HRP960242A2 - Automatic electronic apparatus for forced air supply to internal combustion engines and forced delivery of exhaust gases - Google Patents

Automatic electronic apparatus for forced air supply to internal combustion engines and forced delivery of exhaust gases Download PDF

Info

Publication number
HRP960242A2
HRP960242A2 HR960242A HRP960242A HRP960242A2 HR P960242 A2 HRP960242 A2 HR P960242A2 HR 960242 A HR960242 A HR 960242A HR P960242 A HRP960242 A HR P960242A HR P960242 A2 HRP960242 A2 HR P960242A2
Authority
HR
Croatia
Prior art keywords
engine
forced
air
exhaust gases
suction
Prior art date
Application number
HR960242A
Other languages
Croatian (hr)
Inventor
Kuueević Mijo
Original Assignee
Kuueević Mijo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuueević Mijo filed Critical Kuueević Mijo
Priority to HR960242A priority Critical patent/HRP960242A2/en
Publication of HRP960242A2 publication Critical patent/HRP960242A2/en

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

Oblast tehnike u koju spada izum The technical field to which the invention belongs

Predmetni izum spada u područje dovoda zraka za sagorijevanje i izbavu ispušnih plinova iz motora sa unutrašnjim sagorijevanjem. The invention in question belongs to the field of air supply for combustion and the release of exhaust gases from internal combustion engines.

Po međunarodnoj klasifikaciji patenata razvrstan je i klasiran te označen klasifikacionim simbolima B60K.f. Podgrupa 13/00 promjene na motorima sa unutrašnjim sagorijevanjem u vezi sa dovodom zraka za sagorijevanje i izbavu ispušnih plinova. According to the international classification of patents, it is classified and classified and marked with classification symbols B60K.f. Subgroup 13/00 changes to internal combustion engines relating to the supply of air for combustion and the removal of exhaust gases.

Tehnički problem Technical problem

U posljednje vrijeme dolazi do sve šire primjene različitih uređaja za prisilnu dobavu zraka u motore s unutrašnjim sagorijevanjem, kao što su uređaji, koji su pogonjeni posredstvom mehaničkog prijenosa i uređaji, koji su pogonjeni energijom ispušnih plinova. Recently, there has been an increasingly widespread use of various devices for forced air supply to internal combustion engines, such as devices that are driven by means of mechanical transmission and devices that are driven by the energy of exhaust gases.

Kod uređaja s mehaničkih načinom pogona nailazilo na problem povećanih gabarita (manje efektivne snage punjenja) i na problem povećanog trošenja (habanja). Međutim kod uređaja pogonjenih ispušnim plinovima, npr. turbokompresora postiže se visoki stupanj punjenja komprimiranog zraka u motore, no radi oduzimanja energije ispušnih plinova nastaju gubici efektivne snage motora, koji inače ne bi postojali u tolikoj mjeri, kada turbokompresori ne bi koristili za svoj pogon tu energiju ispušnih plinova. In the case of devices with a mechanical mode of operation, the problem of increased dimensions (less effective charging power) and the problem of increased consumption (wear and tear) were encountered. However, with devices powered by exhaust gases, for example turbocompressors, a high degree of filling of compressed air into the engines is achieved, but due to taking away the energy of the exhaust gases, there are losses of the effective power of the engine, which otherwise would not exist to such an extent, if the turbocompressors did not use this exhaust gas energy.

Stanje tehnike State of the art

Međutim poznato je, da ispušni plinovi imaju visoku temperaturu, veliku brzinu izlaza i agresivno djelovanje na motor i na turbokomoresor. Stoga je vrlo važno, da se ispušni plinovi što kraćim putem i što brže izbave iz motora i tako omogući povećanje punjenja zraka, čime se postiže povećanje efektivne snage motora uz održavanje visokog stupnja iskorištenja i produljuje se vijek trajanja motora i samih uređaja za prisilnu dobavu zraka. However, it is known that the exhaust gases have a high temperature, a high output speed and an aggressive effect on the engine and the turbocompressor. Therefore, it is very important that the exhaust gases are removed from the engine as quickly and as quickly as possible, thus enabling an increase in the air charge, thereby achieving an increase in the effective power of the engine while maintaining a high level of utilization and extending the life of the engine and the devices for forced air supply. .

Opis rješenja tehničkog problema Description of the solution to the technical problem

Zadatak izuma prema gore navedenom sastoji se u tome, da uređaji za prisilnu dobavu komprimiranog zraka motore s unutrašnjim sagorijevanjem pune komprimiranim zrak trajno i sigurno i da na prisilan način izbavljaju ispušne plinove iz motora i da u pogonu stvaraju što manje gubitke, postižući visoki stupanj iskorištenja, veći potezni moment motora uz smanjenu potrošnju goriva i smanjenje zagađivanja čovjekove okoline. The task of the invention according to the above is that devices for the forced supply of compressed air fill internal combustion engines with compressed air permanently and safely, and that they forcibly extract exhaust gases from the engine and that they create as little loss as possible during operation, achieving a high level of utilization , greater torque of the engine with reduced fuel consumption and reduction of pollution of the human environment.

Uređaji za prisilnu dobavu zraka u motore s unutarnjim sagorijevanjem u pogledu prolaza komprimiranog zraka kroz uređaje, načine hlađenja, načina prisline izbave ispušnih plinova te koncepcije pogonsko upravljačkog sistema prikazani su na priloženim crtežima sl. 1, 2, 3, 4, 5 i 6 i obuhvaćeni su u patentnim zahtjevima. Devices for the forced supply of air to internal combustion engines in terms of the passage of compressed air through the devices, methods of cooling, methods of forcing the release of exhaust gases, and the concept of the drive control system are shown in the attached drawings Fig. 1, 2, 3, 4, 5 and 6 and are covered in the patent claims.

Sl.1 Radijalno-aksijalni uređaj za prisilnu dobavu zraka s jednim turborotorom Fig.1 Radial-axial device for forced air supply with one turborotor

Sl.2 Radijalno-aksijalni uređaj s paralelnim turborotorom Fig.2 Radial-axial device with parallel turborotor

Sl.3 Prikaz načina ugradnje uređaja s paralelnim turborotorom u zračni filter sa suhim cjedilom Fig.3 Illustration of how to install a device with a parallel turborotor in an air filter with a dry strainer

Sl.4 Pogonsko upravljački sistem uređaja za prisilnu dobavu zraka Fig.4 Drive control system of the device for forced air supply

Sl.5 Radijalno-aksijalni uređaj s jednim turborotorom u jednoj funkcionalnoj cjelini s turbinom za prisilnu izbavu ispušnih plinova iz motora Fig.5 Radial-axial device with one turborotor in one functional unit with a turbine for the forced release of exhaust gases from the engine

Sl.6 Radijalni uređaj s jednim turborotorom u jednoj funkcionalnoj cjelini sa turbinom za prisilnu izbavu ispušnih plinova iz motora. Fig. 6 Radial device with one turborotor in one functional unit with a turbine for forced extraction of exhaust gases from the engine.

