dispergiranog nosača sa superkritičnim fluidom koji istovremeno ekstrahira nosač iz dispergirane tekućine, što rezultira neposrednim formiranjem čestica čvrstog materijala od interesa. Zato što se superkritični fluid i nosač uvode koaksijalno, a disperzija se dešava u suštini istovremeno sa ekstrakcijom nosača, moguć je vrlo visok stupanj kontrole uvjeta (npr. tlak, temperatura i brzina toka), što utiče na formiranje čestica, u točno vrijeme kada se to dešava. The nozzle 20 provides the dispersion of the carrier containing the solid material of interest, the drag action under the pressure of the high velocity supercritical fluid, and also the complete mixing of the dispersed carrier with the supercritical fluid which simultaneously extracts the carrier from the dispersed liquid, resulting in the immediate formation of particles of the solid material of interest. Because the supercritical fluid and the carrier are introduced coaxially, and the dispersion occurs essentially simultaneously with the extraction of the carrier, a very high degree of control of the conditions (e.g., pressure, temperature, and flow rate) is possible, which affects the formation of particles, at the precise time when it happens.

Formirane čestice zadržavaju se u posudi za formiranje čestica pomoću sredstva 21 za sakupljanje. Rezultirajuća superkritična otopina vodi se sa vodičem 16 u regulator 8 donjeg tlaka, i zatim se vodi sa vodičem 17 u posudu 9 za izdvajanje, gdje se širi, što izaziva izdvajanjem plina superkritičnog fluida od tekućeg nosača. Plin se može voditi sa vodičem 18 u spremnik 10, te vraćati sa vodičem 19 u hladnjak 3. Nosač se može također sakupiti sa slijedećom primjenom. Sredstvo, koje nije pokazano, može osigurati izravnavanje impulsnog toka fluida i nosača koji se dobiva sa pumpama 3 i 4, tako da se eliminiraju, ili barem reduciraju, sve nepravilnosti u toku. The formed particles are retained in the particle forming vessel by means of collection means 21. The resulting supercritical solution is led with the guide 16 to the lower pressure regulator 8, and then led with the guide 17 to the separation vessel 9, where it expands, which causes the separation of the supercritical fluid gas from the liquid carrier. The gas can be led with the guide 18 to the container 10, and returned with the guide 19 to the cooler 3. The carrier can also be collected with the following application. A means, not shown, can ensure the smoothing of the pulsed flow of fluid and carrier obtained with pumps 3 and 4, so that all irregularities in the flow are eliminated, or at least reduced.

Kada se dogodi dovoljno formiranje čestica u posudi 6, ono se isplahuje sa čistim i suhim superkritičnim fluidom, tako da se osigura uklanjanje bilo kojeg preostalog nosača. Posuda se zatim može depresurizirati, čime se uklanja čestičasti proizvod. When sufficient particle formation has occurred in vessel 6, it is flushed with clean and dry supercritical fluid to ensure removal of any remaining carrier. The vessel can then be depressurized, thereby removing the particulate product.

Alternarivni uređaji pokazani su shematski na slikama 3A i 3B primjenjuju se u kontinuiranom formiranju čestica. Onaj pokazan na slici 3A sadrži dvije posude za formiranje čestica 6a i 6b, svaka tipa pokazanog na slici 1, i gdje svaka sadrži ulaznu mlaznicu 20 i sredstvo 21 sakupljanja čestica (takvo kao filter). Peć 7 opslužuje obje posude. Alternative devices are shown schematically in Figures 3A and 3B and are used in continuous particle formation. The one shown in Figure 3A comprises two particle forming vessels 6a and 6b, each of the type shown in Figure 1, and each containing an inlet nozzle 20 and a particle collection means 21 (such as a filter). Furnace 7 serves both vessels.

U uređaju na slici 3A, ventil A kontrolira snabdijevanje superkritičnog fluida i nosača (koji sadrži supstancu od interesa) u posude 6a i 6b, a jednosmjerni ventili E i F kontroliraju otvore iz dvije posude prema regulatoru 8 donjeg tlaka. Ventil D kontrolira snabdijevanje nosač u ventil A. Ventili B i C su igličasti ventili, a elementi 80 i 81 su odvodi. In the device of Figure 3A, valve A controls the supply of supercritical fluid and carrier (containing the substance of interest) to vessels 6a and 6b, and one-way valves E and F control the openings from the two vessels to the lower pressure regulator 8. Valve D controls the carrier supply to valve A. Valves B and C are needle valves and elements 80 and 81 are drains.

Uređaj može biti "kontinuirano" operativan kako slijedi. Ventil A prvo se postavlja tako da snabdijeva fluide u posudu 6a, u kojoj se odvija formiranje čestica, kako je opisano u vezi sa slikom 1. Ventil E postavlja se tako da se rezultirajuća superkritična otopina može odvoditi iz posude 6a u regulator 8 donjeg tlaka za slijedeće recikliranje. The device can be "continuously" operational as follows. Valve A is first positioned to supply fluids to vessel 6a, in which particle formation takes place, as described in connection with Figure 1. Valve E is positioned so that the resulting supercritical solution can be diverted from vessel 6a to the lower pressure regulator 8 for next recycling.

Kada se dogodi dovoljno formiranje čestica, ventil D se zatvara da zaustavi tok nosača, dok superkritični fluid nastavlja protjecati kroz posudu 6a radi sušenja (isplahivanja) proizvoda. Ventil A je zatim postavljen tako da snabdijeva fluide u praznu posudu 6b, a ventil D se ponovo otvara, dok se ventil B polako otvara tako da se depresurizira posuda 6a. Jednosmjerni ventil E eliminira bilo koju mogučnost povratka toka natrag iz posude 6b, ili prekid procesa formiranja čestica koji se sada dešava u posudi 6b. Posuda 6a se uklanja radi sakupljanja proizvoda, a zatim se ponovo podešava i ponovo presurizira, da bi bila spremna za ponovnu upotrebu. Superkritična otopina odvodi se iz posude 6b preko ventila F, koji je prikladno podešen. When sufficient particle formation has occurred, valve D closes to stop carrier flow while supercritical fluid continues to flow through vessel 6a to dry (rinse) the product. Valve A is then set to supply fluids to empty vessel 6b, and valve D is opened again, while valve B is slowly opened to depressurize vessel 6a. The one-way valve E eliminates any possibility of flow back from vessel 6b, or interruption of the particle formation process now occurring in vessel 6b. The vessel 6a is removed to collect the product and then readjusted and repressurized to be ready for reuse. The supercritical solution is drained from vessel 6b via valve F, which is suitably adjusted.

Kada je formiranje čestica u posudi 6b završeno, ventili se ponovo postavljaju ponovo tako da se formiranje čestica omogući u posudi 6a, dok se posuda 6b isplahuje i prazni. Na ovaj se način formiranje čestica u uređaju može nastaviti bez prekidanja. When the formation of particles in vessel 6b is complete, the valves are repositioned again to allow formation of particles in vessel 6a, while vessel 6b is rinsed and emptied. In this way, the formation of particles in the device can continue without interruption.

Uređaj pokazan na slici 3B sadrži samo jednu posudu 6 za formiranje čestica, koja ne sadrži nikakvo sredstvo za sakupljanje čestica, i dvije posude 25a i 25b za sakupljanje čestica nizvodno od posude 6. Superkritični fluid nosi formirane čestice u posude 25a i 25b za sakupljanje. The apparatus shown in Figure 3B comprises only one particle forming vessel 6, which does not contain any means for collecting particles, and two particle collecting vessels 25a and 25b downstream of vessel 6. The supercritical fluid carries the formed particles to the collecting vessels 25a and 25b.

Uređaj također sadrži ulaznu mlaznicu 20, dva odvoda 26, regulator 27 donjeg tlaka, peć 7 i ventile A-H. Superkritični fluid i otopina (nosač) vode se u mlaznicu 20 kako je pokazano. The device also contains an inlet nozzle 20, two drains 26, a lower pressure regulator 27, a furnace 7 and valves A-H. The supercritical fluid and solution (carrier) are fed into nozzle 20 as shown.

Uređaj se može koristiti kako slijedi. Početno, (ventili C, D, E, i F zatvoreni) sustav je presuriziran i postignuti su stabilni radni uvjeti. Ventili B i H su zatim zatvoreni, što pobuđuje tok superkritičnog fluida samo kroz ventil A. Nosač i supstanca od interesa uvode se u posudu 6, a formirane čestice prenose se sa superkritičnim fluidom preko ventila A u posudu 25a za sakupljanje, koja sadrži uređaj za zadržavane čestica. Uređaj za zadržavane čestica postavlja se na izlazu posude, tako da se osigura maksimalno sakupljanje sadržaja. Superkritična otopina bez čvrstog materijala (superkritični fluid i nosač) teče preko ventila G u regulator 27 donjeg tlaka. U pojavljivanju iz regulatora donjeg tlaka superkritični tlak se širi u otpornoj posudi velikog tlaka (nije pokazana), gdje se nosač izdvaja iz plina i oba se recikliraju. The device can be used as follows. Initially, (valves C, D, E, and F closed) the system is pressurized and stable operating conditions are achieved. Valves B and H are then closed, which induces the flow of supercritical fluid only through valve A. The carrier and substance of interest are introduced into vessel 6, and the particles formed are transferred with the supercritical fluid through valve A to collection vessel 25a, which contains a device for retained particles. The device for retained particles is placed at the outlet of the vessel, so as to ensure maximum collection of the contents. The supercritical solution without solid material (supercritical fluid and carrier) flows through the valve G into the lower pressure regulator 27. Emerging from the lower pressure regulator, the supercritical pressure is expanded in a high-pressure resistive vessel (not shown), where the carrier is separated from the gas and both are recycled.

