HRP950412A2 - A polynucleotide herpes virus vaccine - Google Patents

A polynucleotide herpes virus vaccine Download PDF

Info

Publication number
HRP950412A2
HRP950412A2 HR08/279,459A HRP950412A HRP950412A2 HR P950412 A2 HRP950412 A2 HR P950412A2 HR P950412 A HRP950412 A HR P950412A HR P950412 A2 HRP950412 A2 HR P950412A2
Authority
HR
Croatia
Prior art keywords
hsv
polynucleotide
dna
gene
genes
Prior art date
Application number
HR08/279,459A
Other languages
Croatian (hr)
Inventor
Marcy E Amstrong
Robert D Keys
John A Lewis
Margaret A Liu
William L Mcclements
Original Assignee
Merck & Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck & Co Inc filed Critical Merck & Co Inc
Publication of HRP950412A2 publication Critical patent/HRP950412A2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16622New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

Područje tehnike The field of technology

Glavna prepreka u razvoju cjepiva protiv virusa, osobito onih s višestrukim serotipovima ili velikom sposobnošću mutacije, protiv kojih je poželjno izazivanje neutralizirajućih i zaštitnih imunih reakcija, je različitost vanjskih virusnih proteina kod različitih virusnih izolata ili sojeva. Budući su citotoksični T-limfociti ( CTLi ) sposobni prepoznavati epitope izvedene iz konzerviranih unutarnjih virusnih proteina i kod ljudi i kod miševa /J.W. Yevdell i sur.,Proc Natl Acad Sci (USA) 82, 1785 (1985); A.R.M. Towsend i sur., Cell 44, 959 (1986); A.J.McMichael i sur., J. Gen. Virol., 67, 719 (1986); J.Bastin i sur., J. Exp.Med. 165, 1508, (1987); A.R.M. Towsend i H. Bodmer, Annu. Rev. Immun. 7, 601 (1989)/, a smatra se da su značajni za imuni odgovor protiv virusa / Y.-L. Lin i B.A. Askonas, J. Exp. Med. 154, 225 (1981) ; I. Gardner i sur., Eur. J. Immunol. 4, 68 (1974); K.L. Yap i G.J. Ada, Nature 273, 238 (1978); A.J. McMichael i suradnici, New. Engl. J. Med. 309, 13 (1983); P.M. Taylor i B.A. Askonas, Immunol. 58, 417 (1986)/, učinjeni su napori u smislu razvoja CTL cjepivo koje omogućavaju heterolognu zaštitu od različitih sojeva virusa. The main obstacle in the development of vaccines against viruses, especially those with multiple serotypes or high mutability, against which it is desirable to induce neutralizing and protective immune reactions, is the diversity of external viral proteins in different virus isolates or strains. Because cytotoxic T-lymphocytes ( CTLi ) are able to recognize epitopes derived from conserved internal viral proteins in both humans and mice /J.W. Yevdell et al., Proc Natl Acad Sci (USA) 82, 1785 (1985); A.R.M. Townsend et al., Cell 44, 959 (1986); A.J. McMichael et al., J. Gen. Virol., 67, 719 (1986); J. Bastin et al., J. Exp. Med. 165, 1508, (1987); A.R.M. Townsend and H. Bodmer, Annu. Rev. Immun. 7, 601 (1989)/, and are considered important for the immune response against viruses / Y.-L. Lin and B.A. Askonas, J. Exp. Honey. 154, 225 (1981); I. Gardner et al., Eur. J. Immunol. 4, 68 (1974); K.L. Yap and G.J. Ada, Nature 273, 238 (1978); A.J. McMichael et al., New. English J. Med. 309, 13 (1983); PM Taylor and B.A. Askonas, Immunol. 58, 417 (1986)/, efforts have been made to develop a CTL vaccine that enables heterologous protection against different virus strains.

Poznato je da CTLi ubijaju virusima zaražene stanice ako njihovi T receptori prepoznaju virusne peptide vezane uz MHC molekule klase I ili klase II. Ovi peptidi mogu nastati od endogeno sintetiziranih virusnih proteina neovisno o smještaju ili funkciji tog proteina u virusu. Prepoznavanjem epitopa na konzerviranim virusnim proteinima CTLi mogu osigurati heterolognu zaštitu. CTLi are known to kill virus-infected cells if their T receptors recognize viral peptides bound to class I or class II MHC molecules. These peptides can arise from endogenously synthesized viral proteins regardless of the location or function of that protein in the virus. By recognizing epitopes on conserved viral proteins, CTLi can provide heterologous protection.

Mnogi uzročnici zaraznih bolesti mogu sami po sebi, potaknuti proizvodnju zaštitnih protutijela koja se mogu vezati i ubiti, onesposobiti, ili prouzročiti da budu uništeni ili onesposobljeni uzročnik bolesti ili njegovi nusproizvodi. Oporavak od ovih bolesti obično rezultira dugotrajnom imunošću uvjetovanom proizvodnjom zaštitnih protutijela stvorenih protiv visoko antigeničnih komponenti zaraznog agensa. Many infectious disease agents can, by themselves, induce the production of protective antibodies that can bind to and kill, incapacitate, or cause to be destroyed or incapacitated the disease agent or its by-products. Recovery from these diseases usually results in long-term immunity conditioned by the production of protective antibodies created against highly antigenic components of the infectious agent.

Zaštitna protutijela su dio prirodnog obrambenog mehanizma ljudi i mnogih drugih životinja i nalaze se u krvi, kao i u drugim tjelesnim tekućinama i tkivima Prvenstvena je funkcija većine cjepiva da potaknu stvaranje zaštitnih protutijela protiv zaraznih agenasa i;ili njihovih nusprodukata, a da ne prouzroče bolest. Protective antibodies are part of the natural defense mechanism of humans and many other animals and are found in the blood, as well as in other body fluids and tissues. The primary function of most vaccines is to stimulate the formation of protective antibodies against infectious agents and/or their by-products, without causing disease.

Većina pokušaja izazivanja CTL reakcija se koristila replicirajućim vektorima ne bi li proizveli proteinski antigen u stanici / J.R. Bennink i sur., ibid., 311, 578,(1984); J.R. Bennink i Yewdell, Curr Top Microbiol Immunol 163, 153 (1990); C.K. Stover i sur., Nature 351, 456 (1991); A.Aldovini i R.A. Young, Nature 351, 479 (1991); R. Schafer i sur., J Immunol 149, 53 (1992); C.S. Hahn i sur.,Proc Natl Acad Sci (USA) 89, 2679 (1992) / ili su se usredotočili na uvođenje peptida u citosol / F.R. Carbone i M.J. Bevan, J Exp Med 1169, 603 (1989); K. Deres i sur., Nature 342, 561 (1989); H. Takahashi i sur., ibid. 344, 873 (1990); D.S Collins i sur., J Immunol 148, 2357 (1992) /. Oba pristupa imaju ograničenja koja mogu smanjiti njihovu primjenjivost kao cjepiva. Retrovirusni vektori imaju ograničenja prema veličini i strukturi fuzijskih polipeptida koji se mogu eksprimirati kao fuzijski proteini, a da bi ostala sposobnost virusa da se replicira / A.D. Miller , Top. Microbiol. Immunol. 158, 1 (1992)/ a učinkovitost vektora poput cijepljenja za sljednu imunizaciju može se kompromitirati imunim odgovorom protiv cijepljenja / E.L. Cooney i sur.. Lancet 337, 567 (1991) /. Također, virusni vektori i modificirani patogeni nose neizbježni rizik koji može spriječiti njihovu primjenu kod ljudi /R.R. Redfield i sur.., New Engl J Med 316, 673 (1987); L. Mascola i sur., Archiv Intern Med 149, 1569 (1989)/ . Osim toga, selekcija epitopa peptida koji će se prezentirati ovisi o strukturi pojedinog MHC antigena i stoga peptidna cjepiva mogu imati ograničenu učinkovitost poradi raznolikosti MHC haplotipova u uzgojenim populacijama. Most attempts to induce CTL reactions have used replicating vectors in order not to produce a protein antigen in the cell / J.R. Bennink et al., ibid., 311, 578, (1984); J.R. Bennink and Yewdell, Curr Top Microbiol Immunol 163, 153 (1990); C.K. Stover et al., Nature 351, 456 (1991); A. Aldovini and R.A. Young, Nature 351, 479 (1991); R. Schafer et al., J Immunol 149, 53 (1992); C.S. Hahn et al., Proc Natl Acad Sci (USA) 89, 2679 (1992) / or focused on the introduction of peptides into the cytosol / F.R. Carbone and M.J. Bevan, J Exp Med 1169, 603 (1989); K. Deres et al., Nature 342, 561 (1989); H. Takahashi et al., ibid. 344, 873 (1990); D.S. Collins et al., J Immunol 148, 2357 (1992) /. Both approaches have limitations that may reduce their applicability as vaccines. Retroviral vectors have limitations according to the size and structure of fusion polypeptides that can be expressed as fusion proteins, while maintaining the ability of the virus to replicate / A.D. Miller, Top. Microbiol. Immunol. 158, 1 (1992)/ and the effectiveness of vectors such as vaccination for subsequent immunization can be compromised by an immune response against vaccination / E.L. Cooney et al.. Lancet 337, 567 (1991) /. Also, viral vectors and modified pathogens carry an inevitable risk that can prevent their use in humans /R.R. Redfield et al., New Engl J Med 316, 673 (1987); L. Mascola et al., Archiv Intern Med 149, 1569 (1989)/ . In addition, the selection of peptide epitopes to be presented depends on the structure of the individual MHC antigen and therefore peptide vaccines may have limited efficacy due to the diversity of MHC haplotypes in cultured populations.

Benvenisty, N., I Reshef, L. / PNAS 83, 9551-9555,(1986)/ su pokazali da CaCl2 istaložena DNK unešena u miševe intraperitonealno(i.p.), intravenski (i.v.), ili intramuskularno (i.m.), može biti eksprimirana. Intramuskularna injekcija (i.m.) DNA ekspresijskih vektora kod miševa, pokazalo se dovodi do unošenja DNK od strane mišićnih stanica i ekspresije proteina kodiranog tom DNK /J.A. Wolff i sur., Science 247,1465 (1990); G. Ascadi i sur., Nature 352, 815 (1991)/. Plazmidi su se zadržali episomalno i nisu se replicirali. Naknadno trajna je ekspresija bila primjećena poslije i.m. injekcije u mišić štakora riba i primata i srčani mišić štakora. / H. Lin i sur. , Circulation 82,2217, (1990) R.N. Kitsis i sur., Proc Natl Acad Sci (USA) 88, 4138 (1991); E. Hansen i sur., FEBS Lett. 290, 73 (1990); S. Jiao i. sur.,Hum Gen Therapy 3, 21,(1992); J.A. Wolff i sur., Human Mol Genet 1, 363 (1992)/. Benvenisty, N., and Reshef, L. / PNAS 83, 9551-9555, (1986)/ showed that CaCl2-precipitated DNA introduced into mice intraperitoneally (i.p.), intravenously (i.v.), or intramuscularly (i.m.) could be expressed . Intramuscular injection (i.m.) of DNA expression vectors in mice has been shown to lead to uptake of DNA by muscle cells and expression of the protein encoded by that DNA /J.A. Wolff et al., Science 247,1465 (1990); G. Ascadi et al., Nature 352, 815 (1991)/. Plasmids were retained episomally and did not replicate. Subsequently, persistent expression was observed after i.m. injections into fish and primate rat muscle and rat heart muscle. / H. Lin et al. , Circulation 82,2217, (1990) R.N. Kitsis et al., Proc Natl Acad Sci (USA) 88, 4138 (1991); E. Hansen et al., FEBS Lett. 290, 73 (1990); S. Jiao et al., Hum Gene Therapy 3, 21, (1992); I. Wolff et al., Human Mol Genet 1, 363 (1992)/.

Tehnika korištenja nukleinske kiseline kao terapijskog sredstva opisana je u WO90/11092 (4.rujan 1990), Gdje su goli polinukleotidi korišteni za cijepljenja kralježnjaka. The technique of using nucleic acid as a therapeutic agent is described in WO90/11092 (September 4, 1990), where naked polynucleotides were used for vaccination of vertebrates.

Nedavno je opisana koordinirana uloga B7 i glavnog kompleksa tkivne podudarnosti u prezentiranju epitopa antigena na površini stanica za prezentiranje antigena pri aktivaciji CTLa za elimninaciju tumora / Edington, Biotechnology 11, 1117-1119, 1993/. Kada MHC molekula na stanici za prezentiranje antigena(APC) prezentira epitop T-staničnom receptoru (TCR), B7 eksprimiran na površini iste APC,djeluje kao drugi signal vežući se na CTLA-4 ili CD-28. Rezultat je brza dioba CD-4+ pomoćničkih T-stanica, koje signaliziraju CD8+ T-stanicama da se razmnožavaju i uništavaju APC. Recently, the coordinated role of B7 and the major histocompatibility complex in the presentation of antigen epitopes on the surface of antigen-presenting cells during CTLa activation for tumor elimination was described / Edington, Biotechnology 11, 1117-1119, 1993/. When the MHC molecule on the antigen-presenting cell (APC) presents an epitope to the T-cell receptor (TCR), B7 expressed on the surface of the same APC acts as a second signal by binding to CTLA-4 or CD-28. The result is rapid division of CD-4+ helper T-cells, which signal CD8+ T-cells to proliferate and destroy APCs.

Za uspješnost metode nije neophodno da imunizacija bude intramuskularna. For the method to be successful, it is not necessary for the immunization to be intramuscular.

Tako Tang i sur./ Nature 356,152-15419 (1992) opisuje da unošenje zlatnih mikroprojektila presvučenih s bovinim hormonom rasta u kožu miša dovodi kod miša do stvaranja anti-BGH protutijela . Furth i sur.,/Analytical Biochemistry, 205, 365-8, (1992)/ prikazuju da se mlazni injektor može koristiti za unošenje kože, mišića, masti, i tkiva sisavaca živih životinja.Nedavno su opisane razne metode za unos nukleinskih kiselina / Friedman, T., Science, 244, 1275-1281 (1989)/. Vidi također i Robinson i sur. / Apstrakti članaka prikazanih na sastanku održanom 1992 "Modern approaches to new vaccines, including prevention of AIDS, Cold spring harbor, str.92/, gdje se pookazalo da i.m.,i.p.,ili i.v. primjena DNK virusa ptičje gripe pruža zaštitu protiv izazova smrtonosne bolesti. Intravenska injekcija DNK: kationskog liposomskog kompleksa kod miša kako je pokazao Zhu i sur.,/ Science 261,209-211(srpnja 1993); vidi i WO93/24640, 9.prosinac 1993./ dovodi do sistemske ekspresije kloniranog transgena. Nedavno je Ulmer i sur./ Science 259, 1745-1749,1993 / izvjestio o heterolognoj zaštiti od infekcije virusom gripe nakon injekcije DNK koja kodira proteine virusa gripe. Thus, Tang et al. / Nature 356,152-15419 (1992) describes that the introduction of gold microprojectiles coated with bovine growth hormone into mouse skin leads to the formation of anti-BGH antibodies in mice. Furth et al.,/Analytical Biochemistry, 205, 365-8, (1992)/ show that a jet injector can be used to introduce skin, muscle, fat, and mammalian tissue of living animals. Recently, various methods for introducing nucleic acids have been described / Friedman, T., Science, 244, 1275-1281 (1989)/. See also Robinson et al. / Abstracts of articles presented at the meeting held in 1992 "Modern approaches to new vaccines, including prevention of AIDS, Cold spring harbor, p.92/, where it was shown that i.m., i.p., or i.v. administration of bird flu virus DNA provides protection against the challenge of a deadly disease . Intravenous injection of a DNA: cationic liposomal complex in the mouse as demonstrated by Zhu et al.,/ Science 261,209-211(July 1993); see also WO93/24640, December 9, 1993/ leads to systemic expression of the cloned transgene. Recently, Ulmer et al./ Science 259, 1745-1749, 1993 / reported heterologous protection against influenza virus infection after injection of DNA encoding influenza virus proteins.

Wang i sur./ P.N.A.S.USA 90, 4156-4160 (svibanj 1993)/ izvjestili su o poticanju imune reakcije protiv virusa HIV kod miševa, intramuskularnim unošenjem kloniranog genomskog (nepocjepanog) gena HIVa. Ipak, postignuta razina imunog odgovora bila je vrlo niska a sustav je koristio dijelove virusa tumora dojke miša(MMTV), promotor s dugim ponavljajućim terminalom (LTR) i djelove promotora i terminatora virusa simian 40 (SV40). Poznato je da SV40 transformira stanice, moguće integracijom u DNA domaćina. Wang et al./ P.N.A.S.USA 90, 4156-4160 (May 1993)/ reported the induction of an immune response against the HIV virus in mice by intramuscular administration of a cloned genomic (unsplit) HIVa gene. However, the level of immune response achieved was very low and the system used parts of the mouse mammary tumor virus (MMTV), long terminal repeat (LTR) promoter and parts of the simian virus 40 (SV40) promoter and terminator. SV40 is known to transform cells, possibly by integrating into host DNA.

Time je sustav opisan od Wanga i sur. potpuno neprimjenjiv za primjenu kod ljudi, što je jedan od ciljeva ovoga izuma. Thus, the system described by Wang et al. completely inapplicable for use in humans, which is one of the goals of this invention.

WO 93/17706 opisuje postupak cijepljenja životinje protiv virusa gdje su djelići nosača obloženi genskim konstruktom a dijelići se akceleracijom unose u stanice životinje. WO 93/17706 describes a procedure for vaccinating an animal against a virus, where parts of the carrier are coated with a gene construct and, dividing by acceleration, are introduced into the cells of the animal.

Nedavni napori učinjeni ne bi li se razvilo podjedinično cjepivo za herpes simpleks virus (HSV) usredotočili su se na novu ekspresiju i prezentaciju antigena virusa, osobito virusnih glikoproteina. / za pregled vidi Burke, R.L., 1993, Sem.In Virol. 4., str. 187-197/. Rekombinantni HSV glikoproteini eksprimirani od strane raznih sustava uključno kvasac(Kino,Z.C.i sur.,1989, Vaccine, 7, str.155-160), stanice kukaca(Ghiasi, H. i sur.1991, Arch Virol, 121, s.163-178) i stanice sisavaca(Burke,R.L.,1991,Rev Infect Dis, 13, S906-S911;Lasky,L.A.,1990, J.Med .Virol izazivaju zaštitnu imunost na životinjskom modelu Klinička ispitivanja rekombinantnog HSV-2 glikoproteina D(gD) proizvedenog na stanicama jajnika kineskog hrčka su pokazala da cjepivo izaziva odgovor protutijela u seronegativnih i potiče od prije postojeći odgovor kako u HSV-I tako i u HSV-2 seropozitivnih pojedinaca. ( Straus, S.E. i sur., 1993, J Infect Dis 167, str. 1045-1052 ). Recent efforts to develop a subunit vaccine for herpes simplex virus (HSV) have focused on novel expression and presentation of viral antigens, particularly viral glycoproteins. / for review see Burke, R.L., 1993, Sem. In Virol. 4., p. 187-197/. Recombinant HSV glycoproteins expressed by various systems including yeast (Kino, Z.C. et al., 1989, Vaccine, 7, pp. 155-160), insect cells (Ghiasi, H. et al. 1991, Arch Virol, 121, p. 163 -178) and mammalian cells (Burke, R.L., 1991, Rev Infect Dis, 13, S906-S911; Lasky, L.A., 1990, J. Med. Virol induce protective immunity in an animal model Clinical trials of recombinant HSV-2 glycoprotein D (gD ) produced in Chinese hamster ovary cells showed that the vaccine elicited an antibody response in seronegative and stimulated a preexisting response in both HSV-I and HSV-2 seropositive individuals. (Straus, S.E. et al., 1993, J Infect Dis 167, pp. 1045-1052).

