HRP940493A2 - Nanbv diagnostics and vaccines - Google Patents

Nanbv diagnostics and vaccines Download PDF

Info

Publication number
HRP940493A2
HRP940493A2 HRP-2138/88A HRP940493A HRP940493A2 HR P940493 A2 HRP940493 A2 HR P940493A2 HR P940493 A HRP940493 A HR P940493A HR P940493 A2 HRP940493 A2 HR P940493A2
Authority
HR
Croatia
Prior art keywords
hcv
sequence
polypeptide
cdna
clone
Prior art date
Application number
HRP-2138/88A
Other languages
Croatian (hr)
Inventor
Michael Houghton
Qui-Lim Choo
George Kuo
Original Assignee
Chiron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from YU213888A external-priority patent/YU48038B/en
Application filed by Chiron Corp filed Critical Chiron Corp
Publication of HRP940493A2 publication Critical patent/HRP940493A2/en
Publication of HRP940493B1 publication Critical patent/HRP940493B1/en

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Peptides Or Proteins (AREA)

Description

Područje tehnike The field of technology

Izum je iz područja biomolekularnog inženjerstva. The invention is from the field of biomolecular engineering.

Tehnički problem Technical problem

Izum se odnosi na materijale i metodologije za upravljanje širenjem Ne-A i Ne-B hepatitis virusne (NANBV) infekcije. Specifičnije, izum se odnosi na dijagnostičke DNA fragmente, dijagnostičke proteine, dijagnostička antitijela i zaštitne antigene i antitijela za etiološki agens NANB hepatitis, npr. hepatitis virus C. The invention relates to materials and methodologies for managing the spread of non-A and non-B hepatitis virus (NANBV) infection. More specifically, the invention relates to diagnostic DNA fragments, diagnostic proteins, diagnostic antibodies and protective antigens and antibodies for the etiological agent of NANB hepatitis, e.g. hepatitis C virus.

Stanje tehnike State of the art

Ne-A, Ne-B hepatitis (NANBH) je prenosiva bolest ili porodica bolesti za koje se vjeruje da ih izaziva virus, i koje se razlikuje od drugih oblika bolesti jetre izazvanih virusom, uključujući one izazvane poznatim hepatitis virusima, npr. hepatitis A virus (HAV), hepatitis B virus (HBV) i delta hepatitis virus (HDV), kao i hepatitis izazvan pomoću citomegalovirusa (CMV) ili Epstein-Barr virusa (EBV). NANBH je prvo identificiran u osoba koje su primile transfuziju. Prijenos s čovjeka na čimpanzu, te serijski prijenos kod čimpanzi, pruža dokaz da je NANBH izazvan prijenosnim infekcijskim agensom ili agensima. Non-A, Non-B hepatitis (NANBH) is a transmissible disease or family of diseases believed to be caused by a virus, and is distinct from other forms of viral liver disease, including those caused by known hepatitis viruses, eg hepatitis A virus (HAV), hepatitis B virus (HBV) and hepatitis delta virus (HDV), as well as hepatitis caused by cytomegalovirus (CMV) or Epstein-Barr virus (EBV). NANBH was first identified in transfusion recipients. Human-to-chimpanzee transmission, and serial transmission in chimpanzees, provides evidence that NANBH is caused by a transmissible infectious agent or agents.

Međutim, prijenosni agens odgovoran za NANBH je još neidentificiran i nepoznat je broj agenasa koji izazivaju bolest. However, the transmissible agent responsible for NANBH is still unidentified and the number of agents that cause the disease is unknown.

Epidemiološka evidencija sugerira da postoje možda tri tipa NANBH: krvnootporni epidemski tip; krvno ili igličasto povezan tip; i sporadično zastupljen tip (zajedničko dobavljen tip). Međutim, broj agenasa koji mogu izazvati NANBH je nepoznat. Epidemiological evidence suggests that there are perhaps three types of NANBH: the blood-resistant epidemic type; blood or needle-connected type; and sporadically represented type (commonly supplied type). However, the number of agents that can cause NANBH is unknown.

Klinička dijagnoza i identifikacija NANBH je ostvarena primarno isključivanjem drugih virusnih obilježivača. Među korištenjem metodama za detektiranje navodnog NANBH antigena i antitijela su agar-gel difuzija, protivimunoelektroforeza, imunofluorescentna mikroskopija, imunoelektronska mikroskopija, radioimunoispitivanja i enzim-vezujuće imunosorbent ispitivanje. Međutim, nijedna od ovih analiza nije dovoljno osjetljiva, specifična i reproduktivna da bi se koristila kao dijagnostički test na NANBH. Clinical diagnosis and identification of NANBH was achieved primarily by excluding other viral markers. Among the methods used to detect the putative NANBH antigen and antibody are agar-gel diffusion, counterimmunoelectrophoresis, immunofluorescence microscopy, immunoelectron microscopy, radioimmunoassays, and enzyme-linked immunosorbent assay. However, none of these assays are sufficiently sensitive, specific, and reproducible to be used as a diagnostic test for NANBH.

Zasada nije jasno niti je suglasno kako indentificirati ili specificirati antigen antitijelo sustave koji su povezani sa agensima NANBH. Ovo je izazvano, bar djelomično, prethodnom HBV ili istovremeno infekcijom individua sa NANBH i integracijom HBV DNA u genomu jetrenih ćelija. Dodatno, postoji mogućnost da je NANBH izazvan pomoću više od jednog infekcijskom agensa, kao i mogućnost da NANBH ne bude dijagnosticiran. Osim toga, nejasno je što serološka ispitivanja detektiraju u serumu pacijenta sa NANBH. Pretpostavljeno je da agar-gel difuzija i protivimunoelektroforezna ispitivanja detektiraju autoimune odgovore ili nespecifične proteinske interakcije koje ponekad postoje između serumskih vrsta, i koje ne predstavljaju specifične NANBV antijeg-antitijelo reakcije. Imunofluorecentna i enzim-vezujuća imunosorbent i radioimunoispitivanja javljaju se u detekciji niskih razina materijala sličnog reumatoidnog faktora koji je često prisutan u serumu pacijenta sa NANBH kao i kod pacijenta sa drugim hepatičnim i nehepatičnim bolestima. Neke od detektiranih reaktivnosti mogu predstavljati antitijelo prema citoplazmatskim antigenima određenog domaćina. So far, it is not clear or agreed upon how to identify or specify antigen-antibody systems that are associated with NANBH agents. This is caused, at least in part, by previous HBV or simultaneous infection of individuals with NANBH and integration of HBV DNA into the liver cell genome. Additionally, there is the possibility that NANBH is caused by more than one infectious agent, as well as the possibility that NANBH may go undiagnosed. In addition, it is unclear what serological tests detect in the serum of a patient with NANBH. Agar-gel diffusion and anti-immunoelectrophoresis assays have been hypothesized to detect autoimmune responses or non-specific protein interactions that sometimes exist between serum species, and which do not represent specific NANBV antigen-antibody reactions. Immunofluorescent and enzyme-linked immunosorbent assays and radioimmunoassays are used to detect low levels of rheumatoid factor-like material that is often present in the serum of patients with NANBH as well as in patients with other hepatic and nonhepatic diseases. Some of the detected reactivities may represent antibodies against cytoplasmic antigens of a specific host.

Postoje brojni kandidati NANBV-a. Vidi, na primjer radove Princa (1983). Feinstona i Hoofnagle-a (1984) i Overby-a (1985, 1986, 1987) i članke Iwarsona (1987). Međutim, nema dokaza da neki od ovih kandidata predstavlja etiološki agens NANBH-a. There are numerous NANBV candidates. See, for example, the works of Princ (1983). Feinston and Hoofnagle (1984) and Overby (1985, 1986, 1987) and articles by Iwarson (1987). However, there is no evidence that any of these candidates represent the etiological agent of NANBH.

Zahtjev za osjetljivim, specifičnim metodama za testiranje i indentificiranje nosilaca NANBV i krvi ili krvnih produkata zagađenih sa NANBV je značajan. Posttransfuzijski hepatitisi (PTH) javljaju se u oko 10% pacijenata i NANBH se računa da iznosi 90% ovih slučajeva. Glavni problem ove bolesti je često progresivno, čak i kronično oštećenje jetre (25%-55%). The demand for sensitive, specific methods to test and identify carriers of NANBV and blood or blood products contaminated with NANBV is significant. Post-transfusion hepatitis (PTH) occurs in about 10% of patients and NANBH is estimated to account for 90% of these cases. The main problem of this disease is often progressive, even chronic liver damage (25%-55%).

Briga o pacijentu kao i prevencija prijenosa NANBH-a putem krvi i krvnih produkata ili bliskim osobnim kontaktom zahtijeva pouzdane dijagnostičke i prognostičke metode za detektiranje nukleinskih kiselina, antigena i antitijela prema NANBV-u. Dodatno, postoji također potreba za djelotvornim cjepivima i imunoterapeutskim sredstvima za prevenciju i/ili tretman bolesti. Patient care as well as prevention of transmission of NANBH through blood and blood products or close personal contact requires reliable diagnostic and prognostic methods for detecting nucleic acids, antigens and antibodies against NANBV. Additionally, there is also a need for effective vaccines and immunotherapeutic agents for disease prevention and/or treatment.

Opis izuma s primjerima Description of the invention with examples

Izum se odnosi na izoliranje i karakteriziranje novootkrivenog etiolopkog agensa NANBH, hepatitis C virusa (HCV). Specifičnije, izum osigurava porodicu cDNA replikata dijelova HCV genoma. Ovi cDNA replikati su izolirani tehnikom koja uključuje novi stupanj testiranja ekspresivnih produkata iz cDNA biblioteke stvorene iz određenog agensa u inficiranom tkivu sa serumom pacijenata sa NANBH radi detektiranja novosintetiziranog antigena izvedenog iz genoma dosad neizoliranog i nekarakteriziranog virusnog agensa, i od odabirajućih klonova koji proizvode produkte koji reagiraju imunološki samo sa serumom iz inficirane osobe u usporedbi sa neinficiranim osobama. The invention relates to the isolation and characterization of the newly discovered etiologic agent of NANBH, hepatitis C virus (HCV). More specifically, the invention provides a family of cDNA replicates of portions of the HCV genome. These cDNA replicates were isolated by a technique involving a novel step of testing expression products from a cDNA library generated from a specific agent in infected tissue with serum from patients with NANBH to detect a newly synthesized antigen derived from the genome of a previously unisolated and uncharacterized viral agent, and from selecting clones that produce products that they react immunologically only with serum from an infected person compared to uninfected persons.

Studije prirode genoma HCV, koji koriste probe izvedene iz HCV cDNA, kao i sekvence informacije sadržane u HCV cDNA, sugerira da je HCV flavivirus ili virus sličan ovom. Studies of the nature of the HCV genome, using probes derived from HCV cDNA, as well as sequence information contained in HCV cDNA, suggest that HCV is a flavivirus or a virus similar to it.

Dijelovi cDNA sekvenci izvedenih iz HCV su korisni kao probe radi dijagnoze prisutnosti virusa u uzorcima, i radi izoliranja prirodno zastupljenih varijanti virusa. Ove cDNA također stvaraju dostupne polipeptidne sekvence HCV antigena kodiranih u HCV genomu (genomima) i dozvoljava produkciju poliupeptida koji su korisni kao standardi ili reagensi u dijegnostičkim testovima i/ili kao komponente cjepiva. Antitijela, poliklonska i monoklonska, usmjerena protiv HCV epitopa sadržanog u ovim polipeptidnim sekvencama su također korisna za dijagnostičke testove, kao terapeutska sredstva, za testiranje antivirusnih agenasa i za izoliranje NANBV agenasa iz kojih se izvode ove cDNA. Dodatno, korištenjem proba izvedenih iz ovih cDNA moguće je izolirati i sekvence drugih dijelova HCV genoma, dajući tako porast dodatnih proba i polipeptida koji su korisni u dijagnozi i tretmanu, profilatičkog i terapeutskog NANBH. Portions of cDNA sequences derived from HCV are useful as probes for diagnosing the presence of the virus in samples, and for isolating naturally occurring variants of the virus. These cDNAs also make available the polypeptide sequences of the HCV antigens encoded in the HCV genome(s) and allow the production of polypeptides that are useful as standards or reagents in diagnostic tests and/or as vaccine components. Antibodies, polyclonal and monoclonal, directed against the HCV epitope contained in these polypeptide sequences are also useful for diagnostic tests, as therapeutic agents, for testing antiviral agents, and for isolating NANBV agents from which these cDNAs are derived. Additionally, using probes derived from these cDNAs, it is possible to isolate the sequences of other parts of the HCV genome, thus providing an increase in additional probes and polypeptides that are useful in the diagnosis and treatment, prophylactic and therapeutic NANBH.

Stoga, s obzirom na polinukleotide, neki aspekti izuma su: pročišćeni HCV polinukleoid; rekombinantni HCV polinukleotid; rekombinantni polinukleotid koji obuhvaća sekvencu izvedenu iz HCV genoma ili iz HCV cDNA; rekombinantni polinukleotid koji kodira epitop HCV; rekombinantni vektor koji kodira neki od gornjih rekombinantnih polinukleotida i stanica domaćina transformirana s nekim od ovih vektora. Therefore, with respect to polynucleotides, some aspects of the invention are: purified HCV polynucleoid; recombinant HCV polynucleotide; a recombinant polynucleotide comprising a sequence derived from the HCV genome or from HCV cDNA; a recombinant polynucleotide encoding an HCV epitope; a recombinant vector encoding any of the above recombinant polynucleotides and a host cell transformed with any of these vectors.

Drugi aspekti izuma su: rekombinantni ekspresioni sistem koji obuhvaća otvoren čitajući okvir (ORF) DNA izvedene iz HCV genoma ili HCV cDNA gdje je ORF operativno povezan za kontrolnu sekvencu kompatibilnu sa željenim domaćinom, stanica transformirana sa rekombinantnim ekspresionim sistemom, i polipeptid proizveden transformiranom stanicom. Other aspects of the invention are: a recombinant expression system comprising an open reading frame (ORF) of DNA derived from the HCV genome or HCV cDNA where the ORF is operably linked to a control sequence compatible with the desired host, a cell transformed with the recombinant expression system, and a polypeptide produced by the transformed cell.

Još daljni aspekti izuma su: pročišćen HCV, preparat polipeptida iz pročišćenog HCV; pročišćen HCV polipeptid; pročišćen polipeptid koji obuhvaća epitop koji je imunološki moguće indentificirati sa epitopom sadržanim u HCV. Still further aspects of the invention are: purified HCV, a polypeptide preparation from purified HCV; purified HCV polypeptide; a purified polypeptide comprising an epitope that is immunologically identifiable with an epitope contained in HCV.

Uključujući u aspekte izuma su rekombinantan HCV polipeptid; rekombinantan polipeptid koji obuhvaća sekvencu izvedenu iz HCV genoma ili iz HCV cDNA; rekombinantni polipeptid koji obuhvaća HCVepitop; i sjedinjen polipeptid koji obuhvaća HCV polipeptid. Included in aspects of the invention are recombinant HCV polypeptide; a recombinant polypeptide comprising a sequence derived from the HCV genome or from HCV cDNA; a recombinant polypeptide comprising the HCV epitope; and a fusion polypeptide comprising the HCV polypeptide.

Također u izum su uključeni monoklonsko antitijelo usmjereno protiv HCV epitopa; i pročišćen preparat poliklonskih antitijela usmjerenih protiv HCV epitopa. Also included in the invention are a monoclonal antibody directed against the HCV epitope; and a purified preparation of polyclonal antibodies directed against HCV epitopes.

Drugi akspekt izuma je čestica koja je imunogena protiv HCV infekcije koja obuhvaća ne-HCV polipeptid koji ima aminokiselinsku sekvencu sposobnu da stvara česticu kada se spomenuta sekvenca proizvede u eukariotskom domaćinu, i HCV epitop. Another aspect of the invention is a particle that is immunogenic against HCV infection comprising a non-HCV polypeptide having an amino acid sequence capable of forming a particle when said sequence is produced in a eukaryotic host, and an HCV epitope.

Još dalji aspekt izuma je polinukleotidna proba za HCV. Aspekti izuma koji se odnose na opremu su oni koji za: analizu uzoraka na prisutnost polinukleotida izvedenih iz HCV koji obuhvaća polinukleotidnu probu koja sadrži nukleotidnu sekvencu iz HCV od oko 8 ili više nukleotida, u pogodnom kontejneru; na analiziranje uzoraka na prisutnost HCV antigena koji se detektira u pogodnom kontejneru; analizu uzoraka na prisutnost antitijela usmjerenih protiv HCV antigena koji obuhvaća polipeptid koji sadrži epitop prisutan u antigenu u pogodnom kontejneru. A still further aspect of the invention is a polynucleotide probe for HCV. Aspects of the invention relating to the equipment are those for: analyzing samples for the presence of polynucleotides derived from HCV comprising a polynucleotide probe containing an HCV nucleotide sequence of about 8 or more nucleotides, in a suitable container; to analyze samples for the presence of HCV antigen, which is detected in a suitable container; analyzing the samples for the presence of antibodies directed against the HCV antigen comprising a polypeptide containing an epitope present in the antigen in a suitable container.

Drugi aspekti izuma su: polipeptid koji obuhvaća HCV epitop, spojen na čvrsti supstrat; i antitijelo na HCV epitopu, spojeno na čvrsti supstrat. Other aspects of the invention are: a polypeptide comprising an HCV epitope, attached to a solid substrate; and an antibody to the HCV epitope, coupled to a solid substrate.

Još dalji aspekti izuma su: postupak za proizvodnju polipeptida koji sadrži HCV epitop koji obuhvaća inkubiranje stanica domaćina s ekspresionim vektorom koji sadrži sekvencu koja kodira polipeptid koji sadrži epitop u uvjetima koji dozvoljavaju ekspresiju spomenutog polipeptida; i polipeptid koji sadrži HCV epitop proizveden ovim postupkom. Still further aspects of the invention are: a method for the production of a polypeptide containing an HCV epitope comprising incubating host cells with an expression vector containing a sequence encoding a polypeptide containing the epitope under conditions that allow the expression of said polypeptide; and an HCV epitope-containing polypeptide produced by the process.

Izum također uključuje postupak za detektiranje HCV nukleinskih kiselina u uzorku koji obuhvaća reagiranje nukleinskih kiselina s probom za HCV polinukleotid u uvjetima koji doživljavaju stvaranje polinukleotidnog dupleksa između probe i HCV nukleinske kiseline iz uzorka; i detektiranje polinukleotidnog dupleksa koji sadrži probu. The invention also includes a method for detecting HCV nucleic acids in a sample comprising reacting the nucleic acids with a probe for HCV polynucleotide under conditions that experience the formation of a polynucleotide duplex between the probe and HCV nucleic acid from the sample; and detecting the polynucleotide duplex containing the probe.

Imunoispitivanja su također uključena u izum. Ova uključuju imunoispitivanja za detektiranje HCV antigena koji obuhvaća inkubiranje uzorka osumnjičenog da sadrži HCV antigen s probom antitijela usmjerenih protiv HCV antigena koji se detektira u uvjetima koji dozvoljavaju stvaranje kompleksa antigen-antitijelo koji sadrži probu antitijela. Imunoispitivanje se detektiranje antitijela usmjerenih protiv HCV antigena koje obuhvaća inkubiranje uzorka osumnjičenog da sadrži anti-HCV antitijela s probom polipeptida koji sadrži epitop HCV, u uvjetima koji dozvoljavaju stvaranje kompleksa antigen-antitijelo; i detektiranje kompleksa antigen-antitijelo koji sadrži probu antigena. Immunoassays are also included in the invention. These include immunoassays for the detection of HCV antigen which involve incubating a sample suspected of containing HCV antigen with an antibody probe directed against the detected HCV antigen under conditions that allow the formation of an antigen-antibody complex containing the antibody probe. Immunoassay is the detection of antibodies directed against the HCV antigen, which includes incubating a sample suspected of containing anti-HCV antibodies with a polypeptide probe containing the HCV epitope, under conditions that allow the formation of an antigen-antibody complex; and detecting the antigen-antibody complex containing the antigen probe.

U izum su također uključena cjepiva za tretiranje HCV infekcije koje obuhvaćaju imunogeni peptid koji sadrži HCV epitop ili reaktivni preparat HCV-a ili razrijeđen preparat HCV. Drugi aspekt izuma je tkivo kulture uzgojenih stanica inficiranih sa HCV. Also included in the invention are vaccines for the treatment of HCV infection comprising an immunogenic peptide containing an HCV epitope or a reactive preparation of HCV or a diluted preparation of HCV. Another aspect of the invention is tissue culture of cultured cells infected with HCV.

Još dalji aspekt izuma je postupak za produkciju antitijela prema HCV koji obuhvaća unošenje u individuu izoliranog imunogenog polipeptida koji sadrži HCV epitop u količini dovoljnoj da proizvede imuni odgovor. A still further aspect of the invention is a method for the production of antibodies to HCV comprising introducing into an individual an isolated immunogenic polypeptide containing an HCV epitope in an amount sufficient to produce an immune response.

Još dalji aspekt izuma je postupak za izoliranje cDNA izvedene iz genoma neidentificiranog infekcijskog agensa, koji obuhvaća a) osiguravanje transformiranih stanica domaćina sa ekspresionim vektorima koji sadrže cDNA biblioteku dobivenu iz nukleinskih kiselina izoliranih iz tkiva inficiranog sa agensom i uzgajanja stanica domaćina u uvjetima koji omogućavaju ekspresiju polipeptida kodiranog u cDNA; b) interakciju ekspresionih produkata cDNA s antitijelom koje sadrži komponentu tijela individue inficirane sa spomenutim infektivnim agensom u uvjetima koji dozvoljavaju imunoreakciju, i detektiranje antitijelo-antigen kompleksa stvorenih kao rezultat interakcije; c) rast stanica domaćina koje izražavaju polipeptide koji stvaraju antitijelo-antigen komlekse u stupnju b) u uvjetima koji dozvoljavaju njihov rast kao individualnih klonova i izoliranje spomenutih klonova; d) rast stanica iz klonova c) u uvjetima koji dozvoljavaju ekspresiju polipeptida kodiranih u cDNA, i interegiranje ekspresionih produkata s antitijelom koje sadrži komponente tijela individua drugih od individua iz stupnja a) koje su inficirane sa infektivnim agensom i sa kontrolnim individuama inficiranim sa agensom, i detektiranje antitijelo-antigen kompleksa stvorenih kao rezultat interakcije; e) rast stanica domaćina koje izražavaju polipeptide koji stvaraju antitijelo-antigen kompleksa sa antitijelom koje sadrži komponente tijela inficiranih osoba i osoba osumnjičenih da su inficirane i ne sa spomenutim komponentama kontrolnih individua u uvjetima koji dozvoljavaju njihov rast kao individualnih klonova i izoliranje spomenutih klonova; i f) izoliranje cDNA iz stanica domaćina klona e). A still further aspect of the invention is a method for isolating cDNA derived from the genome of an unidentified infectious agent, comprising a) providing transformed host cells with expression vectors containing a cDNA library obtained from nucleic acids isolated from tissue infected with the agent and culturing the host cells under conditions that enable expression polypeptide encoded in cDNA; b) interaction of cDNA expression products with an antibody containing a body component of an individual infected with said infectious agent under conditions that allow an immunoreaction, and detection of antibody-antigen complexes created as a result of the interaction; c) growth of host cells expressing polypeptides that form antibody-antigen complexes in step b) under conditions that allow their growth as individual clones and isolation of said clones; d) growth of cells from clones c) under conditions that allow the expression of polypeptides encoded in cDNA, and interaction of the expression products with an antibody containing body components of individuals other than individuals from stage a) infected with an infectious agent and with control individuals infected with the agent, and detecting antibody-antigen complexes formed as a result of the interaction; e) growth of host cells that express polypeptides that create antibody-antigen complexes with an antibody containing body components of infected persons and persons suspected of being infected and not with said components of control individuals under conditions that allow their growth as individual clones and isolation of said clones; and f) isolation of cDNA from host cells of clone e).

Kratak opis slika Short description of the pictures

Slika 1 prikazuje dvostruku nukleotidnu sekvencu HCV cDNA inserta u klonu 5-1-1, i Figure 1 shows the double nucleotide sequence of the HCV cDNA insert in clone 5-1-1, and

pretpostavljenu aminokiselinsku sekvencu kodiranog polipeptida. the putative amino acid sequence of the encoded polypeptide.

Slika 2 prikazuje homologe preklapanja HCV cDNA sekvenci u klonovima 5-1-1, 81, 1-2 i 91. Figure 2 shows the overlapping homologues of the HCV cDNA sequences in clones 5-1-1, 81, 1-2 and 91.

Slika 3 prikazuje kompozitnu sekvencu HCV cDNA izvedenu iz preklapajućih klonova 81, 1-2 i 91 i kodiranu aminokiselinsku sekvencu. Figure 3 shows the composite sequence of HCV cDNA derived from overlapping clones 81, 1-2 and 91 and the encoded amino acid sequence.

Slika 4 prikazuje dvostruku nukleotidnu sekvencu HCV inserta u koloni 81, i pretpostavljenu aminokiselinsku sekvencu kodiranog polipeptida. Figure 4 shows the double nucleotide sequence of the HCV insert in column 81, and the putative amino acid sequence of the encoded polypeptide.

Slika 5 prikazuje HCV cDNA sekvencu u klonu 36, segment koji preklapa NANBV cDNA klona 81 i polipeptidnu sekvencu kodiranu u klonu 36. Figure 5 shows the HCV cDNA sequence in clone 36, the segment overlapping the NANBV cDNA of clone 81, and the polypeptide sequence encoded in clone 36.

Slika 6 prikazuje sjedinjen ORF HCV cDNA-a u klonovima 36 ili 81, i kodiran polipeptid. Figure 6 shows the combined ORF of HCV cDNA in clones 36 or 81, and the encoded polypeptide.

Slika 7 prikazuje HCV cDNA sekvencu u klonu 32, segment koji preklapa klon 81 i kodiran polipeptid. Figure 7 shows the HCV cDNA sequence in clone 32, the segment overlapping clone 81 and the encoded polypeptide.

Slika 8 prikazuje HCV cDNA sekvencu u klonu 35, segment koji preklapa klon 36 i kodiran polipeptid. Figure 8 shows the HCV cDNA sequence in clone 35, the segment overlapping clone 36 and the encoded polypeptide.

Slika 9 prikazuje sjedinjen ORF HCV cDNA-a u klonovima 35, 36, 81 i 32 i kodirani polipeptid. Figure 9 shows the combined ORF of HCV cDNA in clones 35, 36, 81 and 32 and the encoded polypeptide.

Slika 10 prikazuje HCV cDNA sekvencu u klonu 37b, segment koji preklapa klon 35 i kodiran polipeptid. Figure 10 shows the HCV cDNA sequence in clone 37b, the segment overlapping clone 35 and the encoded polypeptide.

Slika 11 prikazuje HCV cDNA sekvencu u klonu 33b, segment koji preklapa klon 32, i kodiran polipeptid. Figure 11 shows the HCV cDNA sequence in clone 33b, the segment overlapping clone 32, and the encoded polypeptide.

Slika 12 prikazuje HCV cDNA sekvencu u klonu 40b, segment koji preklapa klon 37b, i kodiran polipeptid. Figure 12 shows the HCV cDNA sequence in clone 40b, the segment overlapping clone 37b, and the encoded polypeptide.

Slika 13 prikazuje HCV cDNA sekvencu u klonu 25c, i kodiran polipeptid. Figure 13 shows the HCV cDNA sequence in clone 25c, and the encoded polypeptide.

Slika 14 prikazuje nukleotidnu sekvencu i kodirani polipeptid ORF-a koji se proteže kroz HCV cDNA u klonovima 40b, 37b, 35, 36, 81, 32, 33b i 25c. Figure 14 shows the nucleotide sequence and encoded polypeptide of the ORF spanning the HCV cDNA in clones 40b, 37b, 35, 36, 81, 32, 33b and 25c.

Slika 15 prikazuje HCV cDNA sekvencu u klonu 33c, segment koji preklapa klonove 40b i 33c i kodirane aminokiseline. Figure 15 shows the HCV cDNA sequence in clone 33c, the segment overlapping clones 40b and 33c and the encoded amino acids.

Slika 16 prikazuje HCV cDNA sekvencu u klonu 8h, segment koji preklapa klon 33c, i kodirane aminokiseline. Figure 16 shows the HCV cDNA sequence in clone 8h, the segment overlapping clone 33c, and the encoded amino acids.

Slika 17 prikazuje HCV cDNA sekvencu u klonu 7e, segment koji preklapa klon 8h i kodirane aminokiseline. Figure 17 shows the HCV cDNA sequence in clone 7e, the segment overlapping clone 8h and the encoded amino acids.

Slika 18 prikazuje HCV cDNA sekvencu u klonu 14c, segment koji preklapa klon 25c, i kodirane aminokiseline. Figure 18 shows the HCV cDNA sequence in clone 14c, the segment overlapping clone 25c, and the encoded amino acids.

Slika 19 prikazuje HCV cDNA sekvencu u klonu 8f, segment koji preklapa klon 14c, i kodirane aminokiseline. Figure 19 shows the HCV cDNA sequence in clone 8f, the segment overlapping clone 14c, and the encoded amino acids.

Slika 20 prikazuje HCV cDNA sekvencu u klonu 33f, segment koji preklapa klon 8f, i kodirane aminokiseline. Figure 20 shows the HCV cDNA sequence in clone 33f, the segment overlapping clone 8f, and the encoded amino acids.

Slika 21 prikazuje HCV cDNA sekvencu u klonu 33g, segment koji preklapa klon 33f, i kodirane aminokiseline. Figure 21 shows the HCV cDNA sequence in clone 33g, the segment overlapping clone 33f, and the encoded amino acids.

Slika 22 prikazuje HCV cDNA sekvencu u klonu 7f, segment koji preklapa sekvencu u klonu 7e, i kodirane aminokiseline. Figure 22 shows the HCV cDNA sequence in clone 7f, the segment overlapping the sequence in clone 7e, and the encoded amino acids.

Slika 23 prikazuje HCV cDNA sekvencu u klonu 11b, segment koji preklapa sekvencu u klonu 7f, i kodirane aminokiseline. Figure 23 shows the HCV cDNA sequence in clone 11b, the segment overlapping the sequence in clone 7f, and the encoded amino acids.

Slika 24 prikazuje HCV cDNA sekvencu u klonu 14i, segment koji preklapa sekvencu u klonu 11b, i kodirane aminokiseline. Figure 24 shows the HCV cDNA sequence in clone 14i, the segment overlapping the sequence in clone 11b, and the encoded amino acids.

Slika 25 prikazuje HCV cDNA sekvencu u klonu 39c, segment koji preklapa sekvencu u klonu 33g, i kodirane aminokiseline. Figure 25 shows the HCV cDNA sequence in clone 39c, the segment overlapping the sequence in clone 33g, and the encoded amino acids.

Slika 26 prikazuje sustav HCV cDNA sekvence izvedene iz ravnih cDNA u klonovima 7e, 8h, 33c, 40b, 37b, 35, 36, 81, 32, 33b, 25c, 14c, 8f, 33f i 33g; također prikazuju aminokiselinsku sekvencu polipeptida kodiranog u ispruženom ORF-u u izvedenoj sekvenci. Figure 26 shows the schematic of HCV cDNA sequences derived from the linear cDNAs in clones 7e, 8h, 33c, 40b, 37b, 35, 36, 81, 32, 33b, 25c, 14c, 8f, 33f and 33g; also show the amino acid sequence of the polypeptide encoded in the extended ORF in the deduced sequence.

Slika 27 prikazuje sekvencu HCV cDNA u klonu 12f, segment koji preklapa klon 14i, i kodirane aminokiseline. Figure 27 shows the HCV cDNA sequence in clone 12f, the segment overlapping clone 14i, and the encoded amino acids.

Slika 28 prikazuje sekvencu u klona 35f, segment koji preklapa klon 39c, i kodirane aminokiseline. Figure 28 shows the sequence of clone 35f, the segment overlapping clone 39c, and the encoded amino acids.

Slika 29 prikazuje sekvencu HCV cDNA u klonu 19g, segment koji preklapa klon 35f, i kodirane aminokiseline. Figure 29 shows the HCV cDNA sequence in clone 19g, the segment overlapping clone 35f, and the encoded amino acids.

Slika 30 prikazuje sekvencu klona 15e, segment koji preklapa klon 26g, i kodirane aminokiseline. Figure 30 shows the sequence of clone 15e, the segment overlapping clone 26g, and the encoded amino acids.

Slika 31 prikazuje sekvencu u sustavu cDNA koja je izvedena povezivanjem klonova 12f do 15e u 5’ do 3; također prikazuje kodirane aminokiseline u neprekidnom ORF. Figure 31 shows the sequence in the cDNA system which was derived by linking clones 12f to 15e in 5' to 3; also shows the encoded amino acids in the continuous ORF.

Slika 33 prikazuje fotografiju Western mrlja sjedinjenog proteina, SOD-NANB5-1-1 sa serumom čimpanze iz čimpanzi inficiranih sa BB-N ANB, HAV i HBV. Figure 33 shows a photograph of a Western blot of the fusion protein, SOD-NANB5-1-1 with chimpanzee serum from chimpanzees infected with BB-N ANB, HAV and HBV.

Slika 34 prikazuje fotografiju Western mrlja sjedinjenog proteina, SOD-NANB5-1-1 sa serumom ljudi inficiranih sa NANBV, HAV, HBV i iz kontrolnih ljudi. Figure 34 shows a photograph of Western blots of the fusion protein, SOD-NANB5-1-1 with serum from humans infected with NANBV, HAV, HBV and from control humans.

Slika 35 je mapa koja prikazuje bitne karakteristike vektora pAB24. Figure 35 is a map showing the essential characteristics of vector pAB24.

Slika 36 prikazuje navodnu aminokiselinsku sekvencu akronoski-terminusa sjedinjenog polipeptida C1OO-3 i kodiranu nukleotidnu sekvencu. Figure 36 shows the putative amino acid sequence of the achrono-terminus of the C100-3 fusion polypeptide and the encoded nucleotide sequence.

Slika 37A je fotografija kumasi plavo obojenog poliakrilamidnog gela koji identificiraju C1OO-3, izražen u kvarcu. Figure 37A is a photograph of a coomassie blue-stained polyacrylamide gel identifying C100-3 expressed in quartz.

Slika 37B prikazuje Western mrlju C1OO-3 sa serumom iz NANBV inficiranog čovjeka. Figure 37B shows a Western blot of C100-3 with serum from a NANBV infected human.

Slika 38 prikazuje autoradiograf Northern mrlje RNA izolirane iz jetre BB-N ANBV inficiranog čimpanze ispitivanu sa BB-NANBV cDNA u klonu 81. Figure 38 shows an autoradiograph of a Northern blot of RNA isolated from the liver of a BB-N ANBV infected chimpanzee probed with BB-NANBV cDNA in clone 81.

Slika 39 prikazuje autoradiograf NANBV nukleinske kiseline tretirane sa RNase ili DNase 1 i ispitivane sa BB-NANBV cDNA klona 81. Figure 39 shows an autoradiograph of NANBV nucleic acid treated with RNase or DNase 1 and probed with BB-NANBV cDNA clone 81.

Slika 40 prikazuje autoradiograf nukleinskuh kiselina ekstrahiranih iz NANBV čestica uzetih iz inficirane plazme sa anti-NANB5-1-1, i ispitivanih sa 32P- obilježenim NANBV cDNA iz klona 81. Figure 40 shows an autoradiograph of nucleic acids extracted from NANBV particles taken from infected plasma with anti-NANB5-1-1, and probed with 32P-labeled NANBV cDNA from clone 81.

Slika 41 prikazuje autoradiografe filtera koji sadrže izolirane NANBV nukleinske kiseline, ispitivanih sa 32P-obilježenim plus i minus DNA probama izvedenim iz NANBV cDNA u klonu 81. Figure 41 shows autoradiographs of filters containing isolated NANBV nucleic acids probed with 32 P-labeled plus and minus DNA probes derived from NANBV cDNA in clone 81.

Slika 42 prikazuje homologe između polipeptida kodiranog u HCV cDNA i NS proteinu iz Dengue flavirusa. Figure 42 shows the homologues between the polypeptide encoded in the HCV cDNA and the NS protein from the Dengue flavivirus.

Slika 43 prikazuje histogram distribucije HCV infekcije u slučajnim uzorcima, kao što je određeno pomoću ELISA testiranja. Figure 43 shows a histogram of the distribution of HCV infection in random samples, as determined by ELISA testing.

Slika 44 prikazuje histogram distribucije HCV infekcije u slučajnim probama koristeći dvije konfiguracije imunoglobulin-enzim konjugata u elisa ispitivanju. Figure 44 shows a histogram of the distribution of HCV infection in randomized trials using two immunoglobulin-enzyme conjugate configurations in an ELISA assay.

Slika 45 prikazuje sekvence u primarnoj smjesi, izvedene iz konzervirane sekvence u NS1 flavivirusa. Figure 45 shows the sequences in the primer mixture, derived from the conserved sequence in flavivirus NS1.

Slika 46 prikazuje HCV cDNA sekvencu u klonu k9-1, segment koji preklapa cDNA u slici 26 i u njemu kodiranu sekvencu aminokiselina. Figure 46 shows the HCV cDNA sequence in clone k9-1, the segment overlapping the cDNA in Figure 26 and the amino acid sequence encoded therein.

Slika 47 prikazuje sekvencu u sastavu cDNA koji je izveden povezivanjem klonova k9-1 do 15e u 5’ prema 3’ smjeru; također prikazane aminokiseline kodirane u ORF. Figure 47 shows the sequence in the composition of the cDNA, which was derived by connecting clones k9-1 to 15e in the 5' to 3' direction; amino acids encoded in the ORF are also shown.

I Definicije And Definitions

Pojam “hepatitis C virus” su rezervirali stručnjaci u području za do sada nepoznat etiološki agens NANBH-a. Stoga, kao što se koristi ovdje, “hepatitis C virus” (HCV) označava agens uzrokovan sa NANBH, koji je ranije označen kao NANBV i/ili BB-NANBV. Pojmovi HCV, NANBV i BB-NANBV su ovdje korišteni promjenjivo. Kao proširenje ove terminologije, bolest izazvana sa HCV, ranije nazvana NANB hepatitis (NANBH) se naziva hepatitis C. Pojam NANBH i hepatitis C mogu se koristiti ovdje promjenjivo. The term "hepatitis C virus" is reserved by experts in the field for the hitherto unknown etiological agent of NANBH. Therefore, as used herein, “hepatitis C virus” (HCV) refers to the agent caused by NANBH, formerly designated NANBV and/or BB-NANBV. The terms HCV, NANBV and BB-NANBV are used interchangeably here. As an extension of this terminology, the disease caused by HCV, formerly called NANB hepatitis (NANBH) is referred to as hepatitis C. The terms NANBH and hepatitis C may be used interchangeably herein.

Pojam “HCV”, kao što je korišten ovdje, označava virusne vrste koje izazivaju NANBH, i razrijeđene vrste ili defektne interferirajuće partikule izvedene iz njih. Kao što je poznato niže, HCV genom obuhvaća RNA. Poznato je da RNA koju sadrže virusi ima relativno visoku brzinu spontane mutacije, npr. navodno reda 10-3 do 10-4 po nukleotidu (Fields & Knipe (1986)). Stoga, postoje višestruke u HCV vrstama opisanim niže. Sastavi i postupci ovdje opisani osiguravaju napredovanje, identifikaciju, detekciju i izoliranje raznih povezanih struka. Međutim, oni također dozvoljavaju dobivanje dijagnostika i cjepiva za razne struke i imaju primjenu u postupcima testiranja za anti-virusne agense za farmakološku primjenu u kojoj inhibiraju replikaciju HCV. The term “HCV”, as used herein, refers to viral species that cause NANBH, and rare species or defective interfering particles derived therefrom. As noted below, the HCV genome comprises RNA. The RNA contained in viruses is known to have a relatively high rate of spontaneous mutation, eg reportedly of the order of 10-3 to 10-4 per nucleotide (Fields & Knipe (1986)). Therefore, there are multiples in the HCV species described below. The compositions and procedures described herein provide for the advancement, identification, detection and isolation of various related professions. However, they also allow obtaining diagnostics and vaccines for various professions and have applications in testing procedures for anti-viral agents for pharmacological use in which they inhibit HCV replication.

Informacija osigurana ovdje, mada izvedena iz jednostruke HCV, zatim označena kao CDC/HCV1 je dovoljna da dozvoli virusnu taksonomičnost radi identificiranja drugih vrsta koje padaju u vrste. Kao što je opisano ovdje, mi smo otkrili da je HCV flavivirus ili virus sličan njemu. Morfologija i sastav partikule flavirusa su poznati, i diskutirao ih je Brinton (1986). Uopćeno obzirom na morfologiju, flavirus sadrži centralni nukleokapsid okružen lipidnim dvoslojem. Virioni su sferni i imaju promjer od oko 20-50 nm. Njihova jezgra je oko 25-30 nm u promjeru. Između vanjske površine virionskog omotača su projekcije koje su duge oko 5-10 nm, s krajnjim čvorovima od oko 2 nm u promjeru. The information provided here, although derived from a single HCV, then designated as CDC/HCV1, is sufficient to allow viral taxonomy to identify other species that fall within the species. As described herein, we have discovered that HCV is a flavivirus or a virus similar to it. The morphology and composition of the flavivirus particle are known and discussed by Brinton (1986). Regarding the morphology in general, the flavivirus contains a central nucleocapsid surrounded by a lipid bilayer. Virions are spherical and have a diameter of about 20-50 nm. Their core is about 25-30 nm in diameter. Between the outer surface of the virion envelope are projections that are about 5-10 nm long, with end nodes about 2 nm in diameter.

HCV kodira epitop koji je imunološki indemtifikabilan sa epitopom u HCV genomu iz kojeg se izvodi opisana cDNA; poželjno epitop je kodiran u cDNA ovdje opisanoj. Epitop je jedinstven prema HCV kada se usporedi s drugim poznatim flavivirusima. Jedinstvenost epitopa se može odrediti njegovom imunološkom reaktivnošću sa HCV i nedostatkom imunološke reaktivnosti s drugim flavirusnim vrstama. Postupci za određivanje imunološke reaktivnosti su poznati u znanosti, primjerice radioimunoispitivanjem, ELISA ispitivanjem, hemaglutiNaCljom i nizom tehnika pogodnih za ispitivanje koje su ovdje dane. HCV encodes an epitope that is immunologically detectable with the epitope in the HCV genome from which the described cDNA is derived; preferably the epitope is encoded in the cDNA described herein. The epitope is unique to HCV when compared to other known flaviviruses. The uniqueness of the epitope can be determined by its immunological reactivity with HCV and lack of immunological reactivity with other flavivirus species. Methods for determining immunological reactivity are known in the art, for example, by radioimmunoassay, ELISA, hemagglutination, and a number of techniques suitable for testing that are provided herein.

Uz gornje navedeno, slijedeći parametri su primjenjivi, bilo sami ili u kombiNaClji u identifikaciji vrste kao HCV. Mada su HCV vrste evolucijski povezane, očekuje se da potpuna homologija genoma na razini nukleotida bude 40% ili više, poželjno oko 60% ili više i čak poželjno oko 80% ili više i dodatno odgovarati će neprekidnim sekvencama bar oko 13 nukleotida. Korespodencija između navodne HCV vrste genomske sekvence i CDC/CH1 HCV cDNA sekvenca može biti određena tehnikama poznatim u znanosti. Na primjer, mogu se odrediti izravnim uspoređivanjem sekvence informacije polinukleotida iz navodnog HCV, i HCV cDNA sekvence opisane uvjetima koji stvaraju postojane duplekse između homolognih područja (na primjer, onih koje treba koristiti prije S1 razaranje), što je praćeno razaranjem s jednostrukom specifičnom nukleazom (nukleazama) i zatim određivanjem veličine razorenih fragmenata. In addition to the above, the following parameters are applicable, either alone or in combination, in identifying the species as HCV. Although HCV species are evolutionarily related, full genome homology at the nucleotide level is expected to be 40% or more, preferably about 60% or more and even preferably about 80% or more and will additionally correspond to contiguous sequences of at least about 13 nucleotides. The correspondence between the putative HCV species genomic sequence and the CDC/CH1 HCV cDNA sequence can be determined by techniques known in the art. For example, they can be determined by direct comparison of the polynucleotide sequence information from the putative HCV, and the HCV cDNA sequence described under conditions that create stable duplexes between homologous regions (for example, those to be used before S1 digestion), followed by digestion with a single-specific nuclease ( nucleases) and then determining the size of the broken fragments.

Zbog evolucijske veze vrsta HCV, navodne HCV struke su više od 40% homologne, poželjno iznad 60% i čak još poželjnije iznad 80% na razini polipeptida. Tehnike za određivanje homologije aminokiselinske sekvence su poznate u znanosti. Na primjer, aminokiselinska sekvenca može biti određena izravno i uspoređena sa sekvencama danim ovdje. Na primjer, nukleotidna sekvenca genomskog materijala navodnog HCV može se odrediti (obično preko cDNA intermedijera); aminokiselinska sekvenca kodirana ovdje može se odrediti i odgovarajuća područja mogu se usporediti. Due to the evolutionary relatedness of HCV species, the putative HCV domains are more than 40% homologous, preferably above 60% and even more preferably above 80% at the polypeptide level. Techniques for determining amino acid sequence homology are known in the art. For example, the amino acid sequence can be determined directly and compared to the sequences provided herein. For example, the nucleotide sequence of the putative HCV genomic material can be determined (usually via a cDNA intermediate); the amino acid sequence encoded here can be determined and the corresponding regions can be compared.

Kao što je korišteno ovdje, polinukleotid “izveden iz” označene sekvence, na primjer HCV cDNA, naročito prikazane na slikama 1-32 ili iz HCV genoma, označava sekvencu koja je sastavljena od oko 6 nukleotida, poželjno bar 8 nukleotida i najpoželjnije bar oko 10-12 nukleotida, i još poželjnije bar oko 15-20 odgovarajućih nukleotida, npr. homolognim ili komplemetarnih područja naznačene nukleotidne sekvence. Poželjno, sekvenca područja iz kojeg se izvodi polinukleotid je homolog ili komplementarna se sekvencom koja je jedinstvena sa HCV genom. Bilo da jest ili nije, sekvenca jedinstvena sa HCV genom može se odrediti tehnikama poznatim stručnjacima u ovom području, na primjer, sekvenca može biti uspoređena sa sekvencama u bankama podataka, npr. Genebank, radi određivanja da li je ili nije prisutna i neidentificiranom domaćinu ili drugim organizmima. Sekvenca može također biti uspoređena s poznatim sekvencama drugih virusnih agenasa, uključujući one koji su poznati da izazivaju hepatitis, npr. HAV, HSV, HDV i drugi članovi flavivirusa. As used herein, a polynucleotide "derived from" a designated sequence, for example HCV cDNA, particularly shown in Figures 1-32 or from the HCV genome, means a sequence that is composed of about 6 nucleotides, preferably at least 8 nucleotides and most preferably at least about 10 -12 nucleotides, and even more preferably at least about 15-20 corresponding nucleotides, for example homologous or complementary regions of the indicated nucleotide sequence. Preferably, the sequence of the region from which the polynucleotide is derived is homologous or complementary to a sequence that is unique to the HCV gene. Whether or not the sequence is unique to the HCV genome can be determined by techniques known to those skilled in the art, for example, the sequence can be compared to sequences in data banks, eg Genebank, to determine whether or not it is also present in an unidentified host or other organisms. The sequence may also be compared to known sequences of other viral agents, including those known to cause hepatitis, eg HAV, HSV, HDV and other members of the flaviviruses.

Odgovaranje ili neodgovaranje izvedene sekvence drugim sekvencama može se također odrediti hibridizacijom pod odgovarajućim strogim uvjetima. Tehnike hibridizacije za određivanje komplementarnosti sekvenci nukleinskih kiselina su poznate u tehnici i diskutirane su niže. Vidi također, na primjer, Maniatis et al (1982). Dodatno, nadmoć jednog od dupleksa polinukleotida stvorenih hibridizacijom može se odrediti poznatim tehnikama, uključujući na primjer, razaranje sa nukleazom takvom kao S1 koja specifično razara jednostruka područja u dupleksnim polinukleotidima. Područja iz kojih tipične DNA sekvence mogu biti “izvedene” uključuju, ali nisu ograničene na njih, na primjer područja koja kodiraju specifične epitope, kao i na ne-transkribirane i/ili ne-prevodiva područja. Matching or non-matching of the derived sequence to other sequences can also be determined by hybridization under suitable stringency conditions. Hybridization techniques for determining the complementarity of nucleic acid sequences are known in the art and are discussed below. See also, for example, Maniatis et al (1982). In addition, the dominance of one of the duplex polynucleotides created by hybridization can be determined by known techniques, including for example, digestion with a nuclease such as S1 that specifically cleaves single-stranded regions in duplex polynucleotides. Regions from which typical DNA sequences may be "derived" include, but are not limited to, for example, regions encoding specific epitopes, as well as non-transcribed and/or non-translatable regions.

Izveden polinukleotid nije neophodno fizički izveden iz prikazane nukleotidne sekvence, ali može nastati na neki način, uključujući na primjer, kemijsku sintezu ili DNA replikaciju ili reverznu transkripciju ili transkripciju koja je zasnovana na informaciji osiguranoj pomoću sekvence baza iz koje se izvodi polinukleotid. Dodatno, kombinacije područja koja odgovaraju onom naznačene sekvence mogu se modificirati na način poznat u znanosti radi slaganja s namjenom. A derived polynucleotide is not necessarily physically derived from the nucleotide sequence shown, but may be generated by some means, including for example, chemical synthesis or DNA replication or reverse transcription or transcription that is based on information provided by the base sequence from which the polynucleotide is derived. Additionally, combinations of regions corresponding to that of the indicated sequence may be modified in a manner known in the art to suit the purpose.

Slično, polipeptid ili aminokiselinska sekvenca “izvedena iz” naznačene sekvence nukleinskih kiselina, na primjer, sekvence na slikama 1-32 ili iz HCV genoma označavaju polipeptid koji ima aminokiselinsku sekvencu identičnu onoj polipeptida kodiranog u sekvenci ili njenom dijelu, gdje dio sadrži bar 3-5 aminokiselina, i poželjnije bar 8-10 aminokiselina i čak još poželjnije, bar 11-15 aminokiselina, ili koji je imunološki identifibilan s polipeptidom kodiranim u sekvenci. Similarly, a polypeptide or amino acid sequence “derived from” an indicated nucleic acid sequence, for example, the sequences of Figures 1-32 or from the HCV genome, means a polypeptide having an amino acid sequence identical to that of the polypeptide encoded by the sequence or part thereof, where the portion contains at least 3- 5 amino acids, and more preferably at least 8-10 amino acids and even more preferably at least 11-15 amino acids, or which is immunologically identifiable with the polypeptide encoded in the sequence.

Rekombinat ili izvedeni polipeptid nije potrebno prevesti iz stvorene sekvence nukleinskih kiselina, na primjer, sekvenci u slikama 1-32 ili iz HCV genoma; može se stvoriti na primjer, kemijsku sintezu ili ekspresiju rekombinantnog ekspresionog sistema ili izoliranjem iz mutiranog HCV. The recombinant or derived polypeptide need not be translated from the generated nucleic acid sequence, for example, the sequence in Figures 1-32 or from the HCV genome; it can be generated, for example, by chemical synthesis or expression of a recombinant expression system or by isolation from mutated HCV.

Pojam “rekombinantni polinukleotid” kao što je korišten ovdje označava polinukleotid genomske cDNA, polusintetskog ili sintetskog podrijetla djelotvornošću njenog podrijetla ili rukovanja: The term "recombinant polynucleotide" as used herein means a polynucleotide of genomic cDNA, of semi-synthetic or synthetic origin by virtue of its origin or handling:

1) nije povezan s cijelim ili dijelom polinukleotida s kojim je povezan u prirodi ili u obliku biblioteke: i/ili 1) is not associated with all or part of the polynucleotide with which it is associated in nature or in the form of a library: and/or

2) je vezan za polinukleotid drugi od onog za koji je vezan u prirodi. 2) is bound to a polynucleotide other than the one to which it is bound in nature.

Pojam “polinukleotid” kao kao što je korišten ovdje označava polimerni oblik nukleotida neke dužine bilo ribonukleotida ili deoksiribonukleotida. Ovaj pojam označava samo primarnu strukturumolekula. Tako, ovaj pojam uključuje dvostruku ili jednostruku DNA, kao i dvostruku i jednostruku RNA. Također uključuje modificiranje, primjerice metiliranjem i/ili zatvaranjem i nemodificirane oblike polinukleotida. The term "polynucleotide" as used herein refers to the polymeric form of a nucleotide of either ribonucleotide or deoxyribonucleotide length. This term denotes only the primary structure of the molecule. Thus, this term includes double-stranded or single-stranded DNA, as well as double-stranded and single-stranded RNA. It also includes modification, for example by methylation and/or capping, and unmodified forms of polynucleotides.

Kao što je korišten ovdje, pojam “HCV koji sadrži sekvencu koja odgovara cDNA” označava da HCV sadrži polinukleotidnu sekvencu koja je homologna ili komplementarna sekvenca u nastaloj DNA; stupanj homologije ili komplementarnosti prema cDNA biti će oko 50% ili više, biti će poželjno bar oko 70% i čak još poželjnije biti će bar oko 90%. Sekvence koje odgovaraju biti će bar oko 70 nukleotida, poželjno bar oko 80 nukleotida i čak još poželjnije bar oko 90 nukleotida u dužini. Korespodencija između HCV sekvence i cDNA može se odrediti tehnikama poznatim u znanosti, uključujući primjerice, izravno uspoređivanje sekvenciranog materijala sa cDNA opisanim ili hibridizacijom i razlaganjem s jednostrukim nukleazama, što je dalje praćeno određivanjem razaranjem nastalim fragmenata. As used herein, the term “HCV containing a sequence corresponding to cDNA” means that HCV contains a polynucleotide sequence that is homologous or complementary to a sequence in the resulting DNA; the degree of homology or complementarity to the cDNA will be about 50% or more, preferably at least about 70% and even more preferably at least about 90%. Matching sequences will be at least about 70 nucleotides, preferably at least about 80 nucleotides and even more preferably at least about 90 nucleotides in length. Correspondence between the HCV sequence and cDNA can be determined by techniques known in the art, including, for example, direct comparison of the sequenced material with cDNA described or by hybridization and digestion with single nucleases, which is further followed by determination of the destruction of the resulting fragments.

Pojam “pročišćeni virusni polinukleotid” označava HCV genom ili njegov fragment koji je uglavnom slobodan, tj. sadrži oko 50%, poželjno ispod oko 70% i čak još poželjnije ispod 90% polipeptida s kojim je virusni polipeptid prirodno povezan. Tehnike za pročišćavanje virusnih polinukleotida iz virusnih partikula za poznate u znanosti, i uključuju na primjer, raščlanjivanje partikula s haotropičnim agensom i razdvajanje polinukletida i polipeptida ionsko-izmjenjivačkom kromatografijom, afinitetnom kromatografijom i sedimentacijom prema gustoči. The term "purified viral polynucleotide" means an HCV genome or a fragment thereof that is mostly free, i.e. contains about 50%, preferably below about 70% and even more preferably below 90% of the polypeptide with which the viral polypeptide is naturally associated. Techniques for purifying viral polynucleotides from viral particles are known in the art, and include, for example, fractionation of the particles with a chaotropic agent and separation of polynucleotides and polypeptides by ion-exchange chromatography, affinity chromatography, and density sedimentation.

Pojam “pročišćen virusni pilipeptid” označava HCV polipeptid ili njegov fragment koji je uglavnom slobodan, tj. sadrži manje od oko 50%, poželjno ispod oko 70% i čak još poželjnije ispod oko 90% stanične komponente s kojom je virusni polipeptid prirodno povezan. Tehnike za pročišćavanje virusnih polipeptida su poznate u znanosti, i primjeri ovih tehnika su razmotrene niže. The term "purified viral pilipeptide" means an HCV polypeptide or fragment thereof that is mostly free, i.e. contains less than about 50%, preferably less than about 70% and even more preferably less than about 90% of the cellular component with which the viral polypeptide is naturally associated. Techniques for purifying viral polypeptides are known in the art, and examples of these techniques are discussed below.

Rekombinantne stanice domaćina: “stanice domaćina”, “stanične linije”, “kultura stanica” i drugi takvi pojmovi označavaju mikroorganizme ili više eukariotske stanične linije kultivirane kao jednostanična bića prema stanicama koje će biti, ili koje su bile korištene kao primatelj za rekombinantni vektor ili drugi prijenos DNA, i uključuje progen originalne stanice koji može biti prenesen. Razumljivo je da progen jedne roditeljske stanice ne mora biti potpuno identičan u morfologiji ili genimskim ili ukupni DNA komplement kao originalni roditelj zbog slučajne ili smišljene mutacije. Prigen roditeljske stanice koji je dovoljno sličan roditelju okarakteriziran pogodnom osobinom, takovom kao prisutnost nukleotidne sekvence koja kodira željeni peptid, uključen je u progen obuhvaćen ovom definicijom, i pokriven je gornjim terminima. Recombinant host cells: “host cells”, “cell lines”, “cell culture” and other such terms mean microorganisms or multi-eukaryotic cell lines cultured as single-celled organisms from cells that will be, or have been used as recipients for, a recombinant vector or the second DNA transfer, and includes the progeny of the original cell that may be transferred. It is understood that the progeny of one parent cell does not have to be completely identical in morphology or genomic or total DNA complement as the original parent due to accidental or deliberate mutation. A progen of a parental cell that is sufficiently similar to the parent characterized by a suitable feature, such as the presence of a nucleotide sequence encoding the desired peptide, is included in the progen covered by this definition, and is covered by the above terms.

“Replikon” je neki genetski element, npr. plazmid, kromosom, virus koji se ponaša kao autonom, a jedinica polinukleotidne replikacije u stanici; npr. sposoban za repliciranje pod vlastitom kontrolom. A "replicon" is a genetic element, eg a plasmid, a chromosome, a virus that behaves autonomously, and a unit of polynucleotide replication in a cell; eg capable of replicating under its own control.

“Vektor” je replikon u koji je vezan drugi polinukleotidni segment, tako da nosi replikaciju i/ili ekspresiju spojenog segmenta. A "vector" is a replicon into which another polynucleotide segment is attached, so that it carries the replication and/or expression of the joined segment.

“Kontrolna sekvenca” označava polinukleotidne sekvence koje su potrebne radi izvođenja ekspresije kodirajućih sekvenci u kojima su vezane. Priroda takvih kontrolnih sekvenci se razlikuje zavisno od organizma domaćina; u prokariotima, takve kontrolne sekvence uopćeno uključuju promotor, ribosomski vezujuće mjesto i terminatore; u eukariotima, općenito takve kontrolne sekvence uključuju promotore, terminatore i u nekim slučajevima, pojačivaće. Pojam “kontrolne sekvence” usmjeren je da uključi minimalno sve komponente čija je prisutnost potrebna za ekspresiju i može također uključiti dodatne komponente čija je prisutnost pogodna, na primjer, rukovodeće sekvence. "Control sequence" means the polynucleotide sequences that are necessary to effect the expression of the coding sequences in which they are bound. The nature of such control sequences varies depending on the host organism; in prokaryotes, such control sequences generally include the promoter, ribosome binding site, and terminators; in eukaryotes, generally such control sequences include promoters, terminators and in some cases, enhancers. The term “control sequence” is intended to include at a minimum all components whose presence is required for expression and may also include additional components whose presence is convenient, for example, leader sequences.

“Operativno vezan” označava sastavljanje gdje se komponente u vezi tako opisane da im dozvoljava funkciju na željeni način. Kontrolna sekvenca “operativno vezan” u kodirajućoj sekvenci je vezana na takav način da se ekspresija kodirajuće sekvence postiže u uvjetima kompatibilnim s kontrolnim sekvencama. "Operably linked" means an assembly where the related components are described in such a way as to allow them to function in the desired manner. A control sequence "operably linked" to the coding sequence is linked in such a way that expression of the coding sequence is achieved under conditions compatible with the control sequences.

“Otvoren čitajući okvir” (ORF) je područje polinukleotidne sekvence koja kodira polipeptid; ovo područje može predstavljati dio kodirajuće sekvence ili ukupnu kodirajuću sekvencu. An "open reading frame" (ORF) is a region of a polynucleotide sequence that encodes a polypeptide; this region may represent part of the coding sequence or the entire coding sequence.

“Kodirajuća sekvenca” je polinukleotidna sekvenca koja se transkribira u mRNA i/ili prevodi u polipeptid koda se stavi pod kontrolu odgovarajuće regulacijske sekvence. Granice kodirajuće sekvence su određene prevođenjem polaznog kodona na 5’-terminus i prevođenjem krajnjeg kodona na 3’-terminus. Kodirajuća sekvenca se može uključiti, ali nije ograničena mRNA, cDNA i rekombinantne polinukleotidne sekvence. "Coding sequence" is a polynucleotide sequence that is transcribed into mRNA and/or translated into a code polypeptide under the control of an appropriate regulatory sequence. The boundaries of the coding sequence are determined by translation of the start codon to the 5'-terminus and translation of the end codon to the 3'-terminus. Coding sequences may include, but are not limited to, mRNA, cDNA, and recombinant polynucleotide sequences.

“Imunološki indentifikabilan sa/kao” označava prisutnost epotipa (tipova) i polipeptida koji su također prisutni i jedinstveni su prema naznačenim polipeptidima, obično HCV proteinima. Imunološki identitet može biti određen antitijelom koje vezuje i/ili sudjeluje u vezivanju; ove tehnike su stručnjacima poznate i ilustrirane su niže. Jedinstvenost epitopa može se također odrediti kompjuterskim istraživanjem poznatih banki podataka, npr. Genebank, za polinukleotidne sekvence koje kodiraju epitop i uspoređivanjem aminokiselinske sekvence s drugim poznatim proteinima. "Immunologically identifiable with/as" means the presence of epitope(s) and polypeptides that are also present and unique to the indicated polypeptides, usually HCV proteins. Immunological identity can be determined by the antibody that binds and/or participates in binding; these techniques are known to those skilled in the art and are illustrated below. Epitope uniqueness can also be determined by computer searching known data banks, eg Genebank, for polynucleotide sequences encoding the epitope and comparing the amino acid sequence to other known proteins.

Kao što je korišteno ovdje, “epitop” označava antigensku determinantu polipeptida; epitop može obuhvatiti 3 amonokiseline u prostornoj konformaciji koja je jedinstvena prema epitopu, uobičajeno epitop sadrži bar 5 takvih aminokiselina i uobičajeno sadrži bar 8-10 takvih aminokiselina. Metode određivanja prostorne konformacije aminokiselina poznate su u znanosti i uključuju, na primjer, rendgensku kristalografiju i dvodimenzijsku nuklearnu magnetsku rezonanciju. As used herein, “epitope” refers to an antigenic determinant of a polypeptide; an epitope can encompass 3 amino acids in a spatial conformation that is unique to the epitope, usually an epitope contains at least 5 such amino acids and usually contains at least 8-10 such amino acids. Methods for determining the spatial conformation of amino acids are known in the art and include, for example, X-ray crystallography and two-dimensional nuclear magnetic resonance.

Polipeptid je “imunološki reaktivan” s antitijelom kada se veže za antitijelo zato što antitijelo prepoznaje specifičan epitop sadržan u polipeptidu. Imunološka reaktivnost može se odrediti antitijelom koje veže, točnije kinetikama vezanja antitijela i/ili sudjelovanjem u vezanju korištenjem poznatog polipeptida e) kao konkurenta, koji sadrži epitop protiv kojega je usmjereno antitijelo. Tehnike za određivanje da li je polipeptid imunološki reaktivan s antitijelom poznate su u znanosti. A polypeptide is "immunologically reactive" with an antibody when it binds to an antibody because the antibody recognizes a specific epitope contained in the polypeptide. The immunological reactivity can be determined by the binding antibody, more precisely by the antibody binding kinetics and/or participation in the binding using the known polypeptide e) as a competitor, which contains the epitope against which the antibody is directed. Techniques for determining whether a polypeptide is immunologically reactive with an antibody are known in the art.

Kao što je korišten ovdje, pojam “imunološki polipeptid koji sadrži HCV epitop” uključuje prirodno zastupljene HCV polipeptide ili njihove fragmente, kao i polipeptide dobivene drugim sredstvima, primjerice kemijskom sintezom ili ekspresijom polipeptida u rekombinantnom organizmu. As used herein, the term "immunological polypeptide containing an HCV epitope" includes naturally occurring HCV polypeptides or fragments thereof, as well as polypeptides obtained by other means, for example, by chemical synthesis or expression of the polypeptide in a recombinant organism.

Pojam “polipeptid” označava molekularni lanac aminokiselina i ne označava specifičnu dužinu produkta; tako su u definiciju polipeptida uključeni peptidi, oligopeptidi i proteini. Pojam također na označava post-ekspresijske modifikacije polipeptida, na primjer, glikozilacije, acetilacije, fosforilacije i slično. The term "polypeptide" refers to the molecular chain of amino acids and does not refer to the specific length of the product; thus, the definition of polypeptide includes peptides, oligopeptides and proteins. The term also refers to post-expression modifications of the polypeptide, for example, glycosylation, acetylation, phosphorylation, and the like.

“Transformacija” kako se koristi ovdje, označava ubacivanje egzogenog polinukleotida u stanicu domaćina, s obzirom na metodu korištenu za ubacivanje, na primjer, izravnim prihvaćanjem, transdukcijom ili f-matiranjem. Egzogeni polinukleotid može biti održavan kao neintegriran vektor, na primjer, plazmid ili alternativno može biti integriran s genom domaćina. "Transformation" as used herein refers to the introduction of an exogenous polynucleotide into a host cell, with respect to the method used for introduction, for example, by direct uptake, transduction, or f-matting. An exogenous polynucleotide can be maintained as a non-integrated vector, for example, a plasmid, or alternatively can be integrated into a host gene.

“Tretman” kao što se koristi ovdje označava profilaksu i/ili terapiju. "Treatment" as used herein means prophylaxis and/or therapy.

“Individua” kao što je korišteno ovdje, označava kralježnjake, naročito članove vrste sisavaca, i uključuje ali nije ograničen na domaće životinje, sportske životinje, primate i ljude. "Individual" as used herein refers to vertebrates, particularly members of the mammalian species, and includes but is not limited to domestic animals, sport animals, primates, and humans.

Kako je korišteno ovdje “plus struka” nukleinske kiseline sadrži sekvencu koja kodira polipeptid. “Minus struka” sadrži sekvencu koja je komplementarna onoj “plus struka”. As used herein, the “plus arm” of a nucleic acid comprises a sequence that encodes a polypeptide. "Minus waist" contains a sequence that is complementary to that of "plus waist".

Kako je korišteno ovdje “pozitivno struki genom” virusa je onaj u kome genom, bilo RNA ili DNA je jednoruk i koji kodira navodni polipeptid(e). Primjeri pozitivno strukih RNA virusa uključuju Togaviridae, Coronaviridae, Retroviridae, Piconaviridae i Calciviridae. As used herein, a "positive-sense genome" of a virus is one in which the genome, either RNA or DNA, is single-stranded and encodes the putative polypeptide(s). Examples of positive-stranded RNA viruses include Togaviridae, Coronaviridae, Retroviridae, Piconaviridae, and Calciviridae.

Uključuju također Flaviviridae, koji su jednom klasificirani kao Togaviridae. Vidi Fields & Knipe (1986). They also include the Flaviviridae, which were once classified as Togaviridae. See Fields & Knipe (1986).

Kao što je korišteno ovdje “komponenta tijela koja sadrži antitijelo” označava komponentu individualnih tijela koja su izvor antitijela od interesa. Komponente tijela koje sadrže antitijelo su poznate u znanosti i uključuju, ali nisu ograničene na, primjerice, vanjske dijelove respiratornog, interstinalnog i genitorinarnog trakta, suze, pljuvačku, mlijeko, bijele krvne stanice i mijelome. As used herein “antibody-containing body component” refers to the individual body component that is the source of the antibody of interest. Body components that contain the antibody are known in the art and include, but are not limited to, for example, external parts of the respiratory, interstitial, and genitourinary tracts, tears, saliva, milk, white blood cells, and myeloma.

Kao što je korišteno ovdje “pročišćen HCV označava preparat HCV koji je izoliran od staničnih tvari sa kojima je virus normalno vezan, i od drugih vrsta virusa koji mogu biti prisutni u inficiranom tkivu. Tehnike za izoliranje virusa su poznate stručnjacima i uključuju, na primjer, centrifugiranje i afinitetnu kromatografiju; postupak dobivanja pročišćenog HCV je razmotren niže. As used herein, “purified HCV” means a preparation of HCV that has been isolated from cellular substances with which the virus is normally associated, and from other types of virus that may be present in infected tissue. Techniques for isolating viruses are known to those skilled in the art and include, for example, centrifugation and affinity chromatography; the procedure for obtaining purified HCV is discussed below.

Realizacija ovog izuma se izvodi, ako drukčije nije naglašeno, konvencionalnim tehnikama molekularne biologije, mikrobiologije, rekombinantne DNA i imunologije koje su poznate stručnjacima u ovom području. Takve su tehnike sasvim objašnjene u literaturi. Vidi npr. Manitis, Fitsch & Sambrook, MOLECULAR CLONING; A LABORATORY MANUAL (1982); DNA CLONING, VOLUMES I AND II (D.N. Glover ed. 1985); OLIGONUCLEOTIDE SYNTHESIS (M.J. Gait ed. 1984); TRANSCRIPTION AND TRANSLATION (B.D.Hames & S.J.Higgins eds. 1984); ANIMAL CELL CULTURE (R.I.Freshney ed. 1986); IMMOBILIZED CELLS AND ENZYMES(IRL Press, 1986); B.Perbal, A PRACTICAL GUIDE TO MOLECULAR CLONING (1984); serije, A METHODS IN ENZYMOLOGY (Academic Press, Inc.); GENE TRANSFER VECTORS FOR MAMMALIAN CALLS (J.H.Miller i M.P.calos eds. 1987, Cold Spring Harbor Laboratory), Methods in Enzymolgy vol. 154 i vol. 155 ( Wu i Grossman i Wu, eds., respektivno), Mayer i Walker eds. (1987), IMMUNOCHEMICAL METHODS IN CELL AND MOLECULAR BIOLOGY (Academic Press, london), Scopes, (1987), PROTEIN PURIFICATION; PRINCIPLES AND PRACTICE, Second Edition (Springer-Verlag, N.Y.) i HANDBOOK OF EXPERIMENTAL IMMUNOLOGY, VOLUMES I-VI (D.M. Weir i C.C. Blackwell eds. 1986). The implementation of this invention is carried out, unless otherwise indicated, by conventional techniques of molecular biology, microbiology, recombinant DNA and immunology known to those skilled in the art. Such techniques are fully explained in the literature. See, eg, Manitis, Fitsch & Sambrook, MOLECULAR CLONING; A LABORATORY MANUAL (1982); DNA CLONING, VOLUMES I AND II (D.N. Glover ed. 1985); OLIGONUCLEOTIDE SYNTHESIS (M.J. Gait ed. 1984); TRANSCRIPTION AND TRANSLATION (B.D. Hames & S.J. Higgins eds. 1984); ANIMAL CELL CULTURE (R.I.Freshney ed. 1986); IMMOBILIZED CELLS AND ENZYMES (IRL Press, 1986); B. Perbal, A PRACTICAL GUIDE TO MOLECULAR CLONING (1984); series, A METHODS IN ENZYMOLOGY (Academic Press, Inc.); GENE TRANSFER VECTORS FOR MAMMALIAN CALLS (J.H.Miller and M.P.calos eds. 1987, Cold Spring Harbor Laboratory), Methods in Enzymolgy vol. 154 and vol. 155 (Wu and Grossman and Wu, eds., respectively), Mayer and Walker eds. (1987), IMMUNOCHEMICAL METHODS IN CELL AND MOLECULAR BIOLOGY (Academic Press, London), Scopes, (1987), PROTEIN PURIFICATION; PRINCIPLES AND PRACTICE, Second Edition (Springer-Verlag, N.Y.) and HANDBOOK OF EXPERIMENTAL IMMUNOLOGY, VOLUMES I-VI (D.M. Weir and C.C. Blackwell eds. 1986).

Svi patenti, patentne prijave i publikacije spomenute ovdje prije i niže su ovdje ubačene kao reference. All patents, patent applications and publications mentioned hereinabove and below are hereby incorporated by reference.

Korisni materijali i postupci ovog izuma su omogućeni osiguravanjem porodice blisko homolognih nukleotidnih sekvenci nukleinskih kiselina izoliranih iz cDNA biblioteke izvedene iz sekvenci nukleinskih kiselina prisutnih u plazmi HCV inficiranih čimpanzi. The useful materials and methods of this invention are made possible by providing a family of closely homologous nucleic acid nucleotide sequences isolated from a cDNA library derived from nucleic acid sequences present in the plasma of HCV infected chimpanzees.

Korisnosti ove porodice cDNA prikazanih na slikama 1-32, dozvoljava stvaranje DNA proba i polipeptida korisnih u dijagnosticiranju NANBH izazvanom HCV infekcijom i u testiranju davalaca krvi kao i dane krvi i krvnih produkata na infekciju. Na primjer, iz sekvenci je moguće sintetizirati DNA oligomere od oko 8-10 nukleotida ili više koji su korisni kao hibridizacijske probe za detektiranje prisutnosti navodnog genodnog genoma u, na primjer, serumu subjekata sumnjivih da uzgajaju virus ili za testiranje dane krvi na pisutnost virusa. Porodica cDNA sekvenci također dozvoljava nastajanje i produkciju HCV specifičnih polipepdida koji su korisni kao dijagnostički reagensi na prisutnost antitijela nastalih tijekom NANBH. Antitijela u pročišćenim polipeptidima izvedenim iz cDNA mogu se također koristiti za detektiranje navodnih antigena u inficiranim individuama i u krvi. The utility of this family of cDNAs shown in Figures 1-32 allows the creation of DNA probes and polypeptides useful in diagnosing NANBH caused by HCV infection and in testing blood donors as well as donated blood and blood products for infection. For example, it is possible to synthesize from the sequences DNA oligomers of about 8-10 nucleotides or more that are useful as hybridization probes for detecting the presence of the putative genomic genome in, for example, the serum of subjects suspected of harboring the virus or for testing donated blood for viral load. The family of cDNA sequences also allows the generation and production of HCV-specific polypeptides that are useful as diagnostic reagents for the presence of antibodies generated during NANBH. Antibodies to purified cDNA-derived polypeptides can also be used to detect putative antigens in infected individuals and in blood.

Poznavanje ovih cDNA sekvenci također osigurava stvaranje i produkcije polipeptida koji mogu biti korišteni kao cjepiva protiv HCV i također za produkciju antitijela, koja se mogu koristiti za zaštitu od bolesti i/ili za terapiju HCV inficiranih individua. Knowledge of these cDNA sequences also ensures the creation and production of polypeptides that can be used as vaccines against HCV and also for the production of antibodies, which can be used for disease protection and/or therapy of HCV infected individuals.

Čak štoviše, porodica cDNA sekvenci osigurava daljnju karakterizaciju HCV genoma. Polinukleotidne probe izvedene iz ovih sekvenci mogu biti korištene za testiranje cDNA biblioteke na dodatno preklapanje cDNA sekvenci, i mogu se koristiti za dobivanje sekvenci koje se više preklapaju. Mada je genom segment i segmenti nemaju opće sekvence, ove tehnike mogu se koristiti za dobivanje sekvenci čitavog genoma. Međutim, ako genom nije segment, drugi segmenti genoma mogu se dobiti ponavljanjem lambda-gt11 serološkog postupka testiranja korištenog za izoliranje cDNA ovdje opisanih klonova ili alternativno izoliranjem genoma iz pročišćenih HCV čestica. Moreover, the family of cDNA sequences provides further characterization of the HCV genome. Polynucleotide probes derived from these sequences can be used to screen cDNA libraries for additional overlapping cDNA sequences, and can be used to obtain more overlapping sequences. Although a genome is a segment and segments do not have common sequences, these techniques can be used to obtain the sequences of the entire genome. However, if the genome is not a segment, other segments of the genome can be obtained by repeating the lambda-gt11 serological testing procedure used to isolate the cDNA clones described herein or alternatively by isolating the genome from purified HCV particles.

Porodica cDNA sekvenci i polipeptida izvedenih iz ovih sekvenci, kao i antitijela usmjerenih protiv ovih polipeptida su također korisni u izoliranju i identifikaciji BB-NANBV agensa (agenasa). A family of cDNA sequences and polypeptides derived from these sequences, as well as antibodies directed against these polypeptides, are also useful in the isolation and identification of BB-NANBV agent(s).

Ova porodica nukleotidnih sekvenci nije ljudskog niti čimpanzinog porijekla, dakle ne hibridizira se niti u ljudskoj niti čimpanzinoj genomskoj DNA neinficiranoj individui, dakle nukleotidi ove porodice sekvenci su prisutni samo u jetri i plazmi čimpanzi HCV inficiranih, te dakle sekvenca nije prisutna u Genebank. Dodatno, porodica sekvenci ne pokazuje značajnu homologiju sa sekvencama sadržanim u HBV genomu. This family of nucleotide sequences is not of human or chimpanzee origin, therefore it does not hybridize in either human or chimpanzee genomic DNA of an uninfected individual, therefore nucleotides of this family of sequences are present only in the liver and plasma of HCV-infected chimpanzees, and therefore the sequence is not present in Genebank. Additionally, the sequence family does not show significant homology to sequences contained in the HBV genome.

Sekvenca jednog člana porodice, sadržana u klonu 5-1-1, ima jedan neprekidno otvoren okvir (ORF) koji kodira polipeptid od oko 50 aminokiselina, serum iz HCV inficiranih ljudi sadrži antitijela koja se vežu za ovaj polipeptid, pošto serum neinficiranih ljudi ne sadrži antitijela za ovaj polipeptid, najzad, pošto serum neinficiranih čimpanzi ne sadrži antitijela za ovaj polipeptid, antitijela se induciraju u čimpanzama slijedeći akutnu NANBH infekciju. Međutim, antitijela na ovaj polipeptid nisu detektirana na čimpanzama i ljudima inficiranim sa HAV i HBV. Pomoću ovih kriterija sekvenca je cDNA u navodnoj sekvenci, gdje virus izaziva ili je povezan sa NANBH; ova cDNA sekvenca je prikazana na slici 1. kao što je razmotreno niže, cDNA sekvenca u klonu 5-1-1 se razlikuje od one drugih izoliranih cDNA u tome što sadrži 28 ekstrakta bazna para. The sequence of one member of the family, contained in clone 5-1-1, has one continuous open frame (ORF) encoding a polypeptide of about 50 amino acids, serum from HCV-infected people contains antibodies that bind to this polypeptide, whereas serum from uninfected people does not antibodies to this polypeptide, finally, since the serum of uninfected chimpanzees does not contain antibodies to this polypeptide, antibodies are induced in chimpanzees following acute NANBH infection. However, antibodies to this polypeptide were not detected in chimpanzees and humans infected with HAV and HBV. Using these criteria, the sequence is the cDNA in the putative sequence, where the virus causes or is associated with NANBH; this cDNA sequence is shown in Figure 1. As discussed below, the cDNA sequence in clone 5-1-1 differs from that of other isolated cDNAs in that it contains 28 base pair extracts.

Sastav drugih identificiranih članova cDNA porodice, koja je izolirana korištenjem kao probe sintetske ekvivalentne sekvence prema fragmentu cDNA u klonu 5-1-1, prikazan je na slici 3. Član cDNA porodice u klonu 81 je prikazan na slici 5, i sastav ove sekvence sa ovim klona 81 prikazan je na slici 6. Drugi članovi cDNA porodice, uključujući one prisutne u klonovima 14i, 11b, 7f, 7e, 8h, 33c, 40b, 37b, 35, 36, 81, 32, 33b, 25c, 14c, 8f, 33f, 33g i 39c su opisani u poglavlju IV.A. Sastav cDNA u ovim klonovima je opisan u poglavlju IV.A.18 i prikazan je na slici 26. Sastav cDNA pokazuje da sadrži neprekidan ORF i tako kodira poliprotein. Ovaj podatak je konzistentan sa sugestijom diskutiranjem niže, gdje HCV je flavivirus ili virus sličan njemu. The composition of the other identified cDNA family members, which was isolated using as a probe the synthetic equivalent sequence to the cDNA fragment in clone 5-1-1, is shown in Figure 3. The cDNA family member in clone 81 is shown in Figure 5, and the composition of this sequence with hereof, clone 81 is shown in Figure 6. Other members of the cDNA family, including those present in clones 14i, 11b, 7f, 7e, 8h, 33c, 40b, 37b, 35, 36, 81, 32, 33b, 25c, 14c, 8f , 33f, 33g and 39c are described in Chapter IV.A. The composition of the cDNA in these clones is described in Chapter IV.A.18 and is shown in Figure 26. The composition of the cDNA shows that it contains a continuous ORF and thus encodes a polyprotein. This data is consistent with the suggestion discussed below that HCV is a flavivirus or a virus similar to it.

Na primjer, antitijela usmjerena protiv HCV epitopa sadržana u polipeptidima izvedenim iz cDNA mogu se koristiti u postupcima zasnovanim na afinitetnoj kromatografiji za izoliranje virusa. Alternativno, antitijela se mogu koristiti za identifikaciju virusnih partikula izoliranih drugim tehnikama. Virusni antigeni i genomski materijal u izoliranim virusnim partikulama mogu se tada dalje okaraktezirati. For example, antibodies directed against HCV epitopes contained in cDNA-derived polypeptides can be used in affinity chromatography-based methods to isolate the virus. Alternatively, antibodies can be used to identify viral particles isolated by other techniques. The viral antigens and genomic material in the isolated viral particles can then be further characterized.

Informacija dobivena iz daljeg sekvencijskog HCV genoma, kao i iz dalje karakterizacije HCV antigena i karakterizacije genoma omogućiti će stvaranje i sintezu dodatnih proba i polipeptida i antitijela koja mogu biti korištena za dijagnoze, za prevenciju i za terapiju HCV izazvanog NANBH, i za testiranje na inficiranu krv i krvne produkte. The information obtained from the further sequencing of the HCV genome, as well as from the further characterization of the HCV antigen and the characterization of the genome, will enable the creation and synthesis of additional samples and polypeptides and antibodies that can be used for diagnosis, for the prevention and therapy of HCV caused by NANBH, and for testing for infected blood and blood products.

Raspolaživost proba na HCV, uključujući antigene i antitijela i polinukleotide izvedene iz genoma iz koga je porodica cDNA izvedena, dozvoljava također razvijanje sistema kulture tkiva primjena biti u razrješavanju biologije HCV. Ovo dovodi do razvijanja novog tretmanskog načina liječenja baziranih na antivirusnim spojevima koji infibiraju ili infekciju pomoću HCV. The availability of HCV probes, including antigens and antibodies and polynucleotides derived from the genome from which the cDNA family is derived, also allows the development of tissue culture systems for use in resolving HCV biology. This leads to the development of new treatment methods based on antiviral compounds that inhibit or infection by HCV.

Postupak korišten za identifikaciju i izoliranje etiološkog agensa za NANBH je nov, i može biti primjenjiv za identifikaciju i/ili izoliranje do sada neokarakteriziranih agenasa koji sadrže genom, i koji su povezani s raznim bolestima, uključujući one inducirane virusima, viroidima, bakterijama, gljivama i parazitima. U ovom postupku, cDNA biblioteka se smatra iz nukleinskih kiselina prisutnih u inficiranom tkivu iz inficiranih individua. Biblioteka se stvara u vektoru koji dozvoljava ekspresiju polipeptida kodiranog u cDNA. Klonovi stanica domaćina koje sadržava vektor, koji je izražava imunološki reaktivan fragment polipeptida etiološkog agensa sa odabiranjem pomoću imunološkog testiranja ekspresionih produkata biblioteke sa komponentom tijela koja sadrži antitijelo iz druge individue predhodno inficirane s navodnim agensom. The procedure used to identify and isolate the etiologic agent for NANBH is novel, and may be applicable to the identification and/or isolation of hitherto uncharacterized genome-containing agents associated with a variety of diseases, including those induced by viruses, viroids, bacteria, fungi, and parasites. In this procedure, a cDNA library is considered from nucleic acids present in infected tissue from infected individuals. The library is created in a vector that allows expression of the polypeptide encoded in the cDNA. Clones of host cells containing a vector, which expresses an immunologically reactive polypeptide fragment of the etiological agent with selection by immunoassay of the expression products of the library with a body component containing antibody from another individual previously infected with the putative agent.

Stupnjevi u tehnici imunološkog testiranja uključuju interakciju ekspresionih produkata cDNA koji sadrži vektore sa komponentom tijela koja sadrži antitijelo druge inficirane individue i detektiranje stvaranja kompleksa antitijelo-antigen između ekspresionih produkata i antitijela druge inficirane individue. Steps in the immunoassay technique include interacting the vector-containing cDNA expression products with an antibody-containing body component of another infected individual and detecting the formation of an antibody-antigen complex between the expression products and the antibody of the other infected individual.

Izolirani klonovi se dalje testiraju imunološki interakcijom njihovih produkata ekspresije s komponentama tijela koje sadrže antitijelo drugih individua inficiranih navodnih agensom, i detekcijom stvaranja kompleksa antigen-antitijelo iz inficiranih individua; i vektori koji sadrže cDNA koji kodiraju polipeptide koji reagiraju imunološki s antitijelima iz inficiranih individua i individua osumljičenih da su inficirani s agensom, ali ne i iz kontrolnih individua, se izoliraju. Inficirane individue korištene za stvaranje cDNA biblioteke i za potrebu imunološkog testiranja nisu od istih vrsta. Isolated clones are further tested immunologically by interacting their expression products with antibody-containing body components of other individuals infected with the putative agent, and by detecting the formation of antigen-antibody complexes from infected individuals; and vectors containing cDNAs encoding polypeptides that react immunologically with antibodies from infected individuals and individuals suspected of being infected with the agent, but not from control individuals, are isolated. The infected individuals used to create the cDNA library and for the purpose of immunological testing are not of the same species.

cDNA izolirane kao rezultat ovog postupka i njihovi produkti ekspresije i antitijela usmjerena protiv produkata ekspresije su korisni u karakterizaciji i dobivanju etiološkog agensa. Kao što je detaljnije niže opisano, ovaj postupak se uspješno koristi radi izoliranja porodice cDNA izvedenih iz HCV genoma. cDNAs isolated as a result of this procedure and their expression products and antibodies directed against the expression products are useful in characterizing and obtaining the etiologic agent. As described in more detail below, this procedure has been successfully used to isolate a family of cDNAs derived from the HCV genome.

II.A. Dobivanje cDNA sekvence II.A. Obtaining the cDNA sequence

Udruženi serumi iz čimpanzi s kroničnom HCV infekcijom i koji sadrži visoki titar virusa, npr. bar 106 čimp. infekcijskih doza/ml (CID/ml) su korišteni za izoliranje virusnih partikula; nukleinske kiseline izolirane iz ovih partikula se koriste kao šablone u stvaranju cDNA biblioteke virusnog genoma. Postupci za izoliranje navodnih HCV partikula i za stvaranje cDNA biblioteke u lambda-gt11 su razmotreni u poglavlju IA.A.1. Lambda-gt11 je vektor koji je specifično razvijen radi ekspresije insertnih cDNA kao sjedinjenih polipeptida sa betagalaktozidazom i radi testiranja velikog broja rekombinantnih faga sa specifičnim entiserumom nastalim protiv definiranog antigena. Lambda-gt11 cDNA biblioteka nastala iz cDNA izvora koja sadrži cDNA prosječne veličine od oko 200 baznih parova je testirana na kodirane epitope koji se trebaju specifično vezati sa serumom izvedenim iz pacijenata koji su prethodno patili od NANB hepatitisa. Huynh T.V. et al (1985). Pooled sera from chimpanzees with chronic HCV infection and containing a high virus titer, eg at least 106 chimp. infectious doses/ml (CID/ml) were used to isolate virus particles; nucleic acids isolated from these particles are used as templates in the creation of a cDNA library of the viral genome. Procedures for isolating putative HCV particles and for generating a cDNA library in lambda-gt11 are discussed in section IA.A.1. Lambda-gt11 is a vector that was specifically developed for the expression of insert cDNAs as united polypeptides with betagalactosidase and for testing a large number of recombinant phages with a specific antiserum against a defined antigen. A lambda-gt11 cDNA library generated from a cDNA source containing cDNA with an average size of about 200 base pairs was tested for encoded epitopes that should specifically bind to serum derived from patients previously suffering from NANB hepatitis. Huynh T.V. et al (1985).

Oko 106 faga je testirano i identificirano je pet pozitivnih faga, pročišćeni su i testirani na specifičnost vezanja za serum iz ranih ljudi i čimpanzi prethodno inficiranih sa HCV agensom. Jedan od faga, 5-1-1 veže 5 do 8 testiranih ljudskih seruma. Ovo vezanje javlja se specifično za serum izveden iz pacijenata prije NANB hepatitis infekcije, pri čemu 7 normalnih davalaca krvnog seruma ne pokazuje takvo vezanje. About 106 phages were tested and five positive phages were identified, purified and tested for binding specificity to serum from early humans and chimpanzees previously infected with the HCV agent. One of the phages, 5-1-1 binds 5 to 8 human sera tested. This binding occurs specifically for serum derived from patients prior to NANB hepatitis infection, with 7 normal blood serum donors showing no such binding.

Sekvenca cDNA u rekombinantnom fagu 5-1-1 je određena i prikazana na slici 1. Polipeptid kodiran ovom kloniranom cDNA, koja je u istom translacijskom okviru kao N-terminalna beta-galaktozidaza dio sjedinjenog polipeptida na naprijed prikazana nukleotidna sekvenca. Ovaj translatorni ORF stoga kodira epitop(e) specifično prepoznat serumom iz pacijenata sa NANB hepatitis infekcijom. The cDNA sequence in recombinant phage 5-1-1 was determined and shown in Figure 1. The polypeptide encoded by this cloned cDNA, which is in the same translation frame as the N-terminal beta-galactosidase, is part of the united polypeptide in the forward shown nucleotide sequence. This translational ORF therefore encodes an epitope(s) specifically recognized by serum from patients with NANB hepatitis infection.

Raspoloživost cDNA u rekombinantnom fagu 5-1- dozvoljava izoliranje drugih klonova koji sadrže dodatne segmente i/ili alternativne segmente cDNA u virusnom genomu. Lambda-gt11 cDNA biblioteka opisana naprijed je testirana korištenjem sintetskog polinukleotida izvedenog iz sekvence klonirane 5-1-1 cDNA. Ovo testiranje daje tri druga klona, koji su identificirani kao 81, 1-2 i 91; cDNA sadržana u svim klonovima je sekvencirana. Vidi poglavlja IV.A.3 i IV.A.4. homologija između četiri nezavisna klona je prikazana na slici 2, gdje su homologije naznačene uspravnim crtama. Sekvence nukleotida prisutne jedinstveno u klonovima 5-1-1, 81 i 91 su naznačene malim slovima. The availability of cDNA in recombinant phage 5-1- allows the isolation of other clones containing additional segments and/or alternative segments of cDNA in the viral genome. The lambda-gt11 cDNA library described above was screened using a synthetic polynucleotide derived from the cloned 5-1-1 cDNA sequence. This testing yielded three other clones, which were identified as 81, 1-2 and 91; The cDNA contained in all clones was sequenced. See chapters IV.A.3 and IV.A.4. homology between four independent clones is shown in Figure 2, where homologies are indicated by vertical lines. Nucleotide sequences present uniquely in clones 5-1-1, 81, and 91 are indicated in lowercase letters.

Klonirane cDNA prisutne u rekombinantnim fagima u klonovima 5-1-1, 81, 1-2 i 91 su visoko homologne i razlikuju se samo u dva područja. Prvo, nukleotid broj 67 u klonu 1-2 je timidin, dok druga tri klona sadrže citidin ostatak u ovom položaju. Ova zamjena, međutim, ne mijenja prirodu kodirane aminokiseline. The cloned cDNAs present in the recombinant phages in clones 5-1-1, 81, 1-2 and 91 are highly homologous and differ only in two regions. First, nucleotide number 67 in clone 1-2 is thymidine, while the other three clones contain a cytidine residue at this position. This substitution, however, does not change the nature of the encoded amino acid.

Druga razlika između klonova je što klon 5-1-1 sadrži 28 bazna para na svom 5’-terminusu koji nisu prisutni u drugim klonovima. Ekstra sekvenca može biti 5’-terminalni klonirajući artefakt; 5’-terminalni klonirajući artefakti se uopćeno razmatraju u produktima cDNA metode. Another difference between the clones is that clone 5-1-1 contains 28 base pairs at its 5'-terminus that are not present in the other clones. The extra sequence may be a 5'-terminal cloning artifact; 5'-terminal cloning artifacts are generally considered in cDNA method products.

Sintetske sekvence izvedene iz 5’-područja HCV cDNA u klonu 81 su korištene za testiranje i izoliranje cDNA iz lambda-gt11 NANBV cDNA biblioteke koja preklapa klon 81 cDNA (poglavlje IV.A.5). sekvence dobivenih cDNA, koje su u klonu 36 i klonu 32, respektivno su prikazane na slici 5 i slici 7. Synthetic sequences derived from the 5'-region of HCV cDNA in clone 81 were used to test and isolate cDNA from a lambda-gt11 NANBV cDNA library overlapping clone 81 cDNA (Chapter IV.A.5). the sequences of the obtained cDNAs, which are in clone 36 and clone 32, are shown in Figure 5 and Figure 7, respectively.

Slično, sintetski polinukleotid zasnovan na 5’-području 36 korišten je radi testiranja i izoliranja cDNA iz lambda-gt11 N AN BV cDNA biblioteke koja preklapa klon 36 cDNA (poglavlje IV.A.8). pročišćen klon rekombinantnog faga koji sadrži cDNA koja je hibridizirana prema sintetskoj polinukleotidnoj probi je pozvan klon 35 i NANBV cDNA sekvenca sadržana u ovom klonu je prikazana na slici 8. Similarly, a synthetic polynucleotide based on the 5'-region of 36 was used to test and isolate cDNA from a lambda-gt11 N AN BV cDNA library overlapping clone 36 cDNA (Chapter IV.A.8). the purified recombinant phage clone containing the cDNA that hybridized to the synthetic polynucleotide probe was called clone 35 and the NANBV cDNA sequence contained in this clone is shown in Figure 8.

Korištenjem tehnika izoliranja preklapajućih cDNA sekvenci, dobiveni su klonovi koji sadrže dodatne nizvodno strujne i uzvodno strujne HCV cDNA sekvence. Izoliranje ovih klonova je opisano niže u poglavlju IV.A. Using overlapping cDNA sequence isolation techniques, clones containing additional downstream and upstream HCV cDNA sequences were obtained. Isolation of these clones is described below in Section IV.A.

Analiza nukleotidnih sekvenci HCV cDNA kodiranih u izoliranim klonovima pokazuje da je sastav cDNA čini jedan dug neprekidan ORF. Slika 26 prikazuje sekvencu sastava cDNA iz ovih klonova zajedno sa kloniranim HCV polipeptidom. Analysis of the nucleotide sequences of the HCV cDNA encoded in the isolated clones shows that the composition of the cDNA is one long continuous ORF. Figure 26 shows the sequence composition of the cDNA from these clones together with the cloned HCV polypeptide.

Opis postupaka radi ponovnog dobivanja cDNA sekvenci je uglavnom od povijesnog interesa. Rezultirajuće sekvence (i njihovi komplementi) osigurani su ovdje i sekvence ili neki njihov dio, treba dodavati korištenjem sintetskih pojedinosti sekvenci koristeći postupke slične onima opisanim ovdje. The description of procedures for recovering cDNA sequences is mainly of historical interest. The resulting sequences (and their complements) are provided herein and the sequences, or a portion thereof, should be added using synthetic sequence details using procedures similar to those described herein.

Lambda-gt11 replicirane iz HCV cDNA biblioteke i iz klonova 5-1-1, 81, 1-2 i 91 se deponirane pod nazivima Budapest Treaty sa Anerican Type Culture Collection (ATCC), 12301 Parklawn Dr., Rockville, Maryland 20852 i označene su sljedećim pridruženim brojevima. Lambda-gt11 replicates from the HCV cDNA library and from clones 5-1-1, 81, 1-2 and 91 have been deposited under the Budapest Treaty names with the Anerican Type Culture Collection (ATCC), 12301 Parklawn Dr., Rockville, Maryland 20852 and designated are the following associated numbers.

[image] [image]

Po odobrenju i izdavanju ove prijave kao patenta SAD, sva ograničenja na raspoloživost ovim depozitima će biti neopozivo uklonjena; i uvid u nagrađen depozit će bit raspoloživ tijekom odluživanja naprijed navedene prijave kod određenog opunomoćenika pod nazivom 37 CFR 1.14 i 25 USC 1.22. Međutim, depoziti će biti održavani tijekom perioda od 30 godina od datuma depozicije ili pet godina poslije posljednjeg zahtjeva za deponiranje; ili važnosti patenta SAD ma kako dugo. Ovi depoziti su namijenjeni samo za pogodnosti, i nisu traženi za prakticiranje ovog izuma s gledišta ovog opisa. HCV cDNA sekvence u deponiranom materijalu su ovdje ubačene referencom. Upon approval and issuance of this application as a US patent, all restrictions on the availability of these deposits will be irrevocably removed; and inspection of the awarded deposit will be available during the processing of the aforementioned application with the designated attorney under 37 CFR 1.14 and 25 USC 1.22. However, deposits will be maintained for a period of 30 years from the date of deposit or five years after the last deposit request; or validity of the US patent for however long. These deposits are for convenience only, and are not required for the practice of this invention from the perspective of this description. The HCV cDNA sequences in the deposited material are incorporated herein by reference.

II.B. Dobivanje virusnih polipeptida i fragmenata II.B. Obtaining viral polypeptides and fragments

Raspoloživost cDNA sekvenci, bilo onih izoliranih korištenjem cDNA sekvenci na slikama 1-26, kao što je razmotreno niže, kao i cDNA sekvenci na ovim slikama, dozvoljava konstrukciju ekspresionih vektora koji kodira antigenski antivna područja polipeptida kodiran u jednoj ili drugoj struci. Ova antigenski aktivna područja mogu se izvesti iz obloženih ili omotanih antigena ili iz sržnih antigena, uključujući, na primjer, polinukleotid koji veže proteine, polinukleotidne polimeraze, i druge virusne proteine tražene za replikaciju i/ili stvaranje virusnih portikula. Fragmenti koji kodiraju željene polipeptide izvode se iz cDNA klonova korištenjem uobičajenog restrikcijskog razaranja ili sintetskim postupcima i vežu se u vektore koji mogu, na primjer, sadržavati dijelove sjedinjenih sekvenci takvih kao beta-galaktozidaza ili superoksid dismutaza (SOD), poželjno SOD. The availability of cDNA sequences, either those isolated using the cDNA sequences of Figures 1-26, as discussed below, as well as the cDNA sequences of these Figures, permits the construction of expression vectors encoding the antigenically antigenic regions of the polypeptide encoded by one or the other strand. These antigenically active regions can be derived from coated or enveloped antigens or from core antigens, including, for example, polynucleotide binding proteins, polynucleotide polymerases, and other viral proteins required for replication and/or viral porticle formation. Fragments encoding the desired polypeptides are derived from cDNA clones using conventional restriction digestion or synthetic methods and ligated into vectors which may, for example, contain portions of fused sequences such as beta-galactosidase or superoxide dismutase (SOD), preferably SOD.

Postupci i vektori koji su korisni za proizvodnju polipeptida koji sadrže sjedinjene sekvence SOD su opisani u European Patent Office Publication br. 0196056, publicirane 1.10.1986. Vektori koje kodira sjedinjavanje polipeptida SAD i HCV polipeptida, npr. NANB5-1-1, NANB81 i CIOO-3, koji je kodiran u sastav HCV cDNA, su opisani u poglavljima IV.B.1, IV.B.2 i IV.B.4, respektivno. Neki željeni dio HCV cDNA koji sadrži otvoreni čitajući okvir, u bilo kom struku, može se dobiti kao rakombinantni polipeptid, takav kao zreli ili sjedinjeni protein; alternativno, polipeptid kodiran u cDNA može se osigurati kemijskim sintezama. Methods and vectors useful for the production of polypeptides containing fused SOD sequences are described in European Patent Office Publication no. 0196056, published on October 1, 1986. Vectors encoding the fusion of the SAD polypeptide and the HCV polypeptide, eg, NANB5-1-1, NANB81 and CIOO-3, which is encoded by the HCV cDNA, are described in Sections IV.B.1, IV.B.2 and IV. B.4, respectively. Any desired portion of the HCV cDNA containing the open reading frame, in any region, can be obtained as a recombinant polypeptide, such as a mature or fusion protein; alternatively, the polypeptide encoded in the cDNA can be provided by chemical syntheses.

DNA koja kodira željeni polipeptid, bilo u sjedinjenom ili zrelom obliku i bilo da sadrži ili ne jednu sekvencu radi dozvoljavanja izlučivanja, može biti vezan u ekspresijskim vektorima pogodnim za uobičajenog domaćina. Oba, eukariotidni i prokariotidni sustavi domaćina, sada se koriste u stvaranju rekombinantnih polipeptida i neki od uobičajenih kontrolnih sustava i linija stanica domaćina su dani u poglavlju III.A., niže. Polipeptid se tada izolira iz liziranih stanica ili iz medija kulture i pročišćava se radi proširene potrebe za njegovim korištenjem. Pročišćavanje se može izvesti tehnikama poznatim u znanosti, na primjer, frakcioniranje soli, kromatografija na ionsko-izmjenjivačkim smolama, afinitetna kromatografija, centrifugiranje i slično. DNA encoding the desired polypeptide, whether in a spliced or mature form and whether or not it contains a sequence to permit secretion, can be ligated into expression vectors suitable for a common host. Both eukaryotic and prokaryotic host systems are now used in the production of recombinant polypeptides and some of the common control systems and host cell lines are given in Chapter III.A., below. The polypeptide is then isolated from lysed cells or from the culture medium and purified for extended use. Purification can be performed by techniques known in the art, for example, salt fractionation, chromatography on ion-exchange resins, affinity chromatography, centrifugation, and the like.

Vidi, na primjer, metode u Enzimologiji za razne metode pročišćavanja proteina. Takvi polipeptidi mogu se koristiti kao dijagnostici ili oni koji daju porast u neutralizirajućim antitijelima, mogu se formulirati u cjepivu. Antitijela nastala protiv ovih polipeptida mogu se također koristiti kao dijagnostici, ili za pasivnu imunoterapiju. Dodatno, kao što je diskutirano u poglavlju II.J. niže, antitijela prema ovim opolipeptidima su korisna za izoliranje i identifikaciju HCV partikula. See, for example, Methods in Enzymology for various protein purification methods. Such polypeptides can be used as diagnostics or those that give rise in neutralizing antibodies can be formulated into a vaccine. Antibodies raised against these polypeptides can also be used as diagnostics, or for passive immunotherapy. Additionally, as discussed in Chapter II.J. below, antibodies to these polypeptides are useful for the isolation and identification of HCV particles.

HCV antigeni mogu se također izolirati iz HCV viriona. Virioni mogu rasti u HCV inficiranim stanicama u tkivu kulture ili u inficiranom domaćinu. HCV antigens can also be isolated from HCV virions. Virions can grow in HCV-infected cells in tissue culture or in an infected host.

II.C. Dobivanje antigenskih polipeptida i konjugacija s nosačem II.C. Preparation of antigenic polypeptides and conjugation with a carrier

Antigensko područje polipeptida je općenito relativno maleno – tipično 8 do 10 aminokiselina ili manje u dužini. Fragmenti od 5 aminokiselina mogu karakterizirati antigensko područje. Ovi segmenti mogu odgovarati područjima HCV antigena. Stoga, korištenje cDNA iz HCV kao baze, DNA koja kodira kratke segmente HCV polipeptida može biti izraženo rekombinantno bilo kao sjedinjeni proteini ili kao izolirani polipeptidi. Dodatno, kratke aminokiselinske sekvence mogu se uobičajeno dobiti kemijskim sintezama.U slučajevima gdje je sintetizirani polipeptid korektno konfiguriran tako da osigurava korektan epitop, ali je suviše malen da bi bio imunogen, polipeptid se može vezati za pogodan nosač. The antigenic region of a polypeptide is generally relatively small—typically 8 to 10 amino acids or less in length. Fragments of 5 amino acids can characterize the antigenic region. These segments may correspond to regions of the HCV antigen. Therefore, using cDNA from HCV as a base, DNA encoding short segments of HCV polypeptides can be expressed recombinantly either as fused proteins or as isolated polypeptides. Additionally, short amino acid sequences can usually be obtained by chemical synthesis. In cases where the synthesized polypeptide is correctly configured to provide the correct epitope, but is too small to be immunogenic, the polypeptide can be attached to a suitable carrier.

U zanosti su poznate tehnike za takvo povezivanje, uključujući stvaranje disulfidnih veza koristeći N-sukcinidil-3-(2-piridiltio) propionat (SPDP) i sukcinimidil 4-(N-maleimido-metil) cikloheksan-1-karbosilat (SMCC) dobiveni od Pierce Company, Rockford, Illionois (ako peptid nema sulfhidril grupu, ovo može biti osigurano dodavanjem cisteinskog ostatka). Ovi reagensi stvaraju disulfidnu vezu između sebe i cisteinskih ostataka peptida na jednom proteinu i amidnoj vezi preko epsilon-amino na lizinu ili drugoj amino grupi u drugom. Varijante takvih agenasa koji stvaraju disulfid/amid su poznate. Techniques for such linkage are known in the art, including the formation of disulfide bonds using N-succinidyl-3-(2-pyridylthio)propionate (SPDP) and succinimidyl 4-(N-maleimido-methyl)cyclohexane-1-carbosylate (SMCC) derived from Pierce Company, Rockford, Illinois (if the peptide does not have a sulfhydryl group, this can be provided by adding a cysteine residue). These reagents form a disulfide bond between themselves and peptide cysteine residues on one protein and an amide bond through an epsilon-amino on a lysine or other amino group in another. Variants of such disulfide/amide forming agents are known.

Vidi, na primjer, Immun. Rev. (1982) 62:185. Drugi bifunkcionalni vezujući agensi stvaraju tioetersku prije nego disulfidnu vezu. Mnogi od ovih su komercijalno raspoloživi i uključuju reaktivne estere 6-maleimidokaproinske kiseline, 2-bromooctene kiseline, 2-jodooctene kiseline 4-(N-maleimdometil) cikloheksan-1-karboksilne kiseline i slično. Karboksilne grupe mogu biti aktivirane njihovim sjedinjavanjem sa sukcinimidom ili 1-hidroksi-2-nitro-4-sulfonskom kiselinom, natrijevom soli. Naprijed dani popis nije isključiv i mogu se jasno koristiti i modifikacije navedenih spojeva. See, for example, Immun. Rev. (1982) 62:185. Other bifunctional binding agents form a thioether bond rather than a disulfide bond. Many of these are commercially available and include reactive esters of 6-maleimidocaproic acid, 2-bromoacetic acid, 2-iodoacetic acid, 4-(N-maleimdomethyl)cyclohexane-1-carboxylic acid, and the like. Carboxyl groups can be activated by combining them with succinimide or 1-hydroxy-2-nitro-4-sulfonic acid, sodium salt. The list given above is not exclusive and modifications of the mentioned compounds can clearly be used.

Može se koristiti bilo koji nosač koji ne inducira produkciju antitijela štetnih za domaćina. Pogodni nosači su tipično velike, sporometebolizirajuće makromolekule takve kao proteini; polisaharidi takvi kao lateks funkcionalizirana sefaroza, ageroza, celuloza, celulozna zrnca i slično; polimerne aminokiseline takve kao poliglutaminska kiselina, polilizin i slično; kopolimerne aminokiseline; i neaktivne virusne partikule, vidi, na primjer, poglavlje II.D. Naročito primjenjivi proteinski supstrati su albumini seruma, keihol limper hemocijanin, molekule imunoglobulina, tiroglobulina, ovalbumina, tetanus toksiod i drugi proteini dobro poznati znanstvenicima. Any carrier that does not induce the production of antibodies harmful to the host can be used. Suitable carriers are typically large, slowly metabolizing macromolecules such as proteins; polysaccharides such as latex functionalized sepharose, agarose, cellulose, cellulose granules and the like; polymeric amino acids such as polyglutamic acid, polylysine and the like; copolymer amino acids; and inactive virus particles, see, for example, Chapter II.D. Particularly applicable protein substrates are serum albumins, keyhol limper hemocyanin, molecules of immunoglobulin, thyroglobulin, ovalbumin, tetanus toxoid and other proteins well known to scientists.

II.D. Dobivanje hibriden partikula imunogena koja sadrži HCV epitope II.D. Obtaining hybriden particles of immunogen containing HCV epitopes

Imunogenetičnost epitopa HCV može se također pojačati njegovim dobivanjem u sisavcima ili sustavima kvasca sjedinjenim ili spojenim s proteinima koji stvaraju partikule takvim kao, na primjer, one vezanim sa hepatitis B površinskim antigenom. Konstrukcije gdje se NANBV epitop izravno veže na protein koji gradi partikule koji kodira sekvence, produciraju hibride koji su imunogeni s obzirom na HCV epitop. Dodatno, svi od dobivenih vektora uključuju epitope specifične na HBV koji imaju različit stupanj imunogenosti, takvi kao, na primjer, pre-S peptid. Tako, partikule konstruirane iz partikula koje grade protein koji uključuje HCV sekvenci su imunogeni obzirom na HCV i HBV. The immunogeneticity of an HCV epitope can also be enhanced by obtaining it in mammalian or yeast systems fused or fused to particle-forming proteins such as, for example, those associated with hepatitis B surface antigen. Constructs where the NANBV epitope binds directly to the particle-building protein encoding sequence produce hybrids that are immunogenic with respect to the HCV epitope. Additionally, all of the resulting vectors include HBV-specific epitopes that have varying degrees of immunogenicity, such as, for example, the pre-S peptide. Thus, particles constructed from particles that build a protein that includes the HCV sequence are immunogenic with respect to HCV and HBV.

Hepatitis površinski antigen (HBSAg) pokazano je da može biti stvoren i sjedinjen u partikulama u S. cerevisiae (Valenzuela et al (1982)) kao i, na primjer, u stanicama sisavaca (Valenzuela et al (1982)). Nastojanje takvih partikula pokazano je da pojačava imunogenost monomerne subjedinice. Konstrukcije mogu također uključiti imunodominantan epitop HBSAg-a, koji obuhvaća 55 aminokiselina prepovršinskog (pre-S) područja, Neurath et al (1984). Konstrukcije pre-S-HBSAg partikule ekspresivne u kvascu su opisane u EPO 174.44 publiciranom 19.03.1986; hibridi koji uključuju heterologne virusne sekvence za ekspresiju kvasca su opisani u EPO 175.261, publiciranom 26.03.1966. Obje prijave su označene kao što je navedeno i ugrađene su ovdje kao reference. Ove konstrukcije mogu također biti ekspresirane u stanicama sisavaca takvim kao Chinese hamster ovary (CHO) stanicama korištenjem SV40-dihidrofolat redukataznog vektora (Michelle et al (1984)). Hepatitis surface antigen (HBSAg) has been shown to be generated and incorporated into particles in S. cerevisiae (Valenzuela et al (1982)) as well as, for example, in mammalian cells (Valenzuela et al (1982)). The concentration of such particles has been shown to enhance the immunogenicity of the monomeric subunit. The constructs can also include the immunodominant epitope of HBSAg, which comprises the 55 amino acid pre-surface (pre-S) region, Neurath et al (1984). Constructions of the pre-S-HBSAg particle expressible in yeast are described in EPO 174.44 published on 19 March 1986; hybrids incorporating heterologous viral sequences for yeast expression are described in EPO 175,261, published March 26, 1966. Both applications are marked as indicated and are incorporated herein by reference. These constructs can also be expressed in mammalian cells such as Chinese hamster ovary (CHO) cells using the SV40-dihydrofolate reductase vector (Michelle et al (1984)).

Dodatno, dijelo proteina koji grade partikule koji kodiraju sekvencu mogu se zamijeniti sa kodonima koji kodiraju HCV epitop. Pri ovoj zamjeni, područja koja nisu tražena radi posredovanja u agregaciji jedinice u stvaranju imunogenih partikula u kvascu ili sisavcima mogu se izbrisati, tako da eliminiraju dodatno HBV antigena mjesta iz kompeticije sa HCV epitopom. Additionally, part of the particle-building protein encoding the sequence can be replaced with codons encoding the HCV epitope. In this replacement, regions not required to mediate unit aggregation in the formation of immunogenic particles in yeast or mammals can be deleted, thus eliminating additional HBV antigenic sites from competition with the HCV epitope.

II.E Pripremanje cjepiva II.E Preparing the vaccine

Cjepiva se mogu dobiti iz jednog ili više imunogenih polipeptida izvedenih iz HCV cDNA kao i iz cDNA sekvenci na slikama 1-22 ili HCV genoma prema kojemu su korespondentne. Opažena homologija između HCV i flavirusa osigurava informaciju koja se odnosi na polipeptide koji su najdjelotvorniji kao cjepiva kao i područja genoma u kojima su kodirani. Opća struktura flavivirus genoma je diskutirana u Rice et al (1986). Flavirus genomska RNA vjeruje se da će biti samo virus-specifične mRNA vrste, i prevedena u tri virusna strukturna proteina, npr. C, M i E kao i dva velika nestrukturalna proteina, NV4 i NV5, i kompleksi set manjih nestrukturalnih proteina. Vaccines can be obtained from one or more immunogenic polypeptides derived from HCV cDNA as well as from the cDNA sequences in Figures 1-22 or the HCV genome to which they correspond. The observed homology between HCV and flaviviruses provides information regarding the polypeptides most effective as vaccines as well as the regions of the genome in which they are encoded. The general structure of the flavivirus genome is discussed in Rice et al (1986). Flavirus genomic RNA is believed to be only virus-specific mRNA species, and translated into three viral structural proteins, eg C, M and E as well as two large nonstructural proteins, NV4 and NV5, and a complex set of smaller nonstructural proteins.

Poznato je da glavni neutralizirajući epitopi za flaviruviruse leže u E (omotač) proteinu (Roehrig (1986)). Odgovarajući HCV E gen i polipeptid koji kodira područje može biti predviđen, bazirano na homologiju prema flavivirusima. Tako, cjepiva mogu obuhvatiti rekombinantne polipeptide koji sadrže epitope HCV E. Ovi polipeptidi mogu biti izraženi u bakterijama, kvascu ili stanicama sisavaca ili alternativno mogu biti izolirani iz virusnih preparata. Također je zapaženo da drugi strukturni proteini mogu također sadržavati epitope koji daju porast u zaštitnim anti-HCV antitijelima. Tako, polipeptidi koji sadrže epitope E, C i M mogu također biti iskorišteni, bilo sami ili u kombiNaClji, u HCV cjepivima. The major neutralizing epitopes for flaviviruses are known to lie in the E (envelope) protein (Roehrig (1986)). The corresponding HCV E gene and polypeptide coding region can be predicted, based on homology to flaviviruses. Thus, vaccines may comprise recombinant polypeptides containing epitopes of HCV E. These polypeptides may be expressed in bacteria, yeast or mammalian cells or alternatively may be isolated from viral preparations. It has also been noted that other structural proteins may also contain epitopes that confer a rise in protective anti-HCV antibodies. Thus, polypeptides containing epitopes E, C and M can also be used, either alone or in combination, in HCV vaccines.

Dodatno gornjem, pokazano je da imunizacija sa NS1 (nestrukturalni protein 1), razultira u zaštiti protiv žute groznice (Schesinger et al (1986)). Ovo je istina čak kada imunizacija ne daje porast u neutralizirajućim antitijelima. Tako, naročito kada se javlja da ovaj protein bude visoko konzerviran među flavivirusima, HCV NS1 će biti također zaštićen protiv HCV infekcije. Čak što više, također je pokazano da nestrukturalni proteini mogu osigurati zaštitu protiv virusnih patogenicita, čak ako ne izazivaju produkciju neutralizirajućih antitijela. In addition to the above, immunization with NS1 (nonstructural protein 1) has been shown to result in protection against yellow fever (Schesinger et al (1986)). This is true even when immunization does not produce a rise in neutralizing antibodies. Thus, especially when this protein appears to be highly conserved among flaviviruses, HCV NS1 will also be protected against HCV infection. Even more, it has also been shown that non-structural proteins can provide protection against viral pathogens, even if they do not induce the production of neutralizing antibodies.

S gornjeg gledišta, multivalentna cjepiva protiv HCV mogu obuhvatiti jedan ili više nestrukturalnih proteina. Ova cjepiva mogu obuhvatiti, na primjer, rekombinantne HCV polipeptida i/ili polipeptide izolirane iz viriona. Dodatno, moguće je korištenje neaktivnih HCV u cjepivima; ovi se mogu dobiti pomoću preparata virusnih lizata ili drugih sredstava poznatih u znanosti za uvjetovanje neaktivnosti flavivirusa, na primjer, tretman s organskim otapalima ili deterdžentima, ili tretman s formalinom. In view of the above, multivalent HCV vaccines may comprise one or more non-structural proteins. These vaccines may comprise, for example, recombinant HCV polypeptides and/or polypeptides isolated from virions. Additionally, the use of inactive HCV in vaccines is possible; these can be obtained using viral lysate preparations or other means known in the art to condition flavivirus inactivity, for example, treatment with organic solvents or detergents, or treatment with formalin.

Čak što više, cjepiva se mogu također dobiti iz razrijeđenih HCV strukova. Preparati razrijeđenih HCV strukova su niže opisani. Even more, vaccines can also be obtained from diluted HCV stocks. Preparations of diluted HCV volumes are described below.

Poznato je da neki od proteina u flavivirusima sadrže visoko konzervirana područja, tako, neka imunološka križna reaktivnost je očekivana između HCV i drugih flavivirusa. Moguće je da će epitopi koji se dijele između flavivirusa i HCV dati porast u zaštitnim antitijelima protiv jednog ili više nereda izazvanih ovim patogenim agensima. Tako može biti moguće stvaranje cjepiva višestruke namjene, bazirano na ovoj spoznaji. Dodavanje cjepiva koja sadrže imunogeni polipeptid (polipeptide) kao aktivne tvari je poznato stručnjacima. Tipično, takva cjepiva se pripremaju kao tekuće otopine ili suspenzije za injekcije; kruti oblici pogodni za otapanje ili suspenzija ili tekućina za injekcije se također mogu pripremiti. Preparati mogu također biti emulzitivni, ili protein kapsuliran u liposomima.aktivne imunogene tvari se često miješaju s dodacima koji su farmaceutski prihvatljivi i kompatibilni s aktivnom tvari. Pogodni dodaci su, na primjer, voda, slana otopina, dekstroza, glicerol, etanol ili slično i njihove kombiNaClje. Some of the proteins in flaviviruses are known to contain highly conserved regions, so some immunological cross-reactivity is expected between HCV and other flaviviruses. It is possible that epitopes shared between flaviviruses and HCV will confer an increase in protective antibodies against one or more disorders induced by these pathogenic agents. Thus, it may be possible to create multi-purpose vaccines, based on this knowledge. The addition of vaccines containing immunogenic polypeptide(s) as an active substance is known to those skilled in the art. Typically, such vaccines are prepared as liquid solutions or suspensions for injection; solid forms suitable for dissolution or suspension or liquid for injection can also be prepared. Preparations can also be emulsifying, or protein encapsulated in liposomes. Active immunogenic substances are often mixed with additives that are pharmaceutically acceptable and compatible with the active substance. Suitable additives are, for example, water, saline, dextrose, glycerol, ethanol or the like and combinations thereof.

Dodatno, ako se želi, cjepivo može sadržavati male količine pomoćnih tvari takvih kao agensi za kvašenje i emulgiranje, puferi i/ili dodaci koji pojačavaju djelotvornost cjepiva. Primjeri dodataka koji mogu biti djelotvorni za ovo ukljućuju, ali nisu ograničeni na : aluminil-hidroksid, N-acetil-murmil-L-treonil-D-izoglutamin (thr-MDP), N-acetil-nor-murtil-L-alamil-D-izoglutamin (CGP 11637, naveden kao nor-MDP), N-acetilmurmil-L-alanil-D-izoglutaminil-L-alamin-2-(1’-2-dipalmitoil-sn-glicero-3-hidroksifosforiloksi)-etilamin (CGP 19835A, označen kao MTP-PE) i RIBI koji sadrži tri komponente ekstrahirane iz bakterija, monofosforil lipid A, trehaloza dimikolat i stanicu zidnog skeleta (MPL+TDM+CWS) u 2% skvalen/Tween 80 emulziji. Djelotvornost dodataka može se odrediti mjerenjem količine antitijela usmjerenih protiv imunogenog polipeptida koji sadrži HCV antigenu sekvencu dobivenu unošenjem ovog polipeptida u cjepiva koja su također obuhvaćala razne dodatke. Additionally, if desired, the vaccine may contain small amounts of adjuvants such as wetting and emulsifying agents, buffers and/or additives that enhance the effectiveness of the vaccine. Examples of supplements that may be effective for this include, but are not limited to: aluminyl hydroxide, N-acetyl-murmyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-nor-murtyl-L-alamyl- D-isoglutamine (CGP 11637, listed as nor-MDP), N-acetylmurmyl-L-alanyl-D-isoglutaminyl-L-alamine-2-(1'-2-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (CGP 19835A, designated as MTP-PE) and RIBI containing three components extracted from bacteria, monophosphoryl lipid A, trehalose dimycolate, and cell wall skeleton (MPL+TDM+CWS) in a 2% squalene/Tween 80 emulsion. The effectiveness of adjuncts can be determined by measuring the amount of antibodies directed against an immunogenic polypeptide containing the HCV antigenic sequence obtained by introducing this polypeptide into vaccines that also included various adjuncts.

Cjepiva se uobičajeno unose parenteralno, injekcijom, na primjer, bilo potkožno bilo intramuskularno, dodatne formulacije koje su pogodne za druge načine unošenja uključuju supozitorije i, u nekim slučajevima, oralne formulacije. Za supozitorije mogu se uključiti tradicionalna veziva i nosači, na primjer polialkalan glikoli i trigliceridi; takve supozitorije mogu biti načinjene od smjesa koje sadrže aktivnu tvar u području od 0,5 do 10%, poželjno 1-2%. Oralne formulacije uključuju takve normalno korištene dodatke kao, na primjer, farmaceutski manitol, laktozu, škrob, magnezij stearat, natrij saharin, celulozu, magnezij-karbonat i slično. Ovi preparati mogu biti u obliku otopine, suspenzija, tableta, pilula kapsula, podržavaju oslobađanje formulacija ili prašaka i sadrže 10-95% aktivne tvari, poželjno 25-70%. Vaccines are commonly administered parenterally, by injection, for example, either subcutaneously or intramuscularly, additional formulations suitable for other routes of administration include suppositories and, in some cases, oral formulations. For suppositories, traditional binders and carriers may be included, for example polyalkaline glycols and triglycerides; such suppositories can be made from mixtures containing the active substance in the range of 0.5 to 10%, preferably 1-2%. Oral formulations include such commonly used additives as, for example, pharmaceutical grade mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, magnesium carbonate, and the like. These preparations can be in the form of solutions, suspensions, tablets, pills, capsules, support the release of formulations or powders and contain 10-95% of the active substance, preferably 25-70%.

Proteini mogu biti formulirani u cjepivu kao neutralni ili u obliku soli. Farmaceutski prihvatljive soli uključuju adicijske soli kiselina (nastale sa slobodnim amino grupama peptida) i koje nastaju s anorganskim kiselinama takvim kao, na primjer, klorovodična ili fosforna kiselina ili s organskim kiselinama takvim kao octena, oksalna, vinska, jabučna i slično. Soli nastale sa slobodnim karboksilnim grupama mogu također biti izvedene iz anorganskih baza takvih kao, na primjer, natrij, kalij, amonij, kalcij ili željezo (III) hidroksidi i takvim organskim bazama kao što su izopropilamin, trimetilamin, 2-etilamino etanol, histidin, prokain i slično. Proteins can be formulated in the vaccine as neutral or in salt form. Pharmaceutically acceptable salts include acid addition salts (formed with free amino groups of peptides) and those formed with inorganic acids such as, for example, hydrochloric or phosphoric acid or with organic acids such as acetic, oxalic, tartaric, malic and the like. Salts formed with free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium or iron (III) hydroxides and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine and the like.

II.F. Doza i unošenje cjepiva II.F. Dose and administration of the vaccine

Cjepiva se unose na način kompaktibilan s dozom formulacije, i u takvoj količini koja će biti profilaktički i/ili terapeutski djelotvorna. Količina koja se unosi, koja je općenito u području od 5µg do 250 µg antigena po dozi, zavisno od subjekta koji se tretira, kapaciteta njegova imunog sustava prema sintezi antitijela i stupnju željene zaštite. Precizne količine aktivne tvari koji se traži za unos mogu zavisiti od procjene onog koji je primjenjuje i može biti podešena svakom subjektu. Vaccines are administered in a manner compatible with the dose of the formulation, and in such an amount that will be prophylactically and/or therapeutically effective. The amount that is introduced, which is generally in the range of 5 µg to 250 µg of antigen per dose, depending on the subject being treated, the capacity of his immune system according to the synthesis of antibodies and the degree of desired protection. The precise amount of the active substance that is required for intake may depend on the assessment of the one applying it and may be adjusted for each subject.

Cjepivo može biti dano u jednoj dozi ili poželjno u višestruko raspoređenoj dozi. Pri višestruko raspoređenoj dozi primarni tok cijepljenja može biti sa 1-10 odvojenih doza, praćenih drugim dozama danim u vremenskim intervalima potrebnim za održavanje i/ili ojačavanje imunog odgovora, na primjer, na 1-4 mjeseca za drugu dozu i ako je potrebno daljim dozama poslije više mjeseci. Način doziranja će također, bar djelomično, biti određen potrebom individue i zavisi od procjene onog koji vrši doziranje. The vaccine can be given in a single dose or preferably in multiple divided doses. In a multi-dose schedule, the primary course of vaccination may be 1-10 separate doses, followed by other doses given at time intervals necessary to maintain and/or strengthen the immune response, for example, at 1-4 months for the second dose and if necessary by further doses after several months. The method of dosing will also, at least partially, be determined by the needs of the individual and depends on the assessment of the one doing the dosing.

Dodatno, cjepivo koje sadrži imunogeni HCV antigen može se unositi s drugim imunoregulacijskim agensima, na primjer, imunoglobulinima. Additionally, a vaccine containing an immunogenic HCV antigen can be administered with other immunoregulatory agents, for example, immunoglobulins.

II.G. Dobivanje antitijela protiv HCV epitopa II.G. Obtaining antibodies against HCV epitopes

Imunogeni polipeptidi dobiveni kao što je opisano naprijed se koriste za produkciju antitijela poliklonskih i monoklonskih. Ako se žele poliklonska antitijela, odabran sisavac (npr. miš, zec, koza, konj itd.) se imunizira sa imunogenim polipeptidom koji nosi HCV epitop (epitope). Serum iz imunizirane životinje se sakuplja i tretira prema poznatim postupcima. Ako serum koji sadrži poliklonska antitijela prema HCV epitopu sadrži antitijela prema drugim antigenima, poliklonska antitijela mogu se pročistiti imunoafinitetnom kromatografijom. Tehnike za proizvodnju i obradu poliklonskog antiseruma su poznate u znanosti, vidi na primjer Nayer i Walker (1987). The immunogenic polypeptides obtained as described above are used for the production of polyclonal and monoclonal antibodies. If polyclonal antibodies are desired, a selected mammal (eg, mouse, rabbit, goat, horse, etc.) is immunized with an immunogenic polypeptide bearing the HCV epitope(s). Serum from the immunized animal is collected and treated according to known procedures. If the serum containing polyclonal antibodies to the HCV epitope contains antibodies to other antigens, the polyclonal antibodies can be purified by immunoaffinity chromatography. Techniques for the production and processing of polyclonal antiserum are known in the art, see for example Nayer and Walker (1987).