Kada je posuda 25a za sakupljanje puna, obavlja se prekidanje, zatvaranje ventila A i G, te istovremeno otvaranje ventila B i H. Ovo dozvoljava tok superkritične otopine, koja se pojavila posudi 6, u drugu posudu 25b za sakupljanje Ventili C i G otvaraju se posle prekidanja toka, tako da se osigura visoki tok supekritičnog fluida radi isplahivanja pune posude 25a za sakupljanje, tj. sadržaj superkritične otopine zamjenjuje se sa sadržajem superkritičnog fluida. Procjenjuje se da 1 - 2 ciklusa zamjene sadržaja posude za sakupljanje superkritičnog fluida, osigurava suhi prah. Vrijeme isplahivanja općenito je vrlo kratko, zahvaljujući činjenici da čestice zauzimaju samo dio sadržaja posude za sakupljanje. Posle isplahivanja ventili C i G se zatvaraju, a na punoj posudi 25a za sakupljanje polako se otvara ventil F (igličast ventil). Kako čestičasti proizvod zauzima samo malu količinu sadržaja posude, superkritični fluid lako se dešaržira, prikladnim izdvajanjem unutrašnjeg sadržaja. When the collection vessel 25a is full, the interruption is performed, the valves A and G are closed, and the valves B and H are opened at the same time. This allows the flow of the supercritical solution, which appeared in the vessel 6, into the second collection vessel 25b. Valves C and G are opened after interrupting the flow, so as to ensure a high flow of supercritical fluid in order to flush out the full container 25a for collection, i.e. the content of the supercritical solution is replaced with the content of the supercritical fluid. It is estimated that 1 - 2 cycles of replacing the contents of the supercritical fluid collection vessel provide dry powder. The flushing time is generally very short, thanks to the fact that the particles occupy only part of the contents of the collection vessel. After flushing, valves C and G are closed, and valve F (needle valve) is slowly opened on the full container 25a for collection. As the particulate product occupies only a small amount of the contents of the vessel, the supercritical fluid is easily discharged, by suitable extraction of the internal contents.

Puna posuda 25a za sakupljanje se uklanja, i sakuplja se suhi prah. Posle ponovnog postavljanja i ponovnog presuriziranja preko ventila C, posuda je spremna za ponovnu upotrebu istovremeno kada i druga posuda 25b za sakupljanje, koja je u međuvremenu postala puna sakupljanjem proizvoda iz posude 6. The full collection container 25a is removed, and the dry powder is collected. After re-installation and re-pressurization via valve C, the vessel is ready for reuse at the same time as the second collecting vessel 25b, which in the meantime became full by collecting the product from vessel 6.

Prednosti korištenja uređaja sa slike 3B uključuju: Advantages of using the device in Figure 3B include:

1. Eliminiranje faza depresuriziranja i presuriziranja iz reakcijske posude svaki puta kada je sakupljen proizvod. Ovo može značiti značajnu redukciju u količini fluida koji se dešaržira, naročito kada se koristi posuda velikog volumena za formiranje čestica (uvećanje sadržaja), ili skupi plinovi za čišćenje. 1. Eliminating depressurization and pressurization phases from the reaction vessel each time product is collected. This can mean a significant reduction in the amount of fluid being discharged, especially when using a large volume vessel for particle formation (increasing content), or expensive cleaning gases.

2. Značajna ušteda vremena tokom postupka isplahivanja (sušenja). U procesu masovnog formiranja čestica samo je vrlo volumen reakcijske posude zauzet sa proizvodom, a preostali volumen (gdje se dešava disperzija) zauzima superkritična otopina. Ova smjesa biti će eventualno zamijenjena barem sa istim volumenom superkritičnog fluida u postupku isplahivanja, koji inače može uzeti dosta vremena kod uvećanja sadržaja. 2. Significant time saving during the rinsing (drying) procedure. In the process of mass formation of particles, only the very volume of the reaction vessel is occupied with the product, and the remaining volume (where dispersion takes place) is occupied by the supercritical solution. This mixture will eventually be replaced with at least the same volume of supercritical fluid in the flushing process, which can otherwise take a lot of time when increasing the content.

3. Ambijent i radnici manje su izloženi proizvodima za vrijeme faze dobivanja. U nekim slučajevima teško je sakupiti proizvode direktno iz velike reakcijske posude zbog neprikladnosti rukovanja, ili zato što su proizvodi od interesa osjetljivi na svjetlost, kisik ili vlažnost, što može utjecati na njihove karakteristike i na čistoću. 3. The environment and workers are less exposed to the products during the obtaining phase. In some cases, it is difficult to collect products directly from a large reaction vessel due to handling inadequacies, or because the products of interest are sensitive to light, oxygen, or humidity, which can affect their characteristics and purity.

Izum je dalje ilustriran sa slijedećim neograničavajućim primjerima. Primjeri 1 do 9, koji ilustriraju dobivanje flutikason propionata i njegovih fizičkih osobina, vršeni su korištenjem uređaja tipa ilustriranog na slikama 1 i 2, korištenjem 32 ml posude za formiranje čestica i dvopropalznu koaksijalnu mlaznicu koja je imala slijedeće dimenzije: The invention is further illustrated by the following non-limiting examples. Examples 1 to 9, which illustrate the preparation of fluticasone propionate and its physical properties, were carried out using an apparatus of the type illustrated in Figures 1 and 2, using a 32 ml particle forming vessel and a two-propellant coaxial nozzle having the following dimensions:

vanjski promjer unutrašnji promjer outer diameter inner diameter

vanjska cijev: 1,58 mm 0,75 mm outer tube: 1.58 mm 0.75 mm

unutrašnja cijev: 0,63 mm 0,20 mm inner tube: 0.63 mm 0.20 mm

Otvor vrha (43 na slici 2B) bio je 0,32 mm u promjeru, a obje unutrašnja i vanjska cijev napravljene su od nehrđajućeg čelika. The tip opening (43 in Figure 2B) was 0.32 mm in diameter, and both the inner and outer tubes were made of stainless steel.

Primjer 1 Raspodjela veličine čestica Example 1 Particle size distribution

Podaci za četiri uzorka flutikason propionata iz ovog izuma, dobiveni korištenjem ovdje opisanih postupaka i uređaja, predstavljeni su u tablici 2 niže. Veličina čestica određena je sa laserskom difrakcijom (Malvern Mastersizer). Data for four samples of fluticasone propionate of the present invention, obtained using the methods and apparatus described herein, are presented in Table 2 below. Particle size was determined with laser diffraction (Malvern Mastersizer).

Uzorak 1 dobiven je korištenjem otopine flutikason propionata u acetonu (2,5 % t/v) koji je ko-uvođen sa CO2 na 300 bara, 35 °C, i odnosom veličine toka od 0,014 preko koaksijalne mlaznice u posudi za formiranje čestica. Sample 1 was obtained using a solution of fluticasone propionate in acetone (2.5% w/v) co-introduced with CO2 at 300 bar, 35 °C, and a flow rate ratio of 0.014 via a coaxial nozzle in a particle forming vessel.

Uzorak 2 dobiven je korištenjem otopine flutikason propionata u acetonu (0,5 % t/v) koji je ko-uvođen sa CO2 na 100 bara, 35 ° i odnosom veličine toka od 0,014 preko koaksijalne mlaznice u posudi za formiranje čestica. Sample 2 was obtained using a solution of fluticasone propionate in acetone (0.5% w/v) co-introduced with CO2 at 100 bar, 35° and a flow rate ratio of 0.014 via a coaxial nozzle in a particle forming vessel.

Uzorak 3 dobiven je korištenjem otopine flutikason propionata u acetonu (0,5 % t/v) koji je ko-uvođen sa CO2 na 100 bara, 75 °C, i odnosom veličine toka od 0,043 preko koaksijalne mlaznice u posudi za formiranje čestica. Sample 3 was obtained using a solution of fluticasone propionate in acetone (0.5% w/v) co-introduced with CO2 at 100 bar, 75 °C, and a flow rate ratio of 0.043 via a coaxial nozzle in a particle forming vessel.

Uzorak 4 dobiven je korištenjem otopine flutikason propionata u acetonu (2,5 % t/v) koji je ko-uvođen sa CO2 na 100 bara, 75 °C, i odnosom veličine toka od 0,014 preko 3-komponentne koaksijalne mlaznice u posudi za formiranje čestica. Sample 4 was obtained using a solution of fluticasone propionate in acetone (2.5% w/v) co-introduced with CO2 at 100 bar, 75 °C, and a flow rate ratio of 0.014 via a 3-component coaxial nozzle in a forming vessel particle.

Podaci predstavljeni u tablici 2 pokazuju da se veličinom čestica može manipulirati zavisno od uvjeta. Podaci veličine čestica za uzorak 4 pokazuju da se može postići veličina čestica slična onoj za konvencionalno kristalizirani flutikason propionat (mikroniziran). Indeks uniformnosti nije značajno različit od onog za konvencionalno kristalizirani flutikason propionat (mikroniziran). The data presented in Table 2 show that the particle size can be manipulated depending on the conditions. The particle size data for sample 4 show that a particle size similar to that of conventionally crystallized fluticasone propionate (micronized) can be achieved. The uniformity index is not significantly different from that of conventionally crystallized fluticasone propionate (micronized).

Tablica 2 Table 2

[image] [image]

Primjer 2 Podaci oblika čestica Example 2 Particle shape data

Oblik čestica dobiven je sa mikroskopijom elektronskog skaniranja. Podaci za tri uzorka flutikason propionata iz ovog izuma, dobiveni korištenjem ovdje opisanog postuaka i uređaja, prezentirani su na slikama 5 do 7. The shape of the particles was obtained with scanning electron microscopy. Data for three samples of fluticasone propionate of the present invention, obtained using the process and apparatus described herein, are presented in Figures 5 through 7.

Uzorak 5 dobiven je korištenjem otopine flutikason propionata u metanolu (0,5 % t/v) koji je ko-uvođen sa CO2 na 100 bara, 75 °C, i odnosom veličine toka od 0,043 preko koaksijalne mlaznice u posudi za formiranje čestica. Oblik čestica opisan je kao igličasti sa visokim odnosom izgleda od 200:1 (slika 5). Sample 5 was obtained using a solution of fluticasone propionate in methanol (0.5% w/v) co-introduced with CO2 at 100 bar, 75 °C, and a flow rate ratio of 0.043 via a coaxial nozzle in a particle forming vessel. The shape of the particles is described as needle-like with a high aspect ratio of 200:1 (Figure 5).

Uzorak 6 dobiven je korištenjem otopine flutikason propionata u acetonu (1,5 % t/v) koji je ko-uvođen sa CO2 na 200 bara, 55 °C, i odnosom veličine toka od 0,029 preko koaksijalne mlaznice u posudi za formiranje čestica. Oblik čestica opisan je kao sličan pahuljama (slika 6). Sample 6 was obtained using a solution of fluticasone propionate in acetone (1.5% w/v) co-introduced with CO2 at 200 bar, 55 °C, and a flow rate ratio of 0.029 via a coaxial nozzle in a particle forming vessel. The shape of the particles is described as similar to snowflakes (Figure 6).

Uzorak 7 dobiven je korištenjem otopine flutikason propionata u acetonu (2,5 % t/v) koji je ko-uvođen sa CO2 na 100 bara, 75 °C, i odnosom veličine toka od 0,014 preko koaksijalne mlaznice u posudi za formiranje čestica. Oblik čestica opisan je kao ekvant (slika 7). Sample 7 was obtained using a solution of fluticasone propionate in acetone (2.5% w/v) co-introduced with CO2 at 100 bar, 75 °C, and a flow rate ratio of 0.014 via a coaxial nozzle in a particle forming vessel. The shape of the particles is described as quant (Figure 7).

Primjer 3 Reproduktivnost Example 3 Reproducibility

Tri različite otopine flutikason propionata u acetonu (1,5 % t/v) ko-uvođene su sa CO2 na 200 bara, 55 °C, i odnosom veličine toka od 0,029, preko koaksijalne mlaznice u posudi za formiranje čestica u tri različita dana (uzorci 6, 8, 9). Ispitani su veličina čestica, oblik čestica, polimorfni oblik, i profil nečistoća. Veličina čestica, oblik čestica, polimorfni oblik i profil nečistoća pokazuju da je tehnika reproduktivna kada se koriste neki parametri kristaliziranja. Three different solutions of fluticasone propionate in acetone (1.5% w/v) were co-introduced with CO2 at 200 bar, 55 °C, and a flow rate ratio of 0.029, via a coaxial nozzle in a particle-forming vessel on three different days ( samples 6, 8, 9). Particle size, particle shape, polymorphic form, and impurity profile were tested. Particle size, particle shape, polymorphic form and impurity profile show that the technique is reproducible when some crystallization parameters are used.

a) Veličina čestica a) Particle size

Veličina čestica je određena sa laserskom difrakcijom (Malvern Mastersizer). Particle size was determined with laser diffraction (Malvern Mastersizer).

Podaci su pokazani niže u tablici 3. The data are shown below in Table 3.

Tablica 3 Table 3

[image] [image]

b) Oblik čestica b) Shape of particles

Oblik čestica određen je sa mikroskopijom elektronskog skaniranja. Podaci za uzorke 6 i 8 pokazani su na slikama 6 i 8, respektivno. The shape of the particles was determined with scanning electron microscopy. Data for samples 6 and 8 are shown in Figures 6 and 8, respectively.

c) Polimorfni oblik c) Polymorphic form

Polimorfni oblik određen je sa difrakcijom praha X-zraka, kalorimetrijom diferencijalnog skaniranja (DSC) i spektroskopijom infra-crvene fourierove transformacije za uzorke 6 i 8. Podaci su pokazani na slikama 9 do 14. The polymorphic form was determined with X-ray powder diffraction, differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy for samples 6 and 8. The data are shown in Figures 9 through 14.

Slike 9, 11 i 13 odnose se na uzorak 6, dok se slike 10, 12 i 14 odnose na uzorak 8. Figures 9, 11 and 13 refer to sample 6, while figures 10, 12 and 14 refer to sample 8.

d) Profil nečistoće d) Impurity profile

Profil nečistoće određen je sa HPLC za uzorke 6 i 8. Podaci su pokazani u tablici 4 i slikama 16 i 17 (koje se odnose na uzorke 6 i 8, respektivno). The impurity profile was determined by HPLC for samples 6 and 8. The data are shown in Table 4 and Figures 16 and 17 (referring to samples 6 and 8, respectively).

Primjer 4 Profil nečistoće Example 4 Impurity profile

Profil nečistoće određen je sa HPLC za uzorke 5, 6, 8, 10, i uspoređen je sa konvencionalno kristaliziranim flutikason propionatom. Podaci su prikazani u tablici 4 i slikama 15 do 19 (koje se odnose na uzorke 5, 6, 8, 10, i konvencionalno kristaliziranim flutikason propionatom, respektivno). The impurity profile was determined by HPLC for samples 5, 6, 8, 10, and compared with conventionally crystallized fluticasone propionate. The data are shown in Table 4 and Figures 15 to 19 (referring to samples 5, 6, 8, 10, and conventionally crystallized fluticasone propionate, respectively).

Uzorak 10 dobiven je korištenjem otopine flutikason propionata u acetonu (0,5 % t/v) koji je ko-uvođen sa CO2 na 100 bara, 35 °C, i odnosom veličine toka od 0,043 preko koaksijalne mlaznice u posudi za formiranje čestica. Sample 10 was obtained using a solution of fluticasone propionate in acetone (0.5% w/v) co-introduced with CO2 at 100 bar, 35 °C, and a flow rate ratio of 0.043 via a coaxial nozzle in a particle forming vessel.

Podaci pokazuju da flutikason propionat dobiven sa ovim izumom ne mijenja profil nečistoće kada se usporedi sa konvencionalno kristaliziranim flutikason propionatom. Međutim, postoji vrlo mala redukcija u ukupnim nečistoćama (5 t/t) za flutikason propionat dobiven sa ovim izumom. The data show that fluticasone propionate obtained with this invention does not change the impurity profile when compared to conventionally crystallized fluticasone propionate. However, there is a very small reduction in total impurities (5 t/t) for fluticasone propionate obtained with this invention.

Tablica 4 Table 4

[image] [image]

(Primjedba: Ograničiti kvatifikaciju = 0,045 % t/t) (Remark: Limit quantification = 0.045 % t/t)

Primjer 5 Kristalnost i polimorfizam Example 5 Crystallinity and polymorphism

Uzorci difrakcije praha X-zraka (XRPD) generirani su korištenjem Siemens D 5000, ili Philips X'pert MPD. Praškovi su skanirani preko opsega kuta 2θ od 1,5 ° do 60 °, ili 0 ° do 35 °, sa korakom od 0,02-0,05 ° na 3-5 sekundi, korištenjem CuKα zračenja. Siemens D5000 mjeri intenzitet kao broj ciklusa u sekundi, a Philips X'pert MPD mjeri intenzitet kao broj ciklusa. X-ray powder diffraction (XRPD) patterns were generated using a Siemens D 5000, or a Philips X'pert MPD. The powders were scanned over a 2θ angle range of 1.5° to 60°, or 0° to 35°, with a step of 0.02-0.05° for 3-5 seconds, using CuKα radiation. The Siemens D5000 measures the intensity as the number of cycles per second, and the Philips X'pert MPD measures the intensity as the number of cycles.

Podaci za uzorke 2, 6 i 11 uspoređivani su sa onim od konvencionalno kristaliziranog flutikason propionata. (vidjeti slike 20, 9, 21 i 22, respektivno). Data for samples 2, 6 and 11 were compared with that of conventionally crystallized fluticasone propionate. (see Figures 20, 9, 21 and 22, respectively).

Dobivanje uzoraka 2 i 6 opisano je gore. Uzorak 11 dobiven je korištenjem otopine flutikason proionata u acetonu (0,5 % t/v) koji je ko-uvođen sa CO2 na 300 bara, 75 °C, i odnosom veličine toka od 0,014 preko koaksijalne mlaznice u posudi za formiranje čestica. The preparation of samples 2 and 6 is described above. Sample 11 was obtained using a solution of fluticasone proionate in acetone (0.5% w/v) co-introduced with CO2 at 300 bar, 75 °C, and a flow rate ratio of 0.014 via a coaxial nozzle in a particle forming vessel.

Podaci pokazuju da se kristalnost može kontrolirati sa parametrima kristalizacije. Korištenjem tehnike iz ovog patenta, kristalnost flutikason propionata može se značajno poboljšati u odnosu na konvencionalno kristalizirani flutikason propionat. The data show that the crystallinity can be controlled with the crystallization parameters. Using the technique of this patent, the crystallinity of fluticasone propionate can be significantly improved over conventionally crystallized fluticasone propionate.

Kako je spomenuto gore, relativne količine oblika 1 i 2 flutikason propionata dobivenog sa ovdje opisanom uređajem mogu se mijenjati sa prikladnim podešavanjem promjenljivih procesa iz izuma. Ekeperimentalna područja za svaki polimorfni oblik mogu se empirijski odrediti za određeni korišteni uređaj. Korištenjem preparativnog procesa i ovdje opisanog uređaja, nađeno je da su uzorci 1, 2, 5-12 i 14-16 bili oblika 2 flutikason propionata; uzorci 3 i 17 bili su smjesa oblika 1 i 2 flutikason propionata; i uzorak 13 je oblika 1 flutikason propionata. As mentioned above, the relative amounts of forms 1 and 2 of fluticasone propionate obtained with the apparatus described herein can be varied with suitable adjustment of the process variables of the invention. The experimental ranges for each polymorphic form can be determined empirically for the particular device used. Using the preparative process and apparatus described herein, samples 1, 2, 5-12 and 14-16 were found to be form 2 of fluticasone propionate; samples 3 and 17 were a mixture of forms 1 and 2 of fluticasone propionate; and sample 13 is form 1 of fluticasone propionate.

Dva polimorfna oblika flutikason propionata dobro su karakterizirani sa njihovim XRPD tragovima. Tablica 5 pokazuje ključ 2θ vrhova za identifikaciju dva polimorfna oblika flutikason propionata sa XRPD. Slika 23 pokazuje XRPD tragove preklopljenih oblika 1 i 2 flutikason propionata. The two polymorphic forms of fluticasone propionate are well characterized with their XRPD traces. Table 5 shows the key 2θ peaks for the identification of two polymorphic forms of fluticasone propionate by XRPD. Figure 23 shows the XRPD traces of folded forms 1 and 2 of fluticasone propionate.

Tablica 5 Table 5

[image] [image]

Tragovi za flutikason propionat dobiveni prema ovom izumu kvalitativno su različiti od traga za konvencionalno kristalizirani flutikason propionat. Konvencionalno kristalizirani flutikason propionat ("oblik 1") nađeno je da ima monokliničku kristalnu strukturu sa Fluticasone propionate traces obtained according to the present invention are qualitatively different from conventionally crystallized fluticasone propionate traces. Conventionally crystallized fluticasone propionate ("form 1") was found to have a monoclinic crystal structure with

a = 7,722 Å, b = 14,176 Å, c = 11,290 Å, β = 98,458 °. a = 7.722 Å, b = 14.176 Å, c = 11.290 Å, β = 98.458 °.

Suprotno, XRPD tragovi flutikason propionata dobivenog prema ovom izumu ("oblik 2") analizirani su, i dokazano je da su čisti polimorf sa ortorombnom strukturom koja ima Conversely, the XRPD traces of fluticasone propionate obtained according to the present invention ("form 2") were analyzed and proved to be a pure polymorph with an orthorhombic structure having

a = 23,404 Å, b = 14,048 Å, c = 7,695 Å, svi kutovi su 90 °. a = 23.404 Å, b = 14.048 Å, c = 7.695 Å, all angles are 90 °.

Nađeno je da je oblik 2 stabilan prema konverziji u oblik 1, tj. posle 62 tjedna na sobnoj temperaturi i atmosferskoj vlažnosti, nije viđena konverzija. Slika 24 pokazuje stabilnost oblika 2 flutikason propionata sa XRPD. Form 2 was found to be stable towards conversion to form 1, i.e. after 62 weeks at room temperature and atmospheric humidity, no conversion was seen. Figure 24 shows the stability of form 2 of fluticasone propionate by XRPD.

Sadržaj vode dva kristalna oblika flutikason propionata dobivenih sa ovdje opisanim uređajem također je određen, i uspoređen je sa onim za konvencionalno kristalizirani i mikronizirani flutikason propionat. Rezultati su pokazani u tablici 6. The water content of the two crystalline forms of fluticasone propionate obtained with the apparatus described herein was also determined, and compared with that of conventionally crystallized and micronized fluticasone propionate. The results are shown in table 6.

Tablica 6 Table 6

[image] [image]

Primjer 6 Gustoća mase Example 6 Mass density

Dinamička gustoća mase za konvencionalno kristalizirani flutikason propionat (mikroniziran i ne-mikroniziran) i flutikason propionata iz ovog izuma pokazane su u tablici 7. Dynamic mass densities for conventionally crystallized fluticasone propionate (micronized and non-micronized) and fluticasone propionate of the present invention are shown in Table 7.

Uzorak 12 dobiven je korištenjem otopine flutikason propionata u etil acetatu (0,5 % t/v) koji je ko-uvođen sa CO2 na 300 bara, 35 °C, i odnosom veličine toka od 0,043 preko koaksijalne mlaznice u posudi za formiranje čestica. Sample 12 was obtained using a solution of fluticasone propionate in ethyl acetate (0.5% w/v) co-introduced with CO2 at 300 bar, 35 °C, and a flow rate ratio of 0.043 via a coaxial nozzle in a particle forming vessel.

Uzorak 13 dobiven je korištenjem otopine flutikason propionata u acetonitrilu (0,5 % t/v) koji je ko-uvođen sa CO2 na 100 bara, 75 °C, i odnosom veličine toka od 0,043 preko koaksijalne mlaznice u posudi za formiranje čestica. Sample 13 was obtained using a solution of fluticasone propionate in acetonitrile (0.5% w/v) co-introduced with CO2 at 100 bar, 75 °C, and a flow rate ratio of 0.043 via a coaxial nozzle in a particle forming vessel.

Tablica 7 Table 7

[image] [image]

Dinamička gustoća mase flutikason propionata iz ovog izuma znatno je manja od one za konvencionalno kristalizirani flutikason propionat (miktoniziran i ne-mikroniziran). The dynamic mass density of the fluticasone propionate of this invention is significantly lower than that of conventionally crystallized fluticasone propionate (mictonized and non-micronized).

Podaci predstavljeni u tablici 7 pokazuju da se dinamička gustoća mase flutikason propionata iz ovog izuma može kontrolirati korištenjem parametara kristalizacije iz postupka opisanog unutar izuma. The data presented in Table 7 show that the dynamic mass density of the fluticasone propionate of this invention can be controlled using the crystallization parameters from the process described within the invention.

Primjer 7 Statički test šarže Example 7 Static batch test

Relativna statička šarža flutikason propionata iz ovog izuma može se kontrolirati sa parametrima kristalizacije. Podaci pokazuju da nema značajne redukcije u relativnoj statici flutikason propionata iz ovog izuma, kada se usporedi sa konvencionalno kristaliziranim flutikason propionatom. Flutikason propionat sakupljen iz posude za formiranje čestica korištenjem opisanog uređaja je suh i lak za rukovanje. Konvencionalno mikronizirani flutikason propionat je kohezivan, težak za rukovanje i statički je šaržiran. The relative static batch of fluticasone propionate of this invention can be controlled with crystallization parameters. The data show that there is no significant reduction in the relative statics of the fluticasone propionate of this invention when compared to conventionally crystallized fluticasone propionate. Fluticasone propionate collected from the particle forming vessel using the described apparatus is dry and easy to handle. Conventionally micronized fluticasone propionate is cohesive, difficult to handle, and statically batched.