Karakteristično je kod ovih uređaja, što mogu koristiti u svom pogonu isti pogonsko upravljački sistem (sl.4), što mogu imati iste asinhrone motore (raznih snaga), zatim što se mogu ugrađivati u filtere zraka a mogu funkcionirati samostalno. It is characteristic of these devices that they can use the same drive control system (fig. 4), that they can have the same asynchronous motors (of different powers), and that they can be installed in air filters and can function independently.

U nastavku opisani su uređaji prema sl. 1, 2, 3, 5 i 6, dok će se sl. 4 opisati podrobnije zasebno, kao jedna funkcionalna pogonsko upravljačka cjelina. In the following, the devices according to Fig. 1, 2, 3, 5 and 6 are described, while Fig. 4 will be described in more detail separately, as one functional drive control unit.

Prednost ovih uređaja je, što ne trebaju biti pričvršćeni na motor, gdje je prisutna toplina i vibracije, već se mogu postavljati na jedan od načina, koji najbolje odgovara uvjetima montaže, demontaže i samoga korištenja u pogonu. The advantage of these devices is that they do not need to be attached to the engine, where heat and vibrations are present, but can be installed in one of the ways that best suits the conditions of assembly, disassembly and actual use in the plant.

Crtež sl.1 Drawing fig.1

Ovaj uređaj za prisilnu dobavu, zraka u motore sastoji se iz usisne komore 9, koja je s vijci a 10 spojena s prirubnicom 16 asinhronog motora 15. Na osovinu 3 asinhronog motora 15 navučen je turborotor koji se nalazi u usisnoj komori 9. Kućište uređaja 1 spojeno je s vijcima 10 sa prirubnicom 16. Na kućištu 1 nalazi se kablovska uvodnica 7, koja ne propušta komprimirani zrak iz prolazne rashladno komore 6. Kroz kablovsku uvodnicu 7 ulazi priključni kabel 8, koji se spaja s trofaznim pogonskim sinhronim generatorom 21 (nije prikazan na crtežu sl.l). Između prirubnice 16 asinhronog motora 15 i usisne komore 9 nalazi se potisna komora 5, kroz koju turborotor 4 potiskuje komprimirani zrak, koji prolazi rashladnom komorom i preko rashladnih rebara 2 rashlađuje asinhroni motor. Asinhroni motor 15 pričvršćen je pomoću vijaka 11 za prirubnicu 16 te u nju čvrsto naliježe u njeno sjedište za centriranje 13. Usisna komora 8 može biti spojena sa filterom zraka pomoću gibljive cijevi (koja u sl.1 nije prikazana) a drugi je način, da se uređaj može ugraditi i filter za zrak 56, kako će to biti opisano u crtežu sl.3 Zadnji dio kućišta 1 može se također spojiti s usisnom cijevi motora 14 pomoću gibljive cijevi, koja u sl.1 nije prikazana. This device for the forced supply of air to the engines consists of a suction chamber 9, which is connected with a screw 10 to the flange 16 of the asynchronous motor 15. A turborotor located in the suction chamber 9 is threaded onto the shaft 3 of the asynchronous motor 15. Device housing 1 it is connected with screws 10 to the flange 16. On the housing 1 there is a cable inlet 7, which does not allow compressed air from the transient cooling chamber 6. Through the cable inlet 7 enters the connecting cable 8, which is connected to the three-phase drive synchronous generator 21 (not shown in the drawing fig.l). Between the flange 16 of the asynchronous motor 15 and the suction chamber 9, there is a pressure chamber 5, through which the turborotor 4 pushes compressed air, which passes through the cooling chamber and cools the asynchronous motor via the cooling fins 2. The asynchronous motor 15 is attached by means of screws 11 to the flange 16 and fits firmly into it in its centering seat 13. The suction chamber 8 can be connected to the air filter by means of a flexible tube (which is not shown in Fig. 1), and another way is to the device can also install an air filter 56, as will be described in the drawing fig.3 The rear part of the housing 1 can also be connected to the intake pipe of the engine 14 by means of a flexible pipe, which is not shown in fig.1.

Kratak sažetak načina funkcioniranja cjelokupnog uređaja: A brief summary of how the entire device works:

Zasniva se na sistemu sinkroni generator trofazne struje asinhroni elektromotor, također trofazne struje. Prilikom startovanja motora s unutrašnjim sagorjevanjem, sinhroni generator 21 (vidi crtež sl.4) počinje proizvoditi električnu energiju, koja pokreće rotor asinhronog motora 15. Na njegovoj osovini je turborotor, koji počne usisavati zrak preko zračnog filtera (koji u crtežu sl.1 nije prikazan). Usisani zrak potiskuje se (sabija) kroz potisnu komoru 5, zatim kroz prolazno rashladnu komoru 6, te izlazi iz kućišta 1 u cijev za spajanje s usisnom cijevi motora 14. Asinhroni motor može, zavisno prema broju okretaja sinhronog generatora i prema broju pari polova postizati do 60.000 okretaja u minuti i pri tome razvijati pritisak komprimiranog zraka od 0,3 do 0,5 bara. The system is based on a three-phase synchronous generator and an asynchronous electric motor, also three-phase current. When starting the internal combustion engine, the synchronous generator 21 (see drawing fig. 4) starts to produce electricity, which drives the rotor of the asynchronous motor 15. On its shaft is a turborotor, which starts sucking air through the air filter (which is not shown in drawing fig. 1 shown). The sucked-in air is pushed (compressed) through the pressure chamber 5, then through the temporary cooling chamber 6, and exits the housing 1 into the pipe for connection with the engine suction pipe 14. The asynchronous motor can, depending on the number of revolutions of the synchronous generator and the number of pole pairs, achieve up to 60,000 revolutions per minute and at the same time develop compressed air pressure of 0.3 to 0.5 bar.

Crtež sl.2 Drawing fig.2

Prikazuje uređaj za prisilnu dobavu zraka, sa paralelni turborotorom za samostalnu primjenu bez filtera zraka. Razlikuje se od prethodnog u tome, što ima paralelni turborotor 48, drugu usisnu komoru 53, usmjerivač zraka drugoj usisnoj komori 54 i prirubnicu 55 za spajanje uređaja, kroz koju prolaze usisni i potisni kanali. It shows a device for forced air supply, with a parallel turborotor for independent use without an air filter. It differs from the previous one in that it has a parallel turborotor 48, a second suction chamber 53, an air guide to the second suction chamber 54 and a flange 55 for connecting the device, through which the suction and discharge channels pass.

Ovakvi uređaji sa paralelnim turborotorom mogli bi se primjenjivati kod snažnih motora, gdje uređaj s jednim turborotorom ne bi morao podmiriti potrebnu količinu komprimiranog zrake za sagorijevanje. Such devices with a parallel turborotor could be used in powerful engines, where a device with a single turborotor would not have to meet the required amount of compressed air for combustion.

Crtež sl.3 Drawing fig.3

Prikazuje uređaj s paralelnim turborotorom, ugrađenim u kućište filtera zraka 56. Unutrašnjost filtera djeluje kao usmjerivač drugoj usisnoj komori 53. It shows a device with a parallel turborotor, built into the air filter housing 56. The inside of the filter acts as a diverter to the second intake chamber 53.

Filter zraka sastoji se iz kućišta koje ima niz otvora za dovod zraka 52, usisnog prstena s nastavkom za spajanje 58, te iz zajedničkog suhog zračnog cjedila 59. Sastoji se nadalje iz poklopca 60 kućišta filtera, prednjeg nosača uređaja za prisilnu dobavu zraka sa usisnim otvorima 61, iz prstena s vijcima za učvršćivanje uređaja 62, iz ležišta 63 uloška zračnog cjedila, te iz niza podiznih spona 64 za pritezanje poklopca 60 za kućište filtera 56. The air filter consists of a housing that has a series of air supply openings 52, a suction ring with a connecting piece 58, and a common dry air strainer 59. It also consists of a cover 60 of the filter housing, a front support of the forced air supply device with suction openings 61, from the ring with screws for fixing the device 62, from the bed 63 of the air filter insert, and from the series of lifting clamps 64 for tightening the cover 60 for the filter housing 56.

Prednost primjene ovog uređaja ugrađenog u filter zraka prema sl.3 je u tome, što nije potrebna cijev za spajanje s filterom zraka, zatim što se ovim načinim smanjuju usisni šumovi, koje proizvodi uređaj, pogotovo onaj s paralelnim turborotorom. Kod takvog uređaja s paralelnim turborotorom, kada je ugrađen u filter zraka, nije više potreban usmjerivač zraka 54 drugoj usisnoj komori 53 (vidi sl.2). The advantage of using this device built into the air filter according to Fig. 3 is that no pipe is needed to connect it to the air filter, and this way the intake noises produced by the device, especially the one with a parallel turborotor, are reduced. With such a device with a parallel turborotor, when it is installed in the air filter, the air diverter 54 is no longer needed for the second intake chamber 53 (see fig.2).

Za razliku od uređaja za prisilnu dobavu zraka u motore, opisanih u crtežima sl.1, 2 i 3, opisani su nastavno u crtežima sl.5 i 6 uređaji, koji su opremljeni turbinom za prisilnu izbavu ispušnih plinova iz rotora. No prije opisa tih uređaja, potrebno je o tome reći nešto općenito: In contrast to the devices for forced air supply to engines, described in drawings fig. 1, 2 and 3, the devices, which are equipped with a turbine for forced release of exhaust gases from the rotor, are described in detail in drawings fig. 5 and 6. But before describing these devices, it is necessary to say something about them in general:

Kod klasičnih motora sa unutrašnjim sagorijevanjem, ispušni plinovi odvode se od samih ispušnih kanala u motoru preko ispušne cijevi te preko prigušivača, koji prigušuje buku motora, u slobodnu atmosferu. Pri tome putu ispušni plinovi nailaze na otpor, koji sprečava njihovo brzo oslobađanje, pogotovo kad je na motor priključen turbokompresor, kojega pogone ispušni plinovi. In classic engines with internal combustion, the exhaust gases are removed from the exhaust ducts in the engine through the exhaust pipe and through the muffler, which dampens the engine noise, into the free atmosphere. During this journey, the exhaust gases encounter resistance, which prevents their quick release, especially when a turbocompressor is connected to the engine, which is driven by the exhaust gases.

Kod većeg otpora izlazu ispušnih plinova motor daje manju snagu, jače se zagrijava i brže troši. U tom slučaju zadatak ovog dijela izuma je, da pomoću turbine za prisilnu izbavu ispušnih plinova (vidi sl. 5 i 6), koja zajedno funkcionira s uređajom za prisilnu dobavu zraka, omogući usisavanje ispušnih plinova velikom brzinom, tako da plinovi ne zagrijavaju motor i da ne ostaje toliko čađe u motoru kao kod rada bez tog uređaja. With greater resistance to the exhaust gas outlet, the engine produces less power, heats up more and wears out faster. In that case, the task of this part of the invention is to use the turbine for the forced release of exhaust gases (see fig. 5 and 6), which works together with the device for the forced supply of air, to enable the suction of exhaust gases at a high speed, so that the gases do not heat the engine and that there is not as much soot left in the engine as when working without this device.

Rotor turbine za usisavanje (izbavu) ispušnih plinova 65 ima isti broj okretaja kao i turborotor uređaja za prisilnu dobavu zraka, jer su navučeni na istu osovinu pogonskog asinhronog motora 15. Samo što je moć usisavanja turbine za prisilnu izbavu ispušnih plinova 66 nešto veća nego je moć uređaja za prisilnu dobavu komprimiranog zraka, tako da turbina za prisilnu izbavu ispušnih plinova može na vrijeme izvući ispušne plinove. The rotor of the turbine for suction (removal) of exhaust gases 65 has the same number of revolutions as the turborotor of the forced air supply device, because they are threaded onto the same shaft of the drive asynchronous motor 15. Only that the suction power of the turbine for forced removal of exhaust gases 66 is slightly higher than power of the device for forced supply of compressed air, so that the turbine for forced release of exhaust gases can extract exhaust gases in time.

Na primjer kod četvrotaktnog motora, kada se otvori ispušni ventil, pošto se rotor 65 turbine za prisilnu izbavu ispušnih plinova 66 okreće određenom brzinom, u tome momentu rada rotor usiše i potisne u ispušnu cijev ispušne plinove prije, nego klip pri svome vraćanju stigne u gornju mrtvu točku svoga gibanja. Na taj način ispušni plinovi ne stignu ostaviti dio svoje visoke temperature na stijenkama cilindra, na klipu, na glavi motora ventila i ispušnih kanala a zatim u samoj turbini, ispušnoj cijevi i prigušivaču, jer je smanjeno vrijeme njihovog boravka u tim prostorima. Osim toga, velikom se brzinom usisavanja odstranjuju čestice čađe i drugih nečistoća, koje bi mogle prianjati na stijenke motora, tj. cilindra, klipa, ventila, i kanala, što povećava trošenje tih vitalnih dijelova motora. Na ovaj način prisilne izbave ispušnih plinova postiže se veća snaga motora (npr. kao da rotor radi bez ispušnog lonca), manje zagrijavanje i duži vijek rada motora. For example, with a four-stroke engine, when the exhaust valve is opened, since the rotor 65 of the turbine for the forced release of exhaust gases 66 rotates at a certain speed, at that moment of operation the rotor sucks in and pushes the exhaust gases into the exhaust pipe before the piston reaches the upper dead center of its movement. In this way, the exhaust gases do not get to leave part of their high temperature on the walls of the cylinder, on the piston, on the engine head, valves and exhaust channels, and then in the turbine itself, the exhaust pipe and the muffler, because the time they spend in these areas is reduced. In addition, high-speed suction removes particles of soot and other impurities that could adhere to the engine walls, i.e. cylinders, pistons, valves, and ducts, which increases the wear of these vital engine parts. In this way, the forced release of exhaust gases results in higher engine power (eg as if the rotor were working without an exhaust pan), less heating and a longer engine life.

Crtež sl.5 Drawing fig. 5

Ta slika prikazuje radijalno aksijalni uređaj s jednim turborotorom, sastavljenim u jednu funkcionalnu cjelinu sa turbinom za prisilnu izbavu ispušnih plinova. This picture shows a radially axial device with a single turborotor, assembled into a single functional unit with a turbine for the forced release of exhaust gases.

Sastoji se iz rotora 65, koji rotira u kućištu 66, sastavljenog s prirubnicom 67, na kojoj su otvori za hlađenje 66. Prirubnica 67 spojena je s jednim krajem s asinhronim motorom 15 pomoću vijaka 11. U prirubnici 67 ugrađen je kuglični ležaj, kroz koji prolazi osovina 69. Ka njezinom kraju navučen je rotor 65 a do njega, sa unutrašnje strane prirubnice 67 nalazi se samopoodesivo brtvilo 70. Na kućištu turbine 66 nalazi se usisna komora 71 i potisna komora 72, na koju se nastavlja ispušna cijev. Kućište uređaja za prisilnu dobavu zraka 73 spojeno je s vijcima 74 sa prirubnicom 67 i kućištem 66 u jednu funkcionalnu cjelinu. Na kućištu 73 nalazi se prsten s nastavkom za priključivanje 75. Pod prstenom 75 izveden je na plaštu kućišta 73 niz rupica 76, kroz koje prolazi komprimirani zrak u prstenasti prostor a iz njega u usisnu cijev motora. Isti komprimirani zrak hladi cjelokupni uređaj pri radu kao i kod ranije opisanih uređaja, samo što u usisnu cijev motora komprimirani zrak ulazi iz prstena 75. It consists of a rotor 65, which rotates in a housing 66, assembled with a flange 67, on which there are openings for cooling 66. The flange 67 is connected with one end to the asynchronous motor 15 by means of screws 11. A ball bearing is installed in the flange 67, through which the shaft 69 passes through. A rotor 65 is threaded towards its end, and next to it, on the inside of the flange 67, there is a self-adjusting seal 70. On the turbine housing 66, there is a suction chamber 71 and a pressure chamber 72, to which the exhaust pipe continues. The housing of the forced air supply device 73 is connected with screws 74 to the flange 67 and the housing 66 into one functional unit. On the housing 73 there is a ring with a connection attachment 75. Under the ring 75, a series of holes 76 are made on the shell of the housing 73, through which the compressed air passes into the annular space and from it into the intake pipe of the engine. The same compressed air cools the entire device during operation as with the previously described devices, only that the compressed air enters the intake pipe of the engine from the ring 75.

Crtež sl.6 Drawing Fig. 6

Ta slika pokazuje radijalni uređaj s jednim turborotorom, povezanim s turbinom za prisilnu izbavu ispušnih plinova iz motora. Ovaj uređaj razlikuje se od predhodnog po tome, što se cjelokupni uređaj hladi usisanim (a ne potisnutim) zrakom i što je kod njega izlaz komprimiranog zraka radijalan. Sastoji se iz uređaja za prisilnu dobavu zraka 77, koji je spojen pomoću vijaka 78 za prirubnicu 79 asinhronog motora 15. Na kućištu 80 nalazi se priključni nastavak 81, koji se spaja s filterom zraka. U filter ulazi hladni zrak te hladi, cijeli uređaj, zatim prolazi kroz priključni nastavak 82, koji je spojen sa cijevi 83 (koja nije prikazana) s usisnom komorom 84 uređaja za prisilnu dobavu zraka 77. This picture shows a radial device with a single turborotor, connected to a turbine to force exhaust gases from the engine. This device differs from the previous one in that the entire device is cooled by suction (rather than compressed) air and that the output of the compressed air is radial. It consists of a device for forced air supply 77, which is connected by means of screws 78 to the flange 79 of the asynchronous motor 15. On the housing 80 there is a connection extension 81, which is connected to the air filter. Cold air enters the filter and cools the entire device, then it passes through the connection extension 82, which is connected to the pipe 83 (not shown) with the suction chamber 84 of the forced air supply device 77.

Zaključno za oba uređaja (sl.5 i 6), vrijedi slijedeće: In conclusion, the following applies to both devices (fig. 5 and 6):

Povećanjem efektivne snage motora prisilnom dobavom komprimiranog zraka, te povećanjem snage prisilnom izbavom ispušnih plinova, u velikoj se mjeri poboljšavaju svojstva rotora s unutrašnjim sagorijevanjem i snaga im može porasti i do 35% preko snage klasičnih motora, koji nisu opremljeni uređajima ovog izuma. Istovremeno povećava se i stupanj iskorištenja s ovim uređajima, smanjuje se utrošak goriva i povećava vijek trajanja što ima veliki značaj pri današnjoj energetskoj i ekonomskoj situaciji. By increasing the effective power of the engine through the forced supply of compressed air, and by increasing the power through the forced release of exhaust gases, the properties of internal combustion rotors are greatly improved and their power can increase up to 35% over the power of classic engines, which are not equipped with the devices of this invention. At the same time, the degree of utilization with these devices increases, fuel consumption decreases and the service life increases, which is of great importance in today's energy and economic situation.

Osnovno je, da uređaji za prisilnu dobavu zraka u motore i prisilnu izbavu ispušnih plinova koriste za svoj pogon trofaznu struju, koju proizvodi pogonski sinhroni generator. Dosadašnji trofazni rasvjetni sinhroni generatori koje nalazimo na motornim vozilima ili strojevima, ne daju dovoljno električne energije, potrebne za pogon navedenih uređaja i to iz slijedećih razloga: It is essential that devices for forced air supply to engines and forced release of exhaust gases use three-phase current, produced by the drive synchronous generator, for their operation. The existing three-phase lighting synchronous generators that we find on motor vehicles or machines do not provide enough electricity, necessary for the operation of the mentioned devices, for the following reasons:

1. Trofazni rasvjetni generatori rađeni su tako, da se impulsno pobuđuju redi regulacije izlaznog napona struje, koja je neophodna za potrebe vozila. 1. Three-phase lighting generators are designed in such a way that they are pulsed to regulate the output voltage of the current, which is necessary for the needs of the vehicle.

2. Za motorna vozila nije predviđen generator snage veće, nego što je potrebno za rasvjetu, signalizaciju, komande i za punjenje baterije. 2. Motor vehicles are not provided with a generator of greater power than is required for lighting, signaling, controls and battery charging.

Zato je konstruiran novi sinhroni dvanaestpolni trofazni generator, koji se sastoji od dva generatora i ostalih sastavnih uređaja, koji čine "Pogonsko upravljački sistem" kao jednu funkcionalnu cjelinu, niže podrobnije opisanu u slici 4: That is why a new synchronous twelve-pole three-phase generator was constructed, which consists of two generators and other component devices, which make up the "Drive control system" as one functional unit, described in more detail below in Figure 4:

Crtež sl.4 Pogonsko upravljački sistem uređaja za prisilnu dobavu zraka u motore s unutrašnjim sagorijevanjem: Drawing fig.4 Drive control system of a device for forced air supply to internal combustion engines:

Ovaj uređaj omogućuje proizvodnju odgovarajuće količine električne energije za potrebe motornih vozila i za pogon trofaznog asinkronog motora, smještenog u samome uređaju. Prema potrebnoj količini kompr. zraka za sagorjevanje raste i potrošnja električne energije s time i kapacitet samih uređaja za prisilnu dobavu zraka. Npr. kod punjenja komprimiranim zrakom u motor snage 60 kW (dizel motor), uređaj troši od 300 - 600 W električne energije. To je dovoljna količina za pogon ovakvih elektro-turbokompresora, koji mogu zamijeniti turbokompresore, gonjene ispušnim plinovima ili mehanički pogonjene. This device enables the production of an adequate amount of electricity for the needs of motor vehicles and for the operation of a three-phase asynchronous motor, located in the device itself. According to the required amount of compr. of air for combustion increases, and the consumption of electricity increases, along with the capacity of the devices themselves for forced air supply. For example when filling a 60 kW engine (diesel engine) with compressed air, the device consumes 300 - 600 W of electricity. This is a sufficient amount to drive such electro-turbocompressors, which can replace turbocompressors driven by exhaust gases or mechanically driven.

Za razliku od ventilatora i puhaljki za dopunu postojećoj količini usisanog zraka u motore ovi uređaji predstavljaju optimalno rješenje za široku primjenu tj. gdje god se primjenjuju klipni motori sa unutrašnjim sagorijevanjem. Unlike fans and blowers for supplementing the existing amount of air sucked into engines, these devices represent an optimal solution for wide application, i.e. wherever piston engines with internal combustion are used.

Pogonsko upravljački sistem prema sl.4 sastoji se iz pozicija: The drive control system according to Fig. 4 consists of positions:

21 - dvanaestpolni trofazni pogonski sinhroni generator 21 - twelve-pole three-phase drive synchronous generator

46 - elektronski regulator napona pogon. sinhr. generatora 21 46 - electronic voltage regulator drive. synchro. generator 21

48 - termostat 48 - thermostat

36 - sonda za kontrolu sadržaja CO 36 - probe for controlling CO content

47 - sonda za kontrolu pritiska komprimiranog zraka 47 - probe for controlling the pressure of compressed air

42 - indikator CO 42 - CO indicator

50 - indikator pritiska zraka 50 - air pressure indicator

37 - elektronski regulator napona rasvjetnog sinhr. generatora 22 37 - electronic voltage regulator lighting sync. generator 22

41 - baterija 41 - battery

Broj okretaja asinhronog elektromotora 15 u uređaju za prisilnu dobavu zraka proporcionalan je broju okretaja spaljivačkog motora. Broj okretaja asinhronog motora 15 proporcionalan je također broju okretaja motora i broju pari polova sinhronog generatora 21. Prema tome broj okretaja asinhronog motora 15 mijenja se promjenom frekvencije izlaznog napona pogonskog sinhronog generatora 21. The number of revolutions of the asynchronous electric motor 15 in the device for forced air supply is proportional to the number of revolutions of the combustion engine. The number of revolutions of the asynchronous motor 15 is also proportional to the number of revolutions of the motor and the number of pairs of poles of the synchronous generator 21. Accordingly, the number of revolutions of the asynchronous motor 15 changes by changing the frequency of the output voltage of the drive synchronous generator 21.

To predstavlja grubu regulaciju broja okretaja i ujedno grubu regulaciju komprimiranog zraka u motoru. This represents a rough regulation of the number of revolutions and at the same time a rough regulation of the compressed air in the engine.

Poznato je, da kod povećanja efektivne snage motora s unutrašnjim sagorjevanjem prisilnom dobavom komprimiranog zraka potreban stalan pritisak u cijelome području okretaja (rada) motora. Nadalje, da bi stupanj sagorjevanja bio visok u cijelome području opterećenja i u različitim uvjetima rada, potrebna je stalna kontrola ispušnih plinova, tj. kontrola sagorjelih tvari štetnih za čovjekovu okolinu a paralelno s tim kontrola potrošnje goriva. It is known that when increasing the effective power of an internal combustion engine by forced supply of compressed air, a constant pressure is required in the entire area of rotation (operation) of the engine. Furthermore, in order for the degree of combustion to be high in the entire load area and in different operating conditions, constant control of exhaust gases is necessary, i.e. control of burned substances harmful to the human environment and, in parallel, control of fuel consumption.

Za takvu kontrolu potrebna je fina automatska regulacija komprimiranog zraka a usporedno s time i indikacija procesa sagorijevanja pomoću dva instrumenta. Jedan od njih za CO pokazuje na svojoj skali procenat štetnih i nesagorjelih sastojaka u ispušnim plinovima, a drugi instrument pokazuje pritisak komprimiranog zraka u usisnim cijevima motora, kao kontrola procesa sabijanja. Ova navedena fina automatska elektronska regulacija i indikacija se može efikasno sprovoditi pomoću niže opisanog "pogonsko upravljačkog sistema uređaja za prisilnu dobavu zraka i prisilnu izbavu ispušnih plinova" kako slijedi: For such control, a fine automatic regulation of the compressed air is required, and parallel to that, an indication of the combustion process using two instruments. One of them for CO shows on its scale the percentage of harmful and unburned ingredients in the exhaust gases, and the other instrument shows the pressure of compressed air in the intake pipes of the engine, as a control of the compression process. This specified fine automatic electronic regulation and indication can be effectively carried out using the below-described "forced air supply and exhaust gas exhaust drive control system" as follows:

Uređaj funkcionira na slijedeći način: The device works in the following way:

Nakon startanja, kada motor postigne radnu temperaturu, termostat 48 uključi elektronski regulator napona 46. Sonda osjetljiva na CO 36 određuje nivo napona u elektronskom regulatoru napona upravo prema količini nesagorjelih štetnih sastojaka u ispušnom plinu. After starting, when the engine reaches operating temperature, the thermostat 48 turns on the electronic voltage regulator 46. The CO sensitive probe 36 determines the voltage level in the electronic voltage regulator according to the amount of unburned harmful ingredients in the exhaust gas.

Uzbudna struja iz elektronskog regulatora napona 46 poveća u pogonskom trofaznom sinkronom generatoru 21 izlazni radni napon, koji u asinkronom motoru 15 poveća zakretni moment, odnosno počinje jače sabijati zrak u motor, dok ne nastane potpuno sagorijevane pri određenom minimumu sadržaja CO, koji sonda za CO 36 stalno održava. Količina sadržaja CO može se očitati na skali indikatora 42. The excitation current from the electronic voltage regulator 46 increases the output operating voltage in the drive three-phase synchronous generator 21, which in the asynchronous motor 15 increases the torque, i.e. it starts to compress the air more strongly in the motor, until it is completely burned at a certain minimum CO content, which the CO probe 36 constantly maintains. The amount of CO content can be read on the indicator scale 42.

U pogonsko upravljačkom sistemu funkcionira sonda za kontrolu pritiska komprimiranog zraka 47 u usisnoj cijevi motora, podešena na jedan pritisak, kojega stalno održava, tj. na onaj pritisak, koji daje najbolje sagorjevanje i time najveći stupanj iskorištenja kod normalnog opterećenja motora. In the drive control system, the compressed air pressure control probe 47 in the intake pipe of the engine functions, adjusted to one pressure, which it constantly maintains, i.e. to the pressure that gives the best combustion and thus the highest level of utilization under normal engine load.

Uslijed brzih promjena opterećenja motora a uz to i kratkotrajnih dozvoljenih preopterećenja i eventualnih grešaka u sistemima ubrizgavanja goriva, nastaju povećane količine ispušnih plinova a time i štetnih nesagorjelih sastojaka a poraste i potrošnja goriva. Pri tome pada i zakretni moment motora, koji bi baš tada trebao biti veći. Kod takvih brzih promjena sonda 36 za kontrolu CO pomiče radnu točku u elektronskom regulatoru napone 46, te podešava sondu za kontrolu pritiska komprimiranog zraka 47 na vrijednost veću za toliko, kolika je razlika u povećanju nesagorjelih tvari u plinovima. To ima za posljedicu povećanje količine komprimiranog zraka, potrebnog za potpunije sagorjevanje i to na taj način, da sonda za kontrolu pritiska 47 komprimiranog zraka poveća u elektronskom regulatoru napona uzbudni napon pogonskom sinhronom generatoru 21 na nešto veću vrijednost, pa uslijed toga nastaje veći zakretni moment asinhronog motora 13 u uređaju za prisilnu dobavu zraka. As a result of rapid changes in the engine load and, in addition, short-term permitted overloads and possible errors in the fuel injection systems, increased amounts of exhaust gases and thus harmful unburned ingredients are produced, and fuel consumption also increases. At the same time, the torque of the engine drops, which should be higher just then. With such rapid changes, the CO control probe 36 moves the operating point in the electronic voltage regulator 46, and adjusts the compressed air pressure control probe 47 to a value greater than the difference in the increase of unburned substances in the gases. This results in an increase in the amount of compressed air, required for more complete combustion, in such a way that the pressure control probe 47 of the compressed air increases the excitation voltage of the drive synchronous generator 21 in the electronic voltage regulator to a slightly higher value, resulting in a higher torque of asynchronous motor 13 in the device for forced air supply.

U ovome sistemu, sonda 36 za kontrolu CO smještena je zaštitnoj kutiji 45 na najhladnijem mjestu ispušne cijevi 43. Sonda za kontrolu pritiska komprimiranog zraka 47 u usisnim cijevima motora može se ugraditi na više mjesta, od uređaja za prisilnu dobavu zraka, pa do motora, već prema najboljoj mogućnosti ugradnje. In this system, the CO control probe 36 is placed in the protective box 45 at the coldest point of the exhaust pipe 43. The compressed air pressure control probe 47 in the intake pipes of the engine can be installed in several places, from the device for forced air supply to the engine, but according to the best possible installation.

Obzirom na to, da se radi o novoj konstrukciji sinhronog generatora kao izumu, njegova je konstrukcija niže detaljnije opisana: Given that this is a new construction of a synchronous generator as an invention, its construction is described in more detail below:

Dvanaestpolni trofazni sinhroni generator sastoji se iz: pogonskog sinkronog generatora 21 i rasvjetnog trofaznog sinhronog generatora 22 smještana u zajedničko kućište 27, s odvojenim statorskim paketima 23 i 25 i odvojenim rotorskim paketima 24-i 26. Oba rotora navučena su na osovinu 28. Ova osovina 28 uležištena je u dva trajno podmazana kuglična ležaja 29, smještena u prednji poklopac 30 i stražnji poklopac 31. A twelve-pole three-phase synchronous generator consists of: a driving synchronous generator 21 and a lighting three-phase synchronous generator 22 housed in a common housing 27, with separate stator packages 23 and 25 and separate rotor packages 24 and 26. Both rotors are threaded onto shaft 28. This shaft 28 is placed in two permanently lubricated ball bearings 29, located in the front cover 30 and the rear cover 31.

Na prednjem kraju osovine 28 nalazi se ventilator za hlađenje 32, klinasta remenica 35. U stražnjem poklopcu 31 smještena je ispravljačka grupa 33, koja ispravlja trofaznu struju, što ju proizvodi rasvjetni sinhroni generator 22 za potrebe vozila, u čijem sastavu funkcionira elektronski regulator napona 37. S unutarnje strane zajedničkog kućišta 27 smješten je stražnji poklopac 31 nosač 38, koji drži tri četkice. Ispod tog nosača, na vratilu 28 smještena su tri klizna prstena 40, međusobno izolirana. četkica 38 je zajednička, dok su ostale dvije 51 i 52 svaka za svoj rotor 24 odnosno 26 i služe za dovođenje reguliranog uzbudnog napona za pogonski sinhroni generator 21, odnosno za rasvjetni sinhroni generator 22. At the front end of the shaft 28, there is a cooling fan 32, a wedge pulley 35. In the rear cover 31, there is a rectifier group 33, which rectifies the three-phase current, which is produced by the lighting synchronous generator 22 for the needs of the vehicle, in which the electronic voltage regulator 37 functions. On the inside of the common housing 27, there is a rear cover 31, a support 38, which holds three brushes. Below this support, on the shaft 28, there are three sliding rings 40, mutually insulated. brush 38 is common, while the other two 51 and 52 are each for their own rotor 24 and 26, respectively, and are used to supply the regulated excitation voltage for the drive synchronous generator 21, respectively for the lighting synchronous generator 22.

Prednji ležajni poklopac 30 i stražnji 31 pričvršćeni su za zajedničko kućište 27 vijcima 34. The front bearing cover 30 and the rear 31 are attached to the common housing 27 with screws 34.

Ova konstrukcija pogonskog sinhronog generatora 21 i rasvjetnog sinhronog generatora 22 omogućuje siguran rad cjelokupnog sistema. Ako dođe do smetnje na jednom od generatora, drugi može da radi dalje. This construction of the drive synchronous generator 21 and the lighting synchronous generator 22 enables safe operation of the entire system. If there is a disturbance on one of the generators, the other can continue to work.

Navod o najboljem načinu za privrednu upotrebu prijavljenog pronalaska Statement on the best way for economic use of the reported invention

Najbolji način za privrednu upotrebu uređaja za prisilnu dobavu zraka u motor se unutrašnjim sagorijevanjem i prisilnu izbavu ispušnih mlinova je ugradnja tih uređaja na sve motore u svim oblastima primjene gdje god se primjenjuju motori sa unutrašnjem sagorijevanjem, kako proizvedene motore tako i na one motore koji bi se proizvodili u buduće. The best way for the economic use of devices for the forced supply of air to the internal combustion engine and the forced release of the exhaust mills is to install these devices on all engines in all areas of application wherever internal combustion engines are used, both produced engines and those engines that would were produced in the future.

"INERTOR" bi na taj način bio obostrano primjenjivan što bi znatno doprinijelo stupnju tehnološkog razvoja, zatim smanjenju potrošnje goriva i smanjenju zagađivanja čovjekove okoline In this way, "INERTOR" would be applied on both sides, which would significantly contribute to the level of technological development, then reduce fuel consumption and reduce pollution of the human environment.

Claims (7)

1. Uređaj za prisilnu dobavu komprimiranog zraka u motore s unutarnjem sagorijevanjem prema slici broj 1 označen jednim turborotororm koji je smješten u usisnoj komori 9 i koji se pokreće asinhronim motorom trofazne struje 15, koji je ugrađen u prolazno rashladnoj komori 1, a ista je povezana sa prirubnicom 16 te usisnom, komorom čine zajedničku tlačnu komoru u kojoj usisani i stlačeni zrak prima aksijalo strujanje i hladi asinhroni motor.1. Device for forced supply of compressed air to internal combustion engines according to figure number 1 marked with one turborotor that is located in the suction chamber 9 and which is driven by a three-phase asynchronous motor 15, which is installed in the transitory cooling chamber 1, and the same is connected with the flange 16 and the suction chamber, they form a common pressure chamber in which the sucked and compressed air receives the axial flow and cools the asynchronous motor. 2. Uređaj posebno prema zahtjevu 1 naznačen time, što je na osovinu asinhronog motora navučen paralelni turborotor 48 koji rotira u usisnim komorama 9 i 53, sa usmjerivačem zraka drugoj usisnoj komori 54 i prirubnicu 55 za spajanje uređaja, kroz koju prolaze usisni i potisni kanali.2. The device according to claim 1, characterized by the fact that a parallel turborotor 48 rotating in the suction chambers 9 and 53, with an air diverter to the second suction chamber 54 and a flange 55 for connecting the device, through which the suction and discharge channels pass, is attached to the shaft of the asynchronous motor . 3. Uređaj prema zahtjevu 1 i 2 naznačen time, što je ugrađen u filter zraka 56, na kome se nalazi usisni prsten sa nastavkom za spajanje 58, ispod usisnog prstena izvedeni su otvori za zrak, nadalje poklopac filtera sa prednjim nosačem i usisnim otvorima 61 te zadnji prsten za učvršćivanje i suhi zamjenjivi uložak filtera zraka.3. The device according to claim 1 and 2, characterized by the fact that it is built into the air filter 56, on which there is a suction ring with a connecting piece 58, under the suction ring there are air openings, then a filter cover with a front support and suction openings 61 and the rear retaining ring and dry replaceable air filter cartridge. 4. Pogonski i rasvjetni sinhroni generatori oba su naznačena time, što su smještena u zajedničkom kućištu 27, što imaju zajedničku osovinu rotora nosač četkica 38 izoliranu glavninu za klizne prstenove 40 ispravljačku grupu za potrebe rasvjete 38.4. Drive and lighting synchronous generators are both indicated by the fact that they are located in a common housing 27, that they have a common rotor shaft, brush holder 38, insulated main body for sliding rings 40, rectifier group for lighting purposes 38. 5. Upravljački sustav za uređaje za prisilnu dobavu zraka u motore s unutrašnjim sagorijevanjem i prisilnu izbavu ispušnih plinova naznačen time, što ima elektronski automatski regulator napona (mikroprocesor) 46, osjetljivom sondom na ugljični monoksid 36, sondu za kontrolu pritiska zraka u usisnim cijevima motora 47 i termostata za kontrolu temperature u motoru, zatim indikacionih instrumenata za indikaciju CO sadržaja u ispušnim plinovima 42 i indikaciju pritisaka zraka u usisnoj cjevi motora 50.5. Control system for devices for forced air supply to internal combustion engines and forced release of exhaust gases, characterized by the fact that it has an electronic automatic voltage regulator (microprocessor) 46, a sensitive probe for carbon monoxide 36, a probe for controlling the air pressure in the intake pipes of the engine 47 and a thermostat for temperature control in the engine, then indicating instruments for indicating the CO content in the exhaust gases 42 and indicating the air pressure in the engine intake pipe 50. 6. Uređaj prema zahtjevu 1 označen sa radijalno axijalnim uređajem sa jednim turborotorom sastavljenim u jednu funkcionalnu cjelinu sa turbinom za prisilnu izbavu ispuštenih plinova, obe turbine pogoni isti asinhroni motor 15, na strani usisne ispušne turbine rotira rotor 65 u kućištu 66, kućište turbine spojeno je vijcima sa poklopcem i nosačem ležaja 67 koji je snabdjeven rashladnim otvorima i sa kućištem 73 uređaja za prisilnu dobavu zraka u kome se nalazi asinhroni motor čini jednu cjelinu. Na obodu kućišta 73 smješten je prsten sa cjevnim nastavkom 75 ispod kojega se nalaze otvori 76 za prolaz sabijenom zraka u usisnu cijev motora.6. Device according to claim 1 marked with a radially axial device with one turborotor assembled into one functional unit with a turbine for the forced release of exhaust gases, both turbines are driven by the same asynchronous motor 15, on the side of the intake and exhaust turbine the rotor 65 rotates in the housing 66, the turbine housing is connected is with screws with the cover and the bearing support 67, which is equipped with cooling openings and with the housing 73 of the device for forced air supply, in which the asynchronous motor is located, forms a single unit. A ring with a pipe extension 75 is placed on the circumference of the housing 73, under which there are openings 76 for the passage of compressed air into the intake pipe of the engine. 7. Uređaj prema zahtjevu 6 označen time, što je turbo kompresor 77 radijalan isto kao i turbina za usisavanje ispušnih plinova iz motora, zatim jednom cjevi 83 koja dovodi rashladni zrak iz kućišta uređaja 80 u usisnu komoru 84 uređaja za pri silnu dobavu zraka odakle se tlači turbomotorom i odvodi u usisnu cjev motora sa unutrašnjim sagorijevanjem.7. The device according to claim 6 characterized by the fact that the turbo compressor 77 is radial, the same as the turbine for sucking exhaust gases from the engine, then a pipe 83 that brings cooling air from the housing of the device 80 into the suction chamber 84 of the device for forced air supply from where it is pressurized by the turbo engine and taken to the intake pipe of the internal combustion engine.
HR960242A 1996-05-28 1996-05-28 Automatic electronic apparatus for forced air supply to internal combustion engines and forced delivery of exhaust gases HRP960242A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HR960242A HRP960242A2 (en) 1996-05-28 1996-05-28 Automatic electronic apparatus for forced air supply to internal combustion engines and forced delivery of exhaust gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HR960242A HRP960242A2 (en) 1996-05-28 1996-05-28 Automatic electronic apparatus for forced air supply to internal combustion engines and forced delivery of exhaust gases

Publications (1)

Publication Number Publication Date
HRP960242A2 true HRP960242A2 (en) 1997-12-31

Family

ID=10946408

Family Applications (1)

Application Number Title Priority Date Filing Date
HR960242A HRP960242A2 (en) 1996-05-28 1996-05-28 Automatic electronic apparatus for forced air supply to internal combustion engines and forced delivery of exhaust gases

Country Status (1)

Country Link
HR (1) HRP960242A2 (en)

Similar Documents

Publication Publication Date Title
US5605045A (en) Turbocharging system with integral assisting electric motor and cooling system therefor
EP0956435B1 (en) Bearing systems for motor-assisted turbochargers for internal conbusion engines
KR101510917B1 (en) Supercharger arrangement for a piston engine
US6032466A (en) Motor-assisted turbochargers for internal combustion engines
US5638796A (en) Electric supercharger
KR101536795B1 (en) Turbocharger arrangement for a piston engine
US5870894A (en) Motor-assisted supercharging devices for internal combustion engines
US5906098A (en) Motor-generator assisted turbocharging systems for use with internal combustion engines and control method therefor
US6085527A (en) Magnet assemblies for motor-assisted turbochargers
US8096127B2 (en) Exhaust turbo-supercharger
US20070065300A1 (en) Multi-stage compression system including variable speed motors
WO1997010418A1 (en) Electropneumatic engine supercharger system
CN1281535A (en) Motor-driven centrifugal air compressor with internal cooling airflow
US20170167511A1 (en) Supercharger and motor cooling method
US9206733B2 (en) Turbocharger assembly with direct-mounted bearing housing
US7044718B1 (en) Radial-radial single rotor turbine
US5182904A (en) Gas turbine engine power unit
HRP960242A2 (en) Automatic electronic apparatus for forced air supply to internal combustion engines and forced delivery of exhaust gases
JPS5970830A (en) Turbosupercharger
JPH0882220A (en) Turbo charger
SU1462005A1 (en) Power plant
GB2405453A (en) A sliding bearing for supporting a shaft
CZ5382U1 (en) Turbocharger shaft bearing housing

Legal Events

Date Code Title Description
A1OB Publication of a patent application
ODBC Application rejected