Alternativno, poliklonska antitijela mogu biti izolirana iz sisavca koji je predhodno inficiran sa HCV. Primjer postupka za pročišćavanje antitijela prema HCV epitopima iz seruma inficiranih individua, baziran na afinitetnoj kromatografiji i korištenjem sjedinjenog polipeptida SOD i polipeptida kodiranog u cDNA klonu 5-1-1 je dan u poglavlju V.E. Monoklonska antitijela usmjerena protiv HCV epitopa mogu se također lako proizvesti od stručnjaka. Opća metodologija za dobivanje monoklonskih antitijela pomoću hibridoma je dobro poznata. Besmrtne stanične linije koje produciraju antitijelo mogu se stvoriti staničnim spajanjem i također drugim tehnikama, takvim kao izravna transformacija B limfocita sa onkogenom DNA ili transfenkcijom sa Epstein-Barr virusom. Vidi, npr. M. Schreier et al. (1980); Mahherling et al. (1091); Kennet et al. (1980); vidi također SAD patente br. 4.341.761; 4.399.121; 4.427.783; 4.444.887; 4.446.917; 4.472.500; 4.491.632 i 4.493.890. Paneli monoklonskih antitijela proizvedenih protiv HCV epitopa mogu se testirati na različita svojstva; npr. za izotip, epitop, afinitet itd. Alternatively, polyclonal antibodies can be isolated from a mammal previously infected with HCV. An example of a procedure for the purification of antibodies to HCV epitopes from the serum of infected individuals, based on affinity chromatography and using the combined polypeptide of SOD and the polypeptide encoded in cDNA clone 5-1-1 is given in chapter V.E. Monoclonal antibodies directed against HCV epitopes can also be readily produced by those skilled in the art. The general methodology for obtaining monoclonal antibodies using hybridomas is well known. Immortal antibody-producing cell lines can be generated by cell fusion and also by other techniques, such as direct transformation of B lymphocytes with oncogenic DNA or transfection with Epstein-Barr virus. See, eg, M. Schreier et al. (1980); Maherling et al. (1091); Kenneth et al. (1980); see also US Patent No. 4,341,761; 4,399,121; 4,427,783; 4,444,887; 4,446,917; 4,472,500; 4,491,632 and 4,493,890. Panels of monoclonal antibodies produced against HCV epitopes can be tested for different properties; eg for isotype, epitope, affinity etc.

Antitijela, monoklonska i poliklonska koja su usmjerena protiv HCV epitopa su naročito korisna u dijagnozama, i koja su neutralizirajuća su korisna u pasivnoj imunoterapiji. Monoklonska antitijela, točnije, mogu se koristiti za povećanje anti-idiotip antitijela. Antibodies, monoclonal and polyclonal, that are directed against HCV epitopes are particularly useful in diagnostics, and that are neutralizing are useful in passive immunotherapy. Monoclonal antibodies, specifically, can be used to raise anti-idiotype antibodies.

Anti-idiotip antitijela su imunoglubilini koji nose “internu sliku” antigena infekcijskog agensa protiv koga se želi zaštita. Vidi, na primjer, Nisonoff A. et al. (1981) i Dressman et al. (1985). Anti-idiotype antibodies are immunoglobulins that carry the "internal image" of the antigen of the infectious agent against which protection is desired. See, for example, Nisonoff A. et al. (1981) and Dressman et al. (1985).

Tehnike za povećanje anti-idiotip antitijela su poznata u znanosti. Vidi, na primjer, Grzych (1985), MacNamara et al. (1984) i Uytdehaag et al. (1985). Ova anti-idiotip antitijela također se mogu koristiti za tretiranje NANBH kao i za objašnjenje imunogenih područja HCV antigena. Techniques for raising anti-idiotype antibodies are known in the art. See, for example, Grzych (1985), MacNamara et al. (1984) and Uytdehaag et al. (1985). These anti-idiotype antibodies can also be used to treat NANBH as well as to elucidate the immunogenic regions of the HCV antigen.

II.H. Dijagnostičke oligonukleotidne probe i oprema II.H. Diagnostic oligonucleotide probes and equipment

Korištenjem opisanih dijelova izoliranih HCV cDNA kao baze, uključujući one na slikama 1-32 mogu se dobiti oligomeri od oko 8 nukleotida ili više, bilo pomoću izrezivanja ili sintetski, koji hidrizira sa HCV genomom i korisni su u identifikaciji virusnog agensa, daljnjoj karakterizaciji virusnog genoma kao i detekciji virusa oboljelih individua. Probe sa HCV polinukleotide (prirodne i izvedene) su dužine koja dozvoljava detekciju jedinstvenih sekvenci hidridizacijom. Mada 6-8 nukleotida mogu biti radne dužine, sekvence od 10-12 nukleotida su poželjne i oko 20 nukleotida se javlja kao optimum. Poželjno, ove sekvence će se izvesti iz područja koja nemaju heterogenost. Ove probe mogu se dobiti korištenjem rutinskih postupaka, uključujući automatske oligonukleotidne sintetske postupke. Među korisnim probama, na primjer, su klon 5-1-1 i dodatni klonovi ovdje opisani, kao i razni oligomeri korisni u ispitivanju cDNA biblioteka, vidi niže. Komplement nekom jedinstvenom dijelu HCV genoma biti će zadovoljavajući. Za korištenje kao proba, kompletna komplementarnost je poželjna, mada može biti nepotrebna ako se poveća dužina fragmenta. Using the described portions of isolated HCV cDNA as bases, including those in Figures 1-32, oligomers of about 8 nucleotides or more can be obtained, either by excision or synthetically, that hydrate with the HCV genome and are useful in identifying the viral agent, further characterizing the viral genome as well as virus detection of sick individuals. Probes with HCV polynucleotides (natural and derived) are of a length that allows detection of unique sequences by hydridization. Although 6-8 nucleotides can be a working length, sequences of 10-12 nucleotides are preferred and around 20 nucleotides appears to be the optimum. Preferably, these sequences will be derived from regions that have no heterogeneity. These probes can be obtained using routine procedures, including automated oligonucleotide synthetic procedures. Useful probes include, for example, clone 5-1-1 and additional clones described herein, as well as various oligomers useful in screening cDNA libraries, see below. A complement to some unique part of the HCV genome will be satisfactory. For use as a probe, complete complementarity is preferred, although it may be unnecessary if fragment length is increased.

Za korištenje takvih proba kao dijagnostika, analizira se biološki takav kao krv ili serum, tretira se, ako se želi, radi ekstrahiranja nukleinskih kiselina koje sadrže. Dobivena nukleinska kiselina iz uzorka može se podvrgnuti gel-elektroforezi ili drugim tehnikama razdvajanja; alternativno, uzorak nukleinske kiseline može biti točkasto upijen bez razdvajanja po veličini. Probe se tada označe. Pogodni obilježivači i metode za obilježavanje proba su poznati i znanosti i uključuju, na primjer, radioaktivne obilježivače ugrađivanjem translatornim zasijecanjem ili kinaza, biotin, fluorescentnim probama i kemiluminescentnim probama. Nukleinske kiseline ekstrahirane iz uzorka se tada tretiraju obilježenom probom u uvjetima hibridizacije pogodne obaveznosti. For the use of such samples as diagnostics, biological samples such as blood or serum are analyzed, treated, if desired, in order to extract the nucleic acids they contain. The resulting nucleic acid from the sample can be subjected to gel electrophoresis or other separation techniques; alternatively, the nucleic acid sample can be spot-absorbed without size separation. The trials are then marked. Suitable labels and methods for labeling probes are known in the art and include, for example, radiolabels by incorporation by translational cleavage or kinases, biotin, fluorescent probes and chemiluminescent probes. Nucleic acids extracted from the sample are then treated with the labeled probe under hybridization conditions of suitable binding.

Probe se mogu načiniti potpuno komplementarnim HCV genomu. Stoga su poželjni obično visoke obaveznosti u cilju sprečavanja lažne pozitivnosti. Međutim, uvjete visoke obaveznosti treba koristiti samo ako su probe komplementarne područjima virusnog genoma koji nema heterogenosti. Obaveznost hibiridizacije je određena brojnim čimbenicima tijekom hibiridizacije i tijekom procesa pranja, uključujući temperaturu, ionsku jakost, dugo vrijeme i koncentraciju formamida. Ovi čimbenici su istaknuti, na primjer, u Maniatis T. (1982). Tests can be made completely complementary to the HCV genome. Therefore, usually high bindings are desirable in order to prevent false positives. However, high binding conditions should only be used if the probes are complementary to regions of the viral genome that lack heterogeneity. The binding of hybridization is determined by a number of factors during hybridization and during the washing process, including temperature, ionic strength, length of time, and concentration of formamide. These factors are highlighted, for example, in Maniatis T. (1982).

Općenito, očekivano je da će HCV genomske sekvence biti prisutan u serumu inficiranih individua pri srazmjerno niskim razinama, npr. na oko 102-103 sekvenci po ml. Ova razina može zahtijevati da se u hidridizacijskim ispitivanjima koriste amplifikacijske tehnike. Takve su tehnike poznate u znanosti, na primjer, Enzo Biochemical Corporation “Bio-Bridge” sistem koristi terminalnu deoksinukleotidnu transferazu radi dodavanja nemodificiranih 3’-poli-dT-krajeva na DNA probu. Poli dT-završena proba se hidrizira od nukleotidne sekvence mete i zatim do biotinmidificiranog poli-A. PCT prijava 84/03520 i EPA 124221 opisuje DNA hibridizacijsko ispitivanje u kojem: (1) analit se cijepa do jednostruke DNA koja je komplementarna enzim-obilježenom oligonukleotidu; i (2) dobiveni krajnji dupleks se hidridizira do enzim-bilježenog oligonukleotida. EPA 204510 opisuje DNA hibiridizacijsko ispitiranje u kojem analit DNA kontaktira s probom koja ima kraj, takav kao poli-dT kraj, pojačana struka koja ima sekvencu koja hidrolizira završetke proba, takve kao poli-A sekvence i koja je sposobna vezati mnogo obilježenih struka. In general, HCV genomic sequences are expected to be present in the serum of infected individuals at relatively low levels, eg at about 102-103 sequences per ml. This level may require amplification techniques to be used in hydridization tests. Such techniques are known in the art, for example, the Enzo Biochemical Corporation "Bio-Bridge" system uses terminal deoxynucleotide transferase to add unmodified 3'-poly-dT-ends to a DNA probe. The poly dT-terminated probe is hydrogenated from the target nucleotide sequence and then to the biotin-modified poly-A. PCT application 84/03520 and EPA 124221 describe a DNA hybridization assay in which: (1) the analyte is cleaved to single-stranded DNA that is complementary to an enzyme-labeled oligonucleotide; and (2) the resulting terminal duplex is hydrogenated to an enzyme-labeled oligonucleotide. EPA 204510 describes a DNA hybridization assay in which a DNA analyte is contacted with a probe having a terminus, such as a poly-dT terminus, an amplified region having a sequence that hydrolyzes the ends of the probe, such as a poly-A sequence, and capable of binding multiple labeled regions.

Naročito poželjna tehnika može prvo obuhvatiti pojačavanje mete HCV sekvence u serumu oko 1000 puta, npr. oko 106 sekvenci/ml. Ovo se može izvesti, na primjer, tehnikom Saiki et al (1986). Pojačana sekvenca može se tada detektirati koristeći hibridizacijsko ispitivanje koje je opisano u pridruženoj SAD prijavi, zastupnički broj 2300-0171 od 15. listopad 1987., koja se ovdje uvodi kao referenca. Ovo hibridizacijsko ispitivanje, koje treba detektirati sekvence razini od 106/ml koristi multimere nukleinske kiseline koji se vežu na analite jednostruke nukleinske kiseline i koji se također vežu radi umnožavanja jednostrukih obilježenih oligonukleotida. Pogodno ispitivanje sendviča faze otopine i postupcima za dobivanje proba u EPO 225.807 publicirane 16.6.1987, koja je ovdje ubačena kao referenca. A particularly preferred technique may first comprise amplifying the target HCV sequence in serum about 1000-fold, eg about 10 6 sequences/ml. This can be done, for example, by the technique of Saiki et al (1986). The amplified sequence can then be detected using a hybridization assay as described in copending US application Ser. No. 2300-0171 filed Oct. 15, 1987, which is incorporated herein by reference. This hybridization assay, which should detect sequences at the 106/ml level, uses nucleic acid multimers that bind to single nucleic acid analytes and which also bind to amplify single labeled oligonucleotides. Convenient testing of solution phase sandwiches and procedures for obtaining samples in EPO 225,807 published 6/16/1987, which is incorporated herein by reference.

Probe se mogu spakirati u dijagnostičku opremu. Dijagnostičke opreme uključuju probu DNA koja može biti obilježena; alternativno, proba DNA može biti neobilježena i komponente za obilježavanje mogu biti uključene u opremu. Oprema može također sadržavati druge pogodno upakirane reagense i materijale potrebne za određivanje hibiridizaciju, na primjer standardne, kao i uputstva za izvođenje teksta. Samples can be packaged in diagnostic equipment. Diagnostic equipment includes a DNA test that can be labeled; alternatively, the DNA sample may be unlabeled and labeling components may be included in the kit. The kit may also contain other conveniently packaged reagents and materials necessary for the hybridization assay, for example standards, as well as text-based instructions.

II.I. Imunoispitivanja i dijagnostički uređaji II.I. Immunoassays and diagnostic devices

Oba polipeptida koji reagiraju imunološki sa serumom koji sadrži HCV antitijela, npr. ona izvedena ili kodirana u klonovima opisanim u poglavlju IV.A., i njihovi sastavi (vidi poglavlje IV.A.) i antitijela nastala protiv HCV specifičnih epitopa u ovim polipeptidima, vidi na primjer poglavlje IV.E., korisni su u imunoispitivanjima radi detektiranja prisutnosti HCV antitijela ili prisutnosti virusa i/ili virusnih antigena u biološkim uzorcima, uključujući na primjer, krv ili serumske uzorke. Plan imunoispitivanja je predmet velikog broja varijanti, od kojih su mnoge poznate u znanosti. Na primjer, imunoispitivanja može koristiti jedan virusni antigen, na primjer, polipeptid izveden iz nekog od klonova koji sadrži HCV cDNA, opisano je u poglavlju IV.A. ili iz sastava cDNA izvedenih iz cDNA u ovim klonovima, ili iz HCV genoma iz kojeg se cDNA u ovim klonovima izvodi; alternativno, imunoispitivanje može koristiti kombiNaClju virusnih antigena izvedenih iz ovih izvora. Both polypeptides that react immunologically with serum containing HCV antibodies, e.g., those derived from or encoded in the clones described in Chapter IV.A., and compositions thereof (see Chapter IV.A.) and antibodies raised against HCV-specific epitopes in these polypeptides, see for example chapter IV.E., are useful in immunoassays to detect the presence of HCV antibodies or the presence of virus and/or viral antigens in biological samples, including for example, blood or serum samples. The immunoassay plan is the subject of a large number of variants, many of which are known in science. For example, immunoassays can use a single viral antigen, for example, a polypeptide derived from one of the clones containing HCV cDNA, described in Section IV.A. or from the cDNA composition derived from the cDNA in these clones, or from the HCV genome from which the cDNA in these clones is derived; alternatively, the immunoassay may use a combination of viral antigens derived from these sources.

Može se koristiti, na primjer, monoklonsko antitijelo usmjereno prema jednom virusnom antigenu, monoklonska antitijela usmjerena prema raznim virusnim antigenima, poliklonska antitijela usmjerena prema jednom virusnom antigenu ili poliklonska antitijela usmjerena prema raznim virusnim antigenima. Tokovi ispitivanja mogu biti bazirani, na primjer, na kompeticiji ili izravnoj reakciji ili sendvič tipu ispitivanja. Mogu se također koristiti, na primjer, kruti nosači ili se može raditi pomoću imunotaloženja. For example, a monoclonal antibody directed against a single viral antigen, monoclonal antibodies directed against various viral antigens, polyclonal antibodies directed against a single viral antigen, or polyclonal antibodies directed against various viral antigens can be used. Assay flows can be based, for example, on competition or direct reaction or sandwich-type assays. For example, solid supports can also be used or it can be done by immunoprecipitation.

Većina ispitivanja obuhvaća korištenje obilježenog antitijela ili polipeptida; obilježivači mogu biti, na primjer, fluoroscentne, kemiluminescentne, radioaktivne ili obojene molekule. Ispitivanja koja pojačavaju signale iz proba također su poznata; primjeri su ispitivanja koja koriste biotin i avidin i enzim-obilježena i posredna imunoispitivanja, takva kao ELISA ispitivanja. Most tests involve the use of a labeled antibody or polypeptide; labels can be, for example, fluorescent, chemiluminescent, radioactive or colored molecules. Tests that amplify signals from trials are also known; examples are assays using biotin and avidin and enzyme-labeled and mediated immunoassays, such as ELISA assays.

Flavivirus model za HCV dozvoljava predviđanje vjerojatne lokacije dijagnostičkih epitopa za virion strukturalne proteine. C, pre-M, M i E domene su svi, vjerojatno radi sadržavanja epitopa, značajni potencijali za detektiranje virusnih antigena, i naročito za dijagnoze. Slično, domene nestrukturalnih proteina, očekuje se da sadrže važne dijagnostičke epitope ( npr. NS5 koji kodiraju navodnu polimerazu; i NS1 koji kodira navodni komplement-vezujući antigen). Rekombinantni polipeptidi, ili virusni polipeptidi, koji uključuju epitope iz ovih specifičnih domena mogu biti korisni za detektiranje virusnih antitijela u infekcijskim krvnim donorima i inficiranim pacijentima. The flavivirus model for HCV allows prediction of the likely location of diagnostic epitopes for virion structural proteins. C, pre-M, M and E domains are all, probably due to containing epitopes, significant potentials for detecting viral antigens, and especially for diagnosis. Similarly, domains of nonstructural proteins are expected to contain important diagnostic epitopes (eg NS5 encoding a putative polymerase; and NS1 encoding a putative complement-binding antigen). Recombinant polypeptides, or viral polypeptides, that include epitopes from these specific domains may be useful for detecting viral antibodies in infectious blood donors and infected patients.

Dodatna antitijela, usmjerena protiv E i/ili M proteina mogu biti korištena u imunoispitivanju za detektiranje virusnih antigena u pacijentima sa HCV izazvanim NANBH, i u infektivnim donorima krvi. Međutim, ova antitijela će biti krajnje korisna u detektiranju donora i u akutnoj fati pacijenta. Additional antibodies directed against E and/or M proteins can be used in immunoassays to detect viral antigens in patients with HCV induced by NANBH, and in infectious blood donors. However, these antibodies will be extremely useful in donor detection and in the acute phase of the patient.

Uređaji pogodni za imunodijagnozu i koji sadrže odgovarajuće obilježene reagense konstruiraju se pakiranjem odgovarajućih materijala, uključujući polipeptide izuma koji sadrže HCV epitope ili antitijela usmjerena protiv HCV epitopa, u odgovarajuće posude zajedno s ostalim regensima i materijala potrebnih za izvođenje ispitivanja, kao i odgovarajući set uputstava za izvođenje ispitivanja. Devices suitable for immunodiagnosis and containing appropriately labeled reagents are constructed by packaging appropriate materials, including polypeptides of the invention containing HCV epitopes or antibodies directed against HCV epitopes, in appropriate containers together with other reagents and materials necessary to perform the test, as well as an appropriate set of instructions for performing the test.

II.J. Daljnja karakterizacija HCV genoma, viriona i virusnih antigena koristeći probe izvedene iz cDNA prema virusnom genomu II.J. Further characterization of the HCV genome, virions and viral antigens using cDNA-derived probes to the viral genome

HCV cDNA sekventna informacija u klonovima opisanim u poglavlju IV.A., kao što je prikazano na slikama 1-32, može se koristiti za dobivanje daljnje informacije na sekvenci HCV genomu, i za identifikaciju i izoliranje HCV agensa i tako će pomoći u njegovoj karakterizaciji uključujući prirodu genoma, strukturu virusne partikule i prirode antigena od kojih se sastoji. Ova informacija može dovesti do dodatnih polinukleotidnih proba, polipeptida izvedenih iz HCV genoma i antitijela usmjerenih protiv HCV epitopa koji trebaju biti korisni u dijagnozi i/ili tretmanu HCV izazvanog NANBH. The HCV cDNA sequence information in the clones described in Chapter IV.A., as shown in Figures 1-32, can be used to obtain further information on the HCV genome sequence, and to identify and isolate the HCV agent and thus aid in its characterization including the nature of the genome, the structure of the viral particle and the nature of the antigens of which it is composed. This information may lead to additional polynucleotide probes, polypeptides derived from the HCV genome, and antibodies directed against HCV epitopes that should be useful in the diagnosis and/or treatment of HCV-induced NANBH.

cDNA informacija u naprijed spomenutim klonovima je korisna za stvaranje proba za izoliranje dodatnih cDNA sekvenci koje se izvode iz još nedefiniranih područja HCV genoma čije cDNA u klonovima su opisane u poglavlju IV.A., su izvedene. Na primjer, obilježene probe koje sadrže sekvencu od oko 8 ili više nukleotida, i poželjno 20 ili više nukleotida, koji se izvode iz područja bliskih 5’-kraju ili 3’-kraju porodice HCV cDNA sekvenci prikazanih na slikama 1, 3, 6, 9, 14 i 32, mogu se koristiti radi izoliranja preklapajućih cDNA sekvenci iz HCV cDNA biblioteka. Ove sekvence koje preklapaju cDNA u naprijed opisanim klonovima, ali koji također sadrže sekvence izvedene iz područja genoma iz kojih cDNA u naprijed spomenutim klonovima nisu izvedene, mogu se tada koristiti za sintezu proba za identifikaciju drugih preklapajućih fragmenata za koje nije potrebno da preklapaju u cDNA klonovima opisanim u poglavlju IV.A. The cDNA information in the aforementioned clones is useful for creating probes for isolating additional cDNA sequences derived from as yet undefined regions of the HCV genome whose cDNAs in the clones described in Chapter IV.A., were derived. For example, labeled probes containing a sequence of about 8 or more nucleotides, and preferably 20 or more nucleotides, derived from regions near the 5'-end or 3'-end of the family of HCV cDNA sequences shown in Figures 1, 3, 6, 9, 14 and 32, can be used to isolate overlapping cDNA sequences from HCV cDNA libraries. These sequences that overlap the cDNAs in the clones described above, but which also contain sequences derived from regions of the genome from which the cDNAs in the clones mentioned above are not derived, can then be used to synthesize probes to identify other overlapping fragments that do not need to overlap in the cDNA clones described in chapter IV.A.

Mada je HCV genom segmentiran i segmenti ne sadrže zajedničke sekvence, moguće je sekvencirati cijeli virusni genom koristeći tehniku izoliranja preklapajućih cDNA izvedenih iz virusnog genoma. Ako je, međutim, genom segmentiran genom kome nedostaju zajedničke sekvence, sekvence genoma može se odrediti serološkim testiranjem lambda-gt11 HCV cDNA biblioteka, kao što je korišteno za izoliranje 5-1-1. Sekvencioniranja cDNA izolata i korištenje izoliranih cDNA radi izoliranja i sekvenciranje klonova opisana je u poglavlju IV.A. Alternativno, karakterizacija genomskih segmenata treba biti iz virusnih genoma izoliranih iz pročišćenih HCV partikula. Postupci za pročišćavanje HCV pertikula i za njihovo detektiranje tijekom postupka pročišćavanja opisani su ovdje niže. Postupci za izoliranje polinukleotidnih genoma iz virusnih partikula poznati su u znanosti i jedan od postupaka koji se mogu koristiti prikazan je u primjeru IV.A.1. Izolirani genomski segmenti tada trebaju biti klonirani i sekvencirani. Tako, sa informacijom osiguranom ovdje, moguće je klonirati i sekvencionirati cijeli HCV genom s obzirom na njegovu prirodu. Although the HCV genome is segmented and the segments do not contain common sequences, it is possible to sequence the entire viral genome using the technique of isolating overlapping cDNAs derived from the viral genome. If, however, the genome is segmented by a genome lacking common sequences, the genome sequence can be determined by serological testing of lambda-gt11 HCV cDNA libraries, as used to isolate 5-1-1. The sequencing of cDNA isolates and the use of isolated cDNAs for the isolation and sequencing of clones is described in Chapter IV.A. Alternatively, characterization of genomic segments should be from viral genomes isolated from purified HCV particles. Procedures for purifying HCV particles and for detecting them during the purification process are described below. Methods for isolating polynucleotide genomes from viral particles are known in the art and one method that can be used is shown in Example IV.A.1. The isolated genomic segments should then be cloned and sequenced. Thus, with the information provided here, it is possible to clone and sequence the entire HCV genome given its nature.

Postupci za stvaranje cDNA biblioteka poznati su u znanosti i diskutirani su naprijed i niže; postupak za stvaranje HCV cDNA biblioteke u labda-gt11 je diskutiran niže u poglavlju IV.A. Međutim, cDNA biblioteke koje su korisne za testiranje s probama nukleinske kiseline mogu se pojaviti u drugim vektorima poznatim u znanosti, na primjer, lambda-gt10 (Huynh et al. (1985)). HCV izvedena cDNA detektirana pomoću proba izvedenih iz cDNA na slikama 1-32, i iz proba sintetiziranih iz polinukleotida izvedenih iz ovih cDNA može se izolirati iz klona razaranjem izoliranog polinukleotida s odgovarajućim restrikcijskim enzimom (enzimina) i sekvencionirana. Procedures for generating cDNA libraries are known in the art and are discussed above and below; the procedure for generating the HCV cDNA library in labda-gt11 is discussed below in section IV.A. However, cDNA libraries useful for testing with nucleic acid probes can occur in other vectors known in the art, for example, lambda-gt10 (Huynh et al. (1985)). HCV-derived cDNA detected using probes derived from the cDNA in Figures 1-32, and from probes synthesized from polynucleotides derived from these cDNAs can be isolated from the clone by destroying the isolated polynucleotide with the appropriate restriction enzyme (enzyme) and sequenced.

Vidi, na primjer, poglavlje IV.A.3. i IV.A.4. za tehnike korištene za izoliranje i sekvencioniranje HCV cDNA koja preklapa HCV cDNA u klonu 5-1-1, poglavlja IV.A.5.-IV.A.7. za izoliranje i sekvencioniranje HCV cDNA koja preklapa onu iz klona 81, i poglavlje IV.A.8. i IV.A.9. za izoliranje i sekvencioniranje klona koji preklapa drugi klon (klon 36) koji preklapa klon 81. See, for example, chapter IV.A.3. and IV.A.4. for the techniques used to isolate and sequence the HCV cDNA overlapping the HCV cDNA in clone 5-1-1, Chapters IV.A.5.-IV.A.7. for isolation and sequencing of HCV cDNA overlapping that of clone 81, and chapter IV.A.8. and IV.A.9. to isolate and sequence a clone overlapping another clone (clone 36) overlapping clone 81.

Sekvenca informacije izvedene iz ovih preklapajućih HCV cDNA je korisna za određivanje područja homologije i heterogenosti u virusnom genomu (genomima), koji trebaju naznačiti prisutnost različitih struka genoma i/ili populacija oštećenih partikulama. Također je korisna za stvaranje hidridizacijskih proba radi detektiranja HCV ili HCV antigena ili HCV nukleinskih kiselina u biološkim uzorcima, i tijekom izoliranja HCV (diskutirano niže), korištene tehnike su opisane u poglavlju II.G. Međutim, preklapajuće cDNA mogu se koristiti za stvaranje ekspresionih vektora za polipeptide izvedene iz HCV genoma koji također kodira polipeptide kodirane u klonovima 5-1-, 36, 81, 91 i 1-2 i drugim klonovima opisanim u poglavlju IV.A. Tehnike za stveranje ovih polipeptida koji sadrže HCV epitope i za njihovo korištenje su analogne onima opisanim za polipeptide izvedene iz NANBV cDNA sekvenci sadržanih u klonovima 5-1-1, 32, 35, 36, 1-2, 81 i 91, razmotrene naprijed i niže. The sequence information derived from these overlapping HCV cDNAs is useful for determining regions of homology and heterogeneity in the viral genome(s), which should indicate the presence of different genome regions and/or particle-damaged populations. It is also useful for creating hydridization assays to detect HCV or HCV antigen or HCV nucleic acids in biological samples, and during HCV isolation (discussed below), techniques used are described in Section II.G. However, the overlapping cDNAs can be used to create expression vectors for polypeptides derived from the HCV genome which also encodes the polypeptides encoded in clones 5-1-, 36, 81, 91 and 1-2 and other clones described in section IV.A. Techniques for generating these HCV epitope-containing polypeptides and for their use are analogous to those described for polypeptides derived from the NANBV cDNA sequences contained in clones 5-1-1, 32, 35, 36, 1-2, 81, and 91, discussed above and lower.

Kodirani u porodici cDNA sekvenci sadržanih u klonovima 5-1-1, 32, 35, 36, 81, 91, 1-2 i drugi klonovi opisani u poglavlju IV.A. su antigen (antigeni) koji sadrže epitope koji se pojavljuju kao jedinstveni prema HCV; npr. antitijela usmjerena protiv ovih antigena su odsutna u osoba inficiranih sa HAV ili HBV i iz individua neinficiranih sa HCV (vidi serološke podatke u poglavlju IV.B.). Međutim, uspoređivanje sekvencne informacije ovih cDNA sa sekvencama HAV, HBV, HDV i sa genomskim sekvencama u Genebank pokazuje da minimalna homologija postoji između ovih cDNA i polinukleotidnih sekvenci ovih izvora. Tako, antitijela usmjerena protiv antigena kodiranih u cDNA ovih klonova mogu biti korištena za identifikaciju BB-NANBV partikula izoliranih iz inficiranih individua. Dodatno, ona su korisna za izoliranje NANBH agensa (agenasa). Coded in the family of cDNA sequences contained in clones 5-1-1, 32, 35, 36, 81, 91, 1-2 and other clones described in chapter IV.A. are antigen(s) containing epitopes that appear to be unique to HCV; eg, antibodies directed against these antigens are absent from individuals infected with HAV or HBV and from individuals not infected with HCV (see serological data in Chapter IV.B.). However, comparison of the sequence information of these cDNAs with the sequences of HAV, HBV, HDV and with genomic sequences in Genebank shows that minimal homology exists between these cDNAs and the polynucleotide sequences of these sources. Thus, antibodies directed against antigens encoded in the cDNA of these clones can be used to identify BB-NANBV particles isolated from infected individuals. Additionally, they are useful for isolating NANBH agent(s).

HCV partikule mogu biti izolirane iz seruma BB-NANBV inficiranih individua ili iz kulture stanica nakon u znanosti poznatih tehnika, uključujući na primjer, tehnike bazirane na nerazlikovanju veličine takvih sedimentacijskih ili metoda isključenja ili tehnika baziranih na gustoći, takvih kao ultracentrifugiranje u gradijentima gustoće ili taloženja s agensima takvim kao polietilen glikol ili kromatografija na raznim materijalima takvim kao anionski ili kationski izmjenjivači i materijali koji vežu zbog hidrofobnosti, kao i afinitetne kolone. Tijekom postupka izoliranja prisutnost HCV može biti detektirana hibridizacijskom analizom ekstrahiranog genoma koristeći probe izvedene iz HCV cDNA opisanih niže ili imnoispitivanjem (vidi poglavlje II.1.) korištenjem kao proba antitijela usmjerena protiv HCV antigena kodiranog u porodici cDNA sekvencama prikazanim na slikama 1-32 i također usmjerenih protiv HCV antigena kodiranog u preklapajućim HCV cDNA sekvencama diskutiranim naprijed. Antitijela mogu biti monoklonska ili poliklonska i može biti poželjno pročišćavanje pri njihova korištenja u imunoispitivanju. Postupak pročišćavanja za polinuklonska antitijela usmjerena protiv antigena kodiranog u klonu 5-1-1 je opisan u poglavlju IV.E.; analogni postupak pročišćavanja može se koristiti za antitijela usmjerena protiv drugih HCV antigena. HCV particles can be isolated from the serum of BB-NANBV infected individuals or from cell culture following techniques known in the art, including for example, size-indiscriminate techniques such as sedimentation or exclusion methods or density-based techniques such as density gradient ultracentrifugation or sedimentation with agents such as polyethylene glycol or chromatography on various materials such as anion or cation exchangers and hydrophobicity binding materials as well as affinity columns. During the isolation procedure, the presence of HCV can be detected by hybridization analysis of the extracted genome using probes derived from HCV cDNA described below or by immunoassay (see chapter II.1.) using as a probe antibodies directed against the HCV antigen encoded in the family of cDNA sequences shown in Figures 1-32 and also directed against the HCV antigen encoded by the overlapping HCV cDNA sequences discussed above. Antibodies can be monoclonal or polyclonal and purification may be desirable when using them in immunoassays. The purification procedure for polynucleon antibodies directed against the antigen encoded in clone 5-1-1 is described in Chapter IV.E.; an analogous purification procedure can be used for antibodies directed against other HCV antigens.

Antitijela usmjerena protiv HCV antigena kodiranih u porodici cDNA prikazanih na slikama 1-32, kao i onih kodiranih u preklapajućim HCV cDNA, koje su fiksirane na krute nosače, su korisna za izoliranje HCV pomoću imunoafinitetne kromatografije. Tehnike za ovo su poznate u znanosti i uključuju tehnike za fiksiranje antitijela na krute nosače tako da zadrže svoju imunoselektivnu aktivnost; tehnike mogu biti one u kojima se antitijela aborbiraju na nosaču (vidi, na primjer, Kurstak u ENZYME IMMUNODIAGNOSIS, str. 31-37), kao i one u kojima se antitijela kovalentno vežu na nosač. Općenito, tehnike su slične onima korištenim za kovalentno vezanje antigena za kruti nosač, koje su općenito opisane u poglavlju IV.C.; međutim prostorne grupe mogu biti uključene u bifunkcionalne agense za vezanje, tako da antigensko mjesto vezanja antitijela ostane dostupno. Antibodies directed against HCV antigens encoded in the family of cDNAs shown in Figures 1-32, as well as those encoded in overlapping HCV cDNAs, which are fixed to solid supports, are useful for isolating HCV by immunoaffinity chromatography. Techniques for this are known in the art and include techniques for fixing antibodies to solid supports so that they retain their immunoselective activity; techniques can be those in which the antibodies are adsorbed to a support (see, for example, Kurstak in ENZYME IMMUNODIAGNOSIS, pp. 31-37), as well as those in which the antibodies are covalently attached to the support. In general, the techniques are similar to those used for covalent attachment of antigen to a solid support, which are generally described in Chapter IV.C.; however, spacers may be included in bifunctional binding agents so that the antigen binding site of the antibody remains accessible.

Tijekom postupka pročišćavanja prisutnosti HCV može biti detektirana i/ili verificirane hibridizacijom nukleinske kiseline, korištenjem kao proba polinukleotide izvedene iz porodice HCV cDNA sekvenci prikazanih na slikama 1-32, kao i iz preklapajućih HCV cDMA sekvenci, opisanih naprijed. U ovom slučaju, frakcije se tretiraju u uvjetima koji trebaju izazvati kidanje virusnih partikula, na primjer, sa deterdžentima u prisutnosti helatnih agenasa i prisutnosti virusne nukleinske kiseline određene tehnikama hibridizacije opisane u poglavlju II.H. Daljnja potvrda da su izolirane partikule agensi koji izazivaju HCV, može se dobiti infekcijom čimpanzi sa izoliranim virusnim partikulama i zatim određivanjem postoje li sisptomi NANBH kao rezultat infekcije. During the purification process, the presence of HCV can be detected and/or verified by nucleic acid hybridization, using as a probe polynucleotide derived from the family of HCV cDNA sequences shown in Figures 1-32, as well as from overlapping HCV cDMA sequences, described above. In this case, the fractions are treated under conditions that should cause the rupture of viral particles, for example, with detergents in the presence of chelating agents and the presence of viral nucleic acid determined by the hybridization techniques described in chapter II.H. Further confirmation that the isolated particles are the causative agents of HCV can be obtained by infecting chimpanzees with the isolated viral particles and then determining whether NANBH symptoms are present as a result of the infection.

Virusne partikule pročišćenih preparata mogu se dalje okarakterizirati. Genomska nukleinska kiselina je pročišćena. Zasnovano na njenoj osjetljivostina Rnase i ne na Dnase I, javlja se da je virus sastavljen od RNA genoma. Vidi primjer IV.C.2., niže. Bespomoćnost i cirkularnost ili necirkularnost mogu se odrediti tehnikama poznatim u znanosti, uključujući, na primjer, njihovo promatranje elektronskim mikroskopom, njihovu migraciju u gradijente gustoće i njihove sedimentacijske karakteristike. Bazirano na hibridizaciji dobivenog HCV genoma prema negativnim strukama HCV cDNA, pojavljuje se da HCV može obuhvatiti pozitivno struki RNA genom (vidi poglavlje IV.H.1.). Tehnike takve kao ove su opisane, na primjer, u METHODS IN ENZYMOLOGY. Dodatno, pročišćena nukleinska kiselina može biti klonirana i sekvencirana poznatim tehnikama, uključujući rezervnu transkripciju mada je genomski materijal RNA. Vidi, na primjer, Maniatis (1982), i Glover (1985). Korištenje nukleinske kiseline izvedene iz virusnih partikula omogućuje sekvencioniranje čitavog genoma, bilo da jest ili nije segmentiran. Viral particles of purified preparations can be further characterized. The genomic nucleic acid was purified. Based on its sensitivity to Rnase and not DNase I, the virus appears to be composed of an RNA genome. See example IV.C.2., below. Helplessness and circularity or non-circularity can be determined by techniques known in the art, including, for example, their observation by electron microscopy, their migration in density gradients, and their sedimentation characteristics. Based on the hybridization of the obtained HCV genome to the negative strands of HCV cDNA, it appears that HCV can encompass the positive strand of the RNA genome (see chapter IV.H.1.). Techniques such as these are described, for example, in METHODS IN ENZYMOLOGY. Additionally, the purified nucleic acid can be cloned and sequenced by known techniques, including backup transcription, even though the genomic material is RNA. See, for example, Maniatis (1982), and Glover (1985). The use of nucleic acid derived from viral particles allows the sequencing of the entire genome, whether it is segmented or not.

Ispitivanje homologije polipeptida kodiranog u neprekidnom ORF sjedinjenih klonova 14i do 39c (vidi sliku 26), pokazuje da HCV polipeptid sadrži područja homologije s odgovarajućim proteinima u konzerviranim područjima flavivirusa. Primjer ovog je opisan u poglavlju IV.H.3. Ovaj zaključak ima mnogo značajnih razgranatosti. Prvo, ova indikacija, u svezi s rezultatima koji pokazuju da HCV sadrži pozitivno-struki genom veličine od oko 10 000 nukleotida, konzistentna je sa sugestijom da je HCV flavivirus ili virus sličan ovom. Općenito, flavivirusni virioni i njihovi genomi imaju relativno konzistemtnu strukturu i organizaciju koja je poznata. Vidi Rice et at. (1982), i Brinton M.A. (1988). Tako strukturni geni koji kodiraju polipeptide C, pre M, M i E mogu biti locirani u 5’-terminusu genima uzvodno od klona 14i. Međutim, korištenje uspoređivanja s drugim flavivirusima, iskazivanje kao precitiranje lokacije sekvenci koje kodiraju ove proteine, može se dati. Homology testing of the polypeptide encoded in the contiguous ORF of the pooled clones 14i to 39c (see Figure 26) shows that the HCV polypeptide contains regions of homology to corresponding proteins in flavivirus conserved regions. An example of this is described in chapter IV.H.3. This conclusion has many significant ramifications. First, this indication, in conjunction with the results showing that HCV contains a positive-fold genome of about 10,000 nucleotides in size, is consistent with the suggestion that HCV is a flavivirus or a virus similar to it. In general, flavivirus virions and their genomes have a relatively consistent structure and organization that is known. See Rice et at. (1982), and Brinton MA. (1988). Thus, structural genes encoding polypeptides C, pre M, M and E can be located in the 5'-terminus of genes upstream of clone 14i. However, using comparisons with other flaviviruses, the statement as preciting the location of the sequences encoding these proteins can be given.

Izoliranje sekvenci uzvodno od ovih u klonu 14i može se izvesti na brojne načine koji su ovdje dani informativno, koji trebaju stručnjacima biti jasni. Na primjer, genom “šetajuća” tehnika može se koristiti za izoliranje drugih sekvenci koje su 5’ prema onoj u klonu 14i, ali koje preklapaju taj klon; ovo dovodi do izoliranja dodatnih sekvenci. Ova tehnika je demonstrirana niže u poglavlju IV.A. na primjer, također je poznato da flavivirusi imaju održane epitope i područja očuvanih sekvenci nukleinskih kiselina. Polinukleotide koji sadrže očuvane sekvence treba koristiti kao probe koje vežu HCV genom, što dozvoljava njihovo izoliranje. Dodatno, ove sačuvane sekvence u svezi s onim izvedenim iz HCV cDNA prikazanih na slici 22, mogu se koristiti za stvaranje početaka za korištenje u sistemima koji ojačavaju genomske sekvence uzvodno od onih u klonu 14i, koristeći reakcijsku tehnologiju polimeraza lanca. Primjer ovog je niže opisan. Isolation of sequences upstream of these in clone 14i can be accomplished in a number of ways, provided herein for information purposes, which should be apparent to those skilled in the art. For example, a genome “walking” technique can be used to isolate other sequences that are 5' to that of clone 14i but that overlap that clone; this leads to the isolation of additional sequences. This technique is demonstrated below in Chapter IV.A. for example, flaviviruses are also known to have conserved epitopes and regions of conserved nucleic acid sequences. Polynucleotides containing conserved sequences should be used as probes that bind to the HCV genome, allowing their isolation. Additionally, these conserved sequences relative to that derived from the HCV cDNA shown in Figure 22 can be used to create primers for use in systems that amplify genomic sequences upstream of those in clone 14i, using polymerase chain reaction technology. An example of this is described below.

Struktura HCV može također biti određena i njene komponente su izolirane. Morfologija i veličine mogu biti određeni, na primjer, pomoću elektronskog mikroskopa. Identifikacija i lokacija spesifične virusnih polipeptidnih antigena takvih kao presvučeni ili obavijeni antigeni, ili unutrašnji antigeni, takvi kao proteini povezanih aminokiselina, antigena jezgra, i polinukleotidne polimeraze mogu biti također određeni pomoću, na primjer, određivanjem da li su antigeni prisutni kao glavne ili manje virusne komponente, kao i korištenjem antitijela usmjerenih protiv specifičnih antigena kodiranih u izoliranim cDNA kao probama. Ova informacija je korisna u stvaranju cjepiva; na primjer može biti poželjna radi uključivanja vanjskog antigena u preparat za cijepljenje. Multivalentna cjepiva mogu obuhvaćati, na primjer, polipeptid izveden iz genoma koji kodira strukturalni protein, na primjer E, kao i polipeptid iz drugog dijela genoma, na primjer, nestrukturalni ili strukturalni polipeptid. The structure of HCV can also be determined and its components isolated. Morphology and sizes can be determined, for example, using an electron microscope. The identification and location of specific viral polypeptide antigens, such as coat or envelope antigens, or internal antigens, such as linked amino acid proteins, core antigens, and polynucleotide polymerases can also be determined by, for example, determining whether the antigens are present as major or minor viral antigens. components, as well as by using antibodies directed against specific antigens encoded in isolated cDNAs as probes. This information is useful in vaccine development; for example, it may be desirable to include an external antigen in a vaccine preparation. Multivalent vaccines may comprise, for example, a polypeptide derived from a genome encoding a structural protein, for example E, as well as a polypeptide from another part of the genome, for example, a non-structural or structural polypeptide.

II.K. Sistemi stanične strukture i životinjski model sistema za HCV repliciranje II.K. Cell structure systems and animal model systems for HCV replication

Sugestija da je HCV flavivirus ili virus sličan njemu, također osigurava informaciju o postupcima za rast HCV. Pojam “sličan njemu” znači da virus pokazuje značajan stupanj homologije prema poznatim konzerviranim područjima i da je glavnina genoma jedan ORF. Postupci za uzgajanje flavivirusa su poznati stručnjacima (vidi, na primjer, revije Brinstona (1986) i Stollara (1980)). Općenito, pogodne stanice ili stanične linije za uzgajanje HCV mogu uključivati one poznate da podržavaju replikaciju flavivirusa, na primjer: stanične linije bubrega majmuna (npr. MK2, VERO), stanične linije bubrega svinje (npr. PS); stanične linije bubrega mladunčeta hrčka (npr. BHK), murinske makrofagne stanične linije (npr. p388D1, MK1, Mm1); humane makrofagne stanične linije (npr. U-937); humani periferni krvni leukociti; humani prianjajući monociti; hepatocitne ili hepacitne stanične linije (npr. HUH7, HEPG2); embio ili embrione stanice (npr. pileći embrioni fibroblasti), ili stanične linije izvedene iz invertebrata, poželjno iz insekata (npr. drozofila stanične linije), ili poželjnije iz artropoda, na primjer, stanične linije komarca (npr. A.Albopictus, Aedes aegypti, Cutex tritaeniorhynchus) ili krpeljske stanične linije (npr. RML-14 Dermacentor parumpertus). The suggestion that HCV is a flavivirus or a virus similar to it also provides information on the mechanisms by which HCV grows. The term "similar" means that the virus shows a significant degree of homology to known conserved regions and that the bulk of the genome is a single ORF. Procedures for culturing flaviviruses are known to those skilled in the art (see, for example, reviews by Brinston (1986) and Stollar (1980)). In general, suitable cells or cell lines for culturing HCV may include those known to support flavivirus replication, for example: monkey kidney cell lines (eg, MK2, VERO), porcine kidney cell lines (eg, PS); baby hamster kidney cell lines (eg, BHK), murine macrophage cell lines (eg, p388D1, MK1, Mm1); human macrophage cell lines (eg, U-937); human peripheral blood leukocytes; human adherent monocytes; hepatocytes or hepatocyte cell lines (eg HUH7, HEPG2); embio or embryonic cells (e.g. chicken embryo fibroblasts), or cell lines derived from invertebrates, preferably from insects (e.g. Drosophila cell lines), or more preferably from arthropods, for example, mosquito cell lines (e.g. A. Albopictus, Aedes aegypti , Cutex tritaeniorhynchus) or tick cell lines (eg RML-14 Dermacentor parumpertus).

Moguće je primarni hepatociti budu uzgajani i zatim inficirani sa HCV; ili alternativno, hepatocitne kulture mogu biti izvedene iz jetre inficiranih individua (npr. humanih ili čimpanzi). Posljednji slučaj je primjer stanice koja je inficirana in vivo, a zatim prevedena in vitro. Dodatno, razni postupci besmrtnosti mogu se koristiti radi dobivanja staničnih linija izvedenih iz hepatocitnih kultura. Na primjer, primarne kulture jetre (prije i poslije obogaćivanja hepatocitne populacije) mogu se sjediniti u razne stanice radi održavanja stabilnosti. Na primjer, također, kulture mogu biti inficirane s transformacijskim virusima ili transformirane s transformirajućim agensima u cilju stvaranja permanentnih ili polupermanentnih staničnih linija. Dodatno, na primjer, stanice u kulturi jetre mogu se sjediniti radi dobivanja staničnih linija (npr. HePG2). Postupci za sjedinjavanje stanica su poznati u znanosti i uključuju, na primjer, korištenje agenasa za sjedinjavanje takvih kao polietilen glikol, Sendai virusa i Epstein-barr virusa. It is possible for primary hepatocytes to be cultured and then infected with HCV; or alternatively, hepatocyte cultures can be derived from the liver of infected individuals (eg, human or chimpanzee). The last case is an example of a cell that is infected in vivo and then translated in vitro. Additionally, various immortalization procedures can be used to obtain cell lines derived from hepatocyte cultures. For example, primary liver cultures (before and after enrichment of the hepatocyte population) can be pooled into various cells to maintain stability. For example, also, cultures can be infected with transformation viruses or transformed with transforming agents in order to generate permanent or semi-permanent cell lines. Additionally, for example, cells in liver culture can be pooled to obtain cell lines (eg, HePG2). Methods for cell fusion are known in the art and include, for example, the use of fusion agents such as polyethylene glycol, Sendai virus, and Epstein-barr virus.

Kao što je razmotreno naprijed, HCV je flavivirus ili virus sličan njemu. Stoga, vjerojatno je da se HCV infekcija staničnih linija može izvesti tehnikama poznatim u znanosti za inficiranje stanica s virusnim preparatima u uvjetima koji dozvoljavaju virusni ulazak u stanicu. Dodatno, moguće je dobiti virusnu proizvodnju transfekcijom stanica sa izoliranim virusnim polinukleotidima. Poznato je da Togavirus i Flavivirus RNA su infektivni u raznim staničnim linijama kralježnjaka (Feerkorn i Shapiro 91974)), i u staničnoj liniji komarca (Peleg (1969)). Postupci za transfekciju tkiva kulture stanica s RNA dupleksima, pozitivnistrukih RNA i DNA (uključujući cDNA) su poznati u znanosti i uključuju, na primjer, tehnike koje koriste elektroporaciju i precipitaci sa DEAE-Dextranom ili kalcij-fosfatom. Bogat izvor HCV RNA može se dobiti izvođenjem in vitro transkripcije HCV cDNA koja odgovara potpunom genomu. Transfekcija s ovim materijalom ili s kloniranom HCV cDNA treba rezultirati u virusnoj replikaciji i in vitro napredovanju virusa. As discussed above, HCV is a flavivirus or a virus similar to it. Therefore, it is likely that HCV infection of cell lines can be performed by techniques known in the art for infecting cells with viral preparations under conditions that permit viral entry into the cell. Additionally, it is possible to obtain viral production by transfecting cells with isolated viral polynucleotides. Togavirus and Flavivirus RNA are known to be infectious in various vertebrate cell lines (Feerkorn and Shapiro 91974)), and in a mosquito cell line (Peleg (1969)). Methods for transfecting cell culture tissue with RNA duplexes, positive-strand RNAs and DNA (including cDNA) are known in the art and include, for example, techniques using electroporation and precipitation with DEAE-Dextran or calcium phosphate. A rich source of HCV RNA can be obtained by performing in vitro transcription of HCV cDNA corresponding to the complete genome. Transfection with this material or with cloned HCV cDNA should result in viral replication and in vitro viral progression.

Dodatno uzgojenim stanicama, životinjski model sustava može se koristiti za virusnu replikaciju; životinjski sustavi u kojima su flavivirusi su poznati stručnjacima (vidi, na primjer, reviju Monatha (1986)). Tako se HCV replikacija može odvijati ne samo u čimpanzama, već također i u, primjerice, marmosetima ili dojenčadi miševa. In addition to cultured cells, an animal model system can be used for viral replication; animal systems in which flaviviruses are known are known to those skilled in the art (see, for example, review by Monath (1986)). Thus, HCV replication can take place not only in chimpanzees, but also in, for example, marmosets or infant mice.

II.L. Testiranje za antivirusne agense za HCV II.L. Testing for antiviral agents for HCV

Raspoloživost stanične kulture i životinjski model sustava za HCV također omogućava testiranje na antivirusne agense koji inhibiraju HCV replikaciju, i naročito za one agense koji prvenstveno dozvoljavaju rast i umnožavanje dok inhibiraju virusnu replikaciju. Ove metode testiranja su poznate stručnjacima. Općenito, antivirusni agensi su testirani pri raznim koncentracijama na svoj efekt na prevenciji virusne replikacije u sustavima stanične kulture koja podržava virusnu replikaciju, i zatim na inhibiranje infektivnosti ili virusne patogeničnosti (i nisku razinu toksičnosti) u životinjskom modelu sustava. The availability of cell culture and animal model systems for HCV also allows testing for antiviral agents that inhibit HCV replication, and particularly for those agents that primarily allow growth and replication while inhibiting viral replication. These test methods are known to those skilled in the art. In general, antiviral agents have been tested at various concentrations for their effect on preventing viral replication in cell culture systems that support viral replication, and then on inhibiting infectivity or viral pathogenicity (and low toxicity) in animal model systems.

Postupci i sastavi dani ovdje za detektiranje antigena i HCV polinukleotida su korisni za testiranje antivirusnih agenasa u kojima oni osiguravaju alternativno i možda osjetljivija sredstva za detektiranje efekta agensa na virusnu replikaciju od ispitivanja staničnog plaka ili ID50 ispitivanja, na primjer, HCV polinukleotidne probe opisane ovdje mogu se koristiti radi određivanja količine nukleinske kiseline producirane u kulturi stanice. Ovo se može izvesti, na primjer, hibridizacijom inficiranih staničnih nukleinskih kiselina s obilježenom HCV-polinukleotidnom probom. Na primjer, također anti-HCV antitijela mogu biti korištena radi identificiranja i određivanja količine HCV antigena u kulturi stanice koju koriste imunoispitivanja ovdje opisana. Dodatno, otuda može biti poželjno odrediti količinu antigena u inficiranoj stanici pomoću konkurentnog ispitivanja, polipeptidi kodirani u HCV cDNA opisani ovdje su korisni u ovim konkurentnim ispitivanjima. Općenito, rekombinantni HCV polipeptid iz HCV cDNA treba biti obilježen i inhibiranje vezanja ovog obilježenog polipeptida na HCV zbog antigena proizvedenog u alergijskom sistemu kulture treba bilježiti. Međutim, ove tehnike su praktično korisne u slučajevima gdje HCV može biti sposoban replicirati u staničnoj liniji bez izazivanja smrti stanice. The methods and compositions provided herein for detecting antigens and HCV polynucleotides are useful for testing antiviral agents where they provide an alternative and perhaps more sensitive means of detecting the agent's effect on viral replication than cell plaque assays or ID50 assays, for example, the HCV polynucleotide probes described herein can can be used to determine the amount of nucleic acid produced in cell culture. This can be done, for example, by hybridizing infected cell nucleic acids with a labeled HCV-polynucleotide probe. For example, anti-HCV antibodies can also be used to identify and quantify HCV antigen in a cell culture using the immunoassays described herein. Additionally, where it may be desirable to determine the amount of antigen in an infected cell using a competitive assay, the polypeptides encoded by the HCV cDNA described herein are useful in these competitive assays. In general, recombinant HCV polypeptide from HCV cDNA should be labeled and inhibition of binding of this labeled polypeptide to HCV by antigen produced in an allergic culture system should be noted. However, these techniques are practically useful in cases where HCV may be able to replicate in a cell line without causing cell death.

II.M. Dobivanje oslabljenih struka HCV II.M. Getting weakened waists HCV

Dodatno gornjem, korištenje tkiva sistema kulture i/ili životinjskih modela sustava, može biti moguće radi izoliranja oslabljenih struka HCV. Ove struke trebaju biti pogodne za cjepiva ili za izoliranje virusnih antigena. Oslabljene struke su izolabilne poslije višestrukih prolaza u stanici kulture i/ili životinjskom modelu. In addition to the above, the use of tissue culture systems and/or animal model systems may be possible to isolate attenuated HCV strains. These professions should be suitable for vaccines or for the isolation of viral antigens. Attenuated segments are isolable after multiple passages in a cell culture and/or animal model.

Detekcija oslabljenih struktura u inficiranoj stanici ili individui, postiže se tehnikama poznatim u znanosti i može se uključiti, primjerice, korištenjem antitijela prema jednom ili više epitopa kodiranih u HCV kao što je proba ili korištenje polinukleotida koji sadrži HCV sekvencu od bar oko 8 nukleotida kao probe. Detection of weakened structures in an infected cell or individual is achieved by techniques known in the art and can include, for example, using antibodies against one or more epitopes encoded in HCV as a probe or using a polynucleotide containing the HCV sequence of at least about 8 nucleotides as a probe .

Alternativno, ili dodatno, oslabljena vrsta može biti stvorena korištenjem genomske informacije HCV osiguranog ovdje i korištenjem rekombinantnih tehnika. Općenito, treba pokušati brisanje područja kodirajućeg genoma, na primjer, polipeptida vezanog za patogenost, ili koji dozvoljava virusnu replikaciju. Alternatively, or additionally, an attenuated strain can be generated using the HCV genomic information provided herein and using recombinant techniques. In general, deletion of a region of the genome encoding, for example, a polypeptide related to pathogenicity, or allowing viral replication, should be attempted.

Dodatno stvaranje genoma treba dozvoliti ekspresiju epitopa koji daje porast neutralizirajućih antitijela za HCV. Izmjenjen genom treba tada koristiti za transformiranje stanica koje dozvoljavaju HCV replikaciju, i rast stanica u uvjetima koji dozvoljavaju virusnu replikaciju. Oslabljene HCV struke su korisne ne samo za svrhe cjepiva već i kao izvor za komercijalnu proizvodnju virusnih antigena, otuda prerada ovih virusa treba zahtijevati manje oštre zaštitne mjere za zaposlene u proizvodnji virusa. The additional generation of the genome should allow the expression of an epitope that gives an increase in neutralizing antibodies for HCV. The modified gene should then be used to transform cells that allow HCV replication, and grow the cells under conditions that allow viral replication. Attenuated HCV strains are useful not only for vaccine purposes but also as a source for commercial production of viral antigens, hence the processing of these viruses should require less stringent protective measures for those employed in virus production.

III. Opći postupci III. General procedures

Opća tehnika korištena u ekstrahiranju genoma iz virusa, dobivanje i ispitivanje cDNA biblioteke, sekvenciranje klonova, konstrukcija ekspresionih faktora, transformiranje stanica, izvođenje imunoloških ispitivanja, takvih kao imunoispitivanje i ELISA ispitivanja za rast stanica u kulturi i slično, poznati su u znanosti i laboratorijskim priručnicima su dostupno opisane ove tehnike. Međutim, kao opći vodič slijedi skup izvora stalno dostupan za takve postupke i za materijale primjenjive i njihovu izvođenju. The general techniques used in extracting genomes from viruses, obtaining and testing cDNA libraries, sequencing clones, constructing expression factors, transforming cells, performing immunoassays such as immunoassays and ELISA assays for cell growth in culture and the like are known in science and laboratory manuals. are available to describe these techniques. However, as a general guide, the following is a set of resources constantly available for such procedures and for materials applicable to their execution.

III.A. Domaćini i ekspresione kontrolne sekvence III.A. Hosts and expression control sequences

Prokariotske i eukariotske stanice domaćina mogu se koristiti za ekspresiju željenih kodirajućih sekvenci kada se koriste odgovarajuće kontrolne sekvence koje su kompaktibilne sa imenovanim domaćinom. Među prokariotskim domaćinima, E. coli je najčešće korištena. Ekspresione kontrolne sekvence za prokariote uključuju promotore, koji po izboru sadrže operatorske dijelove, i ribosom vezujuća mjesta. Vektori prijenosa kompatibilni sa prokariotskim domaćinima su općenito izvedeni iz, na primjer, pBR322, plazmid koji sadrži operone koji daju ampilicin i teraciklin otpornost, i razne pUC vektore koji također sadrže sekvence koji daju obilježivače antibiotske otpornosti. Ovi obilježivači mogu se koristiti za dobivanje uspješnih transformatora selekcijom. Obično korištene prokariotske kontrolne sekvence uključuju beta-laktamazu (penicilinaza) i laktozne promotorske sisteme (Chang et al (1977)), triptofan (trp) promotorski sustav (Goeddel et al. (1980)) i lambda-izveden PL promotor i N gen ribosom vezujuće mjesto (Shimatake et al. (1981)) i hibrid tac promotor (De Boer et al. (1983)) izveden iz sekvenci trp i lac UV5 promotora. Gornji sustavi su naročito kompatibilni sa E. coli; ako se želi mogu se rabiti drugi prokariotski domaćini takvi kao vrste Bacillus ili Pseudomonas sa odgovarajućim kontrolnim sekvencama. Prokaryotic and eukaryotic host cells can be used to express the desired coding sequences when appropriate control sequences are used that are compatible with the designated host. Among prokaryotic hosts, E. coli is the most commonly used. Expression control sequences for prokaryotes include promoters, which optionally contain operator moieties, and ribosome binding sites. Transfer vectors compatible with prokaryotic hosts are generally derived from, for example, pBR322, a plasmid containing operons conferring ampicillin and teracyclin resistance, and various pUC vectors also containing sequences conferring antibiotic resistance markers. These markers can be used to obtain successful transformants by selection. Commonly used prokaryotic control sequences include the beta-lactamase (penicillinase) and lactose promoter systems (Chang et al (1977)), the tryptophan (trp) promoter system (Goeddel et al. (1980)) and the lambda-derived PL promoter and N gene ribosome binding site (Shimatake et al. (1981)) and a hybrid tac promoter (De Boer et al. (1983)) derived from the trp and lac UV5 promoter sequences. The above systems are particularly compatible with E. coli; if desired, other prokaryotic hosts such as Bacillus or Pseudomonas species with appropriate control sequences can be used.

Eukariotski domaćini uključuju kvasac i stanice sisavaca u sistemima kulture. Saccharomyced cerevisiae i Saccharomyces carlsbergenesisi su najopćenitije korišteni domaćini kvasca i odgovaraju fungalnim domaćinima. Kvasac kompaktibilni vektori nose obilježivače koji dozvoljavaju selekciju uspješnih transformata davanjem prototrofije prema auksotrofnim mutantima ili otpornosti prema teškim metalima vrstama divljeg tipa. Kvasac kompatibilni vektori mogu koristiti 2 mikronski začetak replikata (Broach et al. (1983)), kombinaciju CEN3 i ARS1 ili drugih sredstava za osiguravanje replikacije, takvih kao sekvenci koje će rezultirati u ugrađivanju odgovarajućeg fragmenta u genom stanice domaćina. Kontrolne sekvence za vektore kvasca su poznate u znanosti i uključuju promotore za sintezu glikolitičkih enzima (Hess et al. (1968)); Holland et al. (1978) koji uključuju promotori za 3-fosfoglicerat kinazu (Hitzeman (1980)). Mogu također biti uključeni i terminatori takvi kao oni izvedeni iz enolaza gena (Holland (1981)). Naročito korisni kontrolni sustavi su oni koji obuhvaćaju gliceraldehid-3-fosfat dehidrogenoza (GAPDH) promotor ili alkohol dehidrogenaza (ADH) regulatorski promotor, terminatori također izvedeni iz GAPDH, i ako je poželjno izlučivanje, rukovodna sekvenca iz kvasca alfa vektora. Dodatno, transkripcijsko regulatorsko područje i transkripcijsko inicijatorsko područje su operativno vezana i mogu biti takva da nisu prirodno vezana u organizmu divljeg tipa. Ovi sustavi su detaljno opisani u EPO 120.551, publiciranom 3.10.1984; EPO 116.201, publiciranom 22.8.1984; i EPO 164.556; publiciranom 18.12.1985. koji su pod ovim oznakama ovdje uneseni kao reference. Eukaryotic hosts include yeast and mammalian cells in culture systems. Saccharomyced cerevisiae and Saccharomyces carlsbergenesisi are the most commonly used yeast hosts and correspond to fungal hosts. Yeast compatibilizer vectors carry markers that allow selection of successful transformants by conferring prototrophy to auxotrophic mutants or heavy metal resistance to wild-type strains. Yeast-compatible vectors may use a 2 micron origin of replication (Broach et al. (1983)), a combination of CEN3 and ARS1, or other means of ensuring replication, such as sequences that will result in the incorporation of the appropriate fragment into the host cell genome. Control sequences for yeast vectors are known in the art and include promoters for the synthesis of glycolytic enzymes (Hess et al. (1968)); Holland et al. (1978) which include promoters for 3-phosphoglycerate kinase (Hitzeman (1980)). Terminators such as those derived from the enolase gene may also be included (Holland (1981)). Particularly useful control systems are those comprising a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter or an alcohol dehydrogenase (ADH) regulatory promoter, terminators also derived from GAPDH, and if secretion is desired, a leader sequence from a yeast alpha vector. Additionally, the transcriptional regulatory region and the transcriptional initiator region are operably linked and may be such that they are not naturally linked in the wild-type organism. These systems are described in detail in EPO 120,551, published on October 3, 1984; EPO 116.201, published on August 22, 1984; and EPO 164,556; published on 18.12.1985. which are incorporated herein by reference under these designations.

Stanične linije sisavaca dostupne kao domaćini za ekspresiju su poznate u znanosti i uključuju mnoge besmrtne stanične linije dostupne iz American Type Culture Collection (ATTC), uključujući HeLa stanice, stanice jajnika kineskog hrčka (CHO), stanice bubrega dojenčeta hrčka (BHK) i brojne druge stanične linije. Pogodni promotori za stanice sisavaca su također poznati u znanosti i uključuju virusne promotore takve kao one iz Simian Virus 40 (SV40) (Fiers (1978)), Rous arcoma virus (RSV), adenovirus (ADV) i goveđi papiloma virus (BPV). Stanice sisavaca nogu također zahtjevati terminatorske sekvence i Poli A dodatne sekvence; pojačivač sekvenci koji povećava ekspresiju također može biti uključen, i sekvence koje izazivaju pojačavanje gena također mogu biti poželjne. Ove sekvence su poznate u znanosti. Vektori pogodni za replikaciju u stanicama sisavaca mogu uključivati virusne replikone ili sekvence koje osiguravaju integraciju odgovarajućih sekvenci koje kodiraju NANBV epitope u genomu domaćina. Mammalian cell lines available as expression hosts are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATTC), including HeLa cells, Chinese Hamster Ovary (CHO) cells, Baby Hamster Kidney (BHK) cells, and numerous others cell lines. Suitable promoters for mammalian cells are also known in the art and include viral promoters such as those from Simian Virus 40 (SV40) (Fiers (1978)), Rous arcoma virus (RSV), adenovirus (ADV) and bovine papilloma virus (BPV). Mammalian leg cells also require terminator sequences and Poly A accessory sequences; enhancer sequences that increase expression may also be included, and sequences that cause gene amplification may also be desirable. These sequences are known in science. Vectors suitable for replication in mammalian cells may include viral replicons or sequences that ensure integration of appropriate sequences encoding NANBV epitopes into the host genome.

III.B. Transformacije III.B. Transformations

Transformacije mogu biti one poznatih metoda za ubacivanje polinukleotida u stanicu domaćina, uključujući, primjerice, pakiranje polinukleotida u virus i transduciranje stanica domaćina s virusom, i izravnim prihvaćanjem polinukleotida. Korišteni postupak transformiranja zavisi o domaćinu koji se transformira. Na primjer, transformacija E. coli stranica domaćina sa lambda-gt11 koji sadrži BB-NANBV sekvence je diskutirana u poglavlju primjera, niže. Bakterijska transformacija izravnim prihvaćanjem općenito koristi tretman s kalcij ili rubidij kloridom (Cohen (1972); Maniatis (1982)). Transformacija kvasca izravnim prihvaćanjem može se izvesti korištenjem postupka Hinnes et al (1978). Transformacije sisavaca izravnim prihvaćanjem mogu se izvesti korištenjem metode taloženja kalcij-fosfata Grahama i Van der Eba (1978) ili raznim njenim modifikacijama. Transformations can be those of known methods for introducing polynucleotides into a host cell, including, for example, packaging the polynucleotide into a virus and transducing the host cells with the virus, and by directly taking up the polynucleotide. The transformation procedure used depends on the host being transformed. For example, transformation of E. coli host sites with lambda-gt11 containing BB-NANBV sequences is discussed in the examples section, below. Bacterial transformation by direct uptake generally uses treatment with calcium or rubidium chloride (Cohen (1972); Maniatis (1982)). Transformation of yeast by direct uptake can be performed using the procedure of Hinnes et al (1978). Mammalian transformations by direct uptake can be performed using the calcium phosphate precipitation method of Graham and Van der Eb (1978) or various modifications thereof.

III.C. Stvaranje vektora III.C. Creating a vector

Stvaranje vektora koristi tehnike koje su poznate u znanosti. DNA kodiranje specifičnih mjesta se izvodi tretiranjem pogodnim restrikcijskim enzimima u uvjetima koje su općenito specificirali proizvođači ovih komercijalnih dostupnih enzima. Općenito, oko 1 mikrogram plazmida ili DNA sekvence se raskida 1 jedinicom enzima u oko 20 mikrolitara otopine pufera inkubacijom 1-2 sata na 37ºC. Poslije inkubacije se restrikcijskim enzimom, protein se uklanja pomoću fenol/kloroform ekstrakcije i DNA se odvaja taloženjem s etanolom. Raskinuti fragmenti mogu se odvojiti korištenjem poliakrilamida ili tehnika gel elektroforeze, prema općim postupcima koji se nalaze u Methods in Enzymology (1980) 65; 499-560. Vector creation uses techniques known in the art. DNA coding of specific sites is performed by treatment with suitable restriction enzymes under conditions generally specified by the manufacturers of these commercially available enzymes. Generally, about 1 microgram of plasmid or DNA sequence is cleaved by 1 unit of enzyme in about 20 microliters of buffer solution by incubating for 1-2 hours at 37ºC. After incubation with restriction enzyme, protein is removed by phenol/chloroform extraction and DNA is separated by ethanol precipitation. Cleaved fragments can be separated using polyacrylamide or gel electrophoresis techniques, according to general procedures found in Methods in Enzymology (1980) 65; 499-560.

Prekinuti fragmenti ljepljivih krajeva mogu se otvoriti korištenjem E. coli DNA polimeraze I (Klenow) u prisutnosti odgovarajućeg deoksinukleotid trifosfata (dNTPs) prisutnog u smjesi. Tretman sa S1 nukleozom može se također koristiti rezultirajući hidrolizom nekih dijelova jednostruke DNA. Broken sticky end fragments can be opened using E. coli DNA polymerase I (Klenow) in the presence of the appropriate deoxynucleotide triphosphates (dNTPs) present in the mixture. Treatment with S1 nucleose can also be used resulting in the hydrolysis of some parts of the single-stranded DNA.

Povezivanje se vrši korištenjem standardnog pufera i temperaturnih uvjeta koje koriste T4 DNA ligaza i ATP; povezivanjem ljepljivog kraja zahtijeva manje ATP i manje ligaze od povezivanja otvorenog kraja. Kada se fragmenti vektora kao dio smjese za povezivanje, fragment vektora se često tretira s bakterijskom alkalnom fosfatazom (BAP) ili intestinalnom alkalnom fosfatazom goveda radi uklanjanja 5’-fosfata i tako sprečavanja ponovnih vezanja vektora; alternativno, restrikcijsko enzimsko razaranje neželjenih fragmenata može se koristiti radi sprečavanja povezivanja. Ligation is performed using the standard buffer and temperature conditions used by T4 DNA ligase and ATP; ligation of the sticky end requires less ATP and less ligase than ligation of the open end. When vector fragments are used as part of a ligation mixture, the vector fragment is often treated with bacterial alkaline phosphatase (BAP) or bovine intestinal alkaline phosphatase to remove the 5'-phosphate and thus prevent religation of the vector; alternatively, restriction enzyme destruction of unwanted fragments can be used to prevent association.

Smjesa za povezivanje se transformira u pogodno klonirajućem domaćinu, takvom kao E. coli, i uspješni transformatori se biraju pomoću, na primjer, antibiotske otpornosti i testiranja na pravilnu konstrukciju. The ligation mixture is transformed in a suitable cloning host, such as E. coli, and successful transformants are selected by, for example, antibiotic resistance and testing for correct construction.

III.D. Stvaranje željenih DNA sekvenci III.D. Creating the desired DNA sequences

Genetski oligonukleotidi mogu se dobiti korištenjem automaskog sintetizatora oligonukleotida kao što je opisao Warner (1984). Ako se želi, sintetske struke mogu biti obilježene sa 32P tretmanom s polinukleotidnom kinazom u prisutnosti 32P-ATP, koristeći standardne uvjete reakcije. Genetic oligonucleotides can be obtained using an automated oligonucleotide synthesizer as described by Warner (1984). If desired, synthetic domains can be labeled with 32 P treatment with polynucleotide kinase in the presence of 32 P-ATP, using standard reaction conditions.

DNA sekvence, uključujući izolirane iz cDNA biblioteka, mogu se modificirati poznatim tehnikama, uključujući, na primjer, mutagenezu na usmjerenom mjestu, kao što je opisan Zoller (1982). Ukratko, DNA koja se modificira, pakira se u fagu kao jednostruka sekvenca, i prevodi se u dvostruku DNA korištenjem DNA polimeraze kao primara, sintetski oligonukleotid komplementaran prema dijelu DNA koji se modificira i ima željenu modifikaciju uključenu u svoju sekvencu. Dobivena DNA se transformira u fagu kojeg nosi bakterija domaćina. Kulture transformirane bakterije koje sadrže replikate svakog strukog faga se stavljaju u agar radi dobivanja plaka. Teorijski, 50% novih plaka sadrži fag koji ima mutiranu sekvencu, i preostalih 50% imaju originalnu sekvencu. Replikati plaka se hibridiziraju radi obilježavanja sintetske probe na temperaturama i u uvjetima koji dozvoljavaju hibridizaciju s korektnom strukom,ali ne sa nemodificiranom sekvencom. Sekvence koje su identificirane hibridizacijom se izdvajaju i kloniraju. DNA sequences, including those isolated from cDNA libraries, can be modified by known techniques, including, for example, site-directed mutagenesis, as described by Zoller (1982). Briefly, the DNA to be modified is packaged into phage as a single-stranded sequence, and translated into double-stranded DNA using DNA polymerase as a primer, a synthetic oligonucleotide complementary to the portion of the DNA being modified and having the desired modification incorporated into its sequence. The obtained DNA is transformed into a phage carried by the host bacterium. Cultures of transformed bacteria containing replicates of each type of phage are placed in agar to form a plaque. Theoretically, 50% of the new plaques contain phage that has the mutated sequence, and the remaining 50% have the original sequence. Plaque replicates are hybridized to label the synthetic probe at temperatures and conditions that allow hybridization with the correct region, but not with the unmodified sequence. Sequences identified by hybridization are isolated and cloned.

III.E. Hibridizacija s probom III.E. Hybridization with probe

DNA biblioteke se mogu ispitati korištenjem postupka Grunstein i Hognessa (1975). Ukratko, u ovom postupku, DNA koja se ispituje se imobilizira na nitroceluloznim filterima, denaturira se i prehibridizira s puferom koji sadrži 0-5% formamida, 0,75 M NaC1, 75 mM Na-citata, 0,02% (m/v) svakog od goveđeg seruma albumina, polivinilpirolidona i Fikola, 50 mM Na-fosfata (pH 6,5), 0,1% SDS i 100 mikrograma/ml nosača denaturirane DNA. Postupak formamida u puferu, kao vrijeme i temperaturni uvjeti stupnjeva prehibridizacije i zatim hibridizacije, zavisno od zahtjevane strogosti. Oligomerne probe koje zahtijevaju niše uvjete strogosti se općenito koriste s nižim postotkom formamida, nižim temperaturama i dužim vremenom hibridizacije. Probe koje sadrže više od 30 ili 40 nukleotida takve kao izvedene iz cDNA ili genomskih sekvenci općenito koriste više temperature, npr. oko 40-42ºC i viši postotak formamida, npr. 50%. Poslije hibridizacije 5’32P-obilježena oligonukleotidna proba se dodaje u pufer i filtri se inkubiraju u ovoj smjesi u hibridizacijskim uvjetima. Poslije ispiranja, obrađivani filtri se podvrgavaju autoradiografiji radi pokazivanja lokacije hibridizacijske probe; DNA u odgovarajućim lokacijama na originalnim agar pliticama se koristi kao izvor željene DNA. DNA libraries can be screened using the procedure of Grunstein and Hogness (1975). Briefly, in this procedure, the DNA to be examined is immobilized on nitrocellulose filters, denatured, and prehybridized with a buffer containing 0-5% formamide, 0.75 M NaCl, 75 mM Na-citrate, 0.02% (w/v ) each of bovine serum albumin, polyvinylpyrrolidone, and Ficol, 50 mM Na-phosphate (pH 6.5), 0.1% SDS, and 100 micrograms/ml denatured DNA carrier. The process of formamide in the buffer, as well as the time and temperature conditions of the stages of prehybridization and then hybridization, depending on the required stringency. Oligomeric probes that require lower stringency conditions are generally used with a lower percentage of formamide, lower temperatures, and longer hybridization times. Probes containing more than 30 or 40 nucleotides such as derived from cDNA or genomic sequences generally use higher temperatures, eg about 40-42ºC and a higher percentage of formamide, eg 50%. After hybridization, the 5'32P-labeled oligonucleotide probe is added to the buffer and the filters are incubated in this mixture under hybridization conditions. After washing, the treated filters are subjected to autoradiography to show the location of the hybridization probe; The DNA in the appropriate locations on the original agar plates is used as the source of the desired DNA.

III.F. Verifikacija konstrukcije i sekvenciranje III.F. Construction verification and sequencing

Za rutinske vektorske konstrukcije, smjese za povezivanje se transformiraju u E.coli vrsti HB101 ili drugom pogodnom domaćinu, i uspješni transformanti se odaberu pomoću antibiotske otpornosti ili drugim obilježivačima. Plazmidi iz transformanata s etada pripremaju prema metodi Clewella et al 91969, obično prateći kloramfenikol pojačavanje (Celwell (1972)). DNA se izolira i analizira, obično analizom s restrikcijskim enzimom i/ili sekvenciranjem. Sekvenciranje može biti pomoću dideoksi metode Sangena et al (1977) kao što je dalje opisano Nessing et al (1981) ili metodom Maxama et al (1980). Problemi sa sažimanjem traka koji se ponekad opažaju u GC bogatim područjima se prevladavaju korištenjem T-deauguanozina prema Barru et al (1986). For routine vector constructions, ligation mixtures are transformed into E.coli strain HB101 or another suitable host, and successful transformants are selected by antibiotic resistance or other markers. Plasmids from etad transformants are prepared according to the method of Clewell et al 91969, usually followed by chloramphenicol amplification (Celwell (1972)). DNA is isolated and analyzed, usually by restriction enzyme analysis and/or sequencing. Sequencing can be by the dideoxy method of Sangen et al (1977) as further described by Nessing et al (1981) or by the method of Maxam et al (1980). Banding problems sometimes observed in GC-rich regions are overcome by using T-deauguanosine according to Barr et al (1986).

III.G. Imunoserbent ispitivanje vezanim enzimom III.G. Enzyme-linked immunosorbent assay

Imunosorbent ispitivanje vezanij enzimom (ELISA) može se koristiti za mjerenje bilo koncentracije antigena ili antitijela. Ova metoda zavisi o konjugaciji enzima, bilo prema antigenu ili antitijelu i koristi vezanje anzimske aktivnosti kao kvantitativnu oznaku. Radi mjerenja antitijela, poznati antigen se fiksira na krutu fazu (npr. mikropliticu ili plastični poklopac) inkubira se sa razrijeđenim test serumima, ispire, inkubira sa antiimunoglobulinom obilježenim sa enzimom i ponovo ispere. Enzimi pogodni za obilježavanje su poznati u znanosti i uključuju, na primjer, peroksidazu hrena. Vezana enzimska aktivnost prema krutoj fazi mjeri se dodavanjem specifičnog supstrata i određivanjem stvaranja probukta ili korištenja supstrata kolorimetrijske. Vezana enzimska aktivnost je izravna funkcija količine vezanog antitijela. Enzyme-linked immunosorbent assay (ELISA) can be used to measure either antigen or antibody concentration. This method depends on enzyme conjugation, either to antigen or antibody, and uses binding enzyme activity as a quantitative marker. For antibody measurement, a known antigen is fixed on a solid phase (eg microplate or plastic cover), incubated with diluted test sera, washed, incubated with enzyme-labeled anti-immunoglobulin and washed again. Enzymes suitable for labeling are known in the art and include, for example, horseradish peroxidase. The bound enzyme activity towards the solid phase is measured by adding a specific substrate and determining proproduct formation or substrate utilization colorimetrically. The bound enzyme activity is a direct function of the amount of bound antibody.

Za mjerenje antigena, poznato specifično antitijelo se fiksira na krutu fazu, dodaje se testirani materijal koji sadrži antigen, poslije inkubacije se kruta faza ispire i dodaje drugo enzimom obilježeno antitijelo. Poslije ispitivanja, dodaje se supstrat i enzimska aktivnost se procjenjuje kolorimetrijski i veže za koncentraciju antigena. For antigen measurement, a known specific antibody is fixed on a solid phase, the tested material containing the antigen is added, after incubation the solid phase is washed and another enzyme-labeled antibody is added. After the test, the substrate is added and the enzyme activity is assessed colorimetrically and related to the antigen concentration.

Primjeri Examples

Niže su opisani primjeri ovog izuma koji su osigurani samo za ilustrativne svrhe i ne ograničavaju obim ovog izuma. U svrhu ovog otkrića, brojne reakcije u obimu zaštite biti će jasne stručnjacima u ovom području. Postupci dani, na primjer, u poglavlju IV.A. mogu, ako se želi, biti ponovljeni ali na moraju, kao tehnike dostupne za konstrukciju željenih nukleodnih sekvenci zasnovanih na informacijama osiguranog izuma. Ekspresija je pokazana na E. coli; međutim drugi sustavi koji su dostupni dani su u poglavlju III.A. Dodatni epitopi izvedeni iz genetske strukture mogu se također proizvesti, i koristiti za stvaranje antitijela kao što je dano niže. Examples of the present invention are described below which are provided for illustrative purposes only and do not limit the scope of the present invention. For purposes of this disclosure, numerous reactions in the scope of protection will be apparent to those skilled in the art. Procedures given, for example, in Chapter IV.A. may, if desired, be repeated but must, as techniques available for the construction of desired nucleotide sequences based on information provided by the invention. Expression was demonstrated in E. coli; however, other systems that are available are given in Chapter III.A. Additional epitopes derived from the genetic structure can also be produced, and used to generate antibodies as described below.

IV.A. Dobivanje, izoliranje i sekvencioniranje HCV cDNA IV.A. Obtaining, isolating and sequencing HCV cDNA

IV.A.1. Dobivanje HCV cDNA IV.A.1. Obtaining HCV cDNA

Izvor NANB agensa bila je rezerva plazme izvedena iz čimpanze s kroničnim NANBH. Čimpanza je eksperimentalno inficirana s krvlju druge čimpanze s kroničnom NANBH dobivenom infekcijom sa HCV u kontaminiranoj seriji faktora 8 koncentrata izvedenog iz rezerve humanog seruma, rezerva plazme čimpanze je nagrađena kombiniranjem mnogih individualnih uzoraka plazme koji sadrže visoke razine alanin aminotransferaza aktivnosti; ova aktivnost proizlazi iz hepatičnog oštećenja izazvanog HCV infekcijom, dakle, 1 ml 10-6 razrijeđenog rezervnog seruma dano je i.v. izazivajući NANBH u drugom čimpanzi, njegov CID bio je bar 106/ml, npr. imao je visok infekcijski titar virusa. The source of the NANB agent was a plasma pool derived from a chimpanzee with chronic NANBH. A chimpanzee was experimentally infected with the blood of another chimpanzee with chronic NANBH acquired from HCV infection in a contaminated batch of factor 8 concentrate derived from a human serum reserve, the chimpanzee plasma reserve was rewarded by combining many individual plasma samples containing high levels of alanine aminotransferase activity; this activity results from hepatic damage induced by HCV infection, therefore, 1 ml of 10-6 diluted reserve serum was given i.v. causing NANBH in another chimpanzee, his CID was at least 106/ml, ie he had a high infectious titer of the virus.

cDNA biblioteka iz plazma rezerve visokog titra je stvorena kako slijedi. Prvo, virusne partikule se izoliraju iz plazme; 90 ml alikvot se razrijedi sa 310 ml otopine koja sadrži 50 mM tris-HC1, pH 8,0 1 mM EDTA, 100 mM NaC1. Otpadci se uklone centrifugiranjem tijekom 20 minuta na 15 000rg na 20ºC. Virusne čestice u dobivenom supernatantu se zatim tabletiraju centrifugiranjem u Beckman SW rotoru na 28000 okr./min tijekom 5 sati. Radi oslobađanja virusnog genoma, čestice se kidaju suspendiranjem tableta u 15 ml otopine koja sadrži 1% natrij-duodecil sulfata (SDS), 10 mM EDTA, 10 mM Tris-HC1, pH 7,5, također koja sadrži mg/ml protekinaze k, i zatim inkubacijom na 45ºC tijekom 90 minuta. Nukleinske kiseline se izoliraju dodavanjem 0,8 µg MS2 bakteriofaga RNA nosača, i ekstrahiranjem smjese četiri puta sa 1:1 smjesom fnol:kloroform (fenol zasićen sa 0,5 M tris-HCI, pH 5,5, 0,1% (v/v) beta-merkaptoetanola, 0,1% (v/v) hidroksikinolina i zatim ekstrakcijom dva puta kloroformom. Vodena faza se koncentrira 1-butanolom prije taloženja sa 2,5 volumena apsolutnog etanola preko noći na –20ºC. Nukleinska kiselina se izdvoji centrifugiranjem u Beckman SW41 rotoru na 40000 okr./min tijekom 90 minuta na 4ºC, i otopi u vodi koja je tretirana sa 0,05% (v/v) dietilpiro-karbonata i autoklavira. A cDNA library from a high titer plasma pool was generated as follows. First, viral particles are isolated from plasma; A 90 ml aliquot is diluted with 310 ml of a solution containing 50 mM Tris-HCl, pH 8.0, 1 mM EDTA, 100 mM NaCl. Debris is removed by centrifugation for 20 minutes at 15,000 rg at 20ºC. Viral particles in the resulting supernatant are then pelleted by centrifugation in a Beckman SW rotor at 28,000 rpm for 5 hours. To release the viral genome, the particles are disrupted by suspending the tablet in 15 ml of a solution containing 1% sodium duodecyl sulfate (SDS), 10 mM EDTA, 10 mM Tris-HCl, pH 7.5, also containing mg/ml protectkinase k, and then incubation at 45ºC for 90 minutes. Nucleic acids are isolated by adding 0.8 µg MS2 bacteriophage RNA carrier, and extracting the mixture four times with 1:1 phenol:chloroform (phenol saturated with 0.5 M tris-HCl, pH 5.5, 0.1% (v /v) beta-mercaptoethanol, 0.1% (v/v) hydroxyquinoline and then extracted twice with chloroform. The aqueous phase was concentrated with 1-butanol before precipitation with 2.5 volumes of absolute ethanol overnight at -20ºC. The nucleic acid was isolated by centrifugation in a Beckman SW41 rotor at 40,000 rpm for 90 min at 4ºC, and dissolved in water treated with 0.05% (v/v) diethylpyro-carbonate and autoclaved.

Nukleinska kiselina dobivena gornjim postupkom (manje od 2 µg) se denaturira sa 17,5 mM CH3HgOH; cDNA je sintetizirana korištenjem ove denaturirane nukleinske kiseline kao šablone, i klonira u EcoRI mjesto faga lambda-gt11 koristeći metode koje je opisao Huynh (1985), izuzevši onog značajnog početka zamijenjenog oligo(dT) 12-18 tijekom sinteze prve cDNA struke reverznom transkriptazom (Taylor et al (1976)). Dobivena dvostruka cDNA je frakcionirana prema veličini na Sepharose CL-4B koloni; eluirani materijal oko prosječno 400, 300, 200 i 100 baznih parova je dodan u cDNA rezerve 1, 2, 3, odnosno 4. Lambda-gt11 cDNA biblioteka je stvorena iz cDNA u rezervoaru 3. Nucleic acid obtained by the above procedure (less than 2 µg) is denatured with 17.5 mM CH3HgOH; cDNA was synthesized using this denatured nucleic acid as a template, and cloned into the EcoRI site of phage lambda-gt11 using the methods described by Huynh (1985), excluding the significant primer replaced by oligo(dT) 12-18 during synthesis of the first cDNA strand by reverse transcriptase ( Taylor et al (1976)). The resulting double cDNA was fractionated according to size on a Sepharose CL-4B column; Eluted material around an average of 400, 300, 200, and 100 base pairs was added to cDNA pools 1, 2, 3, and 4, respectively. A lambda-gt11 cDNA library was created from cDNA in pool 3.

Lambda-gt11 cDNA biblioteka stvorena iz rezerve 3 se testira za epitope koji se trebaju specifično vezati sa serumom izvedenim iz pacijenta koji je prethodno imao NANBH. Oko 106 faga je testirano sa serumom pacijenta koristeći metode Huynha et al (1985), izuzev što su vezana humana antitijela detektirana sa 125I. Pet pozitivnih faga je identificirano i pročišćeno. Pet pozitivnih faga je testirano na specifičnost vezanja za serum 8 različitih ljudi prethodni inficiranih za NANBH agensom, koristeći istu metodu. Četiri od faga kodiraju polipeptid koji reagira imunološki s jednim od humanih seruma, npr., jedan koji je korišten za primarnotestiranje biblioteke faga. Peti fag (5-1-1) kodira polipeptid koji reagira imunološki sa 5 od 8 testiranih seruma. Međutim, ovaj polipeptid ne reagira imunološki sa serumom 7 normalnih davalaca krvi. Stoga, jasno da klon 5-1-1 kodira polipeptid koji je specifično prepoznatljiv imunološki serumom iz NANB pacijenata. A lambda-gt11 cDNA library generated from reserve 3 is screened for epitopes that should specifically bind to serum derived from a patient with prior NANBH. About 106 phages were tested with patient serum using the methods of Huynh et al (1985), except that bound human antibodies were detected with 125I. Five positive phages were identified and purified. Five positive phages were tested for binding specificity to the serum of 8 different people previously infected with the NANBH agent, using the same method. Four of the phages encode a polypeptide that reacts immunologically with one of the human sera, e.g., one that was used to primary screen the phage library. The fifth phage (5-1-1) encodes a polypeptide that reacts immunologically with 5 out of 8 tested sera. However, this polypeptide does not react immunologically with the serum of 7 normal blood donors. Therefore, it is clear that clone 5-1-1 encodes a polypeptide that is specifically recognized immunologically by serum from NANB patients.

IV.A.2. Sekvence HCV cDNA u rekombinantnom fagu 5-1-1 i polipeptida kodiranog u sekvenci IV.A.2. Sequences of HCV cDNA in recombinant phage 5-1-1 and polypeptide encoded in the sequence

cDNA u rekombinantnom fagu 5-1-1 je sekvencionirana metodom Sangera et al (1977). Bitno, cDNA je isječena EcoRI, izolirana frakcioniranjem po veličini korištenjem gel elektroforeze. EcolRI restrikcijski fragmenti su subklonirani u M13 vektor, mp18 i mp19 (Messing (1983)) i sekvencionirani korištenjem dideoksicahin termiNaCljskom metodom Sangera et al (1977). Dobivena sekvenca je prikazana na slici 1. cDNA in recombinant phage 5-1-1 was sequenced by the method of Sanger et al (1977). Essentially, the cDNA was digested with EcoRI, isolated by size fractionation using gel electrophoresis. EcolRI restriction fragments were subcloned into the M13 vector, mp18 and mp19 (Messing (1983)) and sequenced using the dideoxyquine termiNaCl method of Sanger et al (1977). The resulting sequence is shown in Figure 1.

Kodirani polipeptid na slici 1 koji je kodiran u HCV cDNA je u istom translatornom okviru kao N-terminal beta-Galaktoza dijela na koji se sjedinjuje, kao što je prikazano u poglavlju IV.A., translatorni otvoren čitajući okvir (ORF) 5-1-1 kodira epitop(e) specifično prepoznatljive serumom pacijenta i čimpanzi za NANBH infekcijom. The encoded polypeptide in Figure 1 that is encoded in the HCV cDNA is in the same translational frame as the N-terminal beta-Galactose of the fused portion, as shown in Chapter IV.A., translational open reading frame (ORF) 5-1 -1 encodes epitope(s) specifically recognized by patient and chimpanzee serum for NANBH infection.

IV.A.3. Izoliranje preklapajuće HCV cDNA u cDNA u klonu 5-1-1 IV.A.3. Isolation of overlapping HCV cDNA into cDNA in clone 5-1-1

Preklapajuća HCV cDNA u klonu 5-1-1 je dobivena testiranjem iste lambda-gt11 biblioteke kao što je opisano u poglavlju IV.A.1., sa sintetskim polinukleotidom izvedenim iz sekvence HCV cDNA u klonovima 5-1-1, kao što je prikazano na slici 1. Sekvence polinukleotida korištene za testiranje bila je: The overlapping HCV cDNA in clone 5-1-1 was obtained by testing the same lambda-gt11 library as described in section IV.A.1., with a synthetic polynucleotide derived from the HCV cDNA sequence in clones 5-1-1, as shown in Figure 1. The polynucleotide sequence used for testing was:

5’-TCC CTT CGA TGT ACG GTA AGT GCD GAG AGC ACT CTT CCA TCT CAT CGA ATC CTC GGT AGA GGA CTT CCC TGT CAG GT-3’ 5'-TCC CTT CGA TGT ACG GTA AGT GCD GAG AGC ACT CTT CCA TCT CAT CGA ATC CTC GGT AGA GGA CTT CCC TGT CAG GT-3'

Lambda-gt11 biblioteka je testirana s ovom probom, korištenjem metode koju je opisao Huynh (1985). Oko 1 u 50000 klonova hibridiziranih s probom. Tri klona koja su sadržavala cDNA koja su hibridizirane sa sintetskom probom označene su brojevima 81, 1-2 i 91. The lambda-gt11 library was tested with this assay, using the method described by Huynh (1985). About 1 in 50,000 clones hybridized with the probe. The three cDNA-containing clones that hybridized with the synthetic probe were designated 81, 1-2, and 91.

IV.A.4. Nukleotidne sekvence preklapajuće HCV cDNA u klonu 5-1-1 IV.A.4. Nucleotide sequences of overlapping HCV cDNA in clone 5-1-1

Nukleotidne sekvence tri cDNA u klonovima 81, 1-2 i 91 su određene uglavnom kao u poglavlju IV.A.2. Sekvence ovih klonova prema HCV cDNA sekvenci u fagu 5-1-1 su prikazane na slici 2, koja prikazuje strukturu koja kodira detektiran HCV epitop i gdje su homologije u nukleotidnim sekvencama naznačene okomitim crtama između sekvenci. The nucleotide sequences of the three cDNAs in clones 81, 1-2 and 91 were determined essentially as in Chapter IV.A.2. The sequences of these clones according to the HCV cDNA sequence in phage 5-1-1 are shown in Figure 2, which shows the structure encoding the detected HCV epitope and where homologies in the nucleotide sequences are indicated by vertical lines between the sequences.

Sekvence kloniranih HCV cDNA su visoko homologne u preklapajućim područjima (vidi sliku 2). Međutim, postoje razlike u dva područja. Nukleotid 67 u klonu 1-2 je timidin dok druga tri klona sadrže citidinski ostatak u ovom položaju. Treba istaknuti, međutim, da je ista aminokiselina kodirana kada C ili T zauzima ovaj položaj. The sequences of the cloned HCV cDNAs are highly homologous in the overlapping regions (see Figure 2). However, there are differences in the two areas. Nucleotide 67 in clone 1-2 is thymidine while the other three clones contain a cytidine residue in this position. It should be noted, however, that the same amino acid is encoded when C or T occupies this position.

Druga razlika je što klon 5-1-1 sadrži 28 bazna para koji nisu prisutni u druga tri klona. Ovi bazni parovi nalaze se na početku cDNA sekvence u 5-1-1, i naznačene su malim slovima. Zasnovano na radiološkim podacima koji su diskutirani niže u poglavlju IV.D., moguće je da HCV epitop može biti kodiran u ovom području 28 b.p. Another difference is that clone 5-1-1 contains 28 base pairs that are not present in the other three clones. These base pairs are located at the beginning of the cDNA sequence in 5-1-1, and are indicated by lowercase letters. Based on the radiological data discussed below in Section IV.D., it is possible that the HCV epitope may be encoded in this 28 bp region.

Odsutnost 28 bazičnih parova 5-1-1 iz klonova 81, 1-2 i 91 može značiti da je cDNA u ovim klonovima izvedena iz defektnih HCV genoma; alternativno, područje 28 bazičnih parova treba biti krajnji dodatak u klonu 5-1-1. The absence of 28 base pairs 5-1-1 from clones 81, 1-2 and 91 may mean that the cDNA in these clones is derived from defective HCV genomes; alternatively, the 28 bp region should be the end addition in the 5-1-1 clone.

Sekvence malih slova u nukleotidnoj sekvenci klonova 81 i 91 jednostavno naznačavaju da ove sekvence nisu nađene u drugim cDNA zato što ove koje preklapaju ova područja nisu još izolirane. The lowercase sequences in the nucleotide sequence of clones 81 and 91 simply indicate that these sequences have not been found in other cDNAs because those overlapping these regions have not yet been isolated.

Sastav HCV i cDNA sekvence iz preklapajućih cDNA u klonovima 5-1-1, 81, 1-2 i 91 je prikazan na slici 3. Međutim, na ovoj slici jedinstvena 28 bazična para klona 5-1-1 su izostavljena. Slika također prikazuje sekvencu polipeptida kodiranog u ORF sastavu HCV cDNA. The composition of HCV and cDNA sequences from overlapping cDNAs in clones 5-1-1, 81, 1-2 and 91 is shown in Figure 3. However, in this figure the unique 28 base pairs of clone 5-1-1 are omitted. The figure also shows the sequence of the polypeptide encoded in the ORF composition of the HCV cDNA.

IV.A.5. Izoliranje preklapajućih HCV cDNA u cDNA u klonu 81 IV.A.5. Isolation of overlapping HCV cDNAs to cDNA in clone 81

Izoliranje HCV cDNA sekvenci izvodno od i koje preklapaju one u klonu 81 cDNA se izvodi kao što slijedi. Lambda-gt11 cDNA biblioteka se dobiva kao što je opisano u poglavlju IV.A.1. Testirana je hibridizacijom sa sintetskom polinukleotidnom probom koja je homologna u 5’-terminalnoj sekvenci klona 81. Sekvenca klona 81 prikazana je na slici 4. Sekvenca sintetskog polinukleotida korištenog za testiranje bila je: 5’ CTG TCA GGT ATG ATT GCC GGC TTC CCG GAC 3’ Isolation of HCV cDNA sequences derived from and overlapping those of clone 81 cDNA is performed as follows. A lambda-gt11 cDNA library is obtained as described in section IV.A.1. It was tested by hybridization with a synthetic polynucleotide probe that is homologous to the 5'-terminal sequence of clone 81. The sequence of clone 81 is shown in Figure 4. The sequence of the synthetic polynucleotide used for testing was: 5' CTG TCA GGT ATG ATT GCC GGC TTC CCG GAC 3 '

Metode su bile uglavnom kao što je opisao Huynh (1985), izuzev što su bibliotetski filteri bili dva ispirani pod strogim uvjetima, npr. ispirani su 5 puta SSC, 0,1% SDS na 55ºC tijekom 30 minuta svaki put. Oko 1 u oko 50000 klonova hibridizriran je s probom. Pozitivni rekombinantni fag koji sadrži cDNA koja je hibridizirana sa sekvencom je izoliran i pročišćen. Ovaj fag je obilježen kao klon 36. Methods were essentially as described by Huynh (1985), except that library filters were washed twice under stringent conditions, eg washed 5 times with SSC, 0.1% SDS at 55ºC for 30 min each time. About 1 in about 50,000 clones hybridized with the probe. A positive recombinant phage containing cDNA that hybridized to the sequence was isolated and purified. This phage was designated clone 36.

Nizvodne cDNA sekvence, koje preklapaju karboksilni kraj sekvence u klonu 81 cDNA su izolirane korištenjem postupka sličnom onom za izoliranje uzvodnih cDNA sekvenci, izuzev što je dobivena sintetska oligonukleotidna proba, koja je homolog 3’-terminalnoj sekvenci klona 81. Sekvenca sintetskog polinukleotida korištenog za testiranje je bila: Downstream cDNA sequences, which overlap the carboxyl terminus of the sequence in clone 81 cDNA, were isolated using a procedure similar to that for isolating upstream cDNA sequences, except that a synthetic oligonucleotide probe was obtained, which is homologous to the 3'-terminal sequence of clone 81. The sequence of the synthetic polynucleotide used for testing She was:

5’ TTT GGC TAG TGG TTA GTG GGC TGG TGA CAG 3’ 5' TTT GGC TAG TGG TTA GTG GGC TGG TGA CAG 3'

Pozitivni rekombinantni fag, koji sadrži cDNA koja je hibridizirana sa ovom posljednjom sekvencom je izolirana i pročišćena, i označena je kao klon 32. A positive recombinant phage, containing a cDNA that hybridized to this latter sequence was isolated and purified, and designated clone 32.

IV.A.6. Nukleotidna sekvenca HCV cDNA u klonu 36 IV.A.6. Nucleotide sequence of HCV cDNA in clone 36

Nukleotidna sekvenca cDNA u klonu 36 je određena uglavnom kao što je opisano u poglavlju IV.A.2. Dvostruka sekvenca ove cDNA, njeno područje preklapanja sa HCV cDNA u klonu 81 i polipeptid kodiran sa ORF prikazani su na slici 5. The nucleotide sequence of the cDNA in clone 36 was determined essentially as described in Section IV.A.2. The duplicate sequence of this cDNA, its region of overlap with the HCV cDNA in clone 81 and the polypeptide encoded by the ORF are shown in Figure 5.

ORF u klonu 36 je u istim translacijskom okviru kao HCV antigen kodiran u klonu 81. Tako, u kombiNaClji ORF-ovi u klonovima 36 i 81 kodiraju polipeptid koji predstavlja dio velikog HCV antigena. Sekvenca ovog navodnog HCV polipeptida i dvostruka DNA sekvenca koja je kodirana, koja je izvedena iz sjedinjenih ORF-ova HCV cDNA klonova 36 i 81 prikazana je na slici 6. The ORF in clone 36 is in the same translation frame as the HCV antigen encoded in clone 81. Thus, in combination, the ORFs in clones 36 and 81 encode a polypeptide that represents part of the large HCV antigen. The sequence of this putative HCV polypeptide and the double-stranded DNA sequence it encodes, which was derived from the combined ORFs of HCV cDNA clones 36 and 81, is shown in Figure 6.

IV.A.7. Nukleotidne sekvence HCV cDNA u klonu 32 IV.A.7. Nucleotide sequences of HCV cDNA in clone 32

Nukleotidna sekvenca cDNA u klonu 32 određena je uglavnom kao što je opisano u poglavlju IV.A.2. za sekvenciju klona 5-1-1. Podaci sekvence klone pokazuju da se cDNA u klonu 32 rekombinantnog faga izvodi iz dva različita izvora. Jedan fragment cDNA obuhvaća 418 nukleotida izvedenog iz HCV genoma; drugi fragment obuhvaća 172 nukleotida izvedenih iz bakteriofaga MS2 genoma, koji je korištena kao nosač tijekom dobivanja lambda-gt11 plazma cDNA biblioteke. The nucleotide sequence of the cDNA in clone 32 was determined essentially as described in Section IV.A.2. for clone sequence 5-1-1. Clone sequence data indicate that the cDNA in recombinant phage clone 32 is derived from two different sources. One cDNA fragment includes 418 nucleotides derived from the HCV genome; the second fragment comprises 172 nucleotides derived from the bacteriophage MS2 genome, which was used as a carrier during the preparation of the lambda-gt11 plasma cDNA library.

Sekvenca cDNA u klonu 32 koja odgovara ono HCV genoma je prikazana na slici 7. Područje sekvenci koje preklapaju onu klona 81, i polipeptida kodiranog pomoću ORF također je naznačena na slici. Ova sekvenca sadrži jedan neprekidan ORF koji je u istom translacijskom okviru kao HCV antigen kodiran klona 81. The cDNA sequence in clone 32 corresponding to that of the HCV genome is shown in Figure 7. The region of sequences overlapping that of clone 81 and the polypeptide encoded by the ORF is also indicated in the figure. This sequence contains one continuous ORF that is in the same translation frame as the HCV antigen encoded by clone 81.

IV.A.8. Izoliranje preklapajuće HCV cDNA u cDNA klona 36 IV.A.8. Isolation of the overlapping HCV cDNA in clone 36 cDNA

Izoliranje HCV cDNA sekvenci nizvodno i od onih koje preklapaju one u klonu 36 cDNA izvodi se kao što je opisano u poglavlju IV.A.5., za one koje preklapaju klon 81 cDNA, izuzev što je sintetski polinukleotid zasnovan na 5’-području klona 36. Sekvenca sintetskog polinukleotida korištenog za testiranje je bila: Isolation of HCV cDNA sequences downstream of and overlapping those of clone 36 cDNA is performed as described in Section IV.A.5., for those overlapping clone 81 cDNA, except that the synthetic polynucleotide is based on the 5'-region of the clone 36. The sequence of the synthetic polynucleotide used for testing was:

5’ AAG CCA CCG TGT GCG CTA GGG CTC AAG CCC 3’ 5' AAG CCA CCG TGT GCG CTA GGG CTC AAG CCC 3'

oko 1 u 50000 klonova hibridizira se probom. Izoliran, pročišćen klon rekombinantnog faga koji sadrži cDNA koja hibridizira ovu sekvencu nazvan je klon 35. about 1 in 50,000 clones hybridize with the probe. An isolated, purified recombinant phage clone containing a cDNA hybridizing to this sequence was named clone 35.

IV.A.9. Nukleotidne sekvence HCV cDNA klona 35 IV.A.9. Nucleotide sequences of HCV cDNA clone 35

Nukleotidna sekvenca cDNA u klonu 35 određena je uglavnom kao što je opisano u poglavlju IV.A.2. Sekvenca, njeno područje preklapanja s onom cDNA u klonu 36 i navodni polipeptid koji je kodiran, prikazani su na slici 8. The nucleotide sequence of the cDNA in clone 35 was determined essentially as described in Section IV.A.2. The sequence, its region of overlap with that of the cDNA in clone 36, and the putative polypeptide encoded are shown in Figure 8.

Klon 35 jasno sadrži jedan neprekidni ORF koji kodira polipeptid u istom translacijskom okviru kao što je kodiran klonom 36, klonom 81 i klonom 32. Slika 9 prikazuje sekvencu drugog neprekidnog ORF koji se proteže klonovima 35, 36, 81 i 32 zajedno s navodnim HCV cDNA polipeptidom je ovdje kodiran. Ova sjedinjena sekvenca je potvrđena korištenjem drugih nezavisnih cDNA klonova izvedenih iz iste lambda-gt11 cDNA biblioteke. Clone 35 clearly contains one continuous ORF that encodes a polypeptide in the same translation frame as that encoded by clone 36, clone 81, and clone 32. Figure 9 shows the sequence of another continuous ORF spanning clones 35, 36, 81, and 32 along with the putative HCV cDNA. polypeptide is coded here. This concatenated sequence was confirmed using other independent cDNA clones derived from the same lambda-gt11 cDNA library.

IV.A.10. Izoliranje preklapajuće HCV cDNA prema cDNA u klonu 35 IV.A.10. Isolation of overlapping HCV cDNA to cDNA in clone 35

Izoliranje HCV cDNA sekvenci uzvodno od i koje preklapaju one u klonu 35 cDNA se izvodi kao što je opisano u poglavlju IV.A.8. za one koje preklapaju klon36 cDNA, izuzev što je sintetski polinukleotid zasnovan na 5’-području klona 35. Sekvenca sintetskog polinukleotida korištenog za testiranje je bila: Isolation of HCV cDNA sequences upstream of and overlapping those of clone 35 cDNA is performed as described in Section IV.A.8. for those overlapping the clone36 cDNA, except that the synthetic polynucleotide was based on the 5'-region of clone 35. The sequence of the synthetic polynucleotide used for testing was:

5’ CAG GAT GCT GTC TCC CGC ACT CAA CGT 3’ 5' CAG GAT GCT GTC TCC CGC ACT CAA CGT 3'

Oko 1 u 50000 klona hibridiziran je s probom. Izoliran, pročišćen klon rekombinantnog faga koji sadrži cDNA koja je hibridizirana u ovoj sekvenci je označena kao klon 37b. About 1 in 50,000 clones hybridized with the probe. An isolated, purified recombinant phage clone containing cDNA that hybridized to this sequence was designated clone 37b.

IV.A.11. Nukleotidna sekvenca HCV u klonu 37b IV.A.11. Nucleotide sequence of HCV in clone 37b

Nukleotidna sekvenca cDNA u klonu 37b je određena uglavnom kao što je opisano u poglavlju IV.A.2. Sekvenca, njeno područje preklapanja s onom cDNA u klonu 35 i navodni polipeptid ovdje kodiran, prikazani su na slici 10. The nucleotide sequence of the cDNA in clone 37b was determined essentially as described in Section IV.A.2. The sequence, its region of overlap with that of the cDNA in clone 35, and the putative polypeptide encoded herein are shown in Figure 10.

5’-terminalni nukleotid klona 35 je T, dok onaj odgovarajući u klonu 37b je A. cDNA iz tri druga nezavisna klona koja je bila izolirana tijekom postupka u kojem je klon 37b izoliran, koji je opisan u poglavlju IV.A.10., također su sekvencionirane. cDNA iz ovih klonova također A u ovom položaju. Tako, 5’-terminal T u klonu 35 može biti dodatak postupka kloniranja. Dodaci često izrastaju na 5’ kraju cDNA molekule. The 5'-terminal nucleotide of clone 35 is T, while the corresponding one in clone 37b is A. cDNA from three other independent clones that was isolated during the procedure in which clone 37b was isolated, which is described in Chapter IV.A.10., were also sequenced. cDNA from these clones also A at this position. Thus, the 5'-terminal T in clone 35 may be an addition to the cloning process. Additions often grow at the 5' end of the cDNA molecule.

Klon 37b jasno sadrži jedan neprekidni ORF koji kodira polipeptid koji je nastavak polipeptida kodiranog u ORF s produženjem kroz preklapajuće klonove 35, 36, 81 i 32. Clone 37b clearly contains a single continuous ORF encoding a polypeptide that is a continuation of the polypeptide encoded in the ORF with an extension through overlapping clones 35, 36, 81, and 32.

IV.A.12. Izoliranje preklapajuće HCV cDNA prema cDNA klona 32 IV.A.12. Isolation of overlapping HCV cDNA according to clone 32 cDNA

Izoliranje HCV cDNA sekvenci nizvodno od klona 32 se izolira kao što slijedi. Prvo, klon cla se izolira korištenjem sintetske hibridizacijske probe zasnovane na nukleotidnoj sekvenci HCV cDNA sekvence u klonu 32. Metoda je uglavnom ona opisana u poglavlju IV.A.5., izuzev što je sekvenca probe bila: Isolation of HCV cDNA sequences downstream of clone 32 were isolated as follows. First, clone cla is isolated using a synthetic hybridization probe based on the nucleotide sequence of the HCV cDNA sequence in clone 32. The method is essentially that described in Chapter IV.A.5., except that the probe sequence was:

5’ AGT GCA GTG GAT GAA CCG GCT GAT AGC CTT 3’ 5' AGT GCA GTG GAT GAA CCG GCT GAT AGC CTT 3'

korištenjem nukleotidne sekvence iz klona cla, sintetiziran je drugi sintetski klon koji ima sekvencu: using the nucleotide sequence from the cla clone, a second synthetic clone was synthesized having the sequence:

5’ TCC TGA GGC GAC TGC ACC AGT GGA TAA GCT 3’ 5' TCC TGA GGC GAC TGC ACC AGT GGA TAA GCT 3'

Testiranje lambda-gt11 biblioteke korištenjem izvedene sekvence iz klona cla kao probe daje oko 1 na 50000 pozitivnih klonova. Izoliran, pročišćen klon koji je hibridiziran s ovom probom je nazvan klon 33b. Testing the lambda-gt11 library using the derived sequence from the cla clone as a probe yields about 1 in 50,000 positive clones. The isolated, purified clone that hybridized with this probe was named clone 33b.

IV.A.13. IV.A.13.

Nukleinska sekvenca cDNA u klonu 33b je određena kao što je opisano u poglavlju IV.A.2. Sekvenca, njeno područje preklapanja s onom cDNA klona 32, i navodno kodiran polipeptid, prikazani su na slici 11. The nucleic acid sequence of the cDNA in clone 33b was determined as described in Section IV.A.2. The sequence, its region of overlap with that of clone 32 cDNA, and the putative encoded polypeptide are shown in Figure 11.

Klon 33b jasno sadrži jedan neprekidni ORF koji je produženje ORF-ova preklapajućih klonova 37b, 35, 36, 81 i 32. Polipeptid kodiran u klonu 33b je u istom translacijskom okviru kao onaj kodiran u produženom ORF ovih preklapajućih klonova. Clone 33b clearly contains one continuous ORF that is an extension of the ORFs of overlapping clones 37b, 35, 36, 81, and 32. The polypeptide encoded by clone 33b is in the same translation frame as that encoded by the extended ORF of these overlapping clones.

IV.A.14. Izoliranje preklapajućih HCV cDNA prema cDNA klona 37b prema cDNA klonu 33b IV.A.14. Isolation of overlapping HCV cDNAs to cDNA clone 37b to cDNA clone 33b

U cilju izoliranja HCV cDNA koje preklapaju cDNA u klonovima 37b i 33b, korištena je slijedeća sintetska oligonukleotidna proba, izvedena iz cDNA u ovim klonovima za testiranje lambda gt-11 biblioteke, korištenjem uglavnom metode opisane u poglavlju IV.A.3. Korištene su probe: In order to isolate HCV cDNAs overlapping the cDNAs in clones 37b and 33b, the following synthetic oligonucleotide probe, derived from the cDNA in these clones, was used to test the lambda gt-11 library, using mainly the method described in chapter IV.A.3. Tests were used:

5’ CAG GAT GCT GTC TCC CGC ACT CAA CGT C 3’ i 5' CAG GAT GCT GTC TCC CGC ACT CAA CGT C 3' i

5’ TCC TGA GGC GAC TGC ACC AGT GGA TAA GCT 3’ 5' TCC TGA GGC GAC TGC ACC AGT GGA TAA GCT 3'

radi detektiranja kolonija koje sadrže HCV cDNA sekvence koje preklapaju one u klonovima 37b i 33b. Oko 1 u 50000 kolonija detektirana je sa svakom probom. Klon koji sadrži cDNA koja je bila uzvodno od i koja je preklapala cDNA u klonu 37b, nazvan je klon 40b. Klon koji je sadržavao cDNA koja je bila uzvodni od, i koje je preklapala cDNA u klonu 33b, nazvana je klon 25c. to detect colonies containing HCV cDNA sequences overlapping those of clones 37b and 33b. About 1 in 50,000 colonies were detected with each test. The clone containing the cDNA that was upstream of and overlapping the cDNA in clone 37b was named clone 40b. The clone that contained the cDNA that was upstream of, and overlapped with, the cDNA in clone 33b was named clone 25c.

IV.A.15. Nukleotidne sekvence HCV cDNA u klonu 40b i klonu 25c IV.A.15. Nucleotide sequences of HCV cDNA in clone 40b and clone 25c

Nukleotidne sekvence cDNA u klonu 40b i klonu 25c su određene uglavnom kao što je opisano u poglavlju IV.A.2. Sekvence 40 b i 25c, njihova područja preklapaju sa cDNA u klonovima 37b i 33b, i navodni kodiran polipeptid, prikazani su na slici 12 (klon 40b) i slici 13 (klon25c). The nucleotide sequences of the cDNAs in clone 40b and clone 25c were determined essentially as described in Section IV.A.2. The sequences of 40 b and 25c, their regions overlapping with cDNA in clones 37b and 33b, and the putative encoded polypeptide, are shown in Figure 12 (clone 40b) and Figure 13 (clone 25c).

5’-terminalni nukleotid klona 40b je G. Međutim, cDNA iz pet drugih nezavisnih klonova koji su izolirani tijekom postupka u kojem je izdvojen klon 40b, opisanom u poglavlju IV.A.14. Također su sekvencionirani. cDNA iz ovih klonova također sadrže T u ovom položaju. Tako, G može predstavljati klonirajući dodatak (vidi dodatak u poglavlju IV.A.11). The 5'-terminal nucleotide of clone 40b is G. However, cDNA from five other independent clones that were isolated during the procedure in which clone 40b was isolated, described in section IV.A.14. They are also sequenced. The cDNAs from these clones also contain a T in this position. Thus, G may represent a cloning accessory (see appendix in Chapter IV.A.11).

5’-terminus klona 25c je ACT, ali sekvenca ovog područja u klonu cla (sekvenca nije prikazana) i klon 33b je TCA. Ova razlika može također predstavljati dodatak kloniranja kao 28 5’-terminalnih ekstra nukleotida u klonu 5-1-1. The 5'-terminus of clone 25c is ACT, but the sequence of this region in clone cla (sequence not shown) and clone 33b is TCA. This difference may also represent the addition of cloning as 28 5'-terminal extra nucleotides in clone 5-1-1.

Klonovi 40b i 25c svaki jasno sadrži ORF koji je produžetak neprekidnog ORF u predhodno sekvencioniranim klonovima. Nukleotidna sekvenca ORF koji je pruža kroz klonove 40b, 37b, 35, 36, 81, 32, 33b i 25 c i sekvenca aminokiselina navodnog kodiranog polipeptida su prikazani na slici 14. Na slici, mogući dodaci kloniranja su izostavljeni iz sekvence, i umjesto njih prikazane su odgovarajuće sekvence u ne-5’-terminalnim područjima višestruko preklapajućih klonova. Clones 40b and 25c each clearly contain an ORF that is an extension of the continuous ORF in the previously sequenced clones. The nucleotide sequence of the ORF provided by clones 40b, 37b, 35, 36, 81, 32, 33b and 25c and the amino acid sequence of the putative encoded polypeptide are shown in Figure 14. In the figure, possible cloning additions have been omitted from the sequence, and shown instead are the corresponding sequences in the non-5'-terminal regions of the multiple overlapping clones.

IV.A.16. Dobivanje HCV cDNA iz cDNA u klonovima 36, 81 i 32 IV.A.16. Preparation of HCV cDNA from cDNA in clones 36, 81 and 32

Sastav HCV cDNA, C100 je dobiven kao što slijedi. Prvo cDNA iz svakog klona je kloniran individualno u EcoRI mjestu vektora pGEM3-plavo (Promega Biotec). Dobiveni rezultantni rekombinantni vektori koji sadrže cDNA iz klonova 36, 81 i 32 su nazvani pGEM3-plavo, pGEM3-plavo/81, i pGEM3-plavo/32. Odgovarajuće orijentirani rekombinantni pGEM3-plavo/81 se razara sa Nael i NarI i veliki (2850 mp) fragment je pročišćen i povezan s malim (570 bp) NaeI/NarI pročišćenim fragmentom iz pGEM3-plavo/36. Ovaj sastav cDNA iz klonova 36 i 81 je korišten za stvaranje drugog pGEM3-plavo vektora koji sadrži neprekidna HCV ORF sadržan u preklapajućoj cDNA u ovim klonovima. Ovaj novi plazmid se tada razara sa PvuII i EcoRI radi oslobađanja fragmenta od oko 600 bp, koji su tada povezani s malim (500 bp) PvuII/EcoRI fragmentom izoliranim iz odgovarajuće orijentiranog pGEM3-plavo/32 plazmida, i sastav cDNA iz klonova 36, 81 i 32 je povezan u EcoRI lineariziran vektor pSODcf1, koji je opisan u poglavlju IV.A.1. i koji je korišten za ekspresiju klona 5-1-1 u bakteriji. Rekombinanti koji sadrže oko 1270 bp EcoRI fragmenta sastava HCV cDNA (C100) su odabrani, i cDNA iz plazmida je isječena sa EcoRI i pročišćena. The composition of HCV cDNA, C100 was obtained as follows. First, the cDNA from each clone was cloned individually into the EcoRI site of the vector pGEM3-blue (Promega Biotec). The resulting recombinant vectors containing cDNA from clones 36, 81, and 32 were named pGEM3-blue, pGEM3-blue/81, and pGEM3-blue/32. Appropriately oriented recombinant pGEM3-blue/81 was digested with NaeI and NarI and the large (2850 mp) fragment was purified and ligated to the small (570 bp) NaeI/NarI purified fragment from pGEM3-blue/36. This assembly of cDNA from clones 36 and 81 was used to create a second pGEM3-blue vector containing the contiguous HCV ORF contained in the overlapping cDNA in these clones. This new plasmid is then digested with PvuII and EcoRI to release fragments of about 600 bp, which are then ligated to a small (500 bp) PvuII/EcoRI fragment isolated from the appropriately oriented pGEM3-blue/32 plasmid, and the cDNA assembly from clones 36, 81 and 32 was ligated into the EcoRI linearized vector pSODcf1, which is described in chapter IV.A.1. and which was used to express clone 5-1-1 in bacteria. Recombinants containing about 1270 bp of the EcoRI fragment of the HCV cDNA (C100) were selected, and the cDNA from the plasmid was cut with EcoRI and purified.

IV.A.17. Izoliranje i nukleotidne sekvence HCV cDNA u klonovima 14i, 11b, 7f, 7e, 8h, 33c, 14c, 8f, 33f, 33g i 39c IV.A.17. Isolation and nucleotide sequences of HCV cDNA in clones 14i, 11b, 7f, 7e, 8h, 33c, 14c, 8f, 33f, 33g and 39c

HCV cDNA u klonovima 14i, 11b, 7f, 7e, 8h, 33c, 14c, 8f, 33f i 39c su izolirane pomoću tehnike izoliranja preklapajućih cDNA fragmenata iz lambda-gt11 biblioteke HCV cDNA opisane u poglavlju IV.A.3. izuzev što su probe koje su korištene nastale od posljednje nukleotidne sekvence izoliranih klonova od 5’ i 3’ kraja sjedinjene HCV sekvence. Frekvencija klonova koji su hibridizirani s probama opisanim niže je oko 1 na oko 50000 u svakom slučaju. HCV cDNAs in clones 14i, 11b, 7f, 7e, 8h, 33c, 14c, 8f, 33f and 39c were isolated using the overlapping cDNA fragment isolation technique from the lambda-gt11 HCV cDNA library described in Chapter IV.A.3. except that the probes used were generated from the last nucleotide sequence of the isolated clones from the 5' and 3' end of the combined HCV sequence. The frequency of clones that hybridize with the probes described below is about 1 in about 50,000 in each case.

Nukleotidne sekvence HCV cDNA u klonovima 14i, 7f, 7e, 8h, 33c, 14c, 8f, 33f, 33g i 99c su određene uglavnom kao što je opisano u poglavlju IV.A.2., osim što je cDNA isjecana iz ovih faga supstituirana za cDNA izolirane iz klona 5-1-1. The nucleotide sequences of HCV cDNA in clones 14i, 7f, 7e, 8h, 33c, 14c, 8f, 33f, 33g and 99c were determined essentially as described in section IV.A.2., except that the cDNA cut from these phages was substituted for cDNA isolated from clone 5-1-1.

Klon 33c je izoliran koristeći hibridizacijsku probu zasnovanu na sekvenci nukleotida u klonu 40b. Nukleotidna sekvenca klona 40b je predstavljena na slici 12. Nukleotidna sekvenca probe korištena za izolirane 33c je bila: Clone 33c was isolated using a hybridization probe based on the nucleotide sequence in clone 40b. The nucleotide sequence of clone 40b is presented in Figure 12. The nucleotide sequence of the probe used for isolated 33c was:

5’ ATC AGG ACC GGG GTG AGA ACA ATT ACC ACT 3’ 5' ATC AGG ACC GGG GTG AGA ACA ATT ACC ACT 3'

sekvenca HCV cDNA u klonu 33c i preklapaju s onom u klonu 40b je prikazana na slici 15, koja također prikazuje kodirane aminokiseline. the HCV cDNA sequence in clone 33c and overlapping with that of clone 40b is shown in Figure 15, which also shows the encoded amino acids.

Klon 8h je izoliran korištenjem probe zasnovane na sekvenci nukleotida u klonu 33c. Nukleotidna sekvenca probe je bila: Clone 8h was isolated using a probe based on the nucleotide sequence in clone 33c. The nucleotide sequence of the probe was:

5’ AGA GAC AAC CAT GAG GTC CCC GGT GTT C 3’ 5' AGA GAC AAC CAT GAG GTC CCC GGT GTT C 3'

sekvenca HCV cDNA u klonu 8h i preklapanje s onom u klonu 33c, i kodirane aminokiseline, prikazani su na slici 16. the HCV cDNA sequence in clone 8h and the overlap with that of clone 33c, and the encoded amino acids, are shown in Figure 16.

Klon 7e je izoliran koristeći probu zasnovanu na sekvenci nukleotida u klonu 8h. Nukleotidna sekvenca probe je bila: Clone 7e was isolated using a probe based on the nucleotide sequence in clone 8h. The nucleotide sequence of the probe was:

5’ TCG GAC CTT TAC CTG GTC ACG AGG CAC 3’ 5' TCG GAC CTT TAC CTG GTC ACG AGG CAC 3'

sekvenca HCV cDNA u klonu 72, preklapanje s klonom 8h i aminokiseline ovdje kodirane, prikazani su na slici 17. the HCV cDNA sequence in clone 72, the overlap with clone 8h and the amino acids encoded here are shown in Figure 17.

Klon 14c je izoliran s probom baziranom na sekvenci nukleotida u klonu 25c. Sekvenca klona 25c je prikazana na slici 13. Clone 14c was isolated with a probe based on the nucleotide sequence in clone 25c. The sequence of clone 25c is shown in Figure 13.

Proba u izoliranju klona 14c imala je sekvencu The trial in the isolation of clone 14c had the sequence

5’ ACC TTC ATT AAT GCC TAC ACC ACG GGC 3’ 5' ACC TTC ATT AAT GCC TAC ACC ACG GGC 3'

sekvenca HCV cDNA u klonu 14c, njezino preklapanje s onom u klonu 25c i kodirane aminokiseline, prikazane su na slici 18. the HCV cDNA sequence in clone 14c, its overlap with that of clone 25c, and the encoded amino acids are shown in Figure 18.

Klon 18 je izoliran koristeći probu zasnovanu na sekvenci nukleotida u klonu 14c. Nukleotidna sekvenca probe bila je: Clone 18 was isolated using a probe based on the nucleotide sequence in clone 14c. The nucleotide sequence of the probe was:

5’ TCC ATC TCT CAA GGC AAC TTG CAC CGC TAA 3’ 5' TCC ATC TCT CAA GGC AAC TTG CAC CGC TAA 3'

sekvenca HCV cDNA u klonu 8f, njezino preklapanje s onom u klonu 14c i ovdje kodirane aminokiseline, prikazani su na slici 19. the HCV cDNA sequence in clone 8f, its overlap with that of clone 14c, and the amino acids encoded here are shown in Figure 19.

Klon 33f je izoliran koristeći probu zasnovanu na nukleotidnoj sekvenci prisutnoj u klonu 8f. Nukleotidna sekvenca probe bila je: Clone 33f was isolated using a probe based on the nucleotide sequence present in clone 8f. The nucleotide sequence of the probe was:

5’ TCC ATG GCT GTC CGC TTC CAC CTC CAA AGT 3; 5' TCC ATG GCT GTC CGC TTC CAC CTC CAA AGT 3;

sekvenca HCV cDNA u klonu 33f, njezino preklapanje s onom u klonu 8f i ovdje kodirane aminokiseline, prikazani su na slici 20. the HCV cDNA sequence in clone 33f, its overlap with that of clone 8f and the amino acids encoded here are shown in Figure 20.

Klon 33g je izoliran koristeći probu zasnovanu na sekvenci nukleotida u klonu 33f. Nukleotidna sekvenca probe je bila: Clone 33g was isolated using a probe based on the nucleotide sequence in clone 33f. The nucleotide sequence of the probe was:

5’ GCG ACA ATA CGA CAA CAT CCT CTG AGC CCG 3’ 5' GCG ACA ATA CGA CAA CAT CCT CTG AGC CCG 3'

sekvenca HCV cDNA u klonu 33g, njezino preklapanje s onom u klonu 33f i kodirane aminokiseline, prikazane su na slici 21. the HCV cDNA sequence in clone 33g, its overlap with that of clone 33f and the encoded amino acids are shown in Figure 21.

Klon 7f je izoliran koristeći probu zasnovanu na sekvenci nukleotida u klonu 7e. Nukleotidna sekvenca probe bila je: Clone 7f was isolated using a probe based on the nucleotide sequence in clone 7e. The nucleotide sequence of the probe was:

5’ AGC AGA CAA GGG GCC TCC TAG GGT GCA TAA T 3’ 5' AGC AGA CAA GGG GCC TCC TAG GGT GCA TAA T 3'

sekvenca HCV cDNA u klonu 7f, njezino preklapanje s onom u klonu 7f i kodirane aminokiseline, prikazane su na slici 22. the HCV cDNA sequence in clone 7f, its overlap with that of clone 7f, and the encoded amino acids are shown in Figure 22.

Klon 11b je izoliran koristeći probu zasnovanu na sekvenci klona 7f. Nukleotidna sekvenca probe bila je: Clone 11b was isolated using a probe based on the sequence of clone 7f. The nucleotide sequence of the probe was:

5’ CAC CTA TGT TTA TAA CCA TCT CAC TCC TCT 3’ 5' CAC CTA TGT TTA TAA CCA TCT CAC TCC TCT 3'

sekvenca HCV cDNA u klonu 11b, njezino preklapanje s klonom 7f i kodirane aminokiseline, prikazane su na slici 23. the HCV cDNA sequence in clone 11b, its overlap with clone 7f and the encoded amino acids are shown in Figure 23.

Klon 14i je izoliran koristeći probu zasnovanu na sekvenci nukleotida u klonu 11b. Nukleotidna sekvenca probe bila je: Clone 14i was isolated using a probe based on the nucleotide sequence in clone 11b. The nucleotide sequence of the probe was:

5’ CTG TGT CAC CAT ATT ACA AGC GCT ATA TCA 3’ 5' CTG TGT CAC CAT ATT ACA AGC GCT ATA TCA 3'

sekvenca HCV cDNA u klonu 14i, njezino preklapanje s onom u klonu 11b i ovdje kodirane aminokiseline, prikazane su na slici 24. the HCV cDNA sequence in clone 14i, its overlap with that of clone 11b, and the amino acids encoded therein are shown in Figure 24.

Klon 39c je izoliran koristeći probu zasnovanu na sekvenci nukleotida u klonu 33g. Nukleotidna sekvenca probe bila je: Clone 39c was isolated using a probe based on the nucleotide sequence in clone 33g. The nucleotide sequence of the probe was:

5’ CTC GTT GCT ACG TCA CCA CAA TTT GGT GTA 3’ 5' CTC GTT GCT ACG TCA CCA CAA TTT GGT GTA 3'

sekvenca HCV cDNA u klonu 39c, njezino preklapanje s klonom 33g i ovdje kodirane aminokiseline, prikazane su na slici 25. the HCV cDNA sequence in clone 39c, its overlap with clone 33g and the amino acids encoded here are shown in Figure 25.

IV.A.18. Sastav HCV cDNA sekvence izvedene iz izoliranih klonova koji sadrže HCV cDNA IV.A.18. Composition of HCV cDNA sequence derived from isolated clones containing HCV cDNA

HCV cDNA sekvenca u izoliranim klonovima opisanim naprijed su povezane radi stvaranja sustava HCV cDNA sekvenci. Izolirani klonovi povezani u 5’ prema 3’ smjeru su: 14i, 7f, 7e, 8h, 33c, 40b, 37b, 35, 36, 81, 32, 33b, 25c, 14c, 8f, 33f, 33g i 39c. Sastav HCV cDNA sekvence izvedene iz izoliranih klonova i ovdje kodirane aminokiseline prikazan je na slici 26. The HCV cDNA sequences in the isolated clones described above were linked to create a system of HCV cDNA sequences. Isolated clones linked in the 5' to 3' direction are: 14i, 7f, 7e, 8h, 33c, 40b, 37b, 35, 36, 81, 32, 33b, 25c, 14c, 8f, 33f, 33g and 39c. The composition of the HCV cDNA sequence derived from the isolated clones and the amino acid coded here is shown in Figure 26.

U stvaranju sekvence sastava razmatrane su sljedeće heterogene sekvence. Klon 33c sadrži HCV cDNA od 800 bp, koje preklapa cDNA u klonovima 40b i 37c. U klonu 33c, kao i u 5 drugih preklapajućih klonova, nukleotid ≠789 je G. Međutim u klonu 37b (vidi poglavlje IV.A.11.), odgovarajući nukleotid je A. Ova razlika u sekvenci stvara očitu heterogenost u ovdje kodiranim aminokiselinama, koje mogu biti Cys ili Tyr, za G ili A. Ova heterogenost može imati značajna razgranavanja na razini previjanja proteina. Stoga, ova heterogenost sekvence naznačena je na slici 26 koja prikazuje sastav HCV cDNA. The following heterogeneous sequences were considered in creating the composition sequence. Clone 33c contains HCV cDNA of 800 bp, which overlaps the cDNA in clones 40b and 37c. In clone 33c, as in 5 other overlapping clones, nucleotide ≠789 is G. However, in clone 37b (see Chapter IV.A.11.), the corresponding nucleotide is A. This sequence difference creates an apparent heterogeneity in the amino acids encoded here, which they can be Cys or Tyr, for G or A. This heterogeneity can have significant ramifications at the level of protein folding. Therefore, this sequence heterogeneity is indicated in Figure 26 which shows the composition of HCV cDNA.

Nukleidni ostatak ?2 u klonu 8h HCV cDNA je T. Međutim, kao što je pokazano niže, odgovarajući ostatk u klonu 7e je A; mada se A u ovom položaju također nalazi u 3 druga izolirana preklapajuća klona. Tako, T ostatak u klonu 8h može predstavljati klonirajući dodatak. Stoga, na slici 26 ostatak u ovom položaju označen je kao A. Nucleic acid residue ?2 in clone 8h HCV cDNA is T. However, as shown below, the corresponding residue in clone 7e is A; although A in this position is also found in 3 other isolated overlapping clones. Thus, the T residue in clone 8h may represent a cloning accessory. Therefore, in Figure 26 the residue in this position is marked as A.

3’-terminalni nukleotid u klonu 8f HCV cDNA je G. Međutim, odgovarajući ostatak u klonu 33f i 2 druga preklapajuća klona je T. Stoga, na slici 26 je ostatak u ovom položaju označen kao T. The 3'-terminal nucleotide in clone 8f HCV cDNA is G. However, the corresponding residue in clone 33f and 2 other overlapping clones is T. Therefore, in Figure 26 the residue at this position is labeled T.

3’-terminalna sekvenca u klonu 33f HCV cDNA je TTGC. Međutim, odgovarajuća sekvenca u klonu 33g i dva druga preklapajuća klona je ATTC. Stoga, na slici 26, odgovarajuće područje predstavljeno je kao ATTC. The 3'-terminal sequence in clone 33f HCV cDNA is TTGC. However, the corresponding sequence in clone 33g and two other overlapping clones is ATTC. Therefore, in Figure 26, the corresponding area is represented as ATTC.

Nukleotidni ostatak ≠4 u klonu 33g HCV cDNA je T. Međutim, u klonu 33f i u dva druga preklapajuća klona odgovarajući ostatak je A. Stoga, na slici 26 je odgovarajući ostatak označen kao A. Nucleotide residue ≠4 in clone 33g HCV cDNA is T. However, in clone 33f and in two other overlapping clones the corresponding residue is A. Therefore, in Figure 26 the corresponding residue is labeled A.

3-terminus klona 14i je AA, premda odgovarajući dinukleotid u klonu 11b i tri druga klona je TA. Stoga, na slici 26, predstavljen je TA ostatak. The 3-terminus of clone 14i is AA, although the corresponding dinucleotide in clone 11b and three other clones is TA. Therefore, in Figure 26, the TA residue is presented.

Razlaganje drugih heterogenosti sekvenci je diskutirano naprijed. Decomposition of other sequence heterogeneities is discussed further.

Ispitivanje sastava HCV cDNA pokazuje da sadrži jedan veliki ORF. Ovo ukazuje da je virusni genom preveden u veliki polipeptid čiji je postupak konkurentan ili slijedi prevođenje. Examination of the composition of HCV cDNA shows that it contains one large ORF. This indicates that the viral genome has been translated into a large polypeptide whose process competes with or follows translation.

IV.A.19. Izoliranje i nukleotidne sekvence HCV cDNA u klonovima 12f, 35f, 19g, 26g i 15e IV.A.19. Isolation and nucleotide sequences of HCV cDNA in clones 12f, 35f, 19g, 26g and 15e

HCV cDNA u klonovima 12f, 35f, 19g, 26g i 15e su izolirane uglavnom tehnikom opisanom u poglavlju IV.A.17., izuzev što su probe bile kao što je označeno niže. Frekvencije klonova koji su hibridizirani s probama bila je 1 u 50000 u svakom slučaju. Nukleinske sekvence HCV cDNA u ovim klonovima su određene uglavnom kao što je opisano u poglavlju IV.A.2, izuzev da su cDNA iz naznačenih klonova supstituirani za cDNA iz klona 5-1-1. HCV cDNAs in clones 12f, 35f, 19g, 26g, and 15e were isolated essentially by the technique described in Section IV.A.17., except that the assays were as indicated below. The frequency of clones that hybridized to the probes was 1 in 50,000 in each case. Nucleic sequences of HCV cDNA in these clones were determined mainly as described in chapter IV.A.2, except that cDNA from the indicated clones was substituted for cDNA from clone 5-1-1.

Izoliranje klona 12f, koji sadrži cDNA uzvodnu od HCV cDNA na slici 26 se izvodi korištenjem hibridizacije probe zasnovane na sekvenci nukleotida u klonu 14i. Nukleotidna sekvenca probe je bila Isolation of clone 12f, which contains a cDNA upstream of the HCV cDNA in Figure 26 is performed using hybridization of a probe based on the nucleotide sequence in clone 14i. The nucleotide sequence of the probe was

5’ TGC TTG TGG ATG ATG CTA CTC ATA TCC CAA 3’ 5' TGC TTG TGG ATG ATG CTA CTC ATA TCC CAA 3'

HCV cDNA sekvenca klona 12f, njezino preklapanje s klonom 14i i kodirane aminokiseline su prikazani na slici 27. The HCV cDNA sequence of clone 12f, its overlap with clone 14i and the encoded amino acids are shown in Figure 27.

Izoliranje klona 35f, koji sadrži nizvodnu HCV cDNA na slici 26, izvodi se korištenjem hibridizacijske probe zasnovane na sekvenci nukleotida u klonu 39c. Nukleotidna sekvenca probe bila je Isolation of clone 35f, which contains the downstream HCV cDNA of Figure 26, is performed using a hybridization probe based on the nucleotide sequence in clone 39c. The nucleotide sequence of the probe was

5’ AGC GGC AAA AGT GAA GGC TAA CTT 3’ 5' AGC GGC AAA AGT GAA GGC TAA CTT 3'

Sekvenca klona 35f, njezino preklapanje sa sekvencom u klonu 39c i kodirane aminokiseline, prikazani su na slici 28. The sequence of clone 35f, its overlap with the sequence in clone 39c and the encoded amino acids are shown in Figure 28.

Izoliranje klona 19g se izvodi korištenjem hibridizacijske probe zasnovane na 3’ sekvenci klona 35f. Nukleotidna sekvenca probe bila je Isolation of clone 19g was performed using a hybridization probe based on the 3' sequence of clone 35f. The nucleotide sequence of the probe was

5’ TTC TCG TAT GAT ACC CGC TGC TTT GAC TCC 3’ 5' TTC TCG TAT GAT ACC CGC TGC TTT GAC TCC 3'

HCV cDNA sekvenca klona 19g, njezino preklapanje sa sekvencom u klonu 39f i kodirane aminokiseline su prikazani na slici 29. The HCV cDNA sequence of clone 19g, its overlap with the sequence in clone 39f and the encoded amino acids are shown in Figure 29.

Izoliranje klona 26g se izvodi korištenjem hibridizacijske probe zasnovane na 3’ sekvenci klona 19g. Nukleotidna sekvenca je bila Isolation of clone 26g is performed using a hybridization probe based on the 3' sequence of clone 19g. The nucleotide sequence was

5’ TGT GTG GCG ACG ACT TAG TCG TTA TCT GRG 3’ 5' TGT GTG GCG ACG ACT TAG TCG TTA TCT GRG 3'

HCV cDNA sekvenca klona 26g, njeno preklapanje sa sekvencom u klonu 19g i kodirane aminokiseline u njemu su prikazani na slici 30. The HCV cDNA sequence of clone 26g, its overlap with the sequence in clone 19g and the encoded amino acids in it are shown in Figure 30.

Klon 15e je izoliran koristeći hibridizacijsku probu zasnovanu na 3’ sekvenci klona 26g. Nukleotidna sekvenca probe bila je: Clone 15e was isolated using a hybridization probe based on the 3' sequence of clone 26g. The nucleotide sequence of the probe was:

5’ CAC ACT CCA GTC AAT TCC TGG CTA GGC AAC 3’ 5' CAC ACT CCA GTC AAT TCC TGG CTA GGC AAC 3'

HCV cDNA sekvenca klona 15e, njezino preklapanje sa sekvencom u klonu 26g i u njemu kodirane aminokiseline prikazani na slici 31. The HCV cDNA sequence of clone 15e, its overlap with the sequence in clone 26g and the amino acids encoded in it are shown in Figure 31.

Klonovi opisani u ovom poglavlju deponirani su sa ATCC pod pojmovima i uvjetima opisanim u poglavlju II.A., i označeni sljedećim brojevima. The clones described in this chapter have been deposited with the ATCC under the terms and conditions described in chapter II.A., and designated by the following numbers.

[image] [image]

HCV cDNA sekvence u izoliranim klonovima opisane naprijed su povezane radi stvaranja sastava HCV cDNA sekvence. Izolirani klonovi, povezani u 5’ do 3’ smjeru su: 12f, 14i, 7f, 7e, 8h, 33c, 40b, 37b, 35, 36, 81, 32, 33b, 25c, 14c, 8f, 33f, 33g, 39c, 19g, 26g, i 15e. The HCV cDNA sequences in the isolated clones described above were linked to create the HCV cDNA sequence composition. Isolated clones, linked in the 5' to 3' direction are: 12f, 14i, 7f, 7e, 8h, 33c, 40b, 37b, 35, 36, 81, 32, 33b, 25c, 14c, 8f, 33f, 33g, 39c. , 19g, 26g, and 15e.

Sastav HCV cDNA sekvence izvedene iz izoliranih klonova i u njemu kodirane aminokiseline su prikazani na slici 32. The composition of the HCV cDNA sequence derived from isolated clones and the amino acids encoded in it are shown in Figure 32.

IV.A.20. Alternativna metoda izoliranja cDNA sekvenci uzvodno od HCV cDNA sekvence u klonu 12f IV.A.20. An alternative method of isolating the cDNA sequence upstream of the HCV cDNA sequence in clone 12f

Zasnovano na najvećoj 5’ HCV sekvenci na slici 32, koja se izvodi iz HCV cDNA u klonu 12f, mali sintetski oligonukleotidi, primari reverzne transkriptaze su sintetizirani i korišteni za vezanje na odgovarajuću sekvencu u HCV genomskoj RNA, radi primarne reverzne transkripcije uzvodnih sekvenci. Primari sekvenci su bliski poznatoj 5’-terminalnoj sekvenci klona 12f, ali dovoljno nizvodno da dozvole stvaranje sekvenci probe uzvodno od primarnih sekvenci. Koriste se standardni postupci namještanja i kloniranja. Dobivene cDNA biblioteke se testiraju sa sekvencama uzvodno od mjesta primara (kao što je zaključeno iz izvođenja sekvence u klonu 12f). HCV genomska RNA se dobiva iz plazme ili uzoraka jetre iz čimpanzi sa NANBH ili iz analognih uzoraka iz ljudi sa NANBH. Based on the largest 5' HCV sequence in Figure 32, derived from HCV cDNA in clone 12f, small synthetic oligonucleotide reverse transcriptase primers were synthesized and used to bind to the corresponding sequence in HCV genomic RNA, for primary reverse transcription of upstream sequences. The primer sequences are close to the known 5'-terminal sequence of clone 12f, but sufficiently downstream to allow generation of probe sequences upstream of the primer sequences. Standard setup and cloning procedures are used. The resulting cDNA libraries are tested with sequences upstream of the primer site (as inferred from the sequence run in clone 12f). HCV genomic RNA is obtained from plasma or liver samples from chimpanzees with NANBH or from analogous samples from humans with NANBH.

IV.A.21. Alternativna metoda korištenja opskrbe radi izoliranja sekvenci iz 5’-terminalnog područja HCV genoma IV.A.21. An alternative method of using supply to isolate sequences from the 5'-terminal region of the HCV genome

U cilju izoliranja krajnjih 5’-terminalnih sekvenci HCV RNA genoma, cDNA produkt prvog kruga reverzne transkripcije, koja je dupleksirana sa šablonom RNA je opskrbljena sa oligo C. Ovo se izvodi inkubiranjem produkta s terminalnom transferazom u prisutnosti CTP. Drugi krug cDNA sinteze, koja daje komplement prvoj struki cDNA, izvodi se korištenjem oligo G kao primara za reverznu transkriptaznu reakciju. Izvori genomske HCV cRNA su kao što je opisano u poglavlju IV.A.20. Postupci za opskrbu s terminalnom transferazom i za reverzne transkriptazne reakcije su kao u Mantials et al. (1982). cDNA produkti su tada klonirani, testirani i sekvencirani. In order to isolate the 5'-terminal sequences of the HCV RNA genome, the cDNA product of the first round of reverse transcription, which is duplexed with the RNA template, is supplied with oligo C. This is performed by incubating the product with terminal transferase in the presence of CTP. The second round of cDNA synthesis, which complements the first strand of cDNA, is performed using oligo G as a primer for the reverse transcriptase reaction. Sources of genomic HCV cRNA are as described in Section IV.A.20. Procedures for terminal transferase supply and for reverse transcriptase reactions are as in Mantials et al. (1982). The cDNA products were then cloned, tested and sequenced.

IV.A.22. Alternativna metoda korištenja opskrbe radi izoliranja sekvenci iz 3’-terminalnog područja HCV genoma IV.A.22. An alternative method of using supply to isolate sequences from the 3'-terminal region of the HCV genome

Ova metoda je zasnovana na prethodno korištenim metodama za kloniranje cDNA flavivirus RNA. U ovoj metodi, RNA se podvrgava uvjetima denaturacije radi uklanjanja sekundarnih struktura na 3’-terminusu, i tada se obogaćuje s poli A polimerazom koristeći rATP kao supstrat. Reverzna transkripcija poli A opskrbljene RNA se katalizira reverznom transkriptazom, korištenjem oligo dT kao primara. Druge struke cDNA se sintetiziraju, cDNA produkti se kloniraju, testiraju i sekvenciraju. This method is based on previously used methods for flavivirus RNA cDNA cloning. In this method, RNA is subjected to denaturing conditions to remove secondary structures at the 3'-terminus, and then enriched with poly A polymerase using rATP as a substrate. Reverse transcription of poly A-supplied RNA is catalyzed by reverse transcriptase, using oligo dT as a primer. Other strands of cDNA are synthesized, cDNA products are cloned, tested and sequenced.

IV.A.23. Stvaranje lambda-gr11 HCV cDNA biblioteka koje sadrže veće cDNA inserte IV.A.23. Generation of lambda-gr11 HCV cDNA libraries containing larger cDNA inserts

Metoda korištena za stvaranje i testiranje lambda-gt-11 biblioteka je uglavnom kao što je opisano u poglavlju IV.A. osim što je biblioteka stvorena iz rezerve cDNA eluirane iz Sepharose CL-48 kolone. The method used to generate and test the lambda-gt-11 libraries was essentially as described in Section IV.A. except that the library was created from a pool of cDNA eluted from a Sepharose CL-48 column.

IV.A.24. Stvaranje HCV cDNA biblioteka korištenjem oligomera kao primara IV.A.24. Creation of HCV cDNA libraries using oligomers as primers

Nove HCV cDNA biblioteke su dobivene iz RNA izvedene iz infektivne rezerve plazme čimpanzi opisane u poglavlju IV.A.1., i iz poli A+RNA frakcije izvedene iz jetre ovih inficiranih životinja. cDNA je stvorena kao što su opisali Gubler i Hoffman (1983), osim što su primarni za prve strike cDNA bila dva sintetska oligomera zasnovana na sekvenci HCV genoma opisanog naprijed. Primarni zasnovani na sekvenci klona 11b i 7e su bili: New HCV cDNA libraries were obtained from RNA derived from the infectious reserve plasma of chimpanzees described in chapter IV.A.1., and from the poly A+RNA fraction derived from the liver of these infected animals. cDNA was generated as described by Gubler and Hoffman (1983), except that the primers for the first strike cDNAs were two synthetic oligomers based on the HCV genome sequence described above. The primers based on the sequence of clones 11b and 7e were:

5’ CTG GCT TGA AGA ATC 3’ i 5' CTG GCT TGA AGA ATC 3' i

5’ AGT TAG GCT GGT GAT TAT GC 3’ 5' AGT TAG GCT GGT GAT TAT GC 3'

Dobivene cDNA su klonirane u lambda bakteriofagne vektore i testirane su s raznim drugim sintetskim oligomerima, čije su sekvence zasnovane na HCV sekvenci na slici 32. The obtained cDNAs were cloned into lambda bacteriophage vectors and were tested with various other synthetic oligomers, the sequences of which are based on the HCV sequence in Figure 32.

IV.B. Ekspresija polipeptida kodiranog u HCV cDNA i identifikacija produkata ekspresije kao HCV induciranih gena IV.B. Expression of polypeptide encoded in HCV cDNA and identification of expression products as HCV induced genes

IV.B.1. Ekspresija polipeptida kodiranog u klonu 5-1-1 IV.B.1. Expression of the polypeptide encoded in clone 5-1-1

HCV polipeptid kodiran u klonu 5-1-1 (vidi poglavlje IV.A.2., naprijed) je ekspresiran kao sjedinjeni polipeptid sa superoksid dismutazom (SOD). Ovo se izvodi subkloniranjem klona 5-1-1 cDNA inserta u ekspresijski vektor pSODcf1 (Steimer et al. (1986)), kao što slijedi. The HCV polypeptide encoded by clone 5-1-1 (see section IV.A.2., above) is expressed as a fused polypeptide with superoxide dismutase (SOD). This is done by subcloning the clone 5-1-1 cDNA insert into the expression vector pSODcf1 (Steimer et al. (1986)), as follows.

Prvo, DNA izolirana iz pSODcf1 se tretira sa bamH1 i EcoR1, i slijedeće vezivo se veže na linearnu DNA stvorenu restrikcijskim enzimima: First, DNA isolated from pSODcf1 is treated with bamH1 and EcoR1, and the following binder is ligated to the linear DNA generated by restriction enzymes:

5’ GAT CCT GGA ATT CTG ATA A 3’ 5' GAT CCT GGA ATT CTG ATA A 3'

3’ GA CCT TAA GAC TAT TTT AA 5’ 3' GA CCT TAA GAC TAT TTT AA 5'

Poslije kloniranja, plazmid koji sadrži insert se izolira. After cloning, the plasmid containing the insert is isolated.

Plazmid koji sadrži insert raščlanjen je sa EcoR1 HCV cDNA insert u klonu 5-1-1 je isječan sa EcoR1 i povezan u ovaj EkoR1 lineariziran plazmid DNA. DNA smjesa je korištena za transformiranje E. coli vrste D1210 (Sadler et al. (1980)). Rekombinantni sa 5-1-1 cDNA u korektnoj porijentaciji za ekspresiju ORF prikazanog na slici 1 su identificirani restrikcijskim mapiranjem i sekvenciranjem nukleotida. The plasmid containing the insert was digested with EcoR1 The HCV cDNA insert in clone 5-1-1 was cut with EcoR1 and ligated into this EcoR1 linearized plasmid DNA. The DNA mixture was used to transform E. coli strain D1210 (Sadler et al. (1980)). Recombinants with 5-1-1 cDNA in the correct orientation for expression of the ORF shown in Figure 1 were identified by restriction mapping and nucleotide sequencing.

Rekombinantna baterija iz jednog klona izazvala je ekspresiju SOD-NANB5-1-1 polipeptida rastom bakterija u prisutnosti IPTG. A recombinant battery from a single clone induced expression of the SOD-NANB5-1-1 polypeptide by bacterial growth in the presence of IPTG.

IV.B.2. Ekspresija polipeptida kodiranog u klonu 81 IV.B.2. Expression of the polypeptide encoded in clone 81

HCV cDNA sadržava u klonu 81 je ekspresirana kao SOD-NANB81 sjedinjen polipeptid. Metoda za dobivanje vektora koji kodira ovaj sjedinjen polipeptid je analogan onom koji se koristi za stvaranje vektora koji kodira SOD-NANB5-1-1, osim što je izvor HCV cDNA bio klon 81, koji je izoliran kao što je opisano u poglavlju IV.A.3., i za koji je cDNA sekvenca određena kao što je opisano u poglavlju IV.A.4. Nukleotidna sekvenca HCV cDNA u 81 i navodna sekvenca aminokiselina ovdje kodiranog polipeptida je prikazana na slici 4. HCV cDNA contained in clone 81 is expressed as a SOD-NANB81 fusion polypeptide. The method for obtaining the vector encoding this fusion polypeptide is analogous to that used to generate the vector encoding SOD-NANB5-1-1, except that the source of the HCV cDNA was clone 81, which was isolated as described in Chapter IV.A .3., and for which the cDNA sequence was determined as described in Chapter IV.A.4. The nucleotide sequence of the HCV cDNA in 81 and the putative amino acid sequence of the polypeptide encoded herein is shown in Figure 4.

HCV cDNA insert u klonu 81 je isječen na EcoR1 i povezan u pSODcf1 koji sadrži vezivo (vidi IV.B.1.) i koji je lineariziran tretmanom sa EcoR1. DNA smjesa je korištena za transformiranje E. coli vrste D1210. Rekombinanti sa klona 81 HCV cDNA u korektnoj orijentaciji za ekspresiju ORF prikazanog na slici 4 su identificirani pomoću raskidajućeg mapiranja i sekvenciranja nukleotida. The HCV cDNA insert in clone 81 was cut at EcoR1 and ligated into pSODcf1 containing the linker (see IV.B.1.) and linearized by treatment with EcoR1. The DNA mixture was used to transform E. coli strain D1210. Recombinants from clone 81 HCV cDNA in the correct orientation for expression of the ORF shown in Figure 4 were identified by fragment mapping and nucleotide sequencing.

Rekombinantna bakterija iz jednog klona je inducirana radi ekspresije SOD-NANB81 polipeptida rastom bakterija u prisutnosti IPTG. Recombinant bacteria from a single clone were induced to express the SOD-NANB81 polypeptide by growing the bacteria in the presence of IPTG.

IV.B.3. Identifikacija polipeptida kodiranog u klonu 5-1-1 kao HCV i NANBH vezanog antigena IV.B.3. Identification of polypeptide encoded in clone 5-1-1 as HCV and NANBH bound antigen

Polipeptid kodiran u HCV cDNA klonu 5-1-1 je identificiran kao NANBH povezan antigen pokazivanjem da serumi čimpanzi i ljudi inficiranih sa NANBH reagiraju imunološki sa sjedinjenim polipeptidom, SOD-NANB5-1-1, koji obuhvaća superoksid dimutazu na svom N-terminusu i u okviru 5-1-1 antigen na svom C-terminusu. Ovo je izvedeno pomoću “Western” bojanja (Towbin et al. (1979)) kao što slijedi. The polypeptide encoded by HCV cDNA clone 5-1-1 was identified as a NANBH-related antigen by showing that sera from chimpanzees and humans infected with NANBH reacted immunologically with a fusion polypeptide, SOD-NANB5-1-1, which comprises superoxide dismutase at its N-terminus and in frame 5-1-1 antigen at its C-terminus. This was performed using Western staining (Towbin et al. (1979)) as follows.

Rekombinantna vrsta bakterija se transformira sa ekspresijskim vektorom koji kodira SOD-NANB5-1-1 polipeptid, opisan u poglavlju IV.B.1., inducirana je radi ekspresije sjedinjavanja polipeptida rastom u prisutnosti IPTG. Ukupni bakterijski lizat se podvrgava elektroforezi kroz poliakrilamidne gelove u prisutnosti SDS prema Laemmli (1970). Odvojeni polipeptidi su preneseni na nitrocelulozne filtre (Towbin et al. (1979)). Filtri su tada sječeni na trake i trake su inkubirane individualno s raznim serumima čimpanza i ljudi. Vezana antitijela su detektirana daljnjom inkubacijom sa 125I-obilježenim anti-serumom ovčjeg Ig, kao što je opisano u poglavlju IV.A.1. A recombinant bacterial strain transformed with an expression vector encoding the SOD-NANB5-1-1 polypeptide, described in Section IV.B.1., was induced to express the fusion polypeptide by growth in the presence of IPTG. The total bacterial lysate is subjected to electrophoresis through polyacrylamide gels in the presence of SDS according to Laemmla (1970). Separated polypeptides were transferred to nitrocellulose filters (Towbin et al. (1979)). The filters were then cut into strips and the strips were incubated individually with various chimpanzee and human sera. Bound antibodies were detected by further incubation with 125I-labeled sheep Ig anti-serum, as described in section IV.A.1.

Karakterizacija seruma čimpanze korištenog za Western bojanje i rezultati prikazani na fotografiji autoradiografiranih traka su prikazani na slici 33. Nitrocelulozne trake koje sadrže polipeptide su inkubirane sa serumom izvedenim iz čimpanzi u raznim vremenima tijekom akutnih NANBH (Hutchinson strain) infekcija (put 1-16), hepatitis A infekcije (put 17-24 i 26-33), i hepatitis B infekcije (put 34-44). Putovi 25 i 45 pokazuju pozitivne kontrole u kojima su imunomrlje inkubirane sa serumom iz pacijenta korištenjem za identifikaciju rekombinantnog klona 5-1-1 u originalnom testiranju lambda-gt11 biblioteke (vidi poglavlje IV.A.1.). Characterization of the chimpanzee serum used for Western staining and the results shown in photographs of autoradiographed strips are shown in Figure 33. Nitrocellulose strips containing polypeptides were incubated with serum derived from chimpanzees at various times during acute NANBH (Hutchinson strain) infections (path 1-16), hepatitis A infections (path 17-24 and 26-33), and hepatitis B infections (path 34-44). Lanes 25 and 45 show positive controls in which immunoblots were incubated with serum from the patient used to identify recombinant clone 5-1-1 in the original lambda-gt11 library assay (see section IV.A.1.).

Traka vidljiva u kontrolnim stazama, 25 i 45 na slici 23, pokazuje vezanje antitijela na NANB5-1-1 dio SOD sjedinjenog polipeptida. Ova antitijela ne pokazuju vezanje na sam SOD, tako da je ovo bilo isključeno kao negativna kontrola u ovim uzorcima i treba se promatrati kao traka koja znatno brže migrira od SAD-NANB5-1-1 sjedinjenog polipeptida. The band visible in the control lanes, 25 and 45 in Figure 23, shows the binding of the antibody to the NANB5-1-1 portion of the SOD fusion polypeptide. These antibodies do not show binding to SOD itself, so this was excluded as a negative control in these samples and should be seen as a band that migrates significantly faster than the SAD-NANB5-1-1 fusion polypeptide.

Staze 1-16 na slici 27 pokazuju vezanje antitijela u uzorcima seruma 4 čimpanze; serum je dobiven neposredno prije infekcije sa NANBH i sekvencijski tijekom akutne infekcije kao što se vidi iz slike, premda su antitijela koja reagiraju imunološki sa SOD-NANB5-1-1 polipeptidom odsutna u serumu uzoraka dobivenih prije unošenja infekcijskih HCV inokuluma i tijekom rane akutne faze infekcije, sve četiri životinje konačno induciraju cirkulaciju antitijela u ovaj polipeptid tijekom zadnjeg dijela ili poslije akutne faze. Lanes 1-16 in Figure 27 show antibody binding in serum samples from 4 chimpanzees; serum was obtained immediately before infection with NANBH and sequentially during acute infection as seen in the figure, although antibodies immunoreactive with SOD-NANB5-1-1 polypeptide were absent in serum samples obtained before introduction of infectious HCV inoculums and during the early acute phase infection, all four animals finally induce circulating antibodies to this polypeptide during the latter part or after the acute phase.

Dodatne trake opažene na imunomrljama u slučaju čimpanzi broj 3 i 4 su izazvane vezanjem na proteine bakterije domaćina. The additional bands observed on the immunoblots in the case of chimpanzees 3 and 4 were caused by binding to proteins of the host bacteria.

Nasuprot rezultata dobivenih sa serumom iz čimpanzi inficiranih za NANBH, razvoj antitijela prema NANB5-1-1 dijelu sjedinjenog polipeptida nije opaženo kod 4 čimpanze inficirane sa HAV ili 3 čimpanze inficirane sa HBV. Samo vezanje u ovim slučajevima bilo je osnova vezanja za proteine bakterije domaćina, koje se također odvija u HCV inficiranim uzorcima. In contrast to the results obtained with serum from NANBH-infected chimpanzees, the development of antibodies to the NANB5-1-1 portion of the fusion polypeptide was not observed in 4 chimpanzees infected with HAV or 3 chimpanzees infected with HBV. The binding itself in these cases was based on the binding to proteins of the host bacteria, which also occurs in HCV-infected samples.

Karakterizacija humanog seruma korištenog za Western mrlje i rezultati koji su prikazani na fotografiji autoradiografiranih traka je prisutna na slici 34. Nitrocelulozne trake koje sadrže polipeptide su inkubirane sa serumom uzetim od ljudi u raznim vremenima tijekom infekcije sa NANBH (staze 1-21), HAV (staze 33-40) i HBV (staze 41-49). Putanje 25 i 50 pokazuju pozitivne kontrole u kojima su imunomrlje bile inkubirane sa serumom iz pacijenta korištenjem u originalnom testiranju lambda-gt11 biblioteke, opisane naprijed. Putanje 22-24 i 26-32 pokazuju “neinficirane” kontrole u kojima je bio serum iz “normalnih” davalaca krvi. Characterization of the human serum used for Western blots and the results shown in the photograph of the autoradiographed strips is presented in Figure 34. The nitrocellulose strips containing the polypeptides were incubated with serum taken from humans at various times during infection with NANBH (lanes 1-21), HAV ( lanes 33-40) and HBV (lanes 41-49). Lanes 25 and 50 show positive controls in which immunoblots were incubated with serum from the patient used in the original lambda-gt11 library assay, described above. Lanes 22-24 and 26-32 show “uninfected” controls containing serum from “normal” blood donors.

Kao što se vidi na slici 34, serum iz 9 NANBH pacijenata, uključujući serum korišten za testiranje lambda-gt11 biblioteke, sadržavao je antitijela prema NANB5-1-1 grupi sjedinjenog polipeptida. Serum iz tri pacijenta sa NANBH na sadrži ova antitijela. Moguće je da će se anti-NANB5-1-1 antitijela razviti u budućnosti kod ovih pacijenata. Također je moguće da ovaj izostanak reakcije rezultira iz raznih NANBH agenasa koji izazivaju bolest u individuama iz kojih je uzet neodgovarajući serum. As seen in Figure 34, serum from 9 NANBH patients, including the serum used to test the lambda-gt11 library, contained antibodies to the NANB5-1-1 pool of the fusion polypeptide. Serum from three patients with NANBH contains these antibodies. It is possible that anti-NANB5-1-1 antibodies will develop in the future in these patients. It is also possible that this lack of reaction results from various NANBH agents causing disease in individuals from whom inappropriate serum was obtained.

Slika 34 također pokazuje da serum iz mnogih pacijenata inficiranih sa HAV i HBV ne sadrži anti-NANB5-1-1 antitijela i da ova antitijela također nisu prisutna u serumu “normalnih” kontrola. Mada se javlja da jedan pacijent (staza 36) sadrži anti-NANB5-1-1 antitijela, moguće je da je ovaj pacijent prethodno bio inficiran sa NANBH, dakle zahvaćanje NANBH je veoma visoko i često je subkliničko. Figure 34 also shows that serum from many patients infected with HAV and HBV does not contain anti-NANB5-1-1 antibodies and that these antibodies are also not present in the serum of "normal" controls. Although one patient (lane 36) is reported to contain anti-NANB5-1-1 antibodies, it is possible that this patient was previously infected with NANBH, so NANBH involvement is very high and often subclinical.

Ove serološke studije pokazuju da cDNA u klonu 5-1-1 kodira epitope koji su prepoznatljivi specifično serumom pacijenata i životinja inficiranih sa BB-NANBV. Dodatno, cDNA se ne javlja izvedena iz genoma primata. Hibridizacijska proba načinjena s klonom 5-1-1 ili sa klonom 81 ne hibridizira u “Southern” mrlje kontrolnih ljudske i čimpanzine genomske DNA iz neinficiranih individua u uvjetima gdje su jedinstveni jednokopirani geni detektibilni. Ove probe također ne hibridiziraju u Southern mrlje kontrolnu goveđu genomsku DNA. These serological studies show that the cDNA in clone 5-1-1 encodes epitopes that are specifically recognized by the serum of patients and animals infected with BB-NANBV. Additionally, cDNA does not appear to be derived from primate genomes. A hybridization assay performed with clone 5-1-1 or with clone 81 does not hybridize in Southern blots of control human and chimpanzee genomic DNA from uninfected individuals under conditions where unique single-copy genes are detectable. These probes also do not hybridize in Southern blots to control bovine genomic DNA.

IV.B.4. Ekspresija polipeptida kodiranog u sustavu HCV cDNA u klonovima 36, 81 i 32 IV.B.4. Expression of the polypeptide encoded by the HCV cDNA system in clones 36, 81 and 32

HCV polipeptid koji je kodiran u ORF koji se proteže kroz klonove 36, 81 i 32 je ekspresiran kao sjedinjen polipeptid sa SOD. Ovo se izvodi ubacivanjem sastava cDNA, C100 u ekspresijsku kasetu koja sadrži ljudski gen superoksid dismutazu, ubacivanjem ekspresijske kasete u kvasac ekspresijski vektor, te ekspresijom polipeptida u kvascu. The HCV polypeptide encoded by the ORF spanning clones 36, 81, and 32 was expressed as a fusion polypeptide with SOD. This is done by inserting the cDNA composition, C100, into an expression cassette containing the human superoxide dismutase gene, inserting the expression cassette into a yeast expression vector, and expressing the polypeptide in yeast.

Ekspresijska kaseta koja sadrži sastav C100 cDNA izveden iz klonova 36, 81 i 32 je stvorena ubacivanjem oko 1270 bp EcoRI fragmenta u EcoRI mjesto vektora pS3-56 (također zvano pS356), dajući plazmid pS3-56C100. Stvaranje C100 je opisano u poglavlju IV.A.16. naprijed. An expression cassette containing the C100 cDNA assembly derived from clones 36, 81 and 32 was created by inserting an approximately 1270 bp EcoRI fragment into the EcoRI site of vector pS3-56 (also called pS356), yielding plasmid pS3-56C100. The creation of C100 is described in Chapter IV.A.16. forward.

Vektor pS3-56, koji je derivat pBR322 sadrži ekspresijsku kasetu koja obuhvaća ADH2/GAPDH hibridni kvasac promotor uzvodnog superoksid dismutaza gena i nizvodni GAPDH transkripcijski terminator. Slična kaseta, koja sadrži ove kontrolne elemente i gen superoksid dismutaza, bila je opisana od Cousens et al. (1987) i pridruženoj EPO 196.056 publiciranoj 1. Studenog 1986, koja se obično navodi pod ovom oznakom. Kaseta u pS3-56, međutim, razlikuje se od one u Cousens et al. (1987) u tome što su heterologni proinsulin gen i imunoglobulin izbrisani, i gln154 superoksid dismutaza je plaćena adapterskom sekvencom koja sadrži EcoRI mjesto. Sekvenca adaptera je: Vector pS3-56, which is a derivative of pBR322, contains an expression cassette comprising the ADH2/GAPDH hybrid yeast promoter of the upstream superoxide dismutase gene and the downstream GAPDH transcriptional terminator. A similar cassette, containing these control elements and the superoxide dismutase gene, was described by Cousens et al. (1987) and associated EPO 196,056 published Nov. 1, 1986, commonly cited under this designation. The cassette in pS3-56, however, differs from that in Cousens et al. (1987) in that the heterologous proinsulin gene and immunoglobulin were deleted, and gln154 superoxide dismutase was replaced by an adapter sequence containing an EcoRI site. The adapter sequence is:

5’ AAT TTG GGA ATT CCATAA TGA G 3’ 5' AAT TTG GGA ATT CCATAA TGA G 3'

AC CCT TAA GGT ATT ACT ACG CT AC CCT TAA GGT ATT ACT ACG CT

EcoRI mjesto dozvoljava ubacivanje heterolognih sekvenci koje kada su ekspresirane iz vektora koji sadrži kasetu, daju polipeptide koji se vežu sa superoksid dismutazom preko oligopeptidnog veziva koje sadrži sekvencu aminokiselina: The EcoRI site allows the insertion of heterologous sequences that, when expressed from a vector containing the cassette, yield polypeptides that bind to superoxide dismutase via an oligopeptide linker containing the amino acid sequence:

-asn-leu-gly- ile-arg- -asn-leu-gly-ile-arg-

uzorak pS356 je deponiran 29. travnja 1988. pod nazivom Budapest Treaty sa American Type Culture Collection (ATCC), 12301 Parklawn Dr., Rovkville, Maryland 20853, i označen je oznakom br. 67683. Termini i uvjeti za dostupnost ovog depozita i za održavanje depozita su isti kao oni specificirani u poglavlju II.A., za vrste koje sadrže NANBV-cDNA. Ovaj depozit namijenjen je samo za konvenciju i nije tražen za primjenu ovog izuma s gledišta opisa. Deponiran materijal je dalje ovdje ugrađen referencom. specimen pS356 was deposited on April 29, 1988 under the name Budapest Treaty with the American Type Culture Collection (ATCC), 12301 Parklawn Dr., Rovkville, Maryland 20853, and is designated as no. 67683. The terms and conditions for the availability of this deposit and for maintaining the deposit are the same as those specified in Chapter II.A., for species containing NANBV-cDNA. This deposit is for convenience only and is not required to practice the present invention from the point of view of the description. The deposited material is further incorporated herein by reference.

Poslije izoliranja rekombinanta koji sadrže C100 cDNA insert u korektnoj orijentaciji, ekspresijska kaseta koja sadrži C100 cDNA je isječena iz pS3-56C100 sa BamHI i fragment od 3400bp koji sadrži kasetu je izoliran i pročišćen. Ovaj fragment je ubačen u BamHI umjesto kvasca vektora pAB24. After isolation of recombinants containing the C100 cDNA insert in the correct orientation, the expression cassette containing the C100 cDNA was excised from pS3-56C100 with BamHI and the 3400bp fragment containing the cassette was isolated and purified. This fragment was inserted into BamHI instead of the yeast vector pAB24.

Plazmid pAB24, čije su značajne oblike prikazane na slici je kvasac zasnovan vektor koji sadrži komplet dvo-mikronske sekvence za replikaciju /Broach (1981)/ i pBR322 sekvence, također sadrži kvasac URA3 gen izveden iz plazmida Yep24 /Botstein et al. (1979)/ i kvasac LEU2d izveden iz plazmida pCI/1, EPO publikacija br. 116.201. Plazmid pAB24 je nastao razaranjem Yep24 sa EcoRI i ponovnim vezanjem vektora radi uklanjanja djelomičnih dvomikronskih sekvenci. Dobiveni plazmid, pCBou, je tada razoren sa Xbai i 8605 bp fragmenta vektora je gel izolirano. Ovaj izolirani Xbai fragment je povezan sa 4460 bp XBai fragmentom koji sadrži LEU2d gen izoliran iz pCI/1; orijentacija LEU2d gena je u istom smjeru kao URA3 gen. Ubacivanje ekspresije bilo je u jedinstvenom MamHI mjestu pBR322 sekvence, tako se prekida gen za bakterijsku otpornost prema tetraciklinu. Plasmid pAB24, whose significant forms are shown in the figure, is a yeast-based vector containing a set of two-micron replication sequences /Broach (1981)/ and pBR322 sequences, also containing the yeast URA3 gene derived from plasmid Yep24 /Botstein et al. (1979)/ and yeast LEU2d derived from plasmid pCI/1, EPO publication no. 116.201. Plasmid pAB24 was generated by cutting Yep24 with EcoRI and religating the vector to remove partial 2 micron sequences. The resulting plasmid, pCBou, was then digested with Xbai and an 8605 bp fragment of the vector was gel isolated. This isolated Xbai fragment was linked to a 4460 bp XBai fragment containing the LEU2d gene isolated from pCI/1; the orientation of the LEU2d gene is in the same direction as the URA3 gene. The expression insertion was in the unique MamHI site of the pBR322 sequence, thus disrupting the bacterial tetracycline resistance gene.

Rekombinantni plazmid koji sadrži SOD C100 ekspresijku kasetu, pAB24C100-3 je transformiran u vrstu kvasca JSC 308 kao i druge vrste kvasca. Stanice su transformirane kao što je opisao Hinnen et al. (1978) i nanesene na uraselektivnu pliticu. Kolonije su inokulirane u leu-selektivnom mediju i rasle do zasićenja. Kultura je inducirana radi ekspresije SOD-C100 polipeptida (nazvanog C100-3) rastom u YEP koji sadrži 1% glukoze. A recombinant plasmid containing the SOD C100 expression cassette, pAB24C100-3, was transformed into the yeast strain JSC 308 as well as other yeast strains. Cells were transformed as described by Hinnen et al. (1978) and applied to a uraselective plate. Colonies were inoculated in leu-selective medium and grown to saturation. The culture was induced to express the SOD-C100 polypeptide (named C100-3) by growth in YEP containing 1% glucose.

Vrsta JSC je genotipa MAT, leu 2, ura3(del)DM15 (GAP/ADRI) integriranom na ADRI lokusu. U JSC 308, preko ekspresije pozitivnog aktivator gen produkta, ADRI, rezultira u hiperdepresiji (prema ADRI kontroli divljeg tipa) i znatno višim prinosima ekspresiranih heterolognih proteina kada se takvi proteini sintetiziraju preko ADR UAS regulatorskog sustava. Stvaranje kvasca vrste JSC 308 je opisano u pridruženoj prijavi SAD ser. br. (odgovornog zastupnika) br. 2300-0229 popunjene istovremeno i ovdje ubačene referencom. Uzorak JSC 208 je deponiran 5. svibnja 1988. sa ATTC u uvjetima Budapest Treaty, i označen je oznakom br. 20879. Termini i uvjeti za dostupnost depozita i za njegovo održavanje su isti kao oni specificirani u poglavlju II.A., za vrste koje sadrže HCV cDNA. The JSC strain is of the MAT, leu 2, ura3(del)DM15 (GAP/ADRI) genotype integrated at the ADRI locus. In JSC 308, over expression of the positive activator gene product, ADRI, results in hyperrepression (relative to wild-type ADRI control) and significantly higher yields of expressed heterologous proteins when such proteins are synthesized via the ADR UAS regulatory system. The creation of yeast strain JSC 308 is described in co-sponsored US application ser. no. (responsible representative) no. 2300-0229 completed simultaneously and incorporated herein by reference. Sample JSC 208 was deposited on May 5, 1988 with the ATTC under the terms of the Budapest Treaty, and is marked with the designation no. 20879. The terms and conditions for deposit availability and maintenance are the same as those specified in Chapter II.A., for species containing HCV cDNA.

Cjelovito sjedinjavanje C100-3 polipeptida kodiranog u pAB24C100 treba sadržavati 154 aminokiseline ljudskog SOD na amino-terminusu, 5 aminokiselinskih ostataka izvedenih iz sintetskog adaptera koji sadrži EcoRI mjesto. 363 aminokiselinska ostatka izvedena iz C100 DNA i 5 karboksi-terminalnih aminokiselina izvedenih iz MS2 nukleotidne sekvence susjedne HCV cDNA sekvenci u klonu 32 (vidi poglavlje IV.A.7.). Navodna sekvenca aminokiselina karboksi-terminusa ovog polipeptida počinje na penultimat Ala ostatku SOD-a i prikazana je na slici 36; također je prikazana i nukleotidna sekvenca koja kodira ovaj dio polipeptida. The complete integration of the C100-3 polypeptide encoded in pAB24C100 should contain the 154 amino acids of human SOD at the amino terminus, 5 amino acid residues derived from a synthetic adapter containing an EcoRI site. 363 amino acid residues derived from C100 DNA and 5 carboxy-terminal amino acids derived from the MS2 nucleotide sequence of the adjacent HCV cDNA sequence in clone 32 (see chapter IV.A.7.). The putative amino acid sequence of the carboxy-terminus of this polypeptide begins at the penultimate Ala residue of SOD and is shown in Figure 36; the nucleotide sequence encoding this part of the polypeptide is also shown.

IV.B.5. Identifikacija polipeptida kodiranog u C100 kao NANBH-vezani antigen IV.B.5. Identification of the polypeptide encoded in C100 as a NANBH-bound antigen

C100-3 sjedinjen polipeptid ekspresiran iz plazmida pAB24C100-3 u kvascu vrste JSC je okarakteriziran s obzirom na veličinu i polipeptid kodiran u C100 je identificiran kao NANBH-povezan antigen pomoću svoje imunološke aktivnosti sa serumom iz čovjeka s kroničnim NANBH. The C100-3 fusion polypeptide expressed from plasmid pAB24C100-3 in yeast JSC was characterized for size and the polypeptide encoded by C100 was identified as a NANBH-associated antigen by its immunoreactivity with serum from a human with chronic NANBH.

C100-3 polipeptid koji je izražen kao što je opisano u poglavlju IV.B.4., analiziran je kao što slijedi. Stanice kvasca JSC 308 su transformirane sa pAB24 ili sa pAB24C100 i inducirane radi ekspresije heterolognog plazmida kodiranog polipeptida. Inducirane stanice kvasca u 1 ml kulture (OD650 ml oko 20 minuta) su tabelirane centrifugiranjem na 10000 okr/min tijekom 1 minute i lizirane snažnim miješanjem (10x1 min) s 2 volumena otopine i 1 volumenom staklenih perli (0,2 milimikrona promjera). Otopina je sadržavala 50 mM Tris-HCI, pH 8,0, 1 mM EDTA, 1mM fenilmetil-sulfonil fluorida (PMSF) i 1 mikrogram/ml pepstatina. Neotopljeni, materijal u lizatu uključuje C100-3 polipeptid, sakupljen je centrifugiranjem (10000 okr/min tijekom 5 minuta) i otopljen je kuhanjem 5 minuta u Laemmli SDS uzorku pufera /vidi Laemmli (1970)/. The C100-3 polypeptide, which was expressed as described in section IV.B.4., was analyzed as follows. JSC 308 yeast cells were transformed with pAB24 or with pAB24C100 and induced to express the heterologous plasmid encoding the polypeptide. Induced yeast cells in 1 ml culture (OD650 ml about 20 minutes) were tabulated by centrifugation at 10000 rpm for 1 minute and lysed by vigorous mixing (10x1 min) with 2 volumes of solution and 1 volume of glass beads (0.2 millimicron diameter). The solution contained 50 mM Tris-HCl, pH 8.0, 1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride (PMSF) and 1 microgram/ml pepstatin. Undissolved, lysate material including C100-3 polypeptide was collected by centrifugation (10,000 rpm for 5 minutes) and solubilized by boiling for 5 minutes in Laemmli SDS sample buffer (see Laemmli (1970)).

Količina polipeptida ekvivalentna onoj u 0,3 ml inducirane kulture kvasca je podvrgnuta elektroferezi kroz 10% poliakrilamidnog gela u prisutnosti SDS prema Laemmli (1970). Standardni protein je zajedno elektroforeziran na gelu. Gelovi koji sadrže ekspresirane polipeptide su obojeni sa kumasi briljant plavim ili su podvrgnuti “Western” bojanju kao što je opisano u poglavlju IV.B.2. koristeći serum pacijenta s kroničnim NANBH radi određivanja imunološke reaktivnosti polipeptida izraženih iz pAB24 i iz pAB24C100-3. An amount of polypeptide equivalent to that in 0.3 ml of an induced yeast culture was electrophoresed through a 10% polyacrylamide gel in the presence of SDS according to Laemmla (1970). The standard protein was co-electrophoresed on the gel. Gels containing expressed polypeptides are stained with Coomassie brilliant blue or subjected to Western staining as described in section IV.B.2. using serum from a patient with chronic NANBH to determine the immunoreactivity of polypeptides expressed from pAB24 and from pAB24C100-3.

Rezultati su prikazani na slici 37. Na slici 37a polipeptidi su bojani sa kumasi briljant plavim. Neotopljivi polipeptid iz JSC 308 transformiran je sa pAB24 i iz dva različita klona JVC transformirana sa pAB24C100 su prikazani u stazi 1 (pAB24), i stazi 2 i 3. Uspoređivanja staza 2 i 3 s a stazom 1 pokazuje induciranu ekspresiju polipeptida koji odgovara molekularnoj masi oko 54000 daltona iz JSC 308 transformiranim sa pAB24C100, koji nije induciran u JSC 308 transformiranim sa pAB24. Ovaj polipeptid je naznačen strelicom. The results are shown in Figure 37. In Figure 37a, the polypeptides are stained with Coomassie Brilliant Blue. The insoluble polypeptide from JSC 308 transformed with pAB24 and from two different JVC clones transformed with pAB24C100 are shown in lane 1 (pAB24), and lanes 2 and 3. Comparisons of lanes 2 and 3 with and lane 1 show induced expression of a polypeptide corresponding to a molecular weight of about 54,000 daltons from JSC 308 transformed with pAB24C100, which was not induced in JSC 308 transformed with pAB24. This polypeptide is indicated by an arrow.

Slika 37b prikazuje rezultate “Western” bojanja neotopljivih polipeptida izraženim u JSC 308, JSC 308 transformiranog sa pAB24 (putanja 1) ili sa pAB24C100-3 (putanja 2). Polipeptidi izraženi iz pAB24 nisu imunološki reaktivni sa serumom čovjeka sa NANBH. Međutim, kao što je naznačeno strelicom, JSC 308 transformiran sa pAB24C100-3 izraženog polipeptida od oko 54000 daltona molekularne mase koji ne reagira imunološki sa ljudskim NANBH serumom. Drugi imunoliški reaktivni polipeptid u putanji 2 mogu biti razloženi i/ili agregacija producira ovaj polipeptid od oko 54000 daltona. Figure 37b shows the results of "Western" staining of insoluble polypeptides expressed in JSC 308, JSC 308 transformed with pAB24 (lane 1) or with pAB24C100-3 (lane 2). Polypeptides expressed from pAB24 are not immunoreactive with NANBH human serum. However, as indicated by the arrow, JSC 308 transformed with pAB24C100-3 expressed an approximately 54,000 dalton molecular weight polypeptide that did not immunoreact with human NANBH serum. Other immunologically reactive polypeptides in lane 2 may be degraded and/or aggregated to produce this polypeptide of about 54,000 daltons.

IV.B.6. Pročišćavanje sjedinjenog polipeptida C100-3 IV.B.6. Purification of the C100-3 fusion polypeptide

Sjedinjen polipeptid, C100-3, obuhvaća SOD na N-terminusu i u okviru C100 HCV-polipeptid je pročišćen diferencijalnom ekstrakcijom netopljive frakcije ekstrahiranih stanica kvasca u kojima je izražen polipeptid. The combined polypeptide, C100-3, comprises SOD at the N-terminus and within the C100 HCV-polypeptide was purified by differential extraction of the insoluble fraction of extracted yeast cells expressing the polypeptide.

Sjedinjen polipeptid, C100-3 je izražen u vrsti kvasca JSC 308 transformiranoj sa pAB24C100, kao što je opisano u poglavlju IV.A.2. Stanice kvasca su tada lizirane homogenizacijom, netopljivi materijal u lizatu je ekstrahiran na pH 12,0 i C100-3 u preostaloj netopljivoj frakciji je očvrsnut u puferu koji sadrži SDS. The fusion polypeptide, C100-3 was expressed in yeast strain JSC 308 transformed with pAB24C100, as described in section IV.A.2. The yeast cells were then lysed by homogenization, the insoluble material in the lysate was extracted at pH 12.0 and the C100-3 in the remaining insoluble fraction was solidified in buffer containing SDS.

Lazat kvasca je dobiven uglavnom prema Nagahuma et al. (1984). Suspenzija stanica kvasca pripremljena je tako da sadrži 33% stanica suspendiranih u otopini (pufer A) koja sadrži 20mM Tris-Hc1, pH 8,0, 1 mM dititreitola i 1 mM fenilmetilsulfonilfluorida (PMSF). Alikvot suspenzije (15 ml) je izmješan s istim volumenom staklenih perli (0,45-0,50 mm promjera) i smjesa je miješana pri najvećoj brzini na Super Mixer-u (Lab Line Instruments, Inc.) tijekom 8 minuta. Homogenat i staklene kuglice su razdvojeni i staklene kuglice su isparene tri puta s istim volumenom pufera A kao originalno pakirane stanice. Poslije sjedinjavanja vode od ispiranja i homogenata, netopljivi materijal u lizatu je dobiven centrifugiranjem homogenata na 7000 g tijekom 15 minuta na 4ºC, tablete se ponovno suspendiraju u puferu A jednakom dvostrukom volumenu spakiranih stanica i ponovno se tabletira centrifigiranjem na 7000 g tijekom 15 minuta. Ovaj postupak ispiranja ponavlja se tri puta. Yeast lazate was obtained mainly according to Nagahuma et al. (1984). A yeast cell suspension was prepared to contain 33% cells suspended in a solution (buffer A) containing 20 mM Tris-Hc1, pH 8.0, 1 mM dititreitol and 1 mM phenylmethylsulfonyl fluoride (PMSF). An aliquot of the suspension (15 ml) was mixed with an equal volume of glass beads (0.45-0.50 mm diameter) and the mixture was mixed at high speed on a Super Mixer (Lab Line Instruments, Inc.) for 8 minutes. The homogenate and glass beads were separated and the glass beads were evaporated three times with the same volume of buffer A as the originally packed cells. After combining the wash water and the homogenate, the insoluble material in the lysate was obtained by centrifuging the homogenate at 7000 g for 15 minutes at 4ºC, the tablets were resuspended in buffer A equal to twice the volume of packed cells and pelleted again by centrifugation at 7000 g for 15 minutes. This washing procedure is repeated three times.

Netopljivi materijal iz lizata je ekstrahiran na pH 12,0 kao što slijedi. Tableta je suspendirana u puferu koji sadrži 0,5 M NaC1, 1 mM EDTA gdje je suspendirani volumen 1,8 puta veći od originalno pakiranih stanica. pH suspenzije je podešen dodavanjem 0,2 volumena 0,4 M Na-fosfatnog pufera, pH 12,0. Poslije miješanja, suspenzija je centrifugirana na 7000 g tijekom 15 minuta na 4ºC i supernatant je uklonjen. Ekstrakcija je ponovljena 2 puta. Ekstrahirane tablete su isprane suspendiranjem u 0,5 M NaCl, 1 mM EDTA, korišteni volumen suspenzije je jednak dvostrukom volumenu originalno pakiranih stanica i zatim slijedi centrifugiranje na 7000 g tijekom 15 minuta na 4ºC. Insoluble material from the lysate was extracted at pH 12.0 as follows. The tablet is suspended in a buffer containing 0.5 M NaCl, 1 mM EDTA where the suspended volume is 1.8 times the original packed cells. The pH of the suspension was adjusted by adding 0.2 volumes of 0.4 M Na-phosphate buffer, pH 12.0. After mixing, the suspension was centrifuged at 7000 g for 15 minutes at 4ºC and the supernatant was removed. The extraction was repeated 2 times. The extracted tablets were washed by suspending in 0.5 M NaCl, 1 mM EDTA, the volume of suspension used was equal to twice the volume of the original packed cells and then followed by centrifugation at 7000 g for 15 minutes at 4ºC.

C100-3 polipeptid u ekstrahiranoj tableti je otopljen tretmanom sa SDS. Tablete su suspendirane u puferu A koji je jednak 0,9 volumenu priginalno pakiranih stanica, kojima se dodaje 0,1 volumena 2% SDS. Poslije miješanja suspenzije, ova se centrifugira na 7000 g 15 minuta na 4ºC. Dobivena tableta se ekstrahira sa 3 puta više SDS. Sakupe se dobiveni supernatanti koji sadrže C100-3. The C100-3 polypeptide in the extracted tablet was dissolved by treatment with SDS. Tablets were suspended in buffer A equal to 0.9 volume of originally packed cells, to which 0.1 volume of 2% SDS was added. After mixing the suspension, it is centrifuged at 7000 g for 15 minutes at 4ºC. The resulting tablet is extracted with 3 times more SDS. The obtained supernatants containing C100-3 are collected.

Ovaj postupak pročišćava C100-3 više od 10 puta od netopljive frakcije homogenat kvasca i odvaja od polipeptida više od 50%. This procedure purifies C100-3 more than 10 times from the insoluble fraction of yeast homogenate and separates more than 50% from the polypeptide.

Pročišćen preparat sjedinjenog polipeptida se analizira pomoću poliakrilamid elektroforeze prema Laemmil (1970). Zasnovano na ovoj analizi, polipeptid je bio više od 80% čistoće i imao je prividnu molekularnu masu od 54000 daltona. The purified preparation of the combined polypeptide is analyzed using polyacrylamide electrophoresis according to Laemmil (1970). Based on this analysis, the polypeptide was greater than 80% pure and had an apparent molecular weight of 54,000 daltons.

IV.C. Identifikacija RNA u inficiranim individuama koje hibriraju prema HCV cDNA IV.C. Identification of RNA in infected individuals hybridizing to HCV cDNA

IV.C.1. Identifikacija RNA u jetri čimpanze sa NANBH koji hibridizira prema HCV cDNA IV.C.1. Identification of chimpanzee liver RNA with NANBH that hybridizes to HCV cDNA

RNA iz jetre čimpanze koji je imao NANBH pokazao je sadrži vrste RNA koje hibridiziraju prema HCV cDNA sadržanoj u klonu 81 Northen bojanjem, kao što slijedi. RNA from the liver of a chimpanzee that had NANBH was shown to contain RNA species that hybridized to the HCV cDNA contained in clone 81 by Northern staining, as follows.

RNA je izolirana iz jetre biopsijom čimpanze iz kojeg je izvedena plazma visokog titra (vidi poglavlje IV.A.1.) koristeći tehnike opisane u Maniatis et al. (1982) za izoliranje ukupne RNA iz stanica sisavaca i za njihovo odvajanje u poli A+ i poli A- frakcije. Ove frakcije RNA su podvrgnute elektroforezi na farmadehid/agaroza gelu (1% m/v) i prevedene u nitrocelulozu (Maniatis et al. (1982)). Nitrocelulozni filtri su hibridizirani sa radioobilježenom HCV cDNA iz klona 81 (vidi sliku 4 za nukleotidnu sekvencu inserta). U pripremi radioobilježene probe, HCV cDNA insert izoliran iz klona 81 je radioobilježen sa 32P translacijom zasijecanja korištenjem DNA polimeraze I (Manniatis et al. (1982)). RNA was isolated from chimpanzee liver biopsies from which high titer plasma was derived (see Chapter IV.A.1.) using the techniques described in Maniatis et al. (1982) to isolate total RNA from mammalian cells and to separate them into poly A+ and poly A- fractions. These RNA fractions were subjected to formaldehyde/agarose gel electrophoresis (1% w/v) and transferred to nitrocellulose (Maniatis et al. (1982)). Nitrocellulose filters were hybridized with radiolabeled HCV cDNA from clone 81 (see Figure 4 for nucleotide sequence insert). In preparation of the radiolabeled probe, the HCV cDNA insert isolated from clone 81 was radiolabeled with 32P translational cleavage using DNA polymerase I (Manniatis et al. (1982)).

Hibridizacija je vršena 18 sati na 42ºC u otopini koja sadrži 10% (m/v) dekstran sulfata, 50% (m/v) deioniziranog formamida, 750 mM NaCl, 75 mM Na-citrata, 20 mM Na2HPO4, pH 6,5, 0,1% SDS, 0,02% (m/v) goveđeg albumin seruma (BSA), 0,02% (m/v) Ficoll-400, 0,02% )m/v) polivinilpirolidona, 100 mikrograma/ml sperme lososa DNA koja je bila razdijeljena pomoću sonikacije i denaturiranja i 106 CFM/ml zarezom-prevedene cDNA probe. Hybridization was performed for 18 hours at 42ºC in a solution containing 10% (m/v) dextran sulfate, 50% (m/v) deionized formamide, 750 mM NaCl, 75 mM Na-citrate, 20 mM Na2HPO4, pH 6.5, 0.1% SDS, 0.02% (w/v) bovine serum albumin (BSA), 0.02% (w/v) Ficoll-400, 0.02% (w/v) polyvinylpyrrolidone, 100 micrograms/ml of salmon sperm DNA that had been fragmented by sonication and denaturation and 106 CFM/ml nick-translated cDNA probe.

Autoradiograf probnog filtra je prikazan na slici 38. Putanja 1 sadrži 32P-obilježene restrikcijske fragmentne obilježivače. Putanje 2-4 sadrže RNA jetre čimpanze kao što slijedi: putanja 2 sadrži 30 mikrograma ukupne RNA; putanja 3 sadrži 30 mikrograma poli A- RNA; i putanja 4 sadrži 20 mikrograma poli A+ RNA. Kao što je prikazano na slici 32, jetra čimpanze sa NANBH sadrži heterogenu populaciju vezane poli A+ molekule koja hidrolizira prema HCV cDNA probi i koja se javlja u veličini od oko 5000 do oko 11000 nukleotida. oVa RNA, koja hidrolizira prema HCV cDNA, može predstavljati virusne genome i/ili specifične transkripte virusnog genoma. An autoradiograph of the test filter is shown in Figure 38. Lane 1 contains 32P-labeled restriction fragment markers. Lanes 2-4 contain chimpanzee liver RNA as follows: lane 2 contains 30 micrograms of total RNA; lane 3 contains 30 micrograms of poly A-RNA; and lane 4 contains 20 micrograms of poly A+ RNA. As shown in Figure 32, chimpanzee livers with NANBH contain a heterogeneous population of bound poly A+ molecules that hydrolyze the HCV cDNA probe and range in size from about 5,000 to about 11,000 nucleotides. oVa RNA, which hydrolyzes towards HCV cDNA, may represent viral genomes and/or specific transcripts of the viral genome.

Eksperiment opisan u poglavlju IV.C.2., niže, konzistentan je sa sugestijom da HCV sadrži RNA genom. The experiment described in Chapter IV.C.2., below, is consistent with the suggestion that HCV contains an RNA genome.

IV.C.2. Identifikacija HCV izvedene RNA u serumu inficirane individue IV.C.2. Identification of HCV-derived RNA in the serum of an infected individual

Nukleinske kiseline su ekstrahirane iz partikula izoliranih iz plazme visokog titra čimpanze NANBH kao što je opisano u poglavlju IV.A.1. Alikvot (ekvivalentan jednom ml originalne plazme) izoliranih nukleinskih kiselina ponovo je suspendiran u 20 mikrolitara 50 mM Hepes, pH 7,5, 1 mm EDTA i 16 mikrograma/ml kvasac topljiv RNA. Uzorci su denaturirani kuhanjem tijekom 5 minuta i zatim trenutnim zamrzavanjem, i tretirani su sa RNase A (5 mikrolitara koji sadrži 0,1 mg/ml RNase A u 25 mM EDTA, 40 mM Hepes, pH 7,5) ili sa DNase I (5 mikrolitara koji sadrži 1 jedinicu DNase I u 10 mM MgCl2, 25 mM Hepes, pH 7,5); kontrolni uzorci su inkubirani bez enzima. Prazeća onkubacija, dodaje se 230 mikrolitara ledeno hladnog 2xSSC koji sadrži 2 mikrogram/ml kvasac topljivog RNA i uzorci se filtriraju na nitroceluloznom filtru. Nucleic acids were extracted from particles isolated from high titer chimpanzee NANBH plasma as described in Section IV.A.1. An aliquot (equivalent to one ml of original plasma) of isolated nucleic acids was resuspended in 20 microliters of 50 mM Hepes, pH 7.5, 1 mM EDTA, and 16 micrograms/ml yeast soluble RNA. Samples were denatured by boiling for 5 min followed by flash freezing, and were treated with RNase A (5 microliters containing 0.1 mg/ml RNase A in 25 mM EDTA, 40 mM Hepes, pH 7.5) or with DNase I ( 5 microliters containing 1 unit of DNase I in 10 mM MgCl2, 25 mM Hepes, pH 7.5); control samples were incubated without enzyme. Following incubation, 230 microliters of ice-cold 2xSSC containing 2 micrograms/ml yeast soluble RNA is added and samples are filtered on a nitrocellulose filter.

Filtri se hibridiziraju sa cDNA probom iz klona 81, koja je bila 32P-obilježena zarez-translacijom. Slika 39 prikazuje autoradiograf filtra. Hibridizacijski signali su detektirani u DNase tretiranim i kontrolnim uzorcima (putanje 2 i 1), ali nisu detektirani u RNase tretiranom uzorku (putanja 3). Tako, RNase A tretman dakle razara nukleinske kiseline izolirane iz partikula i DNase I tretman nema efekta, što strogo sugerira da je HCV genom sastavljen od RNA. Filters are hybridized with a cDNA probe from clone 81, which has been 32 P-labeled by spot-translation. Figure 39 shows the autoradiograph of the filter. Hybridization signals were detected in the DNase-treated and control samples (lanes 2 and 1), but not in the RNase-treated sample (lane 3). Thus, RNase A treatment destroys the nucleic acid isolated from the particles and DNase I treatment has no effect, which strongly suggests that the HCV genome is composed of RNA.

IV.C.3. Detekcija pojačanih HCV sekvenci nukleinske kiseline izvedene iz HCV sekvenci nukleinskih kiselina u jetri i plazma vrsta iz čimpanzi sa NANBH IV.C.3. Detection of amplified HCV nucleic acid sequences derived from HCV nucleic acid sequences in liver and plasma species from chimpanzees with NANBH

HCV nukleinske kiseline prisutne u jetri i plazmi čimpanzi sa NANBH, i kontrolnih čimpanzi se pojačavaju korištenjem uglavnom reakcije polimeraza lanca PCR tehnike koju je opisao Saiki et al. (1986). Primarni oligonukleotidi su izvedeni iz HCV cDNA sekvenci u klonu 81 ili klonovima 36 i 37. Ojačane sekvence su detektirane gel-elektroforezom i Southern bojanjem, koristeći kao probe odgovarajući cDNA olimer sa sekvencom iz područja između, ali ne uključujući, dva primata. HCV nucleic acids present in the liver and plasma of chimpanzees with NANBH and control chimpanzees are amplified using mainly the polymerase chain reaction PCR technique described by Saiki et al. (1986). Primary oligonucleotides were derived from the HCV cDNA sequence in clone 81 or clones 36 and 37. Amplified sequences were detected by gel electrophoresis and Southern staining, using as probes the corresponding cDNA polymerase with a sequence from the region between, but not including, the two primates.

Uzorci RNA koji sadrže HCV sekvence trebaju se ispitati pomoću sustava pojačavanja gdje su izolirani biopsijom jetre čimpanze sa NANBH i iz dva kontrolna čimpanze. Izoliranje RNA frakcije pomoću postupka guadinij-tiocijanata opisan je u poglavlju IV.C.1. RNA samples containing HCV sequences should be tested using an amplification system where they were isolated from a liver biopsy of a chimpanzee with NANBH and from two control chimpanzees. Isolation of the RNA fraction using the guadinium-thiocyanate procedure is described in Chapter IV.C.1.

Uzorci RNA koji su ispitani sustavom pojačavanja također su izolirani iz plazmi dva čimpanze sa NANBH i iz kontrolnog čimpanze, kao i iz rezervi plazmi kontrolnih čimpanzi. jEdan inficirani čimpanza je imao CID/ml jednak ili veći od 106, a drugi inficirani čimpanza je imao CID/ml jednak ili veći od 105. RNA samples tested by the amplification system were also isolated from the plasma of two chimpanzees with NANBH and from a control chimpanzee, as well as from plasma reserves of control chimpanzees. jOne infected chimpanzee had a CID/ml equal to or greater than 106, and the other infected chimpanzee had a CID/ml equal to or greater than 105.

Nukleinske kiseline su ekstrahirane iz plazme kao što slijedi. Bilo 0,1 ml ili 0,1 ml plazme je razrijeđeno do krajnjeg volumena od 0,1 ml, sa TENB/proteinase K/SDS otopinom (0,05 M Tris-HCI, pH 8,0 0,001 M EDTA, 0,1 M NaCl, 1 mg/ml proteinze K i 0,5% SDS) koji sadrži 10 mikrograma/ml poliadenilske kiseline, i inkubira se na 37ºC 60 minuta. Poslije ovog proteinaza K razaranja, frakcije rezultantne plazme su deproteinizirane ekstrakcijom sa TE (10,0 mM Tris-HCI, pH 8,0 1 mM EDTA) zasićenog fenola. Fenolska faza je odvojena centrifugiranjem i ponovno ekstrahirana sa TENB koja sadrži 0,1% SDS. Dobivene vodene faze iz svake ekstrakcije su sakupljene i ekstrahirane dvaput s jednakim volumenom fenol/kloroform/izoamil alkohola /1:1(99:2)/, i zatim dva puta s jednakim volumenom 99:1 smjese kloroform/izoamil alkohol. Slijedi razdvajanje faza centrifugiranjem, vodena faza se dovodi na krajnju koncentraciju od 0,2 M Na-acetata i nukleinske kiseline se talože dodavanjem dva volumena alkohola. Složene nukleinske kiseline se izdvajaju ultracentrifugiranjem u SW 41 rotoru na 38 K tijekom 60 minuta na 4ºC. Nucleic acids were extracted from plasma as follows. Either 0.1 ml or 0.1 ml of plasma was diluted to a final volume of 0.1 ml, with TENB/proteinase K/SDS solution (0.05 M Tris-HCl, pH 8.0 0.001 M EDTA, 0.1 M NaCl, 1 mg/ml proteinase K and 0.5% SDS) containing 10 micrograms/ml polyadenylic acid, and incubated at 37ºC for 60 minutes. After this proteinase K digestion, the resulting plasma fractions were deproteinized by extraction with TE (10.0 mM Tris-HCl, pH 8.0 1 mM EDTA) saturated phenol. The phenolic phase was separated by centrifugation and re-extracted with TENB containing 0.1% SDS. The resulting aqueous phases from each extraction were collected and extracted twice with an equal volume of phenol/chloroform/isoamyl alcohol /1:1(99:2)/, and then twice with an equal volume of a 99:1 mixture of chloroform/isoamyl alcohol. The phases are separated by centrifugation, the aqueous phase is brought to a final concentration of 0.2 M Na-acetate and the nucleic acids are precipitated by adding two volumes of alcohol. Complex nucleic acids are separated by ultracentrifugation in a SW 41 rotor at 38 K for 60 minutes at 4ºC.

Dodatno gornjem, plazma čimpanze visokog titra i rezerva kontrolne plazme alternativno su ekstrahirani sa 50 mikrograma poli A nosača postupkom Chomcyzski i Sacchi (1987). Ovaj postupak koristi kiselu guanidinij-tiocijanat ekstrakciju. RNA je izdvojena centrifugiranjem na 10000 okr/min tijekom 10 minuta na 4ºC na Eppendorf mikrofugi. In addition to the above, high titer chimpanzee plasma and control plasma pool were alternately extracted with 50 micrograms of poly A carrier by the method of Chomcyzski and Sacchi (1987). This procedure uses acid guanidinium thiocyanate extraction. RNA was isolated by centrifugation at 10,000 rpm for 10 minutes at 4ºC on an Eppendorf microfuge.

U dva navrata, prije sinteze cDNA u PCR reakciji, nikleinske kiseline su ekstrahirane iz plazme pomoću proteinske K/SDS/fenol metode i dalje pročišćavane vezanjem i eluiranjem iz S i S Eluitip-R klona. Praćen je postupak prema uputstvima proizvođača. On two occasions, prior to cDNA synthesis in the PCR reaction, nucleic acids were extracted from plasma using the protein K/SDS/phenol method and further purified by binding and elution from S and S Eluitip-R clones. The procedure was followed according to the manufacturer's instructions.

cDNA korištena kao šablona za PCR reakciju je izvedena iz nukleinskih kiselina (bilo ukupnih nukleinskih kiselina ili RNA) dobivenih kao što je opisano naprijed. Slijedi taloženje etanola, staložene nukleinske kiseline se suše i ponovno suspendiraju u DEPC tretiranoj destiliranoj vodi. The cDNA used as a template for the PCR reaction is derived from nucleic acids (either total nucleic acids or RNA) obtained as described above. Following ethanol precipitation, the precipitated nucleic acids are dried and resuspended in DEPC-treated distilled water.

Sekundarne strukture u nukleinskim kiselinama su raskinute grijanjem na 65ºC tijekom 10 minuta i uzorci su odmah ohlađeni na ledu. cDNA je sintetizirana korištenjem 1 do 3 mikrograma ukupne RNA iz jetre čimpanze ili iz nukleinskih kiselina ili RNA ekstrahiranih iz 10 do 100 mikrolitara plazme. Sinteza koristi reverznu transkriptazu i izvodi se u 25 mikrolitarskoj reakciji korištenjem postupka koji je specificiran proizvođač, BRL. Primari za cDNA sintezu su oni također korišteni u PCR reakciji, opisanoj niže. Sve reakcijske smjese za cDNA sintezu su sadržavale 23 jedinice RNase indikatora, RNASIN (Fisher/Promega). Poslije cDNA sinteze, reakcijske smjese se razrijede vodom, kuhaju 10 minuta i naglo hlade na ledu. Secondary structures in nucleic acids were disrupted by heating at 65ºC for 10 minutes and samples were immediately cooled on ice. cDNA was synthesized using 1 to 3 micrograms of total RNA from chimpanzee liver or from nucleic acids or RNA extracted from 10 to 100 microliters of plasma. Synthesis uses reverse transcriptase and is performed in a 25 microliter reaction using the procedure specified by the manufacturer, BRL. Primers for cDNA synthesis are those also used in the PCR reaction, described below. All reaction mixtures for cDNA synthesis contained 23 units of the RNase indicator, RNASIN (Fisher/Promega). After the cDNA synthesis, the reaction mixtures are diluted with water, boiled for 10 minutes and suddenly cooled on ice.

PCR reakcije se izvode uglavnom prema uputstvima proizvođača (Getus-Perkin-Elmer) osim pri dodavanju 1 mikrograma RNase A. Reakcije se izvode u konačnom volumenu od 100 mikrolitara. PCR se izvodi tijekom 35 ciklusa, korištenjem režima od 37,72 i 94ºC. PCR reactions are performed mainly according to the manufacturer's instructions (Getus-Perkin-Elmer) except for the addition of 1 microgram of RNase A. Reactions are performed in a final volume of 100 microliters. PCR is performed for 35 cycles, using regimes of 37.72 and 94ºC.

Primari za cDNA sintezu za PCR reakciju se izvode iz HCV cDNA sekvenci u klonu 81, klonu 36 ili klonu 37. (HCV cDNA sekvence klona 81, 36 i 37b su prikazane na slikama 4, 5, odnosno 10). Sekvence od dva 16-mer primara izvedene iz klona 81 bile su: Primers for cDNA synthesis for the PCR reaction are derived from HCV cDNA sequences in clone 81, clone 36 or clone 37. (HCV cDNA sequences of clones 81, 36 and 37b are shown in Figures 4, 5 and 10, respectively). The sequences of two 16-mer primers derived from clone 81 were:

5’ CAA TCA TAC CTG ACa G 3’ 5' CAA TCA TAC CTG ACa G 3'

i and

5’ GAT AAC CTC TGC CTG A 3’ 5' GAT AAC CTC TGC CTG A 3'

Sekvenca primara iz klona 36 je bila: The sequence of the primers from clone 36 was:

5’ GCA TGT CAT GAT GTA T 3’ 5' GCA TGT CAT GAT GTA T 3'

Sekvenca primara iz klona 37b je bila: The sequence of the primers from clone 37b was:

5’ ACA ATA CGT GTG TCA C 3’ 5' ACA ATA CGT GTG TCA C 3'

U PCR reakcijama, primarni parovi su sastavljeni bilo od dva 16-mer izvedenih iz klona 81 ili 16-mer iz klona 36 i 16-mer iz klona 37b. PCR reakcijski produkti su analizirani razdvajanjem produkta pomoću alkalne gel-elektroforeze, praćene Southern bojanjem, i detekcijom pojačanih HCV cDNA sekvenci sa 32P-obilježenom unutrašnjom oligonukleotidnom probom izvedenom iz područja HCV cDNA koja ne preklapa primare. PCR reakcijske smjese se ekstrahiraju sa fenol/kloroformom i nukleinske kiseline iz vodene faze solju i etanolom. Staložene nukleinske kiseline se sakupljaju centrifugiranjem, otapaju u destiliranoj vodi. Alikvoti uzoraka se podvrgavaju elektrolizi na 1,8% alkalnim agaroza gelovima. Jednostruka DNA od 60, 108 i 161 nukleotida dužine se zajedno elektroforezirane na gelovima kao obilježivači molekularne mase. Poslije elektroforeze, cDNA na gelu se prevodi u “Biora Zeta probu” na papiru. Prehibridizacija i hibridizacija i uvjeti pranja su oni specificirani od proizvođača (Biorad). In PCR reactions, primer pairs were composed of either two 16-mers derived from clone 81 or a 16-mer from clone 36 and a 16-mer from clone 37b. PCR reaction products were analyzed by product separation using alkaline gel electrophoresis, followed by Southern staining, and detection of amplified HCV cDNA sequences with a 32P-labeled internal oligonucleotide probe derived from the region of HCV cDNA that does not overlap the primers. PCR reaction mixtures are extracted with phenol/chloroform and nucleic acids from the aqueous phase with salt and ethanol. Precipitated nucleic acids are collected by centrifugation, dissolved in distilled water. Aliquots of samples are subjected to electrolysis on 1.8% alkaline agarose gels. Single-stranded DNA of 60, 108 and 161 nucleotides in length were electrophoresed together on gels as markers of molecular mass. After electrophoresis, the cDNA on the gel is translated into the "Biora Zeta probe" on paper. Prehybridization and hybridization and washing conditions are those specified by the manufacturer (Biorad).

Probe korištene za detekciju hibridizacije pojačanih HCV cDNA sekvenci su kao što slijedi. Kada se par PCR primara izvede iz klona 81, proba je bila 108-mer se sekvencom koja odgovara onoj koja je locirana u području između sekvenci dva primara. Kada se par PCR primara izvede iz klonova 36 i 37b, proba se translatorno zasijeca, HCV cDNA insert se izvodi iz klona 35. Primari su izvedeni iz nukleotida 155-170 inserta klona 37b i insert 206-268 klona 36, 3’-kraj HCV cDNA inserta u klonu 35 preklapa nukleotide 1-186 inserta u klonu 36; i 5’-kraj inserta klona 35 preklapa nukleotide 207-269 inserta u klonu 37b (usporedi slike 5,8 i 10). Tako, cDNA insert u klonu 35 obuhvaća dio područja između sekvenci klona 26 i 37b izvedenih primara i koristan je kao proba za pojačavanje sekvenci koje uključuju ove primare. Probes used for hybridization detection of amplified HCV cDNA sequences were as follows. When the PCR primer pair was derived from clone 81, the probe was 108-mer with a sequence corresponding to that located in the region between the sequences of the two primers. When a pair of PCR primers is derived from clones 36 and 37b, the probe is translationally cut, the HCV cDNA insert is derived from clone 35. The primers are derived from nucleotides 155-170 of clone 37b insert and insert 206-268 of clone 36, 3'-end of HCV The cDNA insert in clone 35 overlaps nucleotides 1-186 of the insert in clone 36; and the 5'-end of the clone 35 insert overlaps nucleotides 207-269 of the insert in clone 37b (compare Figures 5, 8 and 10). Thus, the cDNA insert in clone 35 encompasses part of the region between the clone 26 and 37b sequences of the derived primers and is useful as a probe for amplifying sequences involving these primers.

Analiza RNA iz jetrenih vrsta koristila je prema gornjem postupku oba seta primara i proba. RNA iz jetre tri čimpanze sa NANBH daje pozitivne hibridizacijske rezultate za pojačane sekvence očekivane veličine (161 i 586 nukleotida za 81 i 36 i 37b), mada su kontrolne čimpanze dale negativne hibridizacijske rezultate. Isti rezultati se postižu kada se eksperiment ponovi tri puta. Analysis of RNA from liver species used both sets of primers and probes according to the above procedure. RNA from the liver of three chimpanzees with NANBH gave positive hybridization results for amplified sequences of the expected size (161 and 586 nucleotides for 81 and 36 and 37b), although control chimpanzees gave negative hybridization results. The same results are obtained when the experiment is repeated three times.

Analiza nukleinskih kiselina i RNA iz plazme izvedena je također prema gornjem postupku korištenjem primata i probe 81. Plazme su bile iz dva čimpanze sa NANBH, iz kontrolnog čimpanze i rezervi plazme iz kontrolnih čimpanzi. Obje NANBH plazme su sadržavale nukleinske kiseline/RNA koje daju pozitivne rezultate u PCR pojačanim pokusima, mada obje kontrolne plazme daju negativne rezultate. Ovi rezultati su ponovljeno dobiveni više puta. Analysis of nucleic acids and RNA from plasma was also performed according to the above procedure using primates and sample 81. Plasmas were from two chimpanzees with NANBH, from a control chimpanzee and plasma reserves from control chimpanzees. Both NANBH plasmas contained nucleic acids/RNAs that gave positive results in PCR amplification experiments, although both control plasmas gave negative results. These results have been repeated several times.

IV.D. Radioimunoispitivanje za detekciju HCV antitijela u serumu inficiranih individua IV.D. Radioimmunoassay for the detection of HCV antibodies in the serum of infected individuals

Radioispitivanja čvrste faze radi detektiranja antitijela prema HCV antigenu su razvijena bazirano na Tsu i Herzenberg (1980). Mikrotitarske posude (Imulon 2, iako uklonjive trake) su presvučene s pročišćavanim polipeptidom koji sadrži HCV epitope. Presvučene ploče su inkubirane s ljudskim uzorcima seruma za koje se sumnja da sadrže antitijela prema HCV epitopima ili odgovarajućih kontrola. Tijekom inhubacije, antitijelo, ako je prisutno, imunološki se veže za antigen čvrste faze. Poslije uklanjanja nevezanog materijala i pranja mikrotitarskih posuda, detektiraju se kompleksi humano antitijelo-NANBV antigen, inkubacijom sa 125I-obilježenim antihumanim imunoglobulinom ovce. Nevezano obilježeno antitijelo se uklanja usisavanjem i posude se ispiraju. Određuje se radioaktivnost u individualnim izvorima; količina vezanog humanog anti-HCV antitijela je srazmjerna radioaktivnosti izvora. Solid-phase radioassays for the detection of antibodies to HCV antigen were developed based on Tsu and Herzenberg (1980). Microtiter plates (Imulon 2, although removable strips) are coated with purified polypeptide containing HCV epitopes. Coated plates were incubated with human serum samples suspected of containing antibodies to HCV epitopes or appropriate controls. During incubation, the antibody, if present, binds immunologically to the solid phase antigen. After removing the unbound material and washing the microtiter vessels, human antibody-NANBV antigen complexes are detected by incubation with 125I-labeled sheep antihuman immunoglobulin. Unbound labeled antibody is removed by suction and the dishes are washed. The radioactivity in individual sources is determined; the amount of bound human anti-HCV antibody is proportional to the radioactivity of the source.

IV.D.1. Pročišćavanje sjedinjenog polipeptida SOD-NANB5-1-1 IV.D.1. Purification of the SOD-NANB5-1-1 fusion polypeptide

Pročišćen polipeptid SOD-NANB5-1-1 izražen u rekombinantnoj bakteriji kao što je opisano u poglavlju IV.B.1. je pročišćen iz rekombinantne E. coli diferencijalnom ekstrakcijom stanica ekstrakta sa ureom i zatim kromatografijom na anionskim i kationskim izmjenjivačkim kolonama kao što slijedi. Purified SOD-NANB5-1-1 polypeptide expressed in recombinant bacteria as described in section IV.B.1. was purified from recombinant E. coli by differential extraction of cell extracts with urea followed by chromatography on anion and cation exchange columns as follows.

Otopljene stanice iz 1 litre kulture su ponovno suspendirane u 10 ml 20% (m/v) saharoze koja sadrži 0,01 M Tris-HCI, pH 8,0, i dodaje se 0,4 ml 0,5 M EDTA, pH 8,0. Poslije 5 minuta na 0ºC, smjesa se centrifugira na 4000 g 10 minuta. Dobivena tableta se ponovno suspendira u 10 ml 25% (m/v) saharoze koja sadrži 0,05 Tris-HCI, pH 8,0, 1 mM fenilmetilsulfonilfluorida (PMSF) i 1 mikrogram/ml pepstatina A, što je zatim prašeno dodavanjem 0,5 ml lizozima (10 mg/ml) i inkubacijom na 0ºC 10 minuta. Poslije dodavanja 10 ml 1% (v/v) Triton X-100 u 0,05 M Tris-HCI, 1 mM EDTA, smjesa se inkubira dodatnih 10 minuta na 0ºC uz povremeno miješanje. Dobivena viskozna otopina se homogenizira propuštanjem 6 puta kroz sterilnu 20-mjernu hipodermnu iglu i centrifugira na 4000 g 10 minuta. Thawed cells from 1 liter of culture were resuspended in 10 ml of 20% (w/v) sucrose containing 0.01 M Tris-HCl, pH 8.0, and 0.4 ml of 0.5 M EDTA, pH 8 was added. ,0. After 5 minutes at 0ºC, the mixture is centrifuged at 4000 g for 10 minutes. The resulting tablet was resuspended in 10 ml of 25% (w/v) sucrose containing 0.05 Tris-HCl, pH 8.0, 1 mM phenylmethylsulfonyl fluoride (PMSF) and 1 microgram/ml pepstatin A, which was then powdered by adding 0 .5 ml of lysozyme (10 mg/ml) and incubation at 0ºC for 10 minutes. After adding 10 ml of 1% (v/v) Triton X-100 in 0.05 M Tris-HCl, 1 mM EDTA, the mixture was incubated for an additional 10 minutes at 0ºC with occasional mixing. The obtained viscous solution is homogenized by passing it 6 times through a sterile 20-gauge hypodermic needle and centrifuged at 4000 g for 10 minutes.

Tablete koje sadrže SAD-NANB5-1-1 sjedinjen protein suotopljene u 5 ml uree u 0,02 M Tris-HCI, pH 8,0, 1 mM ditiotreitola (pufer A) i primjenjene na kolonu Q-Sepharose brzotokog uravnoteženja s puferom A. Polipeptid je eluiran s linearnim gradijentom 0,0 do 3,0 M NaCl u puferu A. Poslije eluiranja, frakcije su analizirane poliakrilamid gel-elektroforezom u prisutnosti SDS radi određivanja sadržaja SDS-NANB5-1-1. Frakcije koje sadrže ovaj polipeptid su sakupljene i dijalizirane protiv 6 M uree u 0,02 M natrij-fosfatnom puferu, pH 6,0, 1 mM ditiotreitol (pufer B). Dijaliziran uzorak je primijenjen na kolonu S-Sepharosa brzotokog uravnoteženja s puferom B i polipeptidi su eluirani s linearnim gradijentom od 0,0 do 3,0 M NaCl u puferu B. Frakcije su analizirane poliakrilamid gel-elektroforezom na prisutnost SOD-NANB5-1-1 i sakupljene su odgovarajuće frakcije. Tablets containing SAD-NANB5-1-1 fusion protein were co-dissolved in 5 ml urea in 0.02 M Tris-HCl, pH 8.0, 1 mM dithiothreitol (buffer A) and applied to a Q-Sepharose fast-flow column equilibrated with buffer A The polypeptide was eluted with a linear gradient of 0.0 to 3.0 M NaCl in buffer A. After elution, fractions were analyzed by polyacrylamide gel electrophoresis in the presence of SDS to determine the content of SDS-NANB5-1-1. Fractions containing this polypeptide were collected and dialyzed against 6 M urea in 0.02 M sodium phosphate buffer, pH 6.0, 1 mM dithiothreitol (buffer B). The dialyzed sample was applied to a fast-flow S-Sepharose column equilibrated with buffer B and polypeptides were eluted with a linear gradient from 0.0 to 3.0 M NaCl in buffer B. Fractions were analyzed by polyacrylamide gel electrophoresis for the presence of SOD-NANB5-1- 1 and the corresponding fractions were collected.

Konačni produkt SOD-NANB5-1-1 polipeptida je ispitan elektroforezom na poliakrilamid gelu u prisutnosti SDS. Zasnovano na ovoj analizi, preparat je bio više od 80% čistoće. The final product of the SOD-NANB5-1-1 polypeptide was examined by polyacrylamide gel electrophoresis in the presence of SDS. Based on this analysis, the preparation was more than 80% pure.

IV.D.2. Pročišćavanje sjedinjenog polipeptida SOD-NANB81 IV.D.2. Purification of the SOD-NANB81 fusion polypeptide

Sjedinjen polipeptid SOD-NANB81, izražen u rekombinantnoj bakteriji kao što je opisano u poglavlju IV.B.2., pročišćen je iz rekombinantne E. coli diferencijalnom ekstrakcijom stanice ekstrakta sa ureom, i zatim kromatografijom na anionskim i kationskim izmjenjivačkim kolonama korištenjem postupka opisanog za izoliranje sjedinjenog polipeptida SOD-NANB5-1-1 (vidi poglavlje IV.D.1.). The SOD-NANB81 fusion polypeptide, expressed in a recombinant bacterium as described in section IV.B.2., was purified from recombinant E. coli by differential extraction of the cell extract with urea, followed by chromatography on anion and cation exchange columns using the procedure described for isolation of the combined SOD-NANB5-1-1 polypeptide (see chapter IV.D.1.).

Konačni preparat SOD-NANB81 polipeptid je ispisan elektroforeznom na poliakrilamidnom gelu u prisutnosti SDS. Zasnovano na ovoj analizi, preparat je bio više od 50% čistoće. The final SOD-NANB81 polypeptide preparation was electrophoresed on a polyacrylamide gel in the presence of SDS. Based on this analysis, the preparation was more than 50% pure.

IV.D.3. Detektiranje antitijala HCV epitopima radioimunoispitivanjem čvrste faze IV.D.3. Detection of antibodies to HCV epitopes by solid phase radioimmunoassay

Uzorci seruma iz 32 pacijenta dijagnosticirani da imaju NANBH analizirani su radioimunoispitivanjem (RIA) radi određivanja antitijela prema HCV epitopima prisutnim u sjedinjenim polipeptidima SOD-NANB5-1-1 i SOD-NANB81. Serum samples from 32 patients diagnosed with NANBH were analyzed by radioimmunoassay (RIA) to determine antibodies to HCV epitopes present in the fused SOD-NANB5-1-1 and SOD-NANB81 polypeptides.

Mikrotitarske posude su prekrivene sa SOD-NANB5-1-1 ili SOD-NANB81, koji su djelomično pročišćeni prema poglavljima IV.D.1. i IV.D.2. Ispiranja su izvedena kao što slijedi. Microtiter plates were covered with SOD-NANB5-1-1 or SOD-NANB81, which were partially purified according to Sections IV.D.1. and IV.D.2. Washes were performed as follows.

100-mikrolitarski alikvoti koji sadrže 0,5 mikrograma SOD-NANB5-1-1 ili SOD-NANB81 u 0,125 M Na-boratnom puferu, pH 8,3, 0,075 M NaCl (BBS) se dodaje svakom izvoru mikrotitarske posude (Dynatech Immunol 2 Removawell Strips). Posuda se inkubira na 4ºC preko noći u vlažnoj komori, poslije čega se proteinska otopina uklanja i izvori se ispiru tri puta sa BBS koji sadrži 0,02% Triton X-100 (BBST). 100-microliter aliquots containing 0.5 micrograms of SOD-NANB5-1-1 or SOD-NANB81 in 0.125 M Na-borate buffer, pH 8.3, 0.075 M NaCl (BBS) were added to each well of a microtiter plate (Dynatech Immunol 2 Removewell Strips). The dish is incubated at 4ºC overnight in a humidified chamber, after which the protein solution is removed and the wells are washed three times with BBS containing 0.02% Triton X-100 (BBST).

Radi sprečavanja nespecifičnog vezanja, izvori se prevlače s goveđim albumin serumom (BSA) dodavanjem 100 mikrolitara 5 mg/ml otopine BSA u BBS i zatim inkubacijom na sobnoj temperaturi 1 sat; poslije ove inkubacije uklanja se BSA otopina. Polipeptidi u prevučenim izvorima reagiraju sa serumom dodavanjem 100 mikrolitara serumskih uzoraka razrijeđenih 1:100 u 0,01 M Na-fosfatnom puferu, pH 7,2 0,15 M NaCl (PBS) koji sadrži 10 mg/ml BSA, i inkubiranjem seruma koji sadrži izvore 1 sat na 37ºC. Poslije inkubacije, serumski uzorci se uklone usisavanjem i izvori se ispiru 5 puta sa BBST. To prevent nonspecific binding, wells are coated with bovine serum albumin (BSA) by adding 100 microliters of a 5 mg/ml solution of BSA in BBS and then incubating at room temperature for 1 hour; after this incubation, the BSA solution is removed. Polypeptides in coated wells are reacted with serum by adding 100 microliters of serum samples diluted 1:100 in 0.01 M Na-phosphate buffer, pH 7.2 0.15 M NaCl (PBS) containing 10 mg/ml BSA, and incubating the serum that contains springs for 1 hour at 37ºC. After incubation, the serum samples are removed by suction and the wells are washed 5 times with BBST.

Anti-NANB5-1-1 i anti-NANB81 vezani za sjedinjene polipeptide su određeni vezanjem 125I-obilježenog F’(ab)2 ovce anti-humanog IgG radi prevlačenja izvora. Alikvori od 100 mikrolitara obilježene probe (specifične aktivnosti 5-20 mikrokiri/mikrogram) dodaju se svakom izvoru i posude se inkubiraju na 37ºC 1 sat, višak probe se ukloni usisavanjem i 5 puta ispire sa BBST. Količina radioaktivnosti vezane za svaki izvor je određena brojanjem na brojaču koji detektira gama-zračanje. Anti-NANB5-1-1 and anti-NANB81 bound to the pooled polypeptides were determined by binding of 125I-labeled F'(ab)2 sheep anti-human IgG to cover the source. Aliquots of 100 microliters of labeled sample (specific activity 5-20 microcuries/microgram) are added to each well and the dishes are incubated at 37ºC for 1 hour, excess sample is aspirated off and washed 5 times with BBST. The amount of radioactivity associated with each source is determined by counting on a counter that detects gamma radiation.

Rezultati mjerenja anti-NANB5-1-1 i anti-NANB81 u individuama sa NANBH su dani u tablici 1. The results of anti-NANB5-1-1 and anti-NANB81 measurements in individuals with NANBH are given in Table 1.

Tablica 1 Table 1

Detekcija anti-5-1-1 i anti-81 u serumu NANB, HAV i HAB hepatitis pacijenta Detection of anti-5-1-1 and anti-81 in the serum of NANB, HAV and HAB hepatitis patients

[image] [image] [image] [image]

1 Sekvencijalni serumski uzorci raspoloživi iz ovih pacijenata 1 Sequential serum samples available from these patients

2 IVD intravensko korištenje lijeka 2 IVD intravenous drug use

3 AVH akutni virusni hepatitis 3 AVH acute viral hepatitis

4 Post transfuzija 4 Post transfusion

Kao što se vidi iz tablice 1, 19 od 32 seruma pacijenta dijagnosticiranih da imaju NANBH bilo je pozitivno u odnosu na antitijela usmjerena protiv HCV epitopa prisutnih u SOD-NANB5-1-1 i SOD-NANB81. As seen in Table 1, 19 of 32 sera from patients diagnosed as having NANBH were positive for antibodies directed against HCV epitopes present in SOD-NANB5-1-1 and SOD-NANB81.

Međutim, uzorci seruma koji su bili pozitivni podjednako imunološki reaktivni sa SOD-NANB5-1-1 i NANB81. Uzorci seruma pacijenta br. 1 su bili pozitivni prema SOD-NANB81 ali ne prema SOD-NANB5-1-1. Uzorci seruma pacijenata br. 10, 15 i 17 bili su pozitivni prema SOD-NANB5-1-1, ali ne prema SOD-NANB81. Uzorci seruma pacijenata br. 3, 8, 11 i 12 reagiraju podjednako s oba sjedinjena polipeptida dok su uzorci seruma br. 2, 4, 7 i 9 bili 2-3 puta više u reakciji prema SOD-NANB5-1-1 nego prema SOD-NANB81. Ovi rezultati sugeriraju da NANB5-1-1 i NANB81 mogu sadržavati bar tri prazna epitopa; npr. moguće je da svaki polipeptid sadrži bar 1 jedinični epitop i da dva polipeptida dijele bar 1 epitop. However, serum samples that were positive were equally immunoreactive with SOD-NANB5-1-1 and NANB81. Serum samples of patient no. 1 were positive for SOD-NANB81 but not for SOD-NANB5-1-1. Serum samples of patients no. 10, 15 and 17 were positive for SOD-NANB5-1-1 but not for SOD-NANB81. Serum samples of patients no. 3, 8, 11 and 12 react equally with both combined polypeptides, while serum samples no. 2, 4, 7 and 9 were 2-3 times more reactive towards SOD-NANB5-1-1 than towards SOD-NANB81. These results suggest that NANB5-1-1 and NANB81 may contain at least three empty epitopes; eg, it is possible for each polypeptide to contain at least 1 single epitope and for two polypeptides to share at least 1 epitope.

IV.D.4. Specifičnost čvrsto fazne RIA za NANBH IV.D.4. Specificity of solid phase RIA for NANBH

Specifičnost čvrsto-fazne RIA za NANBH je testirana korištenjem ispitivanja seruma pacijenata inficiranih sa HAV ili HBV i seruma kontrolnih individua. Ispitivanja korištenjem djelomično pročišćenih SOD-NANB5-1-1 i SOD-NANB81 su uglavnom izvedeni kao što je za serum pacijenata prethodno bilo dijagnosticirano da imaju HAV ili HBV ili iz individua koji su bili banka davalaca krvi. Rezultati za serume iz HAV ili HBV inficiranih pacijenata prikazani su u tablici 1. RIA je testirana korištenjem 11 serumskih vrsta iz HAV inficiranih pacijenata i 20 serumskih vrsta iz HBV inficiranih pacijenata. Kao što je prikazano u tablici 1, nijedan od ovih seruma ne daje pozitivnu imunološku reakciju sa sjedinjenim polipeptidima koji sadrže BB-NANBV epitope. The specificity of the solid-phase RIA for NANBH was tested using sera from patients infected with HAV or HBV and sera from control individuals. Assays using partially purified SOD-NANB5-1-1 and SOD-NANB81 were generally performed as sera from patients previously diagnosed as having HAV or HBV or from blood banked individuals. Results for sera from HAV- or HBV-infected patients are shown in Table 1. The RIA was tested using 11 sera from HAV-infected patients and 20 sera from HBV-infected patients. As shown in Table 1, none of these sera gave a positive immune reaction with the pooled polypeptides containing the BB-NANBV epitopes.

RIA korištenje NANB5-1-1 antigena je izvršeno radi određivanja reaktivnosti seruma iz kontrolnih individua. Od 230 serumskih uzoraka dobivenih iz populacije normalnih davalaca krvi, samo 2 daju pozitivne reakcije u RIA (podaci nisu prikazani). Mogući je da dva davaoca krvi kojima pripadaju ovi serumski uzorci pripadaju individuama prethodno izlaženim HCV. RIA using NANB5-1-1 antigen was performed to determine the reactivity of serum from control individuals. Of 230 serum samples obtained from a population of normal blood donors, only 2 gave positive reactions in the RIA (data not shown). It is possible that the two blood donors to whom these serum samples belong belong to individuals previously exposed to HCV.

IV.D.5. Reaktivnost NANB5-1-1 tijekom NANBH infekcije IV.D.5. NANB5-1-1 reactivity during NANBH infection

Prisutni anti-NANB5-1-1 antitijela tijekom NANBH infekcije 2 pacijenta i 4 čimpanzi praćeno je pomoću RIA, opisano u poglavlju IV.D.3. K tome, RIA je korištena za određivanje prisutnosti ili odsutnosti anti-NANB5-1-1 antitijala tijekom infekcije HAV i HBV u inficiranim čimpanzama. The presence of anti-NANB5-1-1 antibodies during NANBH infection of 2 patients and 4 chimpanzees was monitored by RIA, described in Section IV.D.3. Additionally, RIA was used to determine the presence or absence of anti-NANB5-1-1 antibodies during HAV and HBV infection in infected chimpanzees.

Rezultati koji su prikazani u tablici 2 pokazuju da je sa čimpanzinim i ljudskim anti-NANB5-1-1 antitijelima detektiran slijedeći set kutnih faza NANBH infekcije. Anti-NANB5-1-1 antitijela nisu detektirana u serumskim uzorcima čimpanzi inficiranih sa HAV ili HBV. Tako, anti-NANB5-1-1 antitijela služe kao obilježivači za individualno izlaganje prema HCV. The results presented in Table 2 show that with chimpanzee and human anti-NANB5-1-1 antibodies, the following set of corner phases of NANBH infection was detected. Anti-NANB5-1-1 antibodies were not detected in serum samples from chimpanzees infected with HAV or HBV. Thus, anti-NANB5-1-1 antibodies serve as markers for individual exposure to HCV.

Tablica 2 Table 2

Serokonverzija u sekvencijskim serumskim uzorcima pacijenata s hepatitisom i čimpanzi korištenjem 5-1-1 antigena Seroconversion in sequential serum samples from hepatitis patients and chimpanzees using the 5-1-1 antigen

[image] [image]

T= dan od početnog uzorka T= day from initial sample

IV.E. Pročišćavanje poliklonskih serumskih antitijela prema NANB5-1-1 IV.E. Purification of polyclonal serum antibodies to NANB5-1-1

Na osnovi specifične imunološke reaktivnosti NANB5-1-1 polipeptida s antitijelima u serumskim uzorcima iz pacijenata sa NANBH, razvijena je metoda pročišćavanja serumskih antitijela koja reagiraju imunološki s epitopom u NANB5-1-1 polipeptid (vidi poglavlje IV.D.1.) je pripojen ne netopljiv nosač; spajanje je takvo da nepokretni polipeptid zadržava svoj afinitet za antitijelo prema NANB5-1-1, antitijelo u serumskim uzorcima je apsorbirano na polipeptidu vezanom na matrici. Poslije ispitivanja radi uklanjanja nespecifično vezanih materijala i nevezanih materijala, vezana tijela se oslobađaju iz vezanog SOD-HCV polipeptida promjenom pH i/ili haotropnim reagensima, npr. ureom. Based on the specific immunological reactivity of NANB5-1-1 polypeptide with antibodies in serum samples from patients with NANBH, a method was developed to purify serum antibodies that react immunologically with the epitope in NANB5-1-1 polypeptide (see chapter IV.D.1.) attached non-fusible carrier; coupling is such that the immobilized polypeptide retains its affinity for the antibody to NANB5-1-1, the antibody in serum samples is absorbed on the matrix-bound polypeptide. After testing to remove non-specifically bound materials and unbound materials, the bound bodies are released from the bound SOD-HCV polypeptide by changing pH and/or chaotropic reagents, eg, urea.

Nitrocelulozne membrane koje sadrže vezan NANB5-1-1 dobivaju se kao što slijedi. Nitrocelulozna membrana, 2,1 cm Sartorius od 0,2 mikronskih pora je isprana tri puta po tri minute sa BBS, SOD-NANB5-1-1 je vezan za membranu inkubiranjem pročišćenog preparata u BBS na sobnoj temperaturi tijekom 2 sata; alternativno inkubiranjem na 4ºC preko noći. Filtar je tri puta ispiran sa BBS, svaki put po tri minute. Preostala aktivna mjesta na membrani su blokirana sa BSA inkubacijom sa 5 mg/ml BSA otopine tijekom 30 minuta. Višak BSA je uklonjen ispiranjem membrane 5 puta i tri puta destiliranom vodom. Membrana koja sadrži virusni antigen i BSA se tada tretira sa 0,05 M glicin hidrokloridom, pH 2,5, o,10 M NaCl (GlyHCI) tijekom 15 minuta, zatim se 3 minute ispire sa PBS. Nitrocellulose membranes containing bound NANB5-1-1 were prepared as follows. A nitrocellulose membrane, 2.1 cm Sartorius of 0.2 micron pores was washed three times for three minutes each with BBS, SOD-NANB5-1-1 was bound to the membrane by incubating the purified preparation in BBS at room temperature for 2 hours; alternatively by incubating at 4ºC overnight. The filter was washed three times with BBS, each time for three minutes. The remaining active sites on the membrane were blocked with BSA by incubation with 5 mg/ml BSA solution for 30 minutes. Excess BSA was removed by washing the membrane 5 times and three times with distilled water. The membrane containing viral antigen and BSA is then treated with 0.05 M glycine hydrochloride, pH 2.5, 0.10 M NaCl (GlyHCl) for 15 minutes, then washed with PBS for 3 minutes.

poliklonska anti-NANB5-1-1 antitijela su izolirana inkubiranjem membrana koje sadrže sjedinjen polipeptid sa serumom iz individua sa NANBH tijekom 2 sata. Poslije inkubacije, filtri su ispirani 5 puta sa BBS i dva puta destiliranom vodom. Vezana antitijela su tada eluirana sa svakog filtra s 5 eluiranja GlyHCI, tri minute po eluiranju. pH eluenta je podešen na 8,0 sakupljanjem svakog eluata u epruvetu koja sadrži 2,0 M Tris-HCI, pH 8,0. Izdvajanjem anti-NANB5-1-1 antitijela poslije afinitetne kromatografije je oko 50%. polyclonal anti-NANB5-1-1 antibodies were isolated by incubating membranes containing the fusion polypeptide with serum from individuals with NANBH for 2 hours. After incubation, the filters were washed 5 times with BBS and twice with distilled water. Bound antibodies were then eluted from each filter with 5 elutions of GlyHCl, three minutes per elution. The pH of the eluent was adjusted to 8.0 by collecting each eluate in a tube containing 2.0 M Tris-HCl, pH 8.0. The extraction of anti-NANB5-1-1 antibodies after affinity chromatography is about 50%.

Nitrocelulozne membrane koje sadrže vezani virusni antigen mogu se koristiti više puta bez vidljivog opadanja kapaciteta vezanja. Pri ponovnom korištenju membrane, poslije eluiranja se antitijela isperu tri puta sa BBS po tri minute. Ona se čuva u BBS na 4ºC. Nitrocellulose membranes containing bound viral antigen can be used repeatedly without appreciable loss of binding capacity. When reusing the membrane, after elution, the antibodies are washed three times with BBS for three minutes each. It is stored in BBS at 4ºC.

IV.F. Dobivanje HCV partikula iz inficirane plazme korištenjem pročišćenih humanih poliklonskih anti-HCV antitijela; Hibridizacija nukleinske kiseline u dobivenim partikulama prema HCV cDNA IV.F. Obtaining HCV particles from infected plasma using purified human polyclonal anti-HCV antibodies; Nucleic acid hybridization in the obtained particles according to HCV cDNA

IV.F.1. Dobivanje HCV partikula iz inficirane plazme koristeći humana poliklonska anti-HCV antitijela IV.F.1. Recovery of HCV particles from infected plasma using human polyclonal anti-HCV antibodies

Kompleksni protein-nukleinska koselina, prisutni u infekcijskoj plazmi čimpanze sa NANBH su izolirani korištenjem pročišćenih humanih poliklonskih anti-HCV antitijela koja su vezana za polistiren kuglice. Protein-nuclein coselin complexes present in the infectious plasma of chimpanzees with NANBH were isolated using purified human polyclonal anti-HCV antibodies bound to polystyrene beads.

Poliklonska anti-NANB5-1-1 antitijela su pročišćena iz humanog seruma sa NANBH koristeći SOD-HCV polipeptid kodiran u 5-1-1. Metoda za pročišćavanje je opisana u poglavlju IV.E. Polyclonal anti-NANB5-1-1 antibodies were purified from human serum with NANBH using the SOD-HCV polypeptide encoded in 5-1-1. The purification method is described in Chapter IV.E.

Pročišćena anti-NANB5-1-1 antitijela su vezana za polistiren kuglice (1/4’’ promjera, Precision Plastic Ball Co., Chicago, Illinois) inkubiranjem svake na sobnoj temperaturi preko noći sa 1 ml antitijela (1 mikrogram/ml u boratnom puferu, pH 8,5). Poslije inkubacije preko noći, kuglice se ispiru jednom sa TBST (50 mM tris-HCI, pH 8,0, 150 mM NaCl, 0,03% (v/v)) i zatim fosfatnim puferom (PBS) koji sadrži 10 mg/ml BSA. Purified anti-NANB5-1-1 antibodies were bound to polystyrene balls (1/4" diameter, Precision Plastic Ball Co., Chicago, Illinois) by incubating each at room temperature overnight with 1 ml of antibody (1 microgram/ml in borate buffer, pH 8.5). After overnight incubation, the beads were washed once with TBST (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.03% (v/v)) and then with phosphate buffered saline (PBS) containing 10 mg/ml BSA.

Kontrolne kuglice su pripremljene na identičan način, osim što su pročišćena anti-NANB5-1-1 antitijela zamijenjena s potpunim humanim imunoglobulinom. Control beads were prepared in an identical manner, except that purified anti-NANB5-1-1 antibodies were replaced with whole human immunoglobulin.

Dobivanje HCV iz NANBH inficirane plazme čimpanze koristeći anti-NANB5-1-1 antitijela vezana na kuglice se izvodi kao što slijedi. Plazma čimpanze sa NANBH korištena je kao što je opisano u poglavlju IV.A.1. Alikvot (1 ml) NANBV inficirane plazme čimpanze je inkubirana 3 sata na 37ºC s pet kuglica presvučenih sa anti-NANB5-1-1 antitijelima ili s kontrolnim imunoglobulinima. Kuglice su ispirane tri puta sa TBST. Recovery of HCV from NANBH-infected chimpanzee plasma using bead-bound anti-NANB5-1-1 antibodies is performed as follows. Chimpanzee plasma with NANBH was used as described in section IV.A.1. An aliquot (1 ml) of NANBV-infected chimpanzee plasma was incubated for 3 hours at 37ºC with five beads coated with anti-NANB5-1-1 antibodies or with control immunoglobulins. The beads were washed three times with TBST.

IV.F.2. Hibridizacija nukleinske kiseline u dobivenim partikulama prema NANBV-cDNA IV.F.2. Nucleic acid hybridization in the obtained particles according to NANBV-cDNA

Komponenta nukleinske kiseline oslobođena iz partikula dobivenih sa anti-NANB5-1-1 antitijelima analizirana je na hibridizaciju prema HCV cDNA izvedenoj iz klona 81. The nucleic acid component released from particles obtained with anti-NANB5-1-1 antibodies was analyzed for hybridization to HCV cDNA derived from clone 81.

HCV partikule dobivene su iz NANBH inficirane plazme čimpanze, kao što je opisano u IV.F.1. Radi oslobađanja nukleinskih kiselina iz partikula, isprane kuglice se inkubiraju 60 minuta na 37ºC sa 0,2 ml po kuglici otopine koja sadrži proteinazu K (1 mg/ml), 10mM Trir-HCI, pH 7,5, 10 mM EDTA, 0,25% (v/v) SDS, 10 µg/ml otopljene kvasca RNA, i supernatantna otopina se ukloni. Supernatant se ekstrahira fenolom i kloroformom i nukleinske kiseline se talože etanolom preko noći na -20ºC. Talog nukleinske kiseline je sakupljen centrifugiranjem, osušen i otopljen u 50 mM hepes, pH 7,5. Duplicirani alikvoti topljivih nukleinskih kiselina iz uzoraka dobivenih iz kuglica obloženih s anti-NANB5-1-1 antitijelima i s kontrolnim kuglicama koje sadrže ukupni humani imunoglobulin su filtrirani na nitrocelulozne filtere. Filteri su hibridizirani sa 32P-obilježenom zarez-translatornom probom načinjenom iz pročišćenog HCV cDNA fragmenta u klonu 81. Metode za dobivanje probe i hibridizaciju su opisane u poglavlju IV.C.1. HCV particles were obtained from NANBH-infected chimpanzee plasma, as described in IV.F.1. To release nucleic acids from the particles, the washed beads are incubated for 60 minutes at 37ºC with 0.2 ml per bead of a solution containing proteinase K (1 mg/ml), 10 mM Trir-HCl, pH 7.5, 10 mM EDTA, 0, 25% (v/v) SDS, 10 µg/ml dissolved yeast RNA, and the supernatant solution was removed. The supernatant is extracted with phenol and chloroform and the nucleic acids are precipitated with ethanol overnight at -20ºC. The nucleic acid pellet was collected by centrifugation, dried and dissolved in 50 mM Hepes, pH 7.5. Duplicate aliquots of soluble nucleic acids from samples obtained from beads coated with anti-NANB5-1-1 antibodies and from control beads containing total human immunoglobulin were filtered onto nitrocellulose filters. Filters were hybridized with a 32P-labeled notch-translator probe made from a purified HCV cDNA fragment in clone 81. Methods for probe preparation and hybridization are described in Chapter IV.C.1.

Autoradiografi probnih filtara koji sadrži nukleinske kiseline iz partikula dobivenih pomoću kuglica koje sadrže anti-NANB5-1-1 antitijela su prikazana na slici 34. Ekstrakt dobiven korištenjem anti-NANB5-1-1 antitijela (A1, A2) daje jasne hibridizacijske signale u odnosu na kontrolni ekstrakt antitijela (A3, A4) i prema kontrolnoj kvasac RNA (B1, B2). Standardi koji sadrže lpg, 5pg i 10 pg pročišćenog cDNA fragmenta klona 81 su prikazani u CI-3. Autoradiographs of test filters containing nucleic acids from particles obtained using beads containing anti-NANB5-1-1 antibodies are shown in Figure 34. The extract obtained using anti-NANB5-1-1 antibodies (A1, A2) gives clear hybridization signals relative to to the control antibody extract (A3, A4) and to the control yeast RNA (B1, B2). Standards containing lpg, 5 pg and 10 pg of the purified cDNA fragment of clone 81 are shown in CI-3.

Ovi rezultati pokazuju partikule dobivene iz NANBH plazme pomoću anti-NANB5-1-1 antitijela sadrže nukleinske kiseline koje hibridiziraju sa HCV cDNA u klonu 81 i tako osiguravaju daljnju evidenciju da se cDNA u ovim klonovima izvodi iz etiološkog agensa za NANBH. These results show that particles obtained from NANBH plasma using anti-NANB5-1-1 antibodies contain nucleic acids that hybridize with HCV cDNA in clone 81 and thus provide further evidence that the cDNA in these clones is derived from the etiological agent for NANBH.

IV.G. Imunološka reaktivnost C100-3 s pročišćenim anti-NANB5-1-1 antitijelima IV.G. Immunoreactivity of C100-3 with purified anti-NANB5-1-1 antibodies

Imunološka reaktivnost C100-3 sjedinjenog polipeptida sa anti-NANB5-1-1 antitijelima izvedena je radioimunoispitivanjem , u kojem se antigeni koji su vezani za čvrstu fazu halogeniraju s pročišćenim NANB5-1-1 antitijelima i kompleks antigeno-antitijelo detektiran sa 125I-obilježenim ovčjim anti-humanim antitijelima. The immunoreactivity of the C100-3 fused polypeptide with anti-NANB5-1-1 antibodies was performed by radioimmunoassay, in which antigens bound to the solid phase are halogenated with purified NANB5-1-1 antibodies and the antigen-antibody complex is detected with 125I-labeled sheep anti-human antibodies.

Imunološka reaktivnost C100-3 polipeptida je uspoređena s onom SOD- NANB5-1-1 antigena. The immunological reactivity of the C100-3 polypeptide was compared with that of the SOD-NANB5-1-1 antigen.

Sjedinjen polipeptid C100-3 je sintetiziran i pročišćen kao što je opisano u poglavlju IV.B.5. i u poglavlju IV.B.6. Sjedinjen polipeptid SOD-NANB5-1-1 je sintetiziran i pročišćen kao što je opisano u poglavlju IV.B.1. i u poglavlju IV.D.1. Pročišćena anti- NANB5-1-1 antitijela su dobivena kao što je opisano u poglavlju IV.E. The C100-3 fusion polypeptide was synthesized and purified as described in Section IV.B.5. and in chapter IV.B.6. The SOD-NANB5-1-1 fusion polypeptide was synthesized and purified as described in Section IV.B.1. and in chapter IV.D.1. Purified anti-NANB5-1-1 antibodies were obtained as described in section IV.E.

Alikvoti od 100µl koji sadrže različite količine pročišćenog C100-3 antigena u 0,125 M Na-boratnom puferu, pH 8,3, 0,075 M NaCl (BBS) dodaju se svakom izvoru na mikrotitarskoj ploči (Dynatech Immulon 2 Removawell Strips). Ploča je inkubirana na 4ºC preko noći u vlažnoj komori, poslije čega je uklonjena proteinska otopina i izvori su isprani tri puta sa BBS koji sadrži 0,02% Triton X-100 (BBST). Radi sprečavanja nespecifičnog vezanja, izvori su presvučeni sa BSA dodavanjem 10µl 5 mg/ml otopine BSA u BBS i zatim inkubirani na sobnoj temperaturi 1 sat, poslije čega je višak otopine BSA uklonjen. Polipeptidi u prevučenim izvorima reagiraju s pročišćenim anti- NANB5-1-1 antitijelima dodavanjem 1 µg antitijela po izvoru, i inkubiranjem uzoraka 1 sat na 37ºC. Poslije inkubacije, višak otopine je uklonjen odsisavanjem i izvori su ispareni 5 puta sa BBST. Anti- NANB5-1-1 vezan za sjedinjene polipeptide određen je vezanjem 125I-obilježenog F’(ab)2 ovčjeg anti-humanog IgG na obloženim izvorima. Alikvoti od 100 µl obilježene probe (specifične aktivnosti 5-20 mikrokiri/mikrogram) dodani su svakom izvoru i posude su inkubirane 1 sat na 37ºC te je zatim višak uklonjen odsisavanjem, što je dalje praćeno peterostrukim ispitivanjem sa BBST. Količina radioaktivnosti vezane za svaki izvor je određena brojanjem na brojaču koji detektira gama-zračenje. Aliquots of 100 µl containing varying amounts of purified C100-3 antigen in 0.125 M Na-borate buffer, pH 8.3, 0.075 M NaCl (BBS) are added to each well of a microtiter plate (Dynatech Immulon 2 Removewell Strips). The plate was incubated at 4ºC overnight in a humidified chamber, after which the protein solution was removed and the wells were washed three times with BBS containing 0.02% Triton X-100 (BBST). To prevent non-specific binding, the wells were coated with BSA by adding 10 µl of a 5 mg/ml solution of BSA in BBS and then incubated at room temperature for 1 hour, after which the excess BSA solution was removed. Polypeptides in coated wells are reacted with purified anti-NANB5-1-1 antibodies by adding 1 µg of antibody per well, and incubating the samples for 1 hour at 37ºC. After incubation, the excess solution was removed by suction and the wells were evaporated 5 times with BBST. Anti-NANB5-1-1 bound to the pooled polypeptides was determined by binding of 125I-labeled F'(ab)2 sheep anti-human IgG to coated wells. Aliquots of 100 µl of labeled sample (specific activities 5-20 microcuri/microgram) were added to each well and the dishes were incubated for 1 hour at 37ºC and then the excess was removed by suction, which was further followed by a quintuplicate assay with BBST. The amount of radioactivity associated with each source is determined by counting on a counter that detects gamma radiation.

Rezultati imunološke reaktivnosti C100 s pročišćenim anti- NANB5-1-1 uspoređeni s onima za NANB5-1-1 s pročišćenim antitijelima prikazani su u tablici 3. The results of the immunoreactivity of C100 with purified anti-NANB5-1-1 compared to those for NANB5-1-1 with purified antibodies are shown in Table 3.

Tablica 3 Table 3

Imunološka reaktivnost C100-3 u usporedbi sa NANB5-1-1 radioimunoispitivanjem Immunoreactivity of C100-3 compared to NANB5-1-1 by radioimmunoassay

[image] [image]

Rezultati u tablici 3 pokazuju da anti-NANB5-1-1 prepoznaje epitop(e) u C100 dijelu C100-3 polipeptida. Tako NANB5-1-1 i C100 dijele zajedničke epitope. Rezultati ukazuju da je cDNA sekvenca koja kodira ovaj NANBV epitop ona koja je prisutna u oba klona 5-1-1 i u klonu 81. The results in Table 3 show that anti-NANB5-1-1 recognizes the epitope(s) in the C100 portion of the C100-3 polypeptide. Thus, NANB5-1-1 and C100 share common epitopes. The results indicate that the cDNA sequence encoding this NANBV epitope is the one present in both clone 5-1-1 and clone 81.

IV.H. Karakterizacija HCV IV.H. Characterization of HCV

IV.H.1. Karakterizacija strukosti HCV genoma IV.H.1. Characterization of the composition of the HCV genome

HCV genom je okarakteriziran s obzirom na strukost, izoliranjem frakcije nukleinske kiseline iz partikula dobivenih na anti-NANB5-1-1 antitijelu obloženih polistirenskih kuglica i određivanjem da li izolirane nukleinske kiseline hibridiziraju s plus i/ili minus strukama HCV cDNA. The HCV genome was characterized with respect to the strand by isolating the nucleic acid fraction from particles obtained on anti-NANB5-1-1 antibody coated polystyrene beads and determining whether the isolated nucleic acids hybridize with the plus and/or minus strands of HCV cDNA.

Partikule su dobivene iz plazme HCV inficiranih čimpanzi koristeći polistirenske kuglice obložene s imunopročišćavanjem anti-NANB5-1-1 antitijelom kao što je opisano u poglavlju IV.F.1. Komponenta nukleiske kiseline partikula se oslobađa korištenjem metode opisane u poglavlju IV.F.2. Alikvoti izolirane genomske nukleinske kiseline ekvivalentni 3m1s visokog titra plazme su naneseni na nitrocelulozne filtre. Kao kontrola, alikvoti denaturirane HCV cDNA iz klona 81 (2 pikograma) su također naneseni na iste filtre. Filtri su ispitivani sa 32P-ovlaženom smjesom plus ili minus struka jednostruke DNA klonirane iz HCV cDNA; cDNA su isječene iz klonova 40b, 81 i 25c. Particles were obtained from plasma of HCV-infected chimpanzees using polystyrene beads coated with immunopurified anti-NANB5-1-1 antibody as described in Section IV.F.1. The nucleic acid component of the particle is released using the method described in Section IV.F.2. Aliquots of isolated genomic nucleic acid equivalent to 3m1s of high titer plasma were spotted onto nitrocellulose filters. As a control, aliquots of denatured HCV cDNA from clone 81 (2 picograms) were also applied to the same filters. Filters were probed with a 32P-moistened mixture of plus or minus a strand of single-stranded DNA cloned from HCV cDNA; cDNAs were cut from clones 40b, 81 and 25c.

Jednostruke probe su dobivene isijecanjem HCV cDNA iz klonova 81, 40b i 25c sa EcoRI i klonirane cDNA fragmenata u M13 vektorima, mp18 i mp19 /Messing (1983)/. M13 klonovi su sekvencionirani radi određivanja da li sadrže plus ili minus struke DNA izvedene iz HCV cDNA. Sekvencioniranje je pomoću postupka dideoksi-lanac završavanja Sangera et al. (1977). Single probes were obtained by cutting HCV cDNA from clones 81, 40b and 25c with EcoRI and cloned cDNA fragments in M13 vectors, mp18 and mp19 /Messing (1983)/. M13 clones were sequenced to determine whether they contained plus or minus strands of DNA derived from HCV cDNA. Sequencing was done using the dideoxy chain termination method of Sanger et al. (1977).

Svaki od seta dupliciranih filtara koji sadrže alikvote HCV genoma izoliranog iz dobivenih partikula se hudrolizira sa plus ili minus strukom probe izvedene iz HCV cDNA. Slika 35 prikazuje autoradiografe dobivene iz ispitivanja NANBV genoma sa smjesom proba izvedene iz klona 81, 40b i 25c. Smjesa je korištena radi povećanja osjetljivosti hibridizacijskih ispitivanja. Uzorci na panelu I su hibridizirani sa plus strukom smjesom probe. Uzorci na panelu II su ispitivani hibridizacijom s minus strukom smjesom probe. Sastav uzoraka u panelima imunoobojenih predstavljen je u tablici 4. Each of the sets of duplicate filters containing aliquots of the HCV genome isolated from the obtained particles is hydrolyzed with a plus or minus strand of the probe derived from HCV cDNA. Figure 35 shows autoradiographs obtained from the NANBV genome assay with a mixture of probes derived from clones 81, 40b and 25c. The mixture was used to increase the sensitivity of hybridization tests. Samples in panel I were hybridized with plus-length probe mix. The samples in panel II were tested by hybridization with the minus waist probe mixture. The composition of the samples in the immunostained panels is presented in Table 4.

Tablica 4 Table 4

[image] * neopisan uzorak [image] * undescribed sample

Kao što se vidi iz rezultata na slici 35, samo minus struka DNA proba se hibridizira sa izoliranim HCV genomom. Ovaj rezultat, u kombiNaClji s rezultatom koji prikazuje osjetljivost genoma prema RNazi i ne prema DNazi (vidi poglavlje IV.C.2.) ukazuje da je genom NANBV pozitivno struka RNA. As can be seen from the results in Figure 35, only the minus side of the DNA probe hybridizes with the isolated HCV genome. This result, in combination with the result showing the sensitivity of the genome to RNase and not to DNase (see chapter IV.C.2.), indicates that the NANBV genome is positive RNA.

Ovi podaci i podaci iz drugih laboratorija koji se odnose na fizičkokemijske osobine navodnog NANBV su konzistentni s mogućnošću da je HCV član Flaviviridae. Međutim, mogućnost da HCV predstavlja novu klasu virusnih agenasa nije eliminirana. These data and data from other laboratories regarding the physicochemical properties of putative NANBV are consistent with the possibility that HCV is a member of the Flaviviridae. However, the possibility that HCV represents a new class of viral agents has not been eliminated.

IV.H.2. Detekcija sekvenci u dobivenim partikulama koje, kada se pojačaju pomoću PCR hibridizacije prema HCV cDNA, su izvedene iz klona 81 IV.H.2. Detection of sequences in the obtained particles which, when amplified by PCR hybridization to HCV cDNA, are derived from clone 81

RNA u dobivenim partikulama je kao što je opisano u poglavlju IV.H. Analiza za sekvence koje hibridiziraju prema HCV cDNA izvedenoj iz klona 81 izvodi se korištenjem PCP pojačavanja, kao što je opisano u poglavlju IV.C.3., osim što je hibridizacijska proba bila kinizirani oligonukleotid izveden iz klona 81 cDNA sekvence. Rezultati pokazuju da su pojačane sekvence hibridizirane s klonom 81 izvedene iz HCV cDNA probe. The RNA in the obtained particles is as described in section IV.H. Analysis for sequences hybridizing to HCV cDNA derived from clone 81 was performed using PCP amplification, as described in Section IV.C.3., except that the hybridization probe was a quinized oligonucleotide derived from clone 81 cDNA sequence. The results show that the amplified sequences hybridized with clone 81 derived from the HCV cDNA probe.

IV.H.3. Homologija između ne-strukturalnog proteina Dengue Flavivirus (MNWWD1) i HCV polipeptida kodiranog pomoću sjedinjenog ORF klona 14i-39c IV.H.3. Homology between the Dengue Flavivirus non-structural protein (MNWWD1) and the HCV polypeptide encoded by the merged ORF clone 14i-39c

Sjedinjeni HCV cDNA klonovi 14i i 39c sadrže jedan neprekidni ORF, kao što je prikazano na slici 26. Kodirani polipeptid je analiziran na homologiju s područjem nestrukturalnih polipeptida u Dangue flavivirusu (MNWWD1). Analiza je koristila Dayhoff proteinsku bazu podataka i izvedena je pomoću računala. Rezultati su prikazani na slici 36, gdje simbol (:) označava homologiju, a simbol (.) označava konzervativnu zamjenu u sekvenci; crtice označavaju prostore ubačene u sekvencu radi postizanja najveće homologije. Kao što se vidi sa slike, postoji značajna homologija između sekvence kodirane u HCV cDNA i nestrukturalnog polipeptidnog segmenta kodiranog u području prema 3’-kraju i cDNA također sadrže sekvence koje su homologne sekvencama u Dengue polimerazi. Kao posljedica se nalazi da kanonicilna gly-asp-asp (GDD) sekvenca treba biti bitna za RNA-zavisne RNA polimeraze sadržane u polipeptidu kodiranom u HCV cDNA, na lokaciji koja je konzistentna s onom u Dengue 2 virusu (podaci nisu prikazani) The pooled HCV cDNA clones 14i and 39c contain a single continuous ORF, as shown in Figure 26. The encoded polypeptide was analyzed for homology to the nonstructural polypeptide region of Dangue flavivirus (MNWWD1). The analysis used the Dayhoff protein database and was performed by computer. The results are shown in Figure 36, where the symbol (:) indicates homology and the symbol (.) indicates a conservative substitution in the sequence; dashes indicate spaces inserted into the sequence to achieve the highest homology. As can be seen from the figure, there is significant homology between the sequence encoded in the HCV cDNA and the non-structural polypeptide segment encoded in the region towards the 3'-end and the cDNAs also contain sequences that are homologous to the sequences in the Dengue polymerase. As a consequence, it is found that the canonical gly-asp-asp (GDD) sequence should be essential for RNA-dependent RNA polymerases contained in the polypeptide encoded in the HCV cDNA, in a location consistent with that of the Dengue 2 virus (data not shown).

IV.H.4. HCV-DNA nije detektibilna u NANBH inficiranom tkivu IV.H.4. HCV-DNA is not detectable in NANBH infected tissue

Dva tipa proučavanja pružaju rezultate koji ukazuju da HCV-DNA nije detektibilna u tkivu iz individue sa NANBH. Ovi rezultati, zajedno s onima opisanima u IV.C. i IV.H.1. i IV.H.2. dokazuju da HCV nije virus koji sadrži DNA i da njegova replikacija ne obuhvaća cDNA. Two types of studies provide results indicating that HCV-DNA is not detectable in tissue from individuals with NANBH. These results, together with those described in IV.C. and IV.H.1. and IV.H.2. prove that HCV is not a DNA-containing virus and that its replication does not involve cDNA.

IV.H.4.a. Postupak Southern razmazom IV.H.4.a. Southern smear procedure

U cilju određivanja da li NANBH jetra inficirane čimpanze sadrži detektibilnu HCV-DNA (ili HCV cDNA), restrikcijski enzimski fragmenti DNA izolirani iz ovog izvora su Southern razmazani i razmazi su ispitani s 32P-obilježenom HCV cDNA. Rezultati pokazuju da obilježena HCV cDNA hidrolizira s razmazanom DNA iz jetre inficirane čimpanze. Također ne hibridizira s razmazom DNA iz jetre normalne čimpanze. Nasuprot tome, u pozitivnoj kontroli obilježena proba beta-interferon gena hibridizira jako sa Southern razmazom restrikcijskim enzimom razorene humane placentne DNA. Ovi sistemi su stvoreni radi detektiranja jedne kopije gena koje treba detektirati s obilježenom probom. In order to determine whether the NANBH of the liver of an infected chimpanzee contains detectable HCV-DNA (or HCV cDNA), restriction enzyme DNA fragments isolated from this source were Southern blotted and the smears were probed with 32P-labeled HCV cDNA. The results show that labeled HCV cDNA hydrolyzes with smeared DNA from the liver of an infected chimpanzee. It also does not hybridize with a DNA smear from the liver of a normal chimpanzee. In contrast, in the positive control the labeled beta-interferon gene probe hybridizes strongly with Southern blot of restriction enzyme-digested human placental DNA. These systems are designed to detect a single copy of a gene to be detected with a labeled probe.

DNA su izolirane iz jetre dviju čimpanzi sa NANBH. Kontrolne DNA su izolirane iz jetre neinficiranog čimpanze i iz humane placente. Postupak za ekstrahiranje DNA je uglavnom rađen prema Maniatis et al. (1982) i DNA uzorci su tretirani sa RNazorom tijekom postupka izoliranja. DNA was isolated from the liver of two chimpanzees with NANBH. Control DNAs were isolated from the liver of an uninfected chimpanzee and from human placenta. The procedure for extracting DNA was mainly done according to Maniatis et al. (1982) and DNA samples were treated with RNase during the isolation procedure.

Svaki DNA uzorak je tretiran sa EcoRI, MboI ili HincII (12 mikrograma), prema uputstvima proizvođača. Razorene DNA su elektroforezirane na 1% neutralnim agaroza gelovima, Southern razmazom na nitrocelulozi i razmazan materijal je hibridiziran s odgovarajuće translatorno zasiječenom probom cDNA (3x106 cpm/mlhibridizacijske smjese). DNA iz jetre inficirane čimpanze i iz jetre normalne čimpanze je hibridizirana sa 32P-obilježenom HCV cDNA iz klonova 36 plus 81; DNA iz humane placente hibridizirala je sa 32P-obilježenom DNA iz beta-interferon gelna. Poslije hibridizacije, mrlje su ispisane u strogim uvjetima npr. s otopinom koja sadrži 0,1xSSC, 0,1% SDS na 65ºC. Each DNA sample was treated with EcoRI, MboI or HincII (12 micrograms), according to the manufacturer's instructions. Fragmented DNAs were electrophoresed on 1% neutral agarose gels, Southern smeared on nitrocellulose and the smeared material was hybridized with the corresponding translationally cleaved cDNA probe (3x106 cpm/ml of hybridization mixture). DNA from the liver of an infected chimpanzee and from the liver of a normal chimpanzee was hybridized with 32P-labeled HCV cDNA from clones 36 plus 81; DNA from human placenta hybridized with 32P-labeled DNA from beta-interferon gel. After hybridization, blots were printed under stringent conditions eg with a solution containing 0.1xSSC, 0.1% SDS at 65ºC.

Beta-interferon gen DNA je dobiven kao što je opisano Hougton et al. (1981). Beta-interferon gene DNA was obtained as described by Hougton et al. (1981).

IV.H.4.b. Pojačavanje pomoću PCR tehnike IV.H.4.b. Amplification using the PCR technique

U cilju određivanja da li bi HCV-DNA mogla biti detektirana u jetri čimpanzi sa NANBH, DNA je izolirana iz tkiva, i podvrgnuta tehnici PCR detekcije pojačavanjem koristeći primare i probu polinukleotida izvedenih iz HCV cDNA iz klona 81. Negativne kontrole su bili uzorci izolirani iz tkiva stanične kulture neinficirane HepG2 i iz vjerojatno neinficirane humane placente. Pozitivne kontrole su bili uzorci negativne kontrole DNA kojima je dodana poznata mala količina (250 molekula) HCV cDNA inserta iz klona 81. In order to determine whether HCV-DNA could be detected in the liver of chimpanzees with NANBH, DNA was isolated from tissue, and subjected to the PCR detection technique by amplification using primers and probe polynucleotides derived from HCV cDNA from clone 81. Negative controls were samples isolated from cell culture tissues of uninfected HepG2 and from presumably uninfected human placenta. Positive controls were negative control DNA samples to which a known small amount (250 molecules) of HCV cDNA insert from clone 81 was added.

Dodatno radi potvrde da RNA frakcije izolirane iz istih jetara čimpanzi sa NANBH sadrže sekvence komplementarne HCV cDNA probi, PCR sastav pojačanja-detekcije je također korišten na izoliranim RNA uzorcima. To further confirm that RNA fractions isolated from the same livers of chimpanzees with NANBH contained sequences complementary to the HCV cDNA probe, an amplification-detection PCR assay was also used on the isolated RNA samples.

Pri proučavanju, DNA su izolirane pomoću postupka opisanog u poglavlju IV.H.4.a. i RNA je ekstrahirana uglavnom kao što je opisao Chirgwin et al. (1981). In the study, DNA was isolated using the procedure described in section IV.H.4.a. and RNA was extracted essentially as described by Chirgwin et al. (1981).

Uzorci DNA su izolirani iz jetre 2 inficirane čimpanze, iz neinficiranih HepG2 stanica i iz humane placente. Jedan mikrogram svake DNA je razoren sa HindIII prema uputstvu proizvođača. Razoreni uzorci su podvrgnuti PCR pojačavanju u detekciji pojačane HCV cDNA uglavnom kao što je opisano u poglavlju IV.V.3.,osim što je ispušten stupanj reverzne transkriptaze. PCR primari i proba su bili iz HCV cDNA klona 81 i opisani su u poglavlju IV.C.3. Prije pojačavanja, za pozitivne kontrole, jedan mikrogram uzorka svake DNA je “zašiljena” dodatkom 250 molekula HCV cDNA inserta izoliranog iz klona 81. DNA samples were isolated from the liver of 2 infected chimpanzees, from uninfected HepG2 cells and from human placenta. One microgram of each DNA was digested with HindIII according to the manufacturer's instructions. The digested samples were subjected to PCR amplification for the detection of amplified HCV cDNA essentially as described in Chapter IV.V.3., except that the reverse transcriptase step was omitted. PCR primers and probes were from HCV cDNA clone 81 and are described in Chapter IV.C.3. Before amplification, for positive controls, one microgram of each DNA sample was “spiked” with the addition of 250 molecules of HCV cDNA insert isolated from clone 81.

U cilju određivanja da li su HCV sekvence prisutne u RNA izoliranoj iz jetara čimpanzi sa NANBH, uzorci koji sadrže 0,4 mikrograma ukupne RNA, podvrgnuti su postupku pojačavanja uglavnom kao što je opisano u poglavlju IV.C.3., osim što je izostavljena reverzna transkriptaza iz nekih uzoraka kao negativna kontrola. PCR primari i proba su bili iz HCV cDNA klona 81 kao što je opisano naprijed. In order to determine whether HCV sequences were present in RNA isolated from the livers of chimpanzees with NANBH, samples containing 0.4 micrograms of total RNA were subjected to an amplification procedure essentially as described in Section IV.C.3., except that the reverse transcriptase from some samples as a negative control. PCR primers and probes were from HCV cDNA clone 81 as described above.

Rezultati pokazuju da pojačane sekvence komplementarne HCV cDNA probe nisu detektibilne u negativnim kontrolama. Nasuprot tome, kada uzorci uključuju DNA iz jetre inficiranog čimpanze, HCV cDNA se prije pojačava “zašilji”, klon 81 sekvence su detektirane u svim poznatim kontrolnim uzorcima. K tome, u proučavanju RNA, pojačane HCV cDNA klona 81 sekvence su detektirane samo kada se koristi reverzna transkriptaza, što strogo ukazuje da rezultati nisu izazvani DNA kontamiNaCljom. The results show that the amplified sequences of the complementary HCV cDNA probe are not detectable in the negative controls. In contrast, when samples include DNA from the liver of an infected chimpanzee, HCV cDNA amplifies rather “spiked,” clone 81 sequences are detected in all known control samples. Furthermore, in the RNA study, amplified HCV cDNA clone 81 sequences were detected only when reverse transcriptase was used, strongly indicating that the results were not induced by DNA contamination with NaCl.

Ovi rezultati pokazuju da hepatociti čimpanzi sa NANBH ne sadrže ili sadrže nedektibilne razine HCV DNA. Zasnovano na spomenutom proučavanju, ako je prisutna HCV DNA onda je na razini daleko ispod 0,6 kopija po hepatocitu. Nasuprot tome, HCV sekvence u ukupnoj RNA iz istih uzoraka jetre su lako determinirane PCR tehnikom. These results indicate that chimpanzee hepatocytes with NANBH contain no or undetectable levels of HCV DNA. Based on the aforementioned study, if HCV DNA is present then it is at a level well below 0.6 copies per hepatocyte. In contrast, HCV sequences in total RNA from the same liver samples were easily determined by the PCR technique.

IV.I. ELISA određivanje za HCV infekciju korištenjem HCV C100-3 kao test antigena AND YOU. ELISA determination for HCV infection using HCV C100-3 as antigen test

Svi uzorci su ispitivani korištenjem HCV C100-3 ELISA. Ovo ispitivanje koristi HCV C100-3 antigen koji sintetiziran i pročišćen kao što je opisano u poglavlju IV.B.5., i peroksidaze hrena (HRP) konjugata mišjeg monoklonskog anti-humanog IgG. All samples were tested using the HCV C100-3 ELISA. This assay uses HCV C100-3 antigen synthesized and purified as described in Section IV.B.5., and a horseradish peroxidase (HRP) conjugate of mouse monoclonal anti-human IgG.

Posude obložene sa HCV C100-3 antigenom bile su dobivene kao što slijedi. Otopina koja sadrži pufer za oblaganje (50 mM Na-boronat, pH 9,0), 21 ml/posuda, BSA (25 µg/ml), C100-3 (2,50 µg/ml) pripremljenog neposredno prije dodavanja u Removeawell Immunolon I posude (Dynatech Corp.). Poslije miješanja tijekom 5 minuta, 0,2 ml/izvor otopine je dodano u posude, one su pokrivene i inkubirane 2 sata na 37ºC, poslije čega je otopina uklonjena usisavanjem. Uzorci su isprani jednom s 400 µl pufera za ispiranje (100 mM natrij-Fosfata, pH 7,4, 140 mM natrij-klorida, 0,1% (m/v( kazeina, 1% (m/v) Triton X-100, 0,01% (m/v) Thimerosala). Poslije uklanjanja otopine od ispitivanja, dodano je 200 µl/izvor postprelivne otopine (10 mM natrij-fosfat, pH 7,2, 150 mM natrij-klorida, 0,1% (m/v) kazein i 2 mM fenilmetilsulfonifluorida (PMSF), posude su labavo pokrivene radi sprečavanja isparavanja i ostavljene da stoje na sobnoj temperaturi 30 minuta. Izvori su tada usisani radi uklanjanja otopine i liofilizirani preko noći na suho, bez zagrijavanja. Dishes coated with HCV C100-3 antigen were obtained as follows. Solution containing plating buffer (50 mM Na-boronate, pH 9.0), 21 ml/well, BSA (25 µg/ml), C100-3 (2.50 µg/ml) prepared immediately before addition to Removeawell Immunolon And containers (Dynatech Corp.). After mixing for 5 minutes, 0.2 ml/well of the solution was added to the dishes, they were covered and incubated for 2 hours at 37ºC, after which the solution was removed by suction. Samples were washed once with 400 µl of wash buffer (100 mM sodium phosphate, pH 7.4, 140 mM sodium chloride, 0.1% (w/v) casein, 1% (w/v) Triton X-100 , 0.01% (w/v) Thimerosal).After removing the assay solution, 200 µl/well of post-overflow solution (10 mM sodium phosphate, pH 7.2, 150 mM sodium chloride, 0.1% ( m/v) casein and 2 mM phenylmethylsulfonifluoride (PMSF), the dishes were loosely covered to prevent evaporation and allowed to stand at room temperature for 30 min. The wells were then aspirated to remove the solution and lyophilized overnight to dryness without heating.

Dobivene posude mogu biti skladištene na 2-8ºC u zatvorenim aluminijskim vrećicama. The resulting containers can be stored at 2-8ºC in sealed aluminum bags.

Za izvođenje ELISA određivanja, 20 mikrolitara uzorka seruma ili kontrolnog uzorka se dodaje u izvor koji sadrži 200 mikrolitara razrijeđenog uzorka (100 mM natrij-fosfat, pH 7,4, 500 mM natrij-klorida, 1 Mm EDTA, 0,1% (m/v) kazeina, 0,015 (m/v) Therosala, 1% (m/v) Triton X-100, 100 µl/ml ekstrakta kvasca). To perform the ELISA determination, 20 microliters of serum sample or control sample is added to a well containing 200 microliters of diluted sample (100 mM sodium phosphate, pH 7.4, 500 mM sodium chloride, 1 mM EDTA, 0.1% (m /v) casein, 0.015 (m/v) Therosal, 1% (m/v) Triton X-100, 100 µl/ml yeast extract).

Posude su zatvorene i inkubirane na 37ºC dva sata, poslije čega je otopina uklonjena usisavanjem i izvori su isprani sa 400 mikrolitara pufera (fosfatno puferirane otopine (PBS) koji sadrži 0,05% Tweena 20). Isprani izvori su testirani sa 200 µl mišjeg anti-humanog IgG-HRP kunjugata koji se nalazi u otopini otrokonjugat razrjeđivača (10 mM natrij-fosfata, pH 7,2, 150 mM natrij.klorida, 50% (v/v) goveđeg fetalnog seruma, 1% termički obrađenog seruma konja, 1 mM K3Fe(CN)6 tijekom 1 sata na 37ºC, otopina je uklanja prosisavanjem i izvori su isprani puferom za ispiranje koji se također uklanja prosisavanjem. Za određivanje količine vezanog enzim konjugata, dodaje se 200 µl supstratne otopine (10 mg ofenildiamin diklorida na 5 ml otopine za razvijanje). Otopina za razvijanje sadrži 50 mM natrij-citata podešenog na pH 5,1 s fosfornom kiselinom i 0,6 µl/ml 30% H2O2. Posude koje sadrže supstratnu otopinu su inkubirane na tamnom tijekom30 minuta na sobnoj temperaturi, a reakcije se zaustavljaju dodatkom 50µl/ml 4N sumporne kiseline i određuje se ODS. The dishes were closed and incubated at 37ºC for two hours, after which the solution was removed by suction and the wells were washed with 400 microliters of buffer (phosphate-buffered saline (PBS) containing 0.05% Tween 20). Washed wells were tested with 200 µl mouse anti-human IgG-HRP conjugate contained in a solution of otroconjugate diluent (10 mM sodium phosphate, pH 7.2, 150 mM sodium chloride, 50% (v/v) fetal bovine serum , 1% heat-treated horse serum, 1 mM K3Fe(CN)6 for 1 hour at 37ºC, the solution is removed by suction and the wells are washed with washing buffer which is also removed by suction.To determine the amount of bound enzyme conjugate, 200 µl of substrate is added solution (10 mg of phenyldiamine dichloride per 5 ml of developing solution). The developing solution contains 50 mM sodium citrate adjusted to pH 5.1 with phosphoric acid and 0.6 µl/ml of 30% H2O2. Dishes containing the substrate solution were incubated in the dark for 30 minutes at room temperature, and the reactions are stopped by the addition of 50 µl/ml 4N sulfuric acid and the ODS is determined.

Primjeri niže navedeni pokazuju da mikrotitarska posuda ELISA testiranje koje koristi HCV C100-3 antigen, ima visok stupanj specifičnosti, što je evidentno iz početne brzine reaktivnosti od oko 1%, s ponovljenom reaktivnom brzinom od oko 0,5% slučajnih davalaca. Pokus je sposoban detektirati imunoodgovor u potstakutnoj fazi infekcije, kao i tijekom kronične faze bolesti. Usto, pokus je sposoban detektirati neke uzorke koji su negetivni u drugim testovima na NANBH; ovi uzorci dolaze od individua s poviješću NANBH ili davalaca zahvaćenih u NANBH prijenosu. The examples below show that microtiter plate ELISA testing using HCV C100-3 antigen has a high degree of specificity, as evident from an initial reactivity rate of about 1%, with a repeat reactive rate of about 0.5% of random donors. The test is able to detect the immune response in the sub-acute phase of the infection, as well as during the chronic phase of the disease. In addition, the test is capable of detecting some samples that are negative in other tests for NANBH; these samples come from individuals with a history of NANBH or donors affected by NANBH transmission.

U slijedećim primjerima korištene su oznake: In the following examples, the tags are used:

ALT alanin amino transferaza ALT alanine amino transferase

Anti-HBc antitijelo protiv HBc Anti-HBc antibody against HBc

Anti-HBsAg antitijelo protiv HBsAg Anti-HBsAg antibody against HBsAg

HBc hepatitis B jezgra antigen HBc hepatitis B core antigen

AbsAg hepatitis B površinski antigen AbsAg hepatitis B surface antigen

IgG imunoglobulin G IgG immunoglobulin G

IgM imunoglobulin M IgM immunoglobulin M

IU/L interNaClonalne jedinice/litra IU/L interNaClonal units/liter

NA nije raspoloživo NA is not available

NT nije testirano NT not tested

N veličina uzorka N sample size

Neg negativno Neg negative

OD optička gustoća OD optical density

Pos pozitivno Pos positive

S/CO signal/isječak S/CO signal/clip

SD standardna devijacija SD standard deviation

x prosječna ili srednja vrijednost x average or mean value

WNL u normalnom području WNL in normal range

IV.I.1. HCV infekcija u populaciji slučajnih davalaca IV.I.1. HCV infection in the random donor population

Grupa od 1056 uzoraka (svježeg seruma) slučajnih davalaca krvi dobivena od Irwin Memorial Blood Bank, san Francisco, California. Rezultati testova dobiveni s ovim uzorcima su sumirani u histogramu koji pokazuje distribuciju OD vrijednosti (slika 37). Kao što se vidi na slici 37, 4 uzorka očitana su iznad 3, 1 uzorak očitan je između 1 i 3, 5 uzoraka je očitano između 0,4 i 1, i preostali uzorci su očitani ispod 0,4, s preko 90% svih uzoraka očitanih ispod 0,1. A pool of 1056 samples (fresh serum) from random blood donors obtained from the Irwin Memorial Blood Bank, San Francisco, California. Test results obtained with these samples are summarized in a histogram showing the distribution of OD values (Figure 37). As seen in Figure 37, 4 samples read above 3, 1 sample read between 1 and 3, 5 samples read between 0.4 and 1, and the remaining samples read below 0.4, with over 90% of all samples read below 0.1.

Rezultati za nereaktivne slučajne uzorke su dani u tablici 5. Korištenjem isječenih vrijednosti jednakih prosječnoj vrijednosti plus 5 standardnih devijacija, deset uzoraka od 1056 (0,95%) bilo je početno reaktivno. Od ovih, pet uzoraka (0,47%) se ponavlja kao reaktivni kada se ispituju drugi put primjenom ELISA. The results for non-reactive random samples are given in Table 5. Using cut-off values equal to the mean plus 5 standard deviations, ten samples out of 1056 (0.95%) were initially reactive. Of these, five samples (0.47%) were repeatedly reactive when tested a second time by ELISA.

Tablica 5 također pokazuje ALT i anti-HBd status za svaki ponovljeno reaktivni uzorak. On osobitog interesa je činjenica da svih pet ponovljenih reaktivnih uzoraka su negativni u oba testa zamjene za NANBH, mada su pozitivni u HCV ELISA. Table 5 also shows the ALT and anti-HBd status for each repeat reactive sample. Of particular interest is the fact that all five repeated reactive samples are negative in both NANBH replacement tests, although they are positive in the HCV ELISA.

Tablica 5 Table 5

Rezultati reaktivnosti slučajnih uzoraka Results of reactivity of random samples

N=1051 N=1051

ξ=0.049* ξ=0.049*

SD=+ 0.074 SD=+ 0.074

Isječeno: ξ + 5SD=0.419 (0.400+Negativ Controla) Trimmed: ξ + 5SD=0.419 (0.400+Negative Control)

[image] [image]

* uzorci koje očitavaju iznad 1,5 nisu uračunati u srednju vr. i SD * samples that read above 1.5 are not included in the mean vr. and SD

** ALT iznad 68 IU/L je gornja normalna granica ** ALT above 68 IU/L is the upper normal limit

*** Anti-HBc ispod 0,535 (ispitivanje konkurentnosti) se smatraju pozitivnima *** Anti-HBc below 0.535 (competition test) are considered positive

**** WN I: u normalnim granicama **** WN I: within normal limits

IV.I.2. Uzorci seruma čimpanze IV.I.2. Chimpanzee serum samples

Uzorci seruma iz 11 čimpanzi su testirani sa HCV C100-3 ELISA. Četiri od ovih čimpanzi su inficirani sa NANBH iz zaraženih Faktora VIII (uglavnom Hutchinson vrste), slijedi opis postupka s dr. Daniel Brandey pri centrima za kontrolu bolesti. Kao kontrola, četiri druge čimpanze su inficirane sa HAV i tri s HBV. Uzorci seruma su dobiveni u raznim vremenima poslije infekcije. Serum samples from 11 chimpanzees were tested with the HCV C100-3 ELISA. Four of these chimpanzees were infected with NANBH from infected Factor VIII (mostly Hutchinson species), following a description of the procedure with Dr. Daniel Brandey at the Centers for Disease Control. As a control, four other chimpanzees were infected with HAV and three with HBV. Serum samples were obtained at various times after infection.

Rezultati sumirani u tablici 6 pokazuju dokumentirano serokonverziju antitijela u svim čimpanzama inficiranim sa Hutchinson vrstom NANBH. Slijedi akutna faza infekcije (kao što je evidentirano značajnim porastom i naknadnim povratkom na normalnu ALT razinu), antitijela prema HCV C100-3 postaju detektibilna u serumu 4/4 NANBH inficiranih čimpanzi. Prethodno je pokazano, ovi su uzorci pozitivni Western analizom i RIA, kao što je razmotreno u poglavlju IV.B.3. Nasuprot tome, nijedan od kontrolnih čimpanzi koji je inficiran sa HAV ili HBV ne pokazuje evidentnu reaktivnost u ELISA. The results summarized in Table 6 show documented antibody seroconversion in all chimpanzees infected with Hutchinson type NANBH. Following the acute phase of infection (as evidenced by a significant rise and subsequent return to normal ALT levels), antibodies to HCV C100-3 become detectable in the serum of 4/4 NANBH-infected chimpanzees. As previously shown, these samples were positive by Western analysis and RIA, as discussed in Section IV.B.3. In contrast, none of the control chimpanzees infected with HAV or HBV showed evident reactivity in the ELISA.

Tablica 6 Uzorci seruma čimpanzi Table 6 Chimpanzee serum samples

[image] [image]

IV.I.3. Panel I: Provjera infekcijskih seruma iz kroničnih humanih NANBH nosilaca IV.I.3. Panel I: Screening of infectious sera from chronic human NANBH carriers

Kodiran je panel koji se sastoji od 22 jedinstvena uzorka, svaki u duplikatu, s ukupno 44 uzorka. Uzorci su bili iz provjereno infektivnog seruma kroničnih NANBH nosilaca, infektivnog seruma uvučenih davalaca i infektivni serum iz akutne faze NANBH pacijenata. K tome, uzorci su bili iz visoko odabranih negativnih kontrola i drugih kontrola bolesti. Ovaj panel je dobiven od dr. H. Alter, Department of Health and Human Services, National Institute of Health, Bethesda, Maryland. Panel je konstruktirao dr. Alter prije nekoliko godina i koristio ga kao kvalificirajući panel za ispitivanje navodnog NANBH. Cijeli panel je ispitivan dva puta sa ELISA eksperimentom i rezultati su poslani dr. Alteru na potvrdu. Rezultati potvrde su prikazani u tablici 7. Premda tablica prikazuje rezultate samo jednog seta duplikata, neke su vrijednosti dobivene za svaki od dupliciranih uzoraka. A panel consisting of 22 unique samples, each in duplicate, was coded, with a total of 44 samples. The samples were from verified infectious serum of chronic NANBH carriers, infectious serum of enrolled donors and infectious serum from acute phase NANBH patients. In addition, samples were from highly selected negative controls and other disease controls. This panel was obtained from Dr. H. Alter, Department of Health and Human Services, National Institutes of Health, Bethesda, Maryland. The panel was constructed by Dr. Alter several years ago and used as a qualifying panel to examine alleged NANBH. The entire panel was tested twice with the ELISA experiment and the results were sent to Dr. Alter for confirmation. The validation results are shown in Table 7. Although the table shows the results of only one set of duplicates, some values were obtained for each of the duplicate samples.

Kao što prikazuje tablica 7, 6 seruma koji su provjereno infektivni u modelu čimpanze bili su strogo pozitivni. Sedmi infektivni serum odgovara uzorku za akutni NANBH slučaj i nije reaktivan u ovom ELISA ispitivanju. Uzorak zahvaćenih davalaca s normalnim razinama ALT i s nesigurnim rezultatima u eksperimentima sa čimpanzama, nisu reaktivni. Tri druga serijska uzorka jedne individue s akutnim NANBH također su bili nereaktivni. Svi uzorci koji dolaze od visoko odabranih kontrola, dobiveni od davalaca koji su bar 10 puta dali krv bez hepatitis zahvata, bili su ELISA nereaktivni. Napokon, četiri od uzoraka prethodno pozitivno testiranih u navodnim drugim NANBH ispitivanjima, nisu ovdje potvrđeni. Ova četiri uzorka bila su negativna sa HCV ELISA. As shown in Table 7, the 6 sera tested to be infectious in the chimpanzee model were strictly positive. The seventh infectious serum corresponds to the sample for the acute NANBH case and is not reactive in this ELISA test. A sample of affected donors with normal ALT levels and with uncertain results in experiments with chimpanzees are not reactive. Three other serial samples from a single individual with acute NANBH were also nonreactive. All samples coming from highly selected controls, obtained from donors who gave blood at least 10 times without hepatitis procedures, were ELISA non-reactive. Finally, four of the samples previously tested positive in alleged other NANBH trials were not confirmed here. These four samples were negative with HCV ELISA.

Tablica 7 Table 7

H. Altersov panel 1: H. Alters panel 1:

[image] [image]

IV.I.4. Panel 2: Davalac/primalac NANBH IV.I.4. Panel 2: Donor/recipient NANBH

Kodirani panel sastavljen je od 10 nesigurnih slučajeva davalac-primalac transfuzijom povezane NANBH, s ukupno 188 uzoraka. Svaki slučaj sastavljen je od nekih ili svih davalaca prema primaocu, i od serijskih uzoraka (uzetid 3, 6 i 12 mjeseci poslije transfuzije) primalaca. Također su uključeni uzorci primalaca prije transfuzije. Kodirani panel dao je dr. H. Alter, iz NIH i rezultati su poslani njemu na sumiranje. The coded panel was composed of 10 uncertain cases of donor-recipient transfusion-related NANBH, with a total of 188 samples. Each case is composed of some or all donors per recipient, and serial samples (including 3, 6, and 12 months post-transfusion) of recipients. Pre-transfusion recipient samples were also included. The coded panel was provided by Dr. H. Alter, of the NIH, and the results were sent to him for summary.

Rezultati koji su sumirani u tablici 8, pokazuju dektiranu ELISA antitijelo superkonverziju u 9 od 10 slučajeva transfuzije vezanog NANBH. Uzorci u 4 slučaja (gdje nije detektirana superkonverzija) konzistentno slabo reagiraju u ELISA. Dva od 10 uzoraka primalaca bili su reaktivni 3 mjeseca poslije transfuzije. Nakon šest mjeseci, 8 uzoraka primalaca bilo je reaktivno; a nakon 12 mjeseci, sa izuzetkom slučaja 4, svi su bili reaktivni. Usto, bar jedno antitijelo pozitivnog davaoca se nalazi u 7 od 10 slučajeva, sa slučajem 10 koji ima dva pozitivna davaoca. Također, u slučaju 10, primalac koji je prethodno dao krv bio je pozitivan na HCV antitijela. Jedan mjesec nakon ovog primalac je pao na graničnu crtu reaktivne razine, dok je pri uzimanju krvi nakon 4 i 10 mjeseci bio predstavljati prethodnu infekciju individue sa HCV. The results, summarized in Table 8, show ELISA antibody-detected superconversion in 9 out of 10 cases of transfused NANBH. Samples in 4 cases (where no superconversion was detected) consistently reacted weakly in ELISA. Two of the 10 recipient samples were reactive 3 months after transfusion. After six months, 8 recipient samples were reactive; and after 12 months, with the exception of case 4, all were reactive. In addition, at least one positive donor antibody is found in 7 out of 10 cases, with case 10 having two positive donors. Also, in case 10, the recipient who had previously donated blood was positive for HCV antibodies. One month after this, the recipient fell to a borderline reactive level, while when taking blood after 4 and 10 months, it was representative of the individual's previous infection with HCV.

ALT i HBc za reaktivne, npr. pozitivne uzorke, sumirani su u tablici 9. Kao što se vidi iz tablice 1/8 uzoraka davalaca bila je negativna na druge obilježivače i reaktivna na HCV antitijela ELISA. S druge strane, primalac uzoraka (praćeno 12 mjeseci poslije transfuzije) je povišen na ALT, pozitivan anti-HBc ili oboje. ALT and HBc for reactive, eg positive samples, are summarized in Table 9. As can be seen from the table, 1/8 donor samples were negative for other markers and reactive for HCV antibody ELISA. On the other hand, the recipient of the samples (followed 12 months after transfusion) is elevated in ALT, positive anti-HBc or both.

Tablica 8 Table 8

[image] [image]

* 1 mjesec, ** 4 mjeseca, *** 10 mjeseci * 1 month, ** 4 months, *** 10 months

Tablica 9 Table 9

ALT i HBC status za reaktivne uzorke u H. Alter panelu 1 ALT and HBC status for reactive samples in H. Alter panel 1

[image] [image]

* ALT 45 IU/L je iznad gornje granice * ALT 45 IU/L is above the upper limit

** anti-HBc 50% (ispitivanje konkurentnosti) se smatra pozitivnim ** anti-HBc 50% (competitiveness test) is considered positive

*** prije krvarenja i 3 mjeseca uzorci su bili negativni na HBc *** before bleeding and 3 months samples were negative for HBc

IV.I.5. Određivanje HCV infekcije u visokorizičnim grupama uzoraka IV.I.5. Determination of HCV infection in high-risk sample groups

Uzorci iz visokorizičnih grupa su promatrani korištenjem ELISA radi određivanja reaktivnosti prema HCV C100-3 antigenu. Rezultati su sumirani u tablici 10. Samples from high-risk groups were observed using ELISA to determine reactivity to HCV C100-3 antigen. The results are summarized in Table 10.

Kao što je prikazano u tablici, uzorci s najvišom reaktivnošću su dobiveni od hemofiličara (76%). Usto, uzorci individua s povišenim ALT i pozitivni na anti-HBc su 51% reaktivni. Vrijednost konzistentna s vrijednošću očekivanom iz kliničkih podataka i NAMNH prevladava u ovoj grupi. Obim antitijela prema HCV bio je također viši u krvi davalaca s povišenim ALT, davaocima krvi pozitivnih antitijela prema hepatitis B jezgri i krvi davalaca krvi odbijenih iz drugih razloga, osim kada je visoki ALT ili antitijela anti-jezgre, kada se usporedi sa slučajnim dobrovoljnim davaocima. As shown in the table, the samples with the highest reactivity were obtained from hemophiliacs (76%). In addition, samples from individuals with elevated ALT and positive for anti-HBc are 51% reactive. A value consistent with the value expected from clinical data and NAMNH prevails in this group. Antibodies to HCV were also higher in the blood of donors with elevated ALT, hepatitis B core antibody-positive blood donors, and blood donors rejected for reasons other than high ALT or anti-core antibodies, when compared to random volunteers. .

Tablica 10 Table 10

NANBH visokorizične grupe uzoraka NANBH high-risk sample groups

[image] [image]

IV.I.6. Paralelna proučavanja korištenjem anti-IgG ili anti-IgM monoklonskih antitijela ili poliklonskih antitijela kao drugog antitijela u HCV C100-3 ELISA IV.I.6. Parallel studies using anti-IgG or anti-IgM monoclonal antibodies or polyclonal antibodies as second antibody in HCV C100-3 ELISA

Osjetljivost Elisa određivanja koja koriste anti-IgG monoklonski konjugat su uspoređene dobivenim korištenjem bilo anti-IgM monoklonskog konjugata ili zamjenom oba s poliklonskim antiserumom za koji je rečeno da je specifičan na lak i težak lanac. Izvršena su sljedeća ispitivanja. The sensitivities of Elisa assays using an anti-IgG monoclonal conjugate were compared to those obtained using either an anti-IgM monoclonal conjugate or replacing both with a polyclonal antiserum said to be specific for light and heavy chains. The following tests were performed.

IV.I.6.a. Serijski uzorci iz serokonvertera IV.I.6.a. Serial samples from seroconverters

Serijski uzorci iz tri slučaja NANB serokonvertera proučavani su u HCV C100-3 ELISA ispitivanju koristeći u enzim konjugat bilo anti-IgG monoklonskog samog ili u kombinaciji sa anti-IgM monoklonskim ili korištenjem poliklonskog antiseruma. Uzorci su dobiveni od dr. Cladd Stevensa, N.Y. Blood Center, N.Y. Povijesti uzoraka su prikazane u tablici 11. Serial samples from three cases of NANB seroconverters were studied in the HCV C100-3 ELISA assay using an enzyme conjugate of either anti-IgG monoclonal alone or in combination with anti-IgM monoclonal or using polyclonal antiserum. Samples were obtained from Dr. Cladd Stevens, N.Y. Blood Center, N.Y. The sample histories are shown in Table 11.

Dobiveni rezultati korištenjem anti-IgG monoklonskog antitijelo-enzim konjugata su prikazani u tablici 12. Podaci pokazuju da se jaka reaktivnost detektira u uzorcima 1-4, 2-8 i 3-5, slučajevima 1, 2, odnosno 3. The results obtained using the anti-IgG monoclonal antibody-enzyme conjugate are shown in Table 12. The data show that strong reactivity is detected in samples 1-4, 2-8 and 3-5, cases 1, 2 and 3, respectively.

Dobiveni rezultati korišteni u kombinaciji anti-IgG monoklonskog konjugata i anti-IgM konjugata su prikazani u tablici 13. Testirana su tri različita odnosa anti-IgG prema anti-IgM; 1:10000 razrjeđenje anti-IgG bilo je konstantno. Razrjeđenja testirana za anti-IgM monoklonski konjugat bila su 1:30000, 1:60000 i 1:120000. Podaci pokazuju da u suglasnosti s proučavanjem samog anti-IgG, polazna jaka reaktivnost detektirana je u uzorcima 1-4, 2-8 i 3-5. The results obtained using the combination of anti-IgG monoclonal conjugate and anti-IgM conjugate are shown in table 13. Three different ratios of anti-IgG to anti-IgM were tested; 1:10000 dilution of anti-IgG was constant. The dilutions tested for the anti-IgM monoclonal conjugate were 1:30000, 1:60000 and 1:120000. The data show that in agreement with the study of the anti-IgG itself, initial strong reactivity was detected in samples 1-4, 2-8 and 3-5.

Rezultati dobiveni sa ELISA korištenjem anti-IgG monoklonskog konjugata (razrjeđenje 1:10000) ili Tago poliklonski konjugat (razrjeđenje 1:80000) ili Jackson poliklonski konjugat (razrjeđen 1:80000) prikazani su u tablici 14. Results obtained with ELISA using anti-IgG monoclonal conjugate (1:10000 dilution) or Tago polyclonal conjugate (1:80000 dilution) or Jackson polyclonal conjugate (1:80000 dilution) are shown in Table 14.

Podaci pokazuju da je polazna jaka reaktivnost detektirana je u uzorcima 1-4, 2-8 i 3-5 korištenjem sve tri konjugacije; Tago poliklonska antitijela daju najniže signale. The data show that initial strong reactivity was detected in samples 1-4, 2-8 and 3-5 using all three conjugations; Tago polyclonal antibodies give the lowest signals.

Rezultati prikazani naprijed pokazuju da sve tri konfiguracije detektiraju reaktivne uzorke u isto vrijeme poslije akutne faze bolesti (kao što je evidentno posvećenim ALT). Međutim, rezultat pokazuje da je osjetljivost HCV C100-3 ELISA koristeći anti-IgG monoklonski-entim konjugat jednaka ili bolja od one dobivene korištenjem drugih testiranih konfiguracija za enzim konjugate. The results presented above show that all three configurations detect reactive samples at the same time after the acute phase of the disease (as evident by dedicated ALT). However, the result shows that the sensitivity of the HCV C100-3 ELISA using the anti-IgG monoclonal-enzyme conjugate is equal to or better than that obtained using other enzyme conjugate configurations tested.

Tablica 11 Table 11

Opis uzoraka iz Cladd Stevens panela Description of samples from the Cladd Stevens panel

[image] [image]

Tablica 12 Table 12

ELISA rezultati korištenjem anti-InG monoklonskog konjugata ELISA results using anti-InG monoclonal conjugate

[image] [image]

Tablica 13 Table 13

ELISA rezultati dobiveni korištenjem anti-IgG i anti-IgM monoklonskog konjugata ELISA results obtained using anti-IgG and anti-IgM monoclonal conjugate

[image] [image]

Tablica 14 Table 14

ELISA rezultati dobiveni korištenjem poliklonskih konjugata ELISA results obtained using polyclonal conjugates

[image] [image]

IV.I.6.b. Uzorci slučajnih davalaca IV.I.6.b. Random donor samples

Uzorci slučajnih davalaca (vidi poglavlje IV.I.) su testirani na HCV infekciju koristeći C100-3 ELISA, u kojoj je konjugat antitijelo-enzim bio anti-IgG monoklonski konjugat ili poliklonski konjugat. Ukupni broj testiranih uzoraka bio je 1077 i 1056 za poliklonski, odnosno monoklonski konjugat. Sumirani rezultati su prikazani u tablici 15, a raspodjela uzorka je prikazana u histogramu na slici 44. Samples from random donors (see Chapter IV.I.) were tested for HCV infection using the C100-3 ELISA, in which the antibody-enzyme conjugate was an anti-IgG monoclonal conjugate or a polyclonal conjugate. The total number of tested samples was 1077 and 1056 for polyclonal and monoclonal conjugate, respectively. The summarized results are shown in table 15, and the distribution of the sample is shown in the histogram in figure 44.

Računanje prosječne i standardne devijacije je izvedeno isključivanjem uzoraka koji daju signal iznad 1,5 tj. 1073 vrijednosti je korišteno za računanje poliklonskog konjugata i 1051 za anti-IgG monoklonski konjugat. Kao što se vidi iz tablice 15, kada se koristi poliklonski konjugat, prosječni pomak je od 0,0493 do 0,0931, a standardne devijacija je povećana od 0,074 do 0,0933. The calculation of the average and standard deviation was performed by excluding the samples that gave a signal above 1.5, ie 1073 values were used for the calculation of the polyclonal conjugate and 1051 for the anti-IgG monoclonal conjugate. As seen in Table 15, when the polyclonal conjugate is used, the average shift is from 0.0493 to 0.0931 and the standard deviation is increased from 0.074 to 0.0933.

Međutim, rezultati također pokazuju da ako se koristi kriterij x+5SD za definiranje prekida ispitivanja, koonfiguracija poliklonski enzim-konjugat u ELISA zahtijeva veću vrijednost preklapanja. Ovo naznačava smanjenu specifičnost ispitivanja u usporedbi s monoklonskim sustavom. Dodatno, kao što se vidi iiz histograma na slici 44, veće odvajanje rezultata između negativne i pozitivne raspodjele se dobiva kada se slučajni davaoci krvi testiraju u ELISA koristeći anti-IgG monoklonski konjugat u usporedbi s ispitivanjem koje koristi komercijalnu poliklonsku oznaku. However, the results also show that if the x+5SD criterion is used to define assay cutoff, the polyclonal enzyme-conjugate configuration in ELISA requires a higher overlap value. This indicates a reduced specificity of the assay compared to the monoclonal system. Additionally, as can be seen from the histogram in Figure 44, a greater separation of results between the negative and positive distributions is obtained when random blood donors are tested in an ELISA using an anti-IgG monoclonal conjugate compared to an assay using a commercial polyclonal label.

Tablica 15 Table 15

Usporedba dvije ELISA konfiguracije u testiranju uzorka slučajnih davalaca krvi Comparison of two ELISA configurations in random blood donor sample testing

[image] [image]

IV.J. Detekcija HCV serokonverzije NANBH pacijenata iz raznih genetskih lokacija IV.J. Detection of HCV seroconversion of NANBH patients from various genetic locations

Serum pacijenata za koje se sumnjalo da imaju NANBH zasnovano na povišenim ALT razinama, i koji su bili negativni na HAV i HBV testovima je testiran koristeći RIA uglavnom kao što je opisano u poglavlju IV.D., osim što je HCV C100-3 antigen korišten kao testirajući antigen u mikrotitarskoj posudi. Kao što se vidi iz rezultata danih u tablici 16, RIA detektira pozitivne uzorke u visokom postupku slučajeva. Serum from patients suspected of having NANBH based on elevated ALT levels, and who were negative for HAV and HBV assays, was tested using RIA essentially as described in Chapter IV.D., except that the HCV C100-3 antigen was used as a test antigen in a microtiter dish. As can be seen from the results given in Table 16, the RIA detects positive samples in a high proportion of cases.

Tablica 16 Table 16

Seronkonverzijske frekvencije za anti-C100-3 među pacijentima NANBH u raznim zemljama svijeta Seroconversion frequencies for anti-C100-3 among NANBH patients in various countries of the world

[image] [image]

IV.K. Detektiranje HCV serokonverzije u pacijentima s “opeć dobivenim” NANBH IV.K. Detection of HCV seroconversion in patients with “newly acquired” NANBH

Serum koji je dobiven iz 100 pacijenata sa NANBH, za koje nije uobičajen put prenošenja transfuzija (npr. bez transfuzije, i.v. korištenje lijeka, snošaj itd. Su proglašeni kao rizični faktori) je dobiven od dr. Altera iz centra za kontrolu bolesti i dr. Diestaga sa Harvard sveučilišta. Ovi uzorci su testirani korištenjem RIA uglavnom kao što je opisano u poglavlju IV.D., osim što je HCV C100-3 antigen koji je korišten kao antigen stavljen na mikrotitarske posude. Rezultati pokazuju da od 100 uzoraka seruma, 55 sadrži antitijela i reagira imunološki sa HCV C100-3 antigenom. Serum that was obtained from 100 patients with NANBH, for whom the usual route of transmission of transfusions (eg, no transfusion, IV drug use, intercourse, etc. are declared as risk factors) was obtained from Dr. Alter of the Center for Disease Control et al. Diestag from Harvard University. These samples were tested using RIA essentially as described in Section IV.D., except that the HCV C100-3 antigen used as the antigen was plated on microtiter plates. The results show that out of 100 serum samples, 55 contain antibodies and react immunologically with the HCV C100-3 antigen.

Rezultati opisani naprijed ukazuju da “opće dobiven” NANBH je također izazvan sa HCV. Međutim, kao što je pokazano ovdje, HCV je povezan sa flavivirusom koji se najviše prenosi pomoću artropoda, te se sugerira da HCV prenošenje u “opće dobivenim” slučajevima također rezultira it artropodnog prijenosa. The results described above indicate that “generally acquired” NANBH is also induced with HCV. However, as shown here, HCV is associated with the flavivirus most transmitted by arthropods, and it is suggested that HCV transmission in “generally acquired” cases also results in arthropod transmission.

IV.L. Uspoređivanje zahvaćanja HCV antitijela i suragatnih obilježivača u davalaca zahvaćenih NANBH prijenosom IV.L. Comparison of HCV antibody uptake and surrogacy markers in donors affected by NANBH transmission

Prospektivna studija je izvedena radi određivanja da li primalac krvi iz suspektnog NANBH davaoca, koji razvija NANBH serokonvertira u anti-HCV antitijelo pozitivno. Davaoci krvi su testirani na surogatne obilježivače abnormalnosti koje su obično korišteni kao obilježivači za NANBH infekciju, npr. povišene ALR razine i prisutnost anti-jezgra antitijela. Dodatno, davaoci su također tastirani na prisutnost anti-HCV antitijela. Određivanje prisutnosti anti-HCV antitijela je određeno korištenjem imunološkog ispitivanja kao što je opisano u poglavlju IV.K. Rezultati studije prikazani su u tablici 17, koja pokazuje: broj pacijenata (kolona 1); prisutnost anti-HCV antitijela u serumu pacijenata (kolona 2); broj davanja koje prima pacijent, sa svakim davanjem koje je od različitog davaoca (klona 3); prisutnost anti-HCV antitijela u serumu davaoca (kolona 4); i surogatna abnormalnost davaoca (kolona 5) (NT ili - znači da nije testirano) (AT je povišena transaminaza i ANTI- HBc je antitijelo anti-jezgre). A prospective study was performed to determine whether a recipient of blood from a suspected NANBH donor who develops NANBH seroconverts to anti-HCV antibody positive. Blood donors were tested for surrogate markers of abnormalities commonly used as markers for NANBH infection, eg, elevated ALR levels and the presence of anti-nuclear antibodies. Additionally, donors were also screened for the presence of anti-HCV antibodies. Determination of the presence of anti-HCV antibodies was determined using an immunoassay as described in Chapter IV.K. The results of the study are presented in table 17, which shows: number of patients (column 1); the presence of anti-HCV antibodies in the patients' serum (column 2); number of doses received by the patient, with each dose being from a different donor (clone 3); the presence of anti-HCV antibodies in the donor's serum (column 4); and donor surrogate abnormality (column 5) (NT or - means not tested) (AT is elevated transaminase and ANTI-HBc is anti-core antibody).

Rezultati u tablici 17 pokazuju da HCV antitijelo test je točniji i u detektiranju inficirane krvi davaoca od surogatnih testova obilježavanjem. Nijedan od 10 pacijenata koji su razvili NANBH simptome testirane pozitivno za serokonverziju anti-HCV antitijelo. Od 11 sumnjivih davalaca (pacijent 6 primio je 6 primanja od dvije različite individue za koje se sumnja da su NANBH nosioci), 9 je bilo pozitivno na anti-HCV antitijela i 1 je bio na granici pozitivnosti i stoga dvosmislen (davalac za pacijenta 1). Nasuprot tome, korištenjem povišenog ALT testa 6 od 10 davaoca koji su testirani bilo je negativno. Zapaža se da u tri slučaja (davaoci pacijentima 8,9 i 10), ALT test i anti-HBc test daju neusklađene rezultate. The results in Table 17 show that the HCV antibody test is more accurate in detecting infected donor blood than surrogate labeling tests. None of the 10 patients who developed NANBH symptoms tested positive for anti-HCV antibody seroconversion. Of the 11 suspected donors (patient 6 received 6 donations from two different individuals suspected of being NANBH carriers), 9 were positive for anti-HCV antibodies and 1 was borderline positive and therefore equivocal (donor for patient 1) . In contrast, using an elevated ALT test, 6 of 10 donors tested were negative. It is noted that in three cases (providers to patients 8, 9 and 10), the ALT test and the anti-HBc test give inconsistent results.

Tablica 17 Table 17

Razvijanje anti-HCV antitijela u pacijenata koji primaju krv davalaca za koje se sumnja da su nosioci NANBH Development of anti-HCV antibodies in patients receiving blood from donors suspected of being carriers of NANBH

[image] [image]

IV.M. Pojačavanje za klonirane HCV cDNA sekvenci korištenjem PCR i primara izvedenih iz sačuvanih područja Flavivirus genomske sekvence IV.M. Amplification for cloned HCV cDNA sequences using PCR and primers derived from conserved regions of the Flavivirus genomic sequence

Rezultati prikazani naprijed ukazuju da HCV flavivirus ili virus sličan njemu, dozvoljavaju strategiju za kloniranje neokarakteriziranih HCV cDNA sekvenci koje koristi PCT tehnika i primara izvedenih iz područja koje kodiraju sekvence aminokiselina u flavivirusima. Općenito, jedan od primara se izvodi iz definirane HCV genomske sekvence, i drugi primari koji zaobilaze područje nesekvenciranog HCV polinukleotida izvode se iz sačuvanog područja flavivirus genoma. Flavivirusni genomi, poznato je da sadrže sačuvane sekvence u NS1 i Epolipeptidima, koji su jodirani u 5’-području flavirus genoma. Odgovarajuće sekvence koje kodiraju ova područja leže uzvodno od HCV cDNA sekvenci izvedenih iz ovog područja HCV genoma, označeni su uzvodni primari koji su izvedeni iz sačuvanih sekvenci u ovim flavivirusnim polipeptidima. Nizvodni primari su izvedeni iz uzvodnog kraja poznatog dijela HCV cDNA. The results presented above indicate that the HCV flavivirus or a virus similar to it, allows a strategy for cloning uncharacterized HCV cDNA sequences using the PCT technique and primers derived from the coding region of amino acid sequences in flaviviruses. Generally, one of the primers is derived from a defined HCV genomic sequence, and other primers that bypass the region of the unsequenced HCV polynucleotide are derived from a conserved region of the flavivirus genome. Flavivirus genomes are known to contain conserved sequences in NS1 and Epolypeptides, which are iodinated in the 5'-region of the flavivirus genome. The corresponding sequences encoding these regions lie upstream of the HCV cDNA sequences derived from this region of the HCV genome, upstream primers derived from conserved sequences in these flaviviral polypeptides are indicated. Downstream primers were derived from the upstream end of a known portion of HCV cDNA.

Zbog degeneracije koda, vjerojatno će biti neslaganja između flavivirusnih proba i odgovarajuće HCV genomske sekvence. Stoga, korištena je strategija koja je slična onoj koju je opisao Lee (1988). Due to the degeneracy of the code, there are likely to be discrepancies between flavivirus probes and the corresponding HCV genomic sequence. Therefore, a strategy similar to that described by Lee (1988) was used.

Ovaj postupak koristi mješovite oligonukleotidne primare komplementarne reverznim translacijskim produktima aminokiselinske sekvence; sekvence u miješanim primarnima uzetih u računanje svake kodne degeneracije za konzerviranu aminokiselinsku sekvencu. This procedure uses mixed oligonucleotide primers complementary to the reverse translation products of the amino acid sequence; sequences in the mixed primers taken into account for each coding degeneracy for the conserved amino acid sequence.

Stvorena su tri seta primarnih smjesa, zasnovano na aminokiselinskim homolozima nađenim u više flavivirusa, uključujući Dengue-2,4 (D-2,4), japanski enchephalitis virus (JEV), žuta groznica (YF) i Zapadno nilski virus (WN). Primarna smjesa izvedena iz najuzvodnije sačuvane sekvence (5’-1) zasnovana je na aminokiselinskoj sekvenci gly-trp-gly, koja je djelomično sačuvana u sekvenci aps-arg-gly-trp-gly-aspN navedenoj u E proteinu D-2, JEV, YF i WN. Sljedeća primarna smjesa (5’-2) je zasnovana na nizvodno sačuvanoj sekvenci u E proteinu, phe-asp-gly-asp-ser-tvr-ileu-phe-gly-asp-ser-tyr-ileu i izvedena je iz phe-gly-asp; sačuvana sekvenca je prisutna u D-2, JEV, YF i WN. Treća primarna smjesa (5’-3) je zasnovana na aminokiselinskoj sekvenci arg-ser-cys, koja je dio sačuvane sekvence cys-cys-arg-ser-cys u NS1 proteinu D-2, D-4, JEV, YF i WN. Individualni primari koji stvaraju smjesu u 5’-3 su prikazani na slici 45. Dodatno promjenjivim sekvencama izvedenim iz sačuvanog područja, svaki primjer u svakoj smjesi također sadrži sekvencu koja kodira mjesta za restrikcijske enzime, HinIII, Mbol i EcoRI. Three sets of primers were created, based on amino acid homologues found in several flaviviruses, including Dengue-2.4 (D-2.4), Japanese encephalitis virus (JEV), yellow fever (YF), and West Nile virus (WN). The primer mixture derived from the most upstream conserved sequence (5'-1) is based on the amino acid sequence gly-trp-gly, which is partially conserved in the aps-arg-gly-trp-gly-aspN sequence reported in E protein D-2, JEV , YF and WN. The following primer mixture (5'-2) is based on the downstream conserved sequence in the E protein, phe-asp-gly-asp-ser-tvr-ileu-phe-gly-asp-ser-tyr-ileu and is derived from phe- gly-asp; the conserved sequence is present in D-2, JEV, YF and WN. The third primer mixture (5'-3) is based on the amino acid sequence arg-ser-cys, which is part of the conserved sequence cys-cys-arg-ser-cys in NS1 protein D-2, D-4, JEV, YF and WN . The individual primers that create the mixture in 5'-3 are shown in Figure 45. In addition to the variable sequences derived from the conserved region, each example in each mixture also contains the sequence encoding the sites for the restriction enzymes, HinIII, MboI and EcoRI.

Nizvodni primar, ssc5h20A, se izvodi iz nukleotidne sekvence u klonu 5h, koja sadrži HCV cDNA sa sekvencama s preklapanjem onih u klonovima 14i i 11b. sekvenca ssc5h20A je The downstream primer, ssc5h20A, is derived from the nucleotide sequence in clone 5h, which contains HCV cDNA with sequences overlapping those of clones 14i and 11b. the sequence of ssc5h20A is

5’ GTA ATA TGG TGA CAG AGT CA 3’ 5' GTA ATA TGG TGA CAG AGT CA 3'

alternativni primar ssc5h32A može se takoger koristiti. Ovaj primar se izvodi iz sekvence u klonu 5h, i u dodatku sadrži nukleotid na 5’-kraju koji stvaraju restrikcijsko enzimsko mjesto, što olakšava kloniranje. Sekvenca ssc5h32A je the alternative primer ssc5h32A can also be used. This primer is derived from the sequence in clone 5h, and additionally contains a nucleotide at the 5'-end that creates a restriction enzyme site, which facilitates cloning. The sequence of ssc5h32A is

5’ GAT CTC TAG AGA AAT CAA TAT GGT GAC GAC AGA GTC A 3’ 5' GAT CTC TAG AGA AAT CAA TAT GGT GAC GAC AGA GTC A 3'

PCR reakcija, koju je početno opisao Saiki et al. (1986) izvodi se uglavnom kao što je opisao Lee et al. (1988), osim što se šablona za cDNA i RNA izolira iz jetre HCV inficiranog čimpanze, kao što je opisano u poglavlju IV.C.2. ili iz virusnih partikula izoliranih iz seruma HCV inficiranog čimpanze kao što je opisano u poglavlju IV.A.1. Dodatno, uvjeti cijepanja su manje strogi u prvom krugu primjene (0,6 M NaCl i 25ºC) mada je dio primara koji će se cijepati do HCV sekvence samo 9 nukleotida i mogu biti loše spojeni. Međutim, ako se koristi ssc5h34A, dodatne sekvence neizvedene iz HCV genoma teže stabilizaciji primar-tamplat hibrida. Poslije prvog kruga primjere, uvjeti cijepanja mogu biti stroži (0,066 M NaCl i 32ºC-37ºC) mada primjenjene sekvence sada sadrže područja koja su komplementarna ili su duplikati primara. Dodatno, prvih 10 ciklusa primjene se izvode sa Klenow enzimom I, u odgovarajućim PCR uvjetima za taj enzim. Poslije tavršetka ovih ciklusa, uzori se ekstrahiraju i tretiraju sa Taq polimerazom, prema uputszvima opreme koju su dali Cetus-Perkin-Elmer. The PCR reaction, initially described by Saiki et al. (1986) was performed essentially as described by Lee et al. (1988), except that the template for cDNA and RNA is isolated from the liver of an HCV-infected chimpanzee, as described in Section IV.C.2. or from viral particles isolated from HCV-infected chimpanzee serum as described in section IV.A.1. Additionally, the cleavage conditions are less strict in the first round of application (0.6 M NaCl and 25ºC), although the part of the primer that will be cleaved to the HCV sequence is only 9 nucleotides and may be poorly joined. However, if ssc5h34A is used, additional sequences not derived from the HCV genome tend to stabilize the primer-template hybrid. After the first round of examples, the cleavage conditions may be more stringent (0.066 M NaCl and 32ºC-37ºC) although the applied sequences now contain regions that are complementary or duplicate primers. In addition, the first 10 application cycles are performed with Klenow enzyme I, under appropriate PCR conditions for that enzyme. After the completion of these cycles, the samples are extracted and treated with Taq polymerase, according to the instructions of the equipment provided by Cetus-Perkin-Elmer.

Poslije primjene, pojačane HCV cDNA sekvence se detektiraju hibridizacijom korištenjem probe izvedene iz klona 5h. ova proba se izvodi iz sekvenci uzvodno od onih korištenih radi izvođenja primara, i ne preklapa sekvence klona 5h izvedenog primara. Sekvenca proba je After administration, amplified HCV cDNA sequences are detected by hybridization using a probe derived from clone 5h. this probe is derived from sequences upstream of those used to derive the primer, and does not overlap the clone 5h sequence of the derived primer. The rehearsal sequence is

5’ CCC AGC GGC GTA CGC GCT GGA CAC GGA GGT GGC CGC GTC GTG TGG CGG TGT TGT TCT CGT CGG GTT GAT GGC GC 3’ 5' CCC AGC GGC GTA CGC GCT GGA CAC GGA GGT GGC CGC GTC GTG TGG CGG TGT TGT TCT CGT CGG GTT GAT GGC GC 3'

IV.N.1. Stvaranje HCV cDNA biblioteke iz jetre čimpanze sa NANBH infekcijom IV.N.1. Creation of HCV cDNA library from chimpanzee liver with NANBH infection

HCV biblioteka je stvorena iz jetre čimpanze od kojega je stvorena HCV cDNA biblioteka u poglavlju IV.A.1. Tehnika za stvaranje biblioteke je slična onoj u poglavlju IV.A.24. osim što je korišten različit RNA i primar zasnovan na sekvenci HCV cDNA u klonu 11b. Sekvenca primara je bila The HCV library was created from the chimpanzee liver from which the HCV cDNA library was created in Chapter IV.A.1. The technique for creating the library is similar to that in Chapter IV.A.24. except that a different RNA and primer based on the HCV cDNA sequence in clone 11b was used. The primary sequence was

5’ CTG GCT TGA AGA ATC 3’ 5' CTG GCT TGA AGA ATC 3'

IV.N.2. Izoliranje i nukleotidna sekvenca preklapajuće HCV cDNA u klonu k9-1 prema cDNA u klonu 11b IV.N.2. Isolation and nucleotide sequence of overlapping HCV cDNA in clone k9-1 to cDNA in clone 11b

Klon k9-1 je izoliran iz HCV cDNA biblioteke stvorene iz jetre NANBH inficiranog čimpanze, kao što je opisano u poglavlju IV.A.25. Biblioteka je testirana za klonove koji preklapaju sekvencu u klonu 11 b, korištenjem klona koji preklapa klon 11 b na 5’-terminusu, klon 11e. Sekvenca klona 11b je prikazana na slici 23. Pozitivni klonovi su izolirani frekvencijom od 1 u 500000. Jedan izolirani klon k9-1 je podvrgnut daljnjem proučavanju. Preklapajuća priroda HCV cDNA u klonu k9-1 na 5’ kraju HCV cDNA sekvence na slici 26 je potvrđena ispitivanjem klona sa Alex46; ovaj posljednji klon sadrži HCV cDNA sekvencu od 30 baznih parova koji odgovaraju onim baznim parovima na 5’-terminusu od HCV cDNA u klonu 14i, opisanom naprijed. Clone k9-1 was isolated from an HCV cDNA library generated from the liver of a NANBH-infected chimpanzee, as described in Section IV.A.25. The library was screened for clones overlapping the sequence in clone 11 b, using a clone overlapping clone 11 b at the 5'-terminus, clone 11e. The sequence of clone 11b is shown in Figure 23. Positive clones were isolated at a frequency of 1 in 500000. One isolated clone k9-1 was subjected to further study. The overlapping nature of the HCV cDNA in clone k9-1 at the 5' end of the HCV cDNA sequence in Figure 26 was confirmed by testing the clone with Alex46; this last clone contains an HCV cDNA sequence of 30 base pairs corresponding to those base pairs at the 5'-terminus of the HCV cDNA in clone 14i, described above.

Nukleotidna sekvenca HCV cDNA izolirana iz klona k9-1 je određena korištenjem tehnika opisanih naprijed. Sekvenca HCV cDNA u klonu k9-1, preklapanja sa HCV cDNA na slici 26 i aminokiseline kodirane u njemu su prikazani na slici 46. The nucleotide sequence of HCV cDNA isolated from clone k9-1 was determined using the techniques described above. The sequence of HCV cDNA in clone k9-1, overlaps with HCV cDNA in Figure 26 and amino acids encoded in it are shown in Figure 46.

HCV cDNA sekvenca u klonu k9-1 je povezana s onom klonova opisanih u poglavlju IV.A.19. Radi stvaranja sastava HCV cDNA sekvence s k9-1 sekvencom stavljenom uzvodno od sekvence prikazane na slici 32. Sastav HCV cDNA koji uključuje k9-1 sekvencu i aminokiseline kodirane u njoj, prikazani su na slici 47. The HCV cDNA sequence in clone k9-1 is related to that of the clones described in Section IV.A.19. To create a composition of the HCV cDNA sequence with the k9-1 sequence placed upstream of the sequence shown in Figure 32. The composition of the HCV cDNA including the k9-1 sequence and the amino acids encoded therein are shown in Figure 47.

Sekvenca aminokiselina kodiranih u 5’-području HCV cDNA prikazana na slici 47 uspoređena je s odgovarajućim područjem struka Dengue virusa, opisanog naprijed,s obzirom na profil područja hidrofobnosti i hidrofilnosti. Ovo uspoređivanje pokazuje sa polipeptid iz HCV i Dengue kodiraju u ovom području, koje odgovara području koje kodira NS1 (ili njegov dio), i imaju slični hidrofobni/ hirofilni profil. The sequence of amino acids encoded in the 5'-region of HCV cDNA shown in Figure 47 is compared with the corresponding region of the Dengue virus waist, described above, with respect to the profile of the hydrophobicity and hydrophilicity regions. This comparison shows that the polypeptide from HCV and Dengue are encoded in this region, which corresponds to the region encoding NS1 (or part thereof), and have a similar hydrophobic/hydrophilic profile.

Informacija pružena niže dozvoljava identifikaciju HCV struka. Izoliranje i karakterizacijadrugih HCV struka može se izvesti izoliranjem nukleinskih kiselina iz komponenti tijela koje sadrže virusne partikule, koje daju cDNA biblioteke koristeći polinukleotidne probe zasnovane na HCV cDNA probama opisanim niže,testiranjem biblioteka za klonove koji sadrže HCV cDNA sekvence opisane niže, i uspoređivanjem HCV cDNA iz novih izolata s cDNA opisanih niže. Polipeptidi kodirani ovdje ili u virusnom genomu mogu biti praćeni imunobiološkom križnom reaktivnošću korištenjem polipeptida i antitijela opisanih naprijed. Struke koje padaju u parametre HCV kao što je opisano u poglavlju definicija, naprijed, lako se identificiraju. Drugi postupci za identificiranje HCV struka biće stručnjacima jasni, zasnovano na informaciji pruženoj ovdje. The information provided below allows for the identification of HCV professions. Isolation and characterization of other HCV lineages can be performed by isolating nucleic acids from body components containing viral particles, yielding cDNA libraries using polynucleotide probes based on the HCV cDNA probes described below, screening libraries for clones containing the HCV cDNA sequences described below, and comparing HCV cDNA from the new cDNA isolates described below. Polypeptides encoded herein or in the viral genome can be monitored by immunobiological cross-reactivity using the polypeptides and antibodies described above. Occupations that fall within the HCV parameters as described in the definitions section, ahead, are easily identified. Other procedures for identifying HCV strains will be apparent to those skilled in the art based on the information provided herein.

Navod o najboljem podnositelju poznatom načinu privredne upotrebe izuma Citation of the best applicant known way of commercial use of the invention

Izum u raznim manifestacijama ovdje opisan, ima mnogo industrijskih primjera, od kojih neka slijede. HCV cDNA može se koristiti za stvaranje probe za detektiranje HCV nukleotidnih kiselina u uzorcima. Probe izvedene iz cDNA mogu biti korištene za detektiranje HCV nukleinskih kiselina u, primjerice, kemijskim sintetskim reakcijama. Ove se mogu također koristiti u testirajućim programima za antivirusne agense radi određivanje efekta agenasa u inhibiranju virusne replikacije u sustavima stanične kulture i životinjskim modelima sustava. HCV polinukleotidi u ljudi i tako mogu služiti kao osnova za dijagnoze HCV infekcija ljudi. The invention in various manifestations described here has many industrial examples, some of which follow. HCV cDNA can be used to create a probe to detect HCV nucleic acids in samples. Probes derived from cDNA can be used to detect HCV nucleic acids in, for example, chemical synthetic reactions. These can also be used in testing programs for antiviral agents to determine the effect of the agent in inhibiting viral replication in cell culture systems and animal model systems. HCV polynucleotides in humans can thus serve as a basis for the diagnosis of HCV infections in humans.

Uz ovo, cDNA ovdje osigurane pružaju informaciju i sredstva za sintezu polipeptida koji sadrže epitope HCV. Ovi polipeptidi su korisni u određivanju antitijela u HCV antigenima. Serija ispitivanja na HCV infekciju, zasnovanim na rekombinantnim polipeptidima koji sadrže HCV epitope su ovdje opisani i naći će komercijalnu primjenu u dijagnozi HCV koji izaziva NANBH u testiranju krvnih banki donora na hepatitis izazvan sa HCV, i također za detektiranje kontaminirane krvi iz infektivnih krvi donora. Virusni antigeni će također biti korišteni u praćenju djelotvornosti antivirusnih agenasa u životinjskim modelima sustava. K tome, polipeptidi izvedeni iz HCV cDNA ovdje opisani će imati primjenu kao cjepiva za tretiranje HCV infekcije. In addition, the cDNAs provided herein provide the information and means for the synthesis of polypeptides containing HCV epitopes. These polypeptides are useful in determining antibodies to HCV antigens. A series of tests for HCV infection, based on recombinant polypeptides containing HCV epitopes are described here and will find commercial application in the diagnosis of HCV causing NANBH in testing donor blood banks for HCV-induced hepatitis, and also for detecting contaminated blood from infectious donor blood. Viral antigens will also be used to monitor the efficacy of antiviral agents in animal model systems. In addition, the polypeptides derived from HCV cDNA described herein will have application as vaccines for the treatment of HCV infection.

Polipeptidi izvedeni iz HCV cDNA, pored gore spomenutih primjera, također su primjenjivi za porast anti-HCV antitijela. Tako, mogu se koristiti u anti-HCV cjepivima. Međutim, antitijela proizvedena kao rezultat imunizacije sa HCV polipeptidima također su korisna u detektiranju prisutnosti virusnih antigena u uzorcima, tako, mogu se koristiti radi ispitivanja proizvodnje HCV polipeptida u kemijskim sustavima. Anti-HCV antitijela mogu se također koristiti za praćenje djelotvornosti antivirusnih agenasa u testirajućim programima gdje se ova sredstva testiraju u tkivu sustava kultura. Također se mogu koristiti za pasivnu imunoterapiju, i dijagnozu HCV koja izaziva NANBH dozvoljavanjem detekcije virusnih antigena u davaocima i primaocima krvi. Druga važna primjena za anti-HCV antitijelima je u afinitetnoj kromatografiji za pročišćavanje virusnih i viralnih polipeptida. Pročišćen virus i virusni polipeptidni preparati mogu se rabiti u cjepivima. Međutim, pročišćen virus može biti primjenjiv za razvijanje staničnih kultura u kojima su HCV replikati. Polypeptides derived from HCV cDNA, in addition to the examples mentioned above, are also applicable for raising anti-HCV antibodies. Thus, they can be used in anti-HCV vaccines. However, antibodies produced as a result of immunization with HCV polypeptides are also useful in detecting the presence of viral antigens in samples, thus, they can be used to test the production of HCV polypeptides in chemical systems. Anti-HCV antibodies can also be used to monitor the efficacy of antiviral agents in testing programs where these agents are tested in tissue culture systems. They can also be used for passive immunotherapy, and diagnosis of HCV causing NANBH by allowing detection of viral antigens in blood donors and recipients. Another important application for anti-HCV antibodies is in affinity chromatography for the purification of viruses and viral polypeptides. Purified virus and viral polypeptide preparations can be used in vaccines. However, purified virus may be applicable for developing cell cultures in which HCV replicates.

Sustavi staničnih kultura koji sadrže HCV inficirane stanice imati će mnoge primjene. Mogu se koristiti za relativno veliku proizvodnju HCV koja je normalno virus niskog titra. Ovi će sustavi također biti korišteni za molekularnu biologiju virusa i dovode do razvijanja anti-virusnih agenasa. Sustavi staničnih kultura će također biti primjenjivi u testiranju djelotvornosti antivirusnih agenasa. Uz ovo, HCV propusni sustavi kultura stanica su korisni za proizvodnju oslabljenih struka HCV. Konvencionalno, anti-HCV antitijela i HCV polipeptidi bilo da su prirodni ili rekombinantni, mogu se pakirati u opremu. Cell culture systems containing HCV infected cells will have many applications. They can be used for relatively large production of HCV which is normally a low titer virus. These systems will also be used for molecular biology of viruses and lead to the development of anti-viral agents. Cell culture systems will also be applicable in testing the efficacy of antiviral agents. Additionally, HCV permeabilized cell culture systems are useful for producing attenuated HCV strains. Conventionally, anti-HCV antibodies and HCV polypeptides, whether native or recombinant, can be packaged into a kit.

Postupak korišten za izoliranje HCV cDNA, koji obuhvaća dobivanje cDNA biblioteke izvedene iz inficiranog tkiva individua u ekspresijskom vektoru iii odabiranje klonova koji produciraju ekspresijske produkte koji reagiraju imunološki s antitijelima u komponentama tijela koja sadrže antitijela iz druge inficirane individue i ne iz ne-inficiranih individua, može se također primjeniti za izoliranje cDNA iz drugih, do sada neokarakteriziranih agenasa-uzročnika bolesti, koji su sastavljeni od genomske komponente. Ovo može dovesti do izoliranja i karakterizacije ovih agenasa i dijagnostičkih reagenasa i cjepiva za ove druge agense, uzročnike bolesti. A method used to isolate HCV cDNA, which includes obtaining a cDNA library derived from an infected tissue of an individual in an expression vector iii selecting clones that produce expression products that react immunologically with antibodies in body components containing antibodies from another infected individual and not from non-infected individuals, it can also be used to isolate cDNA from other, so far uncharacterized disease-causing agents, which are composed of a genomic component. This can lead to the isolation and characterization of these agents and diagnostic reagents and vaccines for these other disease-causing agents.

Reference citirane u prijavi References cited in application

Barr et al (1986), Biotechniques 4:428. Barr et al (1986), Biotechniques 4:428.

Bostein (1979), Gene 8:17. Bostein (1979), Gene 8:17.

Brinton M.A. (1986) IN THE VIRUSES: THE TOGAVIRADE AND FLAVIVIRADE ( Series eds. Fraenkl-Conrat i Wagner, vol. eds. Schlesinger i Schlesinger, Plenum Press), str. 327-374. Brinton M.A. (1986) IN THE VIRUSES: THE TOGAVIRADE AND FLAVIVIRADE (Series eds. Fraenkl-Conrat and Wagner, vol. eds. Schlesinger and Schlesinger, Plenum Press), p. 327-374.

Broach (1981) u: Molecular Biology of the Yeast Saccharomyeces, vol. 1, str. 445, Cold Spring Harbor pres. Broach (1981) in: Molecular Biology of the Yeast Saccharomyces, vol. 1, p. 445, Cold Spring Harbor Pres.

Broach et al (1983), Meth. Enz. 101:307. Broach et al (1983), Meth. Enz. 101:307.

Chang et al (1977), Nature 198:1056. Chang et al (1977), Nature 198:1056.

Chomczynski i Sacchi (1987), Analytical Biochemistry 162:156 Chomczynski and Sacchi (1987), Analytical Biochemistry 162:156

Clewell (1972), J. Bacteriol. 110:667. Clewell (1972), J. Bacteriol. 110:667.

Clewell (1969), Proc. Natl. Acad. Sci. USA 62:1159. Clewell (1969), Proc. Natl. Acad. Sci. USA 62:1159.

Cohen (1972), Proc. Natl. Acad. Sci. USA 69:2110. Cohen (1972), Proc. Natl. Acad. Sci. USA 69:2110.

Cousens et al (1987), Gene 61:265. Cousens et al (1987), Gene 61:265.

De Boer et al (1983), Proc.Natl. Acad. Sci. USA 292:128. De Boer et al (1983), Proc. Natl. Acad. Sci. USA 292:128.

Dressman et al (1985), J. Infect. Disease 151:761. Dressman et al (1985), J. Infect. Disease 151:761.

Feinstone S.M. i Hoofnagle J.H. (1984), New Engl. J. Med. 311:185. Feinstone S.M. and Hoofnagle J.H. (1984), New Engl. J. Med. 311:185.

Fields&Knipe (1986), FUNDAMENTAL VIROLOGY (Raven Press, N.Y.). Fields&Knipe (1986), FUNDAMENTAL VIROLOGY (Raven Press, N.Y.).

Fiers et al (1978), Nature 273:113. Fiers et al (1978), Nature 273:113.

Gerety R.J. et al, in VIRAL HEPATITIS AND LIVER DISEASE (Vyas B.N., Dienstag J.L., i Hoofnagle J.H. eds. Grune i Stratton, Inc., 1984) str. 23-47. Gerety R.J. et al, in VIRAL HEPATITIS AND LIVER DISEASE (Vyas B.N., Dienstag J.L., and Hoofnagle J.H. eds. Grune and Stratton, Inc., 1984) p. 23-47.

Goeddel et al (1980), Nucleic Acids Res. 8:4057. Goeddel et al (1980), Nucleic Acids Res. 8:4057.

Graham and Van der Eb (1978), Vicology 52:546. Graham and Van der Eb (1978), Vicology 52:546.

Grunstein i Hogness (1975), Proc. Natl. Acad. Sci. USA 73:3961. Grunstein and Hogness (1975), Proc. Natl. Acad. Sci. USA 73:3961.

Grych et al (1985), Nature 316:74. Grych et al (1985), Nature 316:74.

Hamerlling et al (1981), MONOCLONAL ANTIBODIES AND T-CELL HYBRIDOMAS. Hamerlling et al (1981), MONOCLONAL ANTIBODIES AND T-CELL HYBRIDOMAS.

Hess et al (1968), J. Adv. Enzyme Reg. 7:149. Hess et al (1968), J. Adv. Enzyme Reg. 7:149.

Hinnen et al (1978), Proc. Natl. Acad. Sci. USA 75:1929. Hinnen et al (1978), Proc. Natl. Acad. Sci. USA 75:1929.

Hitzoman et al (1980), J. Biol. Chem. 255:2073. Hitzoman et al (1980), J. Biol. Chem. 255:2073.

Holland et al (1978), Biochemistry 17:4900. Holland et al (1978), Biochemistry 17:4900.

Holland (1981), J. Biol. Chem. 256:1385. Holland (1981), J. Biol. Chem. 256:1385.

Huynh T.V. et al (1985) u DNA CLONING TECHNIQUES; A PRACTICAL APPROACH (D. Glover, ed. IRL Press, Oxford, U.K.) str. 49-78. Huynh T.V. et al (1985) in DNA CLONING TECHNIQUES; A PRACTICAL APPROACH (D. Glover, ed. IRL Press, Oxford, U.K.) p. 49-78.

Immun. Rev. (1982), 62:185. Immun. Rev. (1982), 62:185.

Kennet et al (1980) MONOCLONAL ANTIBODIES. Kennet et al (1980) MONOCLONAL ANTIBODIES.

Laemmli (1970), Nature 227:680. Laemmli (1970), Nature 227:680.

Lee et al (1988), Science 239:1288. Lee et al (1988), Science 239:1288.

Maniatis T. et al (1982) MOLECULAR CLONING/A LABORATORY MANUAL (Cold Spring Harbor Press, Cold Spring Harbor, N.Y.). Maniatis T. et al (1982) MOLECULAR CLONING/A LABORATORY MANUAL (Cold Spring Harbor Press, Cold Spring Harbor, N.Y.).

Mayer i Walker, eds (1987), IMMUNOCHEMICAL METHODS IN CELL AND MOLECULAR BIOLOGY (Academic Press, london). Mayer and Walker, eds (1987), IMMUNOCHEMICAL METHODS IN CELL AND MOLECULAR BIOLOGY (Academic Press, London).

Maxam et al (1980), Methods in Enzymology 65:499. Maxam et al (1980), Methods in Enzymology 65:499.

MacNamara et al (1984), Science 226:1325. MacNamara et al (1984), Science 226:1325.

Messing et al (1981), Nucleic Acids Res. 9:309. Messing et al (1981), Nucleic Acids Res. 9:309.

Messing (1983), methods in Enzymology 101:20-37. Messing (1983), methods in Enzymology 101:20-37.

METHODS IN ENZYMOLOGY (Academic Press). METHODS IN ENZYMOLOGY (Academic Press).

Michelle et al, Int. Symposium on Viral Hepatitis. Michelle et al., Int. Symposium on Viral Hepatitis.

Monath (1986) u THE VIRUSES:THE TOGAVIRADAE AND FLAVIVIRIDAE (series eds. Fraenkel-Conrat i Wagner, vol. eds. Schlesinger i Schlesinger, Plenum Press) str. 375-440. Monath (1986) in THE VIRUSES: THE TOGAVIRADAE AND FLAVIVIRIDAE (series eds. Fraenkel-Conrat and Wagner, vol. eds. Schlesinger and Schlesinger, Plenum Press) p. 375-440.

Nagahuma et al (1984), Anal. Biocehm. 141:74. Nagahuma et al (1984), Anal. Biocehm. 141:74.

Neurath et al (1984), Science 224:392. Neurath et al (1984), Science 224:392.

Noisonoff et al (1981), Clin. Immunolo. Immunopathol. 21:397-406. Noisonoff et al (1981), Clin. Immunol. Immunopathol. 21:397-406.

Overby L.R. (1985) Curr Hepatol. 5:49. Overby L.R. (1985) Curr Hepatol. 5:49.

Overby L.R. (1986) Curr Hepatol. 6:65. Overby L.R. (1986) Curr Hepatol. 6:65.

Overby L.R. (1987) Curr Hepatol. 7:35. Overby L.R. (1987) Curr Hepatol. 7:35.

Prince A.M. (1983), Ann. Rev. Microbiol. 37:217. Prince A.M. (1983), Ann. Rev. Microbiol. 37:217.

Rice et al (1988). Rice et al (1988).

Sadler et al (1980), 8:279. Sadler et al (1980), 8:279.

Saiki et al (1986), Nature 324:163. Saiki et al (1986), Nature 324:163.

Sanger et al (1977), Proc. Natl. Acad. Sci. USA 74:5463. Sanger et al (1977), Proc. Natl. Acad. Sci. USA 74:5463.

Scheirer M. et al (1980) HYBRIDOMA TECHNIQUES Scheirer M. et al (1980) HYBRIDOMA TECHNIQUES

Scope (1984), PROTEIN PURIFICATION, PRINCIPLES AND PRACTICE, SECOND EDITION (Springer-Verlag, N.Y.). Scope (1984), PROTEIN PURIFICATION, PRINCIPLES AND PRACTICE, SECOND EDITION (Springer-Verlag, N.Y.).

Shimatake et al (1981), Nature 292:128. Shimatake et al (1981), Nature 292:128.

Steimar et al (1986), J. Virol. 58:9. Steimar et al (1986), J. Virol. 58:9.

Taylor et al (1976), Biochem. Biophys. Acta 442:324. Taylor et al (1976), Biochem. Biophys. Acta 442:324.

Towbin et al (1979), Proc. Natl. Acad. Sci. USA 76:4350. Towbin et al (1979), Proc. Natl. Acad. Sci. USA 76:4350.

Tsu i Herzenberg (1980), u SELECTED METHODS IN CELULAR IMMUNOLOGY (W.H. Freeman i Co.) str. 373-391. Tsu and Herzenberg (1980), in SELECTED METHODS IN CELLULAR IMMUNOLOGY (W.H. Freeman and Co.) p. 373-391.

Vytdehaag et al (1985), J Immunol. 13:1225. Vytdehaag et al (1985), J Immunol. 13:1225.

Valenzuela P. et al (1982), Nature 298:344. Valenzuela P. et al (1982), Nature 298:344.

Velenzuela P. et al (1984), IN HEPETITIS B (Millman I. Et al, ed, Plenum Press) str. 225-236. Velenzuela P. et al (1984), IN HEPETITIS B (Millman I. Et al, ed, Plenum Press) p. 225-236.

Warner (1984), DNA 3:401. Warner (1984), DNA 3:401.

Wu i Grossman (1987), Methods in Enzymology vol 154. RECOMBINANT DNA, Part E. Wu and Grossman (1987), Methods in Enzymology vol 154. RECOMBINANT DNA, Part E.

Zoller (1982), Nucleic Acids Res. 10:6487. Zoller (1982), Nucleic Acids Res. 10:6487.

Chirgwin et al (1979) Biochemistry 18:5294. Chirgwin et al (1979) Biochemistry 18:5294.

Gubler i Hofman (1983), Gene 25:263. Gubler and Hoffman (1983), Gene 25:263.

Houghton et al (1981), Nucleic Acids Res. 9:247. Houghton et al (1981), Nucleic Acids Res. 9:247.

Iwarson (1987), British Medical J. 295:946. Iwarson (1987), British Medical J. 295:946.

Peleg (1969), Nature 221:193. Peleg (1969), Nature 221:193.

Pfehhekorn i Shapiro (1974), IN COMPREHENSIVE VIROLOGY vol. 2 (Fraenkel-Corrat & Wagner eds., Plenum N.Y.) str. 171-230. Pfehhekorn and Shapiro (1974), IN COMPREHENSIVE VIROLOGY vol 2 (Fraenkel-Corrat & Wagner eds., Plenum N.Y.) p. 171-230.

Rice et al (1986), in the VIRUSES: THE TOGAVIRIDAE AND FLAVIVIRIDAE (Series eds. Fraenkel-Conrat i Wagner, vol. eds. Schlesinger i Schlesinger, Plenum Press) str. 279-328. Rice et al (1986), in the VIRUSES: THE TOGAVIRIDAE AND FLAVIVIRIDAE (Series eds. Fraenkel-Conrat and Wagner, vol. eds. Schlesinger and Schlesinger, Plenum Press) p. 279-328.

Roehring (1986) in THE VIRUSES: TOGAVIRIDAE AND FKLAVIVIRIDAE (Series eds. Fraenkel-Conrat i Wagner, vol end Schlesinger i Schlesinger, Plenum Press). Roehring (1986) in THE VIRUSES: TOGAVIRIDAE AND FKLAVIVIRIDAE (Series eds. Fraenkel-Conrat and Wagner, vol end Schlesinger and Schlesinger, Plenum Press).

Schlesinger et al (1986), J. Virol. 60:1153. Schlesinger et al (1986), J. Virol. 60:1153.

Stollar (1980) in THE TOGAVIRUSES (R. W., Schlesinger, ed., Academic Press, N.Y.) str. 584-622. Stollar (1980) in THE TOGAVIRUSES (R.W., Schlesinger, ed., Academic Press, N.Y.) p. 584-622.

Houghton et al (1981), Nucleic Acids Res. 9:247. Houghton et al (1981), Nucleic Acids Res. 9:247.

Iwarson (1987), British Medical J. 295:946. Iwarson (1987), British Medical J. 295:946.

Peleg (1969), Nature 221:193. Peleg (1969), Nature 221:193.

Pfefferkorn i Shapiro (1974), in COMPREHENSIVE VIROLOGY. Pfefferkorn and Shapiro (1974), in COMPREHENSIVE VIROLOGY.

Citirani patenti Patents cited

SAD patent br. 4.241.761 US patent no. 4,241,761

SAD patent br. 4.399.121 US patent no. 4,399,121

SAD patent br. 4.427.783 US patent no. 4,427,783

SAD patent br. 4.444.887 US patent no. 4,444,887

SAD patent br. 4.466.917 US patent no. 4,466,917

SAD patent br. 4.472.500 US patent no. 4,472,500

SAD patent br. 4.491.632 US patent no. 4,491,632

SAD patent br. 4.493.890 US patent no. 4,493,890

Claims (77)

1. Polipeptid, naznačen time što je u posve izoliranom obliku koji sadrži neprekinutu sekvenciju bar 10 aminokiselina koja je kodirana virusom hepatitisa C (HCV) i koji sadrži antigensku determinantu, pri čemu je HCV karakteriziran sljedećim: (i) pozitivno postavljenim RNA genomom; (ii) navedeni genom sadrži otvoreni okvir za učitavanje (ORF) koji kodira poliprotein; i (iii) navedeni poliprotein sadrži sekvenciju aminokiselina koja je bar 40% homologna sa sekvencijom 859 aminokiselina koje su prikazane na slici 14.1. Polypeptide, characterized by the fact that it is in a completely isolated form that contains an uninterrupted sequence of at least 10 amino acids that is encoded by the hepatitis C virus (HCV) and that contains an antigenic determinant, whereby HCV is characterized by the following: (i) positively positioned RNA genome; (ii) said genome contains an open loading frame (ORF) encoding a polyprotein; and (iii) said polyprotein contains an amino acid sequence that is at least 40% homologous with the 859 amino acid sequence shown in Figure 14. 2. Polipeptid prema zahtjevu 1, naznačen time što navedeni poliprotein sadrži sekvenciju aminokiselina koja je bar 60% homologna sa sekvencijom 859 aminokiselina, prema slici 14.2. Polypeptide according to claim 1, characterized in that said polyprotein contains an amino acid sequence that is at least 60% homologous with the sequence of 859 amino acids, according to Figure 14. 3. Polipeptid prema zahtjevu 1 ili 2, naznačen time što sadrži bar 15 aminokiselina.3. Polypeptide according to claim 1 or 2, characterized in that it contains at least 15 amino acids. 4. Polipeptid prema bilo kojem od prethodnih zahtjeva, naznačen time što je dobiven ekspresijom rekombinantne DNA.4. Polypeptide according to any of the preceding claims, characterized in that it is obtained by expression of recombinant DNA. 5. Polipeptid prema bilo kojem zahtjevu od 1 do 3, naznačen time što je dobiven kemijskom sintezom.5. Polypeptide according to any claim from 1 to 3, characterized in that it is obtained by chemical synthesis. 6. Polipeptid prema bilo kojem zahtjevu od 1 do 5, naznačen time što je neprekinuta sekvencija aminokiselina sukladna slici 14.6. The polypeptide according to any one of claims 1 to 5, characterized in that the uninterrupted sequence of amino acids conforms to Figure 14. 7. Polipeptid prema bilo kojem zahtjevu od 1 do 5, naznačen time što je neprekinuta sekvencija aminokiselina sukladna slici 47.7. The polypeptide according to any one of claims 1 to 5, characterized in that the uninterrupted sequence of amino acids conforms to Figure 47. 8. Polipeptid prema bilo kojem zahtjevu od 1 do 5, naznačen time što je neprekinuta sekvencija kodirana u lambda-gtll cDNA biblioteci koja je pohranjena u Američkoj tipskoj zbirci kultura (ATCC) pod pristupnim brojem 40394.8. The polypeptide according to any one of claims 1 to 5, characterized in that the continuous sequence is encoded in the lambda-gtll cDNA library deposited in the American Type Culture Collection (ATCC) under accession number 40394. 9. Polipeptid prema bilo kojem zahtjevu od 1 do 8, naznačen time što je neprekinuta sekvencija ona nestrukturnog virusnog proteina.9. The polypeptide according to any one of claims 1 to 8, characterized in that the continuous sequence is that of a non-structural viral protein. 10. Polipeptid prema bilo kojem zahtjevu od 1 do 5, 7 ili 8, naznačen time što je neprekinuta sekvencija ona strukturnog virusnog proteina.10. The polypeptide according to any one of claims 1 to 5, 7 or 8, characterized in that the continuous sequence is that of a structural viral protein. 11. Polipeptid prema bilo kojem zahtjevu od 1 do 8, naznačen time što je njegova sekvencija prikazana na bilo kojoj slici 1, 3 do 32, 36, 46 i 47, ili čija je sekvencija kodirana u polinukleotidu koji se selektivno može hibridizirati s polinukleotidom koji je prikazan na bilo kojoj slici 1, 3 do 32, 36, 46 ili 47.11. A polypeptide according to any of claims 1 to 8, characterized in that its sequence is shown in any of Figures 1, 3 to 32, 36, 46 and 47, or whose sequence is encoded in a polynucleotide that can selectively hybridize with a polynucleotide that is shown in any figure 1, 3 to 32, 36, 46 or 47. 12. Polipeptid prema bilo kojem zahtjevu od 1 do 11, naznačen time što je polipeptid vezan za čvrstu fazu.12. The polypeptide according to any one of claims 1 to 11, characterized in that the polypeptide is bound to a solid phase. 13. Pribor za izvođenje imunološke analize, naznačen time što sadrži polipeptid prema bilo kojem zahtjevu od 1 do 12 u pogodnom spremniku.13. Accessories for performing an immunological analysis, characterized in that it contains the polypeptide according to any of claims 1 to 12 in a suitable container. 14. Smjesa, naznačena time što sadrži posve izolirani polipeptid prema bilo kojem zahtjevu od 1 do 11 koji je pomiješan s farmaceutski prihvatljivim ekscipijentom.14. A mixture, characterized in that it contains a completely isolated polypeptide according to any one of claims 1 to 11, which is mixed with a pharmaceutically acceptable excipient. 15. Cjepivo, naznačeno time što mu je sastav sukladan zahtjevu 14.15. Vaccine, indicated by the fact that its composition complies with requirement 14. 16. Pribor za imunološku analizu namijenjen detektiranju antitijela za virus hepatitisa C (HCV) (anti-HCV antitijelo), naznačen time što uključuje: (a) dobivanje polipeptida koji sadrži antigensku determinantu koja se može vezati s navedenim anti-HCV antitijelom, gdje navedena antigenska determinanta sadrži neprekinutu sekvenciju aminokiselina kodiranu HCV genomom i gdje je HCV karakteriziran sljedećim: (i) pozitivno postavljenim RNA genomom; (ii) navedeni genom sadrži otvoreni okvir za učitavanje (ORF) koji kodira poliprotein; i (iii) navedeni poliprotein sadrži sekvenciju aminokiselina koja je bar 40% homologna sa sekvencijom 859 aminokiselina koje su prikazane na slici 14. (b) inkubiranje biološkog uzorka s navedenim polipeptidom u uvjetima koji omogućuju nastajanje kompleksa antitijelo-antigen; i (c) određivanje je li nastao kompleks antigen-antitijelo koji sadrži navedeni polipeptid.16. Kit for immunological analysis intended for the detection of antibodies to the hepatitis C virus (HCV) (anti-HCV antibody), characterized by the fact that it includes: (a) obtaining a polypeptide comprising an antigenic determinant capable of binding to said anti-HCV antibody, wherein said antigenic determinant comprises a continuous amino acid sequence encoded by the HCV genome and wherein HCV is characterized by: (i) positively positioned RNA genome; (ii) said genome contains an open loading frame (ORF) encoding a polyprotein; and (iii) said polyprotein contains an amino acid sequence that is at least 40% homologous with the 859 amino acid sequence shown in Figure 14. (b) incubating the biological sample with said polypeptide under conditions that enable the formation of an antibody-antigen complex; and (c) determining whether an antigen-antibody complex containing said polypeptide has formed. 17. Imunološka analiza prema zahtjevu 16, naznačena time što je polipeptid dobiven ekspresijom rekombinantne DNA.17. Immunological analysis according to claim 16, characterized in that the polypeptide is obtained by expression of recombinant DNA. 18. Imunološka analiza prema zahtjevu 16, naznačena time što je polipeptid dobiven kemijskom sintezom.18. Immunological analysis according to claim 16, characterized in that the polypeptide is obtained by chemical synthesis. 19. Imunološka analiza prema bilo kojem zahtjevu od 16 do 18, naznačena time što je navedeni polipeptid vezan za čvrsti nosač.19. Immunological analysis according to any one of claims 16 to 18, characterized in that said polypeptide is attached to a solid support. 20. Imunološka analiza prema bilo kojem zahtjevu od 16 do 19, naznačena time što su navedeni kompleksi antigen-antitijelo detektirani inkubiranjem kompleksa s obilježenim anti-humanim imunoglobulinskim antitijelom.20. Immunological analysis according to any of claims 16 to 19, characterized in that said antigen-antibody complexes are detected by incubating the complex with a labeled anti-human immunoglobulin antibody. 21. Imunološka analiza prema zahtjevu 20, naznačena time što je navedeno anti-humano imunoglobulinsko antitijelo obilježeno enzimom.21. Immunological analysis according to claim 20, characterized in that said anti-human immunoglobulin antibody is labeled with an enzyme. 22. Imunološka analiza prema bilo kojem zahtjevu od 16 do 21, naznačena time što navedeni poliprotein sadrži sekvenciju aminokiselina koja je bar 60% homologna sa sekvencijom 859 aminokiselina, prema slici 14.22. Immunological analysis according to any claim from 16 to 21, characterized in that said polyprotein contains an amino acid sequence that is at least 60% homologous with the 859 amino acid sequence, according to Figure 14. 23. Imunološka analiza prema bilo kojem zahtjevu od 16 do 22, naznačena time što se neprekinuta sekvencija sastoji iz bar 10 aminokiselina.23. Immunological analysis according to any claim from 16 to 22, characterized in that the continuous sequence consists of at least 10 amino acids. 24. Imunološka analiza prema bilo kojem zahtjevu od 16 do 23, naznačena time što se neprekinuta sekvencija sastoji iz bar 15 aminokiselina.24. Immunological analysis according to any claim from 16 to 23, characterized in that the continuous sequence consists of at least 15 amino acids. 25. Imunološka analiza prema bilo kojem zahtjevu od 16 do 24, naznačena time što je neprekinuta sekvencija prikazana na slici 14.25. The immunoassay according to any one of claims 16 to 24, characterized in that the unbroken sequence is shown in Figure 14. 26. Imunološka analiza prema bilo kojem zahtjevu od 16 do 24, naznačena time što je neprekinuta sekvencija prikazana na slici 47.26. The immunoassay according to any one of claims 16 to 24, characterized in that the unbroken sequence is shown in Figure 47. 27. Imunološka analiza prema bilo kojem zahtjevu od 16 do 24, naznačena time što je neprekinuta sekvencija prikazana na bilo kojoj slici 1, 3 do 32, 36, 46 i 47, ili čija je sekvencija kodirana u polinukleotidu koji se selektivno može hibridizirati s polinukleotidom koji je prikazan na bilo kojoj slici 1, 3 do 32, 36,46 ili 47.27. The immunoassay according to any of claims 16 to 24, characterized in that the continuous sequence shown in any of Figures 1, 3 to 32, 36, 46 and 47, or whose sequence is encoded in a polynucleotide that can selectively hybridize to the polynucleotide which is shown in any figure 1, 3 to 32, 36, 46 or 47. 28. Imunološka analiza prema bilo kojem zahtjevu od 16 do 27, naznačena time što je neprekinuta sekvencija kodirana u lambda-gt11 cDNA biblioteci koja je pohranjena u Američkoj tipskoj zbirci kultura (ATCC) pod pristupnim brojem 40394.28. The immunoassay according to any one of claims 16 to 27, characterized in that the continuous sequence is encoded in the lambda-gt11 cDNA library deposited in the American Type Culture Collection (ATCC) under accession number 40394. 29. Imunološka analiza prema bilo kojem zahtjevu od 16 do 28, naznačena time što je neprekinuta sekvencija ona nestrukturnog virusnog proteina.29. An immunoassay according to any one of claims 16 to 28, characterized in that the continuous sequence is that of a non-structural viral protein. 30. Imunološka analiza prema bilo kojem zahtjevu od 16 do 24 ili 26 do 28, naznačena time što je neprekinuta sekvencija ona strukturnog virusnog proteina.30. An immunoassay according to any of claims 16 to 24 or 26 to 28, characterized in that the continuous sequence is that of a structural viral protein. 31. Nepokretni polipeptid za primjenu u imunološkoj analizi prema bilo kojem zahtjevu od 16 do 30, naznačen time što polipeptid sadrži antigensku determinantu koja se može vezati s anti-HCV antitijelom kao što je navedeno u zahtjevu 16.31. An immobilized polypeptide for use in an immunoassay according to any one of claims 16 to 30, characterized in that the polypeptide contains an antigenic determinant that can bind to an anti-HCV antibody as set forth in claim 16. 32. Polinukleotid koji je u posve izoliranom obliku, naznačen time što sadrži neprekinutu sekvenciju nukleotida, koji se može selektivno hibiridizirati za genomom virusa hepatitisa C (HCV) ili njegovim komplimentom, pri čemu je HCV karakteriziran sljedećim: (i) pozitivno postavljenim RNA genomom; (ii) navedeni genom sadrži otvoreni okvir za učitavanje (ORF) koji kodira poliprotein; i (iii) navedeni poliprotein sadrži sekvenciju aminokiselina koja je bar 40% homologna sa sekvencijom 859 aminokiselina koje su prikazane na slici 14.32. A polynucleotide that is in a completely isolated form, characterized by the fact that it contains an uninterrupted sequence of nucleotides, which can be selectively hybridized to the genome of the hepatitis C virus (HCV) or its complement, wherein HCV is characterized by the following: (i) positively positioned RNA genome; (ii) said genome contains an open loading frame (ORF) encoding a polyprotein; and (iii) said polyprotein contains an amino acid sequence that is at least 40% homologous with the 859 amino acid sequence shown in Figure 14. 33. Polinukleotid prema zahtjevu 32, naznačen time što navedeni poliprotein sadrži sekvenciju aminokiselina koja je bar 60% homologna do sekvencije 859 aminokiselina, prema slici 14.33. Polynucleotide according to claim 32, characterized in that said polyprotein contains an amino acid sequence that is at least 60% homologous to the sequence of 859 amino acids, according to Figure 14. 34. Polinukleotid prema zahtjevu 32 ili 33, naznačen time što se neprekinuta sekvencija sastoji iz bar 10 nukleotida.34. Polynucleotide according to claim 32 or 33, characterized in that the uninterrupted sequence consists of at least 10 nucleotides. 35. Polinukleotid prema zahtjevu 34, naznačen time što se neprekinuta sekvencija sastoji iz bar 15 nukleotida.35. Polynucleotide according to claim 34, characterized in that the continuous sequence consists of at least 15 nucleotides. 36. Polinukleotid prema zahtjevu 35, naznačen time što se neprekinuta sekvencija sastoji iz bar 20 nukleotida.36. Polynucleotide according to claim 35, characterized in that the continuous sequence consists of at least 20 nucleotides. 37. Polinukleotid prema bilo kojem zahtjevu od 32 do 36, naznačen time što je navedeni polinukleotid - DNA polinukleotid.37. A polynucleotide according to any of claims 32 to 36, characterized in that said polynucleotide is a DNA polynucleotide. 38. Polinukleotid prema bilo kojem zahtjevu od 32 do 36, naznačen time što je navedeni polinukleotid - RNA polinukleotid.38. A polynucleotide according to any one of claims 32 to 36, characterized in that said polynucleotide is an RNA polynucleotide. 39. Polinukleotid prema bilo kojem zahtjevu od 32 do 38, naznačen time što je vezan za čvrstu fazu.39. The polynucleotide according to any one of claims 32 to 38, characterized in that it is bound to a solid phase. 40. Uzorak koji sadrži polinukleotid prema bilo kojem zahtjevu od 32 do 39, naznačen time što nadalje sadrži detektibilni obilježivač.40. A sample comprising a polynucleotide according to any one of claims 32 to 39, further comprising a detectable label. 41. Pribor za analizu, naznačen time što sadrži polinukleotidnu probu sukladno bilo kojem zahtjevu od 32 do 40, u odgovarajućem spremniku.41. An analysis kit, characterized in that it contains a polynucleotide probe according to any of claims 32 to 40, in a suitable container. 42. Pribor za lančanu reakciju polimeraze (PCR), naznačen time što sadrži par inicijatora koji mogu pokrenuti sintezu cDNA u PCR reakciji, pri čemu je svaki od navedenih inicijatora polinukleotid prema bilo kojem zahtjevu od 32 do 37.42. Polymerase chain reaction (PCR) kit, characterized in that it contains a pair of initiators capable of initiating cDNA synthesis in a PCR reaction, wherein each of said initiators is a polynucleotide according to any of claims 32 to 37. 43. PCR pribor prema zahtjevu 42, naznačen time što nadalje uključuje polinukleotidnu probu koja može selektivno hibridizirati područje HCV genoma između, pri čemu nisu uključene HCV sekvencije iz kojih su izvedeni inicijatori.43. PCR kit according to claim 42, characterized in that it further includes a polynucleotide probe that can selectively hybridize the region of the HCV genome between, wherein the HCV sequences from which the initiators are derived are not included. 44. Metoda za provedbu lančane reakcije polimeraze, naznačena time što su inicijatori par polinukleotida sukladno bilo kojem zahtjevu od 32 do 37.44. Method for carrying out the polymerase chain reaction, characterized in that the initiators are a pair of polynucleotides in accordance with any of claims 32 to 37. 45. Metoda analize uzorka u prisutnosti ili odsutnosti HCV polinukleotida, naznačena time što uključuje sljedeće: (a) dovođenje u međusobni kontakt uzorka s probom koja sadrži polinukleotid prema bilo kojem zahtjevu od 32 do 40, u uvjetima koji omogućuju hibiridiziranje navedene probe s HCV polinukleotidom ili njegovim komplimentom u uzorku; i (b) određivanje jesu li nastali polinukleotidni duplikati koji sadrže navedenu probu.45. A method of analyzing a sample in the presence or absence of HCV polynucleotide, characterized in that it includes the following: (a) bringing the sample into mutual contact with a probe comprising a polynucleotide according to any one of claims 32 to 40, under conditions that enable said probe to hybridize to the HCV polynucleotide or its complement in the sample; and (b) determining whether polynucleotide duplicates comprising said probe have been formed. 46. DNA polinukleotid koji kodira polipeptid, naznačen time što polipeptid sadrži neprekinutu sekvenciju bar 10 aminokiselina koje su kodirane genomom virusa hepatitisa C (HCV) i sadrži antigensku determinantu, pri čemu je HCV karakteriziran sljedećim: (i) pozitivno postavljenim RNA genomom; (ii) navedeni genom sadrži otvoreni okvir za učitavanje (ORF) koji kodira poliprotein; i (iii) navedeni poliprotein sadrži sekvenciju aminokiselina koja je bar 40% homologna sa sekvencijom 859 aminokiselina koje su prikazane na slici 14.46. DNA polynucleotide encoding a polypeptide, characterized in that the polypeptide contains an uninterrupted sequence of at least 10 amino acids encoded by the genome of the hepatitis C virus (HCV) and contains an antigenic determinant, whereby HCV is characterized by the following: (i) positively positioned RNA genome; (ii) said genome contains an open loading frame (ORF) encoding a polyprotein; and (iii) said polyprotein contains an amino acid sequence that is at least 40% homologous with the 859 amino acid sequence shown in Figure 14. 47. DNA nukleotid prema zahtjevu 46, naznačen time što navedeni poliprotein sadrži sekvenciju aminokiselina koja je bar 60% homologna sa sekvencijom 859 aminokiselina, prema slici 14.47. DNA nucleotide according to claim 46, characterized in that said polyprotein contains an amino acid sequence that is at least 60% homologous with the sequence of 859 amino acids, according to Figure 14. 48. DNA polinukleotid prema zahtjevu 46 ili 47, naznačen time što navedena neprekinuta sekvencija kodira bar 15 aminokiselina.48. DNA polynucleotide according to claim 46 or 47, characterized in that said continuous sequence encodes at least 15 amino acids. 49. DNA polinukleotid prema bilo kojem zahtjevu od 46 do 48, naznačen time što je neprekinuta sekvencija prikazana na slici 14.49. The DNA polynucleotide according to any one of claims 46 to 48, characterized in that the continuous sequence is shown in Figure 14. 50. DNA polinukleotid prema bilo kojem zahtjevu od 46 do 48, naznačen time što je neprekinuta sekvencija prikazana na slici 47.50. The DNA polynucleotide according to any one of claims 46 to 48, characterized in that the continuous sequence is shown in Figure 47. 51. DNA polinukleotid prema bilo kojem zahtjevu od 46 do 48, naznačen time što je neprekinuta sekvencija kodirana u lambda-gtl 1 cDNA biblioteci koja je pohranjena u Američkoj tipskoj zbirci kultura (ATCC) pod pristupnim brojem 40394.51. The DNA polynucleotide according to any one of claims 46 to 48, characterized in that the continuous sequence is encoded in the lambda-gtl 1 cDNA library deposited in the American Type Culture Collection (ATCC) under accession number 40394. 52. DNA polinukleotid prema bilo kojem zahtjevu od 46 do 48, naznačen time što je neprekinuta sekvencija prikazana na bilo kojoj slici 1, 3 do 32, 36, 46 i 47, ili čija je sekvencija kodirana u polinukleotidu koji se selektivno može hibridizirati s polinukleotidom koji je prikazan na bilo kojoj slici 1, 3 do 32, 36,46 ili 47.52. The DNA polynucleotide according to any of claims 46 to 48, characterized in that the continuous sequence shown in any of Figures 1, 3 to 32, 36, 46 and 47, or whose sequence is encoded in a polynucleotide that can selectively hybridize with the polynucleotide which is shown in any figure 1, 3 to 32, 36, 46 or 47. 53. DNA polinukleotid prema bilo kojem zahtjevu od 46 do 52, naznačen time što je navedena neprekinuta sekvencija ona nestrukturnog virusnog proteina.53. The DNA polynucleotide according to any one of claims 46 to 52, characterized in that said continuous sequence is that of a non-structural viral protein. 54. DNA polinukleotid prema bilo kojem zahtjevu od 46 do 58 ili 50 do 52, naznačen time što je navedena neprekinuta sekvencija ona strukturnog virusnog proteina.54. The DNA polynucleotide according to any of claims 46 to 58 or 50 to 52, characterized in that said continuous sequence is that of a structural viral protein. 55. Rekombinantni vektor, naznačen time što sadrži kodirajuću sekvenciju koja sadrži DNA polinukleotid prema bilo kojem zahtjevu od 46 do 54.55. Recombinant vector, characterized in that it contains a coding sequence comprising a DNA polynucleotide according to any one of claims 46 to 54. 56. Stanica domaćina koja je transformirana s rekombinantnim vektorom prema zahtjevu 55, naznačena time što je kodirajuća sekvencija operativno vezana s kontrolnom sekvencijom koja može omogućiti ekspresiju kodirajuće sekvencije stanice domaćina.56. A host cell that has been transformed with a recombinant vector according to claim 55, characterized in that the coding sequence is operably linked to a control sequence that can enable the expression of the coding sequence of the host cell. 57. Metoda za dobivanje rekombinantnog HCV polipeptida, naznačena time što uključuje inkubiranje stanice domaćina prema zahtjevu 56, u uvjetima koji omogućuju ekspresiju kodirajuće sekvencije.57. A method for obtaining a recombinant HCV polypeptide, characterized in that it includes incubating the host cell according to claim 56, under conditions that enable the expression of the coding sequence. 58. Smjesa anti-HCV antitijela, naznačena time što sadrži antitijela koja vežu navedenu antigensku determinantu polipeptida sukladno bilo kojem zahtjevu od 1 do 12 koja je (a) pročišćeni pripravak poliklonskih antitijela ili (b) smjesa monoklonskih antitijela.58. A mixture of anti-HCV antibodies, characterized in that it contains antibodies that bind said antigenic determinant of the polypeptide according to any of claims 1 to 12 which is (a) a purified preparation of polyclonal antibodies or (b) a mixture of monoclonal antibodies. 59. Smjesa prema zahtjevu 58, naznačena time što su anti-HCV antitijela vezana za čvrstu fazu.59. The mixture according to claim 58, characterized in that the anti-HCV antibodies are bound to the solid phase. 60. Pribor za imunološku analizu, naznačen time što sadrži anti-HCV antitijelo sukladno zahtjevu 58 ili 59 u odgovarajućem spremniku.60. Kit for immunological analysis, characterized in that it contains an anti-HCV antibody according to claim 58 or 59 in a suitable container. 61. Metoda imunološke analize za detektiranje HCV antigena u uzorku, naznačena time što uključuje: (a) dobivanje anti-HCV antitijela sukladno zahtjevima 58 ili 59; (b) inkubiranje uzorka s navedenom smjesom anti-HCV antitijela u uvjetima koji omogućuju nastajanje kompleksa antitijelo-antigen; i (c) određivanje je li nastao kompleks antitijelo-antigen koji sadrži anti-HCV antitijelo.61. Method of immunological analysis for detecting HCV antigen in a sample, indicated by including: (a) obtaining an anti-HCV antibody according to claims 58 or 59; (b) incubating the sample with said mixture of anti-HCV antibodies under conditions that enable the formation of an antibody-antigen complex; and (c) determining whether an antibody-antigen complex comprising an anti-HCV antibody has been formed. 62. Polipeptid koji sadrži neprekinutu sekvenciju bar 10 aminokiselina koje su kodirane genomom virusa hepatitisa C (HCV) i koji sadrži antigensku determinantu, naznačen time što je navedena neprekinuta sekvencija sjedinjena s ne-HCV sekvencijom aminokiselina, pri čemu je HCV karakteriziran sljedećim: (i) pozitivno postavljenim RNA genomom; (ii) navedeni genom sadrži otvoreni okvir za učitavanje (ORF) koji kodira poliprotein; i (iii) navedeni poliprotein sadrži sekvenciju aminokiselina koja je bar 40% homologna sa sekvencijom 859 aminokiselina koje su prikazane na slici 14.62. A polypeptide containing a continuous sequence of at least 10 amino acids encoded by the hepatitis C virus (HCV) genome and containing an antigenic determinant, indicated by the fact that said continuous sequence is combined with a non-HCV amino acid sequence, whereby HCV is characterized by the following: (i) positively positioned RNA genome; (ii) said genome contains an open loading frame (ORF) encoding a polyprotein; and (iii) said polyprotein contains an amino acid sequence that is at least 40% homologous with the 859 amino acid sequence shown in Figure 14. 63. Polipeptid prema zahtjevu 62, naznačen time što navedeni poliprotein sadrži sekvenciju aminokiselina koja je bar 60% homologna sa sekvencijom 859 aminokiselina, prema slici 14.63. Polypeptide according to claim 62, characterized in that said polyprotein contains an amino acid sequence that is at least 60% homologous with the sequence of 859 amino acids, according to Figure 14. 64. Polipeptid prema zahtjevu 62 ili 63, naznačen time što ne-HCV sekvencija aminokiselina sadrži signalnu sekvenciju.64. Polypeptide according to claim 62 or 63, characterized in that the non-HCV amino acid sequence contains a signal sequence. 65. Polipeptid prema zahtjevu 62 ili 63, naznačen time što ne-HCV sekvencija aminokiselina sadrži sekvenciju aminokiselina iz beta-galaktosidaze ili superoksid dismutaze.65. Polypeptide according to claim 62 or 63, characterized in that the non-HCV amino acid sequence contains the amino acid sequence from beta-galactosidase or superoxide dismutase. 66. Polipeptid prema zahtjevu 62 ili 63, naznačen time što ne-HCV sekvencija aminokiselina sadrži protein koji stvara čestice.66. The polypeptide according to claim 62 or 63, characterized in that the non-HCV amino acid sequence comprises a particle-forming protein. 67. Polipeptid prema zahtjevu 66, naznačen time što protein koji stvara čestice sadrži površinski antigen hepatitisa B.67. The polypeptide according to claim 66, characterized in that the particle-forming protein comprises hepatitis B surface antigen. 68. Polipeptid prema bilo kojem zahtjevu od 1 do 12 ili 62 do 67 koji se koristi pri dobivanju anti-HCV antitijela, naznačen time što uključuje primjenu polipeptida u sisavaca u količini koja je dovoljna da izazove imunološki odgovor.68. The polypeptide according to any one of claims 1 to 12 or 62 to 67 for use in the production of an anti-HCV antibody, characterized in that it involves administering the polypeptide to a mammal in an amount sufficient to elicit an immune response. 69. Smjesa koja sadrži polipeptid prema bilo kojem zahtjevu od 62 do 67, naznačena time što je polipeptid pomiješan s farmaceutski prihvatljivim ekscipijentom.69. A mixture containing a polypeptide according to any one of claims 62 to 67, characterized in that the polypeptide is mixed with a pharmaceutically acceptable excipient. 70. Cjepivo, naznačeno time što odgovara zahtjevu 69.70. Vaccine, characterized by the fact that it corresponds to claim 69. 71. Metoda za rast virusa hepatitisa C (HCV), naznačena time što uključuje stanice inficirane s HCV, te rast navedenih stanica in vitro, pri čemu je navedeni HCV karakteriziran sljedećim: (i) pozitivno postavljenim RNA genomom; (ii) navedeni genom sadrži otvoreni okvir za učitavanje (ORF) koji kodira poliprotein; i (iii) navedeni poliprotein sadrži sekvenciju aminokiselina koja je bar 40% homologna sa sekvencijom 859 aminokiselina koje su prikazane na slici 14.71. A method for the growth of hepatitis C virus (HCV), characterized in that it includes cells infected with HCV, and the growth of said cells in vitro, wherein said HCV is characterized by the following: (i) positively positioned RNA genome; (ii) said genome contains an open loading frame (ORF) encoding a polyprotein; and (iii) said polyprotein contains an amino acid sequence that is at least 40% homologous with the 859 amino acid sequence shown in Figure 14. 72. Metoda prema zahtjevu 71, naznačena time što navedeni poliprotein sadrži sekvenciju aminokiselina koja je bar 60% homologna sa sekvencijom 859 aminokiselina, prema slici 14.72. The method according to claim 71, characterized in that said polyprotein contains an amino acid sequence that is at least 60% homologous with the sequence of 859 amino acids, according to Figure 14. 73. Metoda prema zahtjevu 71 ili 72, naznačena time što navedene stanice sadrže primarne stanice.73. The method according to claim 71 or 72, characterized in that said cells contain primary cells. 74. Metoda prema zahtjevu 71 ili 72, naznačena time što navedene stanice sadrže staničnu liniju.74. The method according to claim 71 or 72, characterized in that said cells comprise a cell line. 75. Metoda prema zahtjevu 71 ili 72, naznačena time što su navedene stanice hepatociti ili makrofagi.75. The method according to claim 71 or 72, characterized in that said cells are hepatocytes or macrophages. 76. Antigen imunološke analize virusa hepatitisa C (HCV) koji je vezan za čvrstu fazu, naznačen time što je HCV karakteriziran sljedećim: (i) pozitivno postavljenim RNA genomom; (ii) navedeni genom sadrži otvoreni okvir za učitavanje (ORF) koji kodira poliprotein; i (iii) navedeni poliprotein sadrži sekvenciju aminokiselina koja je bar 40% homologna sa sekvencijom 859 aminokiselina koje su prikazane na slici 14; navedeni antigen sadrži antigensku determinantu koja je imunološki reaktivna s anti-HCV antitijelom, gdje je (a) navedeno HCV antitijelo imunološki reaktivno u odnosu na antigensku determinantu (i) koja je kodirana s HCV cDNA insertom u lambda-gl 1 biblioteci koja je pohranjena u Američkoj tipskoj zbirci kultura (ATTC) pod pristupnim brojem 40394 ili (ii) koja se nalazi na slici 47; i (b) navedena referentna antigenska determinanta je imunološki reaktivna sa serumom ljudi koji su zaraženi s HCV.76. Hepatitis C virus (HCV) immunoassay antigen that is bound to a solid phase, characterized in that HCV is characterized by the following: (i) positively positioned RNA genome; (ii) said genome contains an open loading frame (ORF) encoding a polyprotein; and (iii) said polyprotein contains an amino acid sequence that is at least 40% homologous with the 859 amino acid sequence shown in Figure 14; said antigen contains an antigenic determinant that is immunologically reactive with an anti-HCV antibody, where (a) said HCV antibody immunologically reactive against the antigenic determinant (i) which is encoded by the HCV cDNA insert in the lambda-gl 1 library which is deposited in the American Type Culture Collection (ATTC) under accession number 40394 or (ii) which found in Figure 47; and (b) said reference antigenic determinant is immunologically reactive with the serum of humans infected with HCV. 77. HCV antigen prema zahtjevu 76, naznačen time što je navedena referentna antigenska determinanta prikazana na slici 14.77. HCV antigen according to claim 76, characterized in that said reference antigenic determinant is shown in Figure 14.
HR940493A 1987-11-18 1994-09-07 Nanbv diagnostics and vaccines HRP940493B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US12271487A 1987-11-18 1987-11-18
US13988687A 1987-12-30 1987-12-30
US16107288A 1988-02-26 1988-02-26
US19126388A 1988-05-06 1988-05-06
YU213888A YU48038B (en) 1987-11-18 1988-11-18 PROCEDURE FOR DIAGNOSIS OF NO-A, NO-V HEPATITIS

Publications (2)

Publication Number Publication Date
HRP940493A2 true HRP940493A2 (en) 1997-08-31
HRP940493B1 HRP940493B1 (en) 2000-10-31

Family

ID=27537646

Family Applications (1)

Application Number Title Priority Date Filing Date
HR940493A HRP940493B1 (en) 1987-11-18 1994-09-07 Nanbv diagnostics and vaccines

Country Status (2)

Country Link
HR (1) HRP940493B1 (en)
SI (1) SI8812138B (en)

Also Published As

Publication number Publication date
SI8812138A (en) 1997-08-31
SI8812138B (en) 2001-10-31
HRP940493B1 (en) 2000-10-31

Similar Documents

Publication Publication Date Title
EP0318216B2 (en) NANBV diagnostics
US6346375B1 (en) NANBV diagnostics and vaccines
US5698390A (en) Hepatitis C immunoassays
US20030232328A1 (en) Method of detecting antibodies to HCV
GB2212511A (en) Hepatitis C virus
AU624105B2 (en) Nanbv diagnostics and vaccines
US6861212B1 (en) NANBV diagnostics and vaccines
HRP940493A2 (en) Nanbv diagnostics and vaccines
AU624105C (en) NANBV diagnostics and vaccines
DK176280B1 (en) NANBV diagnostics and vaccines

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
B1PR Patent granted
PPPP Transfer of rights

Owner name: NOVARTIS VACCINES AND DIAGNOSTICS, INC., US

ODRP Renewal fee for the maintenance of a patent

Payment date: 20080328

Year of fee payment: 20

PB20 Patent expired after termination of 20 years

Effective date: 20081119