Proveden je jednostavni test da se odredi relativna statička šarža bazirana na količini lijeka preostalog na zidovima bočice posle okretanja predodređene količine lijeka u bočici tokom 2 minute. Veća količina lijeka ostala je u bočici, i veća relativna statička šarža združena je sa supstancom lijeka. Rezultati su prikazani u tablici 8. A simple test was performed to determine the relative static charge based on the amount of drug remaining on the walls of the vial after swirling a predetermined amount of drug in the vial for 2 minutes. A greater amount of drug remains in the vial, and a greater relative static charge is combined with the drug substance. The results are shown in Table 8.

Tablica 8 Table 8

[image] [image]

Uzorak 14 dobiven je korištenjem otopine flutikason propionata u acetonu (2,5 % t/v) koji je ko-uvođen sa CO2 na 300 bara, 75 °C, i odnosom veličine toka od 0,043 preko koaksijalne mlaznice u posudi za formiranje čestica. Sample 14 was obtained using a solution of fluticasone propionate in acetone (2.5% w/v) co-introduced with CO2 at 300 bar, 75 °C, and a flow rate ratio of 0.043 via a coaxial nozzle in a particle forming vessel.

Uzorak 15 dobiven je korištenjem otopine flutikason propionata u acetonu (3,5 % t/v) koji je ko-uvođen sa CO2 na 90 bara, 85 °C, i odnosom veličine toka od 0,028 preko koaksijalne mlaznice u posudi za formiranje čestica. Sample 15 was obtained using a solution of fluticasone propionate in acetone (3.5% w/v) co-introduced with CO2 at 90 bar, 85 °C, and a flow rate ratio of 0.028 via a coaxial nozzle in a particle forming vessel.

Uzorak 16 dobiven je korištenjem otopine flutikason propionata u etil acetatu (0,5 % t/v) koji je ko-uvođen sa CO2 na 300 bara, 35 °C, i odnosom veličine toka od 0,043 preko koaksijalne mlaznice u posudi za formiranje čestica. Sample 16 was obtained using a solution of fluticasone propionate in ethyl acetate (0.5% w/v) co-introduced with CO2 at 300 bar, 35 °C, and a flow rate ratio of 0.043 via a coaxial nozzle in a particle forming vessel.

Uzorak 17 dobiven je korištenjem otopine flutikason propionata u acetonu (0,5 % t/v) koji je ko-uvođen sa CO2 na 100 bara, 75 °C, i odnosom veličine toka od 0,043 preko koaksijalne mlaznice u posudi za formiranje čestica. Sample 17 was obtained using a solution of fluticasone propionate in acetone (0.5% w/v) co-introduced with CO2 at 100 bar, 75 °C, and a flow rate ratio of 0.043 via a coaxial nozzle in a particle forming vessel.

Primjer 8 Twin Impinger test Example 8 Twin Impinger test

Mala količina lijeka napunjena je u svaki mjehur Rotadisk™ sa četiri mjehura. Sadržaji svakog Rotadisk™ ispražnjeni su preko DiskhalerTM, u Twin Impinger uređaj postavljen na brzinu zračnog toka od 60 litara u minuti. Svaki stupanj Twin Impinger uređaja sadržavao je količinu otapala za otapanje metanola (stupanj 1: 7 ml, i stupanj 2: 30 ml). RotadiskTM i DiskhalerTM isprani su sa metanolom i rezultirajuća otopina je napravljen do 50 ml. Stupanj 1 Twin Impinger-a ispran je sa metanolom i rezultirajuća otopina je napravljen do 50 ml. Stupanj 2 Twin Impinger-a ispran je sa metanolom i rezultirajuća otopina je napravljen do 50 ml. Otopine su ispitivani sa UV spektroskopijom i izračunata je količina lijeka isporučenog u svaki stupanj Twin Impinger uređaja. Rezultati su pokazani u tablici 9. Tablica 10 pokazuje podatke veličine korištenih uzoraka. A small amount of medication is loaded into each bladder of the four-bladder Rotadisk™. The contents of each Rotadisk™ were emptied via the DiskhalerTM, into a Twin Impinger device set at an airflow rate of 60 liters per minute. Each stage of the Twin Impinger device contained an amount of solvent for dissolving methanol (stage 1: 7 ml, and stage 2: 30 ml). RotadiskTM and DiskhalerTM were washed with methanol and the resulting solution was made up to 50 ml. Stage 1 of the Twin Impinger was washed with methanol and the resulting solution made up to 50 ml. Stage 2 of the Twin Impinger was washed with methanol and the resulting solution made up to 50 ml. The solutions were examined with UV spectroscopy and the amount of drug delivered to each stage of the Twin Impinger device was calculated. The results are shown in table 9. Table 10 shows the size data of the samples used.

Tablica 9 Table 9

[image] [image]

Tablica 10 Table 10

[image] [image]

Naslaga stupnja 2 predstavlja masu finih čestica (respiratorna doza) koja dostiže duboko u pluća. Isporučena doza (suma stupnja 1 i stupnja 2) predstavlja ukupnu dozu raspoloživu za inhalaciju i efikasno pražnjenje lijeka iz uređaja. A grade 2 deposit represents a mass of fine particles (respiratory dose) that reaches deep into the lungs. The delivered dose (sum of stage 1 and stage 2) represents the total dose available for inhalation and efficient discharge of the drug from the device.

Flutikason propionat iz ovog izuma ne pokazuje značajno poboljšanje u naslagi stupnja 2. Interesantna karakteristika iz ovog izuma je da superkritični fluid kristaliziranog flutikason propionat sa veličinom čestica većom od konvencionalno kristaliziranog flutikason propionata (mikroniziran), daje ekvivalentnu naslagu (respiratorna doza) u stupnju 2 Twin Impinger-a. The fluticasone propionate of this invention does not show significant improvement in stage 2 deposition. An interesting feature of this invention is that supercritical fluid crystallized fluticasone propionate with a particle size larger than conventionally crystallized fluticasone propionate (micronized), gives an equivalent deposition (respiratory dose) in stage 2 Twin Impinger.

Flutikason propionat iz ovog izuma pokazuje poboljšanu isporučenu dozu koja pokazuje da se lijek prazni dobro iz uređaja i predstavlja količinu lijeka za inhalaciju. To je opet interesantna karakteristika iz ovog izuma da superkritični fluid kristaliziranog flutikason propionata sa veličinom čestica većom od konvencionalno kristaliziranog flutikason propionata (mikroniziranog), daje veću isporučenu dozu. The fluticasone propionate of the present invention shows an improved delivered dose which shows that the drug discharges well from the device and represents the amount of drug to be inhaled. It is again an interesting characteristic from this invention that the supercritical fluid of crystallized fluticasone propionate with a particle size larger than conventionally crystallized fluticasone propionate (micronized), gives a higher delivered dose.

Ovi podaci pokazuju da flutikason propionat iz ovog izuma ima poboljšanu fluidnost i osobine toka. These data demonstrate that the fluticasone propionate of the present invention has improved fluidity and flow properties.

Primjer 9 Test sadržaja otapala Example 9 Solvent content test

Sadržaj otapala flutikason propionata iz ovog izuma ispitivan je sa nuklearnom magnetnom rezonancom (NMR) i uspoređen je sa onim za konvencionalno kristalizirani flutikason propionat. Svaki uzorak testiran je na sadržaj acetona. (konvencionalno kristalizirani flutikason propionat kristaliziran je iz acetona). Nadalje, uzorak 5 je kristaliziran iz metanola, i zato je testiran na metanol. Tablica 11 pokazuje podatke sadržaja otapala za svaki uzorak. The solvent content of the fluticasone propionate of this invention was investigated with nuclear magnetic resonance (NMR) and compared with that of conventionally crystallized fluticasone propionate. Each sample was tested for acetone content. (conventionally crystallized fluticasone propionate is crystallized from acetone). Furthermore, sample 5 was crystallized from methanol, and was therefore tested for methanol. Table 11 shows the solvent content data for each sample.

Tablica 11 Table 11

[image] [image]

Podaci pokazuju da ima nivoa preostalog otapala koji se ne mogu detektirati unutar flutikason propionata iz ovog izuma. Nedostatak preostalog otapala u uzorcima kozistentan je sa GAS (plin anti-otapalo) rekristalizacijom i RESS (brza ekspanzija superkritične otopine). The data indicate that there are undetectable levels of residual solvent within the fluticasone propionate of this invention. The lack of residual solvent in the samples is consistent with GAS (gas anti-solvent) recrystallization and RESS (rapid expansion of supercritical solution).

Prednosti nedostatka preostalog otapala unutar uzorka uključuju: poboljšanu stabilnost zbog nedostatka interakcija otapalo-lijek na temperaturi i vlažnosti skladištenja; reducirane kristalne nesavršenosti i poboljšanju kristalne strukture zbog nedostatka apsorpcije otapala. Advantages of the lack of residual solvent within the sample include: improved stability due to lack of solvent-drug interactions at storage temperature and humidity; reduced crystal imperfections and improved crystal structure due to lack of solvent absorption.

Primjeri 10-12 Performanse inhalatora mjerene doze Examples 10-12 Metered Dose Inhaler Performance

U slijedećim testovima, proizvedena su dva tipa inhalatora mjerene doze (MDI), gdje su oba sadržala flutikason propionat i HFA134a. Inhalator tipa A bio je od 125 mikrograma, 120 model pokretanja. Inhalator tipa B bio je od 50 mikrograma, 120 model pokretanja. In the following tests, two types of metered dose inhalers (MDIs) were produced, both of which contained fluticasone propionate and HFA134a. The Type A inhaler was a 125 microgram, 120 actuation model. The Type B inhaler was a 50 microgram, 120 actuation model.

Inhalatori tipa A dobiveni su sa odmjeravanjem 20 mg lijeka u limenku od aluminija Presspart od 8 ml. Limenka je zatvorena sa krimpiranjem na Valois DF60 ventilu od 63 mikrolitra prije punjenja po tlakom aknistera sa 12 g Propellent HFA134a. Inhalatori tipa B dobiveni su na isti način, ali korištenjem samo 8 mg lijeka. Performansa MDI mjerena je bazirano na naslagi lijeka na limenci, ventilu i pokretaču, i to na dozi isporučenoj preko primjene, te na respiratornoj dozi. Type A inhalers were obtained by measuring 20 mg of the drug in an 8 ml Presspart aluminum can. The can was crimped to a 63 microliter Valois DF60 valve before pressure filling the cannister with 12 g of Propellent HFA134a. Type B inhalers were obtained in the same way, but using only 8 mg of the drug. MDI performance was measured based on the drug deposit on the can, valve and actuator, on the dose delivered via application, and on the respiratory dose.

U dobivanju uzoraka za punjenje u gore spomenute MDI korišteni su slijedeći uvjeti kristalizacije: The following crystallization conditions were used to obtain the samples for loading into the above-mentioned MDIs:

Uzorak 19 dobiven je korištenjem otopine flutikason propionata u acetonu (2,5 % t/v) koji je ko-uvođen sa CO2 na 100 bara, 35 °C, i odnosom veličine toka od 0,043 preko koaksijalne mlaznice u posudi za formiranje čestica. Sample 19 was obtained using a solution of fluticasone propionate in acetone (2.5% w/v) co-introduced with CO2 at 100 bar, 35 °C, and a flow rate ratio of 0.043 via a coaxial nozzle in a particle forming vessel.

Uzorak 20 dobiven je korištenjem otopine flutikason propionata u acetonu (2,5 % t/v) koji je ko-uvođen sa CO2 na 100 bara, 35 °C, i odnosom veličine toka od 0,014 preko koaksijalne mlaznice u posudi za formiranje čestica. Sample 20 was obtained using a solution of fluticasone propionate in acetone (2.5% w/v) co-introduced with CO2 at 100 bar, 35 °C, and a flow rate ratio of 0.014 via a coaxial nozzle in a particle forming vessel.

Uzorak 21 dobiven je korištenjem otopine flutikason propionata u acetonu (2,5 % t/v) koji je ko-uvođen sa CO2 na 100 bara, 35 °C, i odnosom veličine toka od 0,033 preko koaksijalne mlaznice u posudi za formiranje čestica. Sample 21 was obtained using a solution of fluticasone propionate in acetone (2.5% w/v) co-introduced with CO2 at 100 bar, 35 °C, and a flow rate ratio of 0.033 via a coaxial nozzle in a particle forming vessel.

Uzorak 22 dobiven je korištenjem otopine flutikason propionata u acetonitrilu (2,0 % t/v) koji je ko-uvođen sa CO2 na 100 bara, 35 °C, i odnosom veličine toka od 0,022 preko koaksijalne mlaznice u posudi za formiranje čestica. Sample 22 was obtained using a solution of fluticasone propionate in acetonitrile (2.0% w/v) co-introduced with CO2 at 100 bar, 35 °C, and a flow rate ratio of 0.022 via a coaxial nozzle in a particle vessel.

Primjer 10 Naslaga lijeka Example 10 Drug deposit

Lijek nataložen u limenci, na ventilu i pokretaču mjeren je na početku primjene imhalatora (posle pokretanja 1 & 2) i na kraju primjene inhalatora (posle pokretanja 119 & 120). Posle prikladnog broja pokretanja, unutrašnjost inhalatora isprana je u acetonitrilu da se ukloni bilo koji lijek nataložen na površini. Lijek nađen na pokretaču ispran je u prikladnom kontejneru sa 50 ml acetonitril/vode (50:50 v/v). Inhalator je zatim zamrznut u tekućem dušiku, brzo je uklonjen ventil, a sadržaji suspenzije lijeka ispražnjeni su u kontejner. Pogonski materijal iz suspenzije ostavljen je da ispari, a preostali lijek je otopljen u 50 ml acetonitril/vode (50:50 v/v). Lijek na komponentama ventila ispran je u prikladnom kontejneru sa 50 ml acetonitril/vode (50:50 v/v). Lijek na limenci također je ispran u prikladnom kontejneru sa 50 ml acetonitril/vode (50:50 v/v). Rezultantne otopine ispitivane su sa HPLC. The drug deposited in the can, on the valve and on the actuator was measured at the beginning of inhaler administration (after actuation 1 & 2) and at the end of inhaler administration (after actuation 119 & 120). After an appropriate number of actuations, the interior of the inhaler was rinsed in acetonitrile to remove any drug deposited on the surface. The drug found on the initiator was washed in a suitable container with 50 ml of acetonitrile/water (50:50 v/v). The inhaler was then frozen in liquid nitrogen, the valve quickly removed, and the contents of the drug suspension emptied into a container. The propellant material from the suspension was allowed to evaporate and the remaining drug was dissolved in 50 ml of acetonitrile/water (50:50 v/v). The drug on the valve components was washed in a suitable container with 50 ml of acetonitrile/water (50:50 v/v). The medication on the can was also washed in a suitable container with 50 ml of acetonitrile/water (50:50 v/v). The resulting solutions were analyzed with HPLC.

Tablice 12 i 13 predstavljaju profil naslage lijeka za inhalatore tipa A i B, respektivno. Tables 12 and 13 present the drug deposition profile for Type A and Type B inhalers, respectively.

Flutikason propionat iz ovog izuma pokazuje značajno nižu naslagu lijeka na limenci, ventili i pokretaču od konvencionalno dobivenog flutikason propionata. Kao rezultat manje naslage lijeka, koncentracija lijeka u suspenziji je veća, što vodi ka većim količinama lijeka koji je isporučen iz inhalatora. Ovo je potvrđeno u primjerima 11 (doza kroz primjenu) i 12 (testiranje kaskadnog udara) koji pokazuju veću dozu za isporuku tokom trajanja inhalatora. The fluticasone propionate of this invention exhibits significantly lower drug deposition on the can, valve, and actuator than conventionally obtained fluticasone propionate. As a result of less drug deposition, the concentration of drug in the suspension is higher, leading to higher amounts of drug delivered from the inhaler. This is confirmed in Examples 11 (dose through application) and 12 (cascade shock testing) which show a higher dose to be delivered over the lifetime of the inhaler.

Tablica 12 Table 12

Profil naslage lijeka za inhalator tip A Drug deposition profile for type A inhaler

[image] [image]

Tablica 13 Table 13

Profil naslage lijeka za inhalator tip B Drug deposition profile for type B inhaler

[image] [image]

Flutikason propionat iz ovog izuma također pokazuje da nema značajnog povećanja u naslazi lijeka na limenci i ventilu tokom trajanja inhalatora. Kao rezultat, doza isporuke je konsistentna tokom trajanja inhalatora kako je pokazno u slijedećem primjeru. Fluticasone propionate of the present invention also shows no significant increase in drug deposition on the can and valve during the lifetime of the inhaler. As a result, the delivery dose is consistent over the lifetime of the inhaler as demonstrated in the following example.

Primjer 11 Doza isporučena kroz primjenu Example 11 Dose delivered through administration

Doza isporučena preko primjene inhalatora mjerena je sa inhalatorom tipa B. Doze su sakupljene kao parovi pokretanja na početku primjene (pokretanja 1 & 2), sredinom primjene (pokretanja 60 & 61), i na kraju primjene (pokretanje 119 & 120). Doze su sakupljene kako slijedi: dva pokretanja ispaljena su u ljevak za razdvajanje od 500 ml (zatvoren na jednom kraju sa pamučnom krpom), koji ima zračni tok vučen kroz njega od 20 litara u minuti. Ljevak za razdvajanje ispran je sa acetonitrilom u boci za mjerenje volumena od 100 ml koja sadrži 50 ml vode. Rezultirajuća otopina napravljena je do volumena i ispitana sa HPLC. The dose delivered via inhaler administration was measured with a Type B inhaler. Doses were collected as run pairs at the start of administration (runs 1 & 2), mid-administration (runs 60 & 61), and end of administration (runs 119 & 120). The doses were collected as follows: two runs were fired into a 500 ml separatory funnel (closed at one end with a cotton cloth), having an air flow drawn through it of 20 liters per minute. The separatory funnel was washed with acetonitrile in a 100 ml volumetric flask containing 50 ml of water. The resulting solution was made up to volume and analyzed by HPLC.

Tablica 14 pokazuje podatke doze isporučene kroz primjenu za inhalator tipa B, za koji je cilj da doza isporučena po pokretanju bude 44 mikrograma. Table 14 shows the dose-delivered-through-application data for the Type B inhaler, for which the target dose delivered per actuation is 44 micrograms.

Tablica 14 Table 14

Doza isporučena kroz primjenu za inhalator tip B Dose delivered through inhaler type B application

[image] [image]

Flutikason propionat iz ovog izuma pokazuje profil doziranja preko trajanja inhalatora koji je konzistentno blizak ciljnoj dozi od 44 mikrograma. Ovaj profil značajno je bolji od onog za konvencionalno kristalizirani flutikason propionat (mikroniziran), i koji pokazuje značajno povećanje u dozi po pokretanju kroz primjenu inhalatora. The fluticasone propionate of this invention exhibits a dosing profile over the duration of the inhaler that is consistently close to the target dose of 44 micrograms. This profile is significantly better than that of conventionally crystallized fluticasone propionate (micronized), and which shows a significant increase in dose per initiation through inhaler administration.

Promjenljivost doze u svakoj točki kroz primjenu inhalator za flutikason propionat iz ovog izuma uspoređena je sa onom za konvencionalno kristalizirani flutikason propionat (mikroniziran), i ona pokazuje poboljšanje prema kraju primjene inhalatora. The dose variability at each point through administration of the fluticasone propionate inhaler of the present invention is compared with that of conventionally crystallized fluticasone propionate (micronized), and it shows an improvement towards the end of administration of the inhaler.

Isporučena doza za flutikason propionat iz ovog izuma dosljedno je veća od one za konvencionalno kristalizirani flutikason propionat (mikroniziran), zbog manje naslage lijeka na limenci i ventilu, kako je pokazano u primjeru 10. The delivered dose for fluticasone propionate of the present invention is consistently higher than that of conventionally crystallized fluticasone propionate (micronized), due to less drug deposition on the can and valve, as demonstrated in Example 10.

Primjer 12 Test kaskadnog udara Example 12 Cascade impact test

Testiranje kaskadnog udaranja vršen je na inhlataoru tipa A. Korišteni postupak je u skladu sa "Preparation for Inhalation; Aerodynamic assessment of fine particle using apparatus D" kako je definirano u British Pharmacopoeia 1992., Dodatak 1996., str. A527, primijenjeno na formulaciju mjerene doze inhalatora. Cascade impact testing was performed on a type A inhaler. The procedure used is in accordance with "Preparation for Inhalation; Aerodynamic assessment of fine particles using apparatus D" as defined in British Pharmacopoeia 1992, Supplement 1996, p. A527, applied to the formulation of metered dose inhalers.

Podaci za kaskadno udaranje prikazani su niže u tablici 15, za masovne inhalatore napravljene korištenjem materijala od u uzorka 19, i uspoređeni su sa inhalatorima napravljenim korištenjem konvencionalno kristaliziranog i mikroniziranog materijala. Cascade impact data are presented below in Table 15, for bulk inhalers made using the material of sample 19, and compared to inhalers made using conventionally crystallized and micronized material.

Naslaga u stupnjevima 3,4 i 5 predstavlja fine čestice mase koja dospijeva duboko u pluća. Isporučena doza (ex pokretač) predstavlja ukupnu dozu raspoloživu za inhalaciju i efikasno pražnjenje iz uređaja. Deposits in degrees 3, 4 and 5 represent fine particles of the mass that reach deep into the lungs. The delivered dose (ex trigger) represents the total dose available for inhalation and efficient discharge from the device.

Tablica 15 Table 15

Podaci kaskadnog udaranja za inhalator tip A Cascade impact data for type A inhaler

[image] [image]

Flutikason propionat iz ovog izuma ne pokazuje značajno poboljšanje u finim česticama mase. Interesantna karakteristika ovog izuma je ta, da superkritični fluid kristaliziranog flutikason propionata sa česticama većim od onih za konvencionalnio kristalizirani flutikason propionat (mikroniziran), daje ekvivalento fine čestice mase u kaskadnom udaraču. Fluticasone propionate of the present invention does not show significant improvement in fine particle mass. An interesting feature of this invention is that the supercritical fluid of crystallized fluticasone propionate with particles larger than those of conventionally crystallized fluticasone propionate (micronized), gives the equivalent of fine particle mass in the cascade impactor.

Flutikason propionat iz ovog izuma pokazuje poboljšanu isporučenu dozu koja pokazuje da se lijek prazni dobro iz uređaja i predstavlja veću količinu lijeka za inhalaciju. Ovo je postignuto sa manjom naslagom lijeka na limenku/ventil, što povećava koncentraciju lijeka u suspenziji. Opet, interesantna karakteristika iz ovog izuma je ta da supserkritični fluid kristaliziranog flutikason propioanta sa česticama većim od onih za konvencionalnio kristalizirani flutikason propionat (mikroniziran), daje veću isporučenu dozu. Podaci pokazuju da flutikason propionat iz ovog izuma ima poboljšanu fluidnost i osobine toka. The fluticasone propionate of the present invention shows an improved delivered dose which shows that the drug discharges well from the device and represents a larger amount of drug for inhalation. This is achieved with less drug deposition on the can/valve, which increases the drug concentration in the suspension. Again, an interesting feature of this invention is that the subcritical fluid of crystallized fluticasone propionate with particles larger than those of conventionally crystallized fluticasone propionate (micronized), provides a higher delivered dose. The data show that the fluticasone propionate of the present invention has improved fluidity and flow properties.

Claims (29)

1. S-fluorometil 6α,9α-difluoro-11β-hidroksi-16α-metil-3-okso-17α-propionil oksiandrosta-1,4-dien-17β-karbotiat (flutikason propioant), naznačen time što je u kristalnom obliku prikladnom za rukovanje i prikladnom za prevođenje u fluid, sa kontroliranom veličinom i oblikom čestica.1. S-Fluoromethyl 6α,9α-difluoro-11β-hydroxy-16α-methyl-3-oxo-17α-propionyl oxyandrosta-1,4-dien-17β-carbotiate (fluticasone propioant), characterized by the fact that it is in a suitable crystalline form handling and suitable for translation into a fluid, with controlled particle size and shape. 2. S-fluorometil 6α,9α-difluoro-11β-hidroksi-16α-metil-3-okso-17α-propioniloksiandrosta-1,4-dien-17β-karbotiat (flutikason propioant), naznačen time što ima ortorombnu kristalnu strukturu.2. S-Fluoromethyl 6α,9α-difluoro-11β-hydroxy-16α-methyl-3-oxo-17α-propionyloxyandrosta-1,4-dien-17β-carbotiate (fluticasone propioant), indicated by the fact that it has an orthorhombic crystal structure. 3. Flutikason propionat kako je zahtjevano u zahtjevu 1 ili zahtjevu 2, naznačen time što ima dinamičku gustoću mase manju od 0,2 g/cm3.3. Fluticasone propionate as claimed in claim 1 or claim 2, characterized in that it has a dynamic mass density of less than 0.2 g/cm3. 4. Flutikason propionat kako je zahtjevano u zahtjevu 3, naznačen time što ima dinamičku gustoću mase u opsegu između 0,05 i 0,17 g/cm3.4. Fluticasone propionate as claimed in claim 3, characterized in that it has a dynamic mass density in the range between 0.05 and 0.17 g/cm 3 . 5. Flutikason propionat kako je zahtjevano u zahtjevu 4, naznačen time što ima dinamičku gustoću mase u opsegu između 0,05 i 0,08 g/cm3.5. Fluticasone propionate as claimed in claim 4, characterized in that it has a dynamic mass density in the range between 0.05 and 0.08 g/cm 3 . 6. Flutikason propionat kako je zahtjevano u bilo kojem zahtjevu 1 do 5, naznačen time što ima veličinu čestica u opsegu 1 do 10 mikrona.6. Fluticasone propionate as claimed in any of claims 1 to 5, characterized in that it has a particle size in the range of 1 to 10 microns. 7. Flutikason propionat kako je zahtjevano u bilo kojem zahtjevu 1 do 6, naznačen time što ima koeficijent uniformnosti od 1 do 20.7. Fluticasone propionate as claimed in any of claims 1 to 6, characterized in that it has a uniformity coefficient of 1 to 20. 8. Flutikason propionat kako je zahtjevano u bilo kojem zahtjevu 1 do 7, naznačen time što ima respiratorni dio od 14 % ili više težine.8. Fluticasone propionate as claimed in any of claims 1 to 7, characterized in that it has a respiratory fraction of 14% or more by weight. 9. Flutikason propionat kako je zahtjevano u bilo kojem zahtjevu 1 do 8, naznačen time što ima kohezivnost od 0 do 20 %.9. Fluticasone propionate as claimed in any of claims 1 to 8, characterized in that it has a cohesiveness of 0 to 20%. 10. Flutikason propionat kako je zahtjevano u zahtjevu 9, naznačen time što ima kohezivnost od 0 do 10 %.10. Fluticasone propionate as claimed in claim 9, characterized in that it has a cohesiveness of 0 to 10%. 11. Flutikason propionat kako je zahtjevano u bilo kojem zahtjevu 1 do 9, naznačen time što ima čisti polimorfni oblik 2 karakteriziran sa difrakcijom X-zraka praha traga, u suštini kako je pokazano na slici 23.11. Fluticasone propionate as claimed in any of claims 1 to 9, characterized in that it has a pure polymorphic form 2 characterized by X-ray powder diffraction of a tracer, essentially as shown in Figure 23. 12. Postupak za dobivanje flutikason propionata kako je zahtjevano u bilo kojem od zahtjeva 1 do 11, naznačen time što koji obuhvaća ko-uvođenje superkritičnog fluida i nosača koji sadrži barem flutikason propionat u otopini ili suspenziji u posudi za formiranje čestica, gdje su kontrolirani temperatura i tlak, tako da se disperzija i ekstrakcija nosača događa u suštini istovremeno sa djelovanjem superkritičnog fluida.12. A process for obtaining fluticasone propionate as claimed in any one of claims 1 to 11, characterized in that it comprises co-introducing a supercritical fluid and a carrier containing at least fluticasone propionate in solution or suspension in a vessel for forming particles, where the temperature is controlled and pressure, so that the dispersion and extraction of the carrier occurs essentially simultaneously with the action of the supercritical fluid. 13. Postupak kako je zahtjevano u zahtjevu 12, naznačen time što se ko-ovođenje superkritičnog fluida i nosača koji sadrži barem flutikason propionat u otopini ili suspenziji vrši korištenjem mlaznice koaksijalnog dizajna.13. The method as claimed in claim 12, characterized in that the co-introduction of the supercritical fluid and the carrier containing at least fluticasone propionate in solution or suspension is performed using a nozzle of coaxial design. 14. Postupak kako je zahtjevano u zahtjevu 12 ili zahtjevu 13, naznačen time što superkritični fluid je ugljični dioksid.14. The method as claimed in claim 12 or claim 13, characterized in that the supercritical fluid is carbon dioxide. 15. Farmaceutski preparat, naznačen time što sadrži fluitikason propionat kako je zahtjevano u bilo kojem od zahtjeva 1 do 11 zajedno sa barem jednim farmaceutski prihvatljivim nosačem ili ekscipijentom.15. A pharmaceutical preparation, characterized in that it contains fluticasone propionate as claimed in any one of claims 1 to 11 together with at least one pharmaceutically acceptable carrier or excipient. 16. Farmaceutski preparat kako je zahtjevano u zahtjevu 15, naznačen time što nosač je silicijev dioksid ili hidroksipropil-celuloza.16. A pharmaceutical preparation as claimed in claim 15, characterized in that the carrier is silicon dioxide or hydroxypropyl cellulose. 17. Farmaceutski preparat kako je zahtjevano u zahtjevu 15, naznačen time što nosač je laktoza.17. Pharmaceutical preparation as claimed in claim 15, characterized in that the carrier is lactose. 18. Farmaceutski preparat kako je zahtjevano u zahtjevu 17, naznačen time što je u obliku suhog praha prikladnog za inhalaciju.18. A pharmaceutical preparation as claimed in claim 17, characterized in that it is in the form of a dry powder suitable for inhalation. 19. Farmaceutski preparat kako je zahtjevano u bilo kojem od zahtjeva 15 do 17, naznačen time što je u obliku predstave aerosolnog spreja.19. A pharmaceutical preparation as claimed in any one of claims 15 to 17, characterized in that it is in the form of an aerosol spray presentation. 20. Farmaceutski preparat kako je zahtjevano u zahtjevu 19, naznačen time što je predstava aerosolnog spreja inhalator mjerene doze.20. A pharmaceutical preparation as claimed in claim 19, characterized in that the aerosol spray representation is a metered dose inhaler. 21. Farmaceutski preparat kako je zahtjevano u zahtjevu 19 ili zahtjevu 20, naznačen time što predstava aerosolnog spreja sadrži HFA124a kao pogonsku materiju.21. Pharmaceutical preparation as claimed in claim 19 or claim 20, characterized in that the aerosol spray form contains HFA124a as propellant. 22. Farmaceutski preparat kako je zahtjevano u bilo kojem od zahtjeva 15 do 21, naznačen time što sadrži multikomponentne čestice koje sadrže flutikason propionat kao nosač.22. A pharmaceutical preparation as claimed in any one of claims 15 to 21, characterized in that it contains multicomponent particles containing fluticasone propionate as a carrier. 23. Postupak za dobivanje flutikason propionata kako je zahtjevano u zahtjevu 22, naznačen time što obuhvaća ko-uvođenje superkritičnog fluida, nosača i nosača koji sadrži barem flutikason propionat u otopini ili suspenziji u posudi za formiranje čestica, gdje su kontrolirani temperatura i tlak, tako da se disperzija i ekstrakcija nosača događa u suštini istovremeno sa djelovanjem superkritičnog fluida, a flutikason i nosač ko-kristaliziraju zajedno.23. The process for obtaining fluticasone propionate as claimed in claim 22, characterized in that it comprises the co-introduction of a supercritical fluid, a carrier and a carrier containing at least fluticasone propionate in solution or suspension in a vessel for particle formation, where temperature and pressure are controlled, so that the dispersion and extraction of the carrier occurs essentially simultaneously with the action of the supercritical fluid, and the fluticasone and the carrier co-crystallize together. 24. Postupak kako je zahtjevano u zahtjevu 23, naznačen time što se ko-uvođenje superkritičnog fluida, nosača i nosača koji sadrži barem flutikason propionat u otopini ili suspenziji vrši korištenjem mlaznice koaksijalnog dizajna.24. The method as claimed in claim 23, characterized in that the co-introduction of the supercritical fluid, the carrier and the carrier containing at least fluticasone propionate in solution or suspension is performed using a nozzle of coaxial design. 25. Flutikason propionat kako je zahtjevano u bilo kojem zahtjevu 1 do 11, naznačen time što se primjenjuje u terapiji.25. Fluticasone propionate as claimed in any of claims 1 to 11, characterized in that it is used in therapy. 26. Flutikason propionata kako je zahtjevano u bilo kojem od zahtjeva 1 do 11, naznačen time što se primjenjuje za proizvodnju lijeka za borbu protiv dišnih oboljenja.26. Fluticasone propionate as claimed in any one of claims 1 to 11, characterized in that it is used for the production of a medicine for combating respiratory diseases. 27. Primjena kako je zahtjevano u zahtjevu 26, naznačena time što dišno oboljenje je astma.27. Use as claimed in claim 26, characterized in that the respiratory disease is asthma. 28. Postupak tretmana ljudskog ili životinjskog tijela koje pati od dišnog oboljenja, naznačen time što obuhvaća unošenje u spomenuto ljudsko ili životinjsko tijelo efikasne količine flutikason propionata, kako je zahtjevano u bilo kojem od zahtjeva 1 do 11.28. A method of treating a human or animal body suffering from a respiratory disease, characterized in that it comprises introducing into said human or animal body an effective amount of fluticasone propionate, as required in any of claims 1 to 11. 29. Postupak tretmana kako je zahtjevano u zahtjevu 28, naznačen time što dišno oboljenje je astma.29. The method of treatment as claimed in claim 28, characterized in that the respiratory disease is asthma.
HRP980227 1998-04-27 1998-04-27 Particulate products HRP980227A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP980227 HRP980227A2 (en) 1998-04-27 1998-04-27 Particulate products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP980227 HRP980227A2 (en) 1998-04-27 1998-04-27 Particulate products

Publications (1)

Publication Number Publication Date
HRP980227A2 true HRP980227A2 (en) 1999-10-31

Family

ID=10946731

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP980227 HRP980227A2 (en) 1998-04-27 1998-04-27 Particulate products

Country Status (1)

Country Link
HR (1) HRP980227A2 (en)

Similar Documents

Publication Publication Date Title
EP0937100B1 (en) A novel polymorphic crystalline form of fluticasone propionate, a method for its production and pharmaceutical compositions thereof
JP3839042B2 (en) Salmeterol xinafoate with sized particles
US5851453A (en) Method and apparatus for the formation of particles
US7087197B2 (en) Particle formation
EP1073429B1 (en) Aerosol formulations of salmeterol xinafoate
CA2349711C (en) A method of producing drug particles
JP2003504178A (en) Particle formation method
EP1409123B1 (en) Method and apparatus for preparing particles
CA2424620A1 (en) Inhalation particles incorporating a combination of two or more active ingredients
US7172752B2 (en) Combination particles for the treatment of asthma
US20050085409A1 (en) Particle formation
JP2003519171A (en) Inhaled particles
HRP980227A2 (en) Particulate products
WO2003002111A1 (en) Inhalation particles
Ensign Protein Particle Formation for Pulmonary Delivery

Legal Events

Date Code Title Description
A1OB Publication of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 20000427

Year of fee payment: 3

OBST Application withdrawn