Alternativni pristup podjediničnom cijepljenju je bila uporaba živih virusnih vektora za prijenos HSV antigena. Rekombinante cjepiva-HSV koje eksprimiraju gD (Aurelijan,L. i sur.,1991.,Rev Infect Dis, 13, S924-S930; Rooney,J.F. i sur. 1991, Rev Infect Dis, 13, S898-S903; Wachsman M.i sur.,1992, Vaccine, 10, str. 447-454) gB( Rooney, J.F. i sur.,supra) gL i gH (Browne,H. i sur.,1993, J Gen Virol, 74, str. 2813-2817) su uspješno zaštitile životinje od infekcije HSV. Cijepljenje infekcijom s rekombinantnim adenovirusom koji eksprimira HSVgB izaziva zaštitnu imunu reakciju u miša(Ghiasi,H. supra; McDermott, M.R.1989, Virology, 169, pstr. 244-247) Dobro je dokumentirana zaštitna uloga anti IgD protiv infekcije HSV bilo da je potaknuta imunizacijom s prirodnim proteinom (Long,D. i sur. 1984, Infect Immun.,43,str.761-764) rekombinantno eksprimiranim proteinom (Burke,L.R., supra; Stanberry,L.R. i sur., 1987, J Infect Dis, 155, str 914-920; Straus,S.E. supra)peptida dobivenih od gD (Eisenberg,R.J., i sur.,1985, J Virol, 56, 1014-1027) ili prenesena pasivno (Dix,R.D., i sur. 1981, Infect Immun, 34, str.192-199; Ritchie,M.H. i sur., 1993, Investigative Ophtalmology and Visual Sciences, 34, str. 2460-2468). An alternative approach to subunit vaccination has been the use of live viral vectors to deliver HSV antigen. HSV vaccine recombinants expressing gD (Aurelijan, L. et al., 1991, Rev Infect Dis, 13, S924-S930; Rooney, J.F. et al. 1991, Rev Infect Dis, 13, S898-S903; Wachsman M. et al. .,1992, Vaccine, 10, pp. 447-454) gB( Rooney, J.F. et al., supra) gL and gH (Browne, H. et al., 1993, J Gen Virol, 74, pp. 2813-2817 ) successfully protected animals from HSV infection. Vaccination by infection with a recombinant adenovirus expressing HSVgB elicits a protective immune response in mice (Ghiasi, H. supra; McDermott, M.R. 1989, Virology, 169, pp. 244-247) The protective role of anti IgD against HSV infection is well documented whether induced by immunization with native protein (Long, D. et al. 1984, Infect Immun., 43, p.761-764) recombinantly expressed protein (Burke, L.R., supra; Stanberry, L.R. et al., 1987, J Infect Dis, 155 , pp. 914-920; Straus, S.E. supra) peptides derived from gD (Eisenberg, R.J., et al., 1985, J Virol, 56, 1014-1027) or transferred passively (Dix, R.D., et al. 1981, Infect Immun , 34, pp. 192-199; Ritchie, M.H. et al., 1993, Investigative Ophthalmology and Visual Sciences, 34, pp. 2460-2468).

Studije Wolfa i sur.(supra) isprva su pokazale da intramuskularna injekcija plazmida koji kodira prijenosni gen rezultira ekspresijom tog gena u miocitima, u blizini mjesta injekcije. Nedavni izvještaji su prikazali uspješnu imunizaciju miša protiv influence s injekcijom plazmida koji kodira influenca-A hemaglutinin ( Montgomery,D.L., i sur. ž993, Cell Biol., 12, s.777-783) ili nukleoprotein (Montgomery,D.L.,i sur., supra; UlmerJ.B. i sur., 1993, Science, 259, s. 1745-1749). Izvješteno je o prvoj uporabi DNA imunizacije za herpes virus ( Cox i sur., 1993, J Virol, 67,s. 5664-5667). Injekcija plazmida s kodom za glikoprotein gIV bovinog herpes virusa I (BHV-I) dovela je do stvaranja anti-g-IV protutijela u miša i teladi. Nakon intranazalne primjene BHV-I, imunizirana telad je pokazivala manje simptoma i izlučivala znatno manje virusa nego kontrole. Sposobnost HSV glikoproteina D da izazove zaštitni imunološki odgovor u miša (Long,D. i sur, supra) i kod zamoraca (Stanbery,L.R. i sur., supra; Stanbery,L.R. ii sur.,1989, Antiviral Res., 11, s. 203-214) je dobro dokumentirana. Studies by Wolf et al. (supra) initially showed that intramuscular injection of a plasmid encoding a transfer gene results in the expression of that gene in myocytes, near the injection site. Recent reports have shown successful immunization of mice against influenza with the injection of a plasmid encoding influenza-A hemagglutinin (Montgomery, D.L., et al. 1993, Cell Biol., 12, p.777-783) or nucleoprotein (Montgomery, D.L., et al. , supra; UlmerJB et al., 1993, Science, 259, pp. 1745-1749). The first use of DNA immunization for herpes virus was reported (Cox et al., 1993, J Virol, 67, pp. 5664-5667). Injection of a plasmid coding for the gIV glycoprotein of bovine herpesvirus I (BHV-I) led to the generation of anti-g-IV antibodies in mice and calves. After intranasal administration of BHV-I, immunized calves showed fewer symptoms and shed significantly less virus than controls. The ability of HSV glycoprotein D to elicit a protective immune response in the mouse (Long, D. et al., supra) and in the guinea pig (Stanbery, L.R. et al., supra; Stanbery, L.R. ii al., 1989, Antiviral Res., 11, s 203-214) is well documented.

Izlaganje biti izuma Presentation of the essence of the invention

Da bi se ispitala učinkovitost DNA cijepiva u prevenciji HSV bolesti, u eukariotski ekspresijski vektor su klonirane DNK sekvence koje kodiraju proteine HSV-2. Ova konstrukcija DNK izaziva imuni odgovor ako se ubrizga u životinje. Imunizirane su životinje zaražene s HSV da bi se procijenilo da li izravna DNK imunizacija s gD genom (ili drugim genom HSV-2) može ili ne može osigurati životinjama zaštitu od bolesti. Zato su opisane nukleinske kiseline uključno s konstruktima DNK i RNK prijepisi, sposobni da nakon izravnog unošenja u životinjska tkiva injekcijom ili na neki drugi način induciraju in vivo ekspresiju proteina herpes simplex virusa (HSV). Injekcija tih nukleinskih kiselina može potaknuti imuni odgovor koji rezultira stvaranjem citotoksičnih T limfocita(CTLa) specifičnih za HSV antigene, kao i stvaranje HSV-specifičnih protutijela, koji štite od naknadne infekcije HSVom. Ove nukleinske kiseline su korisne kao cjepivo za izazivanje imuniteta na HSV, koji može sprijrečiti infekciju i/ili dovesti do poboljšanja HSV-vezanih bolesti. To test the effectiveness of DNA vaccines in preventing HSV disease, DNA sequences encoding HSV-2 proteins were cloned into a eukaryotic expression vector. This DNA construct elicits an immune response when injected into animals. HSV-infected animals were immunized to assess whether or not direct DNA immunization with the gD gene (or another HSV-2 gene) could provide the animals with protection against the disease. Therefore, described nucleic acids, including DNA constructs and RNA transcripts, are capable of inducing in vivo expression of herpes simplex virus (HSV) proteins after direct introduction into animal tissues by injection or otherwise. The injection of these nucleic acids can stimulate an immune response that results in the formation of cytotoxic T lymphocytes (CTLa) specific for HSV antigens, as well as the formation of HSV-specific antibodies, which protect against subsequent HSV infection. These nucleic acids are useful as a vaccine to induce immunity to HSV, which can prevent infection and/or lead to amelioration of HSV-related diseases.

Kratki opis slika Short description of the pictures

Sl. 1 Liste A, B, C Sl. 1 Lists A, B, C

A. Prikazana je Western blot analiza ekspresije HSVgD u VIJ:gD -transficiranim stanicama; A. Western blot analysis of HSVgD expression in VIJ:gD-transfected cells is shown;

1. lažno zaražene Vero stanice;: 1. mock-infected Vero cells;:

2. HSV-2 186 zaražene Vero stanice (moi = 1); 2. HSV-2 186 infected Vero cells (moi = 1);

3. HSV-2 Curtis zaražene Vero stanice (moi = 1); 3. HSV-2 Curtis infected Vero cells (moi = 1);

4. RD stanice transficirane s VIJ:gD 4. RD cells transfected with VIJ:gD

5. Lažno transficirane RD stanice 5. Mock-transfected RD cells

B. Prikazana je Western blot analiza HSV gB ekspresije u VIJNS: gB-transficiranim stanicama B. Western blot analysis of HSV gB expression in VIJNS: gB-transfected cells is shown

C. Prikazana je Western blot analiza ekspresije HSV ICP27 u VIJ:ICP27- transficiranim stanicama. C. Western blot analysis of HSV ICP27 expression in VIJ:ICP27-transfected cells is shown.

Sl.2 Liste A, B, C Fig. 2 Lists A, B, C

A. Western blot analizom korištenjem seruma protutijela životinja imuniziranih s HSV PNV (B-6,25 µg doze V1J:gD, C-50 µg doze V1J:gD) i lažno imuniziranih životinja(A) je prikazana na lizatima stanica BHK zaraženim s: A. Western blot analysis using serum antibodies from animals immunized with HSV PNV (B-6.25 µg dose of V1J:gD, C-50 µg dose of V1J:gD) and mock-immunized animals (A) is shown on lysates of BHK cells infected with:

1. HSV-1 KOS; 1. HSV-1 KOS;

2. HSV-2 186; 2. HSV-2 186;

3. HSV-2 Curtis; 3. HSV-2 Curtis;

4. Lažno inficiranih 4. Falsely infected

B. Prikazana je Western blot analiza korištenjem seruma životinja imuniziranih s HSV PNV gB. B. Western blot analysis using sera from animals immunized with HSV PNV gB is shown.

Sl. 3 ELISA dobivena grupa GMT podataka je prikazana za životinje imunizirane s HSV-PNV koje su primile jednu dozu cjepiva; serumi su uzeti 4,7 i 10 tjedana nakon imunizacije. Sl. 3 ELISA-derived GMT data set is shown for animals immunized with HSV-PNV that received a single dose of vaccine; sera were taken 4, 7 and 10 weeks after immunization.

Sl.4 Preživljavanje životinja zaraženih s HSV-2 nakon dvije injekcije V1J:gD od 200 µg ; Fig.4 Survival of animals infected with HSV-2 after two injections of V1J:gD of 200 µg;

100 µg, 50 µg, 25µg ,12,5µg, 6,25µg, 3,13µg, 1,56µg, 0,78µg,ili otopine soli. Budući da su sve životinje u grupama 200µg, 100µg, 50ug, 25µg, 12,5µg, 6,25µg i 3,13µg preživjele, one su sve predstavljene istim simbolom. 100 µg, 50 µg, 25 µg, 12.5 µg, 6.25 µg, 3.13 µg, 1.56 µg, 0.78 µg, or salt solutions. Since all animals in the 200µg, 100µg, 50µg, 25µg, 12.5µg, 6.25µg and 3.13µg groups survived, they are all represented by the same symbol.

Sl.5. Preživljenje životinja zaraženih s HSV-2 nakon jedne injekcije V1J:gD od 50µg; 16,7µg ; 5,0µg; 1,67µg; 0,5µg; 0,167µg; 0,05µg; 0,017µg; 0,005µg; ili samo fiziološke otopine. Fig. 5. Survival of HSV-2-infected animals after a single injection of 50 µg V1J:gD; 16.7 µg; 5.0 µg; 1.67 µg; 0.5 µg; 0.167 µg; 0.05 µg; 0.017 µg; 0.005 µg; or only physiological solutions.

Sl.6. Prikazano je preživljenje životinja imuniziranih s V1JNS:gB nakon izlaganja HSV-u. Fig. 6. Survival of animals immunized with V1JNS:gB after HSV challenge is shown.

Sl.7. Prikazano je preživljavanje životinja imuniziranih s V1J:gC nakon izlaganja HSV-u. Fig. 7. Survival of animals immunized with V1J:gC after HSV challenge is shown.

Sl.8. Rezultati preživljavanja , srednji dan smrti, paralize i vaginalni titar virusa su prikazani kod zamorčića zaraženih s HSV-2. Fig. 8. Results of survival, median day of death, paralysis, and vaginal viral titer are presented in guinea pigs infected with HSV-2.

Sl.9 Prikazano je vrednovanje vaginalnih lezija zamorčića zaraženih s HSV-2. Fig.9 The evaluation of vaginal lesions of guinea pigs infected with HSV-2 is shown.

Detaljni opis izuma Detailed description of the invention

Ovaj izum osigurava polinukleotide koji ako se unesu izravno u kralježnjake in vivo, uključno i sisavce poput čovjeka, induciraju ekspresiju kodiranih proteina u životinji. Upotrijebljen kao ovdje, polinukleotid je je nukleinska kiselina koja sadrži osnovne regulatorne elemente, takove da nakon unošenja u živu stanicu sisavca, može usmjeriti stanicu da proizvodi translacijske produkte kodirane genima koji čine polinukleotid. U jednom vidu realizacije izuma , polinukleotid je plolidezoksiribonukleinska kiselina koja sadrži gene HSVa operativno vezane na transkripcijski promotor. U drugom vidu realizacije izuma polinukleotidno cjepivo sadrži poliribonukleinsku kiselinu, koja kodira HSV gene koji su podložni translaciji na eukariotskom staničnom ustroju (ribosomi, tRNA, i ostali translacijski faktori). Kada je protein koji je kodiran polinukleotidom takav koji se ne javlja normalno u stanici te životinje osim u patološkim stanjima, (npr. heterologni protein) poput proteina vezanih s HSV, aktivira se imuni sustav životinje da bi pokrenuo zaštitni imunološki odgovor. Zato jer se ovi egzogeni proteini proizvode u vlastitom tkivu životinje, eksprimirani se proteini procesiraju uz glavni kompleks tkivne podudarnosti (MHC) na način analogan onom kod prave infekcije s HSV. Rezultat je, što se prikazuje u ovom izumu , indukcija imunog odgovora protiv HSV.Polinukleotidi sa svrhom stvaranja imunih odgovora na kodirani protein nazivaju se ovdje polinukleotidna cjepiva ili PNV. The present invention provides polynucleotides which, when introduced directly into vertebrates in vivo, including mammals such as humans, induce expression of the encoded proteins in the animal. As used herein, a polynucleotide is a nucleic acid that contains basic regulatory elements such that, upon introduction into a living mammalian cell, it can direct the cell to produce the translation products encoded by the genes that make up the polynucleotide. In one form of embodiment of the invention, the polynucleotide is polydeoxyribonucleic acid that contains HSVa genes operatively linked to a transcriptional promoter. In another embodiment of the invention, the polynucleotide vaccine contains polyribonucleic acid, which encodes HSV genes that are subject to translation on the eukaryotic cellular system (ribosomes, tRNA, and other translation factors). When the protein encoded by the polynucleotide is one that does not normally occur in that animal's cell except under pathological conditions, (eg, a heterologous protein) such as HSV-related proteins, the animal's immune system is activated to mount a protective immune response. Because these exogenous proteins are produced in the animal's own tissue, the expressed proteins are processed by the major histocompatibility complex (MHC) in a manner analogous to that of a true HSV infection. The result, as shown in this invention, is the induction of an immune response against HSV. Polynucleotides with the purpose of generating immune responses to the encoded protein are referred to herein as polynucleotide vaccines or PNVs.

Mnogi su oblici odjelotvorenja ovog izuma što će stručnjaci iz ove oblasti uočiti iz specifikacije. Tako se uspješno mogu koristiti razni transkripcijski promotori, terminatori, nosači vektora ili specifične genske sekvence. There are many forms of implementation of this invention, as those skilled in the art will see from the specification. Various transcriptional promoters, terminators, vector carriers or specific gene sequences can thus be successfully used.

Ovaj izum pruža metodu za korištenje polinukleotida koji nakon unošenja u tkivo sisavaca potiču in vivo ekspresiju polinukleotida , čime nastaje kodirani. protein. Stručnjaci će primjetiti da se mogu napraviti varijacije nukleotidne sekvence koja kodira protein , što mjenja sekvenciju aminokiselina kodiranog proteina. Promijenjen eksprimirani protein može imati promijenjenu sekvencu aminokiselina a da i dalje izaziva stvaranje protutijela koja reagiraju s virusnim proteinom i smatraju se funkcionalnim ekvivalentima.Osim toga mogu se konstruirati fragmenti pune dužine gena koji kodiraju djelove proteina pune dužine. Ovi fragmenti mogu kodirati protein ili peptid koji izaziva stvaranje protutijela koja reagiraju s virusnim proteinom i smatraju se funkcionalnim ekvivalentima. This invention provides a method for the use of polynucleotides which, after being introduced into mammalian tissue, stimulate the in vivo expression of the polynucleotide, thereby producing the encoded one. protein. Those skilled in the art will appreciate that variations can be made in the nucleotide sequence that encodes a protein, which changes the amino acid sequence of the encoded protein. An altered expressed protein can have an altered amino acid sequence and still elicit antibodies that react with the viral protein and are considered functional equivalents. In addition, full-length gene fragments can be constructed that encode parts of the full-length protein. These fragments may encode a protein or peptide that elicits antibodies that react with the viral protein and are considered functional equivalents.

U jednom odjelotvorenju ovog izuma, gen koji kodira HSV genski produkt se ugrađuje na ekspresijski vektor. Vektor sadrži transkripcijski promotor prepoznat od strane eukariotske RNA polimeraze i transkripcijski terminator na kraju kodirajuće sekvence HSV gena. U preferiranom odjelotvorenju izuma, promotor je promotor citomegalovirusa s intron-aA sekvencom (CMV-intA)iako će stručnjaci uočiti da se može koristiti bilo koji od brojnih drugih promotora kao što su jaki imunoglobulinski ili drugi eukariotski promotori. In one embodiment of the present invention, the gene encoding the HSV gene product is inserted into an expression vector. The vector contains a transcriptional promoter recognized by eukaryotic RNA polymerase and a transcriptional terminator at the end of the coding sequence of the HSV gene. In a preferred embodiment of the invention, the promoter is the cytomegalovirus promoter with an intron-aA sequence (CMV-intA), although those skilled in the art will recognize that any of a number of other promoters can be used such as strong immunoglobulin or other eukaryotic promoters.

Preferirani transkripcijski terminator je terminator bovinog hormona rasta. Preferirana je kombinacija CMV-intA-BHG terminatora. Osim toga da bi se pomoglo u pripravi polinukleotida u prokariotima opcijski se u ekspresijski vektor ugrađuje marker za rezistenciju na antibiotike pod transkripcijskom kontrolom prikladnog prokariotskog promotora. Mogu se koristiti geni rezistencije na ampicilin, neomicin ili drugi prikladni markeri rezistencije na antibiotike. U preferiranom odjelotvorenju izuma gen za rezistenciju na antibiotike kodira genski produkt neomicinske rezistencije. Nadalje, da bi se potpomoglo intenzivnu proizvodnju polinukleotida u prokariotskim stanicama, dobro je da vektor posjeduje replikaciju prokariotskog podrijetla i bude napravljen od velikog broja kopija. Bilo koji od komercijalno dostupnih prokariotskih vektora za kloniranje posjeduje te elemente. U preferiranom odjelotvorenju ovog izuma ta se funkcionalnost osigurava komercijalno dostupnim vektorima poznatim kao pUC serija. Ipak može biti poželjno ukloniti nebitne sekvence. Tako se mogu ukloniti sekvence pUC koje kodiraju 1acY i 1acI. Također je poželjno da se vektor ne može replicirati u eukariotskoj stanici. To minimizira rizik da se sekvence polinukleotidnog cjepiva uklope u genom primatelja. A preferred transcriptional terminator is a bovine growth hormone terminator. A CMV-intA-BHG terminator combination is preferred. Additionally, to aid in the preparation of polynucleotides in prokaryotes, an antibiotic resistance marker is optionally incorporated into the expression vector under the transcriptional control of a suitable prokaryotic promoter. Genes for resistance to ampicillin, neomycin or other suitable antibiotic resistance markers can be used. In a preferred embodiment of the invention, the antibiotic resistance gene encodes a neomycin resistance gene product. Furthermore, to support the intensive production of polynucleotides in prokaryotic cells, it is good that the vector has replication of prokaryotic origin and is made of a large number of copies. Any of the commercially available prokaryotic cloning vectors possess these elements. In a preferred embodiment of the present invention, this functionality is provided by commercially available vectors known as the pUC series. However, it may be desirable to remove non-essential sequences. Thus, pUC sequences encoding 1acY and 1acI can be removed. It is also preferred that the vector cannot replicate in a eukaryotic cell. This minimizes the risk of polynucleotide vaccine sequences being incorporated into the recipient's genome.

U narednom odjelotvorenju, koristi se ekspresijski vektor pnRVS, gdje se dugo terminalno ponavljanje (LTR) rusoovog virusa sarkoma (RSV) koristi kao promotor. U narednom odjelotvorenju izuma, koristi se V1, mutirani pBR322 vektor u kojega su klonirani promotor CMV i BGH transkripcijski terminator. U preferiranom odjelotvorenju ovog izuma kombinirani su elementi V1 i pUC19 da bi se dobio ekspresijski vektor nazvan V1J. U V1J ili drugi željeni ekspresijski vektor se klonira HSV gen poput gD ili bilo koji drugi gen HSV koji može potaknuti anti-HSV imuni odgovor (protutijela ili CTL) kao što su: gB, gC, gL, gH i ICP27. U narednom odjelotvorenj u uklanja se gen rezistencije na ampicilin i zamjenjuje s genom rezistencije na neomicin, da bi se dobio V1J-neo, u kojem prema ovom izumu može biti kloniran bilo koji od raznih HSV gena. U narednom odjelotvorenju, vektor je V1Jns, koji je isti kao V1J samo što je jedinstveno Sfi1 restrikcijsko mjesto koje je ugrađeno u jedno Kpn mjesto na položaju 2114 V1J-neo. Pojavnost Sfi1 mjesta u ljudskom genomu je vrlo niska (oko 1:100000 baza). Tako taj vektor omogućava pažljivo praćenje integracije ekspresijskog vektora u DNK domaćina, jednostavno digestijom ekstrahirane genomske DNK. U narednom odjelotvorenju je vektor V1R. U tom je vektoru odrezano što je moguće više neesencijalne DNK da bi se proizveo visoko kompaktni vektor. Taj vektor dozvoljava uporabu većih inserata, uz manje mogućnosti da bi se kodirale nepoželjne sekvence i optimizira unos od strane stanica kada se konstrukt koji kodira specifične virusne gene unese u okolno tkivo. Metode korištene u modificiranju predhodnih vektora i u razvojnim procedurama mogu se postići metodama poznatim stručnjacima. In a further embodiment, the expression vector pnRVS is used, where the long terminal repeat (LTR) of the russo sarcoma virus (RSV) is used as a promoter. In the following implementation of the invention, V1, a mutated pBR322 vector in which the CMV promoter and the BGH transcriptional terminator are cloned, is used. In a preferred embodiment of the present invention, the V1 and pUC19 elements are combined to produce an expression vector called V1J. An HSV gene such as gD or any other HSV gene capable of inducing an anti-HSV immune response (antibodies or CTL) such as gB, gC, gL, gH and ICP27 is cloned into the V1J or other desired expression vector. In a further step, the ampicillin resistance gene is removed and replaced with a neomycin resistance gene to produce V1J-neo, in which any of the various HSV genes can be cloned according to the present invention. In the following embodiment, the vector is V1Jns, which is the same as V1J except that a unique Sfi1 restriction site is incorporated into a single Kpn site at position 2114 of V1J-neo. The occurrence of the Sfi1 site in the human genome is very low (about 1:100,000 bases). Thus, this vector enables careful monitoring of the integration of the expression vector into the host's DNA, simply by digesting the extracted genomic DNA. In the following implementation, the vector is V1R. In this vector, as much non-essential DNA as possible is excised to produce a highly compact vector. This vector allows the use of larger inserts, with less opportunity to encode unwanted sequences and optimizes uptake by cells when a construct encoding specific viral genes is introduced into the surrounding tissue. The methods used in the modification of the preceding vectors and in the development procedures can be achieved by methods known to those skilled in the art.

Vješti struci će prepoznati iz ovog rada da je jedna od primjena ovog izuma, osigurati sustav testiranja i analize in vivo i in vitro kako bi se mogla napraviti korelacija raznolikosti HSV sekvenci s serologijom HSV neutralizacije, kao i drugih parametara. Izolacija i kloniranje ovih raznih gena može se postići metodama poznatim stručnjacima. Ovaj izum nadalje osigurava metodu za sustavno prepoznavanje sojeva i sekvence za proizvodnju cijepiva. Ugrađivanje gena iz primarnih izolata HSV sojeva osigurava imunogen koji inducira imuni odgovor protiv kliničkih izolata virusa i tako zadovoljava do sada nezadovoljenu potrebu na tom području. Osim toga ako se virusni izolat promijeni, imunogen se može modificirati kao odraz potrebnih sekvenci. Those skilled in the art will recognize from this work that one of the applications of this invention is to provide an in vivo and in vitro testing and analysis system to correlate HSV sequence diversity with HSV neutralization serology, as well as other parameters. Isolation and cloning of these various genes can be accomplished by methods known to those skilled in the art. The present invention further provides a method for systematically identifying strains and sequences for vaccine production. Insertion of genes from primary isolates of HSV strains provides an immunogen that induces an immune response against clinical isolates of the virus and thus meets an unmet need in this field. Additionally, if the viral isolate changes, the immunogen can be modified to reflect the required sequences.

U jednom odjelotvorenju ovog izuma, gen koji kodira HSV protein se izravno veže na transkripcijski promotor. In one embodiment of the present invention, the gene encoding the HSV protein is directly bound to a transcriptional promoter.

Uporaba tkivno specifičnih promotora ili pojačivača, npr. pojačivačkog elementa mišićne kreatin kinaze (MCK) može biti korisna da ograniči ekspresiju polinukleotida na određeni tip tkiva. Na primjer, miociti su krajnje diferencirane stanice koje se ne dijele. Integracija strane DNK u kromosome, čini se zahtjeva i diobu stanica i sintezu proteina.Tako može biti poželjno ograničiti ekspresiju proteina na stanice koje se ne dijele, poput miocita. Međutim uporaba CMV promotora je adekvatna za postizanje ekspresije u mnogim tkivima u koja se unosi PNV. The use of tissue-specific promoters or enhancers, eg, the muscle creatine kinase (MCK) enhancer element, can be useful to restrict polynucleotide expression to a specific tissue type. For example, myocytes are terminally differentiated cells that do not divide. Integration of foreign DNA into chromosomes seems to require both cell division and protein synthesis. Thus, it may be desirable to limit protein expression to non-dividing cells, such as myocytes. However, the use of the CMV promoter is adequate to achieve expression in many tissues into which PNV is introduced.

Sažetak konstrukcije PNV Summary of the PNV construction

HSV i ostali geni se prvenstveno vežu na ekspresijski vektor koji je bio prilagođen specifično za polinukleotidna cijepljenja. Dijelovi uključuju transkripcijski promotor, imunogene epitope i dodatne cistrone koji kodiraju imunopoticajne ili imunomodulacijske gene, s svojim promotorima, transkripcijskim terminatorima, replikacijom bakterijskog podrijetla i genima otpornosti na antibiotike, kao što je opisano. Opcionalno, vektor može sadržavati Unutarnja ribosomska ulazna mjesta (internal ribosome entry sites = IRES) za ekspresiju policistronske mRNK. Stručnjacima će biti jasno da u okvirima ovog izuma leži i RNK prepisana in vitro da bi se dobilo policistronske mRNK kodirane s odgovarajućim DNK. U ovu je svrhu poželjno koristiti snažne promotore RNK polimeraze poput T7 ili SP6 i provesti "run on" transkripciju s lineariziranom DNK matricom. Ove su metode dobro poznate u struci. HSV and other genes are preferentially bound to an expression vector that has been adapted specifically for polynucleotide vaccines. Parts include a transcriptional promoter, immunogenic epitopes, and additional cistrons encoding immunostimulatory or immunomodulatory genes, with their promoters, transcriptional terminators, bacterial origin replication, and antibiotic resistance genes, as described. Optionally, the vector may contain internal ribosome entry sites (IRES) for the expression of polycistronic mRNA. It will be clear to those skilled in the art that within the scope of this invention lies RNA transcribed in vitro to obtain polycistronic mRNAs encoded by the corresponding DNA. For this purpose, it is preferable to use strong RNA polymerase promoters such as T7 or SP6 and perform "run on" transcription with a linearized DNA template. These methods are well known in the art.

Učinkovitost zaštite polinukleotidnih HSV imunogena protiv sljednog izazova virusne infekcije, prikazana je imunizacijom s DNA iz ovog izuma. To je prestižno jer se ne upotrebljava nikakav zarazni čimbenik, nije potreban skup virusnih djelića a omogućen je odabir determinanti. Nadalje, budući sekvencije virusnih genskih produkata mogu biti konzervirane u raznim sojevima HSV, postiže se posljedična zaštita protiv infekcije drugim sojevima HSV. The protective efficacy of polynucleotide HSV immunogens against the next challenge of viral infection was demonstrated by immunization with the DNA of this invention. This is prestigious because no infectious factor is used, no set of viral particles is required, and the selection of determinants is enabled. Furthermore, since the sequences of the viral gene products can be conserved in various HSV strains, a consequent protection against infection with other HSV strains is achieved.

Injekcija DNK ekspresijskog vektora koji kodira gD može dovesti do značajne zaštitne imunosti protiv naknadne izloženosti virusu. Osobito se mogu stvarati gD-specifična protutijela i CTLi. Imuni odgovor usmjeren protiv konzerviranih proteina može biti učinkovit usprkos premještanju antigena i derivaciji varijabilnih proteina. Budući da svaki od HSV genskih produkata pokazuje određeni stupanj konzerviranja među različitim sojevima HSV i budući se imunološki odgovor može generirati kao odgovor na intracelularnu ekspresiju i procesiranje MHC, očekuje se da bi mnogi različiti HSVgD PNV konstrukti mogli dovesti do ukrižene reaktivnosti imunoloških odgovora. Injection of a DNA expression vector encoding gD can lead to significant protective immunity against subsequent exposure to the virus. In particular, gD-specific antibodies and CTLi can be generated. An immune response directed against conserved proteins can be effective despite shifting antigens and derivation of variable proteins. Since each of the HSV gene products shows some degree of conservation among different HSV strains and the subsequent immune response can be generated in response to intracellular expression and processing of MHC, it is expected that many different HSVgD PNV constructs could lead to cross-reactivity of immune responses.

Izum pruža način indukcije heterolognog zaštitnog imuniteta bez potrebe za samorazmnožavajućim agensima ili adjuvansima. Stvaranje visokog titra protutijela protiv eksprimiranih proteina nakon injekcije virusnog proteina i DNK ljudskog hormona rasta, /Tang i sur., Nature 356, 152, 1992/, pokazuje da je ovo lak i jako učinkovit način dobivanja cijepiva na bazi antitjela, bilo odvojeno ili u kombinaciji s citotoksičnim T-limfocitnim cjepivima usmjerenima protiv konzerviranih antigena. The invention provides a method of inducing heterologous protective immunity without the need for self-propagating agents or adjuvants. The generation of high titer antibodies against the expressed proteins after injection of viral protein and human growth hormone DNA, /Tang et al., Nature 356, 152, 1992/, shows that this is an easy and highly effective way to obtain antibody-based vaccines, either separately or in combined with cytotoxic T-lymphocyte vaccines directed against conserved antigens.

Jednostavnost izrade i pročišćavanja DNK konstrukata uspoređuje se u pozitivnom smislu s pročišćavanjem proteina, potičući razvoj kombiniranih cijepiva. Tako se mogu izrađivati, miješati i zajedno davati. Uz to nakon injekcije DNK održana je ekspresija proteina /H.Lin i sur., Circulation 82,2217 (1990); R.N. Kitsis i sur.,Proc Natl Acad Sci (USA) 88, 4138 (1991); E.Hansen i sur., FEBS Lett. 290, 73,(1991); S.Jiao i sur., Hum Gene Therapy 3, 21,(1992); J.A. Wolff i sur., Human Mol Genet 1, 363, (1992)/ može se produžiti trajnost B i T stani ne memorije / D.Gray i P. Matzinger, J Exp Med 174, 969, (1991); S. Oehen i sur., ibidem 176, 1273(1992)7, time izazivajući dugotrajnu humoralnu i staničnu imunost. The ease of making and purifying DNA constructs compares favorably with protein purification, encouraging the development of combination vaccines. So they can be made, mixed and given together. In addition, protein expression was maintained after DNA injection /H.Lin et al., Circulation 82,2217 (1990); R.N. Kitsis et al., Proc Natl Acad Sci (USA) 88, 4138 (1991); E. Hansen et al., FEBS Lett. 290, 73, (1991); S. Jiao et al., Hum Gene Therapy 3, 21, (1992); I. Wolff et al., Human Mol Genet 1, 363, (1992)/ the durability of B and T memory states can be extended / D. Gray and P. Matzinger, J Exp Med 174, 969, (1991); S. Oehen et al., ibidem 176, 1273(1992)7, thereby inducing long-term humoral and cellular immunity.

Količina ekspresibilne DNK ili prepisane RNK koja bi se trebala unijeti u primatelja cjepiva ovisit će o snazi upotrijebljenih transkripcijskih i translacijskih promotora. Jakost imunog odgovora može ovisiti o razini proteinske ekspresije i o imunogenosti eksprimiramog genskog produkta. Općenito učinkovita doza od oko 1 ng do 5 mg, najbolje oko 10µg do 300µg, daje se u mišićno tkivo. Prikladno je i supkutano, intradermalno, injiciranje, utiskivanje kroz kožu i ostali oblici primjene poput intraperitonealne, intravenske ili inhalacijske primjene. Mišljeno je da se može osigurati i booster cijepljenje. Promišljena je i booster revakcinacija s HSV proteinskim imunogenima poput g D, gB, gC, gG i gH genskim produkima nakon cijepljenja s HSV polinukleotidnim imunogenom.Parenteralno davanje poput intravenskog, intramuskularnog, supkutanog ili na drugi način, interleukin-12-proteina, usporedno s ili poslije parenteralnog unošenja PNV iz ovog izumačbi moglo imati prednosti. The amount of expressible DNA or transcribed RNA that should be introduced into a vaccine recipient will depend on the strength of the transcriptional and translational promoters used. The strength of the immune response may depend on the level of protein expression and on the immunogenicity of the expressed gene product. A generally effective dose of about 1 ng to 5 mg, preferably about 10 µg to 300 µg, is administered into muscle tissue. It is also suitable for subcutaneous, intradermal, injection, pressing through the skin and other forms of administration such as intraperitoneal, intravenous or inhalation administration. It is thought that a booster vaccination can also be provided. Booster revaccination with HSV protein immunogens such as g D, gB, gC, gG and gH gene products after vaccination with HSV polynucleotide immunogen has also been considered. Parenteral administration such as intravenous, intramuscular, subcutaneous or otherwise, interleukin-12-protein, compared with or after parenteral administration of the PNV of this invention may have advantages.

Polinukleotid može biti gol tj. nevezan s bilo kojim proteinom, adjuvansom ili drugim agensom koji bi mogao djelovati na primateljev imunološki sustav. U ovom je slučaju poželjno za polinukleotid da se nalazi u fiziološki prihvatljivoj otopini, kao što je, ali ne samo ona, sterilna otopina soli ili sterilna puferirana otopina soli. Alternativno DNK može biti vezana na liposome poput lecitinskih liposoma ili drugih poznatih u struci, kao DNK-liposomska mješavina, ili DNK može biti vezana s adjuvansom koji je u struci poznat da pojačava imunološki odgovor, kao Što je proteinski ili drugi nosač. Mogu se upotrijebiti i tvari koje sudjeluju u unosu DNK u stanicu, kao, ali ne samo, kalcijski ioni. Ove tvari su ovdje općenito označene kao tvari koje potiču transfekciju i farmakološki prihvatljivi nosači. Tehnike za presvlačenje mikroprojektila s polinukleotidom su poznate u struci i također korisne u sprezi s ovim izumom. Za DNK namjenjenu za primjenu kod ljudi može biti korisno da se finalni DNK produkt nalazi u farmakološki prihvatljivom nosaču ili puferskoj otopini. Farmakološki prihvatljivi nosači su poznati u struci kao i puferske otopine i uklučuju one opisane u brojnim tekstovima poput onih u Remington s Pharmaceutical Sciences. The polynucleotide can be naked, ie unbound with any protein, adjuvant or other agent that could act on the recipient's immune system. In this case, it is preferred for the polynucleotide to be in a physiologically acceptable solution, such as, but not limited to, sterile saline or sterile buffered saline. Alternatively, the DNA may be bound to liposomes such as lecithin liposomes or others known in the art, such as a DNA-liposome mixture, or the DNA may be bound with an adjuvant known in the art to enhance the immune response, such as a protein or other carrier. Substances that participate in the entry of DNA into the cell can also be used, such as, but not only, calcium ions. These substances are generally referred to herein as transfection promoting substances and pharmacologically acceptable carriers. Techniques for coating microprojectiles with polynucleotide are known in the art and also useful in conjunction with the present invention. For DNA intended for use in humans, it may be useful for the final DNA product to be in a pharmacologically acceptable carrier or buffer solution. Pharmacologically acceptable carriers are known in the art as well as buffer solutions and include those described in numerous texts such as those in Remington with Pharmaceutical Sciences.

U naredom odjelotvorenju, izum je polinukleotid koji obuhvaća kontinuirane sekvence nukleinske kiseline koje se mogu eksprimirati i dati genski produkt nakon unošenja dotičnog polinukleotida u tkivo eukariota in vivo. Kodirani genski produkt djeluje prvenstveno kao imunostimulans ili antigen sposoban da potakne imunološki odgovor. Tako sekvence nukleinske kiseline u ovom odjelotvorenju kodiraju epitop humanog herpes simpleks virusa i opcionalno citokin iliT-stanični kostimulatorni element poput člana B7 porodice proteina. In a further embodiment, the invention is a polynucleotide comprising continuous nucleic acid sequences that can be expressed and give a gene product after introduction of the respective polynucleotide into eukaryotic tissue in vivo. The encoded gene product acts primarily as an immunostimulant or antigen capable of stimulating an immune response. Thus, the nucleic acid sequences in this embodiment encode an epitope of the human herpes simplex virus and optionally a cytokine or T-cell costimulatory element such as a member of the B7 family of proteins.

Nekoliko je prednosti cijepljenja genom pred istom s genskim produktom. Prva je relativna jednostavnost s kojom se prirodni ili gotovo prirodni antigen može prezentirati imunološkom sustavu. Proteini sisavaca rekombinantno eksprimirani na bakterijama , kvascima, ili čak stanicama sisavaca moraju se često opsežno tretirati kako bi se osigurala odgovarajuća antigenost. Druga prednost DNA imunizacije je sposobnost antigena da uđe u put MHC klase I i pobudi citotoksični T-stanični odgovor. Imunizacija miševa s DNK koja je kodirala influenca A nukleoprotein (NP) izazvala je CD8+ odgovor na NP koji je štitio miša kod zaraze s heterolognim sojevima virusa gripe.( Montgomerv, D.L., i sur.,supra; Ulmer, J. i sur., supra). There are several advantages of gene vaccination over the same with a gene product. The first is the relative ease with which a natural or near-natural antigen can be presented to the immune system. Mammalian proteins recombinantly expressed on bacteria, yeast, or even mammalian cells must often be extensively treated to ensure adequate antigenicity. Another advantage of DNA immunization is the antigen's ability to enter the MHC class I pathway and elicit a cytotoxic T-cell response. Immunization of mice with DNA encoding influenza A nucleoprotein (NP) elicited a CD8+ response to the NP that protected the mouse when challenged with heterologous influenza virus strains. (Montgomerv, D.L., et al., supra; Ulmer, J., et al., above).

Ima dokaza da je stanični imunitet važan u kontroli HSV infekcije / za pregled vidi Nash,A.A. i sur.,1985, Herpesviruses, Vol.4, Plenum, New York, i Schmidt,D.S. i sur. 1992,u Rouse(ed,) Current topics in Microbiology and Immunology, Vol.179, Herpes Simpleks Virus; Pathogenesis Immunobiology and Control, Springer Verlag Berlin/. Dok je većina HSVCTLa izoliranih iz seropozitivnih bolesnika bila CD4+ tipa ( Schmidt,D.S. i sur.,1988, J Immunol , 140, 3610-3616; Tsutsumi, T. i sur., 1986, Clin Exp Immunol, 66, s. 507-515) bili su izolirani i CD8+ klonovi uključilo jedan specifičan za gD.( Torpez,D.J. i sur., 1989, J Immunol, 142, 1325-1332; Yasukawa, M. i sur.,1989, J Immunol, 143, s.2051-2057; ZarlingJ.M. i sur.,1986, J Immunol 1986, J Immunol, 136, 4669-4673) U miševa eksperimenti staničnog transfera i deplecije sugeriraju da neki CD8+ štite od infekcije.( Bonneua,R.H. i sur., 1989, J Virol, 63, 1480-1484; Nash,A.A. i sur., 1987, Gen Virol, 68, 825-833) Imunizacija s gD putem infekcije s rekombinantnim virusnim vektorima (Paoletti, E. i sur., 1984, Proc Natl Acad Sci, USA, 81, 193-197; Wachsman, M.L. i sur., 1987, J Infect Dis , 155, 1188-1197; Zheng,B. i sur.,1993, Vaccine, 11, 1191-1198) štiti miša od infekcije HSVom. Živi virusni vektori poput DNK imaju mogućnost prezentacije antigena uz MHC klasu I. Ipak, nedavna studija je koristeći se infekcijom s HSV gD cijepljenom rekombinantom našla da je zaštita od infekcije bila ovisna o odgođenom tipu reakcije preosjetljivosti, funkciji L3T4+ stanica. (Wachsman, M. i sur, 1992, Vaccine, 10, 447-454) Iako su gD specifične staniceCD8+ bile izolirane iz s HSV inficiranih miševa, njihova uloga u ograničavanju infekcije je nepoznata.(Johnson,R.M.,i sur.,1990, J Immunol, 145, 702-710) Rad Koellea i sur. sugerira da infekcija HSVom može učiniti humane fibroblaste i keratinocite neprepoznatljivima za CD8 + CTL (Koelle D.M.,i sur, 1993, J Clin Invest.,91, 961-968). U prirodnoj infekciji s HSVom, uloga CD8+ stanica općenito i uloga CD8 + stanica u odgovoru na gD nije razriješena. There is evidence that cellular immunity is important in controlling HSV infection / for review see Nash, A.A. et al., 1985, Herpesviruses, Vol. 4, Plenum, New York, and Schmidt, D.S. et al. 1992, in Rouse(ed,) Current topics in Microbiology and Immunology, Vol.179, Herpes Simplex Virus; Pathogenesis Immunobiology and Control, Springer Verlag Berlin/. While the majority of HSVCTLa isolated from seropositive patients were of the CD4+ type ( Schmidt, D.S. et al., 1988, J Immunol , 140, 3610-3616; Tsutsumi, T. et al., 1986, Clin Exp Immunol, 66, pp. 507- 515) were isolated and CD8+ clones included one specific for gD. (Torpez, D.J. et al., 1989, J Immunol, 142, 1325-1332; Yasukawa, M. et al., 1989, J Immunol, 143, p. 2051-2057; ZarlingJ.M. et al., 1986, J Immunol 1986, J Immunol, 136, 4669-4673) In mice, cell transfer and depletion experiments suggest that some CD8+ protect against infection (Bonneua, R.H. et al., 1989, J Virol, 63, 1480-1484; Nash, AA et al., 1987, Gen Virol, 68, 825-833) Immunization with gD by infection with recombinant viral vectors (Paoletti, E. et al., 1984, Proc Natl Acad Sci, USA, 81, 193-197; Wachsman, M.L. et al., 1987, J Infect Dis , 155, 1188-1197; Zheng, B. et al., 1993, Vaccine, 11, 1191-1198) protects mouse from HSV infection. Live viral vectors such as DNA have the ability to present antigens in addition to MHC class I. However, a recent study using HSV gD vaccine recombinant infection found that protection from infection was dependent on a delayed-type hypersensitivity reaction, the function of L3T4+ cells. (Wachsman, M. et al, 1992, Vaccine, 10, 447-454) Although gD-specific CD8+ cells have been isolated from HSV-infected mice, their role in limiting infection is unknown. (Johnson, R.M., et al., 1990, J Immunol, 145, 702-710) Work by Koelle et al. suggests that HSV infection can render human fibroblasts and keratinocytes unrecognizable to CD8 + CTL (Koelle D.M., et al, 1993, J Clin Invest., 91, 961-968). In natural infection with HSV, the role of CD8 + cells in general and the role of CD8 + cells in the response to gD is not resolved.

Budući DNA imunizacija može pobuditi kako celularnu tako i humoralnu imunost, njezina najveća prednost može biti da osigurava relativno jednostavnu metodu za ispitivanje cijepljenog potencijala velikog broja virusnih gena. Plazmidi koji eksprimiraju HSV-2 glikoproteine B i C također povisuju razinu neutralizirajućih protutijela i time štite miša od letalne infekcije. Ipak, ICP27 koji je poznat da stvara CTL odgovor i osigurava stanoviti stupanj zaštite u miševa imuniziranih s rekombinantnim ICP27-vakcinija virusom (Banks,T.A.i sur.,1991,J Virol, 65,s. 3185-3191) nije osigurao zašitu od letalne infekcije s HSV kada su miševi bili cijepljeni samo s PNV ICP27. Ipak DNK koja kodira ICP 27 može biti korisna kao komponenta multigenske-HSV PNV i mišjeno je da ovaj izum obuhvaća ICP 27 kao komponentu multivalentne HSV PNV. Since DNA immunization can stimulate both cellular and humoral immunity, its greatest advantage may be that it provides a relatively simple method for testing the vaccination potential of a large number of viral genes. Plasmids expressing HSV-2 glycoproteins B and C also raise the level of neutralizing antibodies and thereby protect mice from lethal infection. However, ICP27, which is known to generate a CTL response and provide some degree of protection in mice immunized with recombinant ICP27-vaccinia virus (Banks, T.A. et al., 1991, J Virol, 65, pp. 3185-3191) did not provide protection against lethal infection. with HSV when mice were vaccinated only with PNV ICP27. However, the DNA encoding ICP 27 may be useful as a component of multigene-HSV PNV and the present invention is intended to encompass ICP 27 as a component of multivalent HSV PNV.

Imunizacija s injekcijom DNA također omogućava, kako je rečeno, lako slaganje multikomponentnih cjepiva. Nedavno je izvješteno o simultanom cijepljenju s više gena influence (Donnelly, J. i sur., 1994, Vaccines, u štampi). Uključivanje gena čiji produkti aktiviraju pojedine dijelove imunološkog sustava u HSV cjepivu, mogu također osigurati temeljitu zaštitu od naknadne virusne infekcije. Immunization with DNA injection also allows, as mentioned, easy assembly of multicomponent vaccines. Simultaneous vaccination with multiple influenza genes has recently been reported (Donnelly, J. et al., 1994, Vaccines, in press). The inclusion of genes whose products activate certain parts of the immune system in the HSV vaccine can also ensure thorough protection against subsequent viral infection.

Slijedeći su primjeri dani za ilustraciju ovog izuma, ali bez ograničavanja samo na njih. The following examples are provided to illustrate the present invention, but are not limited thereto.

PRIMJER 1 EXAMPLE 1

Vektori za proizvodnju cjepiva Vectors for vaccine production

A) V1 A) V1

Ekspresijski vektor V1 konstruiran je od pCMVIE-AKI-DHFR / Y. VVhang i sur.,J Virol, 61, 1796 (1987)/. AKI i DHFR geni su bili uklonjeni rezanjem vektora s Eco RI i samoligiranjem. Ovaj vektor na sadrži intron A u CMV promotoru, tako da je bio dodat kao PCR fragment koji je imao deleciju unutarnjeg Sac I mjesta / na 1855 kao što je prebrojao B.S. Chapman i sur., Nuc Acids Res 19,3979 (1991)/ Matrica upotrijebljena za PCR reakcije je bilapCMVintA-Lux, nastao vezivanjem Hind III i Nhe I fragmenata iz pCMV6a120 / vidi B.S. Chapman i sur.,ibid./ koji uključuje hCMV-IE1 ubrzivač / promotor i intron A, u Hind III i Xba I mjestima na ppBL3 da bi se dobio pCMVIntBL. Fragment od 1881 para baza fragmenta gena luciferaze (HindIII-Sma I napunjen po Klenovvu ) od RSV-Lux /J.R. de Wet in sur. Mol Cell Biol 7, 725, 1987/ je bio kloniran na Sal I mjesto pCMVIntBL, koje je bilo napunjeno po Klenowu i tretirano fosfatazom. The V1 expression vector was constructed from pCMVIE-AKI-DHFR / Y. VVhang et al., J Virol, 61, 1796 (1987)/. AKI and DHFR genes were removed by cutting the vector with Eco RI and self-ligating. This vector does not contain intron A in the CMV promoter, so it was added as a PCR fragment that had a deletion of the internal Sac I site / at 1855 as counted by B.S. Chapman et al., Nuc Acids Res 19,3979 (1991)/ The matrix used for PCR reactions was bilapCMVintA-Lux, created by ligation of Hind III and Nhe I fragments from pCMV6a120 / see B.S. Chapman et al., ibid./ which includes the hCMV-IE1 enhancer/promoter and intron A, in the Hind III and Xba I sites of ppBL3 to give pCMVIntBL. A fragment of 1881 base pairs of the luciferase gene fragment (HindIII-Sma I loaded according to Klenovv) from RSV-Lux /J.R. de Wet et al. Mol Cell Biol 7, 725, 1987/ was cloned into the Sal I site of pCMVIntBL, which was filled according to Klenow and treated with phosphatase.

Primjeri koji obuhvaćaju intron A su: Examples that include intron A are:

5’primjer, SEQ.ID:1: 5' example, SEQ.ID:1:

5’-CTATATAAGCAGAG CTCGTTTAG-3’; 3’-primjer, SEQ ID:2: 5'-CTATATAAGCAGAG CTCGTTTAG-3'; 3'-example, SEQ ID:2:

5’-GTAGCAAAGATCTAAGGACGGTGA CTGCAG-3’ 5'-GTAGCAAAGATCTAAGGACGGTGA CTGCAG-3'

Primjeri korišteni za uklanjanje Sac I mjesta su: Examples used to remove the Sac I site are:

sense primjer, SEQ.ID:3: sense example, SEQ.ID:3:

5’-GTATGTGTCTGAAAATGAGCGTGGAGATTGGGCTCGCAC-3’ 5'-GTATGTGTCTGAAAATGAGCGTGGAGATTGGGCTCGCAC-3'

antisense primjer, SEQ ID:4: antisense example, SEQ ID:4:

5’-GTGCGAGCCCAATCTCCACGCTCATTTTCAGACACA TAC-3 5'-GTGCGAGCCCAATCTCCACGCTCATTTTCAGACACA TAC-3

PCR fragment je bio presječen s Sac I i Bgl II i ubačen u vektor koji je bio presječen s istim enzimima. The PCR fragment was cut with Sac I and Bgl II and inserted into a vector that had been cut with the same enzymes.

B) V1J Ekspresijski Vektor B) V1J Expression Vector

Smisao kreiranja V1J je uklanjanje promotorskih i elemenata transkripcijskog prekida iz vektora V1 s namjerom njihovog smještavanja u određeniji kontekst, stvaranje kompaktnijeg vektora, i poboljšanje pročišćavanja plazmida. The purpose of creating V1J is to remove promoter and transcription termination elements from the V1 vector with the intention of placing them in a more specific context, creating a more compact vector, and improving plasmid purification.

V1J je dobiven iz vektora V1 i pUC18, komercijalno dostupnog plazmida. V1 se razgradi s SspI i EcoRI restrikcijskim enzimima pri čemu daje dva fragmenta DNK. Manji od njih koji sadrži CMVintA promotor i elemente prekida transkripcije bovinog hormona rasta(BGH) koji kontroliraju ekspresiju heterolognih gena, pročišćava se iz agaroza gela za elektroforezu. Krajevi ovih DNK fragmenata su potom "zatupljeni" korištenjem T4 DNK polimeraznog enzima s namjerom poticanja njegovog vezivanja za drugi "zatupljeni" kraj DNK fragmenta. V1J was derived from the V1 vector and pUC18, a commercially available plasmid. V1 is digested with SspI and EcoRI restriction enzymes, yielding two DNA fragments. The smaller one, which contains the CMVintA promoter and Bovine Growth Hormone (BGH) transcription termination elements that control heterologous gene expression, is purified from agarose gel electrophoresis. The ends of these DNA fragments are then "blunted" using the T4 DNA polymerase enzyme with the intention of promoting its binding to the other "blunted" end of the DNA fragment.

PUC18 je bio odabran da dadne "kralježnicu" za ekspresijski vektor. Zna se da proizvodi velike količine plazmida, dobro je definirane sekvence i funkcije i mali je. Cijeli lac operon je bio uklonjen iz toga vektora djelomičnom digestijom s HaeII restrikcijskim enzimom. Preostali plazmid je pročišćen iz agaroznog gela za elektroforezu, zatupljeni su mu krajevi s T4DNK polimerazom tretiranom s telećom crijevnom alkalnom fosfatazom i vezan na CMVintA/BGH element opisan gore.Dobiveni su plazmidi s jednom od dvije moguće orijentacije promotorskog elementa unutar pUC osnovice. Jedan od ovih plazmida je davao puno više DNA u E.Coli i bio označen kao V1J. Ova struktura vektora je potvrđena u sekvencijskoj analizi spojnog područja i naknadno je potvrđeno da daje usporedivu ili višu ekspresiju heterolognih gena nego V1. PUC18 was chosen to provide the "backbone" for the expression vector. It is known to produce large amounts of plasmid, has well-defined sequence and function, and is small. The entire lac operon was removed from this vector by partial digestion with HaeII restriction enzyme. The remaining plasmid was purified from agarose gel for electrophoresis, its ends were blunted with T4DNA polymerase treated with calf intestinal alkaline phosphatase and ligated to the CMVintA/BGH element described above. Plasmids with one of two possible orientations of the promoter element within the pUC base were obtained. One of these plasmids produced much more DNA in E. coli and was designated V1J. This vector structure was confirmed by sequence analysis of the junction region and was subsequently confirmed to give comparable or higher expression of heterologous genes than V1.

C) V1Jneo Ekspresijski Vektor, C) V1Jneo Expression Vector,

Bilo je nezaobilazno ukloniti ampr gen upotrijebljen za antibiotsku selekciju sojeva bakterija nosača V1J jer ampicilin može biti nepoželjan u velikim fermentatorima. Ampr gen je uklonjen iz pUC osnovice V1J uz pomoć restrikcijskih enzima razgradnjom s SspI i Eam 11051. Preostali plazmid je pročišćen elektroforezom na agaroza gelu, zatupljeni su mu krajevi s T4 polimerazom, i zatim tretiran s alkalnom fosfatazom iz crijeva teleta. Komercijalno dostupan kanr gen , dobiven od transpozona 903 i sadržan u pUC4K plazmidu, bio je Izrezan s PstI restrikcijskim enzimom, pročišćen na agaroza gelu elektroforezom i potom su mu zatupljeni krajevi T4 DNK polimerazom. Ovaj je fragment vezan s osnovicom V1J te su dobiveni plazmidi s kanr genom u obije orijentacije, označeni kao V1Jneo # 1 i 3. Svaki od ovih plazmida je provjeren analizom s restrikcijskim enzimima, sekvencioniranjem DNK spojnih regija, a pokazano je i da proizvode slične količine plazmida kao V1J. Ekspresija heterolognih genskih produkata je kod ovih V1Jneo vektora bila također usporediva s V1J. V1Jneo#3, u daljem tekstu V1Jneo, koji posjeduje kanr gen iste orijentacije kao ampr gen u V1J, bio je odabran kao ekspresijski konstrukt. It was unavoidable to remove the ampr gene used for antibiotic selection of V1J carrier bacteria strains because ampicillin can be undesirable in large fermenters. The ampr gene was removed from the pUC base V1J with the help of restriction enzymes by digestion with SspI and Eam 11051. The remaining plasmid was purified by electrophoresis on agarose gel, its ends were blunted with T4 polymerase, and then treated with alkaline phosphatase from calf intestine. The commercially available kanr gene, derived from transposon 903 and contained in the pUC4K plasmid, was excised with PstI restriction enzyme, purified on agarose gel electrophoresis and then blunted with T4 DNA polymerase. This fragment was ligated with the V1J base and plasmids with the kanr gene in both orientations were obtained, designated as V1Jneo # 1 and 3. Each of these plasmids was verified by restriction enzyme analysis, DNA sequencing of the junction regions, and was shown to produce similar amounts plasmid as V1J. Expression of heterologous gene products in these V1Jneo vectors was also comparable to V1J. V1Jneo#3, hereinafter V1Jneo, which has a kanr gene in the same orientation as the ampr gene in V1J, was selected as an expression construct.

D) V1Jns Ekspresijski vektor D) V1Jns Expression vector

U V1Jneo je dodano Sfi I mjesto kako bi se olakšalo ispitivanje integracije. Na Kpn I mjesto unutar BGH sekvence vektora je dodan komercijalo dostupni Sfi I linker (spojnik) od 13 parova baza.(New England BioLabs). V1Jneo je bio lineariziran s Kpn I, pročišćen na gelu, zatupljeni su mu krajevi s T4 DNK polimerazom, i vezan na zatupljen Sfi I spojnik. Restrikcijskim mapiranjem su odabrani klonalni izolati i potvrđeni sekvencioniranjem preko spojnika. Novi vektor je označen kao V1Jns. Ekspresija heterolognih gena u V1Jns (s Sfi I) je bila usporediva s ekspresijom istih u V1Jneo (s Kpn I) Added Sfi I site to V1Jneo to facilitate integration testing. A commercially available Sfi I linker of 13 base pairs was added to the Kpn I site within the BGH sequence of the vector (New England BioLabs). V1Jneo was linearized with Kpn I, gel purified, blunt-ended with T4 DNA polymerase, and ligated to a blunted Sfi I linker. Clonal isolates were selected by restriction mapping and confirmed by sequencing through the junction. The new vector is labeled V1Jns. The expression of heterologous genes in V1Jns (with Sfi I) was comparable to the expression of the same in V1Jneo (with Kpn I)

E) V1Jns-tPA E) V1Jns-tPA

S namjerom da se dobije heterologna peptidna vodeća sekvenca za secernirajuće ili membranske proteine, V1Jns je modificiran tako da uključuje vodeću sekvencu humanog tkivno-specifičnog aktivatora plazminogena(tPA). Dva sintetska komplementarna oligomera su bila hibridizirana i zatim vezana u V1Jns koji je bio obrađen s BgIII. Sense i antisense oligomeri su bili: 5’-GATC ACC ATG GAT GCA ATG AAG AGA GGG CTC TGC TGTGTG CTG CTG CTG TGT GGA GCA GTC TTC GTT TCG CCC AGC GA-3', SEQ.ID:5:, i 5'-GAT CTC GCT GGG CGA AAC GAA GAC TGC TCC ACA CAG CAG CAG CAC ACA GCA GAG CCC TCT CTT CAT TGC ATC CAT GGT-3',SEQ.ID:6. U sens oligomeru je podvučena Kozakova sekvenca. Ovi oligomeri imaju slobodne baze sukladne za vezivanje na sekvence nastale cijepanjem s BgIII. Nakon vezivanja uzvodno se BgIII mjesto uništi dok se nizvodno zadrži za daljnja vezivanja. Spojno mjesto kao i kompletna vodeća sekvenca se provjeravaju sekvencioniranjem DNK. Uz to, s namjerom da se uskladi s konsenzualno optimiziranim vektorom V1Jns ( = V1Jneo s Sfil mjestom), na KpnI mjesto u BGH terminatorskoj regiji V1Jn-tPA stavlja se SfiI restrikcijsko mjesto zatupljivanjem KpnI mjesta s T4 DNK polimerazom praćeno s vezivanjem s SfiI spojnikom (katalog #1138, New England Biolabs). Ova modifikacija je potvrđena s restrikcijskom digestijom i elektroforezom na agaroza gelu. In order to obtain a heterologous peptide leader sequence for secretory or membrane proteins, V1Jns was modified to include the human tissue-specific plasminogen activator (tPA) leader sequence. The two synthetic complementary oligomers were hybridized and then ligated into BgIII-treated V1Jns. Sense and antisense oligomers were: 5'-GATC ACC ATG GAT GCA ATG AAG AGA GGG CTC TGC TGTGTG CTG CTG CTG TGT GGA GCA GTC TTC GTT TCG CCC AGC GA-3', SEQ.ID:5:, and 5'- GAT CTC GCT GGG CGA AAC GAA GAC TGC TCC ACA CAG CAG CAG CAC ACA GCA GAG CCC TCT CTT CAT TGC ATC CAT GGT-3',SEQ.ID:6. In the sense oligomer, the Kozak sequence is underlined. These oligomers have free bases suitable for binding to sequences generated by cleavage with BgIII. After binding, the upstream BgIII site is destroyed, while the downstream one is retained for further binding. The splice site as well as the complete leader sequence are verified by DNA sequencing. Additionally, with the intention of matching the consensus-optimized vector V1Jns ( = V1Jneo with an Sfil site), an SfiI restriction site is inserted into the KpnI site in the BGH terminator region of V1Jn-tPA by blunting the KpnI site with T4 DNA polymerase followed by ligation with an SfiI linker ( catalog #1138, New England Biolabs). This modification was confirmed with restriction digestion and electrophoresis on agarose gel.

F) pGEM-3-X-IRES-B7 F) pGEM-3-X-IRES-B7

( gdje je X = bilo koji antigenični gen ) Kao primjer discistronskog konstrukta za cjepivo koje osigurava koordiniranu ekspresiju gena koji kodiraju imunogen i gena koji kodira imunostimulatorni protein, je mišji B7 gen amplificiran iz B limfomske stanične linije CH 1 (dobivene iz ATCC) PCR-om. B7 je član porodice proteina koji osiguravaju esencijalnu kostimulacij u T stanične aktivacije antigenom u sklopu glavnog kompleksa tkivne podudarnosti I i II. CH I stanice su dobar izvor B7 mRNK jer imaju fenotip da su konstitutivno aktivirane ičB7 se eksprimira prvenstveno u aktiviranim antigen prezentirajućim stanicanma poput stanica i makrofaga. Ove se stanice dalje stimuliraju in vitro uporabom cAMP ili IL-4 i mRNA preparira uporabom standardnih gvanidin tiocijanatnih postupaka.. cDNK sinteza je učinjena uporabom mRNK, koristeći pri tom Gene Amp RNA PCR kit (Perkin-Elmer Cetus) i primer (5’-GTA CCT CAT GAG CCA CAT AAT ACC ATG-3’, SEQ.ID:7:) specifičan za B7 smješten nizvodno od B7 translacijskog otvorenog okvira čitanja (open reading frame). B7 bio je amplificiran PCR-om korištenjem ovih sense i antisense oligomera: 5’-GGT ACA AGA TCT ACC ATG GCT TGC AAT TGT CAG TTG ATG C-3’, SEQ.ID:8:, i 5’-CCA CAT AGA TCT CCA TGG GAA CTA AAG GAA GAC GGT CTG TTC-3’, SEQ.ID:9:. Ovi oligomeri osiguravaju BgIII mjesta restrikcijskog enzima na krajevima insercije kao što Kozakova sekvencija za inicijaciju transacije ima Nco I restrikcijsko mjesto i dodatno Ncol mjesto locirano neposredno prije 3’ terminalnog BgIII mjesta. NcoI digestija je dala fragment pogodan za kloniranje u pGEM-3-IRES-B7, koji je bio razgrađen s Ncol. Rezultantni vektor, pGEM-3-IRES-B7, sadrži IRES-B7 kazetu koja se lako može prenjeti na V1Jns-X, gdje X predstavlja antigen-kodirajući gen- (where X = any antigenic gene) As an example of a discistronic construct for a vaccine that provides coordinated expression of a gene encoding an immunogen and a gene encoding an immunostimulatory protein, the mouse B7 gene was amplified from the B lymphoma cell line CH 1 (obtained from ATCC) by PCR- om. B7 is a member of a family of proteins that provide essential costimulation in T cell activation by antigen within the major histocompatibility complex I and II. CH I cells are a good source of B7 mRNA because they have the phenotype of being constitutively activated and B7 is expressed primarily in activated antigen-presenting cells such as cells and macrophages. These cells are further stimulated in vitro using cAMP or IL-4 and mRNA is prepared using standard guanidine thiocyanate procedures. cDNA synthesis was performed using mRNA, using the Gene Amp RNA PCR kit (Perkin-Elmer Cetus) and primer (5'- GTA CCT CAT GAG CCA CAT AAT ACC ATG-3', SEQ.ID:7:) specific for B7 located downstream of the B7 translational open reading frame. B7 was amplified by PCR using the following sense and antisense oligomers: 5'-GGT ACA AGA TCT ACC ATG GCT TGC AAT TGT CAG TTG ATG C-3', SEQ.ID:8:, and 5'-CCA CAT AGA TCT CCA TGG GAA CTA AAG GAA GAC GGT CTG TTC-3', SEQ.ID:9:. These oligomers provide BgIII restriction enzyme sites at the ends of the insertion as the Kozak translation initiation sequence has an NcoI restriction site and an additional NcoI site located just before the 3' terminal BgIII site. NcoI digestion yielded a fragment suitable for cloning into pGEM-3-IRES-B7, which was digested with NcoI. The resulting vector, pGEM-3-IRES-B7, contains an IRES-B7 cassette that can be easily transferred to V1Jns-X, where X represents the antigen-encoding gene-

G) pGEM-3-IRES-GM-CSF G) pGEM-3-IRES-GM-CSF

(gdje je X bilo koji antigenični gen) Ovaj vektor sadrži kazetu analognu onoj opisanoj u stavku C iznad osim što je upotrijebljen gen za imunostimulatorne citokine , GM-CSF, umjesto B7. GM-CSF je diferencijacijski i stimulacijski citokin makrofaga koji pokazano je stimulira potentne antitumorske aktivnosti T stanica in vivo /G.,Dranof i sur., Proc Natl Acad Sci USA, 90, 3539 (1993). (where X is any antigenic gene) This vector contains a cassette analogous to that described in C above except that the gene for the immunostimulatory cytokine, GM-CSF, is used instead of B7. GM-CSF is a macrophage differentiation and stimulatory cytokine that has been shown to stimulate potent antitumor activities of T cells in vivo / G., Dranof et al., Proc Natl Acad Sci USA, 90, 3539 (1993).

H) pGEM-3-X-IRES-IL-12 H) pGEM-3-X-IRES-IL-12

(gdje je X bilo koji antigenični gen) Ovaj vektor sadrži kazetu analognu onoj opisanoj u odlomku C, osim što je umjesto B7 upotrijebljen gen za imunostimulatorni citokin IL-12. IL-12 pokazalo se, ima utjecaja na usmjeravanje imunog odgovora prema celularnom, u kome dominiraju T-stanice, prema humoralnom./L. Alfonso i sur.,Science, 263, 253, 1994/. (where X is any antigenic gene) This vector contains a cassette analogous to that described in paragraph C, except that the gene for the immunostimulatory cytokine IL-12 is used instead of B7. IL-12 has been shown to have an effect on directing the immune response towards cellular, dominated by T-cells, towards humoral./L. Alfonso et al., Science, 263, 253, 1994/.

PRIMJER 2 EXAMPLE 2

Priprema vektora V1R Preparation of the V1R vector

U pokušaju da se poboljša osnovni vektor cijepljenja, izrađen je kao izvedenica vektora V1Jns, vektor označen V1R. Svrha ove vektorske konstrukcije je bilo da se dobije što je manji mogući vektor cjepiva, bez nepotrebnih DNK sekvenci, koji bi i dalje zadržao optimizirane karakteristike ekspresije heterolognih gena i visoke prinose plazmida koje postižu V1J i V1Jns. Iz literature kao i iz eksperimenta je utvrđeno da : 1) se regije unutar pUC osnovice koje imaju osnovicu replikacije E.Coli , mogu ukloniti bez da plazmid dobiven od bakterija bude pogođen (2) se 3’-područje kanr gena koje slijedi otvoreni okvir čitanja, može ukloniti ako se bakterijski terminator vrati na mjesto; i, (3)cca.300 bp od 3’kraja BGH terminatora se može ukloniti bez da se utječe na njegovu funkciju regulacije (slijedi izvornom mjestu restrikcijskog enzima KpnI u BGH elementu). In an attempt to improve the basic vaccination vector, a derivative of the V1Jns vector, designated V1R, was created. The purpose of this vector construction was to obtain the smallest possible vaccine vector, without unnecessary DNA sequences, which would still retain the optimized characteristics of heterologous gene expression and high plasmid yields achieved by V1J and V1Jns. From the literature as well as from the experiment, it was determined that: 1) the regions within the pUC base that have the base of replication of E.Coli can be removed without affecting the plasmid obtained from the bacteria (2) the 3'-region of the kanr gene that follows the open reading frame , can be removed if the bacterial terminator is returned to the site; and, (3) approx. 300 bp from the 3' end of the BGH terminator can be removed without affecting its regulatory function (it follows the original site of the restriction enzyme KpnI in the BGH element).

V1R je bio konstruiran uporabom PCR da bi se sintetiziralo tri segmenta DNKčiz V1Jns koji predstavljaju CMVintA promotor/BGH terminator, početno mjesto replikacije, i elemente rezistencije na kanamicin. Korištenjem PCR oligomera svakom su kraju segmenta dodani restrikcijski enzimi jedinstveni za svaki segment: SspI i XhoI za CMVintA/BGH; EcoRV i BamHI za kanr gen; i, Bcll i Sall za orir. Ova enzimska mjesta su odabrana zato jer omogućavaju usmjereno vezivanje segmenata dobivenih PCRom uz posljedični gubitak svakog mjesta. EcoRV i SspI ostavljaju mjesta zatupljenih krajeva koja su kompatibilna za vezivanje, dok BamHI i Bcll ostavljaju komplementarne slobodne baze kao i Sall i XhoI. Nakon dobivanja ovih segmenata PCRom svaki se segment obradi s odgovarajućim restrikcijskim enzimom naznačenim gore i zatim se vežu međusobno u jednoj zajedničkoj reakcijskoj smjesi koja sadrži sva tri segmenta DNK. 5’-kraj orir je dizajniran da uključi T2 rho nezavisnu terminatorsku sekvencu koja se normalno nalazi u ovom području tako da može dati terminatorsku informaciju za gen kanamicinske rezistencije. Ligirani produkt se provjerava digestijom restrikcijskim enzimima(>8 enzima) kao i DNK sakvencioniranjem veznih spojeva. DNK . Prinosi DNK plazmida i heterologna ekspresija uporabom virusnih gena u u VIR slični su onima kod V1Jns. Neto smanjenje veličine vektora je bilo 1346 bp (V1Jns= 4,86 kb; V1R = 3,52 kb). V1R was constructed using PCR to synthesize three segments of DNA from V1Jns representing the CMVintA promoter/BGH terminator, origin of replication, and kanamycin resistance elements. Using PCR oligomers, restriction enzymes unique to each segment were added to each end of the segment: SspI and XhoI for CMVintA/BGH; EcoRV and BamHI for the kanr gene; i, Bcll and Sall for orir. These enzyme sites were chosen because they allow directed ligation of PCR-derived segments with consequent loss of each site. EcoRV and SspI leave blunt end sites compatible for binding, while BamHI and Bcll leave complementary free bases as do SalI and XhoI. After obtaining these segments by PCR, each segment is treated with the appropriate restriction enzyme indicated above and then they are linked to each other in one common reaction mixture containing all three DNA segments. The 5'-end orir was designed to include a T2 rho-independent terminator sequence normally found in this region so that it can provide terminator information for the kanamycin resistance gene. The ligated product is checked by digestion with restriction enzymes (>8 enzymes) as well as by DNA sequencing of the binding compounds. DNA. Plasmid DNA yields and heterologous expression using viral genes in VIR are similar to those of V1Jns. The net reduction in vector size was 1346 bp (V1Jns = 4.86 kb; V1R = 3.52 kb).

Sekvence PCR oligomera upotrijebljene da bi se sintetizirao V1R (podcrtana su mjesta za restrikcijske enzime naznačene u zagradi nakon sekvence): PCR oligomer sequences used to synthesize V1R (restriction enzyme sites indicated in parentheses after the sequence are underlined):

(1) 5’-GGT ACA AAT ATT GG CTA TTG GCC ATT GCA TAC G-3’(Sspl), SEQ.ID:10: (1) 5'-GGT ACA AAT ATT GG CTA TTG GCC ATT GCA TAC G-3'(Sspl), SEQ.ID:10:

(2) 5’-CCA GAT CTC GAG GAA CCG GGT CAA TTC TTC AGC ACC-3’(Xhol), SEQ.ID:11: (2) 5'-CCA GAT CTC GAG GAA CCG GGT CAA TTC TTC AGC ACC-3'(Xhol), SEQ.ID:11:

(za CMVintA/BGH segment) (for CMVintA/BGH segment)

(3) 5’-GGT ACA GAT ATC GGA AAG CCA AGT TGT GTC TCA AAA TC-‘3 (EcoRV), SEQ.ID:12: (3) 5'-GGT ACA GAT ATC GGA AAG CCA AGT TGT GTC TCA AAA TC-'3 (EcoRV), SEQ.ID:12:

(4) 5’-CCA GAT GGA TCC G TAA TGC TCT GCC AGT GTT ACA ACC-3’(BamHI), SEQ.ID:13: (4) 5'-CCA GAT GGA TCC G TAA TGC TCT GCC AGT GTT ACA ACC-3'(BamHI), SEQ.ID:13:

(za segment gena rezistencije na kanamicin) (for the kanamycin resistance gene segment)

(5) 5’-GGT ACA TGA TCA CGT AGA AAA GAT CAA AGG ATC TTC TTG-3’ (Bcll), SEQ.ID:14:, (5) 5'-GGT ACA TGA TCA CGT AGA AAA GAT CAA AGG ATC TTC TTG-3' (Bcll), SEQ.ID:14:,

(6) 5’-CCA CAT GTC GAC CC GTA AAA AGG CCG CGT TGC TGG-3’(Sall), SEQ.ID:15: (6) 5'-CCA CAT GTC GAC CC GTA AAA AGG CCG CGT TGC TGG-3'(Sall), SEQ.ID:15:

(dio za početak replikacije E. Coli) (part to start the replication of E. Coli)

PRIMJER 3 EXAMPLE 3

Stanice, virusi i stanične kulture Cells, viruses and cell cultures

VERO, BHK-21 i RD stanice su dobivene od ATCC. Virus je bio rutinski dobiven infekcijom gotovo konfluentnih VERO i BHK stanica s mnogostrukošću infekcije (m.o.i.) na 37°C u malom volumenu medija bez fetalnog bovinog seruma (FBS). Nakon jednog sata, virusni se inokulum ukloni i kultivira ponovo hranjen s puno glukoze DMEM uz dodatak 2% toplinom aktiviranog FBS, 2mM L-glutamina, 25mM HEPES, 50 U/ml penicilina i 50 µ.g/ml streptomicina. Inkubacija je bila nastavljena sve dok citopatski uinak nije bio jako izražen: obično 24-48 sati.Virusi iz stanica su prikupljeni centrifugiranjem na 1800 x g / 10 minuta na 4°C. Supernatant s virusima je bio razbistren centrifugirnjem na 1800x g / 10 min / 4°C. VERO, BHK-21 and RD cells were obtained from ATCC. Virus was routinely obtained by infection of nearly confluent VERO and BHK cells at multiplicity of infection (m.o.i.) at 37°C in a small volume of medium without fetal bovine serum (FBS). After one hour, the viral inoculum is removed and cultured again in high-glucose DMEM supplemented with 2% heat-activated FBS, 2mM L-glutamine, 25mM HEPES, 50 U/ml penicillin and 50 µg/ml streptomycin. Incubation was continued until the cytopathic effect was very pronounced: usually 24-48 hours. Viruses from the cells were collected by centrifugation at 1800 x g / 10 minutes at 4°C. The supernatant with viruses was clarified by centrifugation at 1800x g / 10 min / 4°C.

PRIMJER 4 EXAMPLE 4

Kloniranje i prepariranje DNA Cloning and preparation of DNA

HSV-2 (Curtis) DNK za uporabu kao matrica za PCR je priređena iz nukleokapside izolirane iz inficirane VERO stanice.( Denniston, K.J. i sur., 1981, gen, 15, s.365-378) Sintetski oligomeri koji odgovaraju 5’ i 3’ krajnjim sekvencama za HSV2 gB, gC, gD ili ICP27 gene, s sadržanim BgII restrikcijskim mjestima za prepoznavanje (Midland Certified Reagent Companv; Midland Texas) su upotrijebljeni u količini od po 20 pmol. Fragment od 1,1 kb koji kodira gD gen je bio amplificiran s PCR (Perkin Elmer Cetus, La Jolla) prema specifikaciji proizvođača osim što je umjesto dGTP bila upotrijebljena deaza dGTP: dGTP u omjeru 1:4, puferu je pridodano 3mM MgCl2- HSV-2 genomska DNK matrica je bila upotrijebljena u količini 100ng/ 100µl reakcijske smjese. PCR-om umnoženi fragmenti su bili iscijepani s Bgl II i potom ligirani na defosforilirani vektor V1J obrađen s Bgl II (Montgomerv, D.L. i sur., supra). E. Coli DH5α (BRL-Gibco, Gaithersburg,Md.) je bila transformirana prema specifikaciji proizvođača. Kolonije otporne na penicilin su bile probrane hibridizacijom s 3’PCR primjerom označenim s 32p Plazmidi kandidati su bili naznačeni restrikcijskim mapiranjem i sekvencioniranjem spojeva vektora i insercija, uporabom Sequenase DNA Sequencing Kit, version 2.0 (Unated States Biochemical). Na sličan su način umnoženi 2,7 Kb fragment koji kodira gB gen, 1,5 Kb fragment kojim kodira gC gen, i 1,6 Kb fragment koji kodira ICP27 gen. Nezavisno proizvedeni izolati su bili identificirani i naznačeniču odnosu na prisustvo ispravnog DNK konstrukta koji sadrži gB, gC, gD ili ICP27 gen. HSV-2 (Curtis) DNA for use as a template for PCR was prepared from a nucleocapsid isolated from an infected VERO cell. (Denniston, K.J. et al., 1981, gen, 15, p.365-378) Synthetic oligomers corresponding to the 5' and 3' end sequences for the HSV2 gB, gC, gD, or ICP27 genes, containing BgII restriction sites for recognition (Midland Certified Reagent Companv; Midland Texas) were used at 20 pmol each. The 1.1 kb fragment encoding the gD gene was amplified by PCR (Perkin Elmer Cetus, La Jolla) according to the manufacturer's specification, except that instead of dGTP, dGTP:dGTP dease was used in a 1:4 ratio, and 3 mM MgCl2- HSV was added to the buffer. -2 genomic DNA matrix was used in the amount of 100ng/100µl reaction mixture. The PCR-amplified fragments were digested with Bgl II and then ligated into the Bgl II-treated dephosphorylated V1J vector (Montgomerv, D.L. et al., supra). E. Coli DH5α (BRL-Gibco, Gaithersburg, Md.) was transformed according to the manufacturer's specification. Colonies resistant to penicillin were screened by hybridization with a 32p-labeled 3'PCR primer. Candidate plasmids were identified by restriction mapping and sequencing of vector junctions and inserts, using the Sequenase DNA Sequencing Kit, version 2.0 (United States Biochemical). A 2.7 Kb fragment encoding the gB gene, a 1.5 Kb fragment encoding the gC gene, and a 1.6 Kb fragment encoding the ICP27 gene were similarly amplified. Independently produced isolates were identified and indicated for the presence of the correct DNA construct containing the gB, gC, gD or ICP27 gene.

Proizvodnja DNK u velikoj količini bila je u biti kao prethodno opisana (Montgomerv, D.L. i sur.,supra) osim što su 800 ml kulture bile inkubirane 24 do 48 sati a za neke je eksperimente DNK bila pročišćena jednostrukim CsCl-EtBr izosfinkičkim centrifugiranjem u gradijentu gustoće. Large-scale DNA production was essentially as previously described (Montgomerv, D.L. et al., supra), except that 800 ml cultures were incubated for 24 to 48 hours, and for some experiments DNA was purified by a single CsCl-EtBr isosphincic gradient centrifugation. density.

Konstrukcije plazmi da su bile naznačene restrikcijskim mapiranjem i analizom sekvencije spojeva vektora i insercija. Rezultati su bili u skladu s publiciranim podacima o sekvenciji HSV-2 soj G (Laskz, L.A. i sur., 1984, DNA, 3, 23-29) i pokazali da su u svakom konstruktu inicijacijski i terminacijski kodom bili intaktni. Plasmid constructs were indicated by restriction mapping and sequence analysis of vector junctions and insertions. The results were consistent with published HSV-2 strain G sequence data (Laskz, L.A. et al., 1984, DNA, 3, 23-29) and showed that the initiation and termination codons were intact in each construct.

PRIMJER 5 EXAMPLE 5

Ekspresija HSV-2gB, gC, gD i ICP27 proteina iz V1J plazmida Expression of HSV-2gB, gC, gD and ICP27 proteins from V1J plasmid

Stanice rabdomiosarkma (ATCC CCL136) su bile uzgojene dan prije uporabe do gustoće od 1,2x106 stanica na 9,5 cm2 bunarića na klasterima tkivnih kultura s šest bunarića u DMEM uz visoku konc. glukoze, obogaćen s 10% toplinski inaktiviranim serumom fetusa goveda, 2 m M L-glutamina, 25 mM HEPES, 50 U/ml penicilina i 50µg/ml streptomicina (svi od BRL Gibco). Fenol:kloroform ekstrahirana, cezij klorid pročišćena plazmidska DNK je bila precipitirana s kalcij fosfatom uz korištenje Pharmacia CellPhect reagents prema uputama iz kita osim što je upotrijebljeno 5-15µg za svakih 9,5 mm2 bunarića RD stanica. Kulture su bile tretirane glicerolom šest sati nakon dodatka kalcij-fosfat-DNK precipitata; nakon ponovnog hranjenja, kulture su inkubirane dva dana prije sakupljanja. Rhabdomyosarcoma cells (ATCC CCL136) were grown the day before use to a density of 1.2x106 cells per 9.5 cm2 well on six-well tissue culture clusters in DMEM with high conc. glucose, supplemented with 10% heat-inactivated fetal bovine serum, 2 mM L-glutamine, 25 mM HEPES, 50 U/ml penicillin, and 50 µg/ml streptomycin (all from BRL Gibco). Phenol:chloroform extracted, cesium chloride purified plasmid DNA was precipitated with calcium phosphate using Pharmacia CellPhect reagents according to kit instructions except that 5-15µg was used for each 9.5 mm2 well of RD cells. Cultures were treated with glycerol six hours after the addition of calcium-phosphate-DNA precipitate; after refeeding, cultures were incubated for two days before collection.

Lizati transficiranih kultura su bili preparirani u 1 X RIPA (0.5% SDS,1,0% TRITON X-100, 1,0% natrij deoksikolata, 1mM EDTA, 150 mM NaCl, 25 mM TRIS-HCl pH 7,4) obogaćen s 1µM leupeptina, 1µM pepstatina, 300 mM aprotinina i 10(aM TLCK i kratko podvrgnut ultrazvuku da bi se smanjila viskoznost. Lizati su razdvojeni elektroforezom na 10% Tricinskim gelovima (Novex) i potom preneseni na nitrocelulozne membrane. Imunoblot je napravljen s HSV-2 konvalescentnih mišjih seruma i razvijen s ECL detekcijskim kitom (Amersham). Lysates of transfected cultures were prepared in 1 X RIPA (0.5% SDS, 1.0% TRITON X-100, 1.0% sodium deoxycholate, 1 mM EDTA, 150 mM NaCl, 25 mM TRIS-HCl pH 7.4) supplemented with 1µM leupeptin, 1µM pepstatin, 300mM aprotinin and 10(aM TLCK and briefly sonicated to reduce viscosity. Lysates were separated by electrophoresis on 10% Tricine gels (Novex) and then transferred to nitrocellulose membranes. Immunoblotting was done with HSV-2 convalescent mouse sera and developed with an ECL detection kit (Amersham).

Ekspresija HSVgD iz V1J:gD je bila demonstrirana prolaznom transfekcijom RD stanica: Lizati transficiranih ili lažno transficiranih s V1J:gD stanica su frakcionirani s SDS PAGE i analizirani imunoblotom. Slika 1A pokazuje da V1J:gD transficrane RD stanice eksprimiraju imunoreaktivni protein koji je izgleda molkularne mase oko 55K. Lizati HSV-2 (Curtis), HSV-"(186) ili lažno inficiranih Vero stanica su prikazani za usporedbu. Identična migracija kloniranih gD i i autentični protein iz inficirane stanice da je protein pune dužine i da je procesiran i glikoziliran slično kao gD u HSV-inficiranoj stanici. HSVgD expression from V1J:gD was demonstrated by transient transfection of RD cells: Lysates of transfected or mock-transfected V1J:gD cells were fractionated by SDS PAGE and analyzed by immunoblot. Figure 1A shows that V1J:gD transfected RD cells express an immunoreactive protein that appears to have a molecular weight of about 55K. Lysates of HSV-2 (Curtis), HSV-"(186), or mock-infected Vero cells are shown for comparison. Identical migration of cloned gD and the authentic protein from the infected cell is the full-length protein and is processed and glycosylated similarly to gD in HSV - the infected cell.

Indirektna imunoflorescencija fiksiranih V1J:gD stanica pokazuje difuzni citoplazmatski signal. Indirect immunofluorescence of fixed V1J:gD cells shows a diffuse cytoplasmic signal.

Ekspresija HSV gB u V1JNS:gB je prikazana prolaznom transfekcijom RD stanica. Lizati V1J: g B -transficiranih ili lažno transficiranih ostanica su bili frakcionirani isa SDS PAGE i analizirani imunoblotom. Slika 1B pokazuje da V1JNS:gb transficirane RD stanice eksprimiraju imunoreaktivni protein molekularne mase oko 140 k. Lizati iz HSV-2(Curtis) , HSV 2 (186), ili lažno inficiranih stanica su uključeni radi usporedbe. Slične migracije kloniranih gB i autentični proteina iz inficirane stanice pokazuju da je protein pune dužine. Neizravna imunoflorescencija fiksiranih V1JNS:gB transficiranih stanica pokazuje točkasti uz membranu vezani signal. Ekspresija HSV gC u V1JigC pokazana je prolaznom transfekcijom RD stanica. Neizravna imunoflorescencija fiksiranih V1J:gC transficiranih stanica pokazala je prvenstveno difuzni citoplazmatski signal. Expression of HSV gB in V1JNS:gB was demonstrated by transient transfection of RD cells. Lysates of V1J:g B -transfected or mock-transfected residues were fractionated by SDS PAGE and analyzed by immunoblot. Figure 1B shows that V1JNS:gb transfected RD cells express an immunoreactive protein with a molecular weight of about 140 k. Lysates from HSV-2(Curtis), HSV 2 (186), or mock-infected cells were included for comparison. Similar migrations of the cloned gB and the authentic protein from the infected cell indicate that the protein is full length. Indirect immunofluorescence of fixed V1JNS:gB transfected cells shows a punctate membrane-bound signal. Expression of HSV gC in V1JigC was demonstrated by transient transfection of RD cells. Indirect immunofluorescence of fixed V1J:gC transfected cells showed a primarily diffuse cytoplasmic signal.

Ekspresija ICP27 je prikazana prolaznom transfekcijom RD stanica, popraćenom s Western blot analizom. Mišja monoklonalna protutijela specifična za ICP27 su otkrila protein od oko 60 kDa , što je u skladu s glavnim imunoreaktivnim proteinom u stanicama inficiranim s HSV 2 (Slika 1C). ICP27 expression was demonstrated by transient transfection of RD cells, followed by Western blot analysis. Mouse monoclonal antibodies specific for ICP27 detected a protein of about 60 kDa, which is consistent with the major immunoreactive protein in cells infected with HSV 2 (Figure 1C).

PRIMJER 6 EXAMPLE 6

Imunizacija s PNV i otkrivanje anti-HSV protutijela Immunization with PNV and detection of anti-HSV antibodies

Pet do šest tjedana stare ženke miševa BALB/c su bile anestezirane mješavinom 5 mg ketamin HCl (Aveco, Fort Dodge,IA) i 0,5 mg ksilazina (Mobley Corp., Shawnee, KS.) u fiziološkoj otopini. Stražnje su im noge obrijane električnim škarama i oprane s 70% etanolom. Životinjama je injicirano ukupno 100 µl DNK otopljene u fiziološkoj otopini: u svaku nogu po 50 µl. Five- to six-week-old female BALB/c mice were anesthetized with a mixture of 5 mg ketamine HCl (Aveco, Fort Dodge, IA) and 0.5 mg xylazine (Mobley Corp., Shawnee, KS.) in saline. Their hind legs were shaved with electric scissors and washed with 70% ethanol. The animals were injected with a total of 100 µl of DNA dissolved in physiological solution: 50 µl in each leg.

Sposobnost V1J: g D DNK da potakne imuni odgovor na HSV gD je najprije ispitana u titracijskom eksperimentu. Grupe od po deset miševa su primile doze i.m. injekcija DNK u rasponu od 200 µg do 0,78 µg (8 dvostrukih razrijeđenja) ili su bile lažno imunizirane s fiziološkom otopinom. Protutijela dobivena 4-6 tjedana nakon imunizacije su analizirana ELISA-om. Za ELISA, HSV-2 glikoprotein je razrijeđen do 5 µg/ml u 50 mM karbonatnom puferu pH 9,5. Nunc Maxi-sorb ploče ravnog dna s 96 udubljenja su preko noći presvučene na 4°C s 100µl HS V-glikoproteina po udubljenju. Ploče su oprane četiri puta s PBS pH 7,2 i nespecifična je reaktivnost smanjena blokirajućim i razrijeđujućim puferom, 20 mM TRIS-HCl pH 7,5, 137 mM NaCl, 2,7 mM KCl, 0,5 % želatine, 0.05 % Tween 20 kroz jedan sat na sobnoj temperaturi. Dodana su serijska razrijeđenja mišjih seruma te su ploče inkubirane na sobnoj temperaturi jedan sat. Ploče su oprane četiri puta s PBS i jednom s destiliranom vodom prije dodatka kozjeg anti-mišjeg IgG označenog s alkalnom fosfatazom (Boehringer Mannheim, Inedianapolis, IN) i inkubirane jedan sat na sobnoj temperaturi. Suvišna sekundarna protutijela su uklonjena s četiri ispiranja PBS om uz jedno naknadno s destiliranom vodom. ELISA je razvijena dodatkom 100 µl po udubini 1 mg/ml p-nitrofenilfosfata u 10% dietanolaminu pH 9,8 100µg/ml MgCl·6 H2O na 37°C. Apsorbancija je očitana na 405 nm a serumska su razrijeđenja ubrajana u pozitivna ako je OD405 bio veći od srednje vrijednosti plus tri standardne devijacije, iste otopine kontrole. Tijekom četiri tjedna većina je životinja koja je primila ≥ 6,25 µg DNK bila pozitivna. Pri dozama manjim od 6,25ug došlo je do serokonverzije u manjeg broja životinja no i kod najmanjih doza neke su životinje bile ELISA pozitivne. Nijedna od životinja koje su primile otopinu soli nije bila pozitivna. Nakon šest tjedana glavnina životinja je postala seropozitivna. The ability of V1J:gD DNA to induce an immune response to HSV gD was first tested in a titration experiment. Groups of ten mice each received doses of i.m. injection of DNA ranging from 200 µg to 0.78 µg (8-fold dilutions) or were mock immunized with saline. Antibodies obtained 4-6 weeks after immunization were analyzed by ELISA. For ELISA, HSV-2 glycoprotein was diluted to 5 µg/ml in 50 mM carbonate buffer pH 9.5. Nunc Maxi-sorb flat-bottom 96-well plates were coated overnight at 4°C with 100 µl HS V-glycoprotein per well. Plates were washed four times with PBS pH 7.2 and non-specific reactivity was reduced with blocking and dilution buffer, 20 mM TRIS-HCl pH 7.5, 137 mM NaCl, 2.7 mM KCl, 0.5% gelatin, 0.05% Tween 20 for one hour at room temperature. Serial dilutions of mouse sera were added and the plates were incubated at room temperature for one hour. Plates were washed four times with PBS and once with distilled water before addition of alkaline phosphatase-labeled goat anti-mouse IgG (Boehringer Mannheim, Inedianapolis, IN) and incubated for one hour at room temperature. Excess secondary antibodies were removed by four washes with PBS followed by one with distilled water. ELISA was developed by adding 100 µl per well of 1 mg/ml p-nitrophenylphosphate in 10% diethanolamine pH 9.8 100 µg/ml MgCl·6 H2O at 37°C. Absorbance was read at 405 nm and serum dilutions were counted as positive if the OD405 was greater than the mean plus three standard deviations of the same control solution. Over four weeks, the majority of animals receiving ≥ 6.25 µg of DNA were positive. At doses lower than 6.25 µg, seroconversion occurred in a smaller number of animals, but even at the lowest doses, some animals were ELISA positive. None of the animals that received the saline solution tested positive. After six weeks, the majority of animals became seropositive.

Sedmog tjedna životinje su reimunizirane istim dozama DNK (ili otopinom soli) upotrijebljenoj prilikom prvog davanja. Serumi su prikupljeni desetog tjedna (tri tjedna nakon sekundarne injekcije) a krajnji titrovi su određeni ELISA-om. Rezultati su sažeti u Tabeli 1. Desetog tjedna je bilo 93% injiciranih miševa seropozitivno. Čak pri dozi od 0.78 µg, je osam od deset životinja bilo pozitivno. At the seventh week, the animals were reimmunized with the same doses of DNA (or saline) used during the first administration. Sera were collected at the tenth week (three weeks after the secondary injection) and the final titers were determined by ELISA. The results are summarized in Table 1. At the tenth week, 93% of the injected mice were seropositive. Even at a dose of 0.78 µg, eight out of ten animals were positive.

Serokonverzija miševa imuniziranih s V1J:gD DNKa Seroconversion of mice immunized with V1J:gD DNA

[image] [image]

a- Miševi su imunizirani 0 sedmi tjedan s označenom količinom DNK. Serumi su prikupljeni desetog tjedna i pretraživani kao što je opisano, u tekstu. a- Mice were immunized at week seven with the indicated amount of DNA. Sera were collected at week 10 and screened as described in the text.

b- U svrhu računanja GMT, serumima negativnim pri najnižem testiranom razrjeđenju su pripisane vrijednosti jednake jednom razrjeđenju manje., tj., 1:10. b- For the purpose of calculating GMT, sera negative at the lowest dilution tested were assigned values equal to one dilution less, ie, 1:10.

Da bi se potvrdilo da je ELISA reaktivnost bila prisutna poradi anti-gD protutijela, nekoliko je seruma s visokim ELISA titrovima naznačeno prema njihovoj reaktivnosti s imunoblotom lizata stanica inficiranih ili lažno inficiranih s HSV. Slika 2A pokazuje da serum V1J:gD imuniziranog miša reagira specifično s jednim HSV kodiranim proteinom čija elektroforetska mobilnost odgovara onoj HSV gD. Sveukupno gledajući ovi podaci ukazuju na to da i.m. injekcija V1J:gD DNK mišu rezultira ekspresijom gD epitopa i nastankom imunološkog odgovora na gD protein. To confirm that the ELISA reactivity was due to anti-gD antibodies, several sera with high ELISA titers were indicated by their reactivity with an immunoblot of HSV-infected or mock-infected cell lysates. Figure 2A shows that serum from a V1J:gD immunized mouse reacts specifically with a single HSV-encoded protein whose electrophoretic mobility matches that of HSV gD. Overall, these data indicate that i.m. injection of V1J:gD DNA into a mouse results in the expression of the gD epitope and the generation of an immune response to the gD protein.

Da bi se dobili dodatni podaci te utvrdila minimalna učinkovita doza PNV, V1J:gD je titriran dalje u eksperimentu gdje su životinje imunizirane samo jednom. Skupinama miševa je injicirano V1J:gD DNK u rasponu od 5 ng do 50 µg. Serumi prikupljeni četiri, sedam i deset tjedana poslije imunizacije su analizirani ELISA-om; ti su podaci sabrani u Slici 3. To obtain additional data and determine the minimum effective dose of PNV, V1J:gD was further titrated in an experiment where animals were immunized only once. Groups of mice were injected with V1J:gD DNA ranging from 5 ng to 50 µg. Sera collected four, seven and ten weeks after immunization were analyzed by ELISA; these data are collected in Figure 3.

Ovom je titracijom ustanovljen prag odgovora od oko 0,5 µg DNK. Iako je nekoliko životinja koje su primile niže doze bilo pozitivno ELISA-om, pozitivni je odgovor bio prolazan i javljao se samo pri najmanjim razrjeđenjima seruma. Kod doza DNK od ≥ 1,67 µg, došlo je do serokonverzij e kod više od 90% životinja nakon 4 tjedna, koje su ostale pozitivne sedmog i desetog tjedna. This titration established a response threshold of about 0.5 µg of DNA. Although a few animals receiving the lower doses were positive by ELISA, the positive response was transient and occurred only at the lowest serum dilutions. At DNA doses of ≥ 1.67 µg, seroconversion occurred in more than 90% of animals after 4 weeks, which remained positive at weeks seven and ten.

Porast titra protutijela u pojedinih životinja odražava se porastom grupnih GMT-ova što se vidi na Slici 3. Kod doza ≥0.5 µg, GMT raste naglo između četvrtog i desetog tjedna. Između sedmog i desetog tjedna , titrovi rastu ili ostaju isti u svima osim u jednom slučaju. Titrovi ELISA nakon deset tjedana kod životinja koje su primile ≥0,5µg su slični onima dobivenim u prethodnom eksperimentu gdje je dana i druga doza DNK. Količina PNV dovoljna da izazove imuni odgovor je bila 100-puta manja od objavljenih izvještaja u kojima su korišteni slični vektori.(Robinson i sur., 1993, Vaccine, 11, s. 957-960; Fynan i sur., 1993, Proc Natl Acad Sci USA, 90, s. 11478-11482). The increase in antibody titer in individual animals is reflected by the increase in group GMTs, which can be seen in Figure 3. At doses ≥0.5 µg, GMTs increase sharply between the fourth and tenth weeks. Between the seventh and tenth week, titers rise or remain the same in all but one case. ELISA titers after ten weeks in animals receiving ≥0.5 µg are similar to those obtained in the previous experiment where a second dose of DNA was given. The amount of PNV sufficient to elicit an immune response was 100-fold less than published reports using similar vectors. (Robinson et al., 1993, Vaccine, 11, pp. 957-960; Fynan et al., 1993, Proc Natl Acad Sci USA, 90, pp. 11478-11482).

Da bi se ustanovio standardizirani protokol , uspoređivane su imunizacije jednom i dvijema dozama. U eksperimentu s dvije doze, nije nađena značajna razlika u zaštiti između najviše (200µg) i najniže (0,78 µg) doze. Kada je titracija proširena na eksperiment s jednom dozom, promatrao se odgovor po dozi za ELISA GMT, pokazujući učinkovitost u serokonverziji i zaštiti. Prag ovih odgovora je bio oko 0,5 µg. Iako serokonverzija se javlja i kod tako malih količina kao što je 50 ng DNK. Općenito, titrovi su nastavili rasti tijekom deset tjedana nakon jednostruke injekcije a u dvo-doznom eksperimentu nije bilo očitog porasta u titrovi m a nakon druge injekcije. Konačno pri dozi od 50µg DNK, zajedničkoj za oba eksperimenta , nije bilo značajnih razlika između primjene jedne ili dvije doze. In order to establish a standardized protocol, immunizations with one and two doses were compared. In a two-dose experiment, no significant difference in protection was found between the highest (200 µg) and the lowest (0.78 µg) dose. When the titration was extended to a single-dose experiment, a dose-response was observed for the GMT ELISA, demonstrating efficacy in seroconversion and protection. The threshold of these responses was around 0.5 µg. Although seroconversion occurs with amounts as small as 50 ng of DNA. In general, titers continued to rise for ten weeks after a single injection and in the two-dose experiment there was no apparent increase in m a titers after the second injection. Finally, at a dose of 50 µg of DNA, common to both experiments, there were no significant differences between the administration of one or two doses.

Slične analize ovoj prikazanoj gore su bile učinjene za PNV konstrukcije koje su sadržavale HSV gene gB i gC. Miševi (10 po grupi) su bili imunizirani kao što je opisano gore s DNK koja sadržiHSV gB ili HSV gC gen. Serum se prikupljao i analizirao na prisustvo anti-gB ili anti-gC protutijela ELISA testom opisanim gore. Rezultati ELISA za anti-gB su prikazani u Tabeli 2, i pokazuju da su miševi imunizirani s V1JNS:gB seropozitivni za anti-gB protutijela. Similar analyzes to those shown above were performed for PNV constructs containing the HSV genes gB and gC. Mice (10 per group) were immunized as described above with DNA containing the HSV gB or HSV gC gene. Serum was collected and analyzed for the presence of anti-gB or anti-gC antibodies by the ELISA test described above. Anti-gB ELISA results are shown in Table 2, and show that mice immunized with V1JNS:gB are seropositive for anti-gB antibodies.

[image] [image]

Rezultati ELISA za gC protutijela su prikazani u tabeli 3, i pokazuju da su miševi imunizirani s V1J:gC seropozitivni za anti-gC protutijela. ELISA results for gC antibodies are shown in Table 3, and show that mice immunized with V1J:gC are seropositive for anti-gC antibodies.

[image] [image]

Kako bi se potvrdilo da je ELISA reaktivnost za gB nastala poradi prisutnih anti-gB protutijela, nekoliko je seruma s visokim ELISA titrom naznačeno prema njihovoj reaktivnosti s imunoblotom lizata stanica inficiranih ili lažno inficiranih s HSV. Slika 2B pokazuje da serumi miševa imuniziranih s V1JNS:gB reagiraju specifično s jednim HSV kodiranim proteinom elektroforetske pokretljivosti u skladu s onom HSV gB. Sve u svemu, ovi podaci pokazuju da i.m. injiciranje HSV PNV miševima dovodi do ekspresije HSV epitopa i razvoja imunog odgovora na te HSV proteine. To confirm that the ELISA reactivity for gB was due to the presence of anti-gB antibodies, several sera with high ELISA titers were indicated by their immunoblot reactivity with HSV-infected or mock-infected cell lysates. Figure 2B shows that sera from mice immunized with V1JNS:gB react specifically with a single HSV-encoded protein with an electrophoretic mobility consistent with that of HSV gB. Overall, these data show that i.m. injection of HSV PNV mice leads to the expression of HSV epitopes and the development of an immune response to these HSV proteins.

PRIMJER 7 EXAMPLE 7

HSV Neutralizacija HSV Neutralization

Mišji su serumi inaktivirani toplinom pri 56°C 30 minuta, prije serijskog razrijeđivanja u DMEM, 2% toplinom inaktiviranom FBS nakon čega je po 50 µl svakog razrjeđenja uneseno u dvostruke udubine na sterilnoj ploči s 96 udubina.(Marsh Biomedical, Rochester, N.Y.). Šarže HSV1 ili HSV2, zatim su razrijeđene do 4000 pfu/ml, zatim se 50µl virusa dodalo u svaku udubinu za probu te se ploča inkubirala preko noći na 4°C. Svakoj se udubini dodalo 50 µl komplementa zamorčića (Cappel) razrijeđenog u DMEM, 2% toplinom inaktiviranom FBS. Nakon jednog sata inkubacije na 37°C, svakoj se udubini dodalo 100 µl medija bez seruma te se svaka reakcijska smjesa upotrijebila za infekciju konfluentnih VERO stanica na cluster pločama s 12 udubina(Costar). Neutralizirani uzorci virusa su adsorbirani jedan sat na 37°C. Inokuli su pažljivo usisani a jednosloj prekriven s 1 ml 0,5% karboksimetilcelulozom 1X MEM 5% toplinom inaktiviranog FBS, 10 mM 1-glutamina, 25 U/ml penicilina, 25 µg/ml streptomicina, 12,5 mM HEPES. Ploče su inkubirane na 37°C kroz 48 sati. Pokrov je uklonjen i stanični su jednoslojevi obojeni s 1% baznog fuksina, 50% metanola i 10% fenola. Prebrojani su plakovi i određen je neutralizacijski titar određen kao razrijeđenje sertuma koje dovodi do 50% smanjenja broja plakova u usporedbi s lažno imuniziranim mišem. Mouse sera were heat-inactivated at 56°C for 30 minutes, before serial dilution in DMEM, 2% heat-inactivated FBS, after which 50 µl of each dilution was placed in duplicate wells of a sterile 96-well plate. (Marsh Biomedical, Rochester, N.Y.) . Batches of HSV1 or HSV2 were then diluted to 4000 pfu/ml, then 50 µl of virus was added to each assay well and the plate was incubated overnight at 4°C. 50 µl of guinea pig complement (Cappel) diluted in DMEM, 2% heat-inactivated FBS was added to each well. After one hour of incubation at 37°C, 100 µl of serum-free medium was added to each well and each reaction mixture was used to infect confluent VERO cells in 12-well cluster plates (Costar). Neutralized virus samples were adsorbed for one hour at 37°C. The inocula were carefully aspirated and covered in a monolayer with 1 ml of 0.5% carboxymethylcellulose 1X MEM 5% heat-inactivated FBS, 10 mM 1-glutamine, 25 U/ml penicillin, 25 µg/ml streptomycin, 12.5 mM HEPES. The plates were incubated at 37°C for 48 hours. The coverslip was removed and cell monolayers were stained with 1% basic fuchsin, 50% methanol, and 10% phenol. Plaques were counted and the neutralization titer determined as the serum dilution leading to a 50% reduction in the number of plaques compared to a mock-immunized mouse.

Da bi se odredilo mogu li anti-gD protutijela biti biološki aktivna, ispitivala se HSV-2 neutralizirajuća aktivnost seruma s visokim titrom nakon desetog tjedna od miša imuniziranog nultog i sedmog tjedna. Rezultati analize redukcije plakova nalaze se u Tabeli 4. Serumi miševa imuniziranih s V1J:gD su neutralizirali ne samo HSV-2(Curtis) nego i HSV-2(186). Štoviše, barem su neki serumi sadržavali neutralizirajuća protutijela zajedničkog tipa, što je dokazano njihovom neutralizacijomHSV-1(KOS) infektivnosti. Iako su neutralizacijski titrovi u nekim slučajevima bili niski, ovi su nas rezultati potakli da vidimo da li ova anti-gD protutijela mogu štititi životinje od letalne HSV infekcije. To determine whether anti-gD antibodies may be biologically active, the HSV-2 neutralizing activity of high-titer post-week 10 serum from mice immunized at week 0 and week 7 was examined. The results of the plaque reduction assay are shown in Table 4. Sera from mice immunized with V1J:gD neutralized not only HSV-2(Curtis) but also HSV-2(186). Moreover, at least some sera contained neutralizing antibodies of the common type, as evidenced by their neutralization of HSV-1(KOS) infectivity. Although neutralization titers were low in some cases, these results prompted us to see if these anti-gD antibodies could protect animals from lethal HSV infection.

Serum od desetog tjedna svih životinja imuniziranih s ≥0,5 µg V1J:gD u eksperimentu s jednom dozom su također ispitivani analizom redukcije plakova HSV-2. Dvadesetidevet od četrdesetidevet ispitivanih seruma bilo je pozitivno: >50% redukcija plakova pri razrijeđenju od 1:10. Pri dozi od 16,7 i 50 µg, devet od deset seruma iz svake grupe je bilo neutralizacijski pozitivno. Ten-week serum from all animals immunized with ≥0.5 µg V1J:gD in a single-dose experiment were also examined by HSV-2 plaque reduction assay. Twenty-nine out of forty-nine tested sera were positive: >50% plaque reduction at 1:10 dilution. At the dose of 16.7 and 50 µg, nine out of ten sera from each group were neutralization positive.

[image] [image]

PRIMJER 8 EXAMPLE 8

Test izlaganja HSV-u HSV exposure test

šarže virusa za test izlaganja su pripremljene infekcijom konfluentnog VERO jednosloja s HSV-2 Curtis kako je prethodno opisano. Razbistren i supernatant virusa je titriran na VERO stanicama te su alikvoti spremljeni na -70°C. Životinje su inficirane i.p. injekcijom s 0,25 ml virusne šarže i zatim promatrane tri tjedna. Podaci o preživljavanju su analizirani uporabom "log-rank" testa (McDermot i sur., 1989, Virology, 169, s.244-247) u SAS® postupku LIFETEST. Razlike u vjerojatnosti ≤0,001 su bile ocjenjene kao jako značajne. challenge virus lots were prepared by infecting a confluent VERO monolayer with HSV-2 Curtis as previously described. Clarified virus supernatant was titrated on VERO cells and aliquots were stored at -70°C. Animals were infected i.p. injection with 0.25 ml of viral batch and then observed for three weeks. Survival data were analyzed using the log-rank test (McDermot et al., 1989, Virology, 169, p.244-247) in the SAS® procedure LIFETEST. Differences in probability ≤0.001 were considered highly significant.

Jedanaest tjedana nakon početne injekcije DNK, su miševi imunizirani dvijema dozama V1J:gD bili izloženi i.p. injekciji 105.7p.f.u. HSV-2(Curtis) i promatrani tijekom 21 dana. Podaci o preživljavanju su u Slici 4. Odmah je jasno da su životinje imunizirane s tako malo DNK kao što je 0,78 µg V1J:gD bili značajno zaštićeni od letalne infekcije. Od tri uginule životinje koje su bile imunizirane, dvije su bile seronegativne ELISA-om desetog tjedna. Nekoliko preživjelih životinja je pokazivalo znakove prolazne bolesti uključujući nemogućnost timarenja, nemogućnost napredovanja ili pogrbljeni položaj. Dok je nivo zaštite od smrti kod te doze DNK bio značajan (p≤0.01), ovi simptomi govore da je ipak došlo do stanovitog izbijanja infekcije. Analiza seruma dobivenih od konvalescentnih životinja je bila naznačena njihovom reakcijom u imunoblotima lizata HSV-2 inficiranih VERO stanica. U nekim je slučajevima serum prepoznavao samo gD, a u drugim je reagirao s mnogim HSV proteinima. Ovi su rezultati u skladu barem s nekim miševima koji su bili inficirani HSV-om. Eleven weeks after the initial DNA injection, mice immunized with two doses of V1J:gD were challenged i.p. injection 105.7 p.f.u. HSV-2(Curtis) and observed for 21 days. Survival data are in Figure 4. It is immediately clear that animals immunized with as little DNA as 0.78 µg V1J:gD were significantly protected from lethal infection. Of the three animals that died that were immunized, two were seronegative by ELISA at the tenth week. Several surviving animals showed signs of transient illness including inability to groom, inability to move forward, or a hunched position. While the level of protection against death at that dose of DNA was significant (p≤0.01), these symptoms indicate that there was still some outbreak of infection. Analysis of sera obtained from convalescent animals was indicated by their reaction in immunoblots of lysates of HSV-2 infected VERO cells. In some cases the serum recognized only gD, and in others it reacted with many HSV proteins. These results are consistent with at least some mice being infected with HSV.

Životinje imunizirane jednom dozom su bile izložene kao što je prije opisano. Podatke o preživljavanju prikazujeSlika 5. Statistički značajna zaštita (p≤,001) od smrti je postignuta u skupini životinja koje su primile ≥1,67 µg V1J:gD. Ta doza preživljenja je nalik onoj viđenoj kod ELISA titra (Sl.3). Kao i u eksperimentu s dvije doze, nekoliko je preživjelih životinja pokazivalo prolazne znakove bolesti tijekom razdoblja promatranja. Preživjele životinje imunizirane višim dozama DNK (16,7 i 50µg ) su ostale dotjerane i zdravog izgleda tijekom razdoblja promatranja. Animals immunized with a single dose were challenged as previously described. Survival data are shown in Figure 5. Statistically significant protection (p≤.001) from death was achieved in the group of animals receiving ≥1.67 µg V1J:gD. This dose of survival is similar to that seen in the ELISA titer (Fig.3). As in the two-dose experiment, the few surviving animals showed transient signs of disease during the observation period. Surviving animals immunized with higher doses of DNA (16.7 and 50 µg) remained trim and healthy-looking throughout the observation period.

Životinje imunizirane s PNV konstruktima koji sadrže HSV gB ili gC gene bile su također izložene letalnoj dozi HSV na način opisan ranije za gD. Podaci o preživljenju životinja imuniziranih s V1JNS:gB su prikazani na Slici 6, a podaci o preživljavanju životinja imuniziranih s V1J:gC su prikazani na Slici 7 pokazujući da je postignuta zaštita od smrti. Animals immunized with PNV constructs containing HSV gB or gC genes were also challenged with a lethal dose of HSV in the manner described earlier for gD. Survival data for animals immunized with V1JNS:gB are shown in Figure 6 and survival data for animals immunized with V1J:gC are shown in Figure 7 showing that protection from death was achieved.

Ovi rezultati pokazuju potencijal izravne DNK imunizacije u prevenciji HSV infekcije. Uporabom glikoproteina gD kao modela, našlo se da jedna i.m. injekcija samo 0,5 µg V1J:gD DNK izaziva neutralizirajući odgovor protutijela na gD koji je postigao statistički značajnu zaštitu protiv letalnog izlaganja HSV-u. Imunizacija s samo 3,13 ng DNK u dvije doze je zaštitila životinje od smrti. These results demonstrate the potential of direct DNA immunization in the prevention of HSV infection. Using glycoprotein gD as a model, it was found that one i.m. injection of as little as 0.5 µg of V1J:gD DNA elicited a neutralizing antibody response to gD that achieved statistically significant protection against lethal HSV exposure. Immunization with only 3.13 ng of DNA in two doses protected the animals from death.

PRIMJER 9 EXAMPLE 9

Cijepljenje zamorčića s HSV PNV Vaccination of guinea pigs with HSV PNV

Zamorčići soja Hartley (Harlan Sprague Dawley Labs, Indianapolis, IN), svaki težine oko 200-250 g su bili cijepljeni intramuskularno 0,1 ml u desno bedro i 0,1 mj u lijevo bedro 11 i 4 tjedna prije izlaganja virusu. Sviježe otopine cjepiva i placeba su nam slane za svako cijepljenje. Hartley guinea pigs (Harlan Sprague Dawley Labs, Indianapolis, IN), each weighing about 200-250 g were vaccinated intramuscularly with 0.1 ml in the right thigh and 0.1 ml in the left thigh 11 and 4 weeks before exposure to the virus. Fresh vaccine and placebo solutions are sent to us for each vaccination.

U cilju određivanja proizvodnje protutijela na HSV-2 kod životinja, zamorčićima je uzeta krv 5 tjedana nakon prve i dva tjedna nakon drugog cijepljenja.. Krv je prikupljena (0,6-1 ml po životinji) odsjecanjem prstiju na nogama. Krv je skupljana u mikroseparacijske epruvetice (Becton Dickinson) te je kasnije centrifugirana na 1000xg kroz 10 min da bi se odvojio serum. In order to determine the production of antibodies to HSV-2 in animals, blood was taken from guinea pigs 5 weeks after the first and two weeks after the second vaccination. Blood was collected (0.6-1 ml per animal) by cutting off the toes. Blood was collected in microseparation tubes (Becton Dickinson) and later centrifuged at 1000xg for 10 min to separate the serum.

Prikupljeni serumi zamorčića su analizirani ELISA testom na prisutnost anti-HSV protutijela kao što je prikazano u primjeru 6. Rezultati su prikazani u Tabeli 5. The collected guinea pig sera were analyzed by ELISA for the presence of anti-HSV antibodies as shown in Example 6. The results are shown in Table 5.

[image] [image]

U vrijeme infekcije je težina zamorčića iznosila po 600-700 grama. Bili su inficirani intravaginalno s herpes simplex virusom tipa 2(HSV-2), sojem E194. To je postignuto postupkom u tri stupnja. Prvo je vagina svake životinje trljana pamučnim aplikatorom umočenim u 0,1 N NaOH kroz 5 sekundi. Taj postupak iritira vaginalnu stjenku tako da se infekcija bolje primi. Otprilike 45-60 minuta kasnije je svaka vagina suho očišćena 5 sekundi. Zatim je aplikator uronjen u virusni medij (oko 5x106 jedinica HSV-2 koje stvaraju plakove po mililitru) upotrijebljen za trljanje svakog zamorčića kroz 20 sekundi. Aplikacija je vršena nježnim pomicanjem aplikatora naprijed i natrag. At the time of infection, the weight of the guinea pigs was 600-700 grams. They were infected intravaginally with herpes simplex virus type 2 (HSV-2), strain E194. This was achieved through a three-stage process. First, the vagina of each animal was rubbed with a cotton applicator dipped in 0.1 N NaOH for 5 seconds. This procedure irritates the vaginal wall so that the infection is better received. Approximately 45-60 minutes later, each vagina was dry cleaned for 5 seconds. Then, an applicator dipped in viral medium (about 5x106 plaque-forming units of HSV-2 per milliliter) was used to rub each guinea pig for 20 seconds. The application was done by gently moving the applicator back and forth.

Zbir lezija je određivan 2-15 dana poslije infekcije. Zbir 1+ označava da je zahvaćeno oko 25% analno vaginalnog područja. (obično crvenilom neposredno oko vagine); 2+ označava da je zahvaćeno oko50% analno-vagibnalnog područja; 3+ označava zahvaćenost od 75%; 4+ označava zahvaćenost od 100%. Budući su neke životinje umrle broj lezija je određivan blizu dana smrti i promatran do 15. dana. Da to nije učinjeno zbir bi se lezija mogao naizgled smanjivati budući su najteže oboljele životinje uginule. The number of lesions was determined 2-15 days after infection. A score of 1+ indicates that about 25% of the anus-vaginal area is affected. (usually redness immediately around the vagina); 2+ indicates that about 50% of the anal-vaginal area is affected; 3+ indicates 75% involvement; 4+ indicates 100% coverage. Since some animals died, the number of lesions was determined close to the day of death and observed until the 15th day. If this had not been done, the total number of lesions could have apparently decreased since the most severely affected animals died.

Smrti su bilježene dnevno 21. dan. U izračunavanju srednjeg dana smrti su uzeti u obzir samo uginuli zamorčići. Broj životinja s paralizom udova je bilježen cijelim tijekom infekcije. Vaginalni titar virusa je dobiven titracijom virusa dobivenih iz vaginalnih briseva, 2 ,4, i 6 dana nakon inokulacije virusa. Brisevi su stavljeni u epruvete s 1 ml medija stanične kulture. Titracija ovih uzoraka je provedena na Vero stanicama na pločama s 96 udubljenja. Izračunavanje titrova je užinjeno metodom 50% krajnjeg razrjeđenja po Reed L.J. i Muench M., Am J Hyg 27, 493-498(1938). Virusni su titrovi izraženi kao log10 infekcijske doze stanižne kulture po mililitru. Deaths were recorded daily on the 21st day. In calculating the mean day of death, only dead guinea pigs were taken into account. The number of animals with limb paralysis was recorded throughout the infection. Vaginal virus titer was obtained by titration of viruses obtained from vaginal swabs, 2, 4, and 6 days after virus inoculation. Swabs were placed in test tubes with 1 ml of cell culture medium. Titration of these samples was performed on Vero cells in 96-well plates. Titers were calculated using the 50% final dilution method according to Reed L.J. and Muench M., Am J Hyg 27, 493-498 (1938). Viral titers are expressed as log10 infectious dose of cell culture per milliliter.

Statistička interpretacija preživljavanja (Fisher-ov egzaktni test), srednji dan smrti(Mann-Whitney U test), paraliza(Fisher-ov egzaktni test), vaginalnog titra virusa(Mann-Whitney U test), i zbir vaginalnih lezija(Mann-Whitney U test) su napravljenim odvojenim dvjema analizama. Statistical interpretation of survival (Fisher's exact test), median day of death (Mann-Whitney U test), paralysis (Fisher's exact test), vaginal viral titer (Mann-Whitney U test), and sum of vaginal lesions (Mann-Whitney In the test) were made by separate two analyses.

Slika 8 prikazuje rezultate preživljavanja, srednji dan smrti, paralize i vaginalne titrove virusa u zamorčića zaraženih s HSV-2. Visoke doze cjepiva su prevenirale smrt i smanjile vaginalni titar virusa 2 i 4 dan u usporedbi s kontrolnom skupinom. Visoke doze cjepiva značajno su prevenirale paralizu kod ovih životinja. Niže su doze cjepiva također smanjile te pokazatelje. Figure 8 shows the results of survival, median day of death, paralysis, and vaginal viral titers in HSV-2-infected guinea pigs. High doses of vaccine prevented death and reduced vaginal virus titers on days 2 and 4 compared to the control group. High doses of the vaccine significantly prevented paralysis in these animals. Lower vaccine doses also reduced these indicators.

Tabela 7 prikazuje dnevne zbirove vaginalnih lezija iz eksperimenta. I niže i više doze cjepiva su dovele do znatnog smanjenja zbira vaginalnih lezija od 3 do 15 dana infekcije u usporedbi s kontrolnom placebo skupinom.. Rezultati u tabeli 7 su grafički prikazani na slici 9. Table 7 shows daily collections of vaginal lesions from the experiment. Both lower and higher doses of the vaccine led to a significant reduction in the sum of vaginal lesions from 3 to 15 days of infection compared to the control placebo group. The results in Table 7 are graphically presented in Figure 9.

Ovi rezultati jasno pokazuju da je cjepivo zaštitna za zamorčiće inficirane HSV-2, kao i da su visoke doze djelotvornije od niskih. Visoke doze cjepiva nisu mogle potpuno spriječiti infekciju, budući da je virus dobiven iz cijepljenih, a razvile su se i vaginalne lezije niskog stupnja. Ipak, stupanj zaštite postignut ovim dozama je bio znatan. Rezultati ispitivanja protutijela koreliraju sa stupnjem zaštite od virusa. These results clearly show that the vaccine is protective for HSV-2 infected guinea pigs and that high doses are more effective than low doses. High doses of the vaccine could not completely prevent infection, since the virus was obtained from the vaccinated, and low-grade vaginal lesions also developed. Nevertheless, the degree of protection achieved by these doses was considerable. Antibody test results correlate with the degree of protection against the virus.

Cjepivo dano zamorčićima intramuskularno, u dvije različite doze 11 i 4 tjedna prije intravaginalnog izlaganja HSV-2, značajno je zaštitilo životinje od bolesti. Visoka je doza cjepiva bila učinkovitija od niske. Cjepivo se čini sigurnim kod životinja. The vaccine given to guinea pigs intramuscularly, in two different doses 11 and 4 weeks before intravaginal exposure to HSV-2, significantly protected the animals from the disease. The high dose of the vaccine was more effective than the low dose. The vaccine appears safe in animals.

[image] [image]

a Intramuskularna cijepljenja su dana 11 i 4 tjedna prije izlaganja virusu a Intramuscular vaccinations were given 11 and 4 weeks before exposure to the virus

b Poslije virusne inokulacije b After viral inoculation

* P<0,05, ** P<0,01, *** P<0,001. * P<0.05, ** P<0.01, *** P<0.001.

PRIMJER 10 EXAMPLE 10

Da bi se odredilo da li će miševi cijepljeni intramuskularno s PNV HSV proizvoditi mukozna protutijela specifična za HSV, cijepljeni su miševi s 12,5 ili 1,56 µg V1JNS:gD. Brisom je sakupljena vaginalna tekućina i protutijela su isprana s brisa uporabom fiz. otopine puferirane fosfatom. Ispirak je ispitan na prisustvo IgG i IgA specifičnih za HSV-2 protein. Napravljena je ELISA kao što je prethodno opisano samo što su upotrijebljena komercijalno dostupna protutijela specifična za mišje IgG(Boehringer) i specifična za mišje IgA(Seralab) da bi se ustanovilo prisustvoHSV-specifičnih IgG i IgA u uzorcima iz mišje vagine. Rezultati za IgG su prikazani na Tabeli 8; IgA nije nađen ni kod jedne životinje. To determine whether mice vaccinated intramuscularly with PNV HSV would produce HSV-specific mucosal antibodies, mice were vaccinated with 12.5 or 1.56 µg of V1JNS:gD. Vaginal fluid was collected with a swab and antibodies were washed from the swab using phys. phosphate buffered solutions. The wash was tested for the presence of IgG and IgA specific for the HSV-2 protein. An ELISA was performed as previously described except that commercially available antibodies specific for mouse IgG (Boehringer) and specific for mouse IgA (Seralab) were used to detect the presence of HSV-specific IgG and IgA in mouse vaginal samples. The results for IgG are shown in Table 8; IgA was not found in any animal.

[image] [image]

Rezultati pokazuju prisutnost mukoznih IgG specifičnih za HSV-2 kod miševa cijepljenih s V1J:gD. The results show the presence of mucosal IgG specific for HSV-2 in mice vaccinated with V1J:gD.

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] [image]

[image] [image]

Claims (11)

1. Polinukleotid koji izaziva stvaranje anti-HSV protutijela ili zaštitnog imunog odgovora nakon unošenja u tkivo kralježnjaka, naznačen time, što taj polinukleotid sadrži jedan ili više gen koji kodiraju jedan ili više HSV proteina ili njihovih funkcionalnih ekvivalenata, a navedeni geni su operativno vezani za transkripcij ski promotor.1. A polynucleotide that induces the formation of anti-HSV antibodies or a protective immune response after introduction into vertebrate tissue, characterized by the fact that said polynucleotide contains one or more genes encoding one or more HSV proteins or their functional equivalents, and said genes are operatively linked to transcriptional promoter. 2. Polinukleotid iz zahtjeva 1, naznačen time, da navedeni gen kodira HSV protein izabran iz grupe koju čine gB, gC, gD, gH, gL, ICP27 i njihovi funkcionalni ekvivalenti.2. The polynucleotide of claim 1, characterized in that said gene encodes an HSV protein selected from the group consisting of gB, gC, gD, gH, gL, ICP27 and their functional equivalents. 3. Metoda za izazivanje stvaranja imunog odgovora kod kralježnjaka protiv HSV epitopa, naznačena time, da obuhvaća unošenje između 1 ng do 5 mg polinukleotida iz zahtjeva 1 u tkivo kralježnjaka.3. A method for inducing the generation of an immune response in a vertebrate against an HSV epitope, characterized in that it comprises introducing between 1 ng and 5 mg of the polynucleotide of claim 1 into the vertebrate tissue. 4. Cjepivo za poticanje imunih odgovora, naznačeno time, da obuhvaća polinukleotid iz zahtjeva 1 i farmakološki prihvatljivi nosač.4. A vaccine for stimulating immune responses, characterized in that it comprises the polynucleotide of claim 1 and a pharmacologically acceptable carrier. 5. Metoda za izazivanje imunoloških odgovora protiv HSV , naznačena time, što obuhvaća unošenje jednog ili više izoliranih i pročišćenih HSV gena u tkivo kralježnjaka izazivajući imunološki odgovor koji spriječava HSV infekciju i/ili ublažava HSV bolest.5. A method for inducing immune responses against HSV, characterized in that it comprises the introduction of one or more isolated and purified HSV genes into vertebrate tissue, inducing an immune response that prevents HSV infection and/or alleviates HSV disease. 6. Polinukleotid, naznačen time, što obuhvaća: a) eukariotski transkripcijski promotor; b) otvoreni okvir čitanja operativno vezan na rečeni promotor, koji kodira jedan ili više HSV epitopa i signal za završetak translacije; i c) opcionalno sadrži jedan ili više operativno vezanih IRES, jedan ili više otvoreni okvir čitanja koji kodira jedan ili više dodatnih gena, i jedan ili više signal za prestanak transkripcije.6. Polynucleotide, indicated by the fact that it includes: a) eukaryotic transcription promoter; b) an open reading frame operably linked to said promoter, which encodes one or more HSV epitopes and a translation termination signal; and c) optionally contains one or more operably linked IRES, one or more open reading frames encoding one or more additional genes, and one or more transcription termination signals. 7. Polinukleotid iz zahtjeva 6, naznačen time, što su navedeni dodatni geni iz c) imunomodulacijski ili imunostimulacijski geni odabrani iz grupe koju čine GM-CSF, IL-12, interferon i članovi B7 porodice proteina kostimulatora T-stanica.7. The polynucleotide of claim 6, indicated by the fact that said additional genes from c) are immunomodulating or immunostimulating genes selected from the group consisting of GM-CSF, IL-12, interferon and members of the B7 family of T-cell costimulator proteins. 8. Polinukleotid iz zahtjeva 6, naznačen time, što navedeni HSV gen iz a) kodira HSV protein odabran iz grupe koju čine gB, gC, gD, gH, gL, ICP27 i njihovi funkcionalni ekvivalenti.8. The polynucleotide of claim 6, characterized in that said HSV gene from a) encodes an HSV protein selected from the group consisting of gB, gC, gD, gH, gL, ICP27 and their functional equivalents. 9. Polinukleotid iz zahtjeva 6, naznačen time, što su spomenuti dodatni geni iz c), HSV geni odabrani iz grupe koju čine gB, gC, gD, gH, gL, ICP27 i njihovi funkcionalni ekvivalenti.9. The polynucleotide of claim 6, characterized in that said additional genes from c), HSV genes selected from the group consisting of gB, gC, gD, gH, gL, ICP27 and their functional equivalents. 10. Metoda za tretiranje bolesnika, s potrebom za takovim tretmanom, s polinukleotidom koji potiče stvaranje anti-HSV protutijela ili zaštitnog imunološkog odgovora nakon unošenja u tkivo kralježnjaka, naznačena time, što taj polinukleotid sadrži gen koji kodira jedan ili više HSV proteina ili njihovih funkcionalnih ekvivalenata, a navedeni je gen operativno vezan za transkripcijski promotor.10. A method for treating a patient, in need of such treatment, with a polynucleotide that promotes the formation of anti-HSV antibodies or a protective immune response after introduction into the vertebrate tissue, characterized by the fact that this polynucleotide contains a gene encoding one or more HSV proteins or their functional equivalents, and said gene is operatively linked to a transcriptional promoter. 11. Metoda iz tvrdnje 10, naznačena time, što dotični polinukleotid sadrži gen koji kodira jedan ili više HSV proteina odabranih iz grupe koju čine gB, gC, gD, gH, gL, ICP27 i njihovi funkcionalni ekvivalenti.11. The method of claim 10, characterized in that the respective polynucleotide contains a gene encoding one or more HSV proteins selected from the group consisting of gB, gC, gD, gH, gL, ICP27 and their functional equivalents.
HR08/279,459A 1994-07-22 1995-07-18 A polynucleotide herpes virus vaccine HRP950412A2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US27945994A 1994-07-22 1994-07-22

Publications (1)

Publication Number Publication Date
HRP950412A2 true HRP950412A2 (en) 1997-10-31

Family

ID=23069059

Family Applications (1)

Application Number Title Priority Date Filing Date
HR08/279,459A HRP950412A2 (en) 1994-07-22 1995-07-18 A polynucleotide herpes virus vaccine

Country Status (10)

Country Link
EP (1) EP0772680A1 (en)
JP (1) JPH10503649A (en)
AU (1) AU708460B2 (en)
CA (1) CA2195099A1 (en)
CO (1) CO4410257A1 (en)
HR (1) HRP950412A2 (en)
IL (1) IL114576A0 (en)
WO (1) WO1996003510A1 (en)
YU (1) YU49995A (en)
ZA (1) ZA956106B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849719A (en) * 1993-08-26 1998-12-15 The Regents Of The University Of California Method for treating allergic lung disease
AU738835B2 (en) * 1994-07-22 2001-09-27 Merck & Co., Inc. A polynucleotide herpes virus vaccine
US7094767B2 (en) 1994-07-22 2006-08-22 Merck & Co., Inc. Polynucleotide herpes virus vaccine
JP2001501101A (en) * 1996-10-01 2001-01-30 メルク エンド カンパニー インコーポレーテッド Polynucleotide herpesvirus vaccine
WO1998017689A2 (en) * 1996-10-18 1998-04-30 Valentis Inc. Il-12 gene expression and delivery systems and uses
JP2001503258A (en) * 1996-10-18 2001-03-13 バレンティス・インコーポレーテッド Gene expression and delivery systems and applications
GB9720633D0 (en) * 1997-09-29 1997-11-26 Univ Bristol BHV-2 vector
DE69919984T2 (en) * 1998-02-12 2005-11-17 Wyeth Holdings Corp. INTERLEUKIN-12 AND HERPES SIMPLEX VIRUSANTIGEN CONTAINING VACCINES
US6867000B2 (en) * 2000-12-07 2005-03-15 Wyeth Holdings Corporation Method of enhancing immune responses to herpes
US9012349B1 (en) 2013-11-01 2015-04-21 Ut-Battelle Llc Method of synthesizing bulk transition metal carbide, nitride and phosphide catalysts

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ221298A (en) * 1986-08-01 1990-07-26 Commw Scient Ind Res Org A recombinant vaccine comprising an antigenic polypeptide component together with a lymphokine component
CA2425745C (en) * 1989-03-21 2005-03-29 Philip L. Felgner Expression of exogenous polynucleotide sequences in a vertebrate
DE69019609T2 (en) * 1989-07-07 1995-11-30 Takeda Chemical Industries Ltd Proteins and their production.

Also Published As

Publication number Publication date
AU708460B2 (en) 1999-08-05
EP0772680A1 (en) 1997-05-14
CO4410257A1 (en) 1997-01-09
YU49995A (en) 1998-05-15
CA2195099A1 (en) 1996-02-08
JPH10503649A (en) 1998-04-07
AU3101295A (en) 1996-02-22
IL114576A0 (en) 1995-11-27
ZA956106B (en) 1996-04-10
WO1996003510A1 (en) 1996-02-08

Similar Documents

Publication Publication Date Title
EP0792358B1 (en) A polynucleotide tuberculosis vaccine
Xiang et al. Immune responses to nucleic acid vaccines to rabies virus
JP2016052322A (en) Compositions and methods for vaccinating against hsv-2
US7094767B2 (en) Polynucleotide herpes virus vaccine
US7645455B2 (en) Chimeric lyssavirus nucleic acids and polypeptides
HRP950412A2 (en) A polynucleotide herpes virus vaccine
JP2780961B2 (en) Herpes simplex virus protein and vaccine containing it
EP1171454B1 (en) Chimeric lyssavirus nucleic acids and polypeptides
CA2267645A1 (en) A polynucleotide herpes virus vaccine
AU738835B2 (en) A polynucleotide herpes virus vaccine
US7238672B1 (en) Chimeric lyssavirus nucleic acids and polypeptides
EP1721982B1 (en) Chimeric lyssavirus nucleic acids and polypeptides
CA2205175C (en) A polynucleotide tuberculosis vaccine
WO1996016164A1 (en) Viral preparations, immunogens, and vaccines
WO2000025820A1 (en) Compounds and methods for genetic immunization

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODBI Application refused