HRP940440A2 - Hybride proteins - Google Patents

Hybride proteins Download PDF

Info

Publication number
HRP940440A2
HRP940440A2 HRP-195/88A HRP940440A HRP940440A2 HR P940440 A2 HRP940440 A2 HR P940440A2 HR P940440 A HRP940440 A HR P940440A HR P940440 A2 HRP940440 A2 HR P940440A2
Authority
HR
Croatia
Prior art keywords
human
sequence
domain
junction
sequences
Prior art date
Application number
HRP-195/88A
Other languages
Croatian (hr)
Inventor
Bhanu Rajput
Bhabatosh Chauduhuri
Fredericus Alphonsus
Bernd Meyhack
Jutta Heim
Jan Van Ooostrum
Sefik Alkan
Original Assignee
Ciba Geigy Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from YU00195/88A external-priority patent/YU19588A/en
Application filed by Ciba Geigy Ag filed Critical Ciba Geigy Ag
Priority to HRP-195/88A priority Critical patent/HRP940440B1/en
Publication of HRP940440A2 publication Critical patent/HRP940440A2/en
Publication of HRP940440B1 publication Critical patent/HRP940440B1/en

Links

Description

Izum odnosi se na plazminogenske aktivatore, DNA, koji kodiraju takove hibridne plazminogenske aktivatore, hibridne vektore, koji sadrže takove DNA, domaćine, transformirane s takovim hibridnim vektorima, postupke za pripremanje takovih hibridnih plazminogenskih aktivatora DNA, hibridne vektore i domaćine, i na farmaceutske sastave, koji sadrže takove hibridne plazminogenske aktivatore. The invention relates to plasminogen activators, DNA encoding such hybrid plasminogen activators, hybrid vectors containing such DNA, hosts transformed with such hybrid vectors, methods for preparing such hybrid plasminogen activators DNA, hybrid vectors and hosts, and to pharmaceutical compositions , which contain such hybrid plasminogen activators.

Krvni ugrušci su glavni uzrok bolesti i smrtnosti ljudi u razvijenom svijetu. Krvni ugrušci su sastavni dio fibrina, koji se stvara iz svog topivog prethodnika fibrogena djelovanjem enzima trombina. Vrsta enzima i drugih tvari osigurava da se ugrušci normalno stvaraju samo ako su i kad su potrebni za sprječavanje gubitka krvi. Blood clots are a major cause of illness and death in humans in the developed world. Blood clots are an integral part of fibrin, which is formed from its soluble precursor fibrogen by the action of the enzyme thrombin. A variety of enzymes and other substances ensure that clots normally only form if and when they are needed to prevent blood loss.

Plazma sisavaca sadrži enzimski sistem, fibrinolitićki sistem, koji može otapati krvne ugruške. Jedna komponenta fibrinolitičkog sistema je skupina enzima, nazvana plazminogeni, koji pretvaraju plazminogen (neaktivan proenzimski oblik plazmina) u proteolitički enzim plazmin. Zatim plazmin razgrađuje fibrinsko umreženje ugrušaka tako da nastaju topivi proizvodi. U slučajevima, gdje je trombolitička sposobnost nedovoljna za uklanjanje intravaskularnih trombova, npr. kod pacijenata koji boluju od tromboemboliznih ili postoperativnih komplikacija, može biti nužna upotreba vanjskih trombolitičkih sredstava. Mammalian plasma contains an enzyme system, the fibrinolytic system, which can dissolve blood clots. One component of the fibrinolytic system is a group of enzymes, called plasminogens, which convert plasminogen (the inactive proenzyme form of plasmin) into the proteolytic enzyme plasmin. Plasmin then breaks down the fibrin cross-linking of clots so that soluble products are formed. In cases where the thrombolytic capacity is insufficient to remove intravascular thrombi, eg in patients suffering from thromboembolic or postoperative complications, the use of external thrombolytic agents may be necessary.

Iz čovječjih tjelesnih tekućina ili stanica mogu se izolirati dvije vrste plazminogenskih aktivatora (u nastavku navedeni kao "PA"): urokinaza ili plazminogenski aktivator tipa urokinaze (u nastavku se navodi kao "u-PA"), serin proteaza, koja se nalazi npr. u čovječjem urinu i stanicama bubrega te plazminogenski aktivator tkivne vrste (u nastavku se navodi kao "t-PA"), kojeg proizvode endotelne stanice i nalazi se u mnogim endokrinim tkivima. Two types of plasminogen activators (hereinafter referred to as "PA") can be isolated from human body fluids or cells: urokinase or urokinase-type plasminogen activator (hereinafter referred to as "u-PA"), a serine protease, found e.g. in human urine and kidney cells, and tissue-type plasminogen activator (hereinafter referred to as "t-PA"), which is produced by endothelial cells and is found in many endocrine tissues.

Oba, t-Pa i n-PA, postoje u dva molekularna oblika: u obliku jednostrukog lanca (obično se označava kao "sc-t-PA" odnosno "sc-u-PA") i u obliku dvaju (tc) lanaca. Jednostruki lanac ili oblik proenzima pretvara se u oblik dvaju lanaca djelovanjem proteolitičkih enzima na točno određenim položajima u polipeptidnom lancu. Nastala dva lanca obrađenog PA proteina ostaju pričvršćeni jedan na drugom preko S-S mosta. Krajnji karboksi dio ili B-lanac posreduju enzimatsku aktivnost Pa-a, dok krajnja amino skupina A-lanca sadrži regulacijske jedinice, kao što su mjesta za vezanje fibrina. Specifično vezanje neaktivnog sc-PA na sastojke krvnog ugruška, kao što je fibrin, nakon čega slijedi pretvorba u aktivni tc-PA uz katalitičku količinu proteolitičkih enzirna prisutnih na tom mjestu, daje na kraju položajno specifičan učinkovit lijek. t-Pa i u-PA, koji su kodirani s dva različita gena, mogu se razlikovati imunološki i enzimski te imaju različit profil odgovora na inhibitore, stirnulatore i aktivatore. Tako je samo t-PA jako inhibiran s proteaznim inhibitorom iz Erytrina latissima (DE-3). Aktivnost t-PA jako stimuliraju fibrin i fibrinski fragmenti, dok je aktivnost u-PA neosjetljiva na stimulaciju s fibrinom i njegovim fragmentima. Posljednje svojstvo, za razlikovanje dvaju PA enzima, je to da tc-t-PA ima visok afinitet za fibrin i fibrinske fragmente, dok tc-u-PA nema značajnog fibrinskog afiniteta. Both t-Pa and n-PA exist in two molecular forms: the single-chain form (usually designated as "sc-t-PA" and "sc-u-PA" and the two-chain (tc) form, respectively). The single chain or form of the proenzyme is transformed into the form of two chains by the action of proteolytic enzymes at precisely determined positions in the polypeptide chain. The resulting two chains of the processed PA protein remain attached to each other via the S-S bridge. The carboxy terminus or B-chain mediates the enzymatic activity of Pa, while the amino terminus of the A-chain contains regulatory units, such as fibrin binding sites. Specific binding of inactive sc-PA to blood clot constituents, such as fibrin, followed by conversion to active tc-PA with a catalytic amount of proteolytic enzymes present at that site, ultimately results in a site-specific, effective drug. t-Pa and u-PA, which are encoded by two different genes, can be distinguished immunologically and enzymatically and have a different response profile to inhibitors, stirnulators and activators. Thus, only t-PA was strongly inhibited with the protease inhibitor from Erythrina latissima (DE-3). The activity of t-PA is strongly stimulated by fibrin and fibrin fragments, while the activity of u-PA is insensitive to stimulation with fibrin and its fragments. A final property to distinguish the two PA enzymes is that tc-t-PA has a high affinity for fibrin and fibrin fragments, while tc-u-PA has no significant fibrin affinity.

S obzirom na nedovoljnu serumsku postojanost injiciranih t-PA, niski afinitet tc-t-PA za fibrin, i što znači da je fibrinski afinitet sc-u-PA inidirektan, tj. on zahtjeva dodatan krvni. faktor (cf . D. J. Binnema et al., 8th Int. Congress of Fibrinolysis, Vienna, 1986), postoji stalna potreba za poboljšanim plazminogenskim aktivatorima visokog afiniteta prema fibrinu, boljim odgovorom na stimulatore, manje inaktivacije s inhibitorima i duljim raspoloživim vremenom poluraspada u krvnom toku. Considering the insufficient serum persistence of injected t-PA, the low affinity of tc-t-PA for fibrin, and which means that the fibrin affinity of sc-to-PA is indirect, i.e. it requires additional blood. factor (cf. D.J. Binnema et al., 8th Int. Congress of Fibrinolysis, Vienna, 1986), there is a constant need for improved plasminogen activators with high affinity for fibrin, better response to stimulators, less inactivation with inhibitors and longer available half-life in blood flow.

Stoga, predmet predloženog izuma je stvaranje novih hibridnih plazminogenskih aktivatora, koji će zadržati korisna svojstva t-PA, dok će izgubiti neželjena svojstva prvotnih enzima. Therefore, the subject of the proposed invention is the creation of new hybrid plasminogen activators, which will retain the beneficial properties of t-PA, while losing the undesirable properties of the original enzymes.

Iznenađujuće smo utvrdili da pri liječenju tromboza i drugih stanja gdje je poželjno prouzročiti fibrinolizu preko plazmogenske aktivacije, jednolančani hibridni PA proteini pokazuju bolja biološka svojstva u usporedbi s jednolančanim t-PA i u-PA. Još specifičnije, u usporedbi s nativnim PA za liziranje krvnih ugrušaka in vivo potrebne su manje količine novih PA molekula u smislu predloženog izuma. Hibridne jednolančane PA molekule u smislu izuma mogu se proizvesti u velikim količinama rekobinantnom DNA tehnologijom, i nakon inficiranja, one će se u pacijentu pretvoriti u dvolančani oblik pod utjecajem fibrina na mjestu liziranja krvnog ugruška. Dvolančane hibridne PA molekule opisane su u literaturi (Europska patentna prijava br. 155,387; K.C. Robbins, 8th International Congress of Fibrinolysis, Beč, 1986), međutim ugodniji jednolančani oblici hibridnih PA molekula ne mogu se proizvesti na razini proteina, kako je navedeno u citiranoj literaturi, ali se oni mogu proizvesti u većim količinama i u industrijskom opsegu rekombinantnom DNA tehnologijom. We surprisingly found that in the treatment of thrombosis and other conditions where it is desirable to cause fibrinolysis through plasmogenic activation, single-chain hybrid PA proteins show better biological properties compared to single-chain t-PA and u-PA. More specifically, compared to native PA, smaller amounts of novel PA molecules are required for the lysis of blood clots in vivo in accordance with the proposed invention. Hybrid single-chain PA molecules according to the invention can be produced in large quantities by recombinant DNA technology, and after infection, they will turn into a double-chain form in the patient under the influence of fibrin at the site of blood clot lysis. Double-chain hybrid PA molecules have been described in the literature (European Patent Application No. 155,387; K.C. Robbins, 8th International Congress of Fibrinolysis, Vienna, 1986), however the more favorable single-chain forms of hybrid PA molecules cannot be produced at the protein level, as stated in the cited literature, but they can be produced in larger quantities and on an industrial scale by recombinant DNA technology.

Daljnji predmet predloženog izuma je dakle stvaranje sredstava i metoda za proizvodnju navedenih jednolančanih u-PA/t-PA hibridnih proteina. Takova sredstva uključuju DNA, koja se kodiraju spomenute u-PA/t-PA hibridne proteine, hibridne vektore, koji sadrže navedene DNA, i domaćine, transformirane s navedenim hibridnim vektorima. Ostvarene su također metode za dobivanje spomenutih jednolančanih u-PA/t-PA hibridnih proteina, spomenutih DNA, spomenutih hibridnih vektora i spomenutih domaćina. A further subject of the proposed invention is therefore the creation of means and methods for the production of said single-chain u-PA/t-PA hybrid proteins. Such means include DNAs encoding said u-PA/t-PA hybrid proteins, hybrid vectors containing said DNAs, and hosts transformed with said hybrid vectors. Also provided are methods for obtaining said single-chain u-PA/t-PA hybrid proteins, said DNA, said hybrid vectors and said hosts.

Predloženi izum također daje bolji postupak dobivanja dvolančanih hibridnih PA molekula, jer se mogu cijepiti jednolančani proizvodi rekombinantne DNA in vitro s prikladnim proteolitičkirn enzimima, kao što je plazmin. The proposed invention also provides a better process for obtaining double-stranded hybrid PA molecules, as single-stranded recombinant DNA products can be cleaved in vitro with suitable proteolytic enzymes, such as plasmin.

Podroban opis izuma Detailed description of the invention

Izum se odnosi posebice na jednolančani hibridni PA, koji ima niz amino kiselina sastavljen od najmanje dvije podjedinice, koji istovrsnošću amino kiselina i brojem podjedinica odgovara humanom t-PA i humanom u-PA. Slično kao druge serinske proteaze, uključene u fibrinolitićkim i koagulacijskim sistemima krvi, u-PA i t-PA imaju velike, nekatalitičke segmente, sabrane u lancu A, koji je pričvršćen na katalitičku regiju (lanac B). Nekatalitićki A-lanac može se najprije podijeliti u diskretne domene: domenu "finger", domenu "faktor rasta" i dvije strukture "kringle", dok je A lanac u-PA sastavljen od domene "faktora rasta" i jedne "kringle" strukture /za referencu pogledaj L. Patthy, Cell 41, 657-663 (1985)/. Katalitićko mjesto B-lanaca sastavljeno je od His, Asp i Ser ostataka na položajima 322, 371 i 478 (t-PA) odnosno 204, 255 i 356 (u-PA) i bitno je za fibriolitičku aktivnost. The invention relates in particular to a single-chain hybrid PA, which has a series of amino acids composed of at least two subunits, which corresponds to human t-PA and human u-PA in terms of amino acid identity and number of subunits. Similar to other serine proteases, involved in fibrinolytic and blood coagulation systems, u-PA and t-PA have large, non-catalytic segments, assembled in chain A, which is attached to the catalytic region (chain B). The non-catalytic A-chain can first be divided into discrete domains: a "finger" domain, a "growth factor" domain and two "kringle" structures, while the A-chain of u-PA is composed of a "growth factor" domain and one "kringle" structure / for reference see L. Patthy, Cell 41, 657-663 (1985)/. The catalytic site of B-chains is composed of His, Asp and Ser residues at positions 322, 371 and 478 (t-PA) and 204, 255 and 356 (u-PA) and is essential for fibriolytic activity.

Proteinska domena je strukturna i/ili funkcionalna jedinica u cjelokupnoj strukturi čitavog proteina. Npr. u t-PA lanca A nalaze se četiri domene ("finger", faktor rasta i dvije domene "kringle") raspoređene u nizu. Granice domena su najbolje definirane položajima ekson-intron veza u odgovarajućem DNA nizu (L. Patthy, gore). Ipak je iz svrhovitih razloga bila definirana minimalna veličina svake domene u slijedu amino kiselina između prvog i posljednjeg cisteinskog ostatka unutar svake domene, koje se vjerojatno uključuju u tvorbu S-S mosta. Amino kiseline ispred i iza tih domena, susjednih cisteinskim ostacima, definirane su kao vezni nizovi (J.). Položaji veza eksonitron (vidi gore) su u tim regijama. A protein domain is a structural and/or functional unit in the overall structure of the entire protein. For example in t-PA chain A there are four domains ("finger", growth factor and two domains "kringle") arranged in a sequence. Domain boundaries are best defined by the positions of exon-intron junctions in the corresponding DNA sequence (L. Patthy, above). However, for practical reasons, the minimum size of each domain was defined in the sequence of amino acids between the first and last cysteine residues within each domain, which are probably involved in the formation of the S-S bridge. Amino acids before and after these domains, adjacent to cysteine residues, are defined as connecting strings (J.). The positions of the exonitron bonds (see above) are in these regions.

Tako se može predstaviti jednolančani t-PA slijedeće formule : T - F - Jl - G - J2 - Kl - J3 - K2 - J4 - TPAB, gdje T predstavlja N-krajnji dio koji obuhvaća amino kiseline 1 do 5, F je domena "finger", koja obuhvaća kiseline 6 do 43, G je domena faktora rasta, koja obuhvaća amino kiseline 51 do 84, K1 je "kringle" 1 struktura koja obuhvaća amino kiseline 92 do 173, K2 je "kringle" 2 struktura, koja obuhvaća amino kiseline 180 do 261, TPAB je područje katalitićke serin proteaze, koje obuhvaća amino kiseline 307 do 527 i J1 (amino kiseline 44 do 50), J2 (amino kiseline 85 do 91), J3 (amino kiseline 174 do 179) i J4 (amino kiseline 262 do 306) su vezni nizovi koji povezuju segmente domena. Thus, a single-chain t-PA of the following formula can be represented: T - F - Jl - G - J2 - Kl - J3 - K2 - J4 - TPAB, where T represents the N-terminal part comprising amino acids 1 to 5, F is the domain " finger", comprising acids 6 to 43, G is the growth factor domain, comprising amino acids 51 to 84, K1 is the "kringle" 1 structure comprising amino acids 92 to 173, K2 is the "kringle" 2 structure, comprising amino acids 180 to 261, TPAB is the catalytic serine protease region, encompassing amino acids 307 to 527 and J1 (amino acids 44 to 50), J2 (amino acids 85 to 91), J3 (amino acids 174 to 179), and J4 (amino acids 262 to 306) are linker sequences that connect the domain segments.

Jednolančani U-PA može se prikazati slijedećom formulom: A single-chain U-PA can be represented by the following formula:

T‘ - U - J5 - K - J6 - UPAB T' - U - J5 - K - J6 - UPAB

gdje T’ predstavlja N-krajnji dio koji obuhvaća amino kiseline 1 do 12, U je domena faktora rasta koja obuhvaća amino kiseline 13 do 42, K je struktura "kringle" koja obuhvaća amino kiseline 50 do 131, UPAB je područje katalitičke serin proteaze, koje obuhvaća amino kiseline 189 do 411, a J5 (amino kiseline 43 do 49) i J6 (amino kiseline 132 do 188) su vezni nizovi koji povezuju segmente domena. where T' represents the N-terminus comprising amino acids 1 to 12, U is the growth factor domain comprising amino acids 13 to 42, K is the "pretzel" structure comprising amino acids 50 to 131, UPAB is the catalytic serine protease domain, comprising amino acids 189 to 411, and J5 (amino acids 43 to 49) and J6 (amino acids 132 to 188) are linker sequences connecting the domain segments.

Svaki od veznih nizova J4 i J6 sadrži aktivacijsko mjesto (mjesto kemijske pretvorbe) i još N-krajnji cisteinski ostatak, koji je uključen u S-S most u katalitičkom (B-lanac) području. Each of the binding sequences J4 and J6 contains an activation site (site of chemical conversion) and another N-terminal cysteine residue, which is involved in the S-S bridge in the catalytic (B-chain) region.

Iznenađujuće smo utvrdili da jednolančani hibridni PA-i, koji sadrže katalitičko područje serin proteaze jednog od PA (TPAB ili UPAB), pričvršćeno na niz amino kiselina, koji sadrži sve ili diskretne domene A-lanaca drugih PA, ili diskretne domene obaju PA, pokazuju korisna farmakološka svojstva. We surprisingly found that single-chain hybrid PAs, which contain the serine protease catalytic domain of one of the PAs (TPAB or UPAB), attached to a series of amino acids, which contain all or discrete domains of the A-chains of other PAs, or discrete domains of both PAs, show useful pharmacological properties.

Izum se dakle odnosi na jednolančani hibridni PA koji obuhvaća .slijed amino kiselina koji sadrži sve ili diskretne domene A-lanca humanog u-PA ili diskretne domene A-lanca humanog u-PA i humanog t-PA, vezane uzastopno na katalitičko područje humanog t-PA (TPAB) i na jednolančani hibridni PA, koji obuhvaća slijed amino kiselina, koji sadrži sve ili diskretne domene humanog t-PA ili diskretne domene A-lanca humanog t-PA i u-PA, vezane uzastopce na katalitičko područje humanog u-PA (UPAB). U izvedbi s prednošću hibridni PA u smislu izuma sadrže katalitičko područje humanog u-PA (UPAB). The invention therefore relates to a single-chain hybrid PA comprising an amino acid sequence that contains all or discrete domains of the A-chain of human u-PA or discrete domains of the A-chain of human u-PA and human t-PA, linked sequentially to the catalytic region of human t -PA (TPAB) and to a single-chain hybrid PA, comprising an amino acid sequence, which contains all or discrete domains of human t-PA or discrete domains of the A-chain of human t-PA and u-PA, linked consecutively to the catalytic region of human u- Well (UPAB). In an advantageous embodiment, the hybrid PAs according to the invention contain the catalytic region of human u-PA (UPAB).

Izum se osobito odnosi na jednolančane PA, koji sadrže slijed amino kiselina, odabran iz skupine koja se sastoji od niza amino kiselina, koji sadrži sve domene A-lanca humanog t-PA, niza amino kiselina. koji sadrži diskretne domene A-lanca humanog t-PA, kao što su domene "finger" ili "kringle", osobito domena "kringle 2" humanog t-PA i niza amino kiselina koji sadrži dvije, tri ili četiri domene A-lanca humanog t-PA i/ili humanog u-PA, osobito dvije ili tri domene humanog t-PA, ili dvije, ili tri domene humanog u-PA i humanog t-PA, kao što su domene "finger", faktor rasta i " kringle 2" humanog t-PA, domene " finger" i "kringle 2" humanog t-PA ili domena faktora rasta u-PA i "kringle 2" t-PA, čiji slijed amino kiselina je vezan uzastopce na katalitičko područje humanog u-PA i na jednolančani PA, koji obuhvaća slijed amino kiselina koji sadrži faktor rasta u-PA i "kringle" t-PA, čiji niz amino kiselina je vezan uzastopce na katalitičko područje humanog t-PA. The invention particularly relates to single-chain PAs, which contain an amino acid sequence, selected from the group consisting of a series of amino acids, which contains all domains of the A-chain of human t-PA, a series of amino acids. comprising discrete domains of the A-chain of human t-PA, such as "finger" or "kringle" domains, particularly the "kringle 2" domain of human t-PA, and an amino acid sequence comprising two, three or four domains of the A-chain of human t-PA t-PA and/or human u-PA, especially two or three domains of human t-PA, or two or three domains of human u-PA and human t-PA, such as "finger", growth factor and "kringle" domains 2" of human t-PA, the "finger" and "kringle 2" domains of human t-PA or the growth factor domain u-PA and "kringle 2" t-PA, whose amino acid sequence is linked consecutively to the catalytic region of human u-PA and to single-chain PA, which includes the amino acid sequence containing the growth factor u-PA and "kringle" t-PA, whose amino acid sequence is linked consecutively to the catalytic region of human t-PA.

Prednost imaju rečeni sljedovi amino kiselina hibridnog PA s N-krajnjim nizom t-PA (T, amino kiseline 1 do S) ili u-PA (T’, amino kiseline 1 do 12) ili se započne s bilo kojim veznim nizom koji je naravno N-krajnje vezan na prvu domenu hibridnog PA, ili s fragmentom takovog veznog niza, čiji fragment ima ponajprije najmanje pet amino kiselinskih ostataka. Preference is given to said amino acid sequences of hybrid PA with the N-terminal sequence of t-PA (T, amino acids 1 to S) or u-PA (T', amino acids 1 to 12) or starting with any linker sequence that is naturally N-terminally linked to the first domain of the hybrid PA, or with a fragment of such a linker sequence, which fragment preferably has at least five amino acid residues.

U hibridnim PA u smislu izuma domene su na A-lancu povezane preko nativnih veznih nizova (npr. J1, J2, J3 i J5), fuzioniranih veznih nizova, ili hibridnih veznih nizova ili njihovih fragmenata. In the hybrid PA according to the invention, the domains are connected on the A-chain via native binding strings (eg J1, J2, J3 and J5), fused binding strings, or hybrid binding strings or their fragments.

Domene A-lanca hibridnih PA u smislu izuma povezane su s B-lancem serin proteaznog područja (TPAB ili UPAB) s veznim nizom odabranim iz skupine koja se sastoji od veznog niza Ja, koji povezuje A-lanac s B-lancem u humanom t-PA, veznog slijeda J6, koji povezuje A-lanac s B-lancem u humanom u-PA i hibridnog niza sastavljenog od podjedinica navedenih veznih nizova, pri čemu navedeni vezni niz uključuje aktivacijsko mjesto koje može rascijepiti plazmin i još N-krajnji cisteinski ostatak, koji može sudjelovati u mostu sumpor-sumpor do katalitičkog područja B-lanca, gdje vezni niz ima ponajprije najmanje četrdeset i čak do 60 amino kiselinskih ostataka. The A-chain domains of the hybrid PAs of the invention are linked to the B-chain of the serine protease region (TPAB or UPAB) with a linker selected from the group consisting of the linker I, which connects the A-chain to the B-chain in human t- PA, the linker sequence J6, which connects the A-chain to the B-chain in human u-PA and a hybrid sequence composed of subunits of said linker sequences, wherein said linker sequence includes an activation site that can cleave plasmin and an additional N-terminal cysteine residue, which may participate in the sulfur-sulfur bridge to the catalytic region of the B-chain, where the linker sequence preferably has at least forty and even up to 60 amino acid residues.

Od najveće prednosti je povezivanje domena na položaju koji je definiran vezama ekson-intron na odgovarajuću DNA. Veza A-lanca s B-lancem je prije svega od prednosti na aktivacijskorn mjestu. The greatest advantage is connecting the domain at the position defined by the exon-intron connections to the corresponding DNA. The connection of the A-chain with the B-chain is primarily advantageous at the activation site.

Tako je prva domena vezana na drugu domenu s veznim nizom, koji se naravno pojavljuje u C-krajnjem dijelu prve domene, s veznim nizom, koji se naravno pojavljuje u N-krajnjem dijelu prve domene, s veznim slijedom, koji se naravno pojavljuje na N-krajnjem dijelu druge domene, s fuzioniranim veznim nizom, koji je sastavljen od navedenih veznih nizova ili od njihovih fragmenata. Thus, the first domain is linked to the second domain with a linker sequence, which naturally appears in the C-terminal part of the first domain, with a linker sequence, which naturally appears in the N-terminal part of the first domain, with a linker sequence, which naturally appears at the N - the end part of the second domain, with a fused binding sequence, which is composed of the mentioned binding sequences or their fragments.

Izum se osobito odnosi na jednolančani hibridni plazminogeskni aktivator, odabran iz skupine koja se sastoji od takovog hibridnog plazminogenskog aktivatora koji obuhvaća A-lanac u-PA, ili A-lanac sastavljen na karakterističan način od domena faktora rasta u-PA i "kringle 2" t-PA, vezanih uzastopce na katalitičko područje (B-lanac) t-PA, te na hibridni plazminogenski aktivator, koji obuhvaća A-lanac t-PA, A-lanac sastavljen na karakterističan način od domene "finger" t-PA, A-lanac sastavljen na karakterističan način od domena faktora rasta u-PA i "kringle 2" t-PA, A-lanac, sastavljen na karakterističan način od domene "finger" t-PA i "kringle 2" ili A-lanac, sastavljen na karakterističan način od domena "finger" t-PA, faktora rasta i "kringle 2" navedenog A-lanca, koji je vezan uzastopce na katalitičko područje (B-lanac) u-PA, pri čemu je A-lanac vezan na B-lanac preko veznog niza koji sadrži aktivacijsko mjesto i cisteinski ostatak koji se sposoban stvoriti S-S vezu do B-lanca. The invention particularly relates to a single-chain hybrid plasminogen activator, selected from the group consisting of such a hybrid plasminogen activator comprising the A-chain of u-PA, or an A-chain composed in a characteristic manner of the growth factor domain of u-PA and "kringle 2". t-PA, bound consecutively to the catalytic region (B-chain) of t-PA, and to the hybrid plasminogen activator, which includes the A-chain of t-PA, the A-chain composed in a characteristic way from the "finger" domain of t-PA, A -chain composed in a characteristic way from the growth factor domain u-PA and "kringle 2" t-PA, A-chain, composed in a characteristic way from the domain "finger" t-PA and "kringle 2" or A-chain, composed at a characteristic way from the "finger" domain of t-PA, the growth factor and "kringle 2" of the mentioned A-chain, which is connected consecutively to the catalytic region (B-chain) in-PA, whereby the A-chain is connected to the B-chain via a linker containing an activation site and a cysteine residue capable of forming an S-S bond to the B-chain.

Izum se osobito odnosi također na jednolančani hibridni plazminogenski aktivator, koji obuhvaća A-lanac sastavljen na karakterističan način od domene "kringle 2" t-PA, vezane na katalitičko područje (B-lanac) u-PA na aktivacijskom mjestu. In particular, the invention also relates to a single-chain hybrid plasminogen activator, which includes an A-chain composed in a characteristic manner of the "kringle 2" domain of t-PA, linked to the catalytic region (B-chain) of u-PA at the activation site.

Od posebne prednosti je jednolančani hibridni plazminogenski aktivator odabran iz skupine, koja se sastoji od takovog hibridnog plazminogenskog aktivatora, koji obuhvaća A-lanac, sastavljen na karakterističan način od domene faktora rasta u-PA i domene "kringle 2" t-PA, vezane uzastopce na katalitičko područje (B-lanac) t-PA i na hibridni plazminogenski aktivator, koji obuhvaća A-lanac, sastavljen na karakterističan način od domene " kringle 2" t-PA ili domene " finger" i " kringle 2" t-PA, vezane uzastopce na katalitičko područje (B-lanac) u-PA, pri čemu je povezivanje između domene (domena) A-lanca i B-lanca na aktivacijskorn mjestu. Of particular advantage is a single-chain hybrid plasminogen activator selected from the group consisting of such a hybrid plasminogen activator comprising an A-chain composed in a characteristic manner of a growth factor domain of u-PA and a "kringle 2" domain of t-PA, linked in sequence to the catalytic region (B-chain) of t-PA and to the hybrid plasminogen activator, which includes the A-chain, composed in a characteristic way of the "kringle 2" domain of t-PA or the "finger" and "kringle 2" domains of t-PA, bound consecutively to the catalytic region (B-chain) of u-PA, whereby the connection between the domain(s) of the A-chain and the B-chain is at the activation site.

Hibridni PA-i u smislu izuma, kojima se daje prednost, jesu: Hybrid PAs in terms of the invention, which are preferred, are:

UPAATPAB(BC) = [uPA(1-158)-tPA(276-527)], UPAATPAB(BC) = [uPA(1-158)-tPA(276-527)],

UPAATPAB(BR) = [uPA(1-131)-tPA(263-527)], UPAATPAB(BR) = [uPA(1-131)-tPA(263-527)],

UPAATPAB(BC) = [tPA(1-275)-uPA(159-411)], UPAATPAB(BC) = [tPA(1-275)-uPA(159-411)],

UPAATPAB(BR) = [tPA(1-262)-uPA(132-411)], UPAATPAB(BR) = [tPA(1-262)-uPA(132-411)],

UK2UPAB(BR) = [uPA(1-44)-tPA(176-261)-uPA(134-411)], UK2UPAB(BR) = [uPA(1-44)-tPA(176-261)-uPA(134-411)],

FUPAB(BC) = [uPA(1-49)-tPA(262-275)-uPA(159-411)], FUPAB(BC) = [uPA(1-49)-tPA(262-275)-uPA(159-411)],

FUPAB(BR) = [tPA(1-49)-uPA(134-411)], FUPAB(BR) = [tPA(1-49)-uPA(134-411)],

FK2UPAB(BC) = [tPA(1-49)-tPA(176-275)-uPA(159-411)], FK2UPAB(BC) = [tPA(1-49)-tPA(176-275)-uPA(159-411)],

FK2UPAB(BR) = [tPA(1-49)-tPA(176-262)-uPA(132-411)], FK2UPAB(BR) = [tPA(1-49)-tPA(176-262)-uPA(132-411)],

UK2TPA(BC) = [tPA(1-44)-tPA(176-527)], UK2TPA(BC) = [tPA(1-44)-tPA(176-527)],

K2UPAB(BC) = [tPA(1-3)-tPA(176-275)-uPA(159-411)], K2UPAB(BC) = [tPA(1-3)-tPA(176-275)-uPA(159-411)],

FGK2UPAB(BC) = [tPA(1-86)-tPA(176-275)-uPA(159-411)], i FGK2UPAB(BC) = [tPA(1-86)-tPA(176-275)-uPA(159-411)], and

FGK2UPAB(BR) = [tPA(1-86)-tPA(176-262)-uPA(132-411)], FGK2UPAB(BR) = [tPA(1-86)-tPA(176-262)-uPA(132-411)],

kod kojih UPAA je A-lanac u-PA, TPAA je u A-lancu t-PA, UPAB je B-lanac u u-PA, TPAB je B-lanac t-PA, U se odnosi na domenu faktora rasta u-PA, K2 se odnosi na domenu "kringle 2" t-PA, F se odnosi na domenu "finger" t-PA, G se odnosi na domenu faktora rasta t-PA, (BC) označava da je veza između domena A-lanca i B-lanca na aktivacijskom mjestu, a (BR) označava da je (jesu) domena (domene) A-lanca vezane na B-lanac preko veznog niza, prirodno pričvršćenog na B-lanac, koji uključuje aktivacijsko mjesto, i nadalje, N-krajnji, cisteinski ostatak, koji je uključen u S-S most do B-lanca. Brojevi se odnose na nizove amino kiselina uzetih iz u-PA, odnosno t-PA. Npr. UK2UPAB(BR) - /uPA(1-44)-tPA(176-261)-uPA(134-411/ označava jednolančani hibridni plazminogenski aktivator, koji se sastoji od amino kiselina 1-44 (domena faktora rasta; U), u-PA i amino kiselina 176261 (domena "kringle 2", K2) t-PA, vezanih na linearan način na amino kiseline 134-411 (B-lanac, UPAB) u-PA. where UPAA is the A-chain of u-PA, TPAA is the A-chain of t-PA, UPAB is the B-chain of u-PA, TPAB is the B-chain of t-PA, U refers to the growth factor domain of u-PA , K2 refers to the "kringle 2" domain of t-PA, F refers to the "finger" domain of t-PA, G refers to the growth factor domain of t-PA, (BC) indicates that the link between the A-chain domain and of the B-chain at the activation site, and (BR) indicates that the domain(s) of the A-chain are (are) linked to the B-chain via a linker sequence, naturally attached to the B-chain, which includes the activation site, and further, the N- the last, cysteine residue, which is involved in the S-S bridge to the B-strand. The numbers refer to the sequences of amino acids taken from u-PA and t-PA. For example UK2UPAB(BR) - /uPA(1-44)-tPA(176-261)-uPA(134-411/) stands for single-chain hybrid plasminogen activator, consisting of amino acids 1-44 (growth factor domain; U), in -PA and amino acid 176261 ("kringle 2" domain, K2) of t-PA, linked in a linear fashion to amino acids 134-411 (B-chain, UPAB) of u-PA.

Od osobite prednosti su hibridni plazminogenski aktivatori TPAAUPAB(BC), FUPAB(BC), FGK2UPAB(BC) i osobito UK2TPAB(BC) , FK2UPAB(BC) i K2UPAB(BC). Of particular advantage are the hybrid plasminogen activators TPAAUPAB(BC), FUPAB(BC), FGK2UPAB(BC) and especially UK2TPAB(BC), FK2UPAB(BC) and K2UPAB(BC).

Izum se nadalje odnosi na mutante hibridnih PA-a, u smislu izuma, kod kojih je (jesu) najmanje jedno, a ponajprije sva, N-glikozilacijsko mjesto modificirano tako, da se glikozilacija ne može odvijati na tom (tim) mjestu (mjestima). Dobro je poznato da je prvi uvjet za N-vezanu glikozilaciju, u stanicama sisavaca, prisutnost tri-peptidnog slijeda -Asn-L-Ser-(ili Thr)-, pri čemu je Asn akceptor, a L može biti bilo koja genetički kodirana amino kiselina, osim prolina ili asparaginske kiseline, koja sprečava glikolizaciju. U t-PA molekuli ta tri mjesta za N-glikozidno povezivanje (brojevi se odnose na položaj Asn u slijedu amino kiselina t-PA, usporedi sliku 1, priloženih crteža): -Asn117-Ser-Ser- (prisutno u " kringle 1") , Asn184-Gly-Ser (prisutno u "kringle" 2) i Asn448-Arg-Thr (prisutno u t-PA B-lanca). Jedino N-vezno mjesto glikozilacije u-PA je u B-lancu (Asn302-Ser-Thr, usporedi sliku 3) . Jasno je da hibridni PA, koji obuhvaća t-PA " kringle" 1, t-PA " kringle" 2, B-lanca t-PA i/ili B-lanac u-PA, također uključuju pojedinačna N-vezna mjesta glikozilacije. The invention further relates to mutants of hybrid PAs, in the sense of the invention, in which at least one, and preferably all, N-glycosylation sites are modified so that glycosylation cannot take place at that site(s). . It is well known that the first condition for N-linked glycosylation, in mammalian cells, is the presence of the tri-peptide sequence -Asn-L-Ser-(or Thr)-, where Asn is the acceptor and L can be any genetically encoded amino an acid, other than proline or aspartic acid, that prevents glycolysis. In the t-PA molecule, these three sites for N-glycosidic linkage (the numbers refer to the position of Asn in the amino acid sequence of t-PA, compare Figure 1, attached drawings): -Asn117-Ser-Ser- (present in "kringle 1" ), Asn184-Gly-Ser (present in "kringle" 2) and Asn448-Arg-Thr (present in t-PA B-chain). The only N-linked glycosylation site of u-PA is in the B-chain (Asn302-Ser-Thr, compare Figure 3). Clearly, hybrid PAs comprising t-PA "kringle" 1, t-PA "kringle" 2, B-chain t-PA and/or B-chain u-PA also include individual N-linked glycosylation sites.

Stoga, da spriječimo glikozilaciju na pojedinačnim (jednom ili više) mjestima glikozilacije, moraju se promijeniti nizovi u tripeptidima, poznati kao signali za N-glikozilaciju. Zamjena Asn i/ili Ser (ili Thr) ostataka u gornjim tripeptidnim nizovima u bilo koju drugu amino kiselinu, spriječila bi tvorbu glikozidnih veza na tim mjestima. Zbog prikladnosti modifikacija N-glikozilacijskih mjesta nije izvršena na proteinskoj razini. Umjesto toga korisno je modificirati gen koji kodira hibridni PA na takav način da se nakon ekspresije spomenutog modificiranog gena u domaćinu proizvede mutant hibridnog PA, u kojem je jedno ili više mjesta N-glikozilacije promijenjeno na takav način, da se na tim mjestima ne može odvijati glikozilacija. Od prednosti je modificirati sva mjesta Nglikozilacije koja se pojavljuju u hibridnim PA u smislu izuma. Therefore, to prevent glycosylation at individual (one or more) glycosylation sites, sequences in the tripeptides, known as N-glycosylation signals, must be altered. Substitution of Asn and/or Ser (or Thr) residues in the above tripeptide sequences to any other amino acid would prevent the formation of glycosidic bonds at these sites. For convenience, modification of N-glycosylation sites was not performed at the protein level. Instead, it is useful to modify the gene encoding the hybrid PA in such a way that after the expression of said modified gene in the host, a hybrid PA mutant is produced, in which one or more N-glycosylation sites have been changed in such a way that it cannot take place at these sites glycosylation. It is advantageous to modify all Nglycosylation sites occurring in the hybrid PAs of the invention.

Prije svega asparagin je zamijenjen s valinom, leucinom, izoleucinom, alaninom ili osobito glutaminom, a serin ili treonin s valinom, metioninom ili osobito alaninom. First of all, asparagine is replaced with valine, leucine, isoleucine, alanine or especially glutamine, and serine or threonine with valine, methionine or especially alanine.

Prije svega prednost se daje modificiranim hibridnima First of all, preference is given to modified hybrids

PA: AND:

FUPAB(G1n302)(BC) = [tPA(1-49)-tPA(262-275)-uPA(159-301, Gln, 303-411)], FUPAB(G1n302)(BC) = [tPA(1-49)-tPA(262-275)-uPA(159-301, Gln, 303-411)],

FK2(A1a186)UPAB(G1n302)(BC) = [tPA(1-49)-tPA(176-185, Ala, 187-275)- uPA(159-301, Gln, 303-411)], FK2(A1a186)UPAB(G1n302)(BC) = [tPA(1-49)-tPA(176-185, Ala, 187-275)- uPA(159-301, Gln, 303-411)],

UK2(Ala186)TPAB(Ala450)(BC) = [uPA(1-44)-tPA(176-185, Ala, 187-449, Ala, 451-527)], UK2(Ala186)TPAB(Ala450)(BC) = [uPA(1-44)-tPA(176-185, Ala, 187-449, Ala, 451-527)],

K2(Ala186)UPAB(G1n302)(BC) = [tPA(1-3)-tPA(176-185, Ala, 187-275)-uPA(159-301, Gln, 303-411)], K2(Ala186)UPAB(G1n302)(BC) = [tPA(1-3)-tPA(176-185, Ala, 187-275)-uPA(159-301, Gln, 303-411)],

FGK2(Ala186)UPAB(Gln302)(BC) = [tPA(1-86)-tPA(176-185, Ala, 187-275)-uPA(I59-301, Gln, 303-411)], FGK2(Ala186)UPAB(Gln302)(BC) = [tPA(1-86)-tPA(176-185, Ala, 187-275)-uPA(I59-301, Gln, 303-411)],

i nadalje and so on

FK2UPAB(Gln302)(BC) = [tPA(1-49)-tPA(176-275)-uPA(159-301, Gln, 303-411)], FK2UPAB(Gln302)(BC) = [tPA(1-49)-tPA(176-275)-uPA(159-301, Gln, 303-411)],

K2UPAB(G1n302)(BC) = [tPA(1-3)-tPA(176-275)-uPA(159-301, Gln, 303-411)], K2UPAB(G1n302)(BC) = [tPA(1-3)-tPA(176-275)-uPA(159-301, Gln, 303-411)],

UK2TPAB(Ala450)(BC) = [uPA(1-44)-tPA(176-449, Ala, 451-527)], i UK2TPAB(Ala450)(BC) = [uPA(1-44)-tPA(176-449, Ala, 451-527)], and

FGK2UPAB(Gln302)(BC) = [tPA(1-86)-tPA(176-275)-uPA(159-301, Gln, 303-411)]. FGK2UPAB(Gln302)(BC) = [tPA(1-86)-tPA(176-275)-uPA(159-301, Gln, 303-411)].

Hibridni PA i njegovi mutanti u smislu izuma mogu se pripremiti rekombinantnom DNA tehnikom, koja obuhvaća npr. uzgoj transformiranog domaćina, koji pokazuje hibridni PA protein ili njegov mutant, pod uvjetima koji dozvoljavaju njihovu ekspresiju i izolaciju hibridnog PA proteina, odnosno mutante hibridnog PA proteina. Određenije, željeni spojevi proizvode se: Hybrid PA and its mutants in the sense of the invention can be prepared by recombinant DNA technique, which includes, for example, the cultivation of a transformed host, which shows the hybrid PA protein or its mutant, under conditions that allow their expression and isolation of the hybrid PA protein, i.e. mutants of the hybrid PA protein. More specifically, the desired compounds are produced:

a) dobivanjem DNA koja kodira hibridni PA protein i njegov mutant, ili kemijskom sintezom takove DNA, a) by obtaining DNA encoding the hybrid PA protein and its mutant, or by chemical synthesis of such DNA,

b) uključenje DNA u prikladan ekspresijski vektor, b) inclusion of DNA in a suitable expression vector,

c) prenašanje dobivenog hibridnog vektora u prihvatnog domaćina, c) transfer of the resulting hybrid vector to the receiving host,

d) selektiranje transformiranog domaćina od netransformiranih domaćina, npr. uzgojem pod uvjetima pod kojima preživi samo transformirani domaćin, d) selection of the transformed host from non-transformed hosts, e.g. by cultivation under conditions under which only the transformed host survives,

e) uzgoj transformiranog domaćina pod uvjetima koji omogućuju ekspresiju hibridnog PA proteina i e) growing the transformed host under conditions that enable the expression of the hybrid PA protein i

f) izolacija hibridnog PA proteina ili njegovog mutanta. f) isolation of hybrid PA protein or its mutant.

Stupnjevi koji su uključeni u pripremanje hibridnih PA proteina po rekombinantnoj tehnici bit će podrobno opisani u nastavku. The steps involved in the preparation of hybrid PA proteins by the recombinant technique will be described in detail below.

DNA koja kodira hibridne PA proteine DNA encoding hybrid PA proteins

Izum se odnosi na DNA koja ima slijed koji kodira hibridni PA, koji je sastavljen od najmanje dvaju podjedinica koje identitetom i brojem amino kiselina odgovaraju podjedinicama humanog u-PA i humanog t-PA, ili koji kodira njegov mutant. Izum se osobito odnosi na DNA koja ima slijed koji kodira svaki od hibridnih PA proteina i njegove mutante već spomenute kao one s prednošću. The invention relates to DNA that has a sequence that encodes a hybrid PA, which is composed of at least two subunits that correspond in identity and number of amino acids to the subunits of human u-PA and human t-PA, or that encodes its mutant. The invention particularly relates to DNA having a sequence encoding each of the hybrid PA proteins and mutants thereof already mentioned as having an advantage.

Prednost imaju DNA u smislu izuma prileženog niza na svojim krajevima. Osobito ti priležni nizovi uključuju prikladna restrikcijska mjesta koja omogućuju integriranje DNA u prikladne vektore. DNA has the advantage in terms of the invention of the attached sequence at its ends. In particular, these flanking sequences include suitable restriction sites that allow the DNA to be integrated into suitable vectors.

Nadalje DNA u smislu izuma uključuje signalni slijed za u-PA ili t-PA, pričvršćen na prvi kodon slijeda, koji kodira zreli hibridni PA. Ako se izražavaju u stanicama kvasca, DNA u smislu izuma može sadržavati alternativni signalni slijed kvasca kao signalni slijed prirodno povezan s upotrijebljenim promotorom kvasaca, osobito PHO5 ili invertazni signalni slijed. Furthermore, the DNA of the invention includes a signal sequence for u-PA or t-PA, attached to the first codon of the sequence, which encodes the mature hybrid PA. If they are expressed in yeast cells, the DNA according to the invention may contain an alternative yeast signal sequence as a signal sequence naturally associated with the yeast promoter used, in particular a PHO5 or invertase signal sequence.

Od prednosti su sljedovi nukleotida u podjedinicama DNA identični sa sljedovima nukleotida u cDNA u-PA, odnosno cDNA t-PA. Ipak zbog degeneracije genetičkog koda sljedovi nukleotida se mogu razlikovati ako dobiveni slijed amino kiselina ostane nepromijenjen. U DNA, koje kodiraju mutant hibridnog PA, najmanje jedan kodonm koji kodira amino kiselinu bitnu za N-glikozilaciju u hibridnom PA proteinu, nadomješten je s drugim kodonom, koji kodira drugu amino kiselinu koja sprečava prepoznavanje mjesta za N-glikozilaciju. It is advantageous that the nucleotide sequences in the DNA subunits are identical to the nucleotide sequences in cDNA u-PA, i.e. cDNA t-PA. However, due to the degeneration of the genetic code, the nucleotide sequences can differ if the resulting amino acid sequence remains unchanged. In the DNA encoding the hybrid PA mutant, at least one codon encoding an amino acid essential for N-glycosylation in the hybrid PA protein is replaced by another codon encoding another amino acid that prevents recognition of the N-glycosylation site.

Slijedovi nukleotida za u-PA cDNA i t-PA cDNA su poznati (cf. W.E. Holmes et al., Biotechnology 3, 923-929 (1985); D. Pennica et al., Nature 301, 214-221 (1983)/. Nadalje, bili su utvrđeni svi slijedovi nukleotida u genomu za gene u-PA i t-PA, uključiv u smjesi introna i eksona (cf. A. Ricco et al., Nucl. Acids Res. 13, 2759-2771 (1985); S.J. Friezner-Degen et al., J. Biol. Chem. 261, 6972-6985 (1986) /. The nucleotide sequences for u-PA cDNA and t-PA cDNA are known (cf. W.E. Holmes et al., Biotechnology 3, 923-929 (1985); D. Pennica et al., Nature 301, 214-221 (1983)/ Furthermore, all nucleotide sequences in the genome for the u-PA and t-PA genes, including the mixture of introns and exons, were determined (cf. A. Ricco et al., Nucl. Acids Res. 13, 2759-2771 (1985) ; S. J. Friezner-Degen et al., J. Biol. Chem. 261, 6972-6985 (1986) /.

Kod poznavanja slijeda cDNA i genomske DNA za u-PA i t-PA možemo izraditi DNA u smislu izuma po metodama poznatim u struci. Metode za izradu tih DNA uključuju kemijsku sintezu DNA ili pripremanje fragmenata, koji kodiraju podjedinice polinukleotida za u-PA i t-PA cDNA i njihovo ponovno povezivanje u prethodno utvrđen niz po izboru, koji uključuje jedan ili više, kao dva ili tri stupnja mutacije. Knowing the sequence of cDNA and genomic DNA for u-PA and t-PA, we can create DNA according to the invention by methods known in the art. Methods for making these DNAs include chemical synthesis of DNA or preparation of fragments, which encode polynucleotide subunits for u-PA and t-PA cDNA and their reconnection into a predetermined sequence of choice, which includes one or more, as two or three steps of mutation.

DNA koje kodiraju mutante hibridnih PA, u smislu izuma, mogu se izraditi po metodama poznatim u struci. Metode za izradu tih DNA uključuju izrezivanje dijela DNA, koji sadrži kodon za neželjeni amino kiselinski ostatak, iz gena za parentalni hibridni PA i njegovu zamjenu s DNA segrnentom, u čemu je spomenuti kodon bio nadomješten s dezoksiribonukleotidnim tripletom, koji kodira željeni amino kiselinski ostatak ili upravljanje dezoksiribo-nukleotidne zamjene mutagenezom usmjerenom na mjesto. DNAs encoding hybrid PA mutants, in terms of the invention, can be made by methods known in the art. Methods for making these DNAs include cutting out a segment of DNA, containing a codon for an undesired amino acid residue, from the parental hybrid PA gene and replacing it with a DNA sequence in which said codon has been replaced with a deoxyribonucleotide triplet, which codes for the desired amino acid residue or management of deoxyribo-nucleotide substitution by site-directed mutagenesis.

Kemijska sinteza DNA dobro je poznata u struci i koristi uobičajene tehnike. Prikladne tehnike sabrao je S.A. Narang /Tetrahedron 39, 3 (1983)/. Osobite metode, opisane u Europskoj patentnoj prijavi br. 146,785 mogu se koristiti i uključene su kao reference. Chemical synthesis of DNA is well known in the art and uses conventional techniques. Suitable techniques were collected by S.A. Narang /Tetrahedron 39, 3 (1983)/. Special methods, described in European patent application no. 146,785 may be used and are incorporated by reference.

Drugi pristup sintezi DNA u smislu izuma sastoji se od izrezivanja prikladnih restrikcijskih fragmenata, koji kodiraju polinukleotidne sljedove za u-PA i t-PA, iz u-PA cDNA i t-PA c-DNA (ili genomske u-PA DNA ili t-PA DNA) i upotrebe tih fragmenata za pripravu strukturnog gena za cjelokupan hibridni PA. U obje strategije mora se paziti da dođe do fuzije fragmenata na mjestima između domena, zato da se posljednje očuvaju neoštećene. Prva strategija koristi prikladna restrikcijska mjesta. Ako je prikladno restrikcijsko mjesto raspoloživo na prethodno određenom veznom mjestu (mjestima) u obje u-PA i t-PA DNA, DNA se probavi s odgovarajućom restrikcijskom endonukleazom i fragmenti se povežu s tupim ili otvorenim krajevima (bez nasuprotnih baza) (ovisno 0 odabranoj restrikcijskoj endonukleazi). Druga mogućnost je da se uporabna restrikcijska mjesta uvedu npr. na mjesto usmjerenom mutagenozem /cf. M.J. Zoller et al., Methods Enzymol 100, 468 (1983)/, i pazi se, da mutirana DNA ne rezultira promijenjenim slijedom amino kiselina. Od posebne prednosti su ona prirodna ili umjetno uvedena restrikcijska mjesta, koja odvajaju DNA, koje kodiraju A- ili B-lance ili DNA koje kodiraju diskretne domene, koje sadrže A-lanci: Na taj način mogu se proizvesti hibridne DNA, koje kodiraju hibridne PA, koje imaju željenu povezanost između domena A-lanca i katalitičkog serinproteaznog poručja. Another approach to DNA synthesis according to the invention consists in excision of suitable restriction fragments, which encode the polynucleotide sequences for u-PA and t-PA, from u-PA cDNA and t-PA c-DNA (or genomic u-PA DNA or t- PA DNA) and the use of these fragments for the preparation of the structural gene for the entire hybrid PA. In both strategies, care must be taken to fuse fragments at the sites between domains, in order to preserve the latter intact. The first strategy uses suitable restriction sites. If a suitable restriction site is available at the predetermined binding site(s) in both u-PA and t-PA DNA, the DNA is digested with the appropriate restriction endonuclease and the fragments are ligated with blunt or open ends (no opposite bases) (depending on the chosen restriction endonuclease). Another possibility is to introduce useful restriction sites, for example, by site-directed mutagenesis /cf. M. J. Zoller et al., Methods Enzymol 100, 468 (1983)/, and care is taken that the mutated DNA does not result in an altered amino acid sequence. Of particular advantage are natural or artificially introduced restriction sites that separate DNA encoding A- or B-chains or DNA encoding discrete domains containing A-chains: In this way, hybrid DNAs encoding hybrid PAs can be produced , which have the desired connection between the A-chain domain and the catalytic serine protease message.

Druga strategija polazi od hipoteze, da su granice domena najbolje definirane s položajem ekson-intron povezivanja u DNA-genomima /cf. L. Patthy, Cell 41, 657-663 (1985)/, tj. položaja cDNA, gdje su se povezali introni. Budući da se ti položaji rijetko podudaraju s restrikcijskim mjestima, prihvaćena je shema koju se može slijediti za svaku novu konstrukciju; u prvom stupnju pripreme se restrikcijski fragmenti koji kodiraju specifičnu domenu (e), te također sadrže dodatne DNA nizove, osim očekivane točke fuzije (do više od 100 baznih parova), povežu se i subkloniraju u bakteriofagu m13. U drugom stupnju se prekomjerni nizovi rasformiraju mutagenezom in vitro (Zoller et al., gore). Taj postupak omogućuje fuziju u točno određenom okviru na svaki prethodno određeni položaj nukleotida i stoga ima prednost. The second strategy starts from the hypothesis that domain boundaries are best defined with the position of exon-intron connection in DNA genomes /cf. L. Patthy, Cell 41, 657-663 (1985)/, i.e. of the position of the cDNA, where the introns were joined. Since these positions rarely coincide with restriction sites, a scheme is accepted that can be followed for each new construction; in the first step, restriction fragments are prepared that encode a specific domain (e), and also contain additional DNA sequences, except for the expected fusion point (up to more than 100 base pairs), they are connected and subcloned into bacteriophage m13. In a second step, excessive sequences are disrupted by mutagenesis in vitro (Zoller et al., supra). This procedure allows in-frame fusion at each predetermined nucleotide position and is therefore advantageous.

Za pripravu mutanata hibridnih PA može se izrezati dio zrele hibridne DNA upotrebom restrikcijskih enzima. Prvi uvjet te metode je mogućnost da se promijenimo prikladna restrikcijska mjesta u blizini kododna. Mali restrikcijski fragment, koji sadrži kodon za neželjenu amino kiselinu, uklonimo se cijepanjem s endonukleazom. Pripremi se odgovarajući niz dvojno vlaknaste DNA, npr. kemijskom sintezom, u kojoj se upotrebljavaju tripleti koji kodiraju željenu amino kiselinu. DNA fragment poveže se u prikladnoj orijentaciji na ostatak velikog fragmenta, da se dobije slijed dvojne vlaknaste DNA, koji kodira mutant hibrida. Zbog udobnosti i zbog lakšeg rada s hibridnim genom, prikladno je da se nalazi u većem DNA segmentu, što se ostvaruje s prikladnim linkerima, koji dozvoljavaju uključenje i kloniranje segmenta u vektoru za kloniranje. For the preparation of hybrid PA mutants, a part of the mature hybrid DNA can be excised using restriction enzymes. The first condition of this method is the possibility to change suitable restriction sites near codons. A small restriction fragment, containing a codon for an unwanted amino acid, is removed by cleavage with an endonuclease. A suitable sequence of double-stranded DNA is prepared, for example by chemical synthesis, in which triplets encoding the desired amino acid are used. The DNA fragment is ligated in the appropriate orientation to the rest of the large fragment, to obtain the double-stranded DNA sequence, which encodes the hybrid mutant. For convenience and for ease of working with the hybrid gene, it is convenient that it resides in a larger DNA segment, which is accomplished with suitable linkers, which allow inclusion and cloning of the segment in a cloning vector.

U izvedbi predloženog izuma, kojoj se daje prednost, vršimo pripravu DNA, koja kodira mutantn hibridnog PA mutagenezom usmjerenom na mjesto. Ta metoda je mutanogeneza in vitro, kojom se može promijeniti određeno mjesto unutar regije klonirane DNA /usporedi slijedeće članke: M.J. Zoller, M. Smith, Methods Enzymol. 100, 468 (1983); D. Botstein, D. Shortle, Science 229, 1193 (1985)/. Mutagenezu se može provesti ili na cjelokupnom genu hibridnog PA ili na njegovom funkcionalnom dijelu, koji sadrži kodon za neželjenu amino kiselinu (e). Nakon mutageneze poveže se mutirani funkcionalni dio s drugim dijelom hibridnog PA, da dobijemo mutant hibridnog PA. In a preferred embodiment of the proposed invention, DNA encoding the hybrid PA mutant is prepared by site-directed mutagenesis. That method is mutagenesis in vitro, which can change a certain place within the region of cloned DNA / compare the following articles: M.J. Zoller, M. Smith, Methods Enzymol. 100, 468 (1983); D. Botstein, D. Shortle, Science 229, 1193 (1985)/. Mutagenesis can be carried out either on the entire gene of the hybrid PA or on its functional part, which contains the codon for the unwanted amino acid (e). After mutagenesis, the mutated functional part is connected to another part of the hybrid PA, to obtain a mutant of the hybrid PA.

Metoda mutiranja hibridnog PA gena ili njegovog funkcionalnog dijela karakteristična je po tome, da se jednovlaknasti gen ili jednovlaknasta DNA koja sadrži PA gen ili njegov dio, hibridizira s oligogezoksiribo-nukleotidnim primjerom, koji je komplementaran regiji hibridnog gena, koji će se mutirati, osim kod loše sparenih (sparivanja), koji usmjeravaju mutaciju; hibridiziran oligodezoksiribonukleotid upotrebljavamo kao primjer, da započne sintezu komplementarnog DNA vlakna, nastala (djelomično) dvovlaknasta DNA se transformira u prihvatnu vrstu mikroorganizma, i njega se uzgaja, a selektiraju se transformanti koji sadrže DNA s modificiranim (mutiranim) genom za hibridni PA. The method of mutating the hybrid PA gene or its functional part is characterized by the fact that the single-stranded gene or single-stranded DNA containing the PA gene or its part is hybridized with an oligohexoxyribo-nucleotide example, which is complementary to the region of the hybrid gene, which will be mutated, except for poorly matched (pairings), which direct mutation; hybridized oligodeoxyribonucleotide is used as an example to start the synthesis of a complementary DNA strand, the resulting (partially) double-stranded DNA is transformed into a host type of microorganism, and it is cultivated, and transformants containing DNA with a modified (mutated) gene for hybrid PA are selected.

Hibridni vektori koji sadrže DNA hibridnog PA Hybrid vectors containing hybrid PA DNA

Izum se odnosi na hibridne vektore, koji sadrže DNA koja kodira hibridni PA, koji je sastavljen od najmanje dvije podjedinice, koje identitetom i brojem amino kiselina odgovaraju podjedinicama humanog u-PA i humanog t-PA, ili kodiraju njegov mutant, i na postupke za njihovu pripravu. The invention relates to hybrid vectors, which contain DNA encoding a hybrid PA, which is composed of at least two subunits, which in terms of identity and number of amino acids correspond to the subunits of human u-PA and human t-PA, or encode its mutant, and to methods for their preparation.

Vektor se bira ovisno o stanicama domaćina, planiranim za transformaciju. Načelno, prikladni su svi vektori koji se podvajaju i izražavaju željeni polipeptidni gen, u smislu izuma, u odabranom domaćinu. Primjeri odgovarajućih domaćina su eukarioti, koji su bez ili s malo restrikcijskih enzima ili modificirani enzimi kao kvašćeve gljivice, npr. Saccharomyces cerevisiae, npr. S. cervisiae GRF18 i nadalje stanice sisavaca, osobito spomenute humane ili životinjske stanične linije, npr. mijeloma stanice, humani embrionalni plućni fibroplasti L-132, COS stanice, LTK stanice, humane stanice melanoma Bowes poput raka, HeLa stanice, bubrežne stanice afričke zelene majmunice COS-7 transformirane s virusom SV-40 ili stanice ovarija kineskog hrčka (CHO) i njihove varijante. Kao domaćinski mikroorganizmi prednost imaju gornje stanice sisavaca i vrste Saccharomyces cerevisiae, npr. S. cerevisiae GRF18. The vector is chosen depending on the host cells planned for transformation. In principle, all vectors that replicate and express the desired polypeptide gene of the invention in a selected host are suitable. Examples of suitable hosts are eukaryotes, which are without or with few restriction enzymes or modified enzymes such as yeasts, e.g. Saccharomyces cerevisiae, e.g. S. cervisiae GRF18 and furthermore mammalian cells, especially the mentioned human or animal cell lines, e.g. myeloma cells, human embryonic lung fibroblasts L-132, COS cells, LTK cells, human cancer-like Bowes melanoma cells, HeLa cells, African green monkey COS-7 kidney cells transformed with SV-40 virus or Chinese hamster ovary (CHO) cells and variants thereof. As host microorganisms, upper mammalian cells and species of Saccharomyces cerevisiae, eg S. cerevisiae GRF18, are preferred.

a. Vektori za upotrebu u kvascu a. Vectors for use in yeast

Vektori, koji su prikladni za podvajanje i ekspresiju u kvascu, sadrže podvojni začetak kvasca i selektivni genetički marker za kvasac. Hibridni vektori, koji sadrže podvojni začetak kvasca, npr. kromosomski segment (lokus) koji se neovisno podvaja, ostaju unutar kromosoma u stanici kvasca nakon transformacije i neovisno se podvajaju. Mogu se nadalje upotrijebiti hibridni vektori, koji sadrže slijedove homologne 2µ plazmidnoj DNA kvasca. Takovi hibridni vektori integrirat će se rekombinacijom u 2µ plazmide, koji već postoje u stanici, ili su se neovisno podvojili. 2µ sljedovi su osobito prikladni za plazmide, koji imaju visoku frekvenciju transformacije i dozvoljavaju visoke brojeve kopija. The vectors, which are suitable for cloning and expression in yeast, contain a yeast double bud and a yeast selectable genetic marker. Hybrid vectors, which contain a yeast replication origin, eg, a chromosomal segment (locus) that replicates independently, remain within the chromosomes in the yeast cell after transformation and replicate independently. Hybrid vectors containing sequences homologous to the 2µ plasmid DNA of yeast can also be used. Such hybrid vectors will integrate by recombination into 2µ plasmids, which already exist in the cell, or have duplicated independently. 2µ sequences are particularly suitable for plasmids, which have a high frequency of transformation and allow high copy numbers.

Prikladni genski markeri za kvasac su osobito oni, koji domaćinu podaju otpornost prema antibioticima, ili u slučaju auksotrofnih mutantnih kvasaca, geni, koji popravljaju oštećenja domaćina. Odgovarajući geni daju npr. otpornost prema antibiotiku G418 ili osiguravaju mogućnost fotosinteze u auksotrofnim mutantima kvasca, npr. URA3, LEV2, HIS3 ili TRP1 gen. Nadalje, hibridni vektori kvasca ponajprije sadrže podvojni začetak i genski marker za bakterijskog domaćina, osobito E. coli, tako da se konstrukcija i kloniranje hibridnih vektora i njihovih intermedijata može odvijati u bakterijskom domaćinu. Suitable genetic markers for yeast are particularly those that confer antibiotic resistance to the host, or in the case of auxotrophic mutant yeasts, genes that repair damage to the host. The corresponding genes provide, for example, resistance to the antibiotic G418 or ensure the possibility of photosynthesis in auxotrophic yeast mutants, for example the URA3, LEV2, HIS3 or TRP1 gene. Furthermore, yeast hybrid vectors preferably contain a double primer and a gene marker for a bacterial host, particularly E. coli, so that the construction and cloning of hybrid vectors and their intermediates can take place in the bacterial host.

Ekspresijski kontrolni nizovi, koji su prikladni za ekspresiju u kvascu, jesu npr. oni između dobro izraženih gena kvasca. Tako se mogu upotrijebiti promotori TRPI gena, ADHI ili ADHII gena, geni kisele fosfataze (PHO3 ili PHO5), gen izocitokroma ili promotor za gene glikolize, kao što je promotor gena enolaze, gliceraldehid-3-fosfat dehidrogenaze (GAPDH), 3-fosfoglicerat kinaze (PGK), heksokinaze, piruvat dekarboksilaze, fosforfruktokinaze, glukoza-6-fosfat izomeraze, 3-fosfoglicerat mutaze, piruvat kinaze, trioza fostat izomeraze, fosfoglukoza izomeraze, invertaze i glukokinaze. Vektori predloženog izuma, kojima se daje prednost, sadrže promotore s kontrolom prepisivanja, npr. a promotore PHO5 i ADHII gena, koji se mogu uključiti ili isključiti pri mijenjanju uvjeta rasta. Npr. PHO5 promotor možemo zaustaviti ili osloboditi isključivo s povećanjem ili smanjenjem koncentracije anorganskog fosfata u mediju. Ponajprije hibridni vektori kvasca, u smislu predloženog izuma, obuhvaćaju također 3 priležni slijed gena kvasca, koji sadrže prikladan signal za prestanak prepisivanja i , poliadenilaciju. Odgovarajući 3 priležni sljedovi su npr. oni koji su u genu prirodno vezani na upotrijebljeni promotor, kao što je 3 priležni slijed u genu PHO5 kvasca. Expression control sequences suitable for expression in yeast are, for example, those between well-expressed yeast genes. Thus, promoters of the TRPI gene, ADHI or ADHII gene, acid phosphatase genes (PHO3 or PHO5), the isocytochrome gene or the promoter for glycolysis genes can be used, such as the promoter of the enolase gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 3-phosphoglycerate kinases (PGK), hexokinase, pyruvate decarboxylase, phosphorfructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triose phosphate isomerase, phosphoglucose isomerase, invertase and glucokinase. Preferred vectors of the present invention contain transcriptionally controlled promoters, eg, the promoters of the PHO5 and ADHII genes, which can be turned on or off when growth conditions are changed. For example The PHO5 promoter can be stopped or released exclusively by increasing or decreasing the concentration of inorganic phosphate in the medium. First of all, hybrid yeast vectors, in the sense of the proposed invention, also comprise 3 flanking sequences of yeast genes, which contain a suitable signal for termination of transcription and polyadenylation. Suitable 3 flanking sequences are, for example, those which are naturally bound in the gene to the promoter used, such as the 3 flanking sequence in the yeast PHO5 gene.

b.Vektori za upotrebu u stanicama sisavaca b.Vectors for use in mammalian cells

Vektori za podvajanje i ekspresiju u stanicama sisavaca često imaju DNA s virusnog izvora, npr. iz majmunskog virusa 40 (SV40), virusa Rousovog sarkoma (RSV), adeno-virusa 2, volovskog papiloma virusa (BPV), mutantne papova-virusa (BK BKV) ili mišjeg ili humanog citomegalo-virusa (MCMV odnosno HCMV). Vectors for replication and expression in mammalian cells often have DNA from a viral source, eg from simian virus 40 (SV40), Rous sarcoma virus (RSV), adenovirus 2, bovine papillomavirus (BPV), mutant papovavirus (BK BKV) or murine or human cytomegalovirus (MCMV or HCMV).

Ekspresijski kontrolni nizovi, koji su prikladni za upotrebu u stanicama sisavaca, uključuju, između ostalih, rane i kasne promotore SV40, veći kasni promotor adeno virusa, promotor metalotioneinskog gena glodavaca i područje uvećavajućeg promotora u mišjem ili humanom citomegalo virusnom većem iznenadno-ranom genu, područje uvećavajućeg promotora humanog imunoglobulina, promotor humanog α-globina, po izbori u kombinaciji sa uvećavajućim promotorom za SV40, i promotore izvedene od toplinski šokiranih gena. Expression control arrays suitable for use in mammalian cells include, but are not limited to, the SV40 early and late promoters, the adenovirus major late promoter, the rodent metallothionein gene promoter, and the enhancer region of the mouse or human cytomegalovirus major sudden-early gene, the human immunoglobulin enhancer promoter region, the human α-globin promoter, optionally in combination with the SV40 enhancer promoter, and promoters derived from heat-shocked genes.

Prikladni markirni geni za stanice sisavaca su npr. neo i ble geni transpozona Tn5, koji podaju otpornost prema antibiotiku G418, odnosno antibiotiku vrste bleomicin, gen E.coli, otpornost prema higromicinu B, gen za dihidrofolat reduktazu (dhfr) iz stanica sisavaca ili E.coli, koji mijenja fenotip DHFR- stanica u DHFR+ stanica i/ili. podaje otpornost protiv metotreksata i gen timidin kinaze virusa Herpes simplex, koji stanice TK- čini fenotipićnim TK+. Suitable marker genes for mammalian cells are, for example, the neo and ble genes of transposon Tn5, which confer resistance to the antibiotic G418, i.e. the antibiotic bleomycin, the E.coli gene, resistance to hygromycin B, the gene for dihydrofolate reductase (dhfr) from mammalian cells or E .coli, which changes the phenotype of DHFR- cells to DHFR+ cells and/or. confers resistance against methotrexate and the thymidine kinase gene of Herpes simplex virus, which makes TK- cells phenotypic TK+.

Ponajprije, hibridni vektori sadrže dio gena sisavaca neprobavljiv za stanice sisavaca 3’, koji sadrži signale za sličan zaključak prepisivanja i poliadenilacije, kao npr. 3’ priležni dio gena za β-globin. Ugodnije, priležni na području, koje kodira polipeptid, uključuju jedan ili više nativnih introna, koji imaju prikladne signale za vezanje na svojim krajevima. Ti dodaci se smatraju potrebnim, jer cDNA i prokariotske DNA, kao gornji selekcijski geni, često nemaju takovih procesnih i signala prepisivanja. In particular, the hybrid vectors contain a 3' non-digestible portion of the mammalian gene, which contains signals for similar termination of transcription and polyadenylation, such as the 3' flanking portion of the β-globin gene. More conveniently, the regions flanking the polypeptide coding region include one or more native introns, which have suitable binding signals at their ends. These additions are considered necessary, because cDNA and prokaryotic DNA, like the above selection genes, often do not have such processing and transcription signals.

Za razmnožavanje u E. coli vektori ponajprije imaju začetak prepisivanja i antibiotički otporan gen. Začetak podvajanja kod sisavaca možemo proizvesti ili uključenjem eukarionskog začetka u konstrukciju vektora, onog koji izlazi iz SV40 ili drugog virusnog izvora, ili ga možemo proizvesti s kromozonom stanice domaćina nakon integracije vektora u kromozom stanice domaćina. For propagation in E. coli, vectors preferably have a transcription start and an antibiotic-resistant gene. A mammalian replication origin can be produced either by including a eukaryotic primer in the construction of a vector, one that comes from SV40 or another viral source, or we can produce it with the host cell's chromosome after integration of the vector into the host cell's chromosome.

Ponajprije, hibridni vektori koje upotrebljavamo u stanicama sisavaca, obuhvaćaju cDNA hibridnog PA ili mutanta hibridnog PA, djelomično priležno okruženog, na prema gore okrenutoj strani, s citomegalovirusnim glodajućim iznenadno-ranim genskim promotorm i, na prema dolje okrenutoj strani, s 3’-krajem β-globinskog gena kunića, koji uključuje drugi intron s njegovim prikladnim signalima za vezanje i poliadenilacijski slijed. Nadalje, sadrže slijedove kojiekodiraju gen rezistentan na neomicin iz transposona Tn5, ili u danom slučaju iz Tn9, ili sekvence koje kodiraju higromicin fosfotransferazu, priležno okruženu, na prema gore usmjerenoj strani slijeda, s ranim promotorom iz SV40 virusa, koji uključuje također i SC40 začetak replikacije, i nativni promotor Tn5 neo gena, te, po prema dolje usmjerenoj strani, sa segmentirna SV40 ranog gena, koji uključuje male t-antigenske vezne i poliadenilacijske signale. Cjelokupnu konstrukciju se klonira u fragmentu plazmida E.coli pBR322, koji uključuje plazmidni začetak podvajanja, gen rezistentan na ampicilin, ali mu nedostaju tim trujući nizovi, koji inhibiraju SV40-način DNA podvajanja u stanicama sisavaca. Po izboru u vektor uključimo gen, koji kodira dihidrofolat reduktazu (DHFR); ponajprije se upotrebljava modularni DHFR gen, opisan u R.F. Kaufman et al., /Mol. Cell. Bio. 2, 1304-1319 (1982)/. Taj modularni DHFR gen sastoji se od sljedova još većeg kasnog promotora adenovirusa tipa 2, fragmenta gena za imunoglobulin, CDNA, koji kodira dio DHFR glodača i SV40 začetno poliadenilacijsko mjesto. In particular, the hybrid vectors we use in mammalian cells comprise the hybrid PA cDNA or hybrid PA mutant partially flanked, on the upstream side, by the cytomegalovirus rodent sudden-early gene promoter and, on the downstream side, by the 3'-end of the rabbit β-globin gene, which includes the second intron with its appropriate binding signals and polyadenylation sequence. Furthermore, they contain the sequences encoding the neomycin resistance gene from transposon Tn5, or in the given case from Tn9, or sequences encoding hygromycin phosphotransferase, closely flanked, upstream of the sequence, by the early promoter from the SV40 virus, which also includes the SC40 start replication, and the native promoter of the Tn5 neo gene, and, on the downstream side, the segmental SV40 early gene, which includes small t-antigen binding and polyadenylation signals. The entire construct is cloned into a fragment of the plasmid E.coli pBR322, which includes the plasmid origin of replication, the ampicillin resistance gene, but lacks these toxic sequences, which inhibit SV40-mode DNA replication in mammalian cells. Optionally, we include the gene encoding dihydrofolate reductase (DHFR) in the vector; the modular DHFR gene described in R.F. Kaufman et al., /Mol. Cell. He was. 2, 1304-1319 (1982)/. This modular DHFR gene consists of sequences from an even larger adenovirus type 2 late promoter, an immunoglobulin gene fragment, a cDNA encoding part of the rodent DHFR, and an SV40 initial polyadenylation site.

Novi hibridni vektori, kojima se daje prednost za upotrebu u stanicama sisavaca, predstavljaju napredak u struci. Bolji su u usporedbi s dosada poznatim vektorima time što sadrže jak ekspresijski signal za kloniranu cDNA, koji se nalazi u mišjem iznenadno-ranom promotoru i u (β-globin nizovima za vezanje/poliadenilaciju u okruženju koje dopušta ekspresiju na visokoj razini u ekstremno širokoj količini staničnih vrsta kralježnjaka. Podrobnije, vektori se mogu upotrijebiti (a) da se izrazi cDNA privremeno u normalnim tj. SV40-netransformiranim staničnim linijama kulture tkiva, ali (b), još bolje, s većim brojem kopija u stanicama primata, koji pokazuju SV40-antigen, da dopuštaju vektoru podvajanje preko svog SV40 začetka podvajanja, ali također (c) da se izrazi takova klonirana cDNA stabilno u staničnim linijama normalne kulture tkiva, gdje se vektor može integrirati u kromozom stanice domaćina i (d) još bolje, zbog većeg broja kopija, ako uvedemo u SV40T-antigen, kojeg proizvode stanične linije primata, gdje se vektor može podvajati episomalno. New hybrid vectors, preferred for use in mammalian cells, represent advances in the art. They are superior to previously known vectors in that they contain a strong expression signal for the cloned cDNA, located in the mouse sudden-early promoter and in β-globin binding/polyadenylation arrays in an environment that allows high-level expression in an extremely wide variety of cellular vertebrate species More specifically, the vectors can be used (a) to express the cDNA transiently in normal i.e. SV40-untransformed tissue culture cell lines, but (b), even better, with higher copy numbers in SV40-antigen-expressing primate cells , to allow the vector to replicate via its SV40 origin, but also (c) to express such cloned cDNA stably in normal tissue culture cell lines, where the vector can be integrated into the host cell's chromosome and (d) even better, because of the higher copy number , if we introduce the SV40T-antigen, which is produced by primate cell lines, where the vector can replicate episomally.

Uvećavajući-promotorski dio MCMV obuhvaća npr. DNA sa začetkom kod nukleotida -835 do -443 i kraj kod nukleotida +50 (broj od mRNA začetka) na 5’ dijelu MCMV većeg iznenadnog ranog gena. Ponajprije, pospješavajući promotorski dio MCMV obuhvaća nukleotide -542 do +50. The enhancer-promoter part of MCMV includes, for example, DNA starting at nucleotides -835 to -443 and ending at nucleotide +50 (number from the mRNA start) on the 5' part of the MCMV larger sudden early gene. In particular, the enhancing promoter portion of MCMV comprises nucleotides -542 to +50.

3’, priležni dio gena za β-globin zeca sastoji se od druge polovice gena za β-globin zeca /P. Dierks et al., Proc. Natl. Acad. Sci. USA 78, 1411-1415 (1981); A. van Ooyen et al., Sciens 206, 337-344 (1979) /, začne se u drugom eksonu, ponajprije na BamHI mjestu, tako uključuje drugi intron sa signalima za vezanje na svoje priležne nizove, i zaključi se s poliadenilacijskirn signalima, ponajprije na BglII mjestu, koje se nalazi 1.2 kb iza gornjeg BamHI mjesta. 3', the adjacent part of the rabbit β-globin gene consists of the second half of the rabbit β-globin gene /P. Dierks et al., Proc. Natl. Acad. Sci. USA 78, 1411-1415 (1981); A. van Ooyen et al., Sciens 206, 337-344 (1979) /, starts in the second exon, preferably at the BamHI site, thus includes the second intron with binding signals to its flanking sequences, and concludes with polyadenylation signals, primarily at the BglII site, located 1.2 kb upstream of the BamHI site.

SV40 izvor podvajanja nalazi se npr. u HindIII-SphI fragmentu virusne DNA /nukleotidi 5171 do 128, začetak = položaj 1; Tooze J. (ed.) DNA Tumor Viruses, Part. 2, 2nd Edition, Cold Spring Harbor Laboratory, Cold Spring Harbor N.Y. 1982/. Izvedba s prednošću je bilo koji HindIII-HpaII fragment (nukleotidi 5171 do 346), koji pored začetka podvajanja sadrže još i virusni promotor, upotrijebljen za pospješivanje prepisivanja selekcijskog gena vektora. The SV40 origin of replication is found, for example, in the HindIII-SphI fragment of viral DNA /nucleotides 5171 to 128, start = position 1; Tooze J. (ed.) DNA Tumor Viruses, Part. 2, 2nd Edition, Cold Spring Harbor Laboratory, Cold Spring Harbor N.Y. 1982/. A preferred embodiment is any HindIII-HpaII fragment (nucleotides 5171 to 346), which, in addition to the initiation of replication, also contain a viral promoter, used to accelerate transcription of the selection gene of the vector.

Neomicinski gen se klonira iza promotora, koji je aktivan u stanicama kulture tkiva, ponajprije SV40 rani promotor, npr. namješten na HpaII-HindIII fragmentu, spomenuto gore. Kodni nizovi neomicinskog gena nalaze se npr. na Bg1II-SmaI fragmentu iz transpozona Tn5 /E. Beck et al., Gene 19, 327-336 (1982); P. Southern et al., J. Mol. Appl. Genet. l, 327-341 (1982); F. Colbere-Garapin et al., J. Mol. Bio. 150, 1-14 (1981/. Od prednosti je opremiti neomicinski gen s drugim promotorom, koji takoder dopušta prepisivanje u E.coli. Npr., nativni promotor Tn5 neomicinskog gena, koji se ponajprije nalazi na HindIII-BglII fragmentu, možemo namjestiti iza eukariotskog promotora ispred neo kodirnog niza (Southern et al., gore), ili nadalje, prema gore, ispred eukariotskog promotara (Colbere-Garapin et al., gore). Da se izrazi u stanicama kulture tkiva iza bakterijskog neo gena mora slijediti poliadenilacijski signal, ponajprije dio SV40t antigenskog gena, koji također sadrži vezne signale. Slijed koji kodira neomicin fosfotransferazu, osobito BflII-SmaI dio Tn5 fragrnenta, spomenutog gore, također možemo nadomjestiti sa slijedom koji kodira hidromicin B fosfotransferazu, ponajprije u obliku BarnHI fragmenta plazrnida pLG89 /L. Gritz et al., Gene 25, 179-188 (18983)/, kojeg je još bolje uključiti u pSVd /Luedin et al., EMBO-J. 6, 109-114 (1987), derivat iz pSV2811 neo, u koji je uveden BglII linker na SmaI mjestu u vektoru. The neomycin gene is cloned behind a promoter that is active in tissue culture cells, preferably the SV40 early promoter, eg set on the HpaII-HindIII fragment, mentioned above. The coding sequences of the neomycin gene are found, for example, on the Bg1II-SmaI fragment from the transposon Tn5 /E. Beck et al., Gene 19, 327-336 (1982); P. Southern et al., J. Mol. Appl. Genet. 1, 327-341 (1982); F. Colbere-Garapin et al., J. Mol. He was. 150, 1-14 (1981/. It is advantageous to equip the neomycin gene with another promoter, which also allows transcription in E.coli. For example, the native Tn5 promoter of the neomycin gene, which is primarily located on the HindIII-BglII fragment, can be positioned behind of a eukaryotic promoter in front of the neo coding sequence (Southern et al., above), or further upstream, in front of a eukaryotic promoter (Colbere-Garapin et al., above).To be expressed in tissue culture cells, the bacterial neo gene must be followed by a polyadenylation signal , preferably part of the SV40t antigen gene, which also contains binding signals. The sequence encoding neomycin phosphotransferase, especially the BflII-SmaI part of the Tn5 fragment mentioned above, can also be replaced with the sequence encoding hydromycin B phosphotransferase, preferably in the form of a BarnHI fragment of plasmid pLG89 /L Gritz et al., Gene 25, 179-188 (18983)/, which is even better included in pSVd /Luedin et al., EMBO-J. 6, 109-114 (1987), a derivative from pSV2811 neo, in which BglII links were introduced r at the SmaI site in the vector.

Slijedeći selekcijski gen, kojem se daje prednost, uključuje slijed za kodiranje enzima dihidrofolat reduktaze, kao u pSV2dhfr ATCC 37145), koji ne dopušta samo selekcije transformiranih staničnih vrsta, već također pojačanje s plazmidom združenog DNA slijeda, često s proporcionalnim povećanjem produkcije proteina u smislu izuma, kodiranih u plazrnidu. Another preferred selection gene includes the coding sequence for the enzyme dihydrofolate reductase, as in pSV2dhfr ATCC 37145), which allows not only the selection of transformed cell types, but also the amplification of the plasmid-associated DNA sequence, often with a proportional increase in protein production in terms of inventions, coded in plazrnid.

Fragment koji izlazi iz plazmida pBR322 E.coli, uključuje pBR322 začetak podvajanja i gen rezistentan na ampicilin. Fragment je ponajprije uzet iz pBR322 derivata, kao što je pSVOd /P. Mellon et al., Cell 27, 279-288 (1981)/, u kojem je odstranjen tim. trujući niz, koji bi inhibirao SV40T antigen-vodeno podvajanje vektora. The fragment emerging from the pBR322 E.coli plasmid includes the pBR322 origin of replication and the ampicillin resistance gene. The fragment is preferably taken from a pBR322 derivative, such as pSVOd /P. Mellon et al., Cell 27, 279-288 (1981)/, in which the team was removed. toxic sequence, which would inhibit SV40T antigen-driven vector cleavage.

U izvedbi s prednošću predloženi izum se odnosi na hibridne vektore, koji se mogu podvajati i fenotipične selekcije u eukariotskom domaćinu vrste koja obuhvaća promotor i DNA, koji kodiraju hibridni PA ili mutante hibridnog PA; spomenuta DNA nalazi se, zajedno sa signalima za prepisivanje i terminaciju, kao također A signali za začetak i kraj translacije u spomenutom hibridnom vektoru pod kontrolom spomenutog promotora; kao oni u transformiranom domaćinu, izražava se u proizvodnji proteina. In an advantageous embodiment, the proposed invention relates to hybrid vectors, which can be duplicated and phenotypic selections in a eukaryotic host species comprising a promoter and DNA, which encode hybrid PA or mutants of hybrid PA; said DNA is located, together with signals for transcription and termination, as well as A signals for the start and end of translation in said hybrid vector under the control of said promoter; like those in the transformed host, it is expressed in protein production.

Hibridni vektori u smislu izuma pripremaju se po metodama poznatim u struci, npr. s povezivanjem DNA segmenata koji sadrže promotor, područja za kodiranje, hibridnog PA ili mutante hibridnog PA, 3’ priležnim slijedom i vektorskom DNA. Hybrid vectors according to the invention are prepared by methods known in the art, for example by connecting DNA segments containing the promoter, coding region, hybrid PA or hybrid PA mutants, 3' flanking sequence and vector DNA.

Za povezivanje DNA segmenata in vitro mogu se primijeniti različiti postupci. Tupi krajevi (potpuno komplementarni DNA dupleks), koje tvore određene restrikcijske endonukleaze, mogu se neposredno povezati s T4 DNA ligazom. Uobičajenije je DNA segmente povezati preko njihovih jednovlaknastih kohezivnih krajeva i kovelantno zatvoriti s DNA ligazom npr. T4DNA ligazom. Takovi jednovlakansti "kohezivni krajevi" mogu nastati pri cijepanju DNA s drugom vrstom endonukleaza, koje proizvode otvorene krajeve (dva vlakna DNA dupleksa se cijepaju na različitim točkama u razmaku od nekoliko nukleotida). Jednostruka vlakna mogu također nastati i dodavanjem nukleotida k tupim krajevima ili otvorenim krajevima upotrebom terminalnih transferaza ("homopolimerni repovi") ili jednostavnom digestijom jednog vlakna na DNA segmentu s tupim krajem s prikladnom eksonukleazom, kao λ-eksonukleazom. Slijedeći pristup k tvorbi otvorenih krajeva sastoji se od povezivanja segmenata DNA, s tupim krajevima, s kemijski sintetički povezanom DNA, koja sadrži mjesto prepoznavanja za endonukleazu, koja tvori otvoren kraj, i digestije dobivene DNA s odgovarajućom endonukleazom. Komponente hibridnih vektora u smislu izuma povezujemo zajedno u prethodno odredenom nizu, tako da se dobije pravilno djelovanje. Different procedures can be used to connect DNA segments in vitro. Blunt ends (completely complementary DNA duplex), formed by certain restriction endonucleases, can be directly connected to T4 DNA ligase. It is more common to connect DNA segments via their single-stranded cohesive ends and covalently close them with DNA ligase, for example T4DNA ligase. Such single-stranded "cohesive ends" can form when DNA is cleaved with another type of endonuclease, which produces open ends (the two strands of a DNA duplex are cleaved at different points a few nucleotides apart). Single strands can also be formed by adding nucleotides to blunt or open ends using terminal transferases ("homopolymeric tails") or by simple digestion of a single strand on a blunt-ended DNA segment with a suitable exonuclease, such as λ-exonuclease. The following approach to creating open ends consists of joining DNA segments, with blunt ends, to chemically synthetically linked DNA, which contains a recognition site for an open-ended endonuclease, and digesting the resulting DNA with the appropriate endonuclease. The components of the hybrid vectors in the sense of the invention are connected together in a previously determined sequence, so that a proper action is obtained.

Domaćini, transformirani s hibridnim vektorima koji sadrže DNA za hibridni PA Hosts transformed with hybrid vectors containing DNA for hybrid PA

Daljnji aspekt predloženog izuma uključuje eukariotske organizme domaćina, transformirane s hibridnim vektorima, koji obuhvaćaju DNA, koja kodira hibridni PA, koji je sastavljen od najmanje dvije podjedinice, koje identitetom i brojem aminokisleina odgovaraju podjedinicama humanog uPA i humanog t-PA, ili koji kodiraju njegov mutant i mutante spomenutog domaćina, i na postupke za njihovu pripravu. A further aspect of the proposed invention includes eukaryotic host organisms, transformed with hybrid vectors, which comprise DNA, which encodes a hybrid PA, which is composed of at least two subunits, which correspond in identity and number of amino acids to the subunits of human uPA and human t-PA, or which encode its mutant and mutants of said host, and procedures for their preparation.

Primjeri odgovarajućih eukariotskih domaćina su oni navedeni gore, osobito vrste kvasca i stanice sisavaca. Mutanti transformiranih organizama domaćina uključuju osobito mutante koji imaju malo proteaza koje razgrađuju hibride PA ili mutante hibridnog PA, te daju viši prinos hibridnog PA, odnosno mutanta hibridnog PA. Examples of suitable eukaryotic hosts are those listed above, particularly yeast species and mammalian cells. Mutants of transformed host organisms include especially mutants that have few proteases that degrade PA hybrids or hybrid PA mutants, and give a higher yield of hybrid PA or hybrid PA mutants.

Postupak pripremanja transformiranih eukariotskih domaćina obuhvaća transformiranje ili transfekciju eukariotskog domaćina s ekspresijskim vektorom, koji obuhvaća DNA izuma, reguliranu s ekspresijskim kontrolnim slijedom. The process of preparing transformed eukaryotic hosts comprises transforming or transfecting a eukaryotic host with an expression vector, comprising the DNA of the invention, regulated with an expression control sequence.

Transformacija eukariotskih stanica domaćina provedena je metodama poznatim u struci. Npr. transformacija kvasca s hibridnim vektorima može se provesti metodom koju su opisali Hinnen i suradnici /Proc. Natl. Acad. Sci. USA 75, 1919 (1978)/. Ta metoda se može podijeliti u tri stupnja: Transformation of eukaryotic host cells was carried out by methods known in the art. For example transformation of yeast with hybrid vectors can be carried out by the method described by Hinnen et al. /Proc. Natl. Acad. Sci. USA 75, 1919 (1978)/. This method can be divided into three stages:

1) Uklanjanje stanične membrane kvasaca ili njenih dijelova. 1) Removal of the yeast cell membrane or its parts.

2) Obrada "golih" kvasaca (sferoplasta) s transformirajućorn DNA u prisutnosti PEG-a (polietilenglikola) i Ca2+ iona. 2) Treatment of "naked" yeasts (spheroplasts) with transforming DNA in the presence of PEG (polyethylene glycol) and Ca2+ ions.

3) Regeneracija stanične membrane i selekcija transformiranih stanica u čvrsti sloj agara. 3) Regeneration of cell membrane and selection of transformed cells in a solid layer of agar.

Metode kojima se daje prednost: Preferred methods:

ad (1): Staničnu membranu kvasaca ukloni se enzimatski upotrebom različitih pripremaka glikozidaza, kao što su sokovi crijeva puža (npr. Glusulase® ili Helicase®) ili enzirnatskih mješavina dobivenih iz mikroorganizama (npr. Zymolyase®) u osmotski stabiliziranim otopinama (npr. 1 sorbitol). ad (1): The cell membrane of yeasts is removed enzymatically using various preparations of glycosidases, such as snail gut juices (e.g. Glusulase® or Helicase®) or enzyme mixtures obtained from microorganisms (e.g. Zymolyase®) in osmotically stabilized solutions (e.g. 1 sorbitol).

ad (2): Sferoplasti kvasca se gomilaju u prisutnosti PEG-a, što dovodi do lokalnih fuzija citoplazmičkih membrana. Nastajanje uvjeta "pogodnih za fuziju" je odlučujuće i tijekom procesa transformacije mnoge transformirane stanice kvasca postaju diploidne ili čak triploidne. Postupci koji dopuštaju selekciju fuzioniranih sferoplasta mogu se koristiti za obogaćivanje transformanata, npr. transformirane stanice mogu se beG teškoća odvojiti od predselekcioniranih proizvoda fuzije. ad (2): Yeast spheroplasts aggregate in the presence of PEG, leading to local fusions of cytoplasmic membranes. The creation of conditions "suitable for fusion" is decisive and during the transformation process many transformed yeast cells become diploid or even triploid. Procedures that allow selection of fused spheroplasts can be used to enrich transformants, eg, transformed cells can be separated from pre-selected fusion products with difficulty.

ad (3): Budući da se kvasci bez stanične membrane ne dijele, stanična stijenka se mora obnoviti. To obnavljanje provodi se prikladno uklapanjem sferoplasta u agar. Npr. rastaljen agar (pribl. 50ºC) pomiješa se sa sferoplastima. Pri hlađenju taline do temperature rasta kvasca (otprilike 30ºC) dobije se čvrst sloj. Taj sloj agara sprečava brzu difuziju i gubitak bitnih makromolekula iz sferoplasta i stoga pospješuje obnavljanje stanične membrane. Ipak, obnavljanje stanične membrane postiže se također (doduše s manjim iskorištenjem) nasađivanjem sferoplasta na površinu prethodno oblikovanih slojeva agara. ad (3): Since yeasts without a cell membrane do not divide, the cell wall must be renewed. This recovery is carried out conveniently by embedding spheroplasts in agar. For example molten agar (approx. 50ºC) is mixed with spheroplasts. When the melt is cooled to the yeast growth temperature (approximately 30ºC), a solid layer is obtained. This agar layer prevents the rapid diffusion and loss of essential macromolecules from the spheroplast and therefore promotes the renewal of the cell membrane. However, the restoration of the cell membrane is also achieved (albeit with lower efficiency) by planting spheroplasts on the surface of previously formed agar layers.

Ponajprije, regeneracijski agar priprema se na način koji dopušta istovremeno obnovu i selekciju transformiranih stanica. Budući da se geni kvasca, koji kodiraju enzime amino kiselina kiselinskih biosintetičkih puteva, uglavnom upotrebljavaju kao selektivni markeri (supra), regenaracija se ponajprije provodi u minimalnom agarnom mediju za kvasac. Ako su potrebni vrlo visoki učinci regeneracije, koristan je slijedeći postupak u dva stupnja: First of all, regeneration agar is prepared in a way that allows simultaneous renewal and selection of transformed cells. Since yeast genes, which encode amino acid enzymes of acid biosynthetic pathways, are mainly used as selectable markers (supra), regeneration is preferably carried out in minimal yeast agar medium. If very high regeneration effects are required, the following two-stage procedure is useful:

(1) regeneracija stanične membrane u bogatom kompleksnom mediju i (1) cell membrane regeneration in a rich complex medium i

(2) selekcija transformiranih stanica replikacijskim nasadivanjem staničnog sloja u selektivna uzgajališta od agara. (2) selection of transformed cells by replicating the cell layer in selective agar media.

Uvođenje hibridnih vektora u stanice sisavaca provodi se transformacijom u prisutnosti pomoćnih spojeva, npr. dietilaminoetildekstrana, dimetil sulfoksida, glicerola, polietilenglikola ilia sličnih, ili neke koprecipitatorske vektorske DNA, i kalcijevog fosfata. Slijedeće prikladne metode uključuju neposredno mikroinjiciranje vektorske DNA u staničnu jezgru i elektro-unašanjem, npr. uvođenjem DNA kratkim električnim impulsima, koji povećavaju permeabilnost staničnih membrana. Slijedeća selekcija transformiraniri stanica može se provesti upotrjebom selekcijskog markera, koji je ili kovalentno integriran u ekspresijski vektor, ili je dodan kao odvojena jedinica. Selekcijski markeri uključuju gene koji daju otpornost prema antibioticima, ili gene koji popravljaju genetičko oštećenje stanice domaćina (supra). Ponajprije, selekcijski sistem upotrebljava stanice kojima nedostaje dihidrofolat reduktaza (DHRF-), npr. CHO stanice koje, za rast apsolutno zahtijevaju timidin, glicin i purine, osim ako je dodan eksogeni DHFR gen. Uz uvođenje vektora, koji sadrži gen hibridnog PA, i dodatno DHFR- gen, u odgovarajuće DHFR stanice, npr. CHO stanice, transformirane stanice odvajamo povećanjem koncentracije antifolatnog lijeka metotreksata u mediju. The introduction of hybrid vectors into mammalian cells is carried out by transformation in the presence of auxiliary compounds, eg diethylaminoethyldextran, dimethyl sulfoxide, glycerol, polyethylene glycol, etc., or some co-precipitator vector DNA, and calcium phosphate. Other suitable methods include direct microinjection of the vector DNA into the cell nucleus and electro-induction, eg by introducing the DNA with short electrical pulses, which increase the permeability of the cell membranes. Subsequent selection of transformed cells can be performed using a selection marker, which is either covalently integrated into the expression vector or added as a separate unit. Selectable markers include genes that confer resistance to antibiotics, or genes that repair genetic damage to the host cell (supra). Primarily, the selection system uses cells lacking dihydrofolate reductase (DHRF-), eg CHO cells, which absolutely require thymidine, glycine and purines for growth, unless an exogenous DHFR gene is added. With the introduction of the vector, which contains the hybrid PA gene, and additionally the DHFR gene, into the appropriate DHFR cells, eg CHO cells, the transformed cells are separated by increasing the concentration of the antifolate drug methotrexate in the medium.

Od posebne prednosti je metoda selekcije po kojoj odgovarajuće stanice sisavaca, npr. CHO stanice, obradimo s ko-precipitatima vektorske DNA, koja sadrži gen hibridnog PA, i gen koji kodira antibiotičku otpornost, npr. otpornost na G-418 i kalcijev fosfat. Transformirane stanice odvajamo uzgajanjem u prisutnosti odgovarajućih antibiotika, npr. G-418 i/ili prekrivanjem ekspresije hibridnog PA. Of particular advantage is the selection method by which suitable mammalian cells, eg CHO cells, are treated with co-precipitates of vector DNA, which contains the hybrid PA gene, and the gene encoding antibiotic resistance, eg resistance to G-418 and calcium phosphate. Transformed cells are isolated by culturing in the presence of appropriate antibiotics, eg G-418 and/or covering the expression of hybrid PA.

Transformirane organizme domaćina u smislu izuma možemo poboljšati. u proizvodnji hibridnih PA ili mutanata hibridnih PA primjenskim metodama mutacije i selekcije, poznatim u struci. Mutaciju možemo provesti npr. UV-obasjavanjem ili s prikladnim kemijskim tvarima. Od osobite prednosti je izrada proteazno-manjkavih mutanata, osobito mutanata kvasca, zato da izbjegnemo proteolitičku razgradnju proizvedenog hibridnog PA, odnosno mutanta hibridnog PA. The transformed host organisms of the invention can be improved. in the production of hybrid PAs or mutants of hybrid PAs by applied methods of mutation and selection, known in the art. The mutation can be carried out, for example, by UV-irradiation or with suitable chemical substances. The production of protease-deficient mutants, especially yeast mutants, is particularly advantageous in order to avoid proteolytic degradation of the produced hybrid PA, i.e. mutant hybrid PA.

Uzgoj transformiranih stanica domaćina Cultivation of transformed host cells

Izum se nadalje odnosi na metodu dobivanja jednolančanih hibridnih PA, koji imaju amino kiselinski slijed sastavljen od najmanje dvije podjedinice, koje identitetom i brojem amino kiselina odgovaraju podjedinicama humanog t-PA i humanog u-PA ili njihovim mutantima, koja uključuje uzgoj transformiranog eukariotskog domaćina pod prikladnim uvjetima hranjenja, koji sadrži DNA sljedove koji kodiraju spomenuti hibridni FA ili mutant hibridnog PA, i na izolaciju spomenutog hibridnog PA ili njegove mutante. Transformirane stanice domaćina uzgajamo po metodama poznatim u struci, u tekućem mediju, koji sadrži izvore ugljika i dušika, koji se mogu asimilirati, te anorganske soli. The invention further relates to a method of obtaining single-chain hybrid PAs, which have an amino acid sequence composed of at least two subunits, which in terms of identity and number of amino acids correspond to the subunits of human t-PA and human u-PA or their mutants, which includes growing a transformed eukaryotic host under under suitable feeding conditions, which contains DNA sequences encoding said hybrid FA or hybrid PA mutant, and to isolate said hybrid PA or its mutant. Transformed host cells are cultivated by methods known in the field, in a liquid medium, which contains sources of carbon and nitrogen, which can be assimilated, and inorganic salts.

Za uzgoj transformiranih kvasaca, u smislu izuma, mogu se upotrijebiti različiti izvori ugljika. Primjeri izvora ugljika, kojima se daje prednost, su ugljikohidrati koji se mogu asimilirati, kao što su glukoza, maltoza, manitol ili laktoza ili acetat, koji se može upotrijebiti ili sam ili u prikladnim smjesama. Primjeri prikladnih izvora dušika su amino kiseline kao što su kezamino kiseline, peptidi i proteini, te proizvodi njihove razgradnje, kao što su tripton, pepton ili mesni ekstrakti, ekstrakti kvasca, ekstrakti slada i također amonijeve soli, npr. amonijev klorid, sulfat ili nitrat, koji se mogu upotrijebiti kao takovi ili u prikladnim mješavinama. Anorganske soli, koje se također mogu upotrijebiti, su npr. sulfati, kloridi, fosfati i karbonati natrija, kalija, magnezija i kalcija. Medij nadalje sadrži npr. tvari koje pospješuju rast, kao što su nizovi elemenata npr. željezo, cink, mangan itd., i ponajprije, tvari koje stvaraju selekcijski pritisak i sprečavaju rast stanica koje su izgubile ekspresiju plazmida. Tako npr. ako se kao mikroorganizam domaćina upotrebljava vrsta kvasca koji je auksotrofan u npr. esencijalnoj amino kiselini, plazmid sadrži ponajprije gen za kodiranje enzima, koji popunjava nedostatak domaćina. Uzgoj vrste kvasaca odvija se u minimalnom mediju nepopunjenom sa spomenutim amino kiselinama. Different carbon sources can be used for the cultivation of transformed yeasts according to the invention. Examples of preferred carbon sources are assimilable carbohydrates such as glucose, maltose, mannitol or lactose or acetate, which can be used either alone or in suitable mixtures. Examples of suitable nitrogen sources are amino acids such as kesamino acids, peptides and proteins, and their breakdown products, such as tryptone, peptone or meat extracts, yeast extracts, malt extracts and also ammonium salts, e.g. ammonium chloride, sulphate or nitrate , which can be used as such or in suitable mixtures. Inorganic salts that can also be used are, for example, sulfates, chlorides, phosphates and carbonates of sodium, potassium, magnesium and calcium. The medium further contains, for example, substances that promote growth, such as a series of elements, for example, iron, zinc, manganese, etc., and above all, substances that create selection pressure and prevent the growth of cells that have lost plasmid expression. Thus, for example, if a type of yeast that is auxotrophic in e.g. an essential amino acid is used as the host microorganism, the plasmid primarily contains a gene encoding an enzyme, which fills the host's deficiency. Yeast species are grown in a minimal medium not supplemented with the mentioned amino acids.

Uzgoj se provodi postupcima koji su poznati u struci. Uvjeti uzgoja, kao što je temperatura, pH vrijednost medija i vrijeme fermentacije, odabrani su tako da se dobije maksimalan titar PA proteina izuma. Takva vrsta kvasaca ponajprije se uzgaja pod aerobnim uvjetima s kulturom koja se može potopiti, uz potresanje ili miješanje, pri temperaturi otprilike 20 do 40°C, ponajprije pribl. 30°C i pH vrijednosti od 5 do 8, ponajprije pH 7, tijekom otprilike 4 do 30 sati, ponajprije dok se dosegne maksimalan prinos proteina izuma. Cultivation is carried out by methods known in the art. Cultivation conditions, such as temperature, pH value of the medium and fermentation time, were selected to obtain the maximum titer of the PA protein of the invention. Such yeasts are preferably grown under aerobic conditions with a submersible culture, with shaking or stirring, at a temperature of approximately 20 to 40°C, preferably approx. 30°C and pH values of 5 to 8, preferably pH 7, for approximately 4 to 30 hours, preferably until the maximum yield of the protein of the invention is reached.

Stanice sisavaca rastu pod uvjetima kulture tkiva u medijima koji su komercijalno dostupni, po izboru nadopunjeni s tvarima koje pospješuju rast i/ili serumima sisavaca. Stanice rastu ili pričvršćene na čvrstu podlogu npr. mikro-nosioce ili porozna staklena vlakna, ili slobodno plivajući u odgovarajućim posudama za uzgoj. Medij za uzgoj bira se na taj način da se dobije selekcijski pritisak i da prežive samo one stanice koje još posjeduju hibridni vektor DNA, koji uključuje genetički marker. Tako npr., ako vektor uključuje odgovarajući gen za otpornost prema antiobioticima, u medij se doda antibiotik. Kad se dosegne zadovoljavajuća vrijednost gustoće stanica uzgoj se prekida i protein se izolira. Ako upotrebljavamo stanice sisavaca, hibridni PA ili mutant hibridnog PA obično se izluči u medij. Medij, koji sadrži proizvod, odvaja se od stanica, koje, -opskrbljene sa svježim medijem - upotrebljavamo za kontinuiranu proizvodnju. Ako upotrebljavamo kvasce, protein se može akumulirati također unutar stanica, posebno u periplazmatskorn prostoru. U tom slučaju prvi stupanj dobivanja PA proteina sastoji se od oslobađanja proteina iz unutrašnjosti stanica. U većini postupaka najprije se ukloni stanična membrana enzimatskom razgradnjom stanične membrane s glukozidazama (supra). Alternativno, stanična membrana može se ukloniti obradom s kemijskim sredstvima, npr. tiolnim reagensima ili EDTA, koja uzrokuju oštećenje stanične membrane, a to omogućuje oslobađanje proizvedenog hibridnog PA ili njegovog mutanta. Dobivenu mješavinu obogatimo hibridima PA ili s njegovim mutantima na uobičajen način, kao što je uklanjanje većine neproteinskog materijala obradom s polietilenaminom, precipitacijom proteina s amonijevim sulfatom, gel elektroforezom, dijalizom, kromatografijom, npr. kromatografijom na osnovi ionske izmjene, kromatografijom na osnovi razdvajanja po veličini, HPLC ili HPLC s reverznom fazom, molekularnim sortiranjem na odgovarajućoj Sephadex koloni ili slično. Konačno čišćenje, prethodno očišćenog proizvoda, postižemo npr. afinitetnom kromatografijom, npr.nafinitetnom kromatografijom na načelu antitijela, osobito afinitetnom kromatografijom na načelu monoklonalnih antitijela, koja koristi monoklonalna anti-t-FA ili anti-u-PA antitijela, pričvršćena na netopivu matricu, po metodama poznatim u struci, ili u 'slučaju hibridnih PA, koji sadrže katalitički B-lanac t-PA, DE-3 afinitetnu kromatografiju (DE-3 je proteazni inhibitor, izoliran iz Erytrina latissima) i slično. Predmet izuma su takoder hibridne stanične linije, koje proizvode monoklonalna antitijela, usrnjerena na specifične domene t-PA ili u-PA, i spomenuta monoklonalna antitijela. Mammalian cells are grown under tissue culture conditions in commercially available media, optionally supplemented with growth promoters and/or mammalian sera. Cells grow either attached to a solid substrate such as micro-carriers or porous glass fibers, or free-swimming in suitable culture dishes. The culture medium is chosen in such a way that selection pressure is obtained and only those cells that still possess the hybrid DNA vector, which includes the genetic marker, survive. For example, if the vector includes a suitable gene for antibiotic resistance, an antibiotic is added to the medium. When a satisfactory value of cell density is reached, the culture is stopped and the protein is isolated. If we use mammalian cells, the hybrid PA or hybrid PA mutant is usually secreted into the medium. The medium, which contains the product, is separated from the cells, which, supplied with fresh medium, are used for continuous production. If we use yeast, the protein can also accumulate inside the cells, especially in the periplasmic space. In this case, the first stage of obtaining PA protein consists of releasing the protein from inside the cells. In most procedures, the cell membrane is first removed by enzymatic degradation of the cell membrane with glucosidases (supra). Alternatively, the cell membrane can be removed by treatment with chemical agents, eg, thiol reagents or EDTA, which cause damage to the cell membrane, and this allows the release of the produced hybrid PA or its mutant. The resulting mixture is enriched with PA hybrids or with its mutants in the usual way, such as removal of most of the non-protein material by treatment with polyethyleneamine, protein precipitation with ammonium sulfate, gel electrophoresis, dialysis, chromatography, e.g. ion exchange chromatography, chromatography based on separation by size, HPLC or reversed-phase HPLC, molecular sorting on a suitable Sephadex column or the like. The final cleaning of the previously cleaned product is achieved, for example, by affinity chromatography, e.g. by antibody-based affinity chromatography, especially by monoclonal antibody-based affinity chromatography, which uses monoclonal anti-t-FA or anti-u-PA antibodies attached to an insoluble matrix. by methods known in the art, or in the case of hybrid PAs containing the catalytic B-chain of t-PA, DE-3 affinity chromatography (DE-3 is a protease inhibitor, isolated from Erythrina latissima) and the like. The subject of the invention are also hybrid cell lines, which produce monoclonal antibodies, directed to specific domains of t-PA or u-PA, and said monoclonal antibodies.

U odgovarajućoj pripravi jednolančanog hibridnog PA ili mutanta hibridnog PA, koji je uglavnom bez dvolančanog oblika, korisno je uključiti proteazni inhibitor, kao što je aprotinin Trasylol®ili bazični tripsin inhibitor iz pankreasa, tijekom postupka čišćenja, zato da se inhibiraju slijedovi proteaza koji mogu biti prisutni u uzgojnom rnediju i 'koji mogu prouzročiti (djelomičnu) pretvorbu jednolančanog oblika u dvolančani oblik. Konačno čišćenje postižemo zatim kromatografijom u koloni, koja sadrži reagens selektivnog afiniteta. In the appropriate preparation of single-chain hybrid PA or mutant hybrid PA, which is mostly free of the double-chain form, it is useful to include a protease inhibitor, such as aprotinin Trasylol® or basic trypsin inhibitor from the pancreas, during the purification process, in order to inhibit the protease sequences that may be present in the culture medium and 'which can cause (partial) conversion of the single-chain form into the double-chain form. The final purification is then achieved by column chromatography, which contains a selective affinity reagent.

5. Farmaceutski pripremci 5. Pharmaceutical preparations

Novi jednolančani PA proteini i njihovi mutanti, koje smo dobili u skladu s predloženim izumom, pokazuju dragocjena farmakološka svojstva. Mogu se upotrijebiti analogno kao poznati plazminogenski aktivatori kod ljudi za sprečavanje ili liječenje tromboza i drugih stanja, gdje je poželjno stvoriti lokalnu fibrinolitičku ili proteolitičku aktivnost preko mehanizma plazrninogenske aktivacije, kao npr. arteroskleroze, miokardijalnog ili cerebralnog infarkta, venoznoj trombozi, tromboemboliji, postoperativnih tromboza, tromboflebitisa i dijabetskih vaskulopatija. The new single-chain PA proteins and their mutants, obtained in accordance with the proposed invention, show valuable pharmacological properties. They can be used analogously to known plasminogen activators in humans for the prevention or treatment of thrombosis and other conditions, where it is desirable to create local fibrinolytic or proteolytic activity through the mechanism of plasminogen activation, such as arteriosclerosis, myocardial or cerebral infarction, venous thrombosis, thromboembolism, postoperative thrombosis , thrombophlebitis and diabetic vasculopathy.

Iznenađujuće smo utvrdili da novi hibridni PA proteini i njihovi mutanti u smislu predloženog izuma združuju korisna svojstva nativnog t-PA i u-PA. Tako su novi hibridni PA proteini i njihovi mutanti fibrinolitički aktivni. Jedinstvena svojstva usmjerena na fibrin, npr. sposobnost aktiviranja plazminogena, ponajprije u prisutnosti fibrina, su očuvana. Nadalje, novi proteini imaju dulju in vivo stabilnost u usporedbi s autentičnim t-PA. We surprisingly found that new hybrid PA proteins and their mutants in terms of the proposed invention combine the useful properties of native t-PA and u-PA. Thus, new hybrid PA proteins and their mutants are fibrinolytically active. The unique fibrin-directed properties, eg the ability to activate plasminogen, especially in the presence of fibrin, are preserved. Furthermore, the new proteins have a longer in vivo stability compared to authentic t-PA.

Izum se također odnosi na farmaceutske sastave koji obuhvaćaju terapeutski učinkovitu količinu aktivnog sastojka (hibridnog PA ili njegovog mutanta), zajedno s organskim ili anorganskim čvrstim ili tekućim farmaceutski prihvatljivim nosiocima, koji su prikladni za parenteralno, tj. intramuskularno, subkutano ili intraperitonealno davanje i koji ne utječu štetno na druge aktivne sastojke. The invention also relates to pharmaceutical compositions comprising a therapeutically effective amount of the active ingredient (hybrid PA or its mutant), together with organic or inorganic solid or liquid pharmaceutically acceptable carriers, which are suitable for parenteral, i.e. intramuscular, subcutaneous or intraperitoneal administration and which they do not adversely affect other active ingredients.

Prikladne su infuzijske otopine, ponajprije vodene otopine ili suspenzije koje se mogu pripremiti prije upotrebe npr. iz liofiliziranih preparata koji sadrže aktivan sastojak sam ili zajedno s nosiocem, kao što je manitol, laktoza, glukoza, albunim itd. Farmaceutski sastavi su sterilizirani i, ako je poželjno, dopunjeni npr. s konzervansima, stabilizatorima, emulgatorima, sredstvima za povećanje topivosti, puferima i/ili solima za regulaciju osmotskog tlaka. Sterilzaciju se može postići sterilnom filtracijom kroz filtre malih pora (promjera 0,45 µm ili manjim), nakon čega se sastav može liofilizirati, ako je poželjno. Mogu se također dodati antibiotici zato da pomognu Pri očuvanju sterilnosti. Infusion solutions are suitable, preferably aqueous solutions or suspensions that can be prepared before use, for example, from lyophilized preparations containing the active ingredient alone or together with a carrier, such as mannitol, lactose, glucose, albumin, etc. Pharmaceutical compositions are sterilized and, if is preferably supplemented, for example, with preservatives, stabilizers, emulsifiers, agents for increasing solubility, buffers and/or salts for regulating osmotic pressure. Sterilization can be achieved by sterile filtration through small pore filters (diameter 0.45 µm or smaller), after which the composition can be lyophilized, if desired. Antibiotics may also be added to help maintain sterility.

Farmaceutski sastavi u smislu predloženog izuma izdaju se u obliku dozirnih jedinica, npr. u ampulama koje. sadrže 1 do 2000 mg farmaceutski prihvatljivog nosioca na jediničnu dozu i otprilike 1 do 200 mg, ponajprije 5 do 100 mg aktivne tvari na dozirnu jedinicu. Pharmaceutical compositions in terms of the proposed invention are dispensed in the form of dosage units, for example in ampoules which. contain 1 to 2000 mg of a pharmaceutically acceptable carrier per unit dose and approximately 1 to 200 mg, preferably 5 to 100 mg of active substance per dosage unit.

Ovisno o vrsti bolesti i starosti, te stanja pacijenta, dnevna doza, ako ju dajemo kod liječenja pacijenta težine približno 70 kg, kreće se, u području od 3 do 100 mg, ponajprije 5 do 50 mg u 24 sata. U slučaju miokardijalnog infarkta, daje se dnevna doza od otprilike 30 do 80 mg između 60 i 120 minuta, ponajprije u tri alikvota unutar otprilike 90 minuta. Cjelokupna količina hibridnog PA ili mutanta hibridnog PA može se također dati i. kao jedna injekcija. Depending on the type of disease and age, and the condition of the patient, the daily dose, if given when treating a patient weighing approximately 70 kg, ranges from 3 to 100 mg, preferably 5 to 50 mg in 24 hours. In the case of myocardial infarction, a daily dose of about 30 to 80 mg is administered between 60 and 120 minutes, preferably in three aliquots within about 90 minutes. The entire amount of hybrid PA or mutant hybrid PA can also be given i. as a single injection.

Izum također daje metode za proizvodnju farmaceutskog sastava karakterističnog time da se biološki aktivni protein u smislu predloženog izuma doda k farmaceutski prihvatljivom nosiocu. The invention also provides methods for the production of a pharmaceutical composition characterized by the fact that the biologically active protein of the proposed invention is added to a pharmaceutically acceptable carrier.

Upotreba novih proteina na profilaktičku i terapeutsku obradu ljudskog tijela također je predmet predloženog izuma. The use of new proteins for prophylactic and therapeutic treatment of the human body is also an object of the proposed invention.

Izum se također odnosi posebno na DNA, hibridne vektore, transformirane vrste domaćina, hibridne PA proteine, mutante hibridnih PA proteina, hibridne stanične linije, monoklonalna antitijela i na postupke za njihovo pripremanje, kao što je opisano u primjerima. The invention also relates in particular to DNA, hybrid vectors, transformed host species, hybrid PA proteins, mutants of hybrid PA proteins, hybrid cell lines, monoclonal antibodies and to methods for their preparation, as described in the examples.

Kratak opis crteža Brief description of the drawing

U slijedećem eksperimentalnom dijelu opisane su razne izvedbe predloženog izuma u svezi s priloženim crtežima, na kojima: In the following experimental part, various embodiments of the proposed invention are described in connection with the attached drawings, in which:

Slika 1 i slika 3 prikazuju nukleotidne sljedove i izvedene sljedove amino kiselina humane t-PA cDNA, odnosno humane u-PA cDNA. Prve amino kiseline zrelih proteina su podcrtane. Figure 1 and Figure 3 show the nucleotide sequences and derived amino acid sequences of human t-PA cDNA and human u-PA cDNA, respectively. The first amino acids of mature proteins are underlined.

Slika 2 i slika 4 su karte restrikcijskih endonukleaza humane t-PA cDNA, odnosno u-PA cDNA. Figure 2 and Figure 4 are restriction endonuclease maps of human t-PA cDNA and u-PA cDNA, respectively.

Slika 5 shematski prikazuje upotrijebljenu tehniku konstruiranja plazmida pEcoO.47ΔScaI. Figure 5 schematically shows the technique used to construct the plasmid pEcoO.47ΔScaI.

Slika 6 shematski prikazuje konstrukciju plazmida ph.tPAΔScaI, kojeg sadrži mutirana t-PA cDNA. Figure 6 schematically shows the construction of ph.tPAΔScaI plasmid, which contains mutated t-PA cDNA.

Slika 7 shematski prikazuje konstrukciju plazmida pUNC.tc, koji sadrži uključak cDNA, koji obuhvaća A-lanac domena u-PA i B-lanac t-PA. Figure 7 schematically shows the construction of plasmid pUNC.tc, which contains a cDNA insert, comprising the A-chain of the u-PA domain and the B-chain of t-PA.

Slika 8 shematski prikazuje konstrukciju plazmida ptNC-UC, koji sadrži cDNA uključak koji obuhvaća A-lanac domena t-PA i B-lanac u-PA. Figure 8 schematically shows the construction of the plasmid ptNC-UC, which contains a cDNA insert encompassing the A-chain of the t-PA domain and the B-chain of u-PA.

Slika 9 shematski prikazuje konstrukciju plazmida pD02. Slika 10 shematski prikazuje konstrukciju plazmida Figure 9 schematically shows the construction of plasmid pD02. Figure 10 schematically shows the construction of the plasmid

Slika 10 koji sadrži t-PA cDNA, kombinirano s fragmentom β-globina. Figure 10 containing t-PA cDNA, combined with a β-globin fragment.

Slika 11 shematski prikazuje konstrukciju plazmida pCGA26, koji sadrži t-PA cDNA pod kontrolom MCMV IE promotora i fragment β-globina. Figure 11 schematically shows the construction of plasmid pCGA26, which contains t-PA cDNA under the control of the MCMV IE promoter and a β-globin fragment.

Slika 12 shematski prikazuje konstrukciju t-PA ekspresijskog plazmida pCGA28 i općeg ekspresijskog plazmida pCGA44; oba plazmida uključuju gen rezisten prema neomicinu. Figure 12 schematically shows the construction of the t-PA expression plasmid pCGA28 and the general expression plasmid pCGA44; both plasmids include a neomycin resistance gene.

Slika 13 shematski prikazuje konstrukciju t-PA ekspresijskog plazmida pCGA42 i općeg ekspresijskog plazmida pCGA44d; oba plazmida uključuju gen rezisten prema higromicinu. Figure 13 schematically shows the construction of the t-PA expression plasmid pCGA42 and the general expression plasmid pCGA44d; both plasmids include a hygromycin resistance gene.

Slika 14 shematski prikazuje konstrukciju t-PA ekspresijskog plazmida pCGA2B, koji uključuje gen rezisten prema neomicinu i DHFR gen. Figure 14 schematically shows the construction of the t-PA expression plasmid pCGA2B, which includes the neomycin resistance gene and the DHFR gene.

Slika 15 shematski prikazuje konstrukciju ekspresijskog plazmida pBRla, koji uključuje mutirani t-PA cDNA uključak plazmida ph.tPAΔScaI. Figure 15 schematically shows the construction of the expression plasmid pBR1a, which includes the mutated t-PA cDNA inclusion plasmid ph.tPAΔScaI.

Slika 16 shematski prikazuje konstrukciju ekspresijskog plazmida pBR2a, koji sadrži hibridni PA cDNA uključak, koji obuhvaća A-lanac domena u-PA i B-lanac t-PA. Figure 16 schematically shows the construction of the expression plasmid pBR2a, which contains a hybrid PA cDNA insert, comprising the A-chain of the u-PA domain and the B-chain of t-PA.

Slika 17 shematski prikazuje konstrukciju ekspresijskog plazmida pBR3a. Figure 17 schematically shows the construction of the expression plasmid pBR3a.

Slika 18 shematski prikazuje konstrukciju ekspresijskog plazmida pBR4a, koji sadrži hibridni PA cDNA uključak, koji obuhvaća domene t-PA A-lanca i B-lanac u-PA. Figure 18 schematically shows the construction of the expression plasmid pBR4a, which contains a hybrid PA cDNA insert, comprising the domains of the t-PA A-chain and the B-chain of u-PA.

Slika. 19 shematski prikazuje konstrukciju ekspresijskog vektora kvasca pJDB207/PH05-I-TPA, koji sadrži PH05 promotor, invertazni signalni slijed i t-PA cDNA. Picture. 19 schematically shows the construction of the yeast expression vector pJDB207/PH05-I-TPA, which contains the PH05 promoter, the invertase signal sequence and the t-PA cDNA.

Slika 20 shematski prikazuje konstrukciju plazmida pCS16. Figure 20 schematically shows the construction of plasmid pCS16.

Slika 21 shematski Prikazuje konstrukciju plazmida pCS16/UPA, koji obuhvaća u-PA cDNA. Figure 21 schematically shows the construction of plasmid pCS16/UPA, which includes the u-PA cDNA.

Slika 22 shematski prikazuje konstrukciju plazrnida pJDB207/PH05-I-UPA. Figure 22 schematically shows the construction of plasmid pJDB207/PH05-I-UPA.

Slike 23-26 shematski prikazuju postupke primijenjene za pretvorbu konstrukcija primarnih hibridnih PA, koji uključuju domene A-lanca i katalitičko područje B-lanca u-PA ili t-PA u krajnju konstrukciju u kojoj je sveza domena u aktivacijskom mjestu i/ili u nativnim veznim mjestima ekson-intron. Figures 23-26 schematically show the procedures used to convert the primary hybrid PA constructs, which include the A-chain domains and the B-chain catalytic region of u-PA or t-PA into the final construct in which the binding domain is in the activation site and/or in the native exon-intron junctions.

Slika 23 prikazuje konstrukciju gena koji kodira hibridni PA koji, obuhvaća domene A-lanca t-PA i B-lanca u-PA. Figure 23 shows the construction of a gene encoding a hybrid PA comprising the domains of the A-chain of t-PA and the B-chain of u-PA.

Slika 24 prikazuje konstrukciju gena koji kodira hibridni PA, koji obuhvaća domene A-lanca u-PA i B-lanca t-PA. Figure 24 shows the construction of a gene encoding a hybrid PA, comprising the domains of the A-chain of u-PA and the B-chain of t-PA.

Slika 25 prikazuje konstrukciju gena koji kodira hibridni PA, koji obuhvaća faktor rasta u-PA, domenu "kringle 2" t-PA 7. B-lanac t-PA. Figure 25 shows the construction of the gene encoding the hybrid PA, which comprises the growth factor u-PA, the "kringle 2" domain of t-PA 7. The B-chain of t-PA.

Slika 26 prikazuje konstrukciju gena koji kodira hibridni PA, koji obuhvaća faktor rasta u-PA, domenu "kringle 2" t-PA i B-lanac u-PA. Figure 26 shows the construction of a gene encoding a hybrid PA, comprising growth factor u-PA, the "kringle 2" domain of t-PA and the B-chain of u-PA.

Slika 27 prikazuje sastavljanje hibridnih PA i mutantnih hibridnih PA, prema primjerima u eksperimentalnom dijelu. Figure 27 shows the assembly of hybrid PAs and mutant hybrid PAs, according to the examples in the experimental part.

Simboli upotrijebljeni na priloženim slikama imaju slijedeća značenja: The symbols used in the attached images have the following meanings:

AMP; AMPR gen rezistentan na ampicilin (β-laktamaza) AMP; AMPR gene resistant to ampicillin (β-lactamase)

TET, TetR gen rezistentan na tetraciklin TET, TetR tetracycline resistance gene

NEO TN5 neomicin fosfotransferaza NEO TN5 neomycin phosphotransferase

TN5PR bakterijski promotor transpozona TN5 TN5PR bacterial transposon promoter TN5

HPH higromicin fosfotransferaza HPH hygromycin phosphotransferase

pBRori začetak podvajanja plazmida pBR322 pBRori initiation of replication of plasmid pBR322

pOIS trujući slijed, pBR322 slijed, koji inhibira SV40 podvajanje pOIS toxic sequence, pBR322 sequence, which inhibits SV40 replication

SV40ori začetak podvajanja SV40, koji se poklapa s ranim i kasnim promotorima SV40ori origin of SV40 replication, which coincides with the early and late promoters

5V40enh, SV40E 72 bp uvećavajući dio SV40 ranog promotora 5V40enh, SV40E 72 bp amplifying part of the SV40 early promoter

HCMVE uvečivač humanog citomegalovirusnog (HCMV) većeg, nativnog ranog gena HCMVE enhancer of the human cytomegalovirus (HCMV) larger, native early gene

MCMVP promotor/mRNA začetno mjesto mišjeg citomegalovirusnog (MCMC) većeg iznenadnog ranog gena MCMVP promoter/mRNA start site of the murine cytomegalovirus (MCMC) major sudden early gene

RSV Rous sarcoma virus LTR (promotor) RSV Rous sarcoma virus LTR (promoter)

CAP položaj 5. m7Gp " cap" eukariotske mRNA CAP position 5. m7Gp "cap" of eukaryotic mRNA

polyA poliadenilacijsko mjesto mRNA polyA polyadenylation site of mRNA

SPLD vezno donorsko mjesto, 5. kraj introna SPLD binding donor site, 5th end of intron

SPLA vezno akceptorsko mjesto, 3. kraj introna SPLA binding acceptor site, 3rd end of intron

BAP bakterijska alkalna fosfataza BAP bacterial alkaline phosphatase

CIP teleća crijevna fosfataza CIP calf intestinal phosphatase

(RamH1/Bg12) Sau3a mjesto koje je rezultat povezivanja BamHI i BglII mjesta (RamH1/Bg12) Sau3a site resulting from binding of BamHI and BglII sites

ScaI(del) mutirano ScaI mjesto ScaI(del) mutated ScaI site

x < y mjesto x restrikcijskog enzima, koje se nalazi u smjeru kazaljke na satu prema y x < y site of x restriction enzyme, which is clockwise to y

p promotor p promoter

inv.SS invertazni signalni slijed inv.SS invertase signal sequence

t prepisni terminator t copy terminator

L linker DNA L DNA linker

DHFR dihidrofolat reduktaza DHFR dihydrofolate reductase

mtPA t-PA Bowes melanoma mtPA t-PA Bowes melanoma

Eksperimentalni dio Experimental part

Primjer 1 Example 1

Uvođenje ScaI mjesta na vezu između struktura "kringle" i enzimske domene u hurnanoj t-PA cDNA Introduction of a ScaI site at the junction between the "kringle" structures and the enzyme domain in the human t-PA cDNA

Načelo, primijenjeno za konstrukciju himeričkih i hibridnih molekula, koje sadrže domene obaju t-PA i u-PA, sastoji se od pripremanja željenih restrikcijskih fragmenata koji izlaze iz pojedinih klona, njihovog ponovnog sastavljanja u otopini, i zatim kloniranja izlaznih konstrukcija. Nakon kloniranja provjerimo strukturu himeričkih molekula restrikcijskim mapiranjem i analizom DNA slijeda. The principle applied to the construction of chimeric and hybrid molecules, which contain domains of both t-PA and u-PA, consists of preparing the desired restriction fragments that come out of individual clones, reassembling them in solution, and then cloning the output constructs. After cloning, we check the structure of chimeric molecules by restriction mapping and DNA sequence analysis.

Da dobijemo hibridne molekule obaju t-PA i u-PA CDNA, na svezama između pojedinih struktura cijepamo "kringle" i enzimatske domene. To postižemo s u-PA tako, da provedemo djelomičnu probavu s restrikcijskom endonukleazom MstI, koja razdvaja nekatalitičku domenu od enzimatske domene i priključenih sljedova na 3’ kraju. Ni jedno prikladno upotrebljivo mjesto nije prisutno u t-PA, i zato uvodimo jedno, kao što je opisano dolje: To obtain hybrid molecules of both t-PA and u-PA cDNA, we cleave "kringles" and enzyme domains at the bonds between individual structures. We achieve this with u-PA by performing a partial digestion with the restriction endonuclease MstI, which separates the non-catalytic domain from the enzymatic domain and attached sequences at the 3' end. No suitable usable site is present in t-PA, and so we introduce one, as described below:

A) konstrukcija plazmida pEcoO.47ΔScaI (vidi sliku 5) A) construction of plasmid pEcoO.47ΔScaI (see Figure 5)

U toj konstrukciji jedino ScaI mjesto (AGTACT) na nukleotidnom položaju 940-945 t-PA cDNA razgradimo (AGTACT → AGTATT) i uvedemo drugo ScaI mjesto na nukleotidnim položajima 963-968 (ACCACC → AGTACT) na 3’ kraju "kringle 2" (usporedi slike 1 i 2). Kodiranje ni jedne od amino kiselina nije pogođeno s tim promjenama. In this construction, the only ScaI site (AGTACT) at nucleotide position 940-945 of t-PA cDNA is degraded (AGTACT → AGTATT) and we introduce another ScaI site at nucleotide positions 963-968 (ACCACC → AGTACT) at the 3' end of "kringle 2" ( compare figures 1 and 2). The coding of none of the amino acids was affected by these changes.

Sve restrikcijske probave vršimo se u sladu s uputama proizvođača (New England Biolabs, Bethesda Research Labs) i nastale probavke analiziramo elektroforezom na 3,5% poliakrilamidnorn gelu. Gel obojimo s homidijevim bromidom (1,0 µg,/ml) i osvijetlimo s ultraljubičastim svjetlom. Izrežemo prikladan pojas i elektroeluiramo u 0,5 x TBE (1 x TBE = 90 mM Tris-borata, pH 8, 3; 2, 5 mM EDTA). Flektroeluirani materijal se aplicira na Elutip-d kolonu (Schleicher and Schuell), vezanu DNA eluira se u jako slanom i precipitira s dodatkom etanola. Talog se ispere s etanolom, osuši i otopi u vodi. All restriction digestions are carried out in accordance with the manufacturer's instructions (New England Biolabs, Bethesda Research Labs) and the resulting digestions are analyzed by electrophoresis on a 3.5% polyacrylamide gel. Stain the gel with homidium bromide (1.0 µg/ml) and illuminate with ultraviolet light. Cut out the appropriate band and electroelute in 0.5 x TBE (1 x TBE = 90 mM Tris-borate, pH 8.3; 2.5 mM EDTA). The flextroeluted material is applied to an Elutip-d column (Schleicher and Schuell), the bound DNA is eluted in high salt and precipitated with the addition of ethanol. The precipitate is washed with ethanol, dried and dissolved in water.

Plazmid pW349F (Europska patentna prijava br. 143,081), koji sadrži humanu t-PA cDNA (sintetizirana iz mRNA, izolirana iz HeLaS3 stanica i klonirana u PstI mjestu plazmida pBR322) probavi se s EcoRI i fragment od 470 baznih parova (bp) se izolira (usporedi sliku 2). Probavom 470 bp EcoRI fragmenta sa ScaI, obzirom na HaeIII, dobiju se 150 bp EcoRI, ScaI i 290 bp EcoRI, HaeIII fragmenti. Dva vlakna 470 bp EcoRI fragmenta odvaje se denaturiranjem DNA u DMSO puferu (30% DMSO, 1 mM EDTA, 0,5% ksilen cijanol, 0,05% bromfenol plavo) i vrši se elektroforezu na 5% poliakrilamidnom gelu u 0,5 x TBE kod 8 volti na centimetar /Maniatis et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, 1982/. Odvojena vlakna dobiju se elektroeluiranjem za kojim slijedi precipitacija s etanolom. 31-merni dezoksioligonukleotid (koji ima uključenih 5 željenih nukleotidnih promjena, usporedi sliku 5) sintetizira se primjenom fosfotriesterske metode. Pedeset pmolova 31-mera označavamo s 32P na 5’ kraju u 20 µl reakcije, koja sadrži 1 x kinazni pufer (10 x kinazni pufer = 0, 5 M TriS-HCl, pH 7, 5; 0, 1 M MgCl2, 50 mM DTT, 1 mM spermidina, 1 mM EDTA), 30 µCi/α32P/ATP (Amersham, ~ 3000 Ci/mmol) i 10 jedinica T, polinukeotid kinaze (Hethesda Research Labs.). Reakciju inkubiramo 30 minuta pri 37°C, zatim slijedi dodatak 1 µl 10 mM ATP, 10 jedinica T4 kinaze i daljnjih 30 minuta inkubacije pri 37°C. Reakciju se završava grijanjem 10 minuta pri 68°C. Karakterističan 31-mer, čiji slijed je onaj ne-prepisanog vlakna, provjeri se "dot blot" analizom /provođena prema Zoller and Smith, Nucl. Acids Res., 10, 6487-6500 (1982); osim što su prethodna hibridizacija, i hibridizacija, provedene pri 50°C, a ispiranje pri 60°C/ da se odredi koje od dva vlakna se s njim hibridizira, tj. koje predstavlja prepisano vlakno. Četiri DNA pomiješaju se zajedno u 20 µl renaturirane reakcije koja se sastoji od 0,3 pmola prepisanog vlakna, 2 pmola svakog od 150 bp EcoRI i 290 bp, EcoRI, HaeIII fragmenta, 25 pmola fosforilirnog 31-mera i 1 x renat. pufera (5 x renat. pufer = 0,5 m NaCl, 32,5 mM Tris-HCl, pH 7,5; 40 mM MgCl2 i 5 mM β-merkaptoetanola). Mješavinu inkubiramo 3 minute pri 100°C, 30 minuta pri 30°C, 30 minuta pri 4°C i zatim 10 minuta na ledu, a zatim se doda 400 jedinica T4 DNA ligaze (New England Biolabs) i reakciju inkubiramo preko noći pri 12,5°C, 470 bp renaturirani fragment dobije se iz 3,5%-tnog poliakrilamidnog gela, kao što je gore opisano, i veže se na pBR322 DNA probavljenu s EcoRI i defosforiliziranu (New England Biolabs) u 50 ml Tris-HCl pH 7,5; 10 mM MgCl2. 10 mM DTT, 1 mM ATP, 1 mM spermidina, 0,1 mg/ml goveđeg seruma albumina i inkubacijom kroz noć pri 12°C. Mješavinu za povezivanje upotrebljava se da se transformira prikladna E.coli vrsta HB101 (Maniatis et al., supra). Kolonije otporne na ampicilin odvajaju se na L-agaru koji, sadrži 50 µg/ml ampicilina, a kolonije, koje sadrže 470 bp fragment identificiraju se hibridizacijom kolonije s upotrijebljenim 31-merom kao ispitanikom /D. Woods, Focus 6, 1-3, (1984)/. Plazmid DNA izolira se iz pojedinačnih hibridizacijskih kolonija u maloj mjeri /Holmes et al., Analyt. Biochem. 114, 193-197 (1981)/, a stvaranje novog ScaI mjesta potvrdi se s kombiniranom EcoRI i ScaI probavom. Da se dobije čistoća koristi se plazmid DNA iz pozitivnih kolonija u drugom krugu transformacije E.coli HB101. Priprema plazmida u velikoj mjeri vrši se iz druge generacije jedne od takovih pozitivnih kolonija /Katz et al., J. Bacteriol. 144, 577-591 (1973); Biochemistry 16, 1677-1683 (1977)/, a anuliranje prvobitnog ScaI mjesta i stvaranje novog ScaI mjesta potvrđuje se analizom DNA slijeda primjenom metode Maxam and Gilbert /Methods Enzym. 65, 499-560 (1980)/. Taj plazmid označavamo pEco0.47ΔScaI. Plasmid pW349F (European Patent Application No. 143,081), containing human t-PA cDNA (synthesized from mRNA, isolated from HeLaS3 cells and cloned into the PstI site of plasmid pBR322) was digested with EcoRI and a fragment of 470 base pairs (bp) was isolated. (compare figure 2). By digesting the 470 bp EcoRI fragment with ScaI, with respect to HaeIII, 150 bp EcoRI, ScaI and 290 bp EcoRI, HaeIII fragments are obtained. The two strands of the 470 bp EcoRI fragment are separated by denaturing the DNA in DMSO buffer (30% DMSO, 1 mM EDTA, 0.5% xylene cyanol, 0.05% bromophenol blue) and electrophoresed on a 5% polyacrylamide gel in 0.5x TBE at 8 volts per centimeter /Maniatis et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, 1982/. Separated fibers are obtained by electroelution followed by precipitation with ethanol. A 31-mer deoxyoligonucleotide (which includes the 5 desired nucleotide changes, compare Figure 5) is synthesized using the phosphotriester method. Fifty pmol of 31-mer are labeled with 32P at the 5' end in 20 µl of the reaction, which contains 1 x kinase buffer (10 x kinase buffer = 0.5 M TriS-HCl, pH 7.5; 0.1 M MgCl2, 50 mM DTT, 1 mM spermidine, 1 mM EDTA), 30 µCi/α32P/ATP (Amersham, ~ 3000 Ci/mmol) and 10 units of T, polynucleotide kinase (Hethesda Research Labs.). The reaction is incubated for 30 minutes at 37°C, followed by the addition of 1 µl of 10 mM ATP, 10 units of T4 kinase and a further 30 minutes of incubation at 37°C. The reaction is terminated by heating for 10 minutes at 68°C. A characteristic 31-mer, the sequence of which is that of the non-transcribed strand, is verified by dot blot analysis /performed according to Zoller and Smith, Nucl. Acids Res., 10, 6487-6500 (1982); except that the pre-hybridization, and the hybridization, were carried out at 50°C, and the wash at 60°C/ to determine which of the two fibers hybridizes with it, i.e., which represents the transcribed fiber. The four DNAs are mixed together in a 20 µl renatured reaction consisting of 0.3 pmol of transcribed strand, 2 pmol each of 150 bp EcoRI and 290 bp, EcoRI, HaeIII fragment, 25 pmol phosphorylated 31-mer, and 1 x renat. buffer (5 x renat. buffer = 0.5 m NaCl, 32.5 mM Tris-HCl, pH 7.5; 40 mM MgCl2 and 5 mM β-mercaptoethanol). The mixture is incubated for 3 minutes at 100°C, 30 minutes at 30°C, 30 minutes at 4°C and then 10 minutes on ice, then 400 units of T4 DNA ligase (New England Biolabs) are added and the reaction is incubated overnight at 12 .5°C, the 470 bp renatured fragment was run from a 3.5% polyacrylamide gel, as described above, and ligated to pBR322 DNA digested with EcoRI and dephosphorylated (New England Biolabs) in 50 ml Tris-HCl pH 7.5; 10 mM MgCl2. 10 mM DTT, 1 mM ATP, 1 mM spermidine, 0.1 mg/ml bovine serum albumin and overnight incubation at 12°C. The ligation mixture is used to transform the appropriate E.coli strain HB101 (Maniatis et al., supra). Colonies resistant to ampicillin are separated on L-agar containing 50 µg/ml ampicillin, and colonies containing a 470 bp fragment are identified by hybridization of the colony with the 31-mer used as test /D. Woods, Focus 6, 1-3, (1984)/. Plasmid DNA is isolated from individual hybridization colonies on a small scale /Holmes et al., Analyt. Biochem. 114, 193-197 (1981)/, and the creation of a new ScaI site was confirmed with combined EcoRI and ScaI digestion. To obtain purity, plasmid DNA from positive colonies in the second round of E.coli HB101 transformation is used. Plasmid preparation is largely done from the second generation of one such positive colony /Katz et al., J. Bacteriol. 144, 577-591 (1973); Biochemistry 16, 1677-1683 (1977)/, and the cancellation of the original ScaI site and the creation of a new ScaI site is confirmed by DNA sequence analysis using the Maxam and Gilbert method /Methods Enzym. 65, 499-560 (1980)/. We call this plasmid pEco0.47ΔScaI.

B) Rekonstrukcija humanog t-PA s mutiranim ScaI mjestom B) Reconstruction of human t-PA with a mutated ScaI site

(vidi sliku 6) (see picture 6)

U toj konstrukciji fragment 470 bp EcoRI, prisutan u dvije vrste humanog t-PA, zamijeni se sa fragmentom 470 bp EcoRI, koji sadrži mutirano ScaI mjesto. Plazmid aW349F, koji sadrži humanu t-PA cDNA (vidi gore) probavi se sa ClaI i nastale ljepljive krajeve učini se tupim dodatkom 50 µm svakog od dCTP, dGTP i 10 jedinica DNA polimeraze I, Klenow fragment (Boehringer, Mannheim). Reakciju se inkubira 30 minuta pri. sobnoj temperaturi, zatim slijedi ekstrakcija s fenolom i eterom i precipitacija s etanolom. Talog se otopi u vodi, probavi s EcoRI i ScaI i 1, 5 kb EcoRI, ScaI i 4, 3 kb ClaI (s tupim krajevima). EcoRI fragment se izolira. Ta dva fragmenta pomiješaju se s fragmentom 470 bp, koji se dobije iz plaznida pEco0.47ΔScaI nakon probave s ECoRI i poveže se kako je opisano gore, kroz noć pri 12°C. Prikladne E.coli HB101 stanice transformiramo s mješavinom za povezivanje i kolonije otporne na tetraciklin odvojimo na L-agaru, koji sadrži 12,5 µg/ml tetraciklina. Kolonije koje sadrže mutirani fragment 470 bp identificiraju se hibridizacijom kolonije upotrebom prethodno opisanog 31-mera kao ispitanika. DNA se pripremi iz manilizata pojedinačnih pozitivno hibridiziranih kolonija i konstrukciju se točno potvrdi tako da se provedu prikladne restrikcijske probave (digests). Jedan takav plazmid sa željenim promjenama nazivamo ph.tPAΔScaI. In this construct, the 470 bp EcoRI fragment, present in two types of human t-PA, is replaced with the 470 bp EcoRI fragment, which contains a mutated ScaI site. Plasmid aW349F, containing human t-PA cDNA (see above) was digested with ClaI and the resulting sticky ends were blunted by the addition of 50 µm each of dCTP, dGTP and 10 units of DNA polymerase I, Klenow fragment (Boehringer, Mannheim). The reaction is incubated for 30 minutes at at room temperature, followed by extraction with phenol and ether and precipitation with ethanol. The pellet was dissolved in water, digested with EcoRI and ScaI and 1.5 kb EcoRI, ScaI and 4.3 kb ClaI (blunt-ended). The EcoRI fragment is isolated. The two fragments were mixed with the 470 bp fragment obtained from the plasmid pEco0.47ΔScaI after digestion with ECoRI and ligated as described above, overnight at 12°C. Appropriate E.coli HB101 cells were transformed with ligation mixture and tetracycline-resistant colonies were separated on L-agar containing 12.5 µg/ml tetracycline. Colonies containing the mutated 470 bp fragment are identified by colony hybridization using the previously described 31-mer as a probe. DNA is prepared from manlysates of individual positively hybridized colonies and the construct is confirmed accurately by performing appropriate restriction digests. One such plasmid with the desired changes is called ph.tPAΔScaI.

Primjer 2 Example 2

Konstrukcija u-PA/t-PA hibridne molekule; plazmid pUNC.tc (vidi sliku 7) Construction of u-PA/t-PA hybrid molecule; plasmid pUNC.tc (see Figure 7)

Ova konstrukcija je hibrid između nekatalitičkog područja u-PA (koja sadrži 5’ nekodno područje, signalni, faktor rasta i slijed "kringle") i katalitičke ili enzimske domene humanog t-PA. This construct is a hybrid between the non-catalytic region of u-PA (containing the 5' non-coding region, signal, growth factor, and "kringle" sequence) and the catalytic or enzymatic domain of human t-PA.

Urokinaznu cDNA pripremi se iz mRNA, dobivene iz humanih Hep3 stanica /cf. T. Maniatis et al., Molecular Cloning (1982), str. 188-246/. 1,3 kb SmaI-BarnHI fragment i 1 kb BamHI-EcoRI fragment u-PA cDNA klonira se u SmaI, EcoRI mjestima pUN121 /B. Nilsson et al., Nucl. Acids Res. 11, 8019-8030 (1983)/, da se dobije plazmid pcUK176. Crtež restrikcijske endonuleaze uključka humanog u-PA cDNA prikazan je na slici 4. Slijed nukleotida i izveden slijed amino kiselina u-PA uključka prikazan je na slici 3. Urokinase cDNA was prepared from mRNA obtained from human Hep3 cells /cf. T. Maniatis et al., Molecular Cloning (1982), p. 188-246/. A 1.3 kb SmaI-BarnHI fragment and a 1 kb BamHI-EcoRI fragment of the PA cDNA were cloned into the SmaI, EcoRI sites of pUN121/B. Nilsson et al., Nucl. Acids Res. 11, 8019-8030 (1983)/, to obtain plasmid pcUK176. A drawing of the restriction endonuclease inclusion of human u-PA cDNA is shown in Figure 4. The nucleotide sequence and deduced amino acid sequence of the u-PA inclusion is shown in Figure 3.

Plazmid pcUK176 probavi se sa XmaI (usporedi sliku 4; XmaI je izoshizomer SmaI) i MstI i izolira se fragment 521 bp. Restrikcijski enzim MstI prepoznaje DNA slijed TGC T GCA (strelice pokazuju mjesta cijepanja) i nakon probave kraj se učini tupim; taj enzim zatim veže u-PA cDNA kod nukleotida 520-525, tj. ravno na zadnjem cisteinskorn ostatku (amino kiselina 131) koji obuhvaća "kringle" /Holmes et al., Biotechnology 3, 923-929 (1985) /, i tako se čisto odvoje slijedovi za kodiranje nekatalitičkog i katalitićkog područja. Plasmid pcUK176 was digested with XmaI (compare Figure 4; XmaI is an isoschizomer of SmaI) and MstI and a 521 bp fragment was isolated. The restriction enzyme MstI recognizes the DNA sequence TGC T GCA (arrows indicate cleavage sites) and after digestion the end becomes blunt; this enzyme then binds the u-PA cDNA at nucleotides 520-525, i.e. right at the last cysteine residue (amino acid 131) that includes "kringle" /Holmes et al., Biotechnology 3, 923-929 (1985) /, and so the coding sequences for the non-catalytic and catalytic regions are clearly separated.

Plazmid ph.tPAΔScaI probavi se sa ScaI i HindIII (HindIII je prisutan u vektoru) i dobije se fragment 1,8 kb. Restrikcijski enzim ScaI prepoznaje DNA slijed ATG T ACT (strelice pokazuju mjesto cijepanja) i također daje tupi kraj nakon probave. ScaI će rezati ph.tPAΔScaI DNA nakon serinskog ostatka 262 /1 amino kiselina nakon zadnjeg cisteina "kringle 2"; Pennica et al., Nature 301, 214-221 (1983)/, zato razdvaja nekatalitičku i katalitičku domenu. Plasmid ph.tPAΔScaI is digested with ScaI and HindIII (HindIII is present in the vector) and a 1.8 kb fragment is obtained. The restriction enzyme ScaI recognizes the DNA sequence ATG T ACT (arrows indicate cleavage site) and also produces a blunt end after digestion. ScaI will cut ph.tPAΔScaI DNA after the serine residue 262 /1 amino acids after the last cysteine of "kringle 2"; Pennica et al., Nature 301, 214-221 (1983)/, therefore separates the non-catalytic and catalytic domains.

Dva fragmenta pomiješamo i vežemo na XmaI, HindIII cijepljenu pUC18 vektorsku DNA. Nakon transformacije E.coli HB101, kolonije koje imaju pravilan uključak, identificiramo hibridizacijom kolonija upotrebom 2,0 kb BgIII fragmenta humanog t-PA (usporedi sliku 2) kao ispitanika, koji je karakterističan po metodi slučajnog predobojenja, /Feinberg et al., Analyt. Biochem. 132, 6-13 (1983)/. DNA slijed na svezi povezivanja u-PA i t-PA fragmenata potvrdimo analizom DNA slijeda. Pravilan klon označavamo pUNC.tc. The two fragments are mixed and ligated to XmaI, HindIII grafted pUC18 vector DNA. After transformation of E.coli HB101, colonies that have a proper inclusion are identified by colony hybridization using the 2.0 kb BgIII fragment of human t-PA (compare Figure 2) as a probe, which is characterized by the method of random prestaining, /Feinberg et al., Analyt . Biochem. 132, 6-13 (1983)/. We confirm the DNA sequence of the link between the u-PA and t-PA fragments by analyzing the DNA sequence. We designate the correct clone as pUNC.tc.

Primjer 3 Example 3

Konstrukcija t-PA/u-PA hibridne molekule: Construction of t-PA/u-PA hybrid molecule:

plazmid pUNC.UC (vidi sliku 8) plasmid pUNC.UC (see Figure 8)

Ova konstrukcija je upravo suprotna pUNC.tc time što je nekatalitičko područje ph.tPAΔScaI (koji sadrži 5’ nekodirajuče područje, vodene, "finger", faktor rasta, "kringle 1" i "kringle 2" domene) fuzionirano s katalitičkom domenom humanog u-PA. Plazmid ph.tPAΔScaI probavi se sa SacI i ScaI (usporedi sliku 8) i izolira se otprilike 1,0 kb fragmenta. Plazmid pcUK176 se najprije probavi s BamHI i zatim se djelomično cijepa s MstI i dobije se fragment s otprilike 800 bp. Slijedi dakle da se BamHI probavak reže s EcoRI i izoliramo otprilike 1,0 kb fragment. Ta tri fragmenta se pomiješaju s pUC19 vektorom probavljenim sa SacI, EcoRI i povežemo. E.coli HB101 transformiramo s mješavinom za povezivanje, a kolonije koje imaju pravilan uključak, identificiramo hibridizacijom kolonije upotrebom istog 20 kb BgIII ispitanika, kako je opisano gore. DNA slijed na svezi t-PA i u-PA DNA potvrdimo analizom DNA slijeda. Jedan pravilan klon nazivamo pt.NC.UC. This construct is the exact opposite of pUNC.tc in that the non-catalytic region of ph.tPAΔScaI (containing the 5' non-coding region, water, "finger", growth factor, "kringle 1" and "kringle 2" domains) is fused to the catalytic domain of the human u -AND. Plasmid ph.tPAΔScaI was digested with SacI and ScaI (compare Figure 8) and an approximately 1.0 kb fragment was isolated. Plasmid pcUK176 is first digested with BamHI and then partially digested with MstI to yield a fragment of approximately 800 bp. It follows that the BamHI digest is cut with EcoRI and an approximately 1.0 kb fragment is isolated. These three fragments are mixed with pUC19 vector digested with SacI, EcoRI and ligated. E.coli HB101 is transformed with ligation mixture, and colonies that have the correct inclusion are identified by colony hybridization using the same 20 kb BgIII probe as described above. We confirm the DNA sequence of the t-PA and u-PA DNA by DNA sequence analysis. We call one proper clone pt.NC.UC.

Primjer 4 Example 4

Konstrukcija ekspresijskog vektora za upotrebu u stanicama sisavca Construction of an expression vector for use in mammalian cells

A) Pretvorba HgiAI mjesta u t-PA cDNA u HindIII mjesto A) Conversion of the HgiAI site in the t-PA cDNA to the HindIII site

To se postiže u pet stupnjeva (slika 9). This is achieved in five stages (Figure 9).

Plazmid pW349F (Europska patentna prijava br. 143,081) djelomično. cijepamo s restrikcijskim enzimom HgiAI inkubacijom 20 µg/ml DNA 1 sat pri 37°C s 12 U/ml enzima u puferu kojeg preporuča proizvođač (Bethesda Research Laboratories), osim što je nadopunjen s 10 µg/ml homidijevog bromida, da zadrži drugo rezanje plazmida. Plazmid DNA u linearnim oblicima položi se zatim na 0,8%-tni agarozni gel u TBE puferu /TBE: 89 mM Tris-borat, pH 8,9, koji sadrži 1 mM EDTA), eluira se elektroforezom u istom puferu, dva puta se ekstrahira s fenolom, dva puta s kloroformom i konačno se precipitira s alkoholom pri -20°C nakon dodatka 0,1 vol. 3 M natrijevog acetata, pH 5,2. Istaloženu DNA otopi se pri 0,2 mg/ml u TE (TE: 10 ml Tris-HCl pH 7,2 s 0,1 mM EDTA). Plasmid pW349F (European Patent Application No. 143,081) in part. cleave with the restriction enzyme HgiAI by incubating 20 µg/ml DNA for 1 hour at 37°C with 12 U/ml enzyme in the buffer recommended by the manufacturer (Bethesda Research Laboratories), except supplemented with 10 µg/ml homidium bromide, to prevent second cutting plasmid. Plasmid DNA in linear forms is then placed on a 0.8% agarose gel in TBE buffer (TBE: 89 mM Tris-borate, pH 8.9, containing 1 mM EDTA), eluted by electrophoresis in the same buffer, twice is extracted with phenol, twice with chloroform and finally precipitated with alcohol at -20°C after addition of 0.1 vol. 3 M sodium acetate, pH 5.2. The precipitated DNA was dissolved at 0.2 mg/ml in TE (TE: 10 ml Tris-HCl pH 7.2 with 0.1 mM EDTA).

63 µl DNA u linearnim oblicima inkubiramo zatim 30 minuta pri 37°C s 15 U T4 DNA polimeraze u ligaznom puferu /33 mM Tris-acetat (pH 7,9), 66 mM kalijev acetat, 10 mM magnezijev acetat, 0,5 mM ditiotreitol i 0,1 mg/ml goveđi serum albumin/; slijedi 10 minuta grijanja pri 60°C da se enzim inaktivira. Cilj te inkubacije je primjena eksonukleolitičke aktivnosti T4 polimeraze za uklanjanje preostalih van stršećih četiriju nukleotida nakon probave s HgiAI, da se dobiju DNA molekule s tupim krajevima. 63 µl of DNA in linear forms is then incubated for 30 minutes at 37°C with 15 U T4 DNA polymerase in ligase buffer /33 mM Tris-acetate (pH 7.9), 66 mM potassium acetate, 10 mM magnesium acetate, 0.5 mM dithiothreitol and 0.1 mg/ml bovine serum albumin/; followed by 10 minutes of heating at 60°C to inactivate the enzyme. The aim of this incubation is to use the exonucleolytic activity of T4 polymerase to remove the remaining four nucleotides after digestion with HgiAI, to obtain DNA molecules with blunt ends.

Zatim, da se povežu HindIII linkeri (CAAGCTTG) s tupim krajem DNA, dodamo 6 µl (300 ng) kinaznih linkera gornjoj otopini sa 4 µl 10 mM ATP i 3 µl 4T DNA ligaze (New England Biolabs, 400 U/µl), slijedi 16-satna inkubacija pri 16°C. Povezivanje je završeno grijanjem mješavine 10 minuta pri 68°C, nakon koje se DNA probavi s HindIII i BglII, tj. 15 µl (135 U) HindIII doda se 1,5 µl 4M NaCl, 0,2 µl i 1M MgCl2 i 11 µl 1 mg/ml goveđeg seruma albumina, inkubira se 1 sat pri 37°C, zatim slijedi dodatak 40 U HglII, zatim još jedan sat inkubacije pri 37°C. Nastali fragment sa 177 baznih parova čistimo na 6%-tnom poliakrilamidnom gelu, tekućem u TBE, eluiramo u TNE (TNE: 10 mM Tris-HCl pH 8, 8, koji sadrži 100 mM NaCl i 1 mM EDTA), apsorbira se na DEAE celulozu (Whatman DE52), eluira s 1M NaCl u TNE, razrijedi sa 4 volumena vode, precipitira pri -20°C nakon dodatka 2,5 volumena etanola i konačno se otopi u 17 µl TE (TE: 10 mM Tris-HCl pH 8,0, koja sadrži 1 mM EDTA). Then, to connect the HindIII linkers (CAAGCTTG) to the blunt end of the DNA, we add 6 µl (300 ng) of kinase linkers to the above solution with 4 µl of 10 mM ATP and 3 µl of 4T DNA ligase (New England Biolabs, 400 U/µl), followed by 16-hour incubation at 16°C. Ligation was completed by heating the mixture for 10 min at 68°C, after which the DNA was digested with HindIII and BglII, i.e. 15 µl (135 U) HindIII was added to 1.5 µl 4M NaCl, 0.2 µl and 1M MgCl2 and 11 µl 1 mg/ml bovine serum albumin, incubated for 1 hour at 37°C, followed by the addition of 40 U of HglII, followed by another hour of incubation at 37°C. The resulting fragment with 177 base pairs is purified on a 6% polyacrylamide gel run in TBE, eluted in TNE (TNE: 10 mM Tris-HCl pH 8.8, containing 100 mM NaCl and 1 mM EDTA), absorbed on DEAE cellulose (Whatman DE52), eluted with 1M NaCl in TNE, diluted with 4 volumes of water, precipitated at -20°C after the addition of 2.5 volumes of ethanol and finally dissolved in 17 µl of TE (TE: 10 mM Tris-HCl pH 8 ,0, containing 1 mM EDTA).

Plazmid pRSVneo je izvedenica plazmida pSV2neo /P.J. Southern and Berg, J. Mol. Appl. Genet. l, 327-341 (1982)/ u kojem je SV40-izveden fragment PvuII-Hind nadomješten s fragmentom PvuII-HindIII, koji sadrži LTR promotor iz virusa Rousovog sarkoma, na isti način, kao što je bio konstruiran pRSVcat i.z pSV2cat /C.M. Gorman et al., Proc. Natl. Acad. Sci. USA 79, 6777-6781 (1982)/. 5 µg tog plazmida reže se u 50 µl volumena s 24 U BgIII u skladu s uputama proizvođača. Nakon 1 sata inkubacije pri 37°C doda se 40 U HindIII i inkubaciju se nastavlja 1,5 sata, a zatim se fragment velik 5,4 kb očisti kao što je gore opisano. Plasmid pRSVneo is a derivative of plasmid pSV2neo /P.J. Southern and Berg, J. Mol. Appl. Genet. 1, 327-341 (1982)/ in which the SV40-derived PvuII-Hind fragment was replaced with the PvuII-HindIII fragment, containing the Rous sarcoma virus LTR promoter, in the same way as pRSVcat i.z pSV2cat /C.M. Gorman et al., Proc. Natl. Acad. Sci. USA 79, 6777-6781 (1982)/. 5 µg of this plasmid is cut in a 50 µl volume with 24 U BgIII according to the manufacturer's instructions. After 1 hour of incubation at 37°C, 40 U of HindIII was added and incubation was continued for 1.5 hours, and then the 5.4 kb fragment was purified as described above.

17 µl očišćenog 177 bp fragmenta veže se 18 sati pri 16°C na 2 µl (20 ng) pSRVneo fragmenta uz upotrebu 0, 25 µl (100 U) T4 ligaze u cjelokupnom volumenu 22 µl ligaznog pufera, zatim se plazmid DNA upotrijebit za transformaciju E.coli sukladno D. Hanahan /J. Mol. Biol. 166, 557-580 (1983)/. Od dobivenih vrsta otpornih na ampicilin odabere se jedna koji sadrži plazmid označen s ptPAL sa 177 bp HindIII-BgIII fragmentom, kao što je vidljivo kod restrikcijske analize. 0,1 µg tog plazmida reže se u 16 µl sa 16 U HgIII, kao što preporuča proizvođač 1,5 sata pri 37°C. Zatim se k toj otopini doda 20 U goveđe crijevne alkalne fosfataze (Boehringer Mannheim) i nastavi inkubaciju još 30 minuta, nakon čega se DNA ekstrahira dva puta s fenolom, dva puta s kloroformom i precipitira nakon dodatka 0,1 volumena 3,0 M natrijevog acetata pH 5,2 i 0,6 volumena izopropanola, otopi se u TE, čisti dalje elektroforezom na agaroznom gelu, kao što je gore opisano, dva puta se ekstrahira s fenolom, dva puta s kloroformom, precipitira pri -20°C nakon dodatka 2, 5 volumena etanola i 0,1 vol. 3M natrijevog acetata pH 5, 2 i konačno otopi u 30 µl TE. 2,1 kb tPA BglII fragment se zatim izreže iz 5 µg pW349F u 25 µl reakcije upotrebom 20 U BrlII 2 sata pri 37°C, očisti se na 0,8%-tnom agaroznom gelu, eluira elektroforezom, kao što je opisano gore, ekstrahira dva puta s fenolom, dva puta s kloroformom, precipitira pri -20°C nakon dodatka 2,5 volumena etanola i 0,1 vol. 3 M natrijevog acetata pH 5,2 i otopi pri koncentraciji 8 ng/µl u TE. 1 µl t-PA fragmenta vežemo zatim u 10 µl reakcije na 7,5 ng BgIII rez vektorske DNA upotrebom 100 U T4 ligaze (Biolabs) 17 sati pri 16°C i zatim se transformira u E.coli. Jedan od izlaznih klonova, označen s pDO2, sadrži t-PA BgIII fragment, uključen na takav način da sadrži plazmid kontinuirano otvoren čitajući okvir za humani t-PA. 17 µl of the purified 177 bp fragment is ligated for 18 hours at 16°C to 2 µl (20 ng) of the pSRVneo fragment using 0.25 µl (100 U) of T4 ligase in a total volume of 22 µl of ligase buffer, then the plasmid DNA is used for transformation E.coli according to D. Hanahan /J. Mole. Biol. 166, 557-580 (1983)/. From the ampicillin-resistant strains obtained, one containing a ptPAL-tagged plasmid with a 177 bp HindIII-BgIII fragment was selected, as evidenced by restriction analysis. 0.1 µg of this plasmid is digested in 16 µl with 16 U HgIII as recommended by the manufacturer for 1.5 hours at 37°C. Then 20 U of bovine intestinal alkaline phosphatase (Boehringer Mannheim) is added to this solution and the incubation is continued for another 30 minutes, after which the DNA is extracted twice with phenol, twice with chloroform and precipitated after the addition of 0.1 volume of 3.0 M sodium of acetate pH 5.2 and 0.6 volume of isopropanol, dissolved in TE, purified further by electrophoresis on agarose gel, as described above, extracted twice with phenol, twice with chloroform, precipitated at -20°C after addn. 2.5 vol ethanol and 0.1 vol 3M sodium acetate pH 5.2 and finally dissolved in 30 µl TE. The 2.1 kb tPA BglII fragment was then excised from 5 µg pW349F in a 25 µl reaction using 20 U BrlII for 2 hours at 37°C, purified on a 0.8% agarose gel, eluted by electrophoresis, as described above, extracted twice with phenol, twice with chloroform, precipitated at -20°C after addition of 2.5 volumes of ethanol and 0.1 vol of 3 M sodium acetate pH 5.2 and dissolved at a concentration of 8 ng/µl in TE. 1 µl of the t-PA fragment is then ligated in a 10 µl reaction to 7.5 ng of BgIII cut vector DNA using 100 U of T4 ligase (Biolabs) for 17 hours at 16°C and then transformed into E.coli. One of the output clones, designated pDO2, contains the t-PA BgIII fragment, incorporated in such a way that the plasmid contains a continuous open reading frame for human t-PA.

B) Kombinacija t-PA cDNA s fragmentom beta-globina B) Combination of t-PA cDNA with beta-globin fragment

Plazmid pDO10 (slika 10) konstruira se povezivanjem triju fragmenata DNA: (i) 2,1 kb fragment, koji započinje s HindIII mjestom i završava s BglII mjestom, te sadrži cjelokupan t-PA kodni slijed izoliran iz agaroznog gela, na kojeg se stavi 10 µg pDO2 DNA djelomično rezane s BglII i potpuno s HindIII. (ii) pUB je plazmid koji sadrži zečji gen beta-globina /A. Van Ooyen et al., Science 206, 337 (1979)/, subkloniran kao BgIII djelomični probavak u BamHI mjestu plazmida pUC9 /J. Vieira and J. Messing, Gene 19, 259-268 (1982); ibid. 19, 269-276 (1982)/. Iz tog plazmida izreže se 1,2 kb BamHI-HindIII fragment koji sadrži drugi intron i poliadenilacijsko mjesto i očistimo ga elektroforezom na agaroznom gelu. (iii) Vektor pDO1 je ugrađen u smjeru suprotnom kazaljkama na satu, iz Hind III mjesta (slika 10) HindIII-AccI fragmenta pBR322, koji uključuje začetak podvajanja, 0,3 kb fragmenta koji sadrži uvečivač humanog citomegalovirusa (HCMV), koji završava u sintetičkom XbaI mjestu i iza njega slijedi druga kopija tog uvečivača, pričvršćenog na homologni promotor, koji se završava na sintetičkom HindIII mjestu. Taj vektor DNA režemo s HindIII i 6,3 kb linearni plazmid očistimo elektroforezom na agaroznom gelu. Plasmid pDO10 (Figure 10) is constructed by connecting three DNA fragments: (i) a 2.1 kb fragment, which starts with the HindIII site and ends with the BglII site, and contains the entire t-PA coding sequence isolated from an agarose gel, on which it is placed 10 µg of pDO2 DNA partially cut with BglII and completely cut with HindIII. (ii) pUB is a plasmid containing the rabbit beta-globin /A gene. Van Ooyen et al., Science 206, 337 (1979)/, subcloned as a BgIII partial digest into the BamHI site of plasmid pUC9 /J. Vieira and J. Messing, Gene 19, 259-268 (1982); ibid. 19, 269-276 (1982)/. A 1.2 kb BamHI-HindIII fragment containing the second intron and a polyadenylation site was cut from that plasmid and purified by electrophoresis on agarose gel. (iii) Vector pDO1 was inserted in a counter-clockwise direction, from the Hind III site (Figure 10) of the HindIII-AccI fragment of pBR322, which includes the origin of replication, a 0.3 kb fragment containing the human cytomegalovirus (HCMV) enhancer, ending in at the synthetic XbaI site and is followed by a second copy of that enhancer, attached to a homologous promoter, ending at the synthetic HindIII site. We cut this DNA vector with HindIII and purified the 6.3 kb linear plasmid by electrophoresis on agarose gel.

C) Umetanje tPA/globin kombinacije u pSP62Pst33 (vidi sliku 11) C) Insertion of tPA/globin combination into pSP62Pst33 (see Figure 11)

pSP62Pst33 (slika 11) je plazmid koji sadrži 2,1 kb PstI fragment DNA citomegalovirusa (MCMV), koji uključuje virusni, neposredni rani (IE) promotor, umetnut u PstI mjesto plazmida pSP62 (Boehringer Mannheirn), kao što je naznačeno na slici. U HindIII mjesto pSP62Pst33 umetnut je HindIII fragment pDl0. Odabran je plazmid pCGA26 u kojem je t-PA kodni slijed umetnut tako da se može prepisati u "smislenoj" orijentaciji od MCMV IE promotora. pSP62Pst33 (Figure 11) is a plasmid containing a 2.1 kb PstI fragment of cytomegalovirus (MCMV) DNA, which includes the viral immediate early (IE) promoter, inserted into the PstI site of plasmid pSP62 (Boehringer Mannheirn), as indicated in the figure. The HindIII fragment of pDl0 was inserted into the HindIII site of pSP62Pst33. Plasmid pCGA26 was chosen in which the t-PA coding sequence was inserted so that it could be transcribed in a "sense" orientation from the MCMV IE promoter.

D) Umetanje MCMV/tPA/globin jedinice u pFASV2911neo (vidi sliku 12) D) Insertion of the MCMV/tPA/globin unit into pFASV2911neo (see Figure 12).

Plazmid pSV2911neo /F. Asselbergs et al., J. Mol. Biol. 189, 401-411 (1986)/ sadrži neomicin (neo) fosfo-transferazni gen iz transpozona TN5 i SV40 ekspresijskoj kazeti (slika 12). Uveden u stanice kulture tkiva sisavaca on podaje otpornost prema neomicinu i kanamicinu. pSV2911neo DNA pripremi se za kloniranje rezanjem s BaMHI obradom s govedom crijevnom alkalnorn fosfatazom, dvjema ekstrakcijama s fenolom, dvjema s kloroformom, precipitacijom s alkoholom i konačno se otopi u TE. Plazmid pCGA26 režemo s restrikcijskim enzimom AccI, koji reže slijed GT/ACAC na položaju 345 u području MCMV uvečivač/promotor /K. Doersch-Haessler et al., Proc. Natl. Acad. Sci. USA 82, 8325-8329 (1985)/ i slijed GT/CGAC (može se rezati također sa SaII) iza globinskog dijela. Preko stršećih ostataka iz dviju baza, koji izlaze nakon rezanja, popuni se s E.coli (velik fragment) DNA polimerazom I, sada se tupe krajeve poveže s BamHI linkerima (CGGATCCG) i njih režemo s BamHI enzimom. 3,8 kb fragment koji nosi MCMV/tPA/globin jedinicu, sada s krajevima BamHI, očistimo preko agaroznog gela i zatim povežemo na pSV2911neo DNA, dobivenu kao što je gore opisano, da dobijemo ekspresijski plazmid pCGA28. Plasmid pSV2911neo /F. Asselbergs et al., J. Mol. Biol. 189, 401-411 (1986)/ contains the neomycin (neo) phospho-transferase gene from the TN5 transposon and the SV40 expression cassette (Figure 12). Introduced into mammalian tissue culture cells, it confers resistance to neomycin and kanamycin. pSV2911neo DNA was prepared for cloning by cutting with BaMHI treatment with bovine intestinal alkaline phosphatase, two phenol extractions, two chloroform extractions, alcohol precipitation and finally dissolving in TE. Plasmid pCGA26 is cut with the restriction enzyme AccI, which cuts the GT/ACAC sequence at position 345 in the MCMV enhancer/promoter /K region. Doersch-Haessler et al., Proc. Natl. Acad. Sci. USA 82, 8325-8329 (1985)/ and the sequence GT/CGAC (cuttable also with SalII) behind the globin portion. Over the protruding residues from the two bases, which come out after cutting, it is filled with E.coli (large fragment) DNA polymerase I, now the blunt ends are connected to BamHI linkers (CGGATCCG) and they are cut with the BamHI enzyme. The 3.8 kb fragment carrying the MCMV/tPA/globin unit, now with BamHI ends, was purified over an agarose gel and then ligated to pSV2911neo DNA, obtained as described above, to obtain the expression plasmid pCGA28.

E) Ekspresijski vektori izvedeni od pCGA28 E) Expression vectors derived from pCGA28

pCGA42 je izvedenica pCGA28, u kojoj je neo kodni slijed (između BgIII mjesta i SmaI mjesta) nadomješten s kodnim slijedom gena otpornog na higromicin. To se postiže (vidi sliku 13) rezanjem plazmida pSV2911neo na njegovom jedinom SmaI mjestu, povezivanjem BglII linkera (CAGATCTG) na DNA, slijedi rezanje s BgIII. Izlazni veliki DNA fragment, .koji se sastoji od vektora minus neo kodni niz, čistimo na agaroznom gelu i povežemo na manji BamHI fragment iz plazmida pLG89 /L. Gritz et al., Gene 25, 179-188 (1983)/, jednako očišćenom na agaroznom gelu, i vodimo ga u. plazmide pCGA25c i pCGA25d, koji sadrže higromicin fosfotranferazni gen u smislenoj prema nesmislenoj orijentaciji. Ako se tranficira u CHO DUKXB1 stanice pod standardnim uvjetima (vidi primjer 16), dade pCGA25C 60 kolonija/µg DNA otpornih na 0,2 µg/ml higromicina B, koncentracija koja ubije CHO stanice, koje sadrže plazmid, koji ne kodira higromicin otpornosti, npr. pCGA28. U pCGA25c se sljedovi koji kodiraju higromicin-B otpornosti nalaze tako da se u E.coli prepisuju od Tn5 promotora (koji u transpozonu Tn5 prepiše gen otporan prema kanamicinu). Tako 2,5 ml kulture Luria broth (LB), koja sadrži 40 mg/1 higromicina-B, inokulirane s 0,05 ml, uzgojene preko noći, tj. zasićene kulture E.coli DH1 bakterije (koja raste pod 50 mg/1 amicilinskom selekcijom) postiže nakon 3 sata izlaganja zraku pri 37°C najmanje deseterostruko veću gustoću bakterija, nego kad se bakterije ispituju s plazmidima, koji ne sadrže higromicinski gen, koji djeluje u E.coli, kao pCGA25d, pCGA2B ili pAT153 /A.J. Twigg et al., Nature 283, 216-218 (1980)/. Funkcionalnost gena otpornog na higromicin-B u obje, u stanicama kulture životinjskog tkiva i u E.coli, jako olakšava upotreba plazmida pCGA2Sc i njegovih izvedenica. Plazmid pCGA42 konstruiramo zatim umetanjem BamHI fragmenta iz pCGA28, koji sadrži MCMV/t-PA/beta-globin kazetu u pCGA25c. On se upotrebljava da prenesemo t-PA izražavajući gen u stanice koje ne možemo transformirati otporne prema geneticinu ili koje su već otporne na geneticin. Također pCGA42 je sposoban za ekspresiju svojeg higromicinskog gena u E.coli, koju dopušta pCGA42, koji sadrži E.coli DHl, da raste do gustoće od najmanje deseterostruko veće nego npr. E.coli koja sadrži pCGA2B, ako se ispita kao što je gore opisano. pCGA42 is a derivative of pCGA28, in which the neo coding sequence (between the BgIII site and the SmaI site) has been replaced with the coding sequence of the hygromycin resistance gene. This is accomplished (see Figure 13) by cutting plasmid pSV2911neo at its single SmaI site, ligating the BglII linker (CAGATCTG) to the DNA, followed by cutting with BgIII. The resulting large DNA fragment, which consists of the vector minus the neo coding sequence, is purified on an agarose gel and connected to a smaller BamHI fragment from the plasmid pLG89 /L. Gritz et al., Gene 25, 179-188 (1983)/, equally purified on an agarose gel, and introduced into plasmids pCGA25c and pCGA25d, which contain the hygromycin phosphotransferase gene in a sense-to-nonsense orientation. If transfected into CHO DUKXB1 cells under standard conditions (see Example 16), pCGA25C yields 60 colonies/µg DNA resistant to 0.2 µg/ml hygromycin B, a concentration that kills CHO cells, which contain a plasmid that does not encode hygromycin resistance. eg pCGA28. In pCGA25c, the sequences coding for hygromycin-B resistance are located so that in E.coli they are transcribed from the Tn5 promoter (which transcribes the kanamycin-resistant gene in the Tn5 transposon). Thus, 2.5 ml of Luria broth (LB) culture, containing 40 mg/1 hygromycin-B, inoculated with 0.05 ml, grown overnight, i.e. saturated culture of E.coli DH1 bacteria (which grows under 50 mg/1 amicillin selection) achieves after 3 hours exposure to air at 37°C at least a tenfold higher density of bacteria than when the bacteria are tested with plasmids, which do not contain the hygromycin gene, which works in E.coli, such as pCGA25d, pCGA2B or pAT153 /A.J. Twigg et al., Nature 283, 216-218 (1980)/. The functionality of the hygromycin-B resistance gene in both animal tissue culture cells and E.coli greatly facilitates the use of the pCGA2Sc plasmid and its derivatives. Plasmid pCGA42 was then constructed by inserting the BamHI fragment from pCGA28, which contains the MCMV/t-PA/beta-globin cassette, into pCGA25c. It is used to deliver t-PA expressing the gene into cells that we cannot transform geneticin-resistant or that are already resistant to geneticin. Also, pCGA42 is capable of expressing its hygromycin gene in E.coli, which allows pCGA42, containing E.coli DH1, to grow to a density at least tenfold higher than, for example, E.coli containing pCGA2B, when assayed as above. described.

Plazmid pCGA2B sadrži dva SacI mjesta, jedno u začetku linkera neposredno iza MCMV promotora, a drugo u t-PA cDNA. Slijed između SacI mjesta izbrisan je najprije rezanjem s restrikcijskim enzimom, čišćenjem fragmenta preko agaroznog gela i cirkularizacijom te linearne DNA upotrebom T4 DNA ligaze, koja tvori plazmid pCGA44 (vidi sliku 12). Svaka cDNA, klonirana u pravilnoj orijentaciji u sada jedinom SacI mjestu pCGA44, učinkovito nadomješta t-PA kodni slijed u pCGA28 i učinkovito je izražena. Plasmid pCGA2B contains two SacI sites, one at the start of the linker immediately after the MCMV promoter, and the other in the t-PA cDNA. The sequence between the SacI sites was deleted first by cutting with a restriction enzyme, purifying the fragment over an agarose gel and circularizing this linear DNA using T4 DNA ligase, which forms the plasmid pCGA44 (see Figure 12). Each cDNA, cloned in the correct orientation into the now single SacI site of pCGA44, efficiently replaces the t-PA coding sequence in pCGA28 and is efficiently expressed.

pCGA42d je izveden iz pCGA42 uništenjem 1,4 kb SacI fragmenta (vidi sliku 13). U sada jedinom ScaI mjestu cDNA možemo umetnuti kao t-PA cDNA i on se izražava na visokim razinama u stanicama kulture tkiva. pCGA42d was derived from pCGA42 by destroying the 1.4 kb SacI fragment (see Figure 13). We can insert the cDNA into the now single ScaI site as t-PA cDNA and it is expressed at high levels in tissue culture cells.

Primjer 5 Example 5

Umetanje cDNA, u-PA, t-PA i hibridnog PA u ekspresijski vektor pCGA2B Insertion of cDNA, u-PA, t-PA and hybrid PA into the expression vector pCGA2B

A) Umetanje t-PA cDNA (vidi sliku 15) A) Insertion of t-PA cDNA (see Figure 15)

U toj konstrukciji umetnemo t-PA cDNA fragment iz plazmida ph.tPAΔScaI, i ta konstrukcija služi kao kontrola za svaku promjenu koja bi se mogla neprimjetno desiti tijekom restrukturiranja ScaI mjesta. 1,4 kb SacI fragment dobije se iz plazmida nakon ph.tPAΔScaI probave. Ekspresijski vektor pCGA28 također cijepamo sa ScaI i 8,2 kb vektorski fragment se izolira i defosforilizira u 100 µl reakcijske smjese koja sadrži 0, 1 mM Tris pH 8, 0, 0, 1% SDS i 0,02 jedinice bakterijske alkalne fosfataze. Nakon inkubacije. 30 minuta pri 60°C reakcijsku smjesu ekstrahiramo dva puta s fenolom i eterom i zatim precipitiramo s etanolom. Talog se otopi u vodi i njegov alikvot se upotrebljava za povezanje na 1,4 kb SacI fragmente iz ph.tPA ScaI. Smjesu za vezanje upotrebljavamo za transformaciju E.coli HB101, i minimizirana DNA, pripremljena iz kolonija otpornih na ampicilin probavi se s prikladnim restrikcijskim, da se utvrdi jeli ScaI uključen u željenoj orijentaciji. Plazmid koji ima željenu orijentaciju nazivamo pBRlA. Plazmid sa ScaI fragmentom suprotne orijentacije nazvan je pBRlB. In this construct we insert the t-PA cDNA fragment from the ph.tPAΔScaI plasmid, and this construct serves as a control for any change that might occur unnoticed during the restructuring of the ScaI site. A 1.4 kb SacI fragment was obtained from the plasmid after ph.tPAΔScaI digestion. The expression vector pCGA28 is also digested with ScaI and the 8.2 kb vector fragment is isolated and dephosphorylated in 100 µl reaction mixture containing 0.1 mM Tris pH 8, 0.0.1% SDS and 0.02 units of bacterial alkaline phosphatase. After incubation. The reaction mixture was extracted twice with phenol and ether for 30 minutes at 60°C and then precipitated with ethanol. The pellet was dissolved in water and an aliquot was used to ligate the 1.4 kb SacI fragment from ph.tPA ScaI. The ligation mixture is used to transform E.coli HB101, and the minimized DNA prepared from ampicillin-resistant colonies is digested with the appropriate restriction enzyme to determine if ScaI is incorporated in the desired orientation. Plasmid that has the desired orientation is called pBR1A. The plasmid with the ScaI fragment in the opposite orientation was named pBR1B.

B) Umetanje hibridne UPAATPAB cDNA (vidi sliku 16) B) Insertion of hybrid UPAATPAB cDNA (see Figure 16)

U toj konstrukciji umećemo hibridni UPAATPAB cDNA fragment iz plazmida pUNC.tc u ekspresijski vektor pCGA28. pUNC.tc DNA se probavi sa SmaI (usporedi sliku 7), 1,24 kb fragment se izolira i poveže na SacI probavljenu, defosforiliziranu 8,2 kb pCGA2B vektorsku DNA. E.coli HB101 stanice tranformiramo s mješavinom za povezivanje i kolonije koje sadrže SacI uključak u željenoj orijentaciji identificiramo tako da napravimo restrikcijske probavke na miniliziranoj DNA. Plazmid s pUNC.tc DNA uključkom u željenoj orijentaciji označen je s pBR2A, a onaj suprotne orijentacije s pBR2B. In this construction, we insert the hybrid UPAATPAB cDNA fragment from the plasmid pUNC.tc into the expression vector pCGA28. The pUNC.tc DNA is digested with SmaI (compare Figure 7), the 1.24 kb fragment is isolated and ligated to the SacI digested, dephosphorylated 8.2 kb pCGA2B vector DNA. E.coli HB101 cells are transformed with the ligation mixture and colonies containing the SacI inclusion in the desired orientation are identified by performing restriction digests on the minilized DNA. The plasmid with the pUNC.tc DNA inclusion in the desired orientation is labeled pBR2A, and the one with the opposite orientation is labeled pBR2B.

C) Umetanje u-PA cDNA tvidi sliku 17 C) Insertion of u-PA cDNA see Figure 17

U toj konstrukciji umećemo humanu u-PA DNA u ekspresijski vektor pCGA28 i zajedno s pBRI taj plazmid služi kao roditeljska plazmidna kontrola i potvrđuje upotrebljivost vektora vrste pCGA28... Plazmid pcUK176 probavi se sa SmaI, AhaIII (usporedi sliku 4), 2,25 kb fragment izoliramo i vežemo na fosforiliran SacI linker. kao što je gore opisano. Nakon SacI probave dobijemo 2,25 kb fragment i vežemo na SacI probavljen defosforiliran 8,2 kb pCGA2B DNA fragment. E.coli HB101 se transformira i kolonije koje čuvaju željeni plazmid identificirarno probavom minilizirane DNA s restrikcijskim enzimima. In this construction, we insert human u-PA DNA into the expression vector pCGA28 and together with pBRI, this plasmid serves as a parental plasmid control and confirms the usability of the pCGA28 type vector... Plasmid pcUK176 is digested with SmaI, AhaIII (compare Figure 4), 2.25 kb fragment is isolated and attached to the phosphorylated SacI linker. as described above. After SacI digestion, we obtain a 2.25 kb fragment and bind to the SacI digested dephosphorylated 8.2 kb pCGA2B DNA fragment. E.coli HB101 is transformed and colonies harboring the desired plasmid are identified by digesting the minified DNA with restriction enzymes.

Plazmid s humanom u-PA DNA pravilne orijentacije označen je s pBR23A, a onaj suprotne orijentacije s pBR3B. The plasmid with human u-PA DNA in the correct orientation is designated pBR23A, and the one with the opposite orientation is designated pBR3B.

D) Umetanje hibridne TPAAUPAB cDNA (vidi sliku 18) D) Insertion of hybrid TPAAUPAB cDNA (see Figure 18)

Umećemo hibridnu TPAAUPAB cDNA iz plazmida ptNC.UC u ekspresijski vektor pCGA28. 2,75 kb SmaI (prisutan u vektoru), AhaIII fragment izoliramo iz ptNC.UC DNA, vežemo na fosforilirani ScaI linker, linker veže 2,75 kb fragment i vezan na SacI probavljen, defosforiliran vektor DNA i željene kolonije identificiramo kao što je gore opisano. Plazmid s ptNC.UC DNA uključkom pravilne orijentacije nazivamo pBR4A. We insert the hybrid TPAAUPAB cDNA from the plasmid ptNC.UC into the expression vector pCGA28. 2.75 kb SmaI (present in vector), AhaIII fragment is isolated from ptNC.UC DNA, linked to phosphorylated ScaI linker, linker binds 2.75 kb fragment and linked to SacI digested, dephosphorylated vector DNA and desired colonies are identified as above described. Plasmid with ptNC.UC DNA inclusion in the correct orientation is called pBR4A.

Primjer 6 Example 6

Konstrukcija ekspresijskog vektora kvasca, koji sadrži promotor pHO5, invertazni signalni slijed i t-PA kodno područje Construction of a yeast expression vector containing the pHO5 promoter, the invertase signal sequence and the t-PA coding region

A) Sinteza oligodezoksiribonukleotida za invertazni signalni slijed: A) Synthesis of oligodeoxyribonucleotides for the invertase signal sequence:

Četiri oligodezoksiribonukleotida: I-l, I-2, I-3, I-4 sintetiziramo s DNA sintetizatorom (model 380B Applied Biosystems). Nakon deblokiranja sintetičke fragmente očistimo na 12%-tnom poliakrilamidnom gelu koji sadrži 8 M ureu. Bez soli, čiste oligodezoksiribonukleotide dobijemo upotrebom Sep. Pak (Waters Associates). Ti fragmenti predstavljaju dvojni heliks, koji kodira invertazni signalni slijed sa često upotrijebljenim kodonima kvasca. Four oligodeoxyribonucleotides: I-1, I-2, I-3, I-4 were synthesized with a DNA synthesizer (model 380B Applied Biosystems). After unblocking, the synthetic fragments are purified on a 12% polyacrylamide gel containing 8 M urea. Salt-free, pure oligodeoxyribonucleotides are obtained using Sep. Puck (Waters Associates). These fragments represent a double helix, which encodes an invertase signal sequence with frequently used yeast codons.

HindIII HindIII

EcoRI,.:MetLeuLeuGlnAlaPheLeuPheLeuLeu EcoRI,.:MetLeuLeuGlnAlaPheLeuPheLeuLeu

I-1. 5'AATTCATGCTTTTGCAAGCTTTCCTTTTCCTTTT 3' I-1. 5'AATTCATGCTTTTGCAAGCTTTCCTTTTCCTTTT 3'

I-2 3'GTACCAAAACGTTCGAAAGGAAAAGGAAAACCGAC 5' I-2 3'GTACCAAAACGTTCGAAAGGAAAAGGAAAACCGAC 5'

AlaGlyPheAlaAlaLysIleSerAla AlaGlyPheAlaAlaLysIleSerAla

I-3 5'GGCTGGTTTTGCAGCCAAAATATCTGCATCTTAGCGTC 3' I-3 5'GGCTGGTTTTGCAGCCAAAATATCTGCATCTTAGCGTC 3'

I-4 3' CAAAACGTCGGTTTTATAGACGTAGAATCGCAGAGCT 5' I-4 3' CAAAACGTCGGTTTTATAGACGTAGAATCGCAGAGCT 5'

Hga I Hga I

XhoI XhoI

B) Subkloniranje invertaznog signalnog slijeda u plazmidu p31 B) Subcloning of the invertase signal sequence in plasmid p31

a) Priprava vektora: a) Preparation of vectors:

1,5 µg p31R/SS-TPA 2 (Europska patentna prijava br. 143,081) probavi se sa 10 U EcoRI (Boehringer) u 50 µl 10 mM Tris-HCl pH 7, 5, 6 mM MgCl2, 100 mM NdCl, 6 mM merkaptoetanola 1 sat pri 37°C. Nakon dodatka 1 µl 2,5 M NaCl doda se 10 U XhoI (Boehringer) i inkubira jedan sat pri 37°C. 4, 2 kb vektor izolirarno na 0,8 % preparativnom agaroznom gelu. Režanj gela prenesemo na cijev Micro Collodor (Sartorius GrnbH), prekrivenu s 200 µl TE i elektroeluiramo (elektroforezom 50 minuta pri 90 mA). Skupimo TE otopinu i precipitiramo u 2,5 volumena apsolutnog etanola nakon dodatka 0,1 volumena 10 x TNE. DNA talog se ispere s 80%-tnim etanolom i osuši u vakuumu. DNA se resuspendira u 6 µl TE (40 pmola/µl). 1.5 µg of p31R/SS-TPA 2 (European Patent Application No. 143,081) was digested with 10 U of EcoRI (Boehringer) in 50 µl of 10 mM Tris-HCl pH 7.5, 6 mM MgCl2, 100 mM NdCl, 6 mM NaCl. mercaptoethanol for 1 hour at 37°C. After the addition of 1 µl of 2.5 M NaCl, 10 U XhoI (Boehringer) was added and incubated for one hour at 37°C. 4.2 kb vector isolated on 0.8% preparative agarose gel. Transfer the gel slice to a Micro Collodor tube (Sartorius GrnbH), covered with 200 µl TE and electroelute (electrophoresis for 50 minutes at 90 mA). Collect the TE solution and precipitate in 2.5 volumes of absolute ethanol after adding 0.1 volumes of 10 x TNE. The DNA precipitate is washed with 80% ethanol and dried in a vacuum. DNA is resuspended in 6 µl TE (40 pmole/µl).

b) Renaturiranje (annealing) oligodezoksiribonukleotida (I-l, I-2, I-3, I-4), kinacija i vezanje s vektorom b) Renaturation (annealing) of oligodeoxyribonucleotides (I-1, I-2, I-3, I-4), kination and binding with the vector

Otopinu koja sadrži 10 pmola svakog od četiri dezoksiribonukleotida u 10 µl 0,5 M Tris-HCl pH 8, inkubiramo 90 minuta pri 95°C na vodenoj kupelji. Vodenu kupelj polako ohladimo kroz 5 sati do 30°C. K toj renaturacijskoj mješavini dodamo 2 µ1 svakog od 0,1 M MgCl2, 0,1 M NaCl, 30 mM DTT, 4 mM ATP i 8 U (1 µl) polinukleotid kinaze (Boehringer). Kinacija se odvija jedan sat pri 37°C. Renaturirane, kinazirane oligodezoksi-ribonukleotide i 60 pmolova p31R/SS-TPAΔ2 rezanog vektora (1,5 µl) povežemo sa 400 U (1 µl) T4 DNA ligaze (Biolabs) 17 sati pri 14°C. Reakciju se zaustavi inkubacijom 10 minuta pri 65°C. 10 µl te vezne mješavine upotrebljavamo za transformiranje E.coli HB101 Ca++ stanica /M. Dagert and S.D. Ehrlich, Gene 56, 23-28 (1979)/. Odaberemo 20 ampR kolonija. DNA pripremimo brzim izolacijskim postupkom (D.S. Holmes and M. Quigley, Anal. Biochem. 114, 193-197 (1981)/. DNA se probavi s EcoRI i XhoI, radiomarkira na EcoRI kraju i analizira na 6%-tnorn poliakrilamidnorn gelu, koji sadrži 8 M ureu, upotrebom radiomarkirnog pBR322 HaeIII reza DNA, kao markera. Vide se pojasevi pravilne veličine za DNA, dobivene iz svih 20 klonova. Jedan klon raste u 100 ml LB medija, koji sadrži 100 µg/ml ampicilina. Plazmid DNA izoliramo i označavamo kao p31RIT-12. A solution containing 10 pmol of each of the four deoxyribonucleotides in 10 µl of 0.5 M Tris-HCl pH 8 was incubated for 90 minutes at 95°C in a water bath. Cool the water bath slowly over 5 hours to 30°C. To this renaturation mixture we add 2 µl each of 0.1 M MgCl2, 0.1 M NaCl, 30 mM DTT, 4 mM ATP and 8 U (1 µl) polynucleotide kinase (Boehringer). Kination takes place for one hour at 37°C. Renatured, kinased oligodeoxy-ribonucleotides and 60 pmol of p31R/SS-TPAΔ2 cut vector (1.5 µl) were connected with 400 U (1 µl) of T4 DNA ligase (Biolabs) for 17 hours at 14°C. The reaction was stopped by incubation for 10 minutes at 65°C. We use 10 µl of this binding mixture to transform E.coli HB101 Ca++ cells /M. Dagert and S.D. Ehrlich, Gene 56, 23-28 (1979)/. We select 20 ampR colonies. DNA is prepared by a rapid isolation procedure (D.S. Holmes and M. Quigley, Anal. Biochem. 114, 193-197 (1981)/. DNA is digested with EcoRI and XhoI, radiolabeled at the EcoRI end and analyzed on a 6%-norm polyacrylamide-norm gel, which contains 8 M urea, using radiolabeled pBR322 HaeIII cut DNA as a marker. Bands of the correct size for DNA obtained from all 20 clones are seen. One clone grows in 100 ml of LB medium, containing 100 µg/ml ampicillin. Plasmid DNA is isolated and we designate as p31RIT-12.

C) Konstrukcija pJDB207/PHO5-I-TPA (vidi sliku 19) C) Construction of pJDB207/PHO5-I-TPA (see Figure 19)

a) Priprava vektora: a) Preparation of vectors:

Tri µg pJDB207/PHO5-TPA18 (Europska patentna prijava br. 143,081) inkubiramo jedan sat pri 37°C s 10 U BamHI u 50 µl 10 mM Tris-HCl pH 7, 5, 6 mM MgCl2, 100 mM NaCl, 6 mM merkaptoetanola. Alikvot pregledamo na 1%-tnom agaroznom gelu u TBE puferu da potvrdimo potpuno probavu. Probavak inkubiramo 10 minuta pri 65°C. Zatim dodamo 0,5 µl 5 M NaCl, zatim 15 U XhoI (Boehringer). To se inkubira jedan sat pri 37°C. 6,8 kb vektor izoliramo na 0,8% preparativnom agaroznom gelu. DNA ekstrahiramo elektroeluiranjem i nakon precipitacije otopimo u TE. Three µg of pJDB207/PHO5-TPA18 (European Patent Application No. 143,081) were incubated for one hour at 37°C with 10 U of BamHI in 50 µl of 10 mM Tris-HCl pH 7.5, 6 mM MgCl2, 100 mM NaCl, 6 mM mercaptoethanol. . We examine the aliquot on a 1% agarose gel in TBE buffer to confirm complete digestion. The digestion is incubated for 10 minutes at 65°C. Then we add 0.5 µl 5 M NaCl, then 15 U XhoI (Boehringer). This is incubated for one hour at 37°C. The 6.8 kb vector was isolated on a 0.8% preparative agarose gel. DNA is extracted by electroelution and after precipitation is dissolved in TE.

b) XhoI probvak p31/PHO5-TPA18: b) XhoI digestion of p31/PHO5-TPA18:

30 ELg p31/PH05-TPA 18 (Europska patentna prijava br. 143,081) inkubirarno jedan sat pri 37°C sa 60 U XhoI (15 U/µl) u 200 µl 10 mM Tris-HCl pH 8, 6 mM MgCl2, 150 mM NaCl, 6 mM merkaptoetanola, ekstrahiramo s jednakim volumenom fenolkloroforma i precipitiramo u etanolu. 30 ELg p31/PH05-TPA 18 (European Patent Application No. 143,081) incubated for one hour at 37°C with 60 U XhoI (15 U/µl) in 200 µl 10 mM Tris-HCl pH 8, 6 mM MgCl2, 150 mM NaCl, 6 mM mercaptoethanol, extracted with an equal volume of phenolchloroform and precipitated in ethanol.

c) Djelomični PstI probavak XHOII reza p31/PHO5-TPA18 c) Partial PstI digestion of the XHOII cut of p31/PHO5-TPA18

Precipitirani .aXhoI rez p31/PHO5-TPA18 DNA resuspendiramo u 250 µl 10 mM Tris-HCl pH 7, 5, 6 mM MgCl2, 50 mM NaCl, 6 mM merkaptoetanola, 2,5 mg homidijevog bromida, inkubiramo 35 minuta pri 37°C sa 22,5 U.PstI i ekstrahiramo s jednakim volumenom fenola i zatim s jednakim volumenom kloroform-izoamilalkohola (50:1). 1,6 kb fragment izoliramo na 1% preparativnom agaroznom gelu. DNA ekstrahiramo elektroeluiranjem i precipitiramo (uključak 1). Resuspend the precipitated .aXhoI cut p31/PHO5-TPA18 DNA in 250 µl 10 mM Tris-HCl pH 7.5, 6 mM MgCl2, 50 mM NaCl, 6 mM mercaptoethanol, 2.5 mg homidium bromide, incubate for 35 minutes at 37°C. with 22.5 U.PstI and extracted with an equal volume of phenol and then with an equal volume of chloroform-isoamyl alcohol (50:1). The 1.6 kb fragment was isolated on a 1% preparative agarose gel. DNA is extracted by electroelution and precipitated (inset 1).

d) SalI-XhoI probavak p31RIT-12: d) SalI-XhoI digestion of p31RIT-12:

Trideset µg p31RIT-12 inkubiramo jedan sat pri 37°C s 60 U SaII (Boehringer 12 U/µl) i 60 U XhoI (15 U/µl) u 200 µl 10 mM Tris-HCl pH 8, 6 mM MgCl2, 150 mM NaCl, 6 mM merkaptoetanola, ekstrahiramo s jednakim volumenom fenol-kloroforma i precipitiramo u etanolu. 869 bp fragment izoliramo na 1,2 % preparativnom agaroznom gelu. DNA ekstrahiramo elektroeluiranjem, odsoljenim preko DE-52, i precipiriramo u etanolu. Thirty µg of p31RIT-12 were incubated for one hour at 37°C with 60 U of SaII (Boehringer 12 U/µl) and 60 U of XhoI (15 U/µl) in 200 µl of 10 mM Tris-HCl pH 8, 6 mM MgCl2, 150 mM NaCl, 6 mM mercaptoethanol, extracted with an equal volume of phenol-chloroform and precipitated in ethanol. The 869 bp fragment was isolated on a 1.2% preparative agarose gel. DNA is extracted by electroelution, desalted with DE-52, and precipitated in ethanol.

e) Hgal probavak Sa1I-XohI reza p31RIT-12 e) Hgal digestion of Sa1I-XohI cut of p31RIT-12

SalI-XhoI rez p31RIT-12 resuspendiramo u 100 µl 6 mM Tris-HCl pH 7,5, 10 mM MgCl2, 50 mM NaCl, 1 mM ditiotrietola, 10 mg goveđeg serum albumina i inkubiramo jedan sat pri 37°C s 6 U HgaI (Biolabs, 0, 5 U/µl). 600 bp fragment izoliramo na 1,2 % agaroznom gelu. DNA ekstrahiramo elektroeluiranjem i precipiriramo u etanolu. Resuspend the SalI-XhoI cut of p31RIT-12 in 100 µl 6 mM Tris-HCl pH 7.5, 10 mM MgCl2, 50 mM NaCl, 1 mM dithiotrietol, 10 mg bovine serum albumin and incubate for one hour at 37°C with 6 U of HgaI. (Biolabs, 0.5 U/µl). The 600 bp fragment was isolated on a 1.2% agarose gel. DNA is extracted by electroelution and precipitated in ethanol.

f) Renaturiranje veznih oligonukleotida f) Renaturation of binding oligonucleotides

90 pmola dviju oligodezoksiribonukleotida koji imaju slijed 90 pmoles of two oligodeoxyribonucleotides having the sequence

HgaI PstI HgaI PstI

5' CTGCATCTTACCAAGTGATCTGCA 3' 5' CTGCATCTTACCAAGTGATCTGCA 3'

3' AGAATGGTTCACTAG 5' 3' AGAATGGTTCACTAG 5'

suspendira se u 10 µl 0,5 mM Tris-HCl pH 8 u silikoniziranoj Eppendorfovoj epruveti. Otopinu se inkubira 5 minuta pri 95°C i zatim polako kroz noć ohladi na sobnu temperaturu. it is suspended in 10 µl of 0.5 mM Tris-HCl pH 8 in a siliconized Eppendorf tube. The solution is incubated for 5 minutes at 95°C and then slowly cooled to room temperature overnight.

g) Kincija linkera g) Linker kinetics

Gornjoj otopini dodamo 2 µl 0,1 M KCl, 2 µl 0,1 M MgCl2, 3 µl 30 mM DTT, 1 µl 200 mM ATP, 8 U polinukleotida (8 U/µl). To se inkubira jedan sat pri 37°C. Add 2 µl of 0.1 M KCl, 2 µl of 0.1 M MgCl2, 3 µl of 30 mM DTT, 1 µl of 200 mM ATP, 8 U of polynucleotide (8 U/µl) to the above solution. This is incubated for one hour at 37°C.

h) Vezanje HgaI fragmenta iz p31RIT-12 s kinaziranim, h) Binding of HgaI fragment from p31RIT-12 with kinased,

Otopinu kinaziranog linkera prenesemo u epruvetu koja sadrži suhi HgaI fragment i dodamo 400 U T4 DNA ligaze. Otopinu inkubiramo 90 minuta pri sobnoj temperaturi (21 do 22°C). razrijedimo na 100 µl s TE i ekstrahiramo s jednakim volumenom fenol/kloroforma. Fragment precipitiramo dodatkom 0,6 volumena izopropanola i 0,1 volumena 3 M natrijevog acetata k otopini pri sobnoj temperaturi. Transfer the kinased linker solution to a test tube containing the dry HgaI fragment and add 400 U of T4 DNA ligase. The solution is incubated for 90 minutes at room temperature (21 to 22°C). dilute to 100 µl with TE and extract with an equal volume of phenol/chloroform. The fragment is precipitated by adding 0.6 volumes of isopropanol and 0.1 volumes of 3 M sodium acetate to the solution at room temperature.

i) BamHI-PstI probavak gornjega i) BamHI-PstI digestion of the above

Gornja suha DNA probavlja se u 10 U BamHI i 10 U PstI u 20 µl 10 mM Tris-HCl pH 7, 5, 100 mM MgCl2, 6 mM merkaptoetanola jedan sat pri 37°C. Nakon razrjeđenja na 100 µl otopinu se ekstrahira s jednakim volumenom fenol/kloroforma i vodeni sloj se precipitira u izopropanolu (uključak 2). The above dried DNA was digested with 10 U BamHI and 10 U PstI in 20 µl 10 mM Tris-HCl pH 7.5, 100 mM MgCl 2 , 6 mM mercaptoethanol for one hour at 37°C. After dilution to 100 µl, the solution is extracted with an equal volume of phenol/chloroform and the aqueous layer is precipitated in isopropanol (inset 2).

j) Povezivanje triju fragmenata j) Connection of three fragments

100 fmolova pJDB207/PHO5-TPA18 BamHI-XhoI reza vektorskog fragmenta, 200 fmolova svakog od druga dva umetnuta fragmenta (1 i 2) vežemo u 10 µl 50 mM Tris-HCl pH 7, 5, 10 mM MgCl2, 10 mM DTT, 2 mM ATP, 0,5 µg želatine sa 400 U T4 DNA ligaze 16 sati pri 15°C. Reakciju se zaustavi inkubiranjem 10 minuta pri 65°C. 5 µl te vezne mješavine upotrebljava se za transformiranje stanica E.coli HB101 CA++. 10 ampR kolonija pobere se i DNA se pripremi po brzom postupku izolacije. Kod analize s EcoRI, PstI i BamHI-HindIII vidimo fragmente pravilne veličine. Jedan klon raste u 100 ml LB medija, koji sadrži 100 µg/ml ampicilina. Plazmid DNA izoliramo i imenujemo kao pJDB 207/PHO5-I-TPA. 100 fmol of pJDB207/PHO5-TPA18 BamHI-XhoI cut vector fragment, 200 fmol of each of the other two inserted fragments (1 and 2) are ligated in 10 µl of 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 10 mM DTT, 2 mM ATP, 0.5 µg gelatin with 400 U T4 DNA ligase for 16 hours at 15°C. The reaction was stopped by incubating for 10 minutes at 65°C. 5 µl of this binding mixture is used to transform E.coli HB101 CA++ cells. 10 ampR colonies are picked and DNA is prepared by the rapid isolation procedure. When analyzed with EcoRI, PstI and BamHI-HindIII, we see fragments of the correct size. One clone grows in 100 ml of LB medium, containing 100 µg/ml ampicillin. Plasmid DNA was isolated and named as pJDB 207/PHO5-I-TPA.

Primjer 7 Example 7

Konstrukcija plazmida pC516/UPA koji obuhvaća kodno područje u-PA Construction of plasmid pC516/UPA encompassing the coding region of u-PA

A) Konstrukcija plazmida pCS16 (vidi sliku 20) A) Construction of plasmid pCS16 (see Figure 20)

1,5 kb PstI-BamHI fragmet plazmida pUN121 /B. Nilsson et al., Nucl. Acids Res. 11, 8019-8030 (1983)/ koji obuhvaća cI gen faga lambda i dio gena otpornog na tetraciklin kloniramo u pUC18 /J. Norrander et al., Gene 26, 101-106 (1983)/, režemo sa PstI i BamHI. Dobiveni klon, se probavi s PstI. Krajeve koji vise preko 3’ uklonimo u reakciji s T4 DNA polimerazom i XhoI linkere vežemo na tupe krajeve. Nakon probave sa XhoI molekulu povezivanjem opet promijenimo u kružni oblik. Alikvot vezne mješavine upotrijebi se za tranformaciju Ca++ obrađene E.coli HB101 stanice. Analiziramo DNA pojedinačnih, tranformiranih kolonija otpornih na ampicilin. Odabiremo jedan od više klonova i imenujemo kao pCS16. 1.5 kb PstI-BamHI fragment of plasmid pUN121 /B. Nilsson et al., Nucl. Acids Res. 11, 8019-8030 (1983)/ which includes the cI gene of phage lambda and part of the tetracycline resistance gene was cloned into pUC18 /J. Norrander et al., Gene 26, 101-106 (1983)/, cut with PstI and BamHI. The resulting clone is digested with PstI. The ends that hang over 3' are removed in the reaction with T4 DNA polymerase and XhoI linkers are attached to the blunt ends. After digestion with XhoI, we change the molecule back into a circular shape by linking. An aliquot of the binding mixture was used to transform Ca++-treated E.coli HB101 cells. We analyze the DNA of individual, transformed colonies resistant to ampicillin. We select one of several clones and name it as pCS16.

B) Konstrukcija plazmida pCS16/UPA (vidi sliku 21) B) Construction of plasmid pCS16/UPA (see Figure 21)

Urokinaznu cDNA, koja se nalazi u plazmidu pcUK176 (vidi primjer 2), subkloniramo u plazmidu pCS16. Subklonirana cDNA doseže od mjesta SmaI u području 5 neprobavljenom području (slika 4) do mjesta PvuII kod položaja nukleotida 1439-1444 u 3 neprobavljenom području (brojčane oznake u skladu sa slikom 3). Urokinase cDNA, which is in plasmid pcUK176 (see example 2), is subcloned in plasmid pCS16. The subcloned cDNA extends from the SmaI site in region 5 of the undigested region (Fig. 4) to the PvuII site at nucleotide position 1439-1444 in the 3 undigested region (numbering according to Fig. 3).

15 µg plazmida pcUK176 se probavi s PvuII. 379 bp PvuII fragment se izolira od drugih fragmenata na 1,5 % agaroznom gelu u Tris-boratnom EDTA puferu pH 8,3. DNA elektroeluiramo, čistimo s DES2 (Whatman) kromatografijom ionske izmjene i precipitiramo s etanolom. 1,2 µg jednovlaknastih XhoI linkera (5’-CCTCGAGG-3’) fosforiliramo na 5’ krajevima, grijemo 10 minuta pri 75°C, tijekom hlađenja na sobnu temperaturu sami se renaturiraju i pohranimo pri -20°C. 0,9 µg kinaznih, dvostruko vlaknastih XhoI linkera vežemo pri 80-strukom molarnom suvišku na tupe krajeve 379 bp PvuII fragmenta pcUK176 (vidi gore) u 20 µl 60 Tris-HCl pH 7, 5, 10 mM MgCl2, 5 mM DTT, 3, 5 mM ATP i 400 jedinica T4 DNA ligaze (Biolabs) 16 sati pri 15°C. Mješavinu grije 10 minuta pri 85°C. Suvišak veznih molekula ukloni se precipitacijom s 0,54 volumena izopropanola u prisutnosti 10 mM EDTA i 300 mM natrijevog acetata pH 6,0, 30 minuta pri sobnoj temperaturi. DNA se probavi sa XhoI i BamHI. 121 bp BamHI-XhoI fragment izoliramo na 1,5% agaroznom gelu u Tris-borat-EDTA puferu pH 8,3. 6 µg plazmida pcUK176 se probavi sa SmaI i BamHI. Izoliramo 1,3 kb SmaI-BamHI fragment koji obuhvaća većinu u-PA kodnog slijeda. 6 µg plazmida pCS16 se probavi sa SmaI i XhoI. Izoliramo 2,7 kb vektorski fragment. DNA fragmente elektroeluiramo iz gela i precipitiramo s etanolom. 0,2 pmolova 1,3 kb SmaI-BamHI fragmenta, 0,2 pmolova 121 bp BamHI-XhoI fragmenta (oba fragmena zajedno obuhvaćaju cjelokupni u-PA kodni slijed) i 0, 1 pmol 2, 7 kb vektorskog fragmenta povežemo u 10 µl 60 mM Tris-HCl pH 7,5, 10 mM MgCl2, 5 mM DTT, 3,5 mM ATP i 400 jedinica T4 DNA ligaze pri 15°C. Jedno i 3 µl-ske alikvote vezne mješavine dodamo k 100 µl Ca++ obrađenih E.coli HB101 stanica. Transformiranje se odvija kao što je opisano /A. Hinnen et al., Proc.Natl. Acad. Sci. USA 75, 1929 (1978)/. 12 kolonija otpornih na ampicilin raste u LB mediju koji sadrži 100 ml/1 ampicilina. DNA izoliramo prema Holmes et al., Anal. Biochem. 114, 193 (1981) i analiziramo nakon EcoRI, PvuII i Xhol restrikcijske probave. Jedan klon s očekivanim restrikcijskirn fragmentima zovemo pCS16/UPA. 15 µg of pcUK176 plasmid was digested with PvuII. The 379 bp PvuII fragment is isolated from other fragments on a 1.5% agarose gel in Tris-borate EDTA buffer pH 8.3. DNA is electroeluted, purified with DES2 (Whatman) ion exchange chromatography and precipitated with ethanol. 1.2 µg of single-stranded XhoI linkers (5'-CCTCGAGG-3') are phosphorylated at the 5' ends, heated for 10 minutes at 75°C, during cooling to room temperature they renature themselves and stored at -20°C. 0.9 µg of kinase, double-stranded XhoI linkers were ligated at 80-fold molar excess to the blunt ends of the 379 bp PvuII fragment of pcUK176 (see above) in 20 µl of 60 Tris-HCl pH 7.5, 10 mM MgCl2, 5 mM DTT, 3 , 5 mM ATP and 400 units of T4 DNA ligase (Biolabs) for 16 hours at 15°C. He heats the mixture for 10 minutes at 85°C. Excess binding molecules are removed by precipitation with 0.54 volumes of isopropanol in the presence of 10 mM EDTA and 300 mM sodium acetate pH 6.0 for 30 minutes at room temperature. The DNA was digested with XhoI and BamHI. The 121 bp BamHI-XhoI fragment was isolated on a 1.5% agarose gel in Tris-borate-EDTA buffer pH 8.3. 6 µg of pcUK176 plasmid was digested with SmaI and BamHI. We isolated a 1.3 kb SmaI-BamHI fragment encompassing most of the u-PA coding sequence. 6 µg of plasmid pCS16 was digested with SmaI and XhoI. We isolate a 2.7 kb vector fragment. DNA fragments are electroeluted from the gel and precipitated with ethanol. 0.2 pmol of the 1.3 kb SmaI-BamHI fragment, 0.2 pmol of the 121 bp BamHI-XhoI fragment (both fragments together comprise the entire u-PA coding sequence) and 0.1 pmol of the 2.7 kb vector fragment are combined in 10 µl 60 mM Tris-HCl pH 7.5, 10 mM MgCl2, 5 mM DTT, 3.5 mM ATP and 400 units of T4 DNA ligase at 15°C. Add one and 3 µl aliquots of the binding mixture to 100 µl of Ca++ treated E.coli HB101 cells. The transformation takes place as described /A. Hinnen et al., Proc. Natl. Acad. Sci. USA 75, 1929 (1978)/. 12 colonies resistant to ampicillin grow in LB medium containing 100 ml/1 ampicillin. DNA is isolated according to Holmes et al., Anal. Biochem. 114, 193 (1981) and analyzed after EcoRI, PvuII and XhoI restriction digestion. One clone with the expected restriction fragments is called pCS16/UPA.

Primjer 8 Example 8

Konstrukcija plazmida pJDB207/PHO5-I-UPA (slika 22) Construction of plasmid pJDB207/PHO5-I-UPA (Figure 22)

pJDB2O7/PHO5-I-UPA sadrži PHO5 promotor, invertazni signalni slijed, kodni slijed zrele urokinaze i PHO5 prepisni terminator u nizu, raspoređene jednog za drugim, klonirano u pJD8207 ekspresijskom vektoru kvasca. pJDB2O7/PHO5-I-UPA contains the PHO5 promoter, the invertase signal sequence, the mature urokinase coding sequence, and the PHO5 transcription terminator in sequence, cloned into the pJD8207 yeast expression vector.

20 µg plazmida pCS16/UPA probavi se do kraja sa 40 jedinica EcoRI. Nakon fenolne ekstrakcije i etanolne precipitacije sa DNA probavljenu s EcoRI režemo dalje s TaqI pri 65°C. Dobivene fragmente odvajamo na preparativnom 1,2% agaroznom gelu. 462 bp TaqI-EcoRI fragment izoliramo elektroeluiranjem iz gela i precipitiramo s etanolom. 20 µg of plasmid pCS16/UPA was digested to completion with 40 units of EcoRI. After phenol extraction and ethanol precipitation with DNA digested with EcoRI, cut further with TaqI at 65°C. The obtained fragments are separated on a preparative 1.2% agarose gel. The 462 bp TaqI-EcoRI fragment was isolated by electroelution from the gel and precipitated with ethanol.

Oligodezoksiribonukleotidni linker formule Oligodeoxyribonucleotide linker of the formula

(I) 5'-CTGCAAGCAATGAACTTCATCAAGTTCCAT-3' (I) 5'-CTGCAAGCAATGAACTTCATCAAGTTCCAT-3'

(II) 3'-TCGTTACTTGAAGTAGTTCAAGGTAGC-5' (II) 3'-TCGTTACTTGAAGTAGTTCAAGGTAGC-5'

vežemo na TaqI mjesto fragmenta DNA. Linker obnavlja 5’ kraj kodnog slijeda zrelog u-PA (nukleotidi 130-154, slika 3) i uvodi fuziju u okviru s invertaznim signalnim slijedom. 5’-CTGCA slijed linkera popunjava odgovarajući 3 izgubljeni dio invertaznog signalnog slijeda, dobivenog cijepanjem s HgaI. bind to the TaqI site of the DNA fragment. The linker restores the 5' end of the mature u-PA coding sequence (nucleotides 130-154, Figure 3) and introduces an in-frame fusion with the invertase signal sequence. The 5'-CTGCA linker sequence fills in the corresponding 3 missing part of the invertase signal sequence, obtained by cleavage with HgaI.

300 pmolova svakog od oligodezoksinukleotida I i II fosforiliramo i renaturiramo. 5,25 µg (600 pmolova) fosfolirane dvostruko-vlaknaste vezne DNA vežemo na 1,7 µg (5,6 pmolova) 462 bp TaqI-EcoRI fragmenta (vidi gore) u 175 µl 60 mM TriS-HCl pH 7,5, 10 mM MgCl2, 1 mM ATP, 5 mM DTT i 800 jedinica T4 DNA ligaze 16 sati pri 15°C. T4 DNA ligazu inaktiviramo 10 minuta pri 85°C. Suvišak linkera ukloni se precipitacijom u prisutnosti 10 mM EDTA 300 mM natrijevog acetata pH 6,0 i 0,54 volumena izopropanola. DNA se probavi s PstI. Izolira se jedini 312 bp fragmenti koji sadrži linker, pričvršćen na DNA slijedu, koji kodira u-PA do nukleotida 436 (PstI mjesto, vidi sliku 3). DNA fragment očistimo elektroeluiranjem i precipitacijom s metanolom. 300 pmoles of each of oligodeoxynucleotides I and II are phosphorylated and renatured. We bind 5.25 µg (600 pmol) of phosphorylated double-stranded DNA to 1.7 µg (5.6 pmol) of the 462 bp TaqI-EcoRI fragment (see above) in 175 µl of 60 mM TriS-HCl pH 7.5, 10 mM MgCl2, 1 mM ATP, 5 mM DTT and 800 units of T4 DNA ligase for 16 hours at 15°C. T4 DNA ligase is inactivated for 10 minutes at 85°C. Excess linker was removed by precipitation in the presence of 10 mM EDTA, 300 mM sodium acetate pH 6.0, and 0.54 volumes of isopropanol. DNA is digested with PstI. The only 312 bp fragment containing a linker attached to the DNA sequence encoding u-PA up to nucleotide 436 (PstI site, see Figure 3) was isolated. The DNA fragment is purified by electroelution and precipitation with methanol.

Plazmid pCS16/UPA probavi se sa XhoI i PstI. 1007 bp PstI-XhoI fragment izoliramo i očistimo. Taj fragment sadrži većinu kodnog slijeda za urokinazu. Plasmid pCS16/UPA was digested with XhoI and PstI. The 1007 bp PstI-XhoI fragment was isolated and purified. This fragment contains most of the coding sequence for urokinase.

Plazmid p31RIT-12 (vidi primjer 6B) probavi se sa Sa1I i XhoI. 882 bp Sa1I-XhoI fragment izoliramo iz gela elektroeluiranjem i etanolnom precipitacijom. Fragment se nadalje probavi s BamHI i HgaI. Izoliza se 591 bp BamHI-Ggai fragment, koji sadrže PHO5 promotorsko područje i invertazni signalni slijed. Plasmid p31RIT-12 (see Example 6B) was digested with SalI and XhoI. The 882 bp Sa1I-XhoI fragment was isolated from the gel by electroelution and ethanol precipitation. The fragment was further digested with BamHI and HgaI. A 591 bp BamHI-Ggai fragment containing the PHO5 promoter region and the invertase signal sequence was isolated.

Plazmid pJDB207/PHO5-TPA 18 (vidi europsku patentnu prijavu br. 143,081) probavi se s BamHI i XhoI. 6,8 kb vektorski fragment izoliramo na preparativnom 0,6 % agaroznom gelu u Tris-acetatnom puferu, pH 8,2. DNA elektroeluiramo i precipitiramo s etanolom. Plasmid pJDB207/PHO5-TPA 18 (see European Patent Application No. 143,081) was digested with BamHI and XhoI. The 6.8 kb vector fragment was isolated on a preparative 0.6% agarose gel in Tris-acetate buffer, pH 8.2. DNA is electroeluted and precipitated with ethanol.

Sve DNA fragmente resuspendiramo u vodi pri koncentraciji 0,1 pmol/µl. 0,2 pmola 591 bp BamHI-HgaI fragmenta, 0,2 pmola 312 bp HgaI-PstI fragmenta, 0,2 pmola 1007 bp PstI-XhoI fragmenta i 0, 1 pmola 6, 8 kb BamHI-XhoI vektorskog fragmenta vežemo 15 sati pri 15°C u 10 µl 50 mM Tris-HCl pH 7, 5, 10 mM MgCl2, 5 mM DTT, 1mM ATP i 400 jedinica .T4 DNA ligaze. Jednu µl vezne mješavine upotrebljavamo za transformiranje E.coli HB101 Ca++ stanica. 12 ampR kolonija pokupimo i uzgajamo u LB mediju, koji sadrži 100 mg/1 ampicilina. DNA pripremimo brzim postupkom izolacije /D.S. Holmes et al., Anal. Biochem. 114, 193 (1981). Na restrikcijskim probavcima plazmida DNA s HindII i EcoRI vidimo očekivane restrikcijske fragmente. Odabiremo plazmid DNA pojedinačnog klona i imenujemo ga kao pJDB207/PHO5-I-UPA. All DNA fragments are resuspended in water at a concentration of 0.1 pmol/µl. 0.2 pmole of 591 bp BamHI-HgaI fragment, 0.2 pmole of 312 bp HgaI-PstI fragment, 0.2 pmole of 1007 bp PstI-XhoI fragment and 0.1 pmole of 6.8 kb BamHI-XhoI vector fragment are bound for 15 hours at 15°C in 10 µl 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 5 mM DTT, 1 mM ATP and 400 units of T4 DNA ligase. One µl of the binding mixture is used to transform E.coli HB101 Ca++ cells. We pick up 12 ampR colonies and grow them in LB medium, which contains 100 mg/1 ampicillin. DNA is prepared by a rapid isolation procedure / D.S. Holmes et al., Anal. Biochem. 114, 193 (1981). On restriction digests of plasmid DNA with HindII and EcoRI, we see the expected restriction fragments. We select the plasmid DNA of a single clone and name it pJDB207/PHO5-I-UPA.

Primjer 9 Example 9

t-PA/u-PA hibridni plazminogeni aktivator s t-PA domenama A-lanca i u-PA B-lanca (primarna DNA konstrukcija) t-PA/u-PA hybrid plasminogen activator with t-PA A-chain and u-PA B-chain domains (primary DNA construct)

Drugi pristup konstrukciji u okviru fuzije DNA slijedova koji kodiraju A-lanac t-PA i B-lanac u-PA u prethodno određenom položaju, sastoji se od dva stupnja: Prvo, povežemo odgovarajuće restrikcijske fragmente s kodnim sljedovima. DNA pripremimo u E.coli i subkloniramo u M13 da dobijemo jednovlaknate šablone (template). U drugom stupnju suvišak nukleotidnih sljedova uklonimo mutagenezom in vitro. Točna, uokvirena sveza između t-PA A-lanca i u-PA B-lanca je na aktivacijskom mjestu. Mutiranu DNA subkloniramo u prikladnom ekspresijskom vektoru za kvasac i stanične linije sisavaca. Another approach to the construction within the framework of the fusion of DNA sequences that encode the A-chain of t-PA and the B-chain of u-PA in a previously determined position, consists of two steps: First, we connect the appropriate restriction fragments to the coding sequences. DNA is prepared in E.coli and subcloned in M13 to obtain single-stranded templates. In the second step, we remove excess nucleotide sequences by mutagenesis in vitro. The exact, framed bond between the t-PA A-chain and the u-PA B-chain is at the activation site. The mutated DNA is subcloned in a suitable expression vector for yeast and mammalian cell lines.

a) Izolacija DNA fragmenta koji kodira t-PA A-lanca: a) Isolation of the DNA fragment encoding the t-PA A-chain:

10 µg plazmida pJDB207/PHO5-I-TPA (vidi primjer 6) dobije se s BamHI i PvuII. 1,7 kb BamHI-PvuII fragment odvajamo na 0,8% agaroznom gelu u tris-borat-EDTA puferu, pH 8,3. DNA fragment sadrži PHO5 promotor, invertazni signalni slijed i kodni slijed zrelog t-PA do PvuII restrikcijskog mjesta (usporedi sliku 1; položaji nukleotida 1305-1310). DNA se elektroeluira, precipitira s etanolom i resuspendira u H2O pri koncentraciji 0,1 pmola/µl. 10 µg of plasmid pJDB207/PHO5-I-TPA (see example 6) was obtained with BamHI and PvuII. The 1.7 kb BamHI-PvuII fragment was separated on a 0.8% agarose gel in Tris-borate-EDTA buffer, pH 8.3. The DNA fragment contains the PHO5 promoter, the invertase signal sequence and the coding sequence of the mature t-PA up to the PvuII restriction site (compare Figure 1; nucleotide positions 1305-1310). DNA is electroeluted, precipitated with ethanol and resuspended in H2O at a concentration of 0.1 pmol/µl.

b) Izolacija DNA fragmenta koji kodira u-PA B-lanca b) Isolation of DNA fragment encoding u-PA B-chain

Plazmid pCS16/UPA (vidi primjer 7B) probavi se sa BaIII (usporedi slike 3 i 4, položaje nukleotida 573-578) i XhoI. 868 bp BaII-XhoI fragment izoliramo kao gore i resuspendiramo u vodi pri koncentraciji 0,1 pmol/µl. Plasmid pCS16/UPA (see Example 7B) was digested with BaIII (compare Figures 3 and 4, nucleotide positions 573-578) and XhoI. The 868 bp BaII-XhoI fragment was isolated as above and resuspended in water at a concentration of 0.1 pmol/µl.

c) Povezivanje fragmenata na vektorski fragment c) Connecting the fragments to the vector fragment

Plazmid pJDB207/PHO5-TPA 18 (Europska patentna prijava br. 143,081) probavi se s BamHI i XhoI. 678 kb vektorski fragment izoliramo na preparativnom 0,8 % agaroznom gelu u Tris-acetatnorn puferu, pH 8,2. DNA elektroeluiramo i precipitiramo s etanolom i resuspendiramo u vodi pri koncentraciji 0,1 pmol/µl. Plasmid pJDB207/PHO5-TPA 18 (European Patent Application No. 143,081) was digested with BamHI and XhoI. The 678 kb vector fragment was isolated on a preparative 0.8% agarose gel in Tris-acetatenorm buffer, pH 8.2. DNA is electroeluted and precipitated with ethanol and resuspended in water at a concentration of 0.1 pmol/µl.

0,2 pmola 1,7 bp BamHI-HgaI fragmenta, 0,2 pmola 868 bp BalII-XhoI fragmenta i 0,1 pmola 6,7 kb BamHI-XhoI vektorskog fragmenta vežemo 16 sati pri 15°C u 10 µl 60 mM Tris-HCl pH 7, 5, 10 mM MgCl2, 5 mM DTT, 1mM DTT, 3, 5 mM ATP i 400 jedinica T4 DNA ligaze (Biolabs). Jedno i 3 µl-ske alikvotne mješavine dodamo k 100 µl stanica E.coli HB101 obrađenih sa Ca++. Transformiranje se provodi kao obično. 0.2 pmole of 1.7 bp BamHI-HgaI fragment, 0.2 pmole of 868 bp BalII-XhoI fragment and 0.1 pmole of 6.7 kb BamHI-XhoI vector fragment are bound for 16 hours at 15°C in 10 µl of 60 mM Tris -HCl pH 7.5, 10 mM MgCl2, 5 mM DTT, 1 mM DTT, 3.5 mM ATP and 400 units of T4 DNA ligase (Biolabs). Add one and 3 µl aliquot mixtures to 100 µl of E.coli HB101 cells treated with Ca++. The transformation is carried out as usual.

Šest transformiranih kolonija otpornih na ampicilin raste u mediju LB koji sadrži 100 mg/l ampicilina. Plazmid DNA pripremimo metodom po Holmesu et al.,/Analyt. Biochem. 114, 193 (1981)/ i analiziramo nakon restrikcijskih probava s BamHI -i PstI. Odabiremo jedan klon s očekivanim restrikcijskim fragmentima i imenujemo ga kao pJDB207/PHO5-TPAAUPAB. Six transformed ampicillin-resistant colonies grow in LB medium containing 100 mg/l ampicillin. We prepare plasmid DNA using the method according to Holmes et al.,/Analyt. Biochem. 114, 193 (1981)/ and analyzed after restriction digests with BamHI and PstI. We select one clone with the expected restriction fragments and name it pJDB207/PHO5-TPAAUPAB.

Primjer 10 Example 10

u-PA/t-PA hibridni plazminogeni aktivator s domenama u-PA A-lanca i t-PA B-lanca (primarna DNA konstrukcija) u-PA/t-PA hybrid plasminogen activator with u-PA A-chain and t-PA B-chain domains (primary DNA construct)

Primarna hibridna DNA konstrukcija obuhvaća u-PA nukleotidne sljedove od SmaI mjesta do EcoRI mjesta (vidi sliku 4) vezane na t-PA nukleotidne slijedove od ScaI mjesta (položaji 940-945) do XhoI mjesta, uvedena na položaju 1800 preko XhoI linkera. Izlazni sljedovi hibridne DNA sadrže suvišak nukleotida koje uklanjamo mutagenezom in vitro. Točna, uokvirena Sveza u-PA A-lanca i t-PA B-lanca nalazi se na aktivacijskom mjestu. The primary hybrid DNA construct comprises the u-PA nucleotide sequences from the SmaI site to the EcoRI site (see Figure 4) linked to the t-PA nucleotide sequences from the ScaI site (positions 940-945) to the XhoI site, introduced at position 1800 via the XhoI linker. The output sequences of the hybrid DNA contain an excess of nucleotides, which we remove by mutagenesis in vitro. Exact, framed binding of u-PA A-chain and t-PA B-chain is located at the activation site.

a) Izolacija DNA fragmenta koji kodira u-PA A-lance: a) Isolation of DNA fragment encoding u-PA A-chain:

7 N.g plazmida pCS16/UPA probavi se s EcoRI. Ljepljive krajeve dobivenih 3 fragmenata pretvorimo u tupe krajeve reakcijom umetanja sa 7,5 jedinicama Klenowe DNA polimeraze (BRL) u prisutnosti 60 mM Tris-HCl pH 7, 5, 10 mM MgCl2, 0, 1 mM dATP i 0,1 mM dTTP 30 minuta pri 25°C. Reakciju zaustavimo dodatkom EDTA u konačnoj koncentraciji 12,5 mM. DNA se dalje probavi s KpnI. Fragment 619 bp KpnI s tupim (EcoRI) krajem izoliramo na 1,5% agaroznom gelu u Trisborat-EDTA puferu, pH 8,3, elektroeluiramo i precipitiramo u etanolu. 7 ng of plasmid pCS16/UPA were digested with EcoRI. We convert the sticky ends of the obtained 3 fragments into blunt ends by an insertion reaction with 7.5 units of Klenow DNA polymerase (BRL) in the presence of 60 mM Tris-HCl pH 7.5, 10 mM MgCl2, 0.1 mM dATP and 0.1 mM dTTP 30 minutes at 25°C. Stop the reaction by adding EDTA to a final concentration of 12.5 mM. The DNA is further digested with KpnI. The 619 bp KpnI fragment with a blunt (EcoRI) end was isolated on a 1.5% agarose gel in Trisborate-EDTA buffer, pH 8.3, electroeluted and precipitated in ethanol.

b) Izolacija DNA fraqmenta koji kodira t-PA B-lance: b) Isolation of DNA fragment encoding t-PA B-chain:

6 µg plazmida pJDB207/PHO5-TPA18 probavi se sa ScaI i XhoI. Fragment 860 bp izoliramo na 1,2% agaroznom gelu u Tris-borat-EDTA puferu, pH 8,3, elektroeluiramo i precipitiramo u etanolu. 6 µg of plasmid pJDB207/PHO5-TPA18 were digested with ScaI and XhoI. The 860 bp fragment was isolated on a 1.2% agarose gel in Tris-borate-EDTA buffer, pH 8.3, electroeluted and precipitated in ethanol.

c) Povezivanje DNA fragmenata na pUC18 izveden vektor: c) Connection of DNA fragments to the pUC18 derived vector:

5 µg plazmida pCS16/UPA (vidi primjer 7) probavi se sa KpnI i XhoI. Izlazni 2,7 kb fragment izoliramo na 0,8% agaroznom gelu u Tris-borat-EDTA puferu, pH 8,3. DNA elektroeluiramo i precipitiramo u etanolu. Sve DNA fragmente resuspendiramo u vodi pri koncentraciji 0,1 pmo1 a /µl. 5 µg of plasmid pCS16/UPA (see Example 7) was digested with KpnI and XhoI. The resulting 2.7 kb fragment was isolated on a 0.8% agarose gel in Tris-borate-EDTA buffer, pH 8.3. DNA is electroeluted and precipitated in ethanol. All DNA fragments are resuspended in water at a concentration of 0.1 pmo1 a /µl.

0,2 pmola 619 bp Kpn-tupih krajeva u-PA fragmenata, 0,2 pmola 860 bp Scal-XhoI t-PA fragmenata i 0,1 pmola 2,7 kb KpnI-XhoI vektorskog fragmenta povežemo kao što je opisano gore (primjer 9). Ca++ obrađene E.coli HB101, stanice se transformiraju. 12 transformiranih kolonija otpornih na ampicilin raste u LB mediju koji je nadopunjen s ampicilinom (100 mg/1). DNA pripremimo prema Holmsu (vidi gore) i analiziramo nakon restrikcijskih probava s EcoRI i PstI. Pojedinačni klon s očekivanim restrikcijskim fragmentima označavamo kao pCS16/UPAA/TPAB. 0.2 pmole of 619 bp Kpn-blunt-ended u-PA fragments, 0.2 pmole of 860 bp Scal-XhoI t-PA fragment and 0.1 pmole of 2.7 kb KpnI-XhoI vector fragment are ligated as described above (example 9). Ca++ treated E.coli HB101 cells are transformed. 12 transformed ampicillin-resistant colonies grow in LB medium supplemented with ampicillin (100 mg/1). DNA is prepared according to Holmes (see above) and analyzed after restriction digestion with EcoRI and PstI. We denote the individual clone with the expected restriction fragments as pCS16/UPAA/TPAB.

Primjer 11 Example 11

u-PA/t-PA hibridni plazminogeni aktivator s drugim “kringle” i katalitčkim B-lancem t-PA (primarna konstrukcija) u-PA/t-PA hybrid plasminogen activator with another "kringle" and catalytic B-chain of t-PA (primary structure)

Gen hibridnog plazrninogenog aktivatora koji obuhvaća DNA sljedove "slične faktoru rasta" (U)-domene urokinaze, drugu "kringle" domenu (K2) t-PA i katalitički B-lanac t-PA, konstruiramo na slijedeći način: Dva DNA restrikcijska fragmenta koji kodiraju faktor rasta u-PA domene i t-PA K2 "kringle" s obzirom na e-lanac, povežemo i umetnemo u plazmid pCS16. Dobiven klon zovemo pCS16/UK2TPAB. Fragment koji sadrži sljedove koji kodiraju u-PA i t-PA subkloniramo u M13. Mutageneza in vitro odvija se na jedno-vlaknatoj DNA da se ukloni suvišak DNA sljedova kod sveze između sljedova u-PA i t-PA. The hybrid plasminogen activator gene, which includes the DNA sequences of the "growth factor-like" (U)-domain of urokinase, the second "kringle" domain (K2) of t-PA and the catalytic B-chain of t-PA, is constructed in the following way: Two DNA restriction fragments that encode growth factor u-PA domain and t-PA K2 "kringles" with respect to the e-chain, we connect and insert into plasmid pCS16. We call the obtained clone pCS16/UK2TPAB. The fragment containing the sequences encoding u-PA and t-PA was subcloned into M13. In vitro mutagenesis is performed on single-stranded DNA to remove redundant DNA sequences at the junction between the u-PA and t-PA sequences.

5 µg plazmida pSC16/UPA probavi se s NcoI (položaji nukleotida 326-331, vidi sliku 4). Ljepljive krajeve restrikcijskih fragmenata popunimo reakcijom s 5 jedinica Klenowe DNA polimeraze I (BRL) u prisutnosti 0,1 mM svakoga od dATP, dTTP, dCTP, dGTP, 60 mM Tris-HCl pH 7, 5, 10 rnM MgCl2 u 50 µl 30 minuta pri sobnoj temperaturi. Reakciju zaustavimo dodatkom EDTA u konačnoj koncentraciji 12,5 mM. DNA precipitiramo u etanolu i dalje se probavi sa XhoI. 3 kb fragment XhoI s tupim krajem /NcoI/ izoliramo na 0,8% agaroznom gelu u Tris-borat-EDTA, ph 8,3, elektroeluiramo i precipitiramo u etanolu. Taj fragment sadrži vektor pCS16 i kodni slijed za faktor rasta u-PA domene. 10 µg plazmida pJBD207/PHO5-TPA18 (Europska patentna prijava broj 143,081) se probavi s BstXI / položaji nukleotida 577-588/. Linearni DPdA fragment s krajevima koji vise preko 3’ inkubiramo s 10 jedinica T4 DNA polimeraze (BRL) u 100 µl 33 mM Trisacetata pH 7,9, 66 mM kalijevog acetata, 10 mM magnezijevog acetata, 0, 5 mM DTT i 0,1 mg/ml goveđeg serum albumina 2, 5 min pri 37°C. Inkubaciju nastavljamo 35 minuta pri 37°C u prisutnosti 0,1 mM svakog od dATP, dCTP. dTTP, dGTP u cjelokupnom volumenu 200 µl. DNA precipitiramo u etanolu i dalje se probavlja s XhoI. Fragment 1,2 kb s tupim krajem /BStXI/-XhoI odvajamo na 0,8% agaroznom gelu, elektroeluiramo i precipitiramo u etanolu. Taj fragment ima kodni slijed za K2 i B-lanac t-PA. 5 µg of plasmid pSC16/UPA was digested with NcoI (nucleotide positions 326-331, see Figure 4). We fill the sticky ends of the restriction fragments by reacting with 5 units of Klenow DNA polymerase I (BRL) in the presence of 0.1 mM each of dATP, dTTP, dCTP, dGTP, 60 mM Tris-HCl pH 7, 5, 10 rnM MgCl2 in 50 µl for 30 minutes. at room temperature. Stop the reaction by adding EDTA to a final concentration of 12.5 mM. DNA is precipitated in ethanol and further digested with XhoI. The 3 kb fragment of XhoI with a blunt end /NcoI/ was isolated on a 0.8% agarose gel in Tris-borate-EDTA, pH 8.3, electroeluted and precipitated in ethanol. This fragment contains the pCS16 vector and the coding sequence for the growth factor u-PA domain. 10 µg of plasmid pJBD207/PHO5-TPA18 (European patent application number 143,081) was digested with BstXI / nucleotide positions 577-588/. A linear DPdA fragment with ends overhanging the 3' was incubated with 10 units of T4 DNA polymerase (BRL) in 100 µl of 33 mM Trisacetate pH 7.9, 66 mM potassium acetate, 10 mM magnesium acetate, 0.5 mM DTT and 0.1 mg/ml bovine serum albumin 2.5 min at 37°C. We continue the incubation for 35 minutes at 37°C in the presence of 0.1 mM each of dATP, dCTP. dTTP, dGTP in a total volume of 200 µl. The DNA is precipitated in ethanol and further digested with XhoI. The 1.2 kb blunt-ended /BStXI/-XhoI fragment is separated on a 0.8% agarose gel, electroeluted and precipitated in ethanol. This fragment has the coding sequence for K2 and the B-chain of t-PA.

0,2 pmola l,2 kb t-PA fragmenta i 0,1 pmola 3 kb u-PA7vektorskog fragmenta (vidi gore) vežemo, kao što je opisano. Alikvotne vezne mješavine upotrebljavamo za transformiranje primarnih E.coli HB101 stanica. Odabiremo kolonije otporne na ampicilin na LB pločama agara koje sadrže 100 mg/1 ampicilina. DNA pripremimo iz pojedinačnih transformanata i analiziramo nakon ScaI i SmaI restrikcijskih probava. Odabiremo klon koji sadrži 0,5 kb Scal i 1,55 SmaI vezne fragmente i imenujemo ga kao pCS16/UK2TPAB. 0.2 pmole of the 1.2 kb t-PA fragment and 0.1 pmole of the 3 kb u-PA7 vector fragment (see above) were ligated as described. We use aliquot binding mixtures to transform primary E.coli HB101 cells. We select ampicillin-resistant colonies on LB agar plates containing 100 mg/1 ampicillin. DNA is prepared from individual transformants and analyzed after ScaI and SmaI restriction digestions. We select a clone containing 0.5 kb Scal and 1.55 SmaI binding fragments and name it pCS16/UK2TPAB.

Primjer 12 Example 12

t-PA/u-PA hibridni plazmogeni aktivator s drugim “kringle” t-PA i katalitičkim B-lancem u-PA (primarna konstrukcija) t-PA/u-PA hybrid plasmogenic activator with another "kringle" t-PA and catalytic B-chain of u-PA (primary structure)

Gen hibridnog plazminogenog aktivatora koji obuhvaća DNA slijedove "slične faktoru rasta" (U)-domene urokinaze, drugu "kringle" domenu (K2) t-PA i katalitički B-lanac u-PA, konstruiramo metodom analognom onoj koja je opisana u primjeru 11. The hybrid plasminogen activator gene, which includes the DNA sequences of the "growth factor-like" (U)-domain of urokinase, the second "kringle" domain (K2) of t-PA and the catalytic B-chain of u-PA, is constructed by a method analogous to that described in example 11 .

Konstrukcija plazmida pCS16/UK2UPAB: Construction of plasmid pCS16/UK2UPAB:

5 µg plazmida pSC16/UPA probavi se s BglII i NcoI (položaji nukleotida 391-396 s obzirom na 326-331, vidi sliku 4). Ljepljive krajeve restrikcijskih fragmenata popunimo reakcijom s Klenowom DNA polimerazom I (BRL) kao što je opisano gore. 4,2 kb DNA s tupim krajevima izoliramo na 0,8% agaroznom gelu u Tris-borat-EDTA, pH 8,2. DNA elektreeluiramo i precipitiramo u etanolu. Taj fragment sadrži u-PA G-domenu i u-PA B-lanac povezane na vektorsku molekulu. 5 µg of plasmid pSC16/UPA was digested with BglII and NcoI (nucleotide positions 391-396 relative to 326-331, see Figure 4). Sticky ends of restriction fragments are filled in by reaction with Klenow DNA polymerase I (BRL) as described above. 4.2 kb of DNA with blunt ends was isolated on a 0.8% agarose gel in Tris-borate-EDTA, pH 8.2. DNA is electroeluted and precipitated in ethanol. This fragment contains u-PA G-domain and u-PA B-chain linked to the vector molecule.

10 µg plazmida p31/PHO5-TPA18 (Europska patentna prijava broj 143,081) se probavi s AluI. 447 bp AIuI fragment koji sadrži cjelokupnu domenu t-PA izoliramo na 1,5% agaroznom gelu u Tris-borat-EDTA puferu, pH 8,3. DNA fragment elektroeluiramo i precipitiramo u etanolu. 10 µg of plasmid p31/PHO5-TPA18 (European Patent Application No. 143,081) was digested with AluI. The 447 bp AIuI fragment containing the entire t-PA domain was isolated on a 1.5% agarose gel in Tris-borate-EDTA buffer, pH 8.3. The DNA fragment is electroeluted and precipitated in ethanol.

0,2 pmola 447 kb fragmenta i 0,1 pmola 4,2 kb fragmenta. Alikvotne vezne mješavine upotrebljavamo za transformiranje primarnih E.coli HB101 stanica. Odabiremo transformirane stanice na LB agar pločama sa 100 mg/1 ampicilina. DNA pripremimo iz stanica otpornih na ampicilin i analiziramo nakon EcoRI i ScaI probava. Pojedinačni klon koji pokazuje 551 kb EcoRI fragment i 403 bp ScaI fragment ima AIuI fragment umetnut u pravilnoj orijentaciji. Taj klon nazivamo pCS16/UK2UPAB. 0.2 pmol of the 447 kb fragment and 0.1 pmol of the 4.2 kb fragment. We use aliquot binding mixtures to transform primary E.coli HB101 cells. We select transformed cells on LB agar plates with 100 mg/1 ampicillin. DNA is prepared from ampicillin-resistant cells and analyzed after EcoRI and ScaI digestion. A single clone showing a 551 kb EcoRI fragment and a 403 bp ScaI fragment has the AIuI fragment inserted in the correct orientation. We call this clone pCS16/UK2UPAB.

Primjer 13 Example 13

Kloniranje primarnih hibridnih DNA konstrukcija u M13mp18 Cloning of primary hybrid DNA constructs in M13mp18

A) Kloniranje pJDB207/PHO5-I-TPAAUPAB HamHI fragmenta u M13mp18 A) Cloning of pJDB207/PHO5-I-TPAAUPAB HamHI fragment in M13mp18

1,5 µg pJDB207 /PHO5-I-TPAAUPAB (usporedi primjer 9) dobiven brzom DNA pripravom, probavi se s 9 U BamHI (Boehringer) u 20 µl 10 mM Tris-HCl pH 7, 5, 6 mM MgCl2, 100 mM NaCl, 6 mM merkaptoetanola jedan sat pri 37°C. Nakon dodatka 1 µl RNaze (Serva, 1 mg/ml), inkubacije 15 minuta pri 37°C i fenolizacije izolira se 2, 5 kb uključak na 0, 8% preparativnom agaroznom gelu. DNA se ekstrahira elektroeluiranjem i precipitira. 1.5 µg pJDB207 /PHO5-I-TPAAUPAB (cf. Example 9) obtained by rapid DNA preparation, digested with 9 U BamHI (Boehringer) in 20 µl 10 mM Tris-HCl pH 7.5, 6 mM MgCl2, 100 mM NaCl , 6 mM mercaptoethanol for one hour at 37°C. After the addition of 1 µl of RNase (Serva, 1 mg/ml), incubation for 15 minutes at 37°C and phenolization, a 2.5 kb inclusion was isolated on a 0.8% preparative agarose gel. DNA is extracted by electroelution and precipitated.

1 µg 31mp18 (RF) režemo sa BamHI, obradimo s telećom crijevnom alkalnom fosfatazom i izoliramo 7,3 kb vektorski fragment na 0,7% preparativnom agaroznom gelu. DNA se elektroeluira i precipitira. 1 µg of 31mp18 (RF) was cut with BamHI, treated with calf intestinal alkaline phosphatase, and the 7.3 kb vector fragment was isolated on a 0.7% preparative agarose gel. DNA is electroeluted and precipitated.

100 pmolova M13mp18 BamHI rezanog vektora i 200 pmolova BamHI TPAUPAB uključka povežemo u 10 µl 50 mM Tris-HCl pH 7, 5, 10 mM MgCl2, 10 mM DTT, 2 mM ATP, 0,5 µg želatine sa 400 u T4 DNA ligaze 7 sati pri 15°C. Nakon inkubacije 10 minuta pri 65°C upotrebljavamo 5 µl te vezne mješavine za transformaciju E.coli JM101 primarnih stanica prema priručniku "M13 Cloning and Sequencing Handbook", izdavač Amersham. Poberemo 36 bezbojnih plakova i pripremimo jednovlakni replikatni oblik (RF) DNA. Kod analize FR-DNA svi klonovi pokazuju uključke pravilne veličine nakon probave s BarnHI. Fragmenti pravilne veličine nakon probave s EcoRI i PstI pokazuju da su DNA uključci u svim klonovima obrnute orijentacije (jednovlaknata šablona DNA je ne-kodirajuče vlakno). Jednog od tih klona imenujemo kao mp18/BamHI/-TPAA/UPAB i upotrebljavamo ga za delecijsku mutagenezu. 100 pmol of M13mp18 BamHI cut vector and 200 pmol of BamHI TPAUPAB included in 10 µl of 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 10 mM DTT, 2 mM ATP, 0.5 µg gelatin with 400 in T4 DNA ligase 7 hours at 15°C. After incubation for 10 minutes at 65°C, we use 5 µl of this binding mixture for the transformation of E.coli JM101 primary cells according to the manual "M13 Cloning and Sequencing Handbook", published by Amersham. We collect 36 colorless plaques and prepare the single-stranded replicate form (RF) of DNA. In FR-DNA analysis, all clones showed inclusions of the correct size after digestion with BarnHI. Fragments of the correct size after digestion with EcoRI and PstI show that the DNA inclusions in all clones are in reverse orientation (single-stranded template DNA is the non-coding strand). We named one of these clones as mp18/BamHI/-TPAA/UPAB and used it for deletion mutagenesis.

B) Kloniranje pCS16/UPAA/TPAB KpnI-HindIII fragmenta u M13mp18 B) Cloning of pCS16/UPAA/TPAB KpnI-HindIII fragment in M13mp18

l,5 µg pCS16/UPAA/TPAB (usporedi primjer 10) dobiven brzom DNA pripravom, probavi se s 12 U KpnI u 20 µl 10 mM Tris-HCl pH 7,5, 6 mM MgCl2, 6 mM merkaptoetanola jedan sat pri 37°C. Nakon dodatka 1 µl 1 M NaCl DNA se probavi s 12 U HindIII jedan sat pri 37°C. Izoliramo 1,5 kb fragment na 0,8% preparativnom agaroznom gelu. DNA se ekstrahira elektroeluiranjem i precipitira. 1.5 µg pCS16/UPAA/TPAB (cf. Example 10) obtained by rapid DNA preparation, digested with 12 U KpnI in 20 µl 10 mM Tris-HCl pH 7.5, 6 mM MgCl2, 6 mM mercaptoethanol for one hour at 37° C. After addition of 1 µl of 1 M NaCl DNA is digested with 12 U HindIII for one hour at 37°C. We isolate a 1.5 kb fragment on a 0.8% preparative agarose gel. DNA is extracted by electroelution and precipitated.

0,5 µg M13mp18 (RF) probavi se s KpnI i HindIII . Izoliramo 7,3 kb vektorski fragment na 0,7% preparativnom agaroznom gelu. DNA se elektroeluira i precipitira. 0.5 µg of M13mp18 (RF) was digested with KpnI and HindIII. We isolate the 7.3 kb vector fragment on a 0.7% preparative agarose gel. DNA is electroeluted and precipitated.

100 pmolova M13mp18 KpnI-HindIII rezanog vektora i 200 pmolova KpnI-HindIII uključka povežemo u 10 µl 50 mM Tris-HCl pH 7, 5, 10 mM MgCl2, 10 mM DTT, 2 mM ATP, 0,5 µg želatine sa 400 u T4 DNA ligaze 7 sati pri 15°C. Reakciju se zaustavi inkubacijom 10 minuta pri 65°C. 5 µl te vezne mješavine upotrebljavamo za transformaciju E.coli JM101 primarnih stanica. Poberemo 10 bezbojnih plakova i pripremimo jednovlakni replikatni oblik (RF) DNA. Kod analize RF-DNA svi klonovi pokazuju uključke pravilne veličine i pravilnu veličinu fragmenata. Jednog od tih klonova imenujemo kao mp18/KpnI-HindIII/-UPAA/TPAB i upotrebljavamo ga za................ 100 pmoles of M13mp18 KpnI-HindIII cut vector and 200 pmoles of KpnI-HindIII inclusive are ligated in 10 µl of 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 10 mM DTT, 2 mM ATP, 0.5 µg gelatin with 400 in T4 DNA ligase for 7 hours at 15°C. The reaction was stopped by incubation for 10 minutes at 65°C. We use 5 µl of this binding mixture for the transformation of E.coli JM101 primary cells. We collect 10 colorless plaques and prepare a single-stranded replicate form (RF) of DNA. In the RF-DNA analysis, all clones show inclusions of the correct size and the correct size of fragments. We name one of these clones as mp18/KpnI-HindIII/-UPAA/TPAB and use it for................

C) Kloniranje pCS16/UK2TPAB KpnI-HindIII fragmenta u M13mp18 C) Cloning of pCS16/UK2TPAB KpnI-HindIII fragment in M13mp18

l,5 µg pCS16/UK2TPAB (usporedi primjer 11) dobiven iz brze DNA priprave, probavi se s 12 U KpnI (Boehringer) u 20 µl 10 mM Tris-HCl pH 7, 5, 6 mM MgCl2, 6 mM merkaptoetanola jedan sat pri 37°C. Nakon dodatka 1 µl 1 M NaCl DNA se probavi s 12 U HindIII jedan sat pri 37°C. Izoliramo 1,5 kb fragment na 0,8% preparativnom agaroznom gelu. DNA se ekstrahira elektroeluiranjem i precipitira. 1.5 µg of pCS16/UK2TPAB (cf. Example 11) obtained from the rapid DNA preparation was digested with 12 U of KpnI (Boehringer) in 20 µl of 10 mM Tris-HCl pH 7.5, 6 mM MgCl2, 6 mM mercaptoethanol for one hour at 37°C. After addition of 1 µl of 1 M NaCl DNA is digested with 12 U HindIII for one hour at 37°C. We isolate a 1.5 kb fragment on a 0.8% preparative agarose gel. DNA is extracted by electroelution and precipitated.

0,5 µg M13mp18 (RF) probavi se s KpnI i HindIII . Izoliramo 7,3 kb vektorski fragment na 0,7% preparativnom agaroznom gelu. DNA se elektroeluira i precipitira. 0.5 µg of M13mp18 (RF) was digested with KpnI and HindIII. We isolate the 7.3 kb vector fragment on a 0.7% preparative agarose gel. DNA is electroeluted and precipitated.

100 pmolova M13mp18 KpnI-HindIII reza vektora i 200 pmolova KpnI-HindIII uključka povežemo u 10 µl 50 mM Tris-HCl pH 7, 5, 10 mM MgCl2, 10 mM DTT, 2 mM ATP, 0, 5 želatine sa 400 u T4 DNA ligaze 7 sati pri 15°C. Reakciju se zaustavi inkubacijom 10 minuta pri 65°C. 5 µl te vezne mješavine upotrebljavamo za transformaciju E.coli JM101 primarnih stanica. Poberemo 10 bezbojnih plakova i pripremimo jednovlaknati replikatni oblik (RF) DNA. Kod analize RF-DNA svi klonovi pokazuju uključke pravilne veličine i pravilnu veličinu fragmenata. Jednog od tih klonova imenujemo kao mp18/KpnI-HindIII/UK2TPAB i upotrebljavamo ga za delecijsku mutagenezu. 100 pmoles of M13mp18 KpnI-HindIII cut vector and 200 pmoles of KpnI-HindIII included are ligated in 10 µl of 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 10 mM DTT, 2 mM ATP, 0.5 gelatin with 400 in T4 DNA ligase for 7 hours at 15°C. The reaction was stopped by incubation for 10 minutes at 65°C. We use 5 µl of this binding mixture for the transformation of E.coli JM101 primary cells. We collect 10 colorless plaques and prepare a single-stranded replicative form (RF) of DNA. In the RF-DNA analysis, all clones show inclusions of the correct size and the correct size of fragments. We named one of these clones as mp18/KpnI-HindIII/UK2TPAB and used it for deletion mutagenesis.

D) Kloniranje pCS16/UK2UPAB KpnI-HindIII fragmenta u M13mp18 D) Cloning of pCS16/UK2UPAB KpnI-HindIII fragment in M13mp18

1,5 µg pC516/UK2UPAB (usporedi primjer 12) dobiven brzom DNA pripravom, probavi se s 12 U KpnI (Boehringer) u 20 µl 10 mM Tris-HCl pH 7, 5, 6 mM MgCl2, 6 mM merkaptoetanola jedanfi sat pri 37°C. Nakon dodatka 1 µl 1 M NaCl DNA se probavi s 12 U HindIII jedan sat pri 37°C. Izoliramo 1,7 kb fragment na 0,8% preparativnom agaroznom gelu. DNA se ekstrahira elektroeluiranjem i precipitira. 1.5 µg pC516/UK2UPAB (cf. Example 12) obtained by rapid DNA preparation, digested with 12 U KpnI (Boehringer) in 20 µl 10 mM Tris-HCl pH 7.5, 6 mM MgCl2, 6 mM mercaptoethanol for one hour at 37 °C. After addition of 1 µl of 1 M NaCl DNA is digested with 12 U HindIII for one hour at 37°C. We isolated a 1.7 kb fragment on a 0.8% preparative agarose gel. DNA is extracted by electroelution and precipitated.

0,5 µg M13mp18 (RF) probavi se s KpnI i HindIII. Izoliramo 7,3 kb vektorski fragment na 0,7% preparativnom agaroznom gelu. DNA se elektroeluira i precipitira. 0.5 µg of M13mp18 (RF) was digested with KpnI and HindIII. We isolate the 7.3 kb vector fragment on a 0.7% preparative agarose gel. DNA is electroeluted and precipitated.

100 fmolova M13mp18 KpnI-HindIII reza vektora i 200 fmolova KpnI-HindIII uključka povežemo u 10 µl 50 mM Tris-HCl pH 7, 5, 10 mM MgCl2, 10 mM DTT, 2 mM ATP, 0,5 µg želatine sa 400 u T4 DNA ligaze 7 sati pri 15°C. Reakciju se zaustavi inkubacijom 10 minuta pri 65°C. 5 µl te vezne mješavine upotrebljavamo za transformaciju E.coli JM101 primarnih stanica. Poberemo 10 bezbojnih plakova i pripremimo jednovlaknati replikatni oblik (RF) DNA. Kod analize RF-DNA pokazuju svi klonovi uključke pravilne veličine i pravilnu veličinu fragmenata. Jednog od tih klonova imenujemo kao mp18/KpnI-HindIII/UK2UPAB i upotrebljavamo ga za delecijsku mutagenezu. 100 fmoles of M13mp18 KpnI-HindIII cut vector and 200 fmoles of KpnI-HindIII inclusive are ligated in 10 µl of 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 10 mM DTT, 2 mM ATP, 0.5 µg gelatin with 400 in T4 DNA ligase for 7 hours at 15°C. The reaction was stopped by incubation for 10 minutes at 65°C. We use 5 µl of this binding mixture for the transformation of E.coli JM101 primary cells. We collect 10 colorless plaques and prepare a single-stranded replicative form (RF) of DNA. When analyzing RF-DNA, all clones show inclusions of the correct size and the correct size of fragments. We named one of these clones as mp18/KpnI-HindIII/UK2UPAB and used it for deletion mutagenesis.

Primjer 14 Example 14

Delecijska mutageneza primarnih hibridnih DNA konstrukcija Deletion mutagenesis of primary hybrid DNA constructs

A) Opći protokol delecijske mutageneze A) General protocol of deletion mutagenesis

a) Fosforilacija mutantnog primjera: a) Phosphorylation of the mutant example:

Za mutanogenezu fosforiliramo 200 pmolova mutagenog primjera u 20 µl 50 mM Tris-HCl pH 7, 5, 10 mM MgCl2, 5 mM DTT, 0,1 Spermidina, 0,1 mM EDTA koja Sadrži 1 µl 10 mM ATP i koristi 8 U T4 DNA polinukleotid kinaze (Boehringer. 8 U/µl).Nakon inkubacije jedan sat pri 37°C reakciju se zaustavi grijanjem 10 minuta pri 65°C. For mutagenesis, we phosphorylate 200 pmol of mutagen sample in 20 µl of 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 5 mM DTT, 0.1 Spermidine, 0.1 mM EDTA containing 1 µl of 10 mM ATP and using 8 U T4 DNA polynucleotide kinase (Boehringer. 8 U/µl). After incubation for one hour at 37°C, the reaction is stopped by heating for 10 minutes at 65°C.

Za hibridizacijsko prekrivanje 20 pmolova mutagenog primjera fosforilira se kao gore upotrebom 30 µCi γ32-P-ATP (3000 Ci/mmol): Amersham International; kao jedini izvor ATP). Primjer razrijedimo s 3, 5 ml 6 x SSC i upotrijebimo izravno kao uzorak. For hybridization overlay, 20 pmol of mutagenic sample is phosphorylated as above using 30 µCi γ32-P-ATP (3000 Ci/mmol): Amersham International; as the only source of ATP). Dilute the sample with 3.5 ml of 6 x SSC and use directly as a sample.

b) Renaturiranje mutagenog primjera i općeg sekventnog primjera s jednovlaknatom šablonom b) Renaturation of the mutagenic example and the general sequence example with a single-stranded template

0,2 pmola jedno-vlaknate šablone inkubiramo s 20 pmolova fosforiliranog mutagenog oligodezoksiribo-nukleotidnog primjera (10 pmolava/µl) i 10 pmolova općeg M13 sekventnog primjera u 10 µ1 20 mM Tris-HCl pH 7, 5, 10 mM MgCl2, 50 mM NaCl, 1 mM DTT 5 minuta pri 95°C. Pustimo da se otopina kroz 30 minuta polako ohladi na sobnu temperaturu. 0.2 pmol of single-stranded template was incubated with 20 pmol of phosphorylated mutagenic oligodeoxyribonucleotide primer (10 pmol/µl) and 10 pmol of general M13 sequence primer in 10 µl of 20 mM Tris-HCl pH 7.5, 10 mM MgCl2, 50 mM NaCl, 1 mM DTT for 5 minutes at 95°C. Let the solution slowly cool to room temperature over 30 minutes.

c) Reakcija produljenog vezanja c) Prolonged binding reaction

Gornjoj renaturacijskoj mješavini dodamo 10 µl enzimske dNTP (dATP, dGTP, dTTP, dCTP) otopine koja sadrži 1 µl pufera (0,2 M Tris-HCl pH 7,5, 0,1 MgCl2, 0,1 M DTT), 4 µl 2,5 mM dNTP mješavine, 1 µl 10 mM ATP, 0,5 µl T4 DNA ligaze (Biolabs. 400 U/µl), 0,67 µl Klenowe DNA polimeraze (BRL, 2,99 U/µl). Mješavinu inkubiramo jedan sat pri 15°C i zatim 16 sati pri 8 - 9°C. Reakciju se zaustavi inkubacijom 10 minuta pri 65°C. To the above renaturation mixture, add 10 µl of enzymatic dNTP (dATP, dGTP, dTTP, dCTP) solution containing 1 µl of buffer (0.2 M Tris-HCl pH 7.5, 0.1 MgCl2, 0.1 M DTT), 4 µl 2.5 mM dNTP mix, 1 µl 10 mM ATP, 0.5 µl T4 DNA ligase (Biolabs. 400 U/µl), 0.67 µl Klenow DNA polymerase (BRL, 2.99 U/µl). The mixture is incubated for one hour at 15°C and then for 16 hours at 8 - 9°C. The reaction was stopped by incubation for 10 minutes at 65°C.

d) Transformacija vezne mješavine d) Transformation of the binding mixture

Veznu mješavinu razrijedimo na 1:20 i 1:200 s TE: po 1 µl i 5 µl svake od tih razrijeđenih otopina upotrebljavamo za transformiranje 0,2 ml ne-reparacijskog soja E.coli BMH 71-18mutS /BMH71-I8 (δ(lac-proAB), thi, SupE, F’laCiq, ZδM15, proA+B+/ primarnih stanica. Konstrukciju E.coli BMH71-18mutS (BMH71-18, mut S215::Tnio) opisao je Kramer sa sur. /Cell 38, 879-887 (1984)/. Nakon transfekcije stanice "trate" su oskubljene s reparacijskirn sojem E.coli JM 101 zato da se do krajnosti smanji uspostavljanje faga mutatorskom fenotipu nereparacijskih sojeva /P. Carter, H. Bedouelle and G. Winter, Nucl. Acids Res. 13, 4431-4443 (1985)/. We dilute the binding mixture to 1:20 and 1:200 with TE: 1 µl and 5 µl of each of these diluted solutions are used to transform 0.2 ml of the non-repair strain E.coli BMH 71-18mutS /BMH71-I8 (δ( lac-proAB), thi, SupE, F'laCiq, ZδM15, proA+B+/ of primary cells. The construction of E.coli BMH71-18mutS (BMH71-18, mut S215::Tnio) was described by Kramer et al. /Cell 38, 879-887 (1984) / After transfection, the "trate" cells were harvested with the repair strain E.coli JM 101 in order to minimize the establishment of the phage mutator phenotype of the non-repair strains / P. Carter, H. Bedouelle and G. Winter, Nucl . Acids Res. 13, 4431-4443 (1985)/.

e) Prekrivanje faga e) Phage coating

100 plakova koji izlaze iz transficirane DNA prenesemo sa čačkalicom u YT ploče i izrastu kao kolonije .inficiranih bakterija za 15 - 18 sati. Sušenje kolonija prilagođeno je prema Grunsteinu i Hognessu /Proc. Natl. Acad. Sci. USA 72, 3961-3965 (1985)/. Nitrocelulozni filtar (Millipore S.A., Cat. No. HAWP 090, veličina pora 0,45 µm) namjestimo na ploču kolonije 10 minuta pri sobnoj temperaturi. Filtere denaturiramo s 0,5 N NaOH, neutraliziramo s 1 M Tris-HCl pH 7,5 i zatim obradimo s jako slanom otopinom (0,5 M Tris-HCl pH 7,5 + 1,5 M NaCl) . Filtere pečemo u vakuumu 30 minuta pri 80°C, predhibridiziramo u 100 ml x 10 Denhardtove otopine (D.T. Denhardt, Biochem. Biophys. Res. Commun. 23, 641-646), 6 x SSC i 0,2 % SDS u zatvorenoj plastičnoj vreći 15 minuta. 100 plaques emerging from the transfected DNA are transferred with a toothpick to YT plates and they grow as colonies of infected bacteria in 15 - 18 hours. Colony drying was adapted according to Grunstein and Hogness /Proc. Natl. Acad. Sci. USA 72, 3961-3965 (1985)/. Place a nitrocellulose filter (Millipore S.A., Cat. No. HAWP 090, pore size 0.45 µm) on the colony plate for 10 minutes at room temperature. Filters are denatured with 0.5 N NaOH, neutralized with 1 M Tris-HCl pH 7.5 and then treated with a high salt solution (0.5 M Tris-HCl pH 7.5 + 1.5 M NaCl). Bake the filters in a vacuum for 30 minutes at 80°C, prehybridize in 100 ml x 10 Denhardt's solution (D.T. Denhardt, Biochem. Biophys. Res. Commun. 23, 641-646), 6 x SSC and 0.2% SDS in a closed plastic bag for 15 minutes.

Za hibridizacijsko prekrivanje predhibridizirane filtere ispiremo u 50 ml 6 x SSC 1 minutu i zatim hibridiziramo u 3,5 ml uzorka koji sadrži 32P-označen primjer, 30 minuta. Hibridizirane filtere isperemo u 100 ml 6 x SSC pri sobnoj temperaturi u cijelosti 2 minute i zatim autoradiografiramo. Dobro razlikovanje između divljih tipova i mutiranog faga dobijemo nakon kratkog ispiranja (5 minuta) pri 60°C u 100 ml 0,1 x SSC + 0,1% SDS. For hybridization overlay, prehybridized filters are washed in 50 ml of 6 x SSC for 1 minute and then hybridized in 3.5 ml of sample containing 32 P-labeled sample for 30 minutes. The hybridized filters are washed in 100 ml of 6 x SSC at room temperature for 2 minutes and then autoradiographed. Good discrimination between wild-type and mutated phage is obtained after a short wash (5 minutes) at 60°C in 100 ml of 0.1 x SSC + 0.1% SDS.

f) Potvrda delecijske mutacije u pozitivnim klonima dobivenim iz hibridizacije f) Confirmation of deletion mutation in positive clones obtained from hybridization

Fage iz pozitivnih kolonova prenesemo sa čačkalicom u 1 ml 2 x YT, grijemo 20 minuta pri 70°C da ubijemo bakterije i zatim 100 µl te suspenzije faga inokuliramo u1, 5 ml svježe rastuće E. coli JM101 kulture (OD600 ~ 0,45). Kulture jako tresemo (300 okr./min) 4 sata pri 37°C. Zalihu fage i replikatni oblik DNA pripremimo iz pozitivnih klona /J. Messing, Methods in Enzymology, 101, 21-78 (1983)/. DNA iz mutanata (nakon delecijske mutageneze) analiziramo s prikladnim restrikcijskim enzimima i usporedimo ih s restrikcijskim fragmentima divljeg tipa (prije delecijske mutageneze) DNA. Nakon potvrde restrikcijskom analizom, DNA iz jedne pravilne mutante čistimo plakom. Mutacije nadalje potvrđujemo nakon restrikcijske analize i sekvenciranjem primjenom metode lančanog ključa /F. Sanger, S. Niclen and A.R. Coulson, Proc. Natl. Acad. Sci. USA 74, 5463-5467 (1977)/. We transfer the phages from the positive columns with a toothpick into 1 ml of 2 x YT, heat for 20 minutes at 70°C to kill the bacteria and then inoculate 100 µl of this phage suspension into 1.5 ml of freshly growing E. coli JM101 culture (OD600 ~ 0.45) . We shake the cultures vigorously (300 rpm) for 4 hours at 37°C. Prepare the phage stock and replica DNA form from positive clones /J. Messing, Methods in Enzymology, 101, 21-78 (1983)/. DNA from mutants (after deletion mutagenesis) is analyzed with appropriate restriction enzymes and compared with restriction fragments of wild type (before deletion mutagenesis) DNA. After confirmation by restriction analysis, the DNA from one correct mutant is purified by plaque. Mutations are further confirmed after restriction analysis and by sequencing using the chain key /F method. Sanger, S. Niclen and A.R. Coulson, Proc. Natl. Acad. Sci. USA 74, 5463-5467 (1977)/.

B) Delecijska mutageneza na mp18/BamHI/TPAAUPAB (vidi sliku 23) B) Deletion mutagenesis at mp18/BamHI/TPAAUPAB (see Figure 23)

Delecijsku mutagenezu vršimo kao što je opisano u općem protokolu. Pozitivne klone koje dobijemo iz hibridizacije potvrdimo restrikcijskom analizom. 333 bp uklonimo pri delecijskoj mutagenezi iz BamHI fragmenta. Restrikcijska analiza s BamHI potvrđuje 2150 bp fragment. Daljnja restrikcijska analiza s EcoRI daje 660, 416, 287, 230 bp fragmente na mutantima umjesto 660, 472, 416 i 287 fragmenata, koji se vide na divljem tipu. Analiza sa PstI pokazuje dva fragmenta veličine 611 i 414 bp za mutante. Divlji tip DNA pokazuje tri fragmenta 622, 611 i 414 bsp. Jedan mutirani klon koji ima pravilnu strukturu imenujemo mp18/BamHI/MOTPAAUPAB. Deletion mutagenesis is performed as described in the general protocol. Positive clones obtained from hybridization are confirmed by restriction analysis. 333 bp is removed during deletion mutagenesis from the BamHI fragment. Restriction analysis with BamHI confirms the 2150 bp fragment. Further restriction analysis with EcoRI yielded 660, 416, 287, 230 bp fragments on the mutants instead of the 660, 472, 416 and 287 fragments seen on the wild type. Analysis with PstI shows two fragments of 611 and 414 bp for the mutants. The wild type DNA shows three fragments of 622, 611 and 414 bsp. One mutated clone that has the correct structure is named mp18/BamHI/MOTPAAUPAB.

DNA slijed kod sveze između t-PA A-lanca i u-PA B-lanca potvrdimo metodom sekvencnog ključa lanca, koji ima primjer slijeda sekvence 5'CAGAGCCCCCCCGGTGC3'. Taj primjer je komplementaran kodnom vlaknu u-PA (682-666). We confirm the DNA sequence of the connection between the t-PA A-chain and the u-PA B-chain using the chain sequence key method, which has the example sequence of the sequence 5'CAGAGCCCCCCCGGTGC3'. This example is complementary to the u-PA coding strand (682-666).

C) Delecijska muta eneza na mp18/KpI-HindIII/UPAATPAB (vidi sliku 24) C) Deletion mutagenesis at mp18/KpI-HindIII/UPAATPAB (see Figure 24)

Delecijsku mutagenezu vršimo kao što je opisano u općem protokolu. Pozitivne klone koje dobijemo iz hibridizacije potvrdimo restrikcijskom analizom sa PstI. Kod mutanata opažamo 467 bs pojas u usporedbi s divljim tipom koji. daje 544 bp fragment. Jedan mutirani klon koji ima pravilnu strukturu imenujemo mpl1/KpnI-HindIII/MOUPAATPAB. Deleciju potvrdimo metodom sekvencnog ključa lanca primjenom slijeda 5'CAAAGATGGCAGCCTGC3'. Taj primjer je komplementaran kodnom vlaknu t-PA (1062-1046). Deletion mutagenesis is performed as described in the general protocol. Positive clones obtained from hybridization are confirmed by restriction analysis with PstI. In the mutants we observe a 467 bs band compared to the wild type which. gives a 544 bp fragment. One mutated clone that has the correct structure is named mpl1/KpnI-HindIII/MOUPAATPAB. We confirm the deletion using the chain sequence key method using the sequence 5'CAAAGATGGCAGCCTGC3'. This example is complementary to the coding strand of t-PA (1062-1046).

D) Delecijska mutageneza na mp18/KpnI-HindIII/UK2TPAB (vidi sliku 25) D) Deletion mutagenesis on mp18/KpnI-HindIII/UK2TPAB (see Figure 25)

Delecijsku mutagenezu vršimo kao što je opisano u općem protokolu. Pozitivne klone koje dobijemo iz hibridizacije potvrdimo restrikcijskom analizom s KpnI-Hindl:Il, EcoRI i PstI. Fragmente koje dobijemo jesu Deletion mutagenesis is performed as described in the general protocol. Positive clones obtained from hybridization were confirmed by restriction analysis with KpnI-Hindl:Il, EcoRI and PstI. The fragments we get are

KpnI-HindIII EcoRI PstI KpnI-HindIII EcoRI PstI

divlji mutant divlji mutant divlji mutant wild mutant wild mutant wild mutant

tip tip tip type type type

1475 bp 1284 bp 542 bp 351 bp 622 bp bez 622 1475 bp 1284 bp 542 bp 351 bp 622 bp without 622

bp trake bp strips

Za mutante utvrdimo pravilnu veličinu inserta i fragmenata. Jednog od mutantnih klona pravilne strukture navodimo kao mp18/KpnI-HindIII/MOUK2TPAB. Ispuštanje verificiramo metodom lančano-terminatorskog sekvenciranja primjenom sekvencne usporedbe sa sekvencom (slijedom) For mutants, we determine the correct size of inserts and fragments. One of the mutant clones with the correct structure is referred to as mp18/KpnI-HindIII/MOUK2TPAB. We verify the release by the method of chain-terminator sequencing by applying a sequence comparison with the sequence (sequence)

5'CCCAGTGCCTGGGCACTGGGGTTCTGTGCTGTG3' 5'CCCAGTGCCTGGGCACTGGGGTTCTGTGCTGTG3'

Taj primjer je komplementaran kodnom lancu t-PA (853-821). This example is complementary to the coding chain of t-PA (853-821).

E) Delecijska mutageneza na mp18/KpnI-HindIII/UK2UPAB (vidi sliku 26) E) Deletion mutagenesis at mp18/KpnI-HindIII/UK2UPAB (see Figure 26)

U konstrukciji UK2UPAB sudjeluju dvije odvojene delecijske mutacije: Two separate deletion mutations are involved in the construction of UK2UPAB:

Prvu delecijsku mutagenezu vršimo kao što je opisano u općem protokolu. Pozitivni klone, dobiveni kod hibridizacije, potvrđeni su restrikcijskom analizom s EcoRI. Kod mutanata opažamo trake 549, 416, 431 bp, u usporedbi s divljim tipom koji daje fragmente 549, 452 i 416. Jedan mutantni klon pravilne strukture navodimo kao mp18/KpnI-HindIII/MOUK2UPAB-l. Deleciju verificiramo metodom lančano-terminatorskog sekvenciranja .primjenom sekvencne usporedbe sa sekvencom We perform the first deletion mutagenesis as described in the general protocol. Positive clones obtained during hybridization were confirmed by restriction analysis with EcoRI. In the mutants we observe bands 549, 416, 431 bp, compared to the wild type which gives fragments 549, 452 and 416. One mutant clone with the correct structure is referred to as mp18/KpnI-HindIII/MOUK2UPAB-1. Deletion is verified by the method of chain-terminator sequencing, using sequence comparison with the sequence

5'CCCAGTGCCTGGGCACTGGGGTTCTGTGCTGTG3' 5'CCCAGTGCCTGGGCACTGGGGTTCTGTGCTGTG3'

Taj primjer je komplementaran kodnom lancu t-PA (853-821). This example is complementary to the coding chain of t-PA (853-821).

U drugom Stupnju delecijske mutageneze vršimo deleciju istovremeno s uvođenjem točkaste mutacije. Delecijsku mutaciju vršimo kao što je opisano u općem .protokolu. Pozitivni kloni dobiveni kod hibridizacije potvrđeni su restrikcijskom analizom sa EcoRI. Kod mutanata opažamo trake 416, 315. 259 bp, u usporedbi s divljim tipom koji daje fragmente 549, 416 i 351 bp. Jedan mutirani klon pravilne strukture navodimo kao mp18/KpnI-HindIII/MOUK2UPAB. Deleciju potvrdimo metodom lančano-terminatorskog sekvenciranja primjenom sekvencne usporedbe sa sekvencom In the second stage of deletion mutagenesis, we perform a deletion simultaneously with the introduction of a point mutation. Deletion mutation is performed as described in the general protocol. Positive clones obtained during hybridization were confirmed by restriction analysis with EcoRI. In the mutants, we observe bands of 416, 315, 259 bp, compared to the wild type which gives fragments of 549, 416 and 351 bp. We list one mutated clone with the correct structure as mp18/KpnI-HindIII/MOUK2UPAB. We confirm the deletion by the method of chain-terminator sequencing using sequence comparison with the sequence

5'CAGAGCCCCCCCGGTGC3'. 5'CAGAGCCCCCCGGTGC3'.

Taj primjer je komplementaran kodnom LANCU U-PA (682-666). This example is complementary to the code CHAIN U-PA (682-666).

Primjer 15 Example 15

Kloniranje hibridnih t-PA/u-PA cDNA konstrukcija u kvasni ekspresijski vektor pJDB207 Cloning of hybrid t-PA/u-PA cDNA constructs into the yeast expression vector pJDB207

A) Kloniranje TPAAUPAB hibridnog gena u pJDB207 A) Cloning of the TPAAUPAB hybrid gene in pJDB207

RF-DNA pripremimo za mp18/BamHI/MOTPAUPAB brzim postupkom izolacije DNA /D.S. Holmes i M. Quingley, Anal. Biochem. 114, 192-197 (1981)/. RF-DNA is prepared for mp18/BamHI/MOTPAUPAB by rapid DNA isolation procedure /D.S. Holmes and M. Quingley, Anal. Biochem. 114, 192-197 (1981)/.

RF-DNA (1,5 (g) probavi se sa 9 U BamHI u 20 (l 10 mM Tris-HCl ph 7,5, 6 mM MgCl2, 100 mM NaCl, 6 mM merkaptoetanola jedan sat pri 37°C. Nakon dodatka 1 (l RNaze (1 mg/ml) i 10 minutne inkubacije pri 37°C izoliramo 2,1 kb insert na 0,7% preparativnog agaroznog gela. DNA insert ekstrahiramo elektroeluiranjem i istaložimo etanolu. RF-DNA (1.5 (g) was digested with 9 U BamHI in 20 (l 10 mM Tris-HCl ph 7.5, 6 mM MgCl2, 100 mM NaCl, 6 mM mercaptoethanol for one hour at 37°C. After addition 1 l of RNase (1 mg/ml) and 10 minutes of incubation at 37°C, isolate a 2.1 kb insert on a 0.7% preparative agarose gel. The DNA insert is extracted by electroelution and precipitated in ethanol.

l,5 µg pPDB207 /PHO5-I-TPAAUPAB razređemo s BamHI, obradimo s alkalnom fosfatazom telećeg crijeva i izoliramo 6,7 kb vektor. Nakon elektroeluiranja istaložimo vektor DNA. 1.5 µg of pPDB207 /PHO5-I-TPAAUPAB were diluted with BamHI, treated with calf intestinal alkaline phosphatase, and the 6.7 kb vector was isolated. After electroelution, we precipitate vector DNA.

100 fmolova pJDB207/PHO5-I-TPAAUPAB BamHI razrezanog vektora, 200 fmolova TPAAUPAB inserta povežemo u 10 (l 50 mM Tris-HC1 pH 7,5, 10 mM MgCl2, 10 mM DTT, 2 mM ATP, 0,5 (g želatine sa 400 U T4 DNA ligaze tijekom 8 sati pri 15°C. Reakcija se zaustavlja inkubacijom 10 minuta pri 65°C. 5 (l te vezne smjese upotrijebi se za transformaciju E.coli HB101 Ca++ stanica /M. Dagert i S.D. Ehrlich, Gene, 6, 23-28 (1979)/. 12 ampR kolonija se pokupi i pripremi DNA brzim postupkom izolacije. Analiza DNA 5 klona pokazuje pravilnu veličinu inserata kao također i pravilnu orijentaciju. Jedan klon uzgajamo na 100 ml LB medija koji sadrži 100 mg/ml ampicilina. Izoliramo plazmid DNA i označimo ga kao pJDB207/PHO5-I-MOTPAAUPAB. 100 fmoles of pJDB207/PHO5-I-TPAAUPAB BamHI cleaved vector, 200 fmoles of TPAAUPAB insert are connected in 10 (l 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 10 mM DTT, 2 mM ATP, 0.5 (g gelatin with 400 U of T4 DNA ligase for 8 hours at 15° C. The reaction is stopped by incubation for 10 minutes at 65° C. 5 (l of this ligation mixture is used to transform E.coli HB101 Ca++ cells / M. Dagert and S.D. Ehrlich, Gene , 6, 23-28 (1979)/. 12 ampR colonies are picked and DNA prepared by a rapid isolation procedure. DNA analysis of 5 clones shows correct size of inserts as well as correct orientation. One clone is grown on 100 ml of LB medium containing 100 mg/ ml of ampicillin We isolate the plasmid DNA and designate it as pJDB207/PHO5-I-MOTPAAUPAB.

B) Kloniranje MOUPAATPAB, MOUK2TPAB i MOUK2UPAB genskih inserata u plazmid pCS16 B) Cloning of MOUPAATPAB, MOUK2TPAB and MOUK2UPAB gene inserts into plasmid pCS16

RF-DNA pripremimo za mp18/KpnI-HindIII/MOUPAATPAB, mp18/KpnI-HindIII/MOUK2TPAB, mp18/KpnI-HindIII/MOUK2UPAB brzim postupkom izolacije DNA. RF-DNA is prepared for mp18/KpnI-HindIII/MOUPAATPAB, mp18/KpnI-HindIII/MOUK2TPAB, mp18/KpnI-HindIII/MOUK2UPAB by rapid DNA isolation procedure.

Tri RF-DNA (~1,5 (g) probavi se sa 12 U s KpnI i 12 U HindIII u 20 (l Tris-HCl pH 7,5, 6 mM MgCl2, 6 mM merkaptoetanola tijekom 1 sata pri 37°C. Doda se 1 (l 1 M. NaCl te se sve DNA nadalje probave s 12 U HindIII. Nakon dodatka 1 ml RNaze/1mg/ml) i inkubacije 10 minuta pri 37°C izolira se 1,4 kb inserte na 0,8% preparativnog agaroznog gela. DNA inserte ekstrahiramo elektroeluiranjem i istaložimo u etanolu. Three RF-DNAs (~1.5 (g)) were digested with 12 U of KpnI and 12 U of HindIII in 20 (l Tris-HCl pH 7.5, 6 mM MgCl2, 6 mM mercaptoethanol for 1 hour at 37°C. 1 (l 1 M. NaCl) is added and all DNA is further digested with 12 U HindIII. After the addition of 1 ml of RNase/1 mg/ml) and incubation for 10 minutes at 37°C, a 1.4 kb insert is isolated at 0.8% DNA inserts are extracted by electroelution and precipitated in ethanol.

Tri (g pCS16/UPA probavi se s KpnI i HindIII i izolira se 2,7 vektorski fragment. Nakon elektroeluiranja vektor DNA se istaloži u etanolu. Three (g) of pCS16/UPA were digested with KpnI and HindIII and a 2.7 vector fragment was isolated. After electroelution, the vector DNA was precipitated in ethanol.

100 fmolova pCS16 KpnI-HindIII razrezanog vektora, 200 fmolova KpnI-HindIII razrezanih insertnih fragmenata povežemo u 10 (l 50 mM Tris-HCl pH 7,5, 10 mM MgCl2, 10 mM DTT, 2 mM ATP, 0,5 (g želatine sa 400 U T4 DNA ligaze tijekom 8 sati pri 15°C. Reakcija se zaustavlja inkubacijom 10 minuta pri 65°C. 5 (l te vezne smjese upotrebljavamo za transformaciju stanica E.coli H8101 Ca2+. 100 fmol of pCS16 KpnI-HindIII cut vector, 200 fmol of KpnI-HindIII cut insert fragments are connected in 10 (l 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 10 mM DTT, 2 mM ATP, 0.5 (g gelatin with 400 U of T4 DNA ligase for 8 hours at 15° C. The reaction is stopped by incubation for 10 minutes at 65° C. 5 l of this binding mixture is used for the transformation of E.coli H8101 Ca2+ cells.

Šest ampR kolonija pokupimo od svakog od triju povezivanja. DNA pripremimo postupkom brze izolacije. Kod analize DNA s KpnI-HindIII opažamo insertne trake pravilne veličine. Jedan klon između svakog od triju povezivanja uzgajamo u 100 ml LB mediju koji sadrži 100 mg/ml ampicilina. Plazmidne DNA izvedene iz mp18/KpnI-HindIII/MOUPAATPAB, mp18/KpnI-HindIII/MOUK2TPAB i mp18/KpnI-HindIII/MOUK2UPAB, izoliramo i označimo kao pCS16/MOUPAATPAB, pCS16/MOUK2TPAB i pCS16/MOUK2UPAB. Six ampR colonies were collected from each of the three connections. DNA is prepared by the rapid isolation procedure. When analyzing DNA with KpnI-HindIII, insert bands of the correct size are observed. One clone between each of the three connections is grown in 100 ml LB medium containing 100 mg/ml ampicillin. Plasmid DNAs derived from mp18/KpnI-HindIII/MOUPAATPAB, mp18/KpnI-HindIII/MOUK2TPAB and mp18/KpnI-HindIII/MOUK2UPAB were isolated and designated as pCS16/MOUPAATPAB, pCS16/MOUK2TPAB and pCS16/MOUK2UPAB.

C) Kloniranje MOUPAATPAA, MOUK2TPAB i MOUK2UPAB genskih inserata u plazmid pJDB207 C) Cloning of MOUPAATPAA, MOUK2TPAB and MOUK2UPAB gene inserts into plasmid pJDB207

5 (g pJDB207/PHO5-I-UPA probavi se s 15 U ScaI i 15 U XhoI (Boehringer u 50 (l 10 mM Tris-HC1 pH 7,5, 6 mM MgCl2, 150 mM NaCl, 6 mM merkatoetanola tijekom 1 sata pri 37°C. Nakon dodatka 1 (l RNaze (1 mg/ml) izoliramo 6, 7 kb vektorski fragment. Nakon elektroeluiranja istaložimo vektor DNA. 5 (g pJDB207/PHO5-I-UPA digested with 15 U ScaI and 15 U XhoI (Boehringer) in 50 (l 10 mM Tris-HCl pH 7.5, 6 mM MgCl2, 150 mM NaCl, 6 mM mercatethanol for 1 hour at 37°C. After the addition of 1 (l) RNase (1 mg/ml), we isolate a 6.7 kb vector fragment. After electroelution, we precipitate the vector DNA.

Nakon 15 (g pCS16/MOUPAATPAB, pCS16/MOUK2TPAB i pCS16/MOUK2UPAB inkubiramo pri 37°C tijekom 1 sata u XhoI u 200 (l 10 mM Tris-HCl pH 8, 6 mM MgCl2, 150 mM NaCl, 6 mM merkaptoetanola, ekstrahiramo s jednakim volumenom fenolkloroforma, te istaložimo u etanolu. Istaložene, razrezane sa XhoI, pCS16/MOUPAATPAB, pCS16/MOUK2TPAB i pCS16/MOUK2UPAB DNA, resuspendiramo, u 150 (l 10 mM Tris-HCl pH 7,5, 6 mM MgCl2, 150 mM NaCl, 6 mM merkaptoetanola, 1,5 homidijevog (etidijevog) bromida, inkubiramo 40 minuta pri 37°C sa 12 U ScaI (djelomična probava) i ekstrahiramo s jednakim volumenom fenola, zatim još s jednakim volumenom kloroform-izoamilalkohola (50:1). 1,2 kb fragmente izoliramo na 1% preparativnog agaroznog gela. DNA pkstrahiramo elektroeluiranjem i istaložimo. After 15 (g pCS16/MOUPAATPAB, pCS16/MOUK2TPAB and pCS16/MOUK2UPAB were incubated at 37°C for 1 hour in XhoI in 200 (l 10 mM Tris-HCl pH 8, 6 mM MgCl2, 150 mM NaCl, 6 mM mercaptoethanol, extracted with an equal volume of phenolchloroform, and precipitated in ethanol. Precipitated, cut with XhoI, pCS16/MOUPAATPAB, pCS16/MOUK2TPAB and pCS16/MOUK2UPAB DNA, resuspended, in 150 (l 10 mM Tris-HCl pH 7.5, 6 mM MgCl2, 150 mM NaCl, 6 mM mercaptoethanol, 1.5 homidium (ethidium) bromide, incubated for 40 minutes at 37°C with 12 U ScaI (partial digestion) and extracted with an equal volume of phenol, then with an equal volume of chloroform-isoamyl alcohol (50:1 ).1.2 kb fragments are isolated on 1% preparative agarose gel.DNA is extracted by electroelution and precipitated.

100 fmolova pJDB207/PHO5-I-UPA ScaI-XhoI razrezanog vektora i 200 fmolova Xho-ScaI razrezanog pCS16/MOUPAATPAB, pCS16/MOUK2TPAB, odnosno pCS16/MOUK2UPAB l,2 kb inserata, povežemo u 10 (l 50 mM Tris-HCl pH 7,5, 10 mM MgCl2, 10 mM DTT, 2 mM ATP, 0,5 (g želatine sa 400 U T4 DNA ligaze tijekom 16 sati pri 15°C. Reakciju se zaustavi inkubacijom 10 minuta pri 65°C. 5 (l te vezivne smjese upotrebljavamo za transformaciju stanica E.coli H8101 Ca2+. 100 fmol pJDB207/PHO5-I-UPA ScaI-XhoI cut vector and 200 fmol Xho-ScaI cut pCS16/MOUPAATPAB, pCS16/MOUK2TPAB, i.e. pCS16/MOUK2UPAB l.2 kb inserts, connect in 10 (l 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 10 mM DTT, 2 mM ATP, 0.5 (g gelatin with 400 U T4 DNA ligase for 16 hours at 15°C. The reaction was stopped by incubation for 10 minutes at 65°C. 5 (l we use these binding mixtures for the transformation of E.coli H8101 Ca2+ cells.

Šest ampR kolonija pokupimo od svakog između tih triju povezivanja. DNA pripremimo postupkom brze izolacije. Restrikcijska liza DNA pokazuje pravilnu veličinu insertnih traka. Jedan klon od svakog između triju povezivanja uzgajamo u 100 ml LB medija, koji sadrži 100 (g/ml ampicilina. Plazmide DNA, izvedene od pCS16/MOUPAATPAB, pCS16/MOUK2TPAB, odnosno pCS16/MOUK2UPAB označavamo kao pJDB207/PHO5-I-MOUPAATPAB, pJDB207/PHO5-I-MOUK2TPAB, odnosno pJDB207/PHO5-I-MOUK2UPAB. Six ampR colonies are collected from each of these three connections. DNA is prepared by the rapid isolation procedure. Restriction lysis of DNA shows the correct size of the insert bands. One clone from each between the three connections is grown in 100 ml of LB medium, which contains 100 (g/ml of ampicillin. The DNA plasmids, derived from pCS16/MOUPAATPAB, pCS16/MOUK2TPAB, or pCS16/MOUK2UPAB, are designated as pJDB207/PHO5-I-MOUPAATPAB, pJDB207/PHO5-I-MOUK2TPAB and pJDB207/PHO5-I-MOUK2UPAB, respectively.

Primjer 16 Example 16

Transformacija Saccharomyces cerevisiae GRF18 i priprava ekstrakata stanica kvasaca Transformation of Saccharomyces cerevisiae GRF18 and preparation of yeast cell extracts

Plazmide pJDB207/PHO5-I-MOUK2UPAB, pJDB207/PHO5-IMOUPAATPAB, pJDB207/PHO5-I-MOUK2TPAB, i pJDB207/PHO5-I-MOUK2UPAB uvedemo u Saccharomyces cerevisiae soj GRF18, upotrebom transformacijskog protokola, koji su opisali Hinnen et al. /Proc. Natl. Acad. Sci. USA 75, 1929 (1978)/. Po 5 (lg svake od plazmidnih DNA dodamo k 100 (l sferoplastne suspenzije te smjesu obradimo s polietilenglikolom. Sferoplaste pomiješamo s 10 ml regeneracijskog agara i sadimo ih u ploču s minimalnim medijem kvasca bez leucina. Nakon trodnevne inkubacije pri 30°C dobijemo pribl. 200 transformiranih stanica. Plasmids pJDB207/PHO5-I-MOUK2UPAB, pJDB207/PHO5-IMOUPAATPAB, pJDB207/PHO5-I-MOUK2TPAB, and pJDB207/PHO5-I-MOUK2UPAB were introduced into Saccharomyces cerevisiae strain GRF18, using the transformation protocol described by Hinnen et al. / Proc. Natl. Acad. Sci. USA 75, 1929 (1978)/. We add 5 (lg) of each of the plasmid DNAs to 100 (l of spheroplast suspension and treat the mixture with polyethylene glycol. Spheroplasts are mixed with 10 ml of regeneration agar and planted in a plate with minimal yeast medium without leucine. After three days of incubation at 30°C, we obtain approx. 200 transformed cells.

Pokupimo po jednu koloniju od svake između transformacija kvasca. Pick up one colony of each between yeast transformations.

Različite kolonije označavamo kao: We denote different colonies as:

Saccharomyces cerevisiae GRF18/pJDH207/PHO5-I-MOTPAAUPAB, Saccharomyces cerevisiae GRF18/pJDH207/PHO5-I-MOTPAAUPAB,

Saccharomyces cerevisiae GRF18/pJDB207/PHO5-I-MOUPAATPAB, Saccharomyces cerevisiae GRF18/pJDB207/PHO5-I-MOUPAATPAB,

Saccharomyces cerevisiae GRF18/pJDB207/PHO5-I-MOUK2TPAB, Saccharomyces cerevisiae GRF18/pJDB207/PHO5-I-MOUK2TPAB,

Saccharomyces cerevisiae GRF18/pJDB207/PHO5-I-MOUK2UPAB. Saccharomyces cerevisiae GRF18/pJDB207/PHO5-I-MOUK2UPAB.

Stanice kvasca uzgajamo 24 sata uz potresanje pri 30°C u 20 ml HE.17 medija (8,4 g Yeast Nitrogen Base (Difco), 10 g L-aspariga (Sigma), 1 g L-histidina (Sigma), 40 ml 50%-tne glukoze na 1 1 otopine), u Erlenmayerovoj tikvici od 50 ml, dok se postigne gustoću od 8-10x107 stanica/ml. Stanice centrifugiramo i ponovno suspendiramo u 10 ml 0,9 % NaCl. 2 ml ponovno suspendiranih stanica koristimo za inokulaciju 50 ml slabo P1 minimalnog medija (kao što je opisano u europskoj patentnoj prijavi br. 143081), k čemu dodamo 10 g/1 L-asparagina i 10 g/1 L-histidina (Sigma), u Erlenmayerovim tikvicama od 250 ml. Inkubacija je pri 30°C i 250 okr./min. Yeast cells are grown for 24 hours with shaking at 30°C in 20 ml HE.17 medium (8.4 g Yeast Nitrogen Base (Difco), 10 g L-asparagus (Sigma), 1 g L-histidine (Sigma), 40 ml of 50% glucose to 1 l solution), in a 50 ml Erlenmayer flask, until a density of 8-10x107 cells/ml is reached. The cells are centrifuged and resuspended in 10 ml of 0.9% NaCl. We use 2 ml of resuspended cells to inoculate 50 ml of weak P1 minimal medium (as described in European Patent Application No. 143081), to which we add 10 g/1 L-asparagine and 10 g/1 L-histidine (Sigma), in Erlenmayer flasks of 250 ml. Incubation is at 30°C and 250 rpm.

Stanice iz 10 ml slabo Pi minimalnog medija pokupimo nakon 48 sati centrifugiranjem pri 3000 okr./min. tijekom 10 minuta u Falcon 2070 epruvetama. Stanice jednom isperemo sa 10 ml slabo Pi medija i centrifugiramo. Stanični pelet suspendiramo u liznom puferu /66 mM kalijevog fosfata s pH 7,4, 4 mM Zwittergent (Calbiochem)/. K staničnoj suspenziji dodamo 8 g staklenih kuglica (promjera 0,5-0,75 mm) i Stakleni štapić, nakon toga protresemo suspenziju u Vortex miješalici (Scientific Instruments Inc., USA) s pola brzine 4 x 2 minute u intervalima po 2 minute na ledu. Više od 90% stanica rasprsne se pri ovom postupku. Komadiće stanica i staklene kuglice sedimentiramo centrifugiranjem tijekom 5 minuta pri 3000 okr./min pri 4°C. Gornji sloj (supernatant) koristimo za određivanje PA aktivnosti i za čišćenje i izolaciju PA. Cells from 10 ml of low Pi minimal medium are collected after 48 hours by centrifugation at 3000 rpm. for 10 minutes in Falcon 2070 tubes. The cells are washed once with 10 ml of weak Pi medium and centrifuged. The cell pellet is suspended in lysis buffer /66 mM potassium phosphate with pH 7.4, 4 mM Zwittergent (Calbiochem)/. Add 8 g of glass beads (diameter 0.5-0.75 mm) and a glass rod to the cell suspension, then shake the suspension in a Vortex mixer (Scientific Instruments Inc., USA) at half speed 4 x 2 minutes in 2-minute intervals on the ice. More than 90% of the cells burst during this procedure. Cell pieces and glass beads are sedimented by centrifugation for 5 minutes at 3000 rpm at 4°C. We use the upper layer (supernatant) to determine PA activity and for purification and isolation of PA.

Primjer 17 Example 17

Uvođenje hibridnih PA kodnih sekvenci u stanični ekspresijski vektor sisavaca Introduction of hybrid PA coding sequences into a mammalian cell expression vector

A) Uvođenje (insert) UPAATPAB, potpune, hibridne kodne sekvance A) Introduction (insert) UPAATPAB, complete, hybrid code sequence

RF DNA mp18/KpnI-HindIII/MUPAATPAB narežemo na SmaI mjestu, koje se nalazi ravno iznad početno kodne sekvence i povežemo na SacI linker (CGAGCTCG). Zatim plazmid razrežemo sa SacI, koji zareže u položaju vezanih linkera i na nativnom ScaI mjestu u t-PA-izvedenom dijelu sekvence, koji kodira za hibrid PA. Manjeg od dvaju nastalih fragmenata očistimo preko agaroznog gela i povežemo ga na SacI-razrezan pCGA44 (vidi primjer 4), transformiran u E.coli HB101, i DNA iz kandidatnih klona ispitamo s EcoRI. Klon s očekivanim restrikcijskim uzorkom navodimo kao pCGCI i UPAATPAB. RF DNA mp18/KpnI-HindIII/MUPAATPAB is cut at the SmaI site, which is located directly above the initial coding sequence, and connected to the SacI linker (CGAGCTCG). The plasmid is then cut with SacI, which cuts at the position of the attached linkers and at the native ScaI site in the t-PA-derived part of the sequence, which codes for the hybrid PA. The smaller of the two resulting fragments was purified over an agarose gel and ligated to SacI-cut pCGA44 (see example 4), transformed into E.coli HB101, and DNA from candidate clones was tested with EcoRI. We list the clone with the expected restriction pattern as pCGCI and UPAATPAB.

B) Uvođenje UK2TPAB hibridne kodne sekvence B) Introduction of the UK2TPAB hybrid coding sequence

RF DNA mp18/KpnI-HindIII/MOUK2TPAB narežemo na SmaI mjestu, koje se nalazi ravno iznad početno kodirane sekvence i povežemo na SacI kao gore. Nakon razrezivanja sa SacI kloniramo nastali manji fragment u SacI-razrezani pCGA44, kao što je opisano gore, te klon s očekivanim restrikcijskim uzorkom navodimo kao pCGC2/UK2TPAB. RF DNA mp18/KpnI-HindIII/MOUK2TPAB is cut at the SmaI site, located directly above the initial coding sequence, and ligated to SacI as above. After cutting with SacI, we clone the resulting smaller fragment into SacI-cut pCGA44, as described above, and designate the clone with the expected restriction pattern as pCGC2/UK2TPAB.

C) Uvođenje UK2UPAB hibridne kodne sekvence C) Introduction of the UK2UPAB hybrid coding sequence

RF DNA mp18/KpnI-HindIII/MOUK2UPAB narežemo na SmaI mjestu, koje se nalazi iznad u-PA kodne sekvence te pri Xhoi mjestu ispod kodne sekvence (u vektor DNA). Ljepljiv kraj DNA fragmenta popunimo upotrebom E.coli DNA polimeraze I (vidi primjer 5D). SacI linkere povežemo na tupe krajeve, DNA razrežemo sa Sacl, manjeg dvaju od nastalih fragmenata očistimo preko agaroznog gela i kloniramo u SacI-razrezani pCGA44. Klon s očekivanim EcoRI restrikcijskim uzorkom navodimo kao pCGC3/LTK2TPAB. RF DNA mp18/KpnI-HindIII/MOUK2UPAB is cut at the SmaI site, which is located above the u-PA code sequence and at the Xhoi site below the code sequence (in vector DNA). We fill in the sticky end of the DNA fragment using E.coli DNA polymerase I (see example 5D). The SacI linkers are connected to the blunt ends, the DNA is cut with SacI, the smaller of the two resulting fragments is purified over an agarose gel and cloned into SacI-cut pCGA44. We refer to the clone with the expected EcoRI restriction pattern as pCGC3/LTK2TPAB.

D) Uvođenje TPAAUPAB, potpune kodne sekvence D) Introduction of TPAAUPAB, the complete coding sequence

Stupanj 1: RF DNA mp18/BamHI/MOTPAAUPAB razrežemo s BamHI i manjeg (približno 2.1 kb) između fragmenata kloniramo u BamHI narezan pJDB207/PHO5-I-TPAAUPAB, (vidi primjer 9) vektor. Pravilnu orijentaciju odaberemo probavom s Hind-III i jedan pravilan plazmid imenujemo pJDB207/PHO5-I -MOTPAAUPAB. Step 1: RF DNA mp18/BamHI/MOTPAAUPAB is cut with BamHI and the smaller (approximately 2.1 kb) between fragments is cloned into the BamHI cut pJDB207/PHO5-I-TPAAUPAB, (see example 9) vector. We select the correct orientation by digestion with Hind-III and name one correct plasmid pJDB207/PHO5-I -MOTPAAUPAB.

Stupanj 2: ~ 600 bp SacI-NarI fragment iz ptNC.UC (vidi primjer 3) i ~ 1350 bp NarI-XhoI fragment iz pJDB207/PHO5-I-TPAAUPAB izoliramo i kloniramo u SacI-XhoI razrezan pCS16 (vidi primjer 7) vektor ~ 1.9 kb insert potvrdimo probavom sa SacI-XhoI i EcoRI. Jedan pravilan plazmid imenujemo pCS16/MOTPAAUPAB. Step 2: ~ 600 bp SacI-NarI fragment from ptNC.UC (see example 3) and ~ 1350 bp NarI-XhoI fragment from pJDB207/PHO5-I-TPAAUPAB isolated and cloned into SacI-XhoI cut pCS16 (see example 7) vector We confirm the ~ 1.9 kb insert by digestion with SacI-XhoI and EcoRI. We name one proper plasmid pCS16/MOTPAAUPAB.

Stupanj 3: Plazmid pCSl6/MOTPAAUPAB razrežemo na mjestu Xhoi, lociranom ispod u-PA kodne sekvence, te ljepljive krajeve popunimo upotrebom E.coli DNA polimeraze I. SacI linkere povežemo na tupe krajeve i DNA razrežemo sa SacI. Manjeg od dvaju fragmenata očistimo preko agaroznog gela i kloniramo u SacI-razrezan pBR4a (vidi primjer 5) vektorski fragment. Pravilna orijentacija i pravilna veličina inserata potvrđeni su probavom s BamHI odnosno SacI. Jedan pravilan plazmid označavamo kao pCGC4a/TPAAUPAB. Step 3: Plasmid pCSl6/MOTPAAUPAB is cut at the Xhoi site, located below the u-PA coding sequence, and the sticky ends are filled using E.coli DNA polymerase I. SacI linkers are connected to the blunt ends and the DNA is cut with SacI. The smaller of the two fragments was purified over an agarose gel and cloned into the SacI-cut pBR4a (see example 5) vector fragment. The correct orientation and size of the inserts were confirmed by digestion with BamHI and SacI, respectively. We designate one proper plasmid as pCGC4a/TPAAUPAB.

Primjer 18 Example 18

Konstrukcija slijedećih hibridnih PA kodnih sekvenci i njihovo uvođenje u ekspresijski vektor stanice sisavca Construction of the following hybrid PA coding sequences and their introduction into a mammalian cell expression vector

A) Kloniranje pCGC4a/TPAAUPAB fragmenta u M13mp18 A) Cloning of the pCGC4a/TPAAUPAB fragment into M13mp18

3 (g pCGC4a/TPAAUPAB (vidi primjer 17) probavi se s 12 U SacI (Bohringer) u 20 (l 10 mM Tris-HCl pH 7,5, 6 mM MgCl2, 6 mM merkaptoetanola jedan sat pri 37°C. ~ 1,9 kb fragment izoliramo na 0,7% preparativnog agaroznog gela. DNA ekstrahiramo elektroeluiranjem i istaložimo. 3 (g of pCGC4a/TPAAUPAB (see Example 17) was digested with 12 U of SacI (Bohringer) in 20 (l of 10 mM Tris-HCl pH 7.5, 6 mM MgCl2, 6 mM mercaptoethanol for one hour at 37°C. ~ 1 The .9 kb fragment is isolated on a 0.7% preparative agarose gel, the DNA is extracted by electroelution and precipitated.

0,5 (g M13mp19 (RF) probavi se sa SacI. 7.3 kb vektorski fragment izoliramo na 0,7% preparativnog agaroznog gela. DNA elektroeluiramo i istaložimo. 0.5 g of M13mp19 (RF) was digested with SacI. The 7.3 kb vector fragment was isolated on a 0.7% preparative agarose gel. The DNA was electroeluted and precipitated.

100 fmolova M13mp18 SacI razrezanog vektora i 200 fmolova SacI inserta vežemo u 10 (l 50 mM Tris-HCl pH 7,5, 10 mM MgCl2, 10 mM DTT, 2 mM ATP, 0,5 (g želatine sa 400 U T4 DNA ligaze tijekom 7 sati pri 15°C. Reakciju zaustavimo inkubacijom 10 minuta pri 65°C. 5 (l te vezne smjese upotrijebimo za transformaciju E.coli JM101 kompententnih stanica. Pokupimo šest bezbojnih plakova (pločica) i pripremimo jednovlaknati i replikatni oblik (RF) DNA. Pri analizi R-DNA četiri klona pokazuju pravilnu veličinu inserata i pravilnu orijentaciju. Jednog od tih klonova navodimo kao mp18/SacI/TPAAUPAB (BC). 100 fmol of M13mp18 SacI cut vector and 200 fmol of SacI insert are ligated in 10 (l 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 10 mM DTT, 2 mM ATP, 0.5 (g gelatin with 400 U T4 DNA ligase for 7 hours at 15°C. We stop the reaction by incubating for 10 minutes at 65°C. We use 5 l of this binding mixture to transform E.coli JM101 competent cells. We collect six colorless plaques (plates) and prepare a single-stranded and replicate form (RF) DNA.On R-DNA analysis, four clones show correct insert size and correct orientation.One of these clones is referred to as mp18/SacI/TPAAUPAB (BC).

B) Kloniranje pBR4a Sacl fragmenta u M13mp18 B) Cloning of the pBR4a Sac1 fragment into M13mp18

pBR4a (vidi primjer 5) SacI fragmenta u M13mp18. Jedan od klonova ima pravilnu veličinu inserta i orijentaciju i navodimo ga kao mp18/SacI/TPAAUPAB (BR). pBR4a (see example 5) of the SacI fragment in M13mp18. One of the clones has the correct insert size and orientation and is designated as mp18/SacI/TPAAUPAB (BR).

C) Delecijska mutageneza na TPA-UPA hibrid-konstrukata C) Deletion mutagenesis of the TPA-UPA hybrid construct

1) Konstrukcija K2UPAB (BC) /npr. tPA (1-3)-tPA (176-275)-uPA (159-411)/ 1) Construction of K2UPAB (BC) /eg. tPA (1-3)-tPA (176-275)-uPA (159-411)/

Delecijsku mutagenezu vršimo kao što je opisano u općem protokolu (vidi primjer 4) na mp18/SacI/TPAAUPAB (BC). Pozitivne klone dobivene pri hibridizaciji potvrdimo restrikcijskom analizom sa SacI. Kod mutanata opažamo ~ 1380 bp traku, us usporedbi s divljim tipom koji daje ~ 1900 bp fragment. Mutanti su nadalje potvrđeni s probavnim EcoRI. Jedan mutantni klon pravilne strukture navodimo kao SacI/K2UPAB(BC). Ispuštanje verificiramo metodom lančano-termonatorskog sekvenciranja primjenom sekvencne usporedbe sa sekvencom Deletion mutagenesis is performed as described in the general protocol (see example 4) on mp18/SacI/TPAAUPAB (BC). Positive clones obtained during hybridization were confirmed by restriction analysis with SacI. In the mutants we observe a ~1380 bp band, compared to the wild type which gives a ~1900 bp fragment. Mutants were further confirmed with EcoRI digestion. One mutant clone with the correct structure is listed as SacI/K2UPAB(BC). We verify the release by the method of chain-termonator sequencing using sequence comparison with the sequence

5'CCCAGTGCCTGGGCATTGGGGTTCTGTGCTGTG3' 5'CCCAGTGCCTGGGCATTGGGGTTCTGTGCTGTG3'

Taj primjer je komplemantaran kodnom vlaknu t-PA(853-821) s pogrešnim vezanjem u položaju 838 (t-PA). This example is complementary to the coding strand t-PA(853-821) with a missense at position 838 (t-PA).

2) Konstrukcija FUPAB(BC) /npr. tPA(1-49)-tPA(262-275)-uPA(159-411) 2) Construction FUPAB(BC) /e.g. tPA(1-49)-tPA(262-275)-uPA(159-411)

Leiecijsku mutagenezu vršimo kao što je opisano u općem protokolu (vidi primjer 14) na mp18/SacI/TPAAUPAB-(BC). Pozitivne klone dobivene pri hibridizaciji potvrdimo restrikcijskom analizom sa SacI. Kod mutanata koristimo ~ 1200 bp traku u usporedbi s divljim tipom koji daje ~ 1900 bp fragment. Mutanti su nadalje potvrđeni s probavnim EcoRI. Jedan mutantni klon pravilne strukture navodimo kao mp18/SacI/FUPAB(BC). Deleciju verificiramo metodom lančano-termonatorskog sekvenciranja primjenom sekvenene usporedbe sa sekvencom We performed the deletional mutagenesis as described in the general protocol (see example 14) on mp18/SacI/TPAAUPAB-(BC). Positive clones obtained during hybridization were confirmed by restriction analysis with SacI. In the mutants we use a ~1200 bp band compared to the wild type which gives a ~1900 bp fragment. Mutants were further confirmed with EcoRI digestion. One mutant clone with the correct structure is referred to as mp18/SacI/FUPAB(BC). Deletion is verified by the method of chain-termination sequencing using sequence comparison with the sequence

5'CAGAGCCCCCCCGGTGC3'. 5'CAGAGCCCCCCGGTGC3'.

Taj primjer je komplementaran kodnom vlaknu u-PA(666-682). This example is complementary to the coding strand u-PA(666-682).

3) Konstrukcija FK2UPAB(BC) /npr. tPA (1-49) -tPA (176-275) -uPA(159-411) 3) Construction FK2UPAB(BC) /e.g. tPA (1-49) -tPA (176-275) -uPA (159-411)

Delecijsku mutagenezu vršimo kao što je opisano u općem protokolu (vidi primjer 14) na mp18/SacI/TPAAUPAB(BC). Pozitivni kloni dobiveni pri hibridizaciji potvrđeni su restrikcijskom analizom sa SacI. Kod mutanata opažamo ~ 1470 bp traku u usporedbi s divljim tipom koji daje ~ 1900 bp fragment. Mutanti se nadalje potvrđuju s probavnim EcoRI. Jedan mutantni klon .pravilne strukture navodimo kao mp18/SaeI/KF2UPAB(BC). Deleciju verificiramo metodom lančano-termonatorskog sekvenciranja primjenom sekvencne usporedbe sa sekvencom, Deletion mutagenesis is performed as described in the general protocol (see example 14) on mp18/SacI/TPAAUPAB(BC). Positive clones obtained during hybridization were confirmed by restriction analysis with SacI. In the mutants we observe a ~1470 bp band compared to the wild type which gives a ~1900 bp fragment. Mutants are further confirmed with EcoRI digestion. One mutant clone with the correct structure is listed as mp18/SaeI/KF2UPAB(BC). Deletion is verified by the chain-termonator sequencing method using sequence comparison with the sequence,

5' CCCAGTGCCTGGGCATTGGGGTTCTGTGCTGTG 3'. 5' CCCAGTGCCTGGGCATTGGGGTTCTGTGCTGTG 3'.

Taj primjer je komplemantaran kodnom vlaknu T-PA(853-821) s pogrešnim vezanjem u položaju 838 (t-PA). This example is complementary to the coding strand T-PA(853-821) with a missense at position 838 (t-PA).

4) Konstrukcija FGK2UPAB(BC) /npr. tPA(1-86)-tPA(176-275)-uPA(159-411) 4) Construction FGK2UPAB(BC) /eg. tPA(1-86)-tPA(176-275)-uPA(159-411)

Delecijsku mutagenezu vršimo kao što je opisano u općem protokolu (vidi primjer 14) na mp18/SacI/TPAAUPAB(HC). Pozitivni kloni dobiveni pri hibridizaciji potvrđeni su restrikcijskom analizom sa SacI. Kod mutanata opažamo ~ 1580 bp traku u usporedbi s divljim tipom koji daje ~ 1900 bp fragment. Mutanti se nadalje potvrđuju s probavnim EcoRI. Jedan mutantni klon pravilne strukture navodimo kao mp18/SacI/FGK2UPAB(BC). Deleciju verificiramo metodom lančano-termonatorskog sekvenciranja primjenom sekvencne usporedbe sa sekvencom Deletion mutagenesis is performed as described in the general protocol (see example 14) on mp18/SacI/TPAAUPAB(HC). Positive clones obtained during hybridization were confirmed by restriction analysis with SacI. In the mutants we observe a ~1580 bp band compared to the wild type which gives a ~1900 bp fragment. Mutants are further confirmed with EcoRI digestion. One mutant clone with the correct structure is referred to as mp18/SacI/FGK2UPAB(BC). Deletion is verified by the chain-termonator sequencing method using sequence comparison with the sequence

5' CCCAGTGCCTGGGCATTGGGGTTCTGTGCTGTG 3'. 5' CCCAGTGCCTGGGCATTGGGGTTCTGTGCTGTG 3'.

Taj primjer je komplemantaran kodnom vlaknu T-PA(853-821) s pogrešnim povezivanjem u položaju 838 (t-PA). This example is complementary to the coding strand T-PA(853-821) with a mis-splicing at position 838 (t-PA).

5) Slične delecijske protokole mutageneze koristimo za stvaranje 5) We use similar deletion mutagenesis protocols for creation

K2UPAB(BR) (tPA(1-3)-tPA(176-262)-uPA(132-411)( K2UPAB(BR) (tPA(1-3)-tPA(176-262)-uPA(132-411)(

FUPAB(BR) (tPA(1-49)-uPA(134-411)( FUPAB(BR) (tPA(1-49)-uPA(134-411)(

FK2UPAB(BR) (tPA(1-49)-tPA(176-262)-uPA(132-411)( i FK2UPAB(BR) (tPA(1-49)-tPA(176-262)-uPA(132-411))( and

FGK2UPAB(BR) (tPA(1-86)-tPA(176-262)-uPA(132-411)(. FGK2UPAB(BR) (tPA(1-86)-tPA(176-262)-uPA(132-411)(.

D) uvođenje hibridnih kodnih sekvenci u ekspresijski vektor stanica sisavaca D) introduction of hybrid coding sequences into the expression vector of mammalian cells

1) Uvođenje FUPAB(BC), K2UPAB (BC), FK2UPAB (BC) i FGK2UPAB (BC) 1) Introduction of FUPAB(BC), K2UPAB (BC), FK2UPAB (BC) and FGK2UPAB (BC)

RF DNA iz mp18/Sacl/K2UPAB(BC), mp18/SacI/FUPAB(BC), mp18/SacI/FK2UPAB(BC), mp18/SacI/TGK2UPAB(BC) razrežemo sa SacI. Manjeg od dvaju nastalih fragmenata izoliramo i vežemo na SacI-razrezan pBR4a (vidi primjer 5) vektorski fragment, transformiran u E.coli HB101, i pravilnu orijentaciju i pravilnu veličinu inserata potvrdimo probavljanjem s BamHI odnosno SacI. Nastale plazmide označavamo kao pCGC5/K2UPAB, pCGC6/FUPAB(BC), pCGC7/FK2UPAB(BC) odnosno pCGC8/FGK2UPAB (BC). RF DNA from mp18/SacI/K2UPAB(BC), mp18/SacI/FUPAB(BC), mp18/SacI/FK2UPAB(BC), mp18/SacI/TGK2UPAB(BC) is cut with SacI. The smaller of the two resulting fragments is isolated and ligated to the SacI-cut pBR4a (see example 5) vector fragment, transformed into E.coli HB101, and the correct orientation and correct size of the insert are confirmed by digestion with BamHI or SacI. We denote the resulting plasmids as pCGC5/K2UPAB, pCGC6/FUPAB(BC), pCGC7/FK2UPAB(BC) and pCGC8/FGK2UPAB (BC).

2) Slično K2UPAB(BR), FUPAB (BR), FK2UPAB (BC) i FGK2UPAB (BR) DNA (vidi gore) uvodimo u pBR4a. Dobivene plazmide označavamo kao pBR5, pBR6, pBR7 odnosno pBR8. 2) Similarly K2UPAB(BR), FUPAB (BR), FK2UPAB (BC) and FGK2UPAB (BR) DNA (see above) are introduced into pBR4a. We designate the obtained plasmids as pBR5, pBR6, pBR7 and pBR8, respectively.

Primjer 19 Example 19

Ekspresijski vektori sisavaca koji obuhvaćaju gen DHFR Mammalian expression vectors comprising the DHFR gene

Plazmid pSV2dhfr (ATCC 37145) je plazmid koji dopušta selekciju stanica koje sadrže transformante DHFR selekcijom upotrebom antifolatnog lijeka metotreksata ili selekciju DHFR+ transformanata DHFR- CHO stanica /DUKXBI stanice; G. Urlaub, Proc. Natl. Acad. Sci. USA 77, 4216-4220 (1989)/. Plasmid pSV2dhfr (ATCC 37145) is a plasmid that allows selection of cells containing DHFR transformants by selection using the antifolate drug methotrexate or selection of DHFR+ transformants of DHFR- CHO cells /DUKXBI cells; Mr. Urlaub, Proc. Natl. Acad. Sci. USA 77, 4216-4220 (1989)/.

Samo na jedno BamHI mjesto tog plazmida dade se klonirati BamHI fragment pCGA28 koji sadrži modularni t-PA gen. Plazmide koji sadrže bilo koju od dviju mogućih orijentacija označavamo kao pCGA700a/tPA i pCGA700b/tPA. Obje možemo upotrijebiti za ekspresiju t-PA u stanicama kulture tkiva, iako prednost ima pCGAa/tPA, gdje je transkripcija t-PA gena istog smjera kao transkripcija DHFR gena, jer ta orijentacija često vodi do blago viših ekspresijskih razina nego s plazmidima koji se konvergentno transkribiraju. A BamHI fragment of pCGA28 containing the modular t-PA gene was cloned into only one BamHI site of that plasmid. Plasmids containing either of the two possible orientations are designated as pCGA700a/tPA and pCGA700b/tPA. Both can be used to express t-PA in tissue culture cells, although pCGAa/tPA is preferred, where transcription of the t-PA gene is in the same direction as that of the DHFR gene, as this orientation often leads to slightly higher expression levels than with convergently expressed plasmids. transcribe.

Na analogan način možemo kombinirati modularne gene koji kodiraju za hibridne plazminogenske aktivatore (dolje) iz plazmida pBRla/tPA, pBR2a/UPAATPAB, pCGC1/UPAATPAB i pCGC2/UK2TPAB, kao BamHI fragmente s DHFR genom pCGA700a/tPA, da se stvore plazmidi pCGA70la/tPA, pCGA702a /UPAATPAB, pCGC705a/UPAATPAB odnosno pCGA707a/UK2TPAB, gdje se modularni plazminogenski aktivatorski gen transkribira u istom smjeru kao DHFR gen, te pCGA701b/tPA, pCGA702b /UPAATPAB, pCGC705b/UPAATPAB, pCGA707b/UK2TPAB, gdje se oba gena transkribiraju u suprotnim smjerovima. Zbog prisutnosti BamHI sekvence u dijelu koji kodira za u-PA B-lance modularni plazminogenski aktivatorski gen dade se izolirati samo s razdjelnim rezom (2 između 3 BamHI položaja) neoR plazmida, nakon čega slijedi izolacija prikladnog fragmenta (vidi slike) elektreforezom na agarorznom gelu. In an analogous way, we can combine the modular genes coding for hybrid plasminogen activators (below) from plasmids pBRla/tPA, pBR2a/UPAATPAB, pCGC1/UPAATPAB and pCGC2/UK2TPAB, as BamHI fragments with the DHFR gene pCGA700a/tPA, to create plasmids pCGA70la/ tPA, pCGA702a /UPAATPAB, pCGC705a/UPAATPAB or pCGA707a/UK2TPAB, where the modular plasminogen activator gene is transcribed in the same direction as the DHFR gene, and pCGA701b/tPA, pCGA702b /UPAATPAB, pCGC705b/UPAATPAB, pCGA707b/UK2TPAB, where both genes are transcribed in opposite directions. Due to the presence of the BamHI sequence in the u-PA B-chain coding part, the modular plasminogen activator gene could only be isolated with a cleavage cut (2 out of 3 BamHI sites) of the neoR plasmid, followed by isolation of the appropriate fragment (see figures) by agarose gel electrophoresis .

Tako iz pBR3a/uPA, pBR4a/UPAATPAB, pBR5/K2UPAB, pBR6/FUPAB, pBR7/FK2UPAB, pBRB/FGK2UPAB, pCGC3/UK2UPAB, pCGC4a/TPAAUPAB, pCGC/K2UPAB, pCGC6/FUPAB, pCGC7/FK2UPAB i pCGC8/FGK2UPAB možemo konstruirati pCGC703a/uPA, pCGC704a/TPAAUPAB, pCGA705a/K2UPAB, pCGC708a/FUPAB, pCGA706a/FK2UPAB, pCGA707a/FGK2UPAB, pCGA709a/UK2UPAB, pCGA711a/TPAAUPAB, pCGA712a/K2UPAB, pCGA713a/FUPAB, pCGA714a/FK2UPAB odnosno pCGA715a/FGK2UPAB, gdje se svi plazminogenski aktivatorski geni transkribiraju (prepišu) u istom smjeru kao DHER gen i nadalje pCGA703b/uPA, pCGA704b/TPAAUPAB, pCGA708b/FUPAB, pCGA705b/K2UPAB, pCGA706a/FK2UPAB, pCGA707b/FGK2UPAB, pCGA709b/UK2UPAB, pCGA711b/TPAAUPAB, pCGA712b/K2UPAB, pCGA713b/FUPAB, pCGA714b/FK2UPAB i pCGA715b/FGK2UPAB, gdje se oba gena transkribiraju nekonvergentno. Thus from pBR3a/uPA, pBR4a/UPAATPAB, pBR5/K2UPAB, pBR6/FUPAB, pBR7/FK2UPAB, pBRB/FGK2UPAB, pCGC3/UK2UPAB, pCGC4a/TPAAUPAB, pCGC/K2UPAB, pCGC6/FUPAB, pCGC7/FK2UPAB and pCGC8/FGK2UPAB we can konstruirati pCGC703a/uPA, pCGC704a/TPAAUPAB, pCGA705a/K2UPAB, pCGC708a/FUPAB, pCGA706a/FK2UPAB, pCGA707a/FGK2UPAB, pCGA709a/UK2UPAB, pCGA711a/TPAAUPAB, pCGA712a/K2UPAB, pCGA713a/FUPAB, pCGA714a/FK2UPAB odnosno pCGA715a/FGK2UPAB, gdje all plasminogen activator genes are transcribed (overwritten) in the same direction as the DHER gene and further pCGA703b/uPA, pCGA704b/TPAAUPAB, pCGA708b/FUPAB, pCGA705b/K2UPAB, pCGA706a/FK2UPAB, pCGA707b/FGK2UPAB, pCGA709b/UK2UPAB, pCGA711b/TPAAUPAB, pCGA712b /K2UPAB, pCGA713b/FUPAB, pCGA714b/FK2UPAB and pCGA715b/FGK2UPAB, where both genes are transcribed non-convergently.

Primjer 20 Example 20

Priprava hibridnih plazminogenskih aktivatora s transformiranim stanicama sisavaca Preparation of hybrid plasminogen activators with transformed mammalian cells

A) Održavanje i DNA transfekcija stanica kultura tkiva; opći postupak A) Maintenance and DNA transfection of tissue culture cells; general procedure

DNA konstrukte izrazimo u DUKXBI, mutantu ovarijskih stanica kineskog hrčka (CHO) koje nemaju enzima dihidrofolat-reduktaze /G. Urlaub et al., Proc. Nat. Acad. Sci. USA 77, 4216-4220 (1980)/. DUKXBI stanice uzgajamo u alfa-MEM mediju koji sadrži nukleozide (GIBCO) kojima smo dodali 5% fetusnog telećeg seruma. We express the DNA constructs in DUKXBI, a mutant of Chinese hamster ovary (CHO) cells lacking the enzyme dihydrofolate reductase /G. Urlaub et al., Proc. Nat. Acad. Sci. USA 77, 4216-4220 (1980)/. We grow DUKXBI cells in alpha-MEM medium containing nucleosides (GIBCO) to which we added 5% fetal calf serum.

Stanice nasadimo s gustoćom 10.000/cm u multi-ploče sa 6 utora (promjera 3,4 cm) i transformiramo sa 4 (g DNA: DNA otopimo u količini 50 (g/ml u 10 ml Tric-HCl pH 7,0, koja sadrži 0, 1 mM EDTA, hlađeno na ledu tijekom 5 minuta, doda se 0,25 volumena 1 M CaCl2 i inkubiramo 10 minuta na ledu. Zatim smjesu pomiješamo s jednakim volumenom 2 x HBS (50 mM Hepes, 280 mM NaCl, 0,75 mM Na2HPO4, 0,75 mM NaH2PO4, pH 7,12, nakon čega slijedi još jedna desetminutna inkubacija na ledu. Konačno taj zajednički talog DNA-Ca-fosfata dodamo u uzgojni medij i stanice s DNA inkubiramo 16-18 sati, nakon čega slijedi glicerolni šok, tj. stanice isperemo s TBS (80 g/1 NaCl, 3, 8 g/1 KCl, 1 g/1 Na2HPO4 (2H2O, 0,114 g/1 CaCl2 (2H2O, 0,11 g/1 MgCl2 ( 6H2O, 25 mM Tris-HCl pH 7, 5) , inkubiramo 1 minutu s 20% (vol./vol.) glicerola u TBS, ponovno isperemo s TBS i uzgajamo 24 sata u mediju kulture tkiva. Stanice zatim tripsiniziramo i prenesemo ih u Petrijeve zdjelice promjera 8 cm. Slijedeći dan nadomjestimo prvobitni uzgojni medij bez selektivnog a sredstva s medijem koji sadrži 1 mg/1 geneticina. Medij nadomještamo svaki treći ili četvrti dan. Kolonije možemo vidjeti otprilike 14. dana. Stanice iz individualnih kolonija izoliramo struganjem s koničnom pipetom, pri čemu ih istovremeno usisamo u konus napunjen otopinom tripsina, te svaku prenesemo u utor multiploče s 24 utora, u koju dovodimo medij koji sadrži geneticin. Ako su kofluentne te kulture cijepimo na multiploče sa 6 utora i zatim u Petrijeve zdjelice promjera 8 cm. Cells are seeded at a density of 10,000/cm in multi-plates with 6 slots (diameter 3.4 cm) and transformed with 4 (g of DNA: DNA is dissolved in an amount of 50 (g/ml in 10 ml of Tric-HCl pH 7.0, which containing 0.1 mM EDTA, cooled on ice for 5 min, 0.25 volume of 1 M CaCl2 was added and incubated for 10 min on ice. The mixture was then mixed with an equal volume of 2 x HBS (50 mM Hepes, 280 mM NaCl, 0, 75 mM Na2HPO4, 0.75 mM NaH2PO4, pH 7.12, followed by another ten-minute incubation on ice. followed by a glycerol shock, i.e. the cells were washed with TBS (80 g/1 NaCl, 3.8 g/1 KCl, 1 g/1 Na2HPO4 (2H2O, 0.114 g/1 CaCl2 (2H2O, 0.11 g/1 MgCl2 ( 6H2O , 25 mM Tris-HCl pH 7.5) , incubate for 1 minute with 20% (vol./vol.) glycerol in TBS, wash again with TBS and grow for 24 hours in tissue culture medium. Cells are then trypsinized and transferred to Petri dishes bowls with a diameter of 8 cm culture medium without a selective agent with a medium containing 1 mg/1 geneticin. We replace the medium every third or fourth day. We can see colonies on about the 14th day. Cells from individual colonies are isolated by scraping with a conical pipette, while at the same time sucking them into a cone filled with trypsin solution, and transferring each one to a groove of a multiplate with 24 grooves, into which we feed the medium containing geneticin. If they are cofluent, we inoculate these cultures on multiplates with 6 slots and then in Petri dishes with a diameter of 8 cm.

B) pokusi na agaroznoj ploči za plazminogenske aktivatore B) experiments on agarose plate for plasminogen activators

Za te osjetljive pokuse za plazminogenske aktivatore koriste se agarozni geli kojima je dodan plazminogen (ishodna otopina je pripremljena otapanjem plazminogena Sigma A-6877 u količini 1 mg/ml te dvostrukom dijalizom prema 100 volumnom 50 mM Tris-HCl pH 8,0), ili kazein (dodan kao nemasno mlijeko) ili fibrin (dodan kao fibrogen plus trombin). Uzorak koji sadrži plazminogenski aktivator, unesemo u rupice izdubljene u 4 mm debelom sloju agaroze, te gel zatim inkubiramo pri 37°C. Zatim enzimatsku aktivnost osiguramo time da plazminogenski aktivator radijalno difundira od utora s uzorkom, pretvara plazminogen u gelu u plazmin koji probavi kazein ili fibrin, čime se stvara jasan obruč u neprozirnom gelu oko utora s uzorkom. Radius obruča mjeren od ruba utora s uzorkom je mjerilo za količinu aktivacijskog plazminogena. Pokus ne pokazuje linearni odziv na količinu dodanog plazminogenskog aktivatora. Za predpokus manjih količina plazminogenskog aktivatora inkubaciju možemo produljiti na više dana. Način rada i kalibriranje kazeinskog pokusa su kao koji koje su opisali Tang et al., /Anal. N.Y. Acad. Sci. 434, 536-540 (1984)/, samo što umjesto 2% (masa/volumen) Carnation nemasnog mliječnog praha upotrebljavamo 12,5% (vol./vol.) steriliziranog (UHT) nemasnog mlijeka Migros Corp. (Švicarska). Ako koristimo fibrin /Granelli-Piperno i Reich, J. Exp. Med. 148, 223-234 (1978) / kao supstrat, otopimo 0,2 g agaroze u 15 ml 0,9% NaCl i ohladimo na 42°C. U toj točki dodamo 5 ml 0, 9% NaCl koji sadrži 80 mg govedeg fibrinogena (Sigma F-8630), 0,1 ml plazminogenske otopine (gore) i 0,1 ml 100 mg/ml natrijevog azida pri 42°C. Konačno dodamo 0,2 ml goveđeg trombina (Sigma T-6634), otopljenog u količini 16,6 NIH jedinica/ml u 0,9%-tnom NaCl), nakon čega smjesu brzo izlijemo u Petrijeve zdjelice (promjera 8 cm) i pustimo ohladiti na sobnu temperaturu tijekom 1 sata. Nastali gel debljine pribl. 4 mm možemo pohraniti pri 4°C nekoliko dana, ili se odmah koristi na isti način kao gornji gel, koji sadrži kazein. For these sensitive experiments for plasminogen activators, agarose gels to which plasminogen was added are used (the resulting solution was prepared by dissolving plasminogen Sigma A-6877 in the amount of 1 mg/ml and by double dialysis against 100 volumes of 50 mM Tris-HCl pH 8.0), or casein (added as skimmed milk) or fibrin (added as fibrogen plus thrombin). The sample containing the plasminogen activator is introduced into the holes dug in a 4 mm thick layer of agarose, and the gel is then incubated at 37°C. Enzymatic activity is then ensured by plasminogen activator diffusing radially from the patterned slot, converting the plasminogen in the gel to plasmin that digests casein or fibrin, creating a clear ring in the opaque gel around the patterned slot. The radius of the hoop measured from the edge of the pattern slot is a measure of the amount of activated plasminogen. The experiment does not show a linear response to the amount of plasminogen activator added. For a preliminary experiment with smaller quantities of plasminogen activator, we can extend the incubation for several days. The method and calibration of the casein experiment were as described by Tang et al., /Anal. N.Y. Acad. Sci. 434, 536-540 (1984)/, except that instead of 2% (mass/volume) Carnation low-fat milk powder, we use 12.5% (vol./vol.) sterilized (UHT) low-fat milk from Migros Corp. (Switzerland). If we use fibrin /Granelli-Piperno and Reich, J. Exp. Honey. 148, 223-234 (1978) / as a substrate, dissolve 0.2 g of agarose in 15 ml of 0.9% NaCl and cool to 42°C. At this point we add 5 ml of 0.9% NaCl containing 80 mg of bovine fibrinogen (Sigma F-8630), 0.1 ml of plasminogen solution (above), and 0.1 ml of 100 mg/ml sodium azide at 42°C. Finally, add 0.2 ml of bovine thrombin (Sigma T-6634), dissolved in an amount of 16.6 NIH units/ml in 0.9% NaCl), after which the mixture is quickly poured into Petri dishes (diameter 8 cm) and let cool to room temperature for 1 hour. The resulting gel is approx. 4 mm can be stored at 4°C for several days, or it can be used immediately in the same way as the above gel, which contains casein.

C) priprava hibridnih PA proteina u stanicama hrčka C) preparation of hybrid PA proteins in hamster cells

CHO DUKXB1 stanice transformiramo s DNA plazmida pBRIA, pBRlB, pBR2B, pBR3A, pBR3B, pBR5, pBR7, pBRB, pCGC1, pCGC2, pCGC3, pCGC4a, pCGC5, pCGC6, pCGC7 odnosno pCGC8, kao što je gore opisano (primjer 20A). Kolonije se pojave otprilike desetog dana, pokupimo ih otprilike petnaestog dana, kao što je gore opisano i 2 tjedna kasnije se broj stanica dovoljno poveća da možemo izmjeriti PA, kao što je gore opisano. Netransformirane stanice i stanične linije tranformirane s pBRlB, pBR2B, pBR3B; one koje sadrže uključeni SacI fragment suprotne orijentacije ne proizvode dokazive količine PA. CHO DUKXB1 cells were transformed with DNA plasmids pBRIA, pBR1B, pBR2B, pBR3A, pBR3B, pBR5, pBR7, pBRB, pCGC1, pCGC2, pCGC3, pCGC4a, pCGC5, pCGC6, pCGC7 and pCGC8, respectively, as described above (Example 20A). Colonies appear on about day 10, we pick them up on about day 15, as described above and 2 weeks later the number of cells has increased enough for us to measure PA, as described above. Untransformed cells and cell lines transformed with pBR1B, pBR2B, pBR3B; those containing an incorporated SacI fragment in the opposite orientation do not produce detectable amounts of PA.

D) Enzimska aktivnost u medijima kondicioniranim s transformiranirn CHO stanicama D) Enzyme activity in media conditioned with transformed CHO cells

Kondicioniran medij iz stanica transformiranih s plazmidom i kontrolnih CHO stanica pripremimo uzgojem 200,000-500,000 stanica/ml tijekom 24 sata u Alpha-MEM s nuklezidima te 5%-tnim fetusnim telećim serumom i 0,03 ml inkubiramo na agaroznim pločama koje sadrže kazein ili fibrin, u dolje navedenom vremenskom razdoblju. Na fibrinskoj ploči utvrdimo minimalnu aktivnost pozadine, vjerojatno zbog jednog t-PA hrčka u mediju kondicioniranom s DUKXBI. Na kazeinskim pločama ne pojavljuje se obruč ako uzorke hibridnog proteina pomiješamo s 3 (l kunićevih anti-PA antitijela (uzgojenih prema očišćenim Bowes melanomskim t-PA) ili s anti-urokinaznim antitijelima (uzgojenim prema Serono urokinazi). Conditioned medium from plasmid-transformed cells and control CHO cells is prepared by growing 200,000-500,000 cells/ml for 24 hours in Alpha-MEM with nucleosides and 5% fetal calf serum and 0.03 ml is incubated on agarose plates containing casein or fibrin , in the time period specified below. On the fibrin plate, we detect minimal background activity, probably due to one t-PA hamster in medium conditioned with DUKXBI. No ring appears on the casein plates if the hybrid protein samples are mixed with 3 µl of rabbit anti-PA antibodies (raised against purified Bowes melanoma t-PA) or with anti-urokinase antibodies (raised against Serono urokinase).

Anti-tPA antitijelo ne inhibira u-PA enzim niti antiurokinazno antitijelo ne inhibira t-PA u signifikantnoj mjeri. Rezultati su prikazani u tablici 1. Anti-tPA antibody does not inhibit u-PA enzyme, nor does anti-urokinase antibody inhibit t-PA to a significant extent. The results are presented in Table 1.

Tablica 1: Učinkovitost različitih plazminogenskih aktivatora. Table 1: Efficacy of different plasminogen activators.

[image] [image]

Primjer 21 Example 21

Priprava hibridomskih stanica i izolacija monoklonalnih antitijela Preparation of hybridoma cells and isolation of monoclonal antibodies

a) Izvor imunogena: Uzorak poluočišćenog nativnog humanog melanoma t-PA s ocjenom čistoće iznad 90%. a) Source of immunogen: A sample of semi-purified native human melanoma t-PA with a purity grade above 90%.

b) Imunizacijski protokol: Tri skupine BALB/c miševa (Tierfarm Sisseln, Švicarska), stare 10 do 14 tjedana, imuniziramo injekcijom u oba zadnja potplata te subkutano sa 100 (g melanoma t-PA, emulgiranog u potpunom Freundovom adjuvantu (Difco). Zatim prva skupina (br. 405) dobije 10 (g t-PA u nepotpunom adjuvantu svaki tjedan tijekom 6 tjedana, dok druga skupina (406) dobije istu količinu svaka 2 tjedna. Trećoj skupini (407) damo dva puta po 50 (g t-PA u intervalima po 3 tjedna. Svim životinjama uzimamo krv četvrtog i osmog tjedna. Za posljednju injekciju damo 100 (g t-PA u PBS i.p. i 4 dana kasnije vršimo fuziju stanica slezene sa SP2/o mielomskom linijom u skladu sa standardnim postupkom. Za fuziju upotrebljavamo samo one miševe koji imaju anti-tPA-titar antitijela. b) Immunization protocol: Three groups of BALB/c mice (Tierfarm Sisseln, Switzerland), aged 10 to 14 weeks, were immunized by injection in both rear soles and subcutaneously with 100 (g of melanoma t-PA, emulsified in complete Freund's adjuvant (Difco). Then the first group (no. 405) received 10 (g t-PA in incomplete adjuvant every week for 6 weeks, while the second group (406) received the same amount every 2 weeks. The third group (407) was given twice 50 (g t -PA at intervals of 3 weeks. We take blood from all animals on the fourth and eighth week. For the last injection, we give 100 (g of t-PA in PBS i.p. and 4 days later we perform the fusion of spleen cells with the SP2/o myeloma line in accordance with the standard procedure. For fusion, we use only those mice that have an anti-tPA antibody titer.

c) Stanična fuzija: Sve pokuse fuzije vršimo u skladu s postupkom prema G. Kohler i C. Milstein /Nature 256, 495 (1975) upotrebom neizlučive Sp 2/O-Ag14 mielomske vrste /M. Shulman, C.D. Wilde i G. Kohler, Nature 276, 269 (1978)/. 108 stanica slezene pomiješamo s 107 mielomskih stanica u prisutnosti 1 ml 50% polietilenglikola (PEG 1500, Serva). Nakon ispiranja stanice resuspendiramo u 48 ml standardnog Dulbecco minimalnog esencijalnog medija (Gibco No. 0422501). 3x106 normalnih mišjih peritonealnih eksudatnih stanica fuzijom dodamo kao hranjive stanice. Stanice podijelimo u 48x1 ml " costar" utore i hranimo ih tri puta tjedno sa standardnim HAT selekcijskim medijem tijekom 3 do 6 tjedana. Kad rast hibridomskih stanica postane vidljiv, provede se prekrivanje supernatanata s pokusom izravnog antigenskog povezivanja (ELISA) i neutralizacijom (kazein) (vidi dolje) . Rezultati 4 fuzijska pokusa su slijedeći: od 192 cijepljena utora dobijemo 192 hibridoma. Od njih 24 proizvode anti-PA antitijelo. Od 24 pozitivna hibridoma njih 14 klonirarno i od dobivena 574 klona utvrdimo da njih 31 stabilno proizvode anti-t-PA mAB. Tri od njih (klone 405B.33.3, 406A.23.7 i 407A.15.27) injiciramo u miševe te proizvedemo ascites tekućine za daljnje proučavanje. c) Cell fusion: All fusion experiments are carried out in accordance with the procedure according to G. Kohler and C. Milstein /Nature 256, 495 (1975) using the non-exclusive Sp 2/O-Ag14 myeloma species /M. Shulman, C.D. Wilde and G. Kohler, Nature 276, 269 (1978)/. 108 spleen cells are mixed with 107 myeloma cells in the presence of 1 ml of 50% polyethylene glycol (PEG 1500, Serva). After washing the cells, resuspend them in 48 ml of standard Dulbecco minimal essential medium (Gibco No. 0422501). We add 3x106 normal mouse peritoneal exudate cells by fusion as nutrient cells. Divide the cells into 48x1 ml "costar" wells and feed them three times a week with standard HAT selection medium for 3 to 6 weeks. When growth of hybridoma cells becomes visible, overlay of supernatants with direct antigen binding assay (ELISA) and neutralization (casein) is performed (see below). The results of 4 fusion experiments are as follows: from 192 grafted slots we get 192 hybridomas. Of them, 24 produce anti-PA antibody. Of the 24 positive hybridomas, 14 of them were cloned and of the 574 clones obtained, we determined that 31 of them stably produce anti-t-PA mAb. We inject three of them (clones 405B.33.3, 406A.23.7 and 407A.15.27) into mice and produce ascites fluid for further study.

d) Izolacija i čišćenje monoklonarnog antitijela: d) Isolation and purification of monoclonal antibody:

BALB/c miševe, stare 8 do 10 tjedana (Tierfarm Sisseln, Švicarska) intraperitonealno prethodno obradimo s 0,3 ml pristana (Aldrich). 2 do 3 tjedna kasnije intraperitonealno inokuliramo im 2 do 5x106 kloniranih hibridomskih stanica 405B.33.3, 406A.23.7 i 407A.15.27 i 0,2 ml pristana. Nakon 8 do 10 dana pokupimo ascites tekućinu, centrifugiramo pri 800 g i pohranimo pri -20°. BALB/c mice, 8 to 10 weeks old (Tierfarm Sisseln, Switzerland) were intraperitoneally pretreated with 0.3 ml pristane (Aldrich). 2 to 3 weeks later we inoculate them intraperitoneally with 2 to 5x106 cloned hybridoma cells 405B.33.3, 406A.23.7 and 407A.15.27 and 0.2 ml of pristane. After 8 to 10 days, collect ascites fluid, centrifuge at 800 g and store at -20°.

Odleđenu ascites tekućinu centrifugiramo pro 50.000 g 60 minuta. Sloj masti koji pliva na površini pažljivo uklonimo i namjestimo koncentraciju proteina na 10 do 12 mg/ml. The thawed ascites fluid is centrifuged at 50,000 g for 60 minutes. Carefully remove the layer of fat floating on the surface and adjust the protein concentration to 10 to 12 mg/ml.

Sirovi imunoglobulin istaložimo dokapavanjem 0,9 volumnih ekvivalenata zasićenog amonijevog sulfata pri 0°C, zatim otopimo u 20 mM Tric-HCl/50 mM NaCl. (pH 7,9) i dijaliziramo prema istom puferu. Imunoglobulinsku frakciju s DEAE D52 dobijemo celuloznom (Whatman) kromatografijom, uz upotrebu puferskog gradijentnog sistema 20 mM TrisHCl/25-400 mM NaCl, pH 7,9. Imunoglobulin ponovno istaložimo s amonijevim sulfatom i otopimo u PBS u koncentraciji 10 mg/ml. Precipitate crude immunoglobulin by adding 0.9 volume equivalents of saturated ammonium sulfate at 0°C, then dissolve in 20 mM Tric-HCl/50 mM NaCl. (pH 7.9) and dialyzed against the same buffer. The immunoglobulin fraction with DEAE D52 was obtained by cellulose (Whatman) chromatography, using a buffer gradient system of 20 mM TrisHCl/25-400 mM NaCl, pH 7.9. Immunoglobulin is reprecipitated with ammonium sulfate and dissolved in PBS at a concentration of 10 mg/ml.

Gelna elektroforeza s natrijevim dodecilsulfat-poliakrilamidom (SDS-PAGE) pokazuje stupanj čistoće iznad 95% za monoklonalna antitijela. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) shows a degree of purity above 95% for monoclonal antibodies.

e) Određivanje razreda i podrazreda monoklonalnih antitijela e) Determination of classes and subclasses of monoclonal antibodies

Razred i podrazred monoklonalnih antitijela proizvedenih s kloniranim hibridomskim stanicama odredimo poznatim imunodifuzijskim postupkom Ouchterlonyja (agarozno-gelna imunodifuzijska metoda) uz upotrebu razredno i podrazredno specifičnih antitijela kunića (Bionetics). The class and subclass of monoclonal antibodies produced with cloned hybridoma cells are determined by the well-known Ouchterlony immunodiffusion method (agarose-gel immunodiffusion method) with the use of class- and subclass-specific rabbit antibodies (Bionetics).

Podrazredi mAb su slijedeći: Subclasses of mAb are as follows:

405B.33.3 : γlk 405B.33.3 : γlk

406A.23.7 : γ2bk 406A.23.7 : γ2bk

407A.15.27 : δ2ak 407A.15.27 : δ2ak

f) Enzimski imuno pokus (ELISA): f) Enzyme immunoassay (ELISA):

Mikrotitarske ploče prekrijemo s 0,5 µg na utor s t-PA pripremkom (čistoća iznad 95%) u 100 µl PBS. Slobodni vezivni kapacitet ploče namjestimo s puferom s 0,2% želatine u PBS koji sadrži uzorke 0,2% NaN3 (m/v), pH 7,4 100 µl, koji sadrže monoklonalna antitijela 405B.33.3, 406A.23.7 odnosno 407A.15.2, inkubirarno u utorima 2 sata pri 37°C. Ploče isperemo s PBS koji sadrži 0,05% Tween 20, zatim inkubiramo 2 sata pri 37°C s anti-mišjim imunoglobulinskim pripremkom kunića, konjugiranim s fosfatazom. Fiksirani enzim razvijemo inkubiranjem (37°C, 30 do 60 minuta) s otopinom enzimskog substrata pnitrofenilfosfata (1 mg/ml u dietanolarninskom puferu, 10%, koji sadrži 0,5 mM MgCl2 i 0,02 % (masa/volumen) NaN3, pH 9,8) te izmjerimo optičku gustoću pri 405 nm. Cover the microtiter plates with 0.5 µg per well of t-PA preparation (purity above 95%) in 100 µl PBS. Adjust the free binding capacity of the plate with a buffer with 0.2% gelatin in PBS containing samples of 0.2% NaN3 (m/v), pH 7.4 100 µl, containing monoclonal antibodies 405B.33.3, 406A.23.7 and 407A respectively. 15.2, incubated in slots for 2 hours at 37°C. The plates are washed with PBS containing 0.05% Tween 20, then incubated for 2 hours at 37°C with a rabbit anti-mouse immunoglobulin preparation, conjugated with phosphatase. The fixed enzyme is developed by incubating (37°C, 30 to 60 minutes) with a solution of the enzyme substrate pnitrophenylphosphate (1 mg/ml in diethanolamine buffer, 10%, containing 0.5 mM MgCl2 and 0.02% (mass/volume) NaN3, pH 9.8) and measure the optical density at 405 nm.

Jednak pokus ELISA izvršimo također upotrebom urokinaze. Nijedan od mAb ne veže se na urokinazu. Svi mAb su t-PA specifični. We also perform the same ELISA experiment using urokinase. None of the mAbs bind to urokinase. All mAbs are t-PA specific.

g) Pokus s kazeinskom lizom (neutralizacijski test): g) Experiment with casein lysis (neutralization test):

Da bi odradili inhibitorski učinak MAbs, najprije t-PA pomiješamo s mAbs 405B.33.3, 406A.23.7 odnosno 407A.15.2, te inkubiramo 30 do 60 minuta pri 4°C, nakon čega izvršimo uobičajen pokus kazein/plazminogenski agar (vidi primjer 20B). Ni jedan od mAb ne inhibira t-PA aktivnost, samo mAb 405B.33.3 uzrokuje kašnjenje (više. od 6 sati) kazeinskoi lizi. To perform the inhibitory effect of MAbs, first mix t-PA with mAbs 405B.33.3, 406A.23.7 or 407A.15.2, and incubate for 30 to 60 minutes at 4°C, after which we perform the usual casein/plasminogen agar experiment (see example 20B ). None of the mAbs inhibits t-PA activity, only mAb 405B.33.3 causes a delay (more than 6 hours) in casein lysis.

Primjer 22 Example 22

Čišćenje hibridnog plazminogenskog aktivatora; opći postupak Purification of hybrid plasminogen activator; general procedure

Ekstrakte iz transformiranih kvasnih stanica pripremimo kao što je opisano u primjeru 16. Ekstrakte iz stanica sisavaca, transformiranih s plazmidom, kao CHO stanica, pripremimo kako slijedi: Extracts from transformed yeast cells are prepared as described in example 16. Extracts from mammalian cells transformed with a plasmid, such as CHO cells, are prepared as follows:

Stanice najprije uzgojimo do 70 do 80%-tne konfluence. Zatim stanični monosloj isperemo s medijem, kao što je gore opisano, samo da ispustimo serum, nakon čega slijedi uzgoj stanica u dodatnom razdoblju 5 do 7 dana. Medij pospremamo svakih 24 sata, a istovremeno k stanicama dovodimo svjež medij. Tako dobiven kondicionirani medij zatim centrifugiramo pri 5000 g tijekom 30 minuta i filtriramo kroz filtar 0,45 µm da uklonimo neželjene komadiće stanica prije afinitetne krornatografije. Kao afinitetnu matriu upotrebljavamo ili imobilizirani proteazni inhibitor DE-3 iz Erythrina latissima ili imobilizirana antitijela na u-PA ili t-PA. We first grow the cells to 70 to 80% confluence. The cell monolayer is then washed with medium, as described above, only to drain the serum, followed by culturing the cells for an additional period of 5 to 7 days. We clean the medium every 24 hours, and at the same time bring fresh medium to the cells. The conditioned medium thus obtained is then centrifuged at 5000 g for 30 minutes and filtered through a 0.45 µm filter to remove unwanted cell fragments prior to affinity chromatography. As an affinity matrix, we use either immobilized protease inhibitor DE-3 from Erythrina latissima or immobilized antibodies to u-PA or t-PA.

Iz hibridnih PA koji sadrže katalitički B-lanac t-PA, očistimo kondicionirani medij, pripremljen tako kao što je gore opisano, ili ekstrakte kvasnih stanica uz upotrebi protokola, izvorno razvijenog za čišćenje medija, kondicivniranog s melanomskim stanicama, iz t-PA /vidi C, rieussen et al., J. Biol. Chem. 259, 11635-11638 (1984)/. From hybrid PAs containing the catalytic B-chain of t-PA, we purify conditioned medium, prepared as described above, or yeast cell extracts using a protocol originally developed for purifying medium conditioned with melanoma cells from t-PA /see C, Rieussen et al., J. Biol. Chem. 259, 11635-11638 (1984)/.

Sve hibridne PA očistimo koristeći poliklonalna antitijela uzgojena u kunićima ili kozama, prema parenteralnim u-PA i t-PA enzimima, ili upotrebom monoklonalnih antitijela (mišjeg izvora) uzgojenih prema parenteralnim enzimima, uz ogradu, da samo oni raspoznaju epitop prisutan u proučavanom hibridnom PA (vidi primjer 21). Odabrano antitijelo imobiliziramo na netopivoj matrici kao Affigelu ili Sepharosi-4B. Kondicionirani medij pripremljen kao što je gore opisano, ili kvasni stanični ekstrakt, nanesemo zatim na kolonu afinitetne matrice, a neželjene proteine isperemo upotrebom prikladnog pufera, npr. Dulbecco’s PBS /0,1 g/1 CaCl2, 0,2 g/1 KCl, 0,2 g/1 KH2PO4, 0,047 g/1 MgCl2, 8,0 g/1 NaCl, l, 15 g/1 Na2HPO4; J. Exp. Med. 99, 167 (1954)/, zatim eluiramo PA iz kolone upotrebom kaostropnog sredstva kalijevog tiocijanata /usporedi M. Erinarsson et al., Biochim. Biophys. Acta 830, 1-10 (1985) / ili u slabom pH puferu kao 0,1-0,2 M glicin-HCl (pH 2,1). All hybrid PAs are purified using polyclonal antibodies raised in rabbits or goats, against parenteral u-PA and t-PA enzymes, or using monoclonal antibodies (mouse source) raised against parenteral enzymes, with a fence, so that only they recognize the epitope present in the studied hybrid PA (see example 21). The selected antibody is immobilized on an insoluble matrix such as Affigel or Sepharosi-4B. Conditioned medium prepared as described above, or yeast cell extract, is then applied to the affinity matrix column, and unwanted proteins are washed away using a suitable buffer, for example Dulbecco's PBS /0.1 g/1 CaCl2, 0.2 g/1 KCl, 0.2 g/1 KH2PO4, 0.047 g/1 MgCl2, 8.0 g/1 NaCl, 1, 15 g/1 Na2HPO4; J. Exp. Honey. 99, 167 (1954)/, then we elute PA from the column using the kaosotropic agent potassium thiocyanate /compare M. Erinarsson et al., Biochim. Biophys. Acta 830, 1-10 (1985) / or in a low pH buffer such as 0.1-0.2 M glycine-HCl (pH 2.1).

Nakon čišćenje uz upotrebu monoklonalnih antitijela hibridni PA imaju čistoću iznad 90%. After purification using monoclonal antibodies, hybrid PAs have a purity above 90%.

Primjer 23 Example 23

Čišćenje UK2TPAB(BC) Cleaning UK2TPAB(BC)

a) Priprava DE-3 Sepharose® kolone a) Preparation of DE-3 Sepharose® column

Na 1 ml Sepharose 4B® (Pharmacia) aktivirane sa cijanogenbromidom dodamo 5 mg očišćenog inhibitora iz Erythrina latissima /F.J. Joubert et al., Hoppe-Seyler’ Zeitsch. Pfysiol. Chem. 302, 531 (1981)/, u skladu uputama proizvođača. Matricu uravnotežimo s 0,2 amonijevim acetatnim puferom s pH 7,0, koji sadrži 0,2 N NaCl % Synperonic® i 0,02 % natrijevog azida. To 1 ml of Sepharose 4B® (Pharmacia) activated with cyanogen bromide, add 5 mg of purified inhibitor from Erythrina latissima /F.J. Joubert et al., Hoppe-Seyler' Zeitsch. Physiol. Chem. 302, 531 (1981)/, in accordance with the manufacturer's instructions. The matrix is equilibrated with 0.2 ammonium acetate buffer with pH 7.0, containing 0.2 N NaCl % Synperonic® and 0.02 % sodium azide.

b) Kromatografsko čišćenje UK2TPBB(BC) na Sepharose 4B® b) Chromatographic purification of UK2TPBB(BC) on Sepharose 4B®

Kondicionirani medij (vidi primjer 22) pripremimo 0,1% s obzirom na Synperonic® i zatim nanesemo na DE-3 Sepharosu®. Nakon blagog miješanja tijekom 1 sata pri 4°C izlijemo DE-3 Sepharosu 4B® u kolonu i ispiremo s 0,2 M NaCl, 0,1 % Synperonic®, dok UV apsorpcija pri 280 nm dosegne razine bazične linije, što označava. odsutnost proteina u eluatu. Ispiranje zatim nastavljamo s 0,2 M amonijevim acetatnim puferom s pH 7,0 koji sadrži 0,2 M amonijev tiocijanat, te 0,1 % Synperonic®. Zatim kad UV apsorpcija pri 280 nm označi odsutnost proteina u eluatu, kolonu eluiramo s 0,2 M amonijevim acetatnim puferorn s pH 7,0 koji sadrži 1,6 M amonijevog tiocijanata i 0,1% Synperonic®. Saberemo frakcije koje sadrže najviše amidolitičke aktivnosti izmjerene upotrebom fluorometričkog pokusa sa Cbz-Gly-Gly-Arg-AMC kao substrata /M. Zimmermann et al., Proc. Natl. Acad. Sci. USA 75, 750 (1978)/. Najmanje 80% aktivnosti, unešene u materijal DE-3 Sepharose 4B®, dobijemo u samo jednoj vršnoj vrijednosti. Conditioned medium (see example 22) is prepared 0.1% with respect to Synperonic® and then applied to DE-3 Sepharose®. After gentle stirring for 1 hour at 4°C, pour DE-3 Sepharose 4B® onto the column and wash with 0.2 M NaCl, 0.1% Synperonic®, until the UV absorbance at 280 nm reaches baseline levels, indicating. absence of protein in the eluate. We then continue washing with 0.2 M ammonium acetate buffer with pH 7.0 containing 0.2 M ammonium thiocyanate and 0.1% Synperonic®. Then, when UV absorbance at 280 nm indicates the absence of protein in the eluate, the column is eluted with 0.2 M ammonium acetate buffer pH 7.0 containing 1.6 M ammonium thiocyanate and 0.1% Synperonic®. We will collect the fractions containing the highest amidolytic activity measured using a fluorometric experiment with Cbz-Gly-Gly-Arg-AMC as substrate /M. Zimmermann et al., Proc. Natl. Acad. Sci. USA 75, 750 (1978)/. At least 80% of the activity introduced into the DE-3 Sepharose 4B® material is obtained in just one peak value.

Sabrane aktivne frakcije dijaliziramo prema 0,2 M amonijevom acetatnom puferu s pH 7,0, koji sadrži 0,1 % Synperonic®, te nanesemo na kolonu koja sadrži monoklonalno antitijelo 407A.15.27, usmjerimo prema prvoj "kringle" domeni t-PA, dovedemo na Sepharosu 4B®, uravnotežimo u 0, 2 M acetatnom puferu s pH 7, 0, koji sadrži 0, 1% Synperonic®, da se ukloni endogeni t-PA. Saberemo efluent koji sadrži UK2TPAB (BC). The collected active fractions are dialyzed against 0.2 M ammonium acetate buffer with pH 7.0, which contains 0.1% Synperonic®, and applied to a column containing the monoclonal antibody 407A.15.27, directed towards the first "kringle" domain of t-PA, loaded onto Sepharose 4B®, equilibrated in 0.2 M acetate buffer, pH 7.0, containing 0.1% Synperonic®, to remove endogenous t-PA. We will collect the effluent containing UK2TPAB (BC).

Reverzna faza HPLC očišćenog UK2TPAB(BC) na koloni Nucleosil® 300-5-C18, s dimenzijama 4 x 110 mm, pokazuje samo jednu vršnu vrijednost s linearnim gradijentom tijekom 30 minuta, izlazeći iz 70%-tne otopine A, koja se sastoji od vode koja sadrži 0,1% trifluoroctene kiseline, i 30 % otopine B koja se sastoji od acetonitrila koji sadrži 0,08% trifluoroctene kiseline, te završimo sa 40% A i 60% B. Očišćeni protein, kod N-terminalne sekvence analize prvih deset aminokiselinskih ostataka, pokazuje sekvencu SNELHQVPSN, koja je identična sa sekvencom koju bi očekivali iz DNA sekvence koja kodira molekulu. Reverse phase HPLC of purified UK2TPAB(BC) on a Nucleosil® 300-5-C18 column, with dimensions of 4 x 110 mm, shows only one peak with a linear gradient over 30 minutes, emerging from a 70% solution A, consisting of of water containing 0.1% trifluoroacetic acid, and 30% of solution B consisting of acetonitrile containing 0.08% trifluoroacetic acid, and we finish with 40% A and 60% B. Purified protein, at the N-terminal sequence analysis of the first ten amino acid residues, shows the sequence SNELHQVPSN, which is identical to the sequence you would expect from the DNA sequence encoding the molecule.

Primjer 24 Example 24

Čišćenje FK2UPAB (BC) i K2UPAB (BC) Purification of FK2UPAB (BC) and K2UPAB (BC)

a) Priprava kolona s afinitetom prema antitijelima a) Preparation of antibody affinity columns

Antitijela anti-UPA kunića, očišćena iz anti-uPA seruma kunića, monoklonalna antitijela 405B.33.3 i 4U6A.23.7, dovodimo na Sepharosu 4B® (Pharmacia) aktiviranu s cijanogenbromidom, u skladu s uputama proizvođača, uz upotrebu 6 mg antitijela/ml aktivirane Sepharose. Gelnu matricu uravnotežimo s PBS koji sadrži 0,1% Synperonic® i 0,1% natrijevog azida. Rabbit anti-UPA antibodies, purified from rabbit anti-uPA serum, monoclonal antibodies 405B.33.3 and 4U6A.23.7, are applied to Sepharose 4B® (Pharmacia) activated with cyanogen bromide, according to the manufacturer's instructions, using 6 mg of antibody/ml activated Sepharose. The gel matrix is equilibrated with PBS containing 0.1% Synperonic® and 0.1% sodium azide.

b) Kromatografsko čišćenje FK2UPAB (BC) i K2UPAB (BC) na antitijelu/Sepharosa 4B b) Chromatographic purification of FK2UPAB (BC) and K2UPAB (BC) on antibody/Sepharose 4B

Kondicionirani medij (vidi primjer 22) napravimo 0,1% s obzirom na Synperonic® i nanesemo ga na anti-uPA Sepharosu-4B ili na 405B.33.3 ili na 406.23.7 Sepharosu 4B. Zadnja dva antitijela usmjerimo prema drugoj "kringle" domeni t-PA. Nakon blagog miješanja tijekom 2 sata pri 4°C antitijelo/Sepharosu izlijemo u kolonu i ispiremo s PBS koji sadrži 1 M NaCl i 0,1% Synperonic®, dok UV apsorpcija pri 28G nm označi odsutnost proteina u koloni: Kolonu zatim eluiramo s 0,2 M glicin-HCl puferom s pH 2,5. Frakcije sakupimo u epruvetama koje sadrže nautraliziranu količinu 1 M Tris. Prikupimo frakcije koje sadrže najviše amidolitične aktivnosti izmjerene primjenom fluorometričkog pokusa sa Cbz-Gly-Gly-Arg-AMC kao supstratom /M. Zimmermann et al., Proc. Natl. Acad. Sci. USA 75, 750 (1978)/. Conditioned medium (see Example 22) is made 0.1% with respect to Synperonic® and applied to anti-uPA Sepharose-4B or 405B.33.3 or 406.23.7 Sepharose 4B. Let's direct the last two antibodies towards the second "kringle" domain of t-PA. After gentle mixing for 2 hours at 4°C, the antibody/Sepharose is poured into the column and washed with PBS containing 1 M NaCl and 0.1% Synperonic®, while UV absorption at 28G nm indicates the absence of protein in the column: The column is then eluted with 0 .2 M glycine-HCl buffer with pH 2.5. Fractions are collected in test tubes containing a neutralized amount of 1 M Tris. We collect the fractions containing the highest amidolytic activity measured using a fluorometric experiment with Cbz-Gly-Gly-Arg-AMC as a substrate /M. Zimmermann et al., Proc. Natl. Acad. Sci. USA 75, 750 (1978)/.

Rezervna faza HPLC očišćenih FK2UPAB(BC) i K2UPAB(BC) na Nucleosil® 300-5-C18 koloni s dimenzijama 4 x 110 mm, pokazuje uvijek po jednu vršnu vrijednost pri eluiranju s linearnim gradijentom tijekom 30 minuta, izlazeći iz 70 %-tne otopine A koja se sastoji od vode, koja sadrži 0,1% trifluoroctene kiseline i 30%-tne otopine B koja se sastoji od acetonitrila koji sadrži 0,08% trifluoroctene kiseline, te završimo sa 40% A i 60% B. N-krajnja sekvencna analiza prvih pet ostataka očišćenih proteina pokazuje sekvencu SYQGN za i K2UPAB (BC) i SYQVI za FK2UPAB (BC) koja je identična sa sekvencama koje bi očekivali za DNA sekvence koje kodiraju svaku molekulu. The reserve phase of HPLC-purified FK2UPAB(BC) and K2UPAB(BC) on a Nucleosil® 300-5-C18 column with dimensions of 4 x 110 mm always shows one peak value when eluting with a linear gradient for 30 minutes, starting from a 70% of solution A consisting of water containing 0.1% trifluoroacetic acid and 30% solution B consisting of acetonitrile containing 0.08% trifluoroacetic acid, and ending with 40% A and 60% B. N- final sequence analysis of the first five residues of the purified proteins shows the sequence SYQGN for both K2UPAB (BC) and SYQVI for FK2UPAB (BC) which is identical to the sequences one would expect for the DNA sequences encoding each molecule.

Primjer 25 Example 25

Pokus aktivnosti hibridnih plazminogenskih aktivatora u prisutnosti i osdutnosti fibrinogenskih fragmenata Test of the activity of hybrid plasminogen activators in the presence and absence of fibrinogen fragments

Koristimo dvojni pokus kako su ga opisali Verheyen et al., /Thromb. Haemost. 48, 266 (1982)/, koji se oslanja na konverziju plazminogena u plazmin s plazminogenskim aktivatorm, nakon čega slijedi reakcija plazmina s kromogenskim plazminskim substratom H-D-valil-L-leucil-Llizil-p-nitro-anilid diklorid. Pokus vršimo na mikrotitarskoj ploči s 96 utora, te čitačem Titertek® mikrotitarskih ploča. Utori sadrže 120-X µl 0,1 mol/1 Tris-HCl pufer s ph 7,5, koji sadrži 0,1% Tween 80, 20 µl Glu-plazminogen kod 1,3 µmol/l, u gore spomenutom Tris puferu, 100 µl plazminskog substrata s 0,7 mmola/1 u Tris puferu, X µl uzorak poznate koncentracije (X odgovara 10, 20, 40 odnosno 60 µl) ili urokinazni standard definirane aktivnosti, izraženo u internacionalnim jedinicama (INT.U) te 10 µl stimulatora (fibrinogenski fragmenti) s 3 mg/ml u destiliranoj vodi ili u 10 µl destilirane vode, ako se pokusi izvode bez-stimulatora. Povećana apsorpcija svjetla podijeljena s kvadratom vremena inkubacije srazmjerna je aktivatorskoj aktivnosti plazminogena kod poznate koncentracije aktivatora, te ju izražavamo u međunarodnim jedinicama. Kao standard koristimo urokinazu visoke molekulske mase i definirane aktivnosti, izraženo u međunarodnim jedinicama (tj. INT.U; American Diagnostics). Svaki od plazminogenskih aktivatora ispita se pod jednakim uvjetima, u odsutnosti, odnosno prisutnosti fibrinogenskih fragmenata. Pod tim uvjetima dobivena razlika aktivnosti je mjerilo za stimulaciju plazminogenskih aktivatora s fibrinogenskim fragmentima. Tablica 2 prikazuje rezultate analize koja označava odsutnost stimulacije za urokinazni standard suprotno stimulaciji koju vrše fibrinogenski fragmenti na molekule novog plazminogenskog aktivatora koji sadrži katalitičku domenu urokinaze. Bez obzira na odsutnost jedne ili više nekatalitičkih domena F, G, Kl ili K2 tkivnog plazminogenskog aktivatora, opažamo stimulaciju We use a dual experiment as described by Verheyen et al., /Thromb. Haemost. 48, 266 (1982)/, which relies on the conversion of plasminogen to plasmin with plasminogen activator, followed by the reaction of plasmin with the chromogenic plasmin substrate H-D-valyl-L-leucyl-Llysyl-p-nitro-anilide dichloride. We perform the experiment on a microtiter plate with 96 slots, and a Titertek® microtiter plate reader. The wells contain 120-X µl 0.1 mol/1 Tris-HCl buffer with ph 7.5, containing 0.1% Tween 80, 20 µl Glu-plasminogen at 1.3 µmol/l, in the aforementioned Tris buffer, 100 µl of plasmin substrate with 0.7 mmol/1 in Tris buffer, X µl sample of known concentration (X corresponds to 10, 20, 40 or 60 µl) or urokinase standard of defined activity, expressed in international units (INT.U) and 10 µl of stimulator (fibrinogen fragments) with 3 mg/ml in distilled water or in 10 µl of distilled water, if experiments are performed without stimulator. The increased light absorption divided by the square of the incubation time is proportional to the activator activity of plasminogen at a known concentration of the activator, and we express it in international units. As a standard, we use urokinase of high molecular mass and defined activity, expressed in international units (ie INT.U; American Diagnostics). Each of the plasminogen activators is tested under the same conditions, in the absence or presence of fibrinogen fragments. Under these conditions, the difference in activity obtained is a measure for the stimulation of plasminogen activators with fibrinogen fragments. Table 2 shows the results of the analysis indicating the absence of stimulation for the urokinase standard in contrast to the stimulation exerted by the fibrinogen fragments on the novel plasminogen activator molecules containing the urokinase catalytic domain. Regardless of the absence of one or more non-catalytic domains F, G, Kl or K2 of tissue plasminogen activator, we observe stimulation

fibrinogenskim fragmentima za sve ispitane hibridne molekule. fibrinogen fragments for all tested hybrid molecules.

Tablica 2. Table 2.

[image] Primjer 26 [image] Example 26

Aktivnost mutantnih plazminogenskih aktivatora na lizu ugrušaka Clot lysis activity of mutant plasminogen activators

Aktivnosti na lizu ugrušaka utvrđujemo primjenom pokusa kako su ga opisali R.D. Philo i P.J. Gaffney /Thromb. Haemost. 45, 107-108 (1971)/. Logaritamski iznos liznog vremena prema koncentraciji plazminogenskog aktivatora izražen je u ravnoj liniji. Specifična aktivnost plazminogenskog aktivatora odredi se usporedbom krivulja dobivenih za standardni pripremak tkivnog plazminogenskog aktivatora ili urokinaze. Clot lysis activity is determined using the experiment described by R.D. Philo and P.J. Gaffney / Thromb. Haemost. 45, 107-108 (1971)/. The logarithmic amount of lysis time according to the concentration of plasminogen activator is expressed in a straight line. The specific activity of plasminogen activator is determined by comparing the curves obtained for a standard preparation of tissue plasminogen activator or urokinase.

Krivulje svih izmjerenih aktivatora imaju približno jednak nagib koji omogućuje izravnu vezu s vremenom potrebnim za lizu ugrušaka i njihovom specifičnom aktivnošću. Budući da različiti plazminogenski aktivatori nemaju iste molekulske mase, da se dobiju smisleni kriteriji učinkovitosti različitih molekula specifične aktivnosti moraju biti izražene u molekulskoj koncentraciji umjesto u uobičajenoj masenoj koncentraciji. Utvrdili smo da je UK2TPAB(BC) najmanje tako aktivan kao standardni t-PA, dok FGK2UPAB (BC) i FK2UPAB (BC) pokazuju aktivnosti koje su skoro jednake t-PA, iako znatno više nego kod u-PA standarda. Utvrdili smo da K2UPAB(BC) ima aktivnost koja je gotovo identična u-PA standardu. Aktivnosti pokusa prikazane su u tablici. The curves of all measured activators have approximately the same slope, which enables a direct connection with the time required for clot lysis and their specific activity. Since different plasminogen activators do not have the same molecular mass, to obtain meaningful criteria for the effectiveness of different molecules, the specific activities must be expressed in molecular concentration instead of the usual mass concentration. We found that UK2TPAB(BC) is at least as active as standard t-PA, while FGK2UPAB(BC) and FK2UPAB(BC) show activities almost equal to t-PA, although significantly higher than that of u-PA standard. We found that K2UPAB(BC) has an activity that is almost identical to the u-PA standard. Experiment activities are shown in the table.

Tablica 3. Table 3.

[image] [image]

*) Jedinice za lizu ugrušaka izražavamo u pikomolima t-PA korištenjem molekulske mase t-PA na osnovi njene aminokiselinske sekvence te specifične aktivnosti 400.000 jedinica za lizu ugrušaka na mg. *) Clot lysis units are expressed in picomoles of t-PA using the molecular weight of t-PA based on its amino acid sequence and specific activity of 400,000 clot lysis units per mg.

Primjer 27 Example 27

Pražnjenje plazminogenskih aktivatorskih mutantnih molekula iz optoka kunića Clearance of plasminogen activator mutant molecules from rabbit circulation

1. Markiranje 1. Marking

Sve mutantne molekule radio-markiramo sa l25J primjenom jodogenske metode /P.J. Fraker et al., Biochem. Biophys. Res. Commun. 80, 849-857 (1978)/. All mutant molecules are radiolabeled with 125J using the iodogenic method /P.J. Fraker et al., Biochem. Biophys. Crisp. Commun. 80, 849-857 (1978)/.

Da se ukloni suvišak slobodnog 125J mutantne molekule afinitetno se očiste ili primjenom metode opisane u primjeru 23 (PA imaju t-PA B-lanac) ili prema metodi opisanoj u primjeru 24 (PA imaju u-PA B-lanac). To remove excess free 125J mutant molecules are affinity purified either using the method described in example 23 (PAs having a t-PA B-chain) or according to the method described in example 24 (PAs having a u-PA B-chain).

Obično dobijemo specifične radioaktivnosti 2-20 µCi/g proteina. Homogenost markiranih molekula odredimo pomoću SDS elektroforeze nakon koje slijedi rendgenska autoradiografija. U svim primjerima mutantne molekule migriraju u nereduciranim uvjetima kao jednostruke trake i s Mr, koji su identični kao kod nemarkiranih proteina. We usually obtain specific radioactivities of 2-20 µCi/g of protein. We determine the homogeneity of the labeled molecules using SDS electrophoresis followed by X-ray autoradiography. In all examples, the mutant molecules migrate under non-reducing conditions as single bands and with Mr, which are identical to the unlabeled proteins.

2) Proučavanje pražnjenja (Clearing) 2) Clearing study

Pokuse vršimo na novozelandskim bijelim kunićima mase 1,8 do 2,4 kg. Životinje anesteziramo subkutano s 1750 mg/kg Urethan® (Merck, Darmstadt, SRN). .Izvrši se traheotomija i cijev od plastike uvede se u vanjsku vratnu venu i zajedničku karotidnu arteriju. 0, 5 ml slane otopine puferirane s fosfatom koja sadrži otprilike 300 do 500 ng mutanta PA injiciramo u vratnu venu i preko karotidne arterije uzastopce serijski uzimamo uzorke krvi (svaki puta po 2 ml) sve vrijeme u intervalima po 60 minuta. We perform experiments on New Zealand white rabbits weighing 1.8 to 2.4 kg. Animals are anesthetized subcutaneously with 1750 mg/kg Urethan® (Merck, Darmstadt, Germany). A tracheotomy is performed and a plastic tube is inserted into the external jugular vein and the common carotid artery. We inject 0.5 ml of phosphate-buffered saline solution containing approximately 300 to 500 ng of PA mutant into the jugular vein and serially take blood samples (2 ml each time) at intervals of 60 minutes through the carotid artery.

Uzorke krvi skupimo na citratu, odmah centrifugiramo s 3000 okretaja u minuti tijekom 15 minuta i plazmu dekantiramo. Alikvote taložimo u 10%-tnoj trikloroctenoj kiselini i prebrojimo pelete u γ-brojaču. Blood samples are collected on citrate, immediately centrifuged at 3000 revolutions per minute for 15 minutes and the plasma is decanted. We deposit aliquots in 10% trichloroacetic acid and count the pellets in a γ-counter.

U usporedbi s t-PA, izoliranom iz stanične linije Bowes melanoma, mutantne molekule u optoku pokazuju slijedeće vrijeme poluraspada. Compared to t-PA, isolated from the Bowes melanoma cell line, the mutant molecules in circulation show the following half-life.

Tablica 4. Table 4.

[image] [image]

Uzorak pražnjenja t-PA signifikantno je bieksponencijalan s vrlo brzom α-fazom, nakon čega slijedi sporija β-faza eliminacije. Eliminacija UK2TPAB(BC) i K2UPAB(BC) je gotovo monofazna, iz čega zaključujemo da je razdioba u drugi odjeljak zakrenuta. The discharge pattern of t-PA is significantly biexponential with a very fast α-phase, followed by a slower β-phase of elimination. The elimination of UK2TPAB(BC) and K2UPAB(BC) is almost monophasic, from which we conclude that the division into the second compartment is reversed.

3) Razdioba u organima 3) Distribution in organs

Kuniće obradimo kao gore. 20 minuta nakon injekcije jodiranih mutantnih molekula kuniće žrtvujemo, oduzmemo im glavne organe, izmjerimo njihovu masu i nakon homogenizacije prebrojimo alikvot na γ-brojaču. We process the rabbits as above. 20 minutes after the injection of iodinated mutant molecules, the rabbits are sacrificed, their main organs are removed, their mass is measured, and after homogenization, an aliquot is counted on a γ-counter.

Tablica 5. Table 5.

[image] [image]

Mutantni PA pokazuju veću frakciju radioaktivnih molekula, koje još uvijek ostaju u optoku (supra), što se poklapa s jako smanjenim pražnjenjem iz jetre. Smanjeno uzimanje u jetri je stoga pojasnilo dulje vrijeme poluraspada i monofazan eliminacijeki uzorak mutantnih molekula, osobito UK2TPAB (BC) i K2UPAB (BC). Mutant PAs show a higher fraction of radioactive molecules, which still remain in the circulation (supra), which coincides with a greatly reduced clearance from the liver. Reduced hepatic uptake therefore explained the longer half-life and monophasic elimination pattern of the mutant molecules, particularly UK2TPAB (BC) and K2UPAB (BC).

U primjerima 28-34 za konstrukciju kvasnih ekspresijskih plazmida koristimo plazmide pCGC5/K2UPAB, pCGC6/FUPAB, pCGC7/FK2UPAB i pCGC8/FGK2UPAB, (vidi primjer 18). Kvasna invertazna signalna sekvenca se u okviru fuzionira s različitim kodnim sekvencama. Izražene su ispod kontrole induciranog PHO5 promotora. Međutim kod nekih konstrukata mutirana su glikozilacijska mjesta. In examples 28-34, we use plasmids pCGC5/K2UPAB, pCGC6/FUPAB, pCGC7/FK2UPAB and pCGC8/FGK2UPAB for the construction of yeast expression plasmids (see example 18). The yeast invertase signal sequence is fused in frame with different coding sequences. They are expressed under the control of the inducible PHO5 promoter. However, some constructs have mutated glycosylation sites.

Primjer 28 Example 28

Kloniranje izvora podvajanja faga F1 u ekspresijski vektor pJDB207 Cloning of the phage F1 replication source into the expression vector pJDB207

Plazmidi porodice pEMBL /Dente et al., Nucl. Acid: Res. 11, 1645-55 (-983)/ imaju područja genoma faga F1 koji nudi sve cis-djelujuće elemente za DNA podvajanje morfonogenezu. Samo nakon superinfekcije s fagom F1 (pomoćni) izlučuju se velike količine jednovlaknate plazmidne DNA u medij. Plasmids of the pEMBL family /Dente et al., Nucl. Acid: Res. 11, 1645-55 (-983)/ have regions of the phage F1 genome that provide all cis-acting elements for DNA replication and morphonogenesis. Only after superinfection with phage F1 (helper) are large amounts of single-stranded plasmid DNA secreted into the medium.

Plazmid peEMBL19(+) probavi se sa ScaI i EcoRI. Izolira se 2.2 kb fragment, koji sadrži dio gena pBR32: restistentnog na ampicilin (mjesto ScaI), F1 intergensko područje i div β-galaktozidaznog gena do polilinkerskog područja (mjesto EcoRI). Plasmid peEMBL19(+) was digested with ScaI and EcoRI. A 2.2 kb fragment is isolated, which contains part of the pBR32 gene: resistant to ampicillin (ScaI site), F1 intergenic region and div β-galactosidase gene to the polylinker region (EcoRI site).

Plazmid pJDB207 lineariziramo rezanjem s HpaI. 10 µu lineariziranog plazmida djelomično probavimo sa 7,5 jedinica EcoRI u prisutnosti 0,1 mg/ml homidijevog bromida tijekom 40 minuta pri 37°C. Reakciju zaustavimo dodatkom 11 mM EDTA. Izoliramo 1.8 kb EcoRI-HpaI fragment m preparativnom 0,8% agaroznom gelu. Plasmid pJDB207 is linearized by cutting with HpaI. 10 µu of the linearized plasmid was partially digested with 7.5 units of EcoRI in the presence of 0.1 mg/ml homidium bromide for 40 minutes at 37°C. Stop the reaction by adding 11 mM EDTA. We isolated the 1.8 kb EcoRI-HpaI fragment on a preparative 0.8% agarose gel.

3 µg HpaI razrezanog pJDB207 dalje probavimo sa ScaI Izoliramo 4.8 kb HpaI-ScaI fragment. DNA fragmente elektroeluiramo sa blokova agaroznog gela, očistimo DE52 kromatografijom i taloženjem s etanolom. 3 µg of HpaI-cut pJDB207 were further digested with ScaI. We isolated a 4.8 kb HpaI-ScaI fragment. DNA fragments are electroeluted from agarose gel blocks, purified by DE52 chromatography and precipitation with ethanol.

Povežemo 0,2 pmola svakog od 2.2 kb ScaI-EcoR: fragmenta i 1.8 kb EcoU-HpaI fragmenta i 0,1 pmola HpaI ScaI vektorskog fragmenta. Veznu smjesu koristimo za transformaciju kompetentnih stanica E.coli HB101 Ca2+. We ligate 0.2 pmol of each of the 2.2 kb ScaI-EcoR: fragment and the 1.8 kb EcoU-HpaI fragment and 0.1 pmol of the HpaI ScaI vector fragment. We use the binding mixture for the transformation of E.coli HB101 Ca2+ competent cells.

Plazmidnu DNA 12 kolonija rezistentnih na ampicilin, analiziramo dvostrukom probavom s EcoRI/PstI. Odaberemo DNA samo jednog klona s pravilnim restrikcijskim fragmentima i nju označimo kao pJDB207FlLac. Plasmid DNA of 12 colonies resistant to ampicillin was analyzed by double digestion with EcoRI/PstI. We select the DNA of only one clone with the correct restriction fragments and designate it as pJDB207FlLac.

Primjer 29 Example 29

Konstrukcija plazmida pJDB207/PHO5-I-FK2UPAB Construction of plasmid pJDB207/PHO5-I-FK2UPAB

Kodnu sekvencu FK2UPAB, prisutnu u plazmidu pJDB7/FK2UPAB, pripremimo za izražavanje u kvascu fuzijom kvasne invertazne signalne sekvence i izražavanjem gena pod kontrolom PHO5 promotora. The FK2UPAB coding sequence, present in the plasmid pJDB7/FK2UPAB, is prepared for expression in yeast by fusion of the yeast invertase signal sequence and expression of the gene under the control of the PHO5 promoter.

Plazmid pCGC7/FK2UPAB (vidi primjer 18D) probavimo s PstI i BamHI. 1147 bp PstI-BamHI fragment sadrži FK2UPAB koji kodira sekvencu PstI mjesta na nukleotidnom položaju 199 t-PA (slika 1) na BamHI mjesto u položaju 1322 u-PA (slika 3). Plasmid pCGC7/FK2UPAB (see Example 18D) was digested with PstI and BamHI. The 1147 bp PstI-BamHI fragment contains FK2UPAB which encodes the sequence of the PstI site at nucleotide position 199 of t-PA (Fig. 1) to the BamHI site at position 1322 of u-PA (Fig. 3).

Plazmid jPDB207/PHO5-I-TPA (vidi primjer 6c) razrežemo sa SaII i PstI. Izoliramo fragment 891 bp. Sadrži PHO5 promotor, invertaznu signalnu sekvencu i 19 baza t-PA (PstI mjesto). Plasmid jPDB207/PHO5-I-TPA (see example 6c) is cut with SalII and PstI. We isolate a fragment of 891 bp. It contains the PHO5 promoter, an invertase signal sequence and 19 bases of t-PA (PstI site).

Plazmidi pJDB207/PHO5-I-UPA (vidi primjer 8) probavimo , sa Sail i BamHI. 6.6 vektorski fragment sadrži 3’ dio u-PA gena iz BamHI mjesta u nukleotidnom položaju 1323 (slika 3) premaa položaju 1441 (PvuII mjesto s dodanim XhoI linkerom) i PHO5 trasnkripcijske krajnje signale. Plasmids pJDB207/PHO5-I-UPA (see example 8) were digested with Sail and BamHI. 6.6 vector fragment contains the 3' part of the u-PA gene from the BamHI site at nucleotide position 1323 (Figure 3) to position 1441 (PvuII site with added XhoI linker) and PHO5 transcriptional end signals.

0,2 pmola svakog od 891 bp SaII-PstI fragmenta i 1147 bp PstI-BamHI fragmenta i 0,1 pmola 6.6 kb SaII-BamHI vektroskog fragmenta povežemo i upotrijebimo za transformaciju E.coli HB101 Ca2+ stanica. 0.2 pmol of each of the 891 bp SaII-PstI fragment and the 1147 bp PstI-BamHI fragment and 0.1 pmol of the 6.6 kb SaII-BamHI vector fragment were ligated and used to transform E.coli HB101 Ca2+ cells.

8 kolonija rezistentnih na ampicilin uzgojimo u LB mediju koji sadrži ampicilin (100 ml/1). Izoliramo plazmid DNA i analiziramo s restrikcijskom probavom s EcoRi i HindIII. Odaberemo jedan plazmid s očekivanim restrikcijskim fragmentima i označimo ga kao pJDB207/PHO5-I-FK2UPAB. 8 colonies resistant to ampicillin are grown in LB medium containing ampicillin (100 ml/1). Plasmid DNA is isolated and analyzed by restriction digestion with EcoRi and HindIII. We select one plasmid with the expected restriction fragments and designate it as pJDB207/PHO5-I-FK2UPAB.

Plazmide pCGC6/FUPAB i pCGC8/FGK2UPAB može se upotrijebiti na jednak način kao pCGC7/FK2UPAB. Nastali kvasni ekspresijski plazmidi označeni su kao pJDB207/PHO5-I-FUPAB odnosno pJDB207/PHO5-I-FGK2UPAB. Plasmids pCGC6/FUPAB and pCGC8/FGK2UPAB can be used in the same way as pCGC7/FK2UPAB. The resulting yeast expression plasmids were designated as pJDB207/PHO5-I-FUPAB and pJDB207/PHO5-I-FGK2UPAB, respectively.

Primjer 30 Example 30

Mutacija glikozilacijskog mjesta kod /Asn 302/ urokinaze B-lanca Mutation of the glycosylation site at /Asn 302/ urokinase B-chain

a) kloniranje PstI-BamHI fragmenta u-PA u m13mp18: a) cloning of the PstI-BamHI fragment of u-PA in m13mp18:

Plazmid pJDB207/PHO5-I-UPA (vidi primjer 8) sadrži potpuno kodno područje urokinaze. DNA razrežemo s PstI i BamHT. 866 bp Pstl-BamHI fragment iz urokinaznog gena sadrži glikozilacajsko mjesto (Asn 302) u nukleotidnim položajima 1033-1041. Slijedeći fragment jednake veličine dalje razrežemo s BstEII. Izoliramo 886 bp PstI-BamHI fragment na preparativnom 0,8% agaroznom gelu. Plasmid pJDB207/PHO5-I-UPA (see Example 8) contains the complete coding region of urokinase. DNA is cut with PstI and BamHT. The 866 bp Pstl-BamHI fragment from the urokinase gene contains a glycosylation site (Asn 302) at nucleotide positions 1033-1041. The next fragment of the same size is further cut with BstEII. We isolated the 886 bp PstI-BamHI fragment on a preparative 0.8% agarose gel.

M13mp18 RF-DNA razrežemo s PstI i BamHI. 7.3 kb fragment izoliramo na preparativnom 0,8% agaroznom gelu. DNA fragmente elektroeluiramo s agaroznog gela i očistimo DE52 kromatografijom i taloženjem s etanolom. M13mp18 RF-DNA is cut with PstI and BamHI. The 7.3 kb fragment was isolated on a preparative 0.8% agarose gel. DNA fragments are electroeluted from agarose gel and purified by DE52 chromatography and ethanol precipitation.

0,1 pmola 7.3 kb PstI-BamHI razrezanog vektora i 0,2 pmola 886 kb PstI-BamHI u-PA fragmenta povežemo. Jednu µl i 3 µl vezne smjese upotrijebimo za transformaciju stanica E.coli JM108 Ca2+ u skladu s priručnikom "M13 cloning and sequencinq handbook" izdavač Amersham. Pokupimo 12 bezbojnih plakova i pripremimo jednovlakatu DNA /J. Messing, Methods in Enzymology 101, 21-78 (1983)/. 0.1 pmol of the 7.3 kb PstI-BamHI cleaved vector and 0.2 pmol of the 886 kb PstI-BamHI u-PA fragment are connected. Use one µl and 3 µl of the binding mixture for the transformation of E.coli JM108 Ca2+ cells in accordance with the "M13 cloning and sequencing handbook" published by Amersham. We collect 12 colorless plaques and prepare single-stranded DNA /J. Messing, Methods in Enzymology 101, 21-78 (1983)/.

Jednovlaknatu DNA upotrijebimo za pripravu djelomično dvovlaknate DNA fuzijom i produljenjem M13 univerzalnog promjera Klenowom polimerazom. Reakcijski proizvod ekstrahiramo s fenol/kloroformom i DNA istaložimo s etanolom. DNA razrežemo s PstI i BamHI. Fragment 866 označava da se je u-Pa fragment klonirao u M13mp18 vektoru. Jedan klon dalje analiziramo i pravilan insert potvrdimo sekvenciranjem. Klon označavamo kao M13mp18/UPA. Single-stranded DNA is used for the preparation of partially double-stranded DNA by fusion and extension of M13 universal diameter with Klenow's polymerase. The reaction product is extracted with phenol/chloroform and the DNA is precipitated with ethanol. DNA is cut with PstI and BamHI. Fragment 866 indicates that the u-Pa fragment was cloned in the M13mp18 vector. We further analyze one clone and confirm the correct insert by sequencing. We designate the clone as M13mp18/UPA.

b) Mutacija glikozilacijskog mjesta kod Asn302: b) Mutation of the glycosylation site at Asn302:

302, 302,

(F) Ser Thr (F) Ser Thr

M13mp18 insert: 3'...AAA CCT TTT CTC TTA AGA TGG CTG ATA...5' M13mp18 insert: 3'...AAA CCT TTT CTC TTA AGA TGG CTG ATA...5'

(lanac suprotnog (a chain of the opposite

smjeru) 5’-GGA AAA GAG CAA TCT ACC GAC-3’ direction) 5'-GGA AAA GAG CAA TCT ACC GAC-3'

mutagenski primjer W: mutagenic example W:

lanac mutiranog 5’….TTT GGA AAA GAG CAA TCT ACC GAC TAT…3’ the chain of the mutated 5'....TTT GGA AAA GAG CAA TCT ACC GAC TAT...3'

smjera (F) direction (F)

Primjer sekvence: CTGCCCTCGATGATAACG Example sequence: CTGCCCTCGATGATAACG

• • • •

967 985 967 985

Mutagenske i sekvencne primjere sintetiziramo primjenom fosforamiditne metode prema /M.H. Caruthers u: Chemical and Enzymatic Synthesis of Gene Fragments, (ed. H.G. Gassen and A. Zang) Verlag Chemie, Weinheirn, SRN/ na sintetizatoru Applied Biosystem Model 380B. Mutagenic and sequence examples are synthesized using the phosphoramidite method according to /M.H. Caruthers in: Chemical and Enzymatic Synthesis of Gene Fragments, (ed. H.G. Gassen and A. Zang) Verlag Chemie, Weinheirn, SRN/ on an Applied Biosystem Model 380B synthesizer.

Mutagenezu in vitro na jednovlaknatoj šabloni vršimo kao što je opisao T.A. Kunkel /Proc. Nat. Acad. Sci. USA 82, 448-492 (1985)/. Proizvedemo jednovlaknatu šablonu DNA koja sadrži uracil, s jednim ciklusom rasta na E.coli soju RZ1032 (dut-, ung-). Mutagenesis in vitro on a single-stranded template is performed as described by T.A. Kunkel / Proc. Nat. Acad. Sci. USA 82, 448-492 (1985)/. We produce a single-stranded DNA template containing uracil, with one cycle of growth on E.coli strain RZ1032 (dut-, ung-).

100 pmolova mutagenetskog oligonukleotidnog primjera W fosforilirarno u 20 µl 50 Tris-HCl pH 7,5, 10 mM MgCl2 5 mM DTT, 0,5 mM ATP i 20 jedinica T4 polinukleotidne kinaze (Boehringer). Nakon 30 minuta pri 37°C reakciju zaustavimo grijanjem 10 minuta pri 70°C. 100 pmol of mutagenic oligonucleotide example W phosphorylated in 20 µl 50 Tris-HCl pH 7.5, 10 mM MgCl 2 5 mM DTT, 0.5 mM ATP and 20 units of T4 polynucleotide kinase (Boehringer). After 30 minutes at 37°C, stop the reaction by heating for 10 minutes at 70°C.

0,3 pmola M13mp18/UPA šablone DNA, koja sadrži uracil, inkubiramo s 10 pmola fosforiliranog mutagenetskog oligodezoksiribonukletidnog primjera W i 10 pmola M13 uraiverzalnog sekvencnog primjera u 30 µl 10 Tris-HCl pH 8,0 i 10 mM MgCl2. Uzorak zagrijemo na 80°C i pustimo ga ohladiti na sobnu temperaturu na maloj vodenoj kupelji. 0.3 pmol of M13mp18/UPA template DNA, which contains uracil, is incubated with 10 pmol of phosphorylated mutagenic oligodeoxyribonucletide sample W and 10 pmol of M13 uraiversal sequence sample in 30 µl of 10 Tris-HCl pH 8.0 and 10 mM MgCl2. Heat the sample to 80°C and let it cool to room temperature in a small water bath.

c) Produžena reakcija povezivanja: c) Prolonged connection reaction:

Gornjem renaturiranom uzorku dodamo 10 µl smjese enzima-D-NTP koja sadrži 1 mM dNTP, 10 mM Tris-HCl pH 8,0, 10 mM MgCl2, 20 mM DTT, 1 mM ATP, 400 jedinica T4 DNA ligaze (Biolabs, 400 U/ µl) i 6 jedinica Klenowe DNA polimeraze (Boehringer, 6 U/µl). Inkubacija se odvija tijekom noći pri 15°C. To the above renatured sample, we add 10 µl of the enzyme-D-NTP mixture containing 1 mM dNTP, 10 mM Tris-HCl pH 8.0, 10 mM MgCl2, 20 mM DTT, 1 mM ATP, 400 units of T4 DNA ligase (Biolabs, 400 U / µl) and 6 units of Klenow DNA polymerase (Boehringer, 6 U/µl). Incubation takes place overnight at 15°C.

d) Transformacija stanica E.coli BMH7l: d) Transformation of E.coli BMH7l cells:

Smjesu za povezivanje razrijedimo na 200 µl s TE. Po u, 0,1 µl, 1 µl i 10 µl smjese za produženo povezivanje dodamo Kompetentnima E.Coli BMH71 Ca2+ stanicama (Kunkel, supra). Nakon 30 minuta na ledu stanice toplinski šokiramo 3 minute pri 42°C i zatim ih držimo na ledu. Stanice pokrijemo s agarom i indikatorskim stanicama E.coli JM101. Dilute the binding mixture to 200 µl with TE. Each time, 0.1 µl, 1 µl and 10 µl of the extended binding mixture are added to Competent E.Coli BMH71 Ca2+ cells (Kunkel, supra). After 30 minutes on ice, heat shock the cells for 3 minutes at 42°C and then keep them on ice. Cover the cells with agar and E.coli JM101 indicator cells.

Pokupimo 6 plakova i koristimo ih za inficiranje E.coli JM109. Fage izoliramo iz gornjeg sloja (supernatanta) taloženjem s PEG. Jednovlaknatu DNA pripremimo ekstrakcijom s fenolom i taloženjem s etanolom. Šablone DNA ponovno suspendiramo u TE. We collect 6 plaques and use them to infect E.coli JM109. Phages are isolated from the upper layer (supernatant) by precipitation with PEG. Single-stranded DNA is prepared by extraction with phenol and precipitation with ethanol. DNA templates are resuspended in TE.

Mutaciju AAT kodona (Asn302) do CAA kodona (G1n302) potvrdimo za jedan klon određivanjem DNA sekvence pomoću gore spomenutog sekvencnog uspoređivanja primjenom metode za završenje lanca /F. Sanger et al., Proc. Nat. Acad. Sci. USA, 5463-67 (1977)/. Mutacija izaziva promjenu Asn → Gln u aminokisselinskom području 302 u-PA i time eliminira samo jedno glikozilacijsko mjesto u urokinazi. W označava mutaciju glikozilacijskog mjesta u uPA B-lanca (Asn302 → G1n302). Pozitivni klon označavamo kao M13mp18/UPA-W. The AAT codon (Asn302) to CAA codon (G1n302) mutation was confirmed for one clone by determining the DNA sequence using the aforementioned sequence comparison using the /F chain termination method. Sanger et al., Proc. Nat. Acad. Sci. USA, 5463-67 (1977)/. The mutation causes an Asn → Gln change in amino acid region 302 of u-PA and thus eliminates only one glycosylation site in urokinase. W indicates a mutation of the glycosylation site in uPA B-chain (Asn302 → G1n302). We denote the positive clone as M13mp18/UPA-W.

Primjer 31 Example 31

Transfer mutacije /G1n302/ u urokinaznom B-lancu na FK2UPAB hibrid Transfer of mutation /G1n302/ in urokinase B-chain to FK2UPAB hybrid

Plazmid pJDB207/PHO5-I-FK2UPAB probavimo sa SaII i XhoI. Izoliramo fragment 2.2 kb SalI-XhoI, elektroeluiramo iz agaroznog gela, očistimo DE52 kromatografijom i istaložimo u etanolu. Fragment DNA sadrži dva mjesta MstI u PHO5 promotoru i sekvencu u-PA. 3 u.g fragmenta 2.2 kb SalI-XhoI djelomično probavimo s 3 jedinice MstI tijekom 10 minuta pri 37°C. Reakcijske proizvode odvajamo na preparativnom 0,8%-tnom agaroznom gelu i izoliramo fragment 1.651 bp SalI-MstI i eluiramo ga iz gela. DNA fragment sadrži SalI-BamHI sekvencu pBR322, PHO5 promotor, invertaznu signalnu sekvencu i FK2UPAB kodnu sekvencu do mjesta MstI u u-PA dijelu u nukleotidnom položaju 935. Plasmid pJDB207/PHO5-I-FK2UPAB was digested with SalII and XhoI. We isolated a 2.2 kb SalI-XhoI fragment, electroeluted from agarose gel, purified by DE52 chromatography and precipitated in ethanol. The DNA fragment contains two MstI sites in the PHO5 promoter and the u-PA sequence. 3 µg fragment of 2.2 kb SalI-XhoI was partially digested with 3 units of MstI for 10 minutes at 37°C. The reaction products are separated on a preparative 0.8% agarose gel and the 1,651 bp SalI-MstI fragment is isolated and eluted from the gel. The DNA fragment contains the SalI-BamHI sequence of pBR322, the PHO5 promoter, the invertase signal sequence and the FK2UPAB coding sequence up to the MstI site in the u-PA part at nucleotide position 935.

RF-DNA pripremimo za M13mp18/UPA-W (vidi primjer 30) postupkom brze izolacije DNA /D.S. Holmes et al., Analyt. Dioc iem. 114, 193-97 (1981)/. 5 µg DNA probavimo s BamHI i MstI. Nakon dodatka 2 µg RNaze (Serva) i inkubacije 5 minuta pri 37°C izoliramo fragment 387 bp MstI-BamHI na preparativnom 0,8%-tnom agaroznom gelu. DNA fragment elektroeluiramo i istaložimo u etanolu. Fragment sadrži mutaciju AAT → CAA kod nukleotidnih položaja 1033-1035 (Asn302 → Gln) u urokinaznom B-lancu. RF-DNA is prepared for M13mp18/UPA-W (see example 30) by the procedure of rapid DNA isolation / D.S. Holmes et al., Analyt. I'm a part of it. 114, 193-97 (1981)/. We digest 5 µg of DNA with BamHI and MstI. After adding 2 µg of RNase (Serva) and incubation for 5 minutes at 37°C, we isolated the 387 bp MstI-BamHI fragment on a preparative 0.8% agarose gel. The DNA fragment is electroeluted and precipitated in ethanol. The fragment contains an AAT → CAA mutation at nucleotide positions 1033-1035 (Asn302 → Gln) in the urokinase B-chain.

Plazmid pJDB207/PHO5-I-UPA razrežemo sa SalI i BamHI. Izoliramo 6,6 kb vektorski fragment (vidi primjer 29). Povežemo 0,2 pmol 1651 bp SalI-MstI fragmenta, 0,2 pmola 387 bp Mstll-13amHI fragmenta i 0,1 pmola 6.6 kb SaII-BamHI vektorskog fragmenta. Transformiramo kompetentne E.coli H8101 Ca2+ stanice. Plasmid pJDB207/PHO5-I-UPA was cut with SalI and BamHI. We isolate a 6.6 kb vector fragment (see Example 29). We connect 0.2 pmol 1651 bp SalI-MstI fragment, 0.2 pmol 387 bp Mstll-13amHI fragment and 0.1 pmol 6.6 kb SalI-BamHI vector fragment. We transform competent E.coli H8101 Ca2+ cells.

Uzgojima 12 transfornanata rezistentnih na ampicilin. Plazmid DNA izoliramo i analiziramo s restrikcijskim rezovima EcoRI i HindIII. Mutacija (W) na glikozilacijskon mjestu uništava EcoRI mjesto u nukletidnim položajima 1032-1037. Prisutnost mutacije potvrđena je DNA sekvenciranjem. Jednu plazmidnu DNA s mutacijom u u-PA B-lancu navodimo kac pJDB207/PHO5-I-FK2UPAB-W. Taj plazmid ima nedodirnuto glikozilacijsko mjesto u "kringle" K2, ali mutantno mjesto W(Asn302 → Gln) u u-PA B-lancu. Grows 12 ampicillin-resistant transfornants. Plasmid DNA is isolated and analyzed with EcoRI and HindIII restriction enzymes. Mutation (W) at the glycosylation site destroys the EcoRI site at nucleotide positions 1032-1037. The presence of the mutation was confirmed by DNA sequencing. One plasmid DNA with a mutation in the u-PA B-chain is referred to as pJDB207/PHO5-I-FK2UPAB-W. This plasmid has an intact glycosylation site in "kringle" K2, but a mutant site W(Asn302 → Gln) in the u-PA B-chain.

Plazmide pJDB207/PHO5-I-FUPAB-W i pJDB207/PHO5-I-FGK2UPAB-W konstruiramo na jednak način, polazeći od odgovarajućih nemutiranih plazmida (vidi primjer 29). Plasmids pJDB207/PHO5-I-FUPAB-W and pJDB207/PHO5-I-FGK2UPAB-W are constructed in the same way, starting from the corresponding unmutated plasmids (see example 29).

4,8 kb SalI-HpaI vektorski dio pJDB207/PHO5-I-FK2UPAB-H nadomjestimo sa 6.2 kb Sall-HpaI vektorskim fragmentom pJDB207F1Lac (vidi primjer 28). 6.2 kb fragment ima 1.4 kb FlLac insert pEMBL19 kloniran na 4.8 kb fragment pJDB2O7. Nakon vezanja, transforamcije i analize novog konstrukta navodimo jedan pravilan plazmid s uključkom FlLac kac pJDB207FlLac/PHO5-I-FK2UPAB-W. We replace the 4.8 kb SalI-HpaI vector fragment of pJDB207/PHO5-I-FK2UPAB-H with the 6.2 kb SalI-HpaI vector fragment of pJDB207F1Lac (see example 28). The 6.2 kb fragment has the 1.4 kb FlLac insert of pEMBL19 cloned into the 4.8 kb fragment of pJDB2O7. After ligation, transformation and analysis of the new construct, we present a proper plasmid with the inclusion of FlLac kac pJDB207FlLac/PHO5-I-FK2UPAB-W.

Plazmid pJDB207FlLac/PHO5-I-FGK2UPAB-W dobijemo na jednak način. Plasmid pJDB207FlLac/PHO5-I-FGK2UPAB-W is obtained in the same way.

Na jednak način 4.8 kb SalI-HpaI vektorski dio pJDB207/PHO5-I-MOU-K2TPAB (vidi primjer 15C) nadomjestimo sa 6.2 kb SaII-HpaI vektorskim fragmentom pJDB207FlLac. Nastali plazmid označavamo kao pJDB207FlLac/PHO5-I-UK2TPAB. Plazmide pJDB207FlLac/PHO5-I-UK2UPAB, pJDB207FlLac/PHO5-ITPAAUPAB i pJDB207FlLac/PHO5-I-UPAATPAB, dobijemo. na jednak način iz plazmida bez vektorskog fragmenta FlLac. In the same way, replace the 4.8 kb SalI-HpaI vector part of pJDB207/PHO5-I-MOU-K2TPAB (see example 15C) with the 6.2 kb SalI-HpaI vector fragment of pJDB207FlLac. We designate the resulting plasmid as pJDB207FlLac/PHO5-I-UK2TPAB. Plasmids pJDB207FlLac/PHO5-I-UK2UPAB, pJDB207FlLac/PHO5-ITPAAUPAB and pJDB207FlLac/PHO5-I-UPAATPAB are obtained. in the same way from a plasmid without the FlLac vector fragment.

Primjer 32 Example 32

Mutacija glikozilacijskog mjesta /Asn184Gly-Ser u “kringle” K2FK2UPAB-W. Mutation of the glycosylation site /Asn184Gly-Ser in "kringle" K2FK2UPAB-W.

a) Priprava jednovlaknate šablone: a) Preparation of single fiber template:

Plazmid pJDB207FlLac/PHO5-I-FK2UPAB-W upotrebljavamo za transformaciju kompetentnih E.coli RZ1032 Ca2+ stanica /T.A. Kunkel, supra/. Jednu koloniju rezistentnu na ampicilin uzgajamo u LB mediju kojemu je dodano 100 µg/ml ampicilina, 20 µg/ml timidina i 20 µg/ml dezoksiadenozina. Kod stanične gustoće od 1.108/ml skupima stanice, isperemo u LB mediju i ponovno ih suspendiramo u LB mediju koji sadrži 100 µg/ml ampicilina i 0,25 µg/ml uridina. Kod OD600 dodamo 0.3 pomoćnog faga R408 (Pharmacia-PL Biochemicals, Inc.)u m.o.i. 20. Kulturu snažno tresemo 5 sati pri 37°C. Jeunovlaknatu DNA koja sadrži uracil izoliramo iz medija tako kako su opisali T.A. Kunkel (vidi gore). Polazeći od pEMBL19(+) (vidi primjer 28) kloniramo F1 područje u puDB207 u orijentaciji suprotnoj kazaljci na satu. Izolirana jednovlaknata DNA je smisleno Vlakno FK2UPAB uključka u ekspresijskom plazmidu. Plasmid pJDB207FlLac/PHO5-I-FK2UPAB-W is used for transformation of competent E.coli RZ1032 Ca2+ cells /T.A. Kunkel, supra/. One ampicillin-resistant colony was grown in LB medium to which 100 µg/ml ampicillin, 20 µg/ml thymidine and 20 µg/ml deoxyadenosine were added. At a cell density of 1,108/ml, we washed the pooled cells in LB medium and resuspended them in LB medium containing 100 µg/ml ampicillin and 0.25 µg/ml uridine. At OD600, we add 0.3 of helper phage R408 (Pharmacia-PL Biochemicals, Inc.) at m.o.i. 20. The culture is vigorously shaken for 5 hours at 37°C. Single-stranded DNA containing uracil is isolated from the medium as described by T.A. Kunkel (see above). Starting from pEMBL19(+) (see Example 28) we clone the F1 region into puDB207 in a counterclockwise orientation. Isolated single-stranded DNA is sensed Strand FK2UPAB included in the expression plasmid.

b) Mutaciia glikozilacijskog mjesta kod Asn184 "kringle" K2 t-PA b) Mutation of glycosylation site at Asn184 "kringle" K2 t-PA

Mutacija se nanosi na treći položaj podudarnog aminokiselinskog prepoznavanja sekvence za glikozilaciju. Ser-186 nadomješten je s Ala. The mutation is made at the third position of the corresponding amino acid recognition sequence for glycosylation. Ser-186 was replaced with Ala.

SSDNA: 184 186 SSDNA: 184 186

(lanac pravog Asn Gly (F) (chain of true Asn Gly (F)

usmjerenja) 5'-,..GGG AAT GGG TCA GCC TAC CGT...-3' directions) 5'-,..GGG AAT GGG TCA GCC TAC CGT...-3'

mutagenski 3'- CC TTA CCC CGT CGG ATG - -5' mutagenic 3'- CC TTA CCC CGT CGG ATG - -5'

primjer Y: example Y:

lanac mutiranog 5'-…GGG AAT GGG GCA GCC TAC CGT...-3' the chain of the mutated 5'-...GGG AAT GGG GCA GCC TAC CGT...-3'

usmjerenja: Asn Gly (F) directions: Asn Gly (F)

primjer sekvence: 5'-CCACGGGAGGCAGGAGG-3 example sequence: 5'-CCACGGGAGGCAGGAGG-3

• • • •

791 775 791 775

Mutacijski protokol je kao onaj opisan u primjeru 30. Umjesto M13 univerzalnog sekvencnog primjera koristimo PHO5, oligonukletidni i primjer formule 5’-ATGCGAGGTTAGTATGGC-3’ koji i. hibridizira do nukleotida -60 do -77 iz ATG u PHO5 u promotoru. Nakon reakcije produljenja i povezivanja pretvorimo kompetentne E.coli BMH71 Ca2+ stanice. /Kunkel, supra/. Kolonije rezistentne na ampicilin pokupimo i uzgajamo u LB mediju koji sadrži 100 mg/1 ampicilina. The mutation protocol is the same as that described in example 30. Instead of the M13 universal sequence example, we use PHO5, an oligonucleotide and an example of the formula 5'-ATGCGAGGTTTAGTATGGC-3' which i. hybridizes to nucleotides -60 to -77 from ATG in PHO5 in the promoter. After the elongation and binding reaction, we transform competent E.coli BMH71 Ca2+ cells. /Kunkel, supra/. Colonies resistant to ampicillin are collected and grown in LB medium containing 100 mg/1 ampicillin.

Pripremimo plazmid DNA i analiziramo na prisutnost mutacije DNA sekvenciranjem. Mutacija TCA kodona do GCA uzrokuje promjenu Ser → Ala u položaju amino kiseline 186 t-PA. Mutacija u trećem položaju podudarne sekvence ukloni glikozilacijsko mjesto. Jedan klon s mutiranom DNA navodimo kao pJDB207FlLac/PHO5-I-FK2UPAB-WY. We prepare plasmid DNA and analyze for the presence of DNA mutation by sequencing. Mutation of the TCA codon to GCA causes a Ser → Ala change at amino acid position 186 of t-PA. A mutation in the third position of the matching sequence removes the glycosylation site. One clone with mutated DNA is referred to as pJDB207FlLac/PHO5-I-FK2UPAB-WY.

Y označava mutaciju glikozilacijskog mjesta kod Asn184 u K2 t-PA, a W mutaciju kod Asn302 u U-PA B-lanca. Nastali neglikolizirani FK2UPAB hibridni protein ima dvije amino kiselinske promjene: Ser186 → Ala u t PA "kringle" K2 i Asn302 → Gln u u-PA B-lanca. Y indicates a mutation of the glycosylation site at Asn184 in K2 t-PA, and W a mutation at Asn302 in U-PA of the B-chain. The resulting non-glycolized FK2UPAB hybrid protein has two amino acid changes: Ser186 → Ala in t PA "kringle" K2 and Asn302 → Gln in u-PA B-chain.

Analogna mutacija plazmida pJDB207FlLac/PHO5-I-FGK2UPAB-W (vidi primjer 31) vodi do plazmida pJDB207F1Lac/PHO5-I-FK2UPAB-WY, koji kodira za negliko-zilirani FGK2UPAB hibridni protein. An analogous mutation of plasmid pJDB207FlLac/PHO5-I-FGK2UPAB-W (see Example 31) leads to plasmid pJDB207F1Lac/PHO5-I-FK2UPAB-WY, which codes for a non-glycosylated FGK2UPAB hybrid protein.

Primjer 33 Example 33

Konstrukcija plazmida pJDB207FlLac/PHO5-I-K2UPAB-WY Construction of plasmid pJDB207FlLac/PHO5-I-K2UPAB-WY

Nukleotidna sekvenca koja kodira za hibridni K2-UPAB protein, kako je definirana s aminokiselinskim slijedom tPA (Ser1-Gln3) (G1y176-Arg275) -uPA (Ilel59-Leu411) nalazi se u plazrnidu pCGC5/K2UPAB. Za izražavanje u kvascu koristimo inducirani PHO5 promotor i povežemo invertazni signalni slijed u okvir sa K2UPAB kodnim područjem. Plazmid pCGC5/K2UPAB razrežemo s Bg1II i AccI. Izoliramo 487 bp Bg1II-AccI fragment. Sadrži kodnu sekvencu iz BglII mjesta t-PA (nukleotidni položaj 178) na AccI mjesto u u-PA (nukleotidni položaj 779). Fragment razrežemo s HphI, što daje 4 fragmenta. The nucleotide sequence coding for the hybrid K2-UPAB protein, as defined by the amino acid sequence tPA (Ser1-Gln3) (G1y176-Arg275)-uPA (Ilel59-Leu411) is located in the plasmid pCGC5/K2UPAB. For expression in yeast, we use the inducible PHO5 promoter and connect the invertase signal sequence in frame with the K2UPAB coding region. Plasmid pCGC5/K2UPAB was cut with Bg1II and AccI. We isolate a 487 bp Bg1II-AccI fragment. It contains the coding sequence from the BglII site of t-PA (nucleotide position 178) to the AccI site in u-PA (nucleotide position 779). The fragment is cut with HphI, which gives 4 fragments.

Dva oligcdezoksiribonukleotida formule Two oligodeoxyribonucleotides of the formula

Asn (F) Assn (F)

(I) 5'-CTGCATCTTACCAAGGAAACAGTGACTGCTACTTTGGGAATGGGGCAGCCTACCGTGGCACG -3’ (I) 5'-CTGCATCTTACCAAGGAAACAGTGACTGCTACTTTGGGAATGGGGCAGCCTACCGTGGGCACG -3'

(II) 3'- AGAATGGTTCCTTTGTCACTGACGATGAAACCCTTACCCCGTCGGATGGCACCGTG -5’ (II) 3'- AGAATGGTTCCTTTGTCACTGACGATGAAACCCTTACCCCGTCGGATGGCACCGTG -5'

sintetiziramo primjenom fosforamiditne metode na sintetizatoru Applied Biosystem Model 380B. Oligonukleotidi I i II tvore dvovlaknati DNA linker. 5-nukleotidi na otvorenom 5 kraju dio su kvasne invertazne signalne sekvence, nakon čega slijedi t-PA kodna sekvenca (Serl-Gln3)-(G1y176-Thr191) do prvog HphI rezanog mjesta u nukleotidnom položaju 752 (vidi sliku 1). Glikozilacijsko mjesto u položaju 729-737 (AsnGlySer) je mutirano u sintetičkoj sekvenci od TCA (Ser) do GCA (Ala), čime je uklonjena glikozilacijska sekvenca prepoznavanja. Mutacija glikozilacijskog mjesta u aminokiselinskirn položajima 184186 t-PA (npr. drugo glikozilacijsko mjesto u izvornom t-PA) označena je kao Y. synthesized using the phosphoramidite method on the Applied Biosystem Model 380B synthesizer. Oligonucleotides I and II form a double-stranded DNA linker. The 5-nucleotides at the exposed 5 end are part of the yeast invertase signal sequence, followed by the t-PA coding sequence (Serl-Gln3)-(G1y176-Thr191) to the first HphI cut site at nucleotide position 752 (see Figure 1). The glycosylation site at position 729-737 (AsnGlySer) was mutated in the synthetic sequence from TCA (Ser) to GCA (Ala), thereby removing the glycosylation recognition sequence. Mutation of the glycosylation site at amino acid positions 184186 of t-PA (eg, the second glycosylation site in the original t-PA) is designated as Y.

Oligonukleotide I i II fosforiliramo na njihovim krajevima 5’, grijemo 10 minuta pri 85°C i renaturiramo tijekom hlađenja na sobnu temperaturu. 10,5 µg (270 pmolova) kinalizirane, dvovlaknate linkerske DNA povežemo u trideseterostrukom molnom suvišku na HphI rezane fragmente (vidi gore), kako je opisano u primjeru 8B. Suvišne linkerske molekule uklonimo taloženjem s izopropanolom. DNA nadalje probavimo sa ScaI. Izoliramo fragment 252 kb na preparativnom 1,5% agaroznom gelu, elektroeluiramo i taložimo u etanolu. Oligonucleotides I and II are phosphorylated at their 5' ends, heated for 10 minutes at 85°C and renatured during cooling to room temperature. 10.5 µg (270 pmol) of quinalized, double-stranded linker DNA was ligated in a thirty-fold molar excess to the HphI-cut fragments (see above), as described in Example 8B. Excess linker molecules are removed by precipitation with isopropanol. DNA is further digested with ScaI. We isolated the 252 kb fragment on a preparative 1.5% agarose gel, electroeluted and precipitated in ethanol.

Plazmid P31RIT-12 (vidi primjer 6B) probavimo sa SalI i Xhol. Izolirani fragment probavimo nadalje s HgaI (vidi primjer 6C) i BamHI. Izoliramo nastali fragment 591 bp BamHI-HgaI. On sadrži PHO5 promotor i invertaznu signalnu sekvencu. Plasmid P31RIT-12 (see Example 6B) was digested with SalI and XhoI. The isolated fragment was further digested with HgaI (see example 6C) and BamHI. We isolated the resulting 591 bp BamHI-HgaI fragment. It contains the PHO5 promoter and an invertase signal sequence.

Plazmid pJDB207/PHO5-I-K2UPAB-W probavimo s BamHI. 5 linearne DNA djelomično probavimo s 10 jedinica ScaI tijekom 10 minuta. Reakciju zaustavljamo dodatkom 10 mM EDTA. 7.7 kb BamHI-ScaI vektorski fragment izoliramo, elektroeluirarno i istaložimo u etanolu. On sadrži 3’ dio kodne sekvence ScaI mjesta u t-PA (položaj 953) do kraja u-PA B-lanca (PvuII mjesto u položaju 144- s dodanim XhoI linkerom), PHO5 krajnje i pJDB207 vektorske sekvence. Povežemo 0,2 pmola svakog od 591 bp BamHI-HgaI fragmenta i 252 bp ljepljivih krajeva (linker)-Scal fragmenta i 0,1 pmola 7.7 kb vektorskog fragmenta. Nakon transformacije E.coli HB101 Ca2+ stanica uzgojima 12 kolonija rezistentnih na ampicilin. Plazmid DNA izoliramo i analiziramo probavama s EcoRI i HindIII. Prisutnost mutacija provjerimo DNA sekvenciranjem. Odabiremo jedan pravilan klon i njega navodimo kao pJDB207/PHO5-I-K2UPAB-WY. Glikozilirana mjesta i "kringle" K2 t-FA i u u-PA B-lanca su mutirana (Y odnosno W). Plasmid pJDB207/PHO5-I-K2UPAB-W was digested with BamHI. 5 linear DNAs are partially digested with 10 units of ScaI for 10 minutes. The reaction is stopped by adding 10 mM EDTA. The 7.7 kb BamHI-ScaI vector fragment was isolated, electroeluted and precipitated in ethanol. It contains the 3' part of the coding sequence of the ScaI site in t-PA (position 953) to the end of the u-PA B-chain (PvuII site at position 144- with an added XhoI linker), the PHO5 end and the pJDB207 vector sequence. We connect 0.2 pmol of each of the 591 bp BamHI-HgaI fragment and the 252 bp sticky ends (linker)-Scal fragment and 0.1 pmol of the 7.7 kb vector fragment. After transformation of E.coli HB101 Ca2+ cells by growing 12 colonies resistant to ampicillin. Plasmid DNA is isolated and analyzed by digestion with EcoRI and HindIII. We check the presence of mutations by DNA sequencing. We select one proper clone and designate it as pJDB207/PHO5-I-K2UPAB-WY. Glycosylated sites and "kringles" of K2 t-FA and u-PA of the B-chain are mutated (Y and W, respectively).

Nastali neglikozilirani K2UPAB hibridni protein ima dvije aminokiselinske promjene: Ser186 → Ala u t-PA K2 domeni i Asn302 → Gln u u-PA B-lancu. The resulting nonglycosylated K2UPAB hybrid protein has two amino acid changes: Ser186 → Ala in the t-PA K2 domain and Asn302 → Gln in the u-PA B-chain.

Primjer 34 Example 34

Mutacija glikozilacijskih mjesta /Asn184GlySer/ i /Asn44BArgThr/ u hibridu K2UPAB Mutation of glycosylation sites /Asn184GlySer/ and /Asn44BArgThr/ in K2UPAB hybrid

Jednovlaknatu šablonu /T.A. Kunkel, supra/ koja sadrži uracil; plazmida pJDB207/FlLac/PHO5-I-UK2TPAB (vidi primjer 31) pripremimo tako kako je opisano u primjeru 30. Shema mutacije za glikozilacijsko mjesto kod Asn184 je kao ona opisana u primjeru 32. Mutacija glikozilacijskog mjesta kod Asn448 uzrokuje aminokiselinsku promjenu Thr450 → Ala. Single fiber template /T.A. Kunkel, supra/ containing uracil; plasmid pJDB207/FlLac/PHO5-I-UK2TPAB (see example 31) is prepared as described in example 30. The mutation scheme for the glycosylation site at Asn184 is as described in example 32. Mutation of the glycosylation site at Asn448 causes an amino acid change Thr450 → Ala .

jednovlaknata DNA 448 450 single-stranded DNA 448 450

(vlakna pravilnog Asn Arg (F) (fibers of regular Asn Arg (F)

usmjerenja) 5'-...CTT AAC AGA ACA GTC ACC GAC A...-3' directions) 5'-...CTT AAC AGA ACA GTC ACC GAC A...-3'

mutagenski 3’-...GAA TTG TCT CGT CAG TGG CTG T…..-5' mutagenic 3'-...GAA TTG TCT CGT CAG TGG CTG T…..-5'

primjer Z: example Z:

vlakno mutiranog 5'- CTT AAC AGA GCA GTC ACC GAC A -3' strand of the mutated 5'- CTT AAC AGA GCA GTC ACC GAC A -3'

usmjerenja: Asn Arg (F) directions: Asn Arg (F)

sekvencni primjer: 5’-TGGCAGGCGTCGTGCAA-3' sequence example: 5'-TGGCAGGCGTCGTGCAA-3'

• • • •

1603 1587 1603 1587

Mutacijski protokol opisan je u primjeru 30. Oba fosforilirana mutagenska primjera Y i Z su renaturirani u jednovlaknatu šablonu pJDB207FlLac/PHO5-I-UK2TPAB, koja sadrži uracil. U danom slučaju koristimo .još PHO5 oligonukletidni primjer (vidi primjer 32). The mutation protocol is described in Example 30. Both phosphorylated mutagenic examples Y and Z were renatured into the single-stranded template pJDB207FlLac/PHO5-I-UK2TPAB, which contains uracil. In this case we use another PHO5 oligonucleotide example (see example 32).

Nakon reakcije produljenja i povezivanja trasformiraju se kompetentne E.coli BMH71 Ca2+ stanice. Pripremimo plazmid transformanata rezistentnih na ampicilin i prisutnost obaju mutacija analiziramo sekvenciranjem DNA s označenim sekventnim uspoređivanjima. After the elongation and binding reaction, competent E.coli BMH71 Ca2+ cells are transformed. We prepare a plasmid of ampicillin-resistant transformants and analyze the presence of both mutations by DNA sequencing with marked sequence comparisons.

Plazmid DNA jednog klona s obje mutacije navodimo kao pJDB207FlLac/PHO5-I-UK2TPAB-YZ. Y označava mutaciju glikozi-lacijskog mjesta kod Asn184, Z mutaciju kod Asn448. Neglikolizirani hibridni protein UK2TPAB ima dvije aminokiselinske promjene: Ser186 → Ala u K2 "kringle" t-PA i Thr450 → Ala u t-PA B-lancu. We refer to the plasmid DNA of one clone with both mutations as pJDB207FlLac/PHO5-I-UK2TPAB-YZ. Y denotes a mutation of the glycosylation site at Asn184, Z a mutation at Asn448. The non-glycolized hybrid protein UK2TPAB has two amino acid changes: Ser186 → Ala in the K2 "kringle" of t-PA and Thr450 → Ala in the B-chain of t-PA.

Mutacijski protokol bio također upotrijebljen šablone The mutation protocol was also used as a template

pJDB207FlLac/PHO5-I-UK2TPAB, pJDB207FlLac/PHO5-I-UK2TPAB,

pJDB207FlLac/PHO5-I-TPAAUPAB i pJDB207FlLac/PHO5-I-TPAAUPAB and

pJDB207FlLac/PHO5-I-UPAATPAB- (vidi primjer 31) pJDB207FlLac/PHO5-I-UPAATPAB- (see Example 31)

s mutagenetskim primjerom W za mutaciju glikozilacijskog mjesta u-PA B-lanca i/ili mutagenskog primjera Y i Z i druge, objavljene u europskoj patentnoj prijavi br. 225286, za mutaciju glikozilacijskih mjesta u t-PA. with the mutagenic example W for the mutation of the glycosylation site of the u-PA B-chain and/or the mutagenic examples Y and Z and others, published in the European patent application no. 225286, for mutation of glycosylation sites in t-PA.

Primjer 35 Example 35

Transformacija Saccharomyces cereviesiae GRF18 i priprava kvasnih staničnih ekstrakata Transformation of Saccharomyces cerevisiae GRF18 and preparation of yeast cell extracts

Plazmide Plasmids

pJDB207/PHO5-I-FK2UPAB, pJDB207/PHO5-I-FK2UPAB,

pJDB207F1Lac/PHO5-I-FK2UPAB-W, pJDB207F1Lac/PHO5-I-FK2UPAB-W,

pJDB207F1Lac/PHO5-I-FR2UPAB-WY, pJDB207F1Lac/PHO5-I-FR2UPAB-WY,

pJDB207F1Lac/PHO5-I-UK2TPAB, pJDB207F1Lac/PHO5-I-UK2TPAB,

pJDB207F1Lac/PHO5-I-UK2TPAB-YZ, pJDB207F1Lac/PHO5-I-UK2TPAB-YZ,

pJDB207/PHO5-I-K2UPAB-WY, pJDB207/PHO5-I-K2UPAB-WY,

pJDB207/PHO5-I-FUPAB, pJDB207/PHO5-I-FUPAB,

pJDB207/PHO5-I-FUPAB-W, pJDB207/PHO5-I-FUPAB-W,

pJDB207/PHO5-I-FGK2UPAB, pJDB207/PHO5-I-FGK2UPAB,

pJDB207/PHO5-I-FGK2UPAB-W, pJDB207/PHO5-I-FGK2UPAB-W,

pJDB207F1Lac/PHO5-I-FGK2UPAB-W'.i pJDB207F1Lac/PHO5-I-FGK2UPAB-W'.i

pJDB207F1Lac/PHO5-I-FGK2UPAB-WY pJDB207F1Lac/PHO5-I-FGK2UPAB-WY

transformiramo u Saccharomyces cereviesiae soj GRF18 (DSM 3665). Transformacija, stanični rast i priprava staničnih ekstrakata opisani su u primjeru 16. transform into Saccharomyces cerevisiae strain GRF18 (DSM 3665). Transformation, cell growth and preparation of cell extracts are described in Example 16.

Nastale hibridne plazminogenske aktivatore možemo očistiti analogno načinu opisanom u primjerima 22 do 24. The resulting hybrid plasminogen activators can be purified analogously to the method described in examples 22 to 24.

Primjer 36 Example 36

Pripravaa liofiliziranih, hibridnih plazminogenskih aktivatora Preparation of lyophilized, hybrid plasminogen activators

Otopinu dobivenu po bilo kojem od primjera 22 do 24 čistimo dalje i liofiliziramo kako slijedi: The solution obtained according to any of examples 22 to 24 is further purified and lyophilized as follows:

Otopinu razrijedimo s 10 volumena 0,1 M amonijevog acetata s pH 5,0 (cjelokupni volumen 80 ml) i nanesemo na kolonu koja sadrži 5 ml CM-Sepharoze Fast Flow (Pharmacia) s protokom 25 ml/sat pri sobnoj temperaturi. Kolonu smo prethodno uravnotežili s 0,1 M amonijevim acetatom. Perkolat, koji ne sadrži proizvod, odbacimo. Kolonu isperemo s 15 ml 0, 1 M amonijevog acetata s pH S, 0 i s 10 ml 0,1 M amonijevog acetata s pH 7,0. Zatim provedemo eluiranje apsorbiranog hibridnog PA s 1 M amonijevim acetatorn s pH 8,6 pri sobnoj temperaturi (protok 5 ml/sat). Da spriječimo tvorbu plina na koloni izvršimo eluiranje pod povišenim tlakom 1 do 1,5 bara. Sadržaj hibridnog PA u eluatu mjerimo s UV monitorom (280 nm). Skupimo frakcije koje sadrže pribl. 90% eluiranog hibridnog PA i podvrgnemo liofilizaciji. Čistoća čvrstog hibridnog PA liofilizata je pribl. ili iznad 95%, kako ocjenjujemo s HPLC. Proizvod ne sadrži deterdžente. The solution is diluted with 10 volumes of 0.1 M ammonium acetate at pH 5.0 (total volume 80 ml) and applied to a column containing 5 ml of CM-Sepharose Fast Flow (Pharmacia) with a flow rate of 25 ml/hour at room temperature. The column was previously equilibrated with 0.1 M ammonium acetate. We discard the leachate, which does not contain the product. The column is washed with 15 ml of 0.1 M ammonium acetate at pH S.0 and with 10 ml of 0.1 M ammonium acetate at pH 7.0. Then we carry out elution of the absorbed hybrid PA with 1 M ammonium acetate with pH 8.6 at room temperature (flow rate 5 ml/hour). To prevent the formation of gas on the column, perform elution under elevated pressure of 1 to 1.5 bar. The content of hybrid PA in the eluate is measured with a UV monitor (280 nm). Let's collect the fractions containing approx. 90% of eluted hybrid PA and subjected to lyophilization. The purity of solid hybrid PA lyophilizate is approx. or above 95%, as assessed by HPLC. The product does not contain detergents.

Primjer 37 Example 37

Prvi farmaceutski sastav za parenteralno davanje The first pharmaceutical composition for parenteral administration

Otopinu koja sadrži čisti uPA(1-44)-tPA(176-527), dobiven kao što je gore opisano, dijaliziramo prema 0,3 molarnom natrijevom kloridu, koji sadrži 0,01% Tween 80®, i pohranimo pri -80°C. Prije davanja namjestimo koncentraciju na 75 µg/ml cjelokupnog PA i 0,3 M NaCl. Otopinu steriliziramo filtracijom kroz membranski filtar 0,22 µl. The solution containing pure uPA(1-44)-tPA(176-527), obtained as described above, was dialyzed against 0.3 M sodium chloride, containing 0.01% Tween 80®, and stored at -80° C. Before administration, adjust the concentration to 75 µg/ml of total PA and 0.3 M NaCl. The solution is sterilized by filtration through a 0.22 µl membrane filter.

Umjesto gore spomenutog PA možemo upotrijebiti također jednaku količinu drugih PA, opisanih u prethodnim primjerima, kao npr.: Instead of the above-mentioned PA, we can also use an equal amount of other PAs, described in the previous examples, such as:

uPA(1-158)-tPA(276-527), uPA(1-158)-tPA(276-527),

uPA(1-131)-tPA(263-527), tPA(1-275)-uPA(159-411), uPA(1-131)-tPA(263-527), tPA(1-275)-uPA(159-411),

tPA(1-262)-uPA(132-411), uPA(1-44)-tPA(176-261)-uPA(134-411), tPA(1-262)-uPA(132-411), uPA(1-44)-tPA(176-261)-uPA(134-411),

tPA(1-49)-tPA(262-275)-uPA(159-411), tPA(1-49)-uPA(134-411), tPA(1-49)-tPA(262-275)-uPA(159-411), tPA(1-49)-uPA(134-411),

tPA(1-49)-tPA(176-275)-uPA(159-411), tPA(1-49)-tPA(176-275)-uPA(159-411),

tPA(1-49)-tPA(176-262)-uPA(132-411), tPA(1-49)-tPA(176-262)-uPA(132-411),

tPA(1-3)-tPA(176-275)-uPA(159-411); tPA(1-3)-tPA(176-275)-uPA(159-411);

tPA(1-86)-tPA(176-275)-uPA(159-411) ili tPA(1-86)-tPA(176-275)-uPA(159-411) or

tPA(1-86)-tPA(176-262)-uPA(132-411); tPA(1-86)-tPA(176-262)-uPA(132-411);

ili mutantni hibridni PA, kao npr. or mutant hybrid PA, such as

tPA(1-49)-tPA(262-275)-uPA(159-301, Gln, 303-411), tPA(1-49)-tPA(262-275)-uPA(159-301, Gln, 303-411),

tPA(1-49)-tPA(176-185, Ala, 187-275)-uPA(159-301, Gln, 303-411), tPA(1-49)-tPA(176-185, Ala, 187-275)-uPA(159-301, Gln, 303-411),

uPA(1-44)-tPA(176-185, Ala, 187-449, Ala, 451-527), uPA(1-44)-tPA(176-185, Ala, 187-449, Ala, 451-527),

tPA(1-3)-tPA(176-185, Als, 187-275)-uPA(159-301, Gln, 3D3-411) ili tPA(1-3)-tPA(176-185, Als, 187-275)-uPA(159-301, Gln, 3D3-411) or

tPA(1-86)-tPA(176-185, Ala,.l87-275)-uPA(159-301, Gln, 303-411). tPA(1-86)-tPA(176-185, Ala, 187-275)-uPA(159-301, Gln, 303-411).

Primjer 38 Example 38

Drugi farmaceutski sastav za parenteralno davanje (disperzija za injekcije) Other pharmaceutical composition for parenteral administration (dispersion for injections)

169,3 mg sojinog lecitina (sojin fosfatit NC 95, proizvođač: Nattermann, Koeln, SRN, čistoće 90 do 96%; sastav masnih kiselina: linolna kiselina 61 do 71%, linolenska kiselina 4 do 7%, uljna kiselina 6 do 13%, palmitinska kiselina 10 do 15%, stearinska kiselina 1,5 do 3,5%) i 92,7 mg čistog natrijevog glikoholata otopimo u 752,5 ml sterilizirane vode. Otopini namjestimo pH na 7,4 s 1N NaOH. Dodamo 10 mg liofiliziranog uPA(1-44)-tPA(176-527). Smjesu miješamo dok dobijemo bistru otopinu. Otopinu steriliziramo filtracijom kroz membranski filter 0,22 µm i napunimo ampule. 169.3 mg of soy lecithin (soy phosphatite NC 95, manufacturer: Nattermann, Koeln, SRN, purity 90 to 96%; composition of fatty acids: linoleic acid 61 to 71%, linolenic acid 4 to 7%, oleic acid 6 to 13% , palmitic acid 10 to 15%, stearic acid 1.5 to 3.5%) and 92.7 mg of pure sodium glycocholate are dissolved in 752.5 ml of sterilized water. Adjust the pH of the solution to 7.4 with 1N NaOH. Add 10 mg of lyophilized uPA(1-44)-tPA(176-527). We stir the mixture until we get a clear solution. Sterilize the solution by filtration through a 0.22 µm membrane filter and fill the ampoules.

Umjesto gore spomenutog PA možemo upotrijebiti također i jednaku količinu nekog drugog PA opisanog u prethodnim primjerima, kao npr.: Instead of the above-mentioned PA, we can also use an equal amount of another PA described in the previous examples, such as:

uPA(1-158)-tPA(276-527), uPA(1-158)-tPA(276-527),

uPA(1-131)-tPA(263-527), tPA(1-275)-uPA(159-411), uPA(1-131)-tPA(263-527), tPA(1-275)-uPA(159-411),

tPA(1-262)-uPA(132-411), uPA(1-44)-tPA(176-261)-uPA(134-411), tPA(1-262)-uPA(132-411), uPA(1-44)-tPA(176-261)-uPA(134-411),

tPA(1-49)-tPA(262-275)-uPA(159-411), tPA(1-49)-uPA(134-411), tPA(1-49)-tPA(262-275)-uPA(159-411), tPA(1-49)-uPA(134-411),

tPA(1-49)-tPA(176-275)-uPA(159-411), tPA(1-49)-tPA(176-275)-uPA(159-411),

tPA(1-49)-tPA(176-262)-uPA(132-411), tPA(1-49)-tPA(176-262)-uPA(132-411),

tPA(1-3)-tPA(176-275)-uPA(159-411); tPA(1-3)-tPA(176-275)-uPA(159-411);

tPA(1-86)-tPA(176-275)-uPA(159-411) ili tPA(1-86)-tPA(176-275)-uPA(159-411) or

tPA(1-86)-tPA(176-262)-uPA(132-411), tPA(1-86)-tPA(176-262)-uPA(132-411),

ili mutantni hibridni PA, kao npr. or mutant hybrid PA, such as

tPA(1-49)-tPA(262-275)-uPA(159-301, Gln, 303-411), tPA(1-49)-tPA(262-275)-uPA(159-301, Gln, 303-411),

tPA(1-49)-tPA(176-185, Ala, 187-275)-uPA(159-301, Gln, 303-411), tPA(1-49)-tPA(176-185, Ala, 187-275)-uPA(159-301, Gln, 303-411),

uPA(1-44)-tPA(176-185, Ala, 187-449, Ala, 451-527), uPA(1-44)-tPA(176-185, Ala, 187-449, Ala, 451-527),

tPA(1-3)-tPA(176-185,'Ala, l87-275)-uPA(159-301, Gln, 303-411), tPA(1-3)-tPA(176-185,'Ala, 187-275)-uPA(159-301, Gln, 303-411),

tPA(1-86)-tPA(176-185, Ala, 187-275)-uPA(159-301, Gln, 303-411). tPA(1-86)-tPA(176-185, Ala, 187-275)-uPA(159-301, Gln, 303-411).

Primjer 39 Example 39

Treći farmaceutski sastav za parenteralno davanje (uključiv bolusne infekcije) Third pharmaceutical composition for parenteral administration (including bolus infections)

100 mg hibridnog plazminogenskog aktivatora ili mutantnog hibridnog plazminogenskog aktivatora, npr. takovog kao što su oni spomenuti u primjerima 37 do 38, otopimo u 1000 ml 50 mM glutaminske kiseline/natrijev glutamat, koji sadrži 0, 7% NaCl, s pH 4, 5. S otopinom punimo ampule, a možemo ju upotrijebiti i za intravenoznu (bolusnu) infuziju. 100 mg of hybrid plasminogen activator or mutant hybrid plasminogen activator, for example such as those mentioned in examples 37 to 38, are dissolved in 1000 ml of 50 mM glutamic acid/sodium glutamate, containing 0.7% NaCl, with pH 4.5 We fill ampoules with the solution, and we can also use it for intravenous (bolus) infusion.

Deponiranje mikroorganizama Deposition of microorganisms

Slijedeće vrste deponirali smo godine 1987 pri Deutsche Sammlung fur Mikroorganismen (DSM), Grisebachs-strasse 8, D-3000 Göttingen, SRN (s danim pristupnim brojevima): We deposited the following species in 1987 at the Deutsche Sammlung fur Mikroorganismen (DSM), Grisebachs-strasse 8, D-3000 Göttingen, SRN (with given accession numbers):

E.coli HB101/pW349F Pristupni broj: E.coli HB101/pW349F Accession number:

E.coli.HB101/pCS16 E.coli.HB101/pCS16

E.coli HB101/pcUK176 E.coli HB101/pcUK176

E.coli HB101/pCGA26 E.coli HB101/pCGA26

E.coli HB101/pSV2911neo. E.coli HB101/pSV2911neo.

Slijedeće hibridne stanične linije deponirali smo 1987. g. u "Collection Nationale de Cultures de Microorganismes", Institut Pasteur, Pariz, (CNCM), Francuska, pod danim pristupnim brojevima. We deposited the following hybrid cell lines in 1987 in the "Collection Nationale de Cultures de Microorganismes", Institut Pasteur, Paris, (CNCM), France, under the given accession numbers.

Hibridomi: Pristupni broj: Hybridomas: Accession number:

405B.33.3 405B.33.3

406A.23.7 406A.23.7

407A.15.27 407A.15.27

Claims (27)

1. Jednolančani hibridni plazminogenski aktivator, naznačen time, da se sastoji od a) humane t-PA "kringle" 2 domene, humane katalitičke u-PA domene i spojne sekvencije koja povezuje humanu t-PA "kringle" 2 domenu s humanom u-PA katalitičkom domenom, pri čemu je spojna sekvencija odabrana iz skupine koja se sastoji od spojne sekvencije koja povezuj e A-lanac s B-lancem u humanom t-PA spojne sekvencije koja povezuj e A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije sastavljene od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, k tome N-terminalni, cisteinski ostatak sposoban za tvorbu sumpor-sumpor mosta na humanu u-PA katalitičku domenu; i opcijski dodatno jedne ili više sekvencija odabranih iz skupine koja se sastoji od (i) spojne sekvencije koja N-terminalno pokriva "kringle" 2 domenu u humanom t-PA ili njezin fragment, a koja je spojna sekvencija ili njezin fragment smještena u hibridnom plazminogenskom aktivatoru N-terminalno prema humanoj t-PA "kringle" 2 domeni; te (ii) T-regiju humanog t-PA ili njezin N-terminalni fragment, a koja je T-regija ili njezin fragment smještena na N-terminusu hibridnog plazminogenskog aktivatora; b) humane t-PA "finger" domene, humane t-PA "kringle" 2 domene, humane u-PA katalitičke domene i spojne sekvencije koja povezuj e humanu t-PA "kringle" 2 domenu i humanu u-PA katalitičku domenu, a koja spojna sekvencija je odabrana iz skupine koja se sastoji od spojne sekvencije što povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije sastavljene od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, k tome N-terminalni, cisteinski ostatak što može tvoriti mostove sumpor-sumpor na humanu u-PA katalitičku domenu; te opcijski dodatno jedne ili više sekvencija odabranih iz skupine koja se sastoji od (i) spojne sekvencije koja C-terminalno pokriva "finger" domenu u humanom t-PA, spojne sekvencije koja N-terminalno pokriva "kringle" 2 domenu u humanom t-PA, ili sjedinjenu spojnu sekvenciju koja je sastavljena od obje rečene spojne sekvencije ili njihovih fragmenata, a koja spojna sekvencija ili sjedinjena spojna sekvencija je smještena između t-PA "finger" domene i t-PA "kringle" 2 domene u hibridnom plazminogenskom aktivatoru; i (ii) T-regije humanog t-PA ili njezin N-terminalni fragment, a koja T-regija ili njezin fragment je smješten na N-terminusu hibridnog plazminogenskog aktivatora; (c) humane t-PA "finger" domene, humane t-PA domene faktora rasta, humane t-PA "kringle" 2 domene, humane u-PA katalitičke domene, i spojne sekvencije koja povezuje humanu t-PA "kringle" 2 domenu s humanom u-PA katalitičkom domenom, a koja spojna sekvencija se odabire iz skupine koja se sastoji od spojne sekvencije koja povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije koja je sastavljena od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, k tome N-terminalni, cisteinski ostatak koji može tvoriti most sumpor-sumpor na humanu u-PA katalitićku domenu; i opcijski dodatno jednu ili više sekvencija odabranih iz skupine koja sadrži (i) spojnu sekvenciju koja C-terminalno pokriva "finger" domenu u humanom t-PA ili njezin fragment, spojnu sekvenciju koja N-terminalno pokriva t-PA domenu faktora rasta u humanom t-PA ili njezin fragment, ili sjedinjenu spojnu sekvenciju sastavljenu od rečene obje spojne sekvencije ili njihovih fragmenata, pri čemu su rečene spojne sekvencije ili sjedinjene spojne sekvencije smještene između "finger" domene i domene faktora rasta u hibridnom plazminogenskom aktivatoru; (ii) spojnu sekvenciju koja C-terminalno pokriva domenu faktora rasta u humanom t-PA ili njezin fragment, spojnu sekvenciju koja N-terminalno pokriva "kringle" 2 domenu u humanom t-PA ili njezin fragment, ili sjedinjenu spojnu sekvenciju koja se sastoji od obje spomenute spojne sekvencije ili od njihovih fragmenata, pri čemu su rečene spojne sekvencije ili sjedinjene spojne sekvencije smještene između faktora rasta i "kringle" 2 domene u hibridnom plazminogenskom aktivatoru; te (iii) T-regiju humanog t-PA ili njezin N-terminalni fragment, a koja T-regija ili njezin fragment je smještena na N-terminusu hibridnog plazminogenskog aktivatora.1. Single-chain hybrid plasminogen activator, characterized in that it consists of a) human t-PA "kringle" 2 domain, human catalytic u-PA domain and the junction sequence connecting the human t-PA "kringle" 2 domain with the human u-PA catalytic domain, wherein the junction sequence is selected from the group consists of a connecting sequence that connects the A-chain with the B-chain in human t-PA, a connecting sequence that connects the A-chain with the B-chain in human u-PA, and a hybrid connecting sequence composed of subsequences of said connecting sequences, whereby said splice sequences and hybrid splice sequences include a plasmin-cleavable processing site, in addition to an N-terminal, cysteine residue capable of forming a sulfur-sulfur bridge to the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group consisting of (i) a junction sequence N-terminally covering the "kringle" 2 domain in human t-PA or a fragment thereof, which junction sequence or fragment thereof is located in the hybrid plasminogen activator N-terminal to the human t-PA "kringle" 2 domain ; you (ii) the T-region of human t-PA or its N-terminal fragment, which T-region or its fragment is located at the N-terminus of hybrid plasminogen activator; b) human t-PA "finger" domains, human t-PA "kringle" 2 domains, human u-PA catalytic domains and connecting sequences connecting the human t-PA "kringle" 2 domain and the human u-PA catalytic domain, and which linker sequence is selected from the group consisting of a linker sequence connecting the A-chain to the B-chain in human t-PA, a linker sequence connecting the A-chain to the B-chain in human u-PA, and hybrid linker sequences composed of subsequences of said junction sequences, wherein said junction sequences and hybrid junction sequences include a processing site that can be cleaved by plasmin, in addition an N-terminal, cysteine residue that can form sulfur-sulfur bridges on the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group consisting of (i) a splice sequence that C-terminally covers the "finger" domain in human t-PA, a splice sequence that N-terminally covers the "kringle" 2 domain in human t-PA, or a combined splice sequence that is composed of both said splice sequences or fragments thereof, and which junction sequence or united junction sequence is located between the t-PA "finger" domain and the t-PA "kringle" 2 domain in the hybrid plasminogen activator; and (ii) the T-region of human t-PA or its N-terminal fragment, which T-region or its fragment is located at the N-terminus of the hybrid plasminogen activator; (c) human t-PA "finger" domains, human t-PA growth factor domains, human t-PA "kringle" 2 domains, human u-PA catalytic domains, and linker sequences connecting human t-PA "kringle" 2 domain with the human u-PA catalytic domain, which linker sequence is selected from the group consisting of a linker sequence connecting the A-chain to the B-chain in human t-PA, a linker sequence connecting the A-chain to the B-chain in human u-PA, and a hybrid splice sequence that is composed of subsequences of said splice sequences, wherein said splice sequences and hybrid splice sequences include a processing site that can be cleaved by plasmin, in addition, an N-terminal, cysteine residue that can form a sulfur bridge sulfur on the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group comprising (i) a junction sequence that C-terminally covers the "finger" domain in human t-PA or a fragment thereof, a junction sequence that N-terminally covers the t-PA growth factor domain in human t-PA or a fragment thereof, or a combined junction sequence composed of of said both junction sequences or fragments thereof, wherein said junction sequences or united junction sequences are located between the "finger" domain and the growth factor domain in the hybrid plasminogen activator; (ii) a junction sequence that C-terminally covers the growth factor domain in human t-PA or a fragment thereof, a junction sequence that N-terminally covers the "kringle" 2 domain in human t-PA or a fragment thereof, or a combined junction sequence consisting from both mentioned junction sequences or from their fragments, wherein said junction sequences or united junction sequences are located between the growth factor and the "kringle" 2 domain in the hybrid plasminogen activator; you (iii) T-region of human t-PA or its N-terminal fragment, which T-region or its fragment is located at the N-terminus of hybrid plasminogen activator. 2. Jednolančani hibridni plazminogenski aktivator prema zahtjevu 1, naznačen time, da je odabran iz skupine koja se sastoji od tPA(1-3)-tPA(176-275)-uPA-(159-411), tPA(1-49)-tPA(176-275)uPA(159-411) i tPA(1-86) -tPA(176-275) -uPA(159-411).2. Single-chain hybrid plasminogen activator according to claim 1, characterized in that it is selected from the group consisting of tPA(1-3)-tPA(176-275)-uPA-(159-411), tPA(1-49) -tPA(176-275)uPA(159-411) and tPA(1-86)-tPA(176-275)-uPA(159-411). 3. Jednolančani hibridni plazminogenski aktivator prema zahtjevu l, naznačen time, da je to tPA(1-3)-tPA(176-275)-uPA(159-411).3. Single-chain hybrid plasminogen activator according to claim 1, characterized in that it is tPA(1-3)-tPA(176-275)-uPA(159-411). 4. Sekvencija DNA, naznačena time, da je šifrirana za jednolančani hibridni plazminogenski aktivator, koji se sastoji od a) humane t-PA "kringle" 2 domene, humane katalitičke u-PA domene i spojne sekvencije koja povezuje humanu t-PA, "kringle" 2 domenu s humanom u-PA katalitičkom domenom pri čemu je spojna sekvencija odabrana iz skupine koja se sastoji od spojne sekvencije koja povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije sastavljene od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, k tome N-terminalni, cisteinski ostatak sposoban za tvorbu sumpor-sumpor mosta na humanu u-PA katalitičku domenu; i opcijski dodatno jedne ili više sekvencija odabranih iz skupine koja se sastoji od (i) spojne sekvencije koja N-terminalno pokriva "kringle" 2 domenu u humanom t-PA ili njezin fragment, a koja je spojna sekvencija ili njezin fragment smještena u hibridnom plazminogenskom aktivatoru N-terminalno prema humanoj t-PA "kringle" 2 domeni; te (ii) T-regiju humanog t-PA ili njezin N-terminalni fragment, koja je T-regija ili njezin fragment smještena na N-terminusu hibridnog plazminogenskog aktivatora; b) humane t-PA "finger" domene, humane t-PA "kringle" 2 domene, humane u-PA katalitičke domene i spojne sekvencije koja povezuje humanu t-PA "kringle" 2 domenu i humanu uPA katalitičku domenu, a koja spojna sekvencija je odabrana iz skupine koja se sastoji od spojne sekvencije što povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencijom sastavljene od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, i k tome N-terminalni, cisteinski ostatak što može tvoriti moste sumpor-sumpor na humanu uPA katalitičku domenu; te opcijski dodatno jednu ili više sekvencija odabranih iz skupine koja se sastoji od (i) spojne sekvencije koja C-terminalno pokriva "finger" domenu u humanom t-PA, spojne sekvencije koja N-terminalno pokriva "kringle" 2 domenu u humanom t-PA, ili sjedinjenu spojnu sekvenciju koja je sastavljena od obje rečene spojne sekvencije ili njihovih fragmenata, a koja je spojna sekvencija ili sjedinjena spojna sekvencija smještena između t-PA "finger" domene i t-PA "kringle" 2 domene u hibridnom plazminogenskom aktivatoru; i (ii) T-regije humanog t-PA ili njezin N-terminalni fragment, a koja T-regija ili njezin fragment je smješten na N-terminusu hibridnog plazminogenskog aktivatora; (c) humane t-PA "finger" domene, humane t-PA domene faktora rasta, humane t-PA "kringle" 2 domene, humane u-PA katalitičke domene, i spojne sekvencije koja povezuje humanu t-PA "kringle" 2 domenu s humanom u-PA katalitičkom domenom, a koja spojna sekvencija se odabire iz skupine koja se sastoji od spojne sekvencije koja povezuj e A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije koja je sastavljena od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, k tome N-terminalni, cisteinski ostatak koji može tvoriti most sumpor-sumpor na humanu u-PA katalitičku domenu; i opcijski dodatno jednu ili više sekvencija odabranih iz skupine koja sadrži (i) spojnu sekvenciju koja C-terminalno pokriva "finger" domenu u humanom t-PA ili njezin fragment, spojnu sekvenciju koja N-terminalno pokriva t-PA domenu faktora rasta u humanom t-PA ili njezin fragment, ili sjedinjenu spojnu sekvenciju sastavljenu od rečene obje spojne sekvencije ili njihovih fragmenata, pri čemu su rečene spojne sekvencije ili sjedinjene spojne sekvencije smještene između "finger" domene i domene faktora rasta u hibridnom plazminogenskom aktivatoru; (ii) spojnu sekvenciju koja C-terminalno pokriva domenu faktora rasta u humanom t-PA ili njezin fragment, spojnu sekvenciju koja N-terminalno pokriva "kringle" 2 domenu u humanom t-PA ili njezin fragment, ili sjedinjenu spojnu sekvenciju koja se sastoji od obje spomenute spojne sekvencije ili od njihovih fragmenata, pri čemu su rečene spojne sekvencije ili sjedinjene spojne sekvencije smještene između faktora rasta i "kringle" 2 domene u hibridnom plazminogenskom aktivatoru; te (iii) T-regiju humanog t-PA ili njezin N-terminalni fragment, a koja je T-regija ili njezin fragment smještena na N-terminusu hibridnog plazminogenskog aktivatora.4. A DNA sequence, indicated by the fact that it is coded for a single-stranded hybrid plasminogen activator, consisting of a) human t-PA "kringle" 2 domain, human catalytic u-PA domain and a junction sequence connecting the human t-PA, "kringle" 2 domain with the human u-PA catalytic domain, wherein the junction sequence is selected from the group that consists of a splice sequence that connects the A-chain to the B-chain in human t-PA, a splice sequence that connects the A-chain to the B-chain in human u-PA, and a hybrid splice sequence composed of subsequences of said splice sequences, wherein said junction sequences and hybrid junction sequences include a plasmin-cleavable processing site, in addition to an N-terminal, cysteine residue capable of forming a sulfur-sulfur bridge to the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group consisting of (i) a junction sequence N-terminally covering the "kringle" 2 domain in human t-PA or a fragment thereof, which junction sequence or fragment thereof is located in the hybrid plasminogen activator N-terminal to the human t-PA "kringle" 2 domain ; you (ii) the T-region of human t-PA or its N-terminal fragment, which is the T-region or its fragment located at the N-terminus of hybrid plasminogen activator; b) human t-PA "finger" domains, human t-PA "kringle" 2 domains, human u-PA catalytic domains and connecting sequences that connect the human t-PA "kringle" 2 domain and the human uPA catalytic domain, which connecting the sequence is selected from the group consisting of a junction sequence connecting the A-chain to the B-chain in human t-PA, a junction sequence connecting the A-chain to the B-chain in human u-PA, and a hybrid junction sequence composed of subsequences said junction sequences, wherein said junction sequences and hybrid junction sequences include a processing site that can be cleaved by plasmin, and in addition an N-terminal, cysteine residue that can form sulfur-sulfur bridges on the human uPA catalytic domain; and optionally additionally one or more sequences selected from the group consisting of (i) a splice sequence that C-terminally covers the "finger" domain in human t-PA, a splice sequence that N-terminally covers the "kringle" 2 domain in human t-PA, or a combined splice sequence that is composed of both said splice sequences or fragments thereof, which is a junction sequence or a united junction sequence located between the t-PA "finger" domain and the t-PA "kringle" 2 domain in the hybrid plasminogen activator; and (ii) the T-region of human t-PA or its N-terminal fragment, which T-region or its fragment is located at the N-terminus of the hybrid plasminogen activator; (c) human t-PA "finger" domains, human t-PA growth factor domains, human t-PA "kringle" 2 domains, human u-PA catalytic domains, and linker sequences connecting human t-PA "kringle" 2 domain with the human u-PA catalytic domain, and which linker sequence is selected from the group consisting of a linker sequence connecting the A-chain to the B-chain in human t-PA, a linker sequence connecting the A-chain to the B-chain in human u-PA, that hybrid junction sequence which is composed of subsequences of said junction sequences, wherein said junction sequences and hybrid junction sequences include a processing site that can be cleaved by plasmin, in addition an N-terminal, cysteine residue that can form a sulfur bridge -sulfur on the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group comprising (i) a junction sequence that C-terminally covers the "finger" domain in human t-PA or a fragment thereof, a junction sequence that N-terminally covers the t-PA growth factor domain in human t-PA or a fragment thereof, or a combined junction sequence composed of of said both junction sequences or fragments thereof, wherein said junction sequences or united junction sequences are located between the "finger" domain and the growth factor domain in the hybrid plasminogen activator; (ii) a junction sequence that C-terminally covers the growth factor domain in human t-PA or a fragment thereof, a junction sequence that N-terminally covers the "kringle" 2 domain in human t-PA or a fragment thereof, or a combined junction sequence consisting from both mentioned junction sequences or from their fragments, wherein said junction sequences or united junction sequences are located between the growth factor and the "kringle" 2 domain in the hybrid plasminogen activator; you (iii) T-region of human t-PA or its N-terminal fragment, which T-region or its fragment is located at the N-terminus of hybrid plasminogen activator. 5. Sekvencija DNA prema zahtjevu 4, naznačena time, da je šifrirana za jednolanačani hibridni plazminogenski aktivator odabran iz skupine koja se sastoji od tPA(1-3)-tPA(176-275)-uPA(159-411), tPA(1-49)-tPA(176-275)-uPA(159-411) i tPA(1-86)tPA(176-275)-uPA(159-411).5. The DNA sequence according to claim 4, characterized in that it encodes a single-chain hybrid plasminogen activator selected from the group consisting of tPA(1-3)-tPA(176-275)-uPA(159-411), tPA(1 -49)-tPA(176-275)-uPA(159-411) and tPA(1-86)tPA(176-275)-uPA(159-411). 6. Sekvencija DNA prema zahtjevu 4, naznačena time, da je šifrirana za jednolanačani hibridni plazminogenski aktivator, te da je to tPA(1-3)-tPA(176-275)-uPA-(159-411).6. The DNA sequence according to claim 4, characterized in that it is coded for a single-chain hybrid plasminogen activator, and that it is tPA(1-3)-tPA(176-275)-uPA-(159-411). 7. Hibridni vektor, naznačen time, da je za primjenu u eukariotskom domaćinu koji sadrži sekvenciju DNA šifriranu za jednolančani hibridni plazminogenski aktivator, koji se sastoji od a) humane t-PA "kringle" 2 domene, humane katalitičke u-PA domene i spojne sekvencije koja povezuje humanu t-PA "kringle" 2 domenu s humanom u-PA katalitičkom domenom, pri čemu je spojna sekvencija odabrana iz skupine koja se sastoji od spojne sekvencije koja povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije sastavljene od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, k tome N-terminalni, cisteinski ostatak sposoban za tvorbu sumpor-sumpor mosta na humanu u-PA katalitićku domenu; i opcijski dodatno jedne ili više sekvencija odabranih iz skupine koja se sastoji od (i) spojne sekvencije koje N-terminalno pokrivaju "kringle" 2 domenu u humanom t-PA ili njezin fragment, a koja je spojna sekvencija ili njezin fragment smještena u hibridnom plazminogenskom aktivatoru N-terminalno prema humanoj t-PA "kringle" 2 domeni; te (ii) T-regiju humanog t-PA ili njezin N-terminalni fragment, koja je T-regija ili njezin fragment smještena na N-terminusu hibridnog plazminogenskog aktivatora; b) humane t-PA "finger" domene, humane t-PA "kringle" 2 domene, humane u-PA katalitičke domene i spojne sekvencije koja povezuje humanu t-PA "kringle" 2 domenu i humanu u-PA katalitičku domenu, a koja spojna sekvencija je odabrana iz skupine koja se sastoji od spojne sekvencije što povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencijom sastavljene od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, i k tome N-terminalni, cisteinski ostatak što može tvoriti mostove sumpor-sumpor na humanu u-PA katalitičku domenu; te opcijski dodatno jednu ili više sekvencija odabranih iz skupine koja se sastoji od (i) spojne sekvencije koja C-terminalno pokriva "finger" domenu u humanom t-PA, spojne sekvencije koja N-terminalno pokriva "kringle" 2 domenu u humanom t-PA, ili sjedinjenu spojnu sekvenciju koja je sastavljena od obje rečene spojne sekvencije ili njihovih fragmenata, a koja je spojna sekvencija ili sjedinjena spojna sekvencija smještena između t-PA "finger" domene i t-PA "kringle" 2 domene u hibridnom plazminogenskom aktivatoru; i (ii) T-regije humanog t-PA ili njezin N-terminalni fragment, a koja je T-regija ili njezin fragment smještena na N-terminusu hibridnog plazminogenskog aktivatora; (c) humane t-PA "finger" domene, humane t-PA domene faktora rasta, humane t-PA "kringle" 2 domene, humane u-PA katalitičke domene, i spojne sekvencije koja povezuj e humanu t-PA "kringle" 2 domenu s humanom u-PA katalitičkom domenom, a koja spojna sekvencija se odabire iz skupine koja se sastoji od spojne sekvencije koja povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije koja je sastavljena od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, i k tome N-terminalni, cisteinski ostatak koji može tvoriti most sumpor-sumpor na humanu u-PA katalitičku domenu; i opcijski dodatno jednu ili više sekvencija odabranih iz skupine koja sadrži (i) spojnu sekvenciju koja C-terminalno pokriva "finger" domenu u humanom t-PA ili njezin fragment, spojnu sekvenciju koja N-terminalno pokriva t-PA domenu faktora rasta u humanom t-PA ili njezin fragment, ili sjedinjenu spojnu sekvenciju sastavljenu od rečene obje spojne sekvencije ili njihovih fragmenata, pri čemu su rečene spojne sekvencije ili sjednjene spojne sekvencije smještene između "finger" domene i domene faktora rasta u hibridnom plazminogenskom aktivatoru; (ii) spojnu sekvenciju koja C-terminalno pokriva domenu faktora rasta u humanom t-PA ili njezin fragment, spojnu sekvenciju koja N-terminalno pokriva "kringle" 2 domenu u humanom t-PA ili njezin fragment, ili sjedinjenu spojnu sekvenciju koja se sastoji od obje spomenute spojne sekvencije ili od njihovih fragmenata, pri čemu su rečene spojne sekvencije ili sjedinjene spojne sekvencije smještene između faktora rasta i "kringle" 2 domene u hibridnom plazminogenskom akiivatoru; te (iii) T-regiju humanog t-PA ili njezin N-terminalni fragment, a koja je T-regija ili njezin fragment smještena na N-terminusu hibridnog plazminogenskog aktivatora.7. A hybrid vector, characterized in that it is for use in a eukaryotic host containing a DNA sequence encoded for a single-stranded hybrid plasminogen activator, consisting of a) human t-PA "kringle" 2 domain, human catalytic u-PA domain and the junction sequence connecting the human t-PA "kringle" 2 domain with the human u-PA catalytic domain, wherein the junction sequence is selected from the group consists of a splice sequence that connects the A-chain to the B-chain in human t-PA, a splice sequence that connects the A-chain to the B-chain in human u-PA, and a hybrid splice sequence composed of subsequences of said splice sequences, wherein said junction sequences and hybrid junction sequences include a plasmin-cleavable processing site, in addition to an N-terminal, cysteine residue capable of forming a sulfur-sulfur bridge to the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group consisting of (i) junction sequences N-terminally covering the "kringle" 2 domain in human t-PA or a fragment thereof, which junction sequence or fragment thereof is located in the hybrid plasminogen activator N-terminal to the human t-PA "kringle" 2 domain ; you (ii) the T-region of human t-PA or its N-terminal fragment, which is the T-region or its fragment located at the N-terminus of hybrid plasminogen activator; b) human t-PA "finger" domains, human t-PA "kringle" 2 domains, human u-PA catalytic domains and connecting sequences connecting the human t-PA "kringle" 2 domain and the human u-PA catalytic domain, and which splice sequence is selected from the group consisting of a splice sequence connecting the A-chain to the B-chain in human t-PA, a splice sequence connecting the A-chain to the B-chain in human u-PA, and hybrid splice sequences composed of from subsequences of said junction sequences, wherein said junction sequences and hybrid junction sequences include a processing site that can be cleaved by plasmin, and in addition an N-terminal, cysteine residue that can form sulfur-sulfur bridges on the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group consisting of (i) a splice sequence that C-terminally covers the "finger" domain in human t-PA, a splice sequence that N-terminally covers the "kringle" 2 domain in human t-PA, or a combined splice sequence that is composed of both said splice sequences or fragments thereof, which is a junction sequence or a united junction sequence located between the t-PA "finger" domain and the t-PA "kringle" 2 domain in the hybrid plasminogen activator; and (ii) the T-region of human t-PA or its N-terminal fragment, which T-region or its fragment is located at the N-terminus of the hybrid plasminogen activator; (c) human t-PA "finger" domains, human t-PA growth factor domains, human t-PA "kringle" 2 domains, human u-PA catalytic domains, and linker sequences connecting human t-PA "kringle" 2 domain with the human u-PA catalytic domain, and which linker sequence is selected from the group consisting of a linker sequence connecting the A-chain to the B-chain in human t-PA, a linker sequence connecting the A-chain to the B-chain in human u-PA, that hybrid splice sequence that is composed of subsequences of said splice sequences, wherein said splice sequences and hybrid splice sequences include a processing site that can be cleaved by plasmin, and in addition an N-terminal, cysteine residue that can form a sulfur bridge -sulfur on the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group comprising (i) a junction sequence that C-terminally covers the "finger" domain in human t-PA or a fragment thereof, a junction sequence that N-terminally covers the t-PA growth factor domain in human t-PA or a fragment thereof, or a combined junction sequence composed of of said both junction sequences or fragments thereof, wherein said junction sequences or seated junction sequences are located between the "finger" domain and the growth factor domain in the hybrid plasminogen activator; (ii) a junction sequence that C-terminally covers the growth factor domain in human t-PA or a fragment thereof, a junction sequence that N-terminally covers the "kringle" 2 domain in human t-PA or a fragment thereof, or a combined junction sequence consisting from both mentioned junction sequences or from their fragments, wherein said junction sequences or united junction sequences are located between the growth factor and the "kringle" 2 domain in the hybrid plasminogen activator; you (iii) T-region of human t-PA or its N-terminal fragment, which T-region or its fragment is located at the N-terminus of hybrid plasminogen activator. 8. Hibridni vektor prema zahtjevu 7, naznačen time, da je za primjenu u eukariotskom domaćinu koji sadrži DNA sekvenciju šifriranu za jednolančani hibridni plazminogenski aktivator odabran iz skupine koja sadrži tPA(1-3)-tPA(176-275)-uPA-(159-411), tPA(149)-tPA(176-275)-uPA(159-411) i tPA(1-86)-tPA(176-275)-uPA(159-411).8. Hybrid vector according to claim 7, characterized in that for use in a eukaryotic host containing a DNA sequence encoded for a single-chain hybrid plasminogen activator is selected from the group containing tPA(1-3)-tPA(176-275)-uPA-( 159-411), tPA(149)-tPA(176-275)-uPA(159-411) and tPA(1-86)-tPA(176-275)-uPA(159-411). 9. Hibridni vektor prema zahtjevu 7, naznačen time, da je za primjenu u eukariotskom domaćinu koji sadrži DNA sekvenciju šifriranu za jednolančani hibridni plazminogenski aktivator, a koji je tPA(1-3)-tPA(176-275) –Upa-(159-411).9. Hybrid vector according to claim 7, characterized in that it is for use in a eukaryotic host containing a DNA sequence encoded for a single-chain hybrid plasminogen activator, which is tPA(1-3)-tPA(176-275)-Upa-(159 -411). 10. Eukariotska domaćinska stanica, naznačena time, da je transformirana s hibridnim vektorom koji sadrži DNA sekvenciju šifriranu za jednolanačani hibridni plazminogenski aktivator koji se sastoji od a) humane t-PA "kringle" 2 domene, humane katalitičke u-PA domene i spoj ne sekvencije koja povezuje humanu t-PA "kringle" 2 domenu s humanom u-PA katalitičkom domenom, pri čemu je spojna sekvencija odabrana iz skupine koja se sastoji od spojne sekvencije koja povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije sastavljene od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, k tome N-terminalni, cisteinski ostatak sposoban za tvorbu sumpor-sumpor mosta na humanu u-PA katalitičku domenu; i opcijski dodatno jedne ili više sekvencija odabranih iz skupine koja se sastoji od (i) spojne sekvencije koje N-terminalno pokrivaju "kringle" 2 domenu u humanom t-PA ili njezin fragment, a koja je spojna sekvencija ili njezin fragment smještena u hibridnom plazminogenskom aktivatoru N-terminalno prema humanoj t-PA "kringle" 2 domeni; te (ii) T-regiju humanog t-PA ili njezin N-terminalni fragent, koja je T-regija ili njezin fragment smještena na N-terminusu hibridnog plazminogenskog aktivatora; b) humane t-PA "finger" domene, humane t-PA "kringle" 2 domene, humane u-PA katalitičke domene i spojne sekvencije koja povezuj e humanu t-PA "kringle" 2 domenu i humanu uPA katalitičku domenu, a koja spojna sekvencija je odabrana iz skupine koja se sastoji od spojne sekvencije što povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije sastavljene od subsekvencij a rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, i k tome N-terminalni, cisteinski ostatak što može tvoriti mostove sumpor-sumpor na humanu u-PA katalitičku domenu; te opcijski dodatno jednu ili više sekvencija odabranih iz skupine koja se sastoji od (i) spojne sekvencije koja C-terminalno pokriva "finger" domenu u humanom t-PA, spojne sekvencije koja N-terminalno pokriva "kringle" 2 domenu u humanom t-PA, ili sjedinjenu spojnu sekvenciju koja je sastavljena od obje rečene spojne sekvencije ili njihovih fragmenata, a koja spojna sekvencija ili sjedinjena spojna sekvencija je smještena između t-PA "finger" domene i t-PA "kringle" 2 domene u hibridnom plazminogenskom aktivatoru; i (ii) T-regije humanog t-PA ili njezin N-terminalni fragment, a koja je T-regija ili njezin fragment smještena na N-terminusu hibridnog plazminogenskog aktivatora; (c) humane t-PA "finger" domene, humane t-PA domene faktora rasta, humane t-PA "kringle" 2 domene, humane u-PA katalitičke domene, i spojne sekvencije koja povezuje humanu t-PA "kringle" 2 domenu s humanom u-PA katalitičkom domenom, a koja spojna sekvencija se odabire iz skupine koja se sastoji od spojne sekvencije koja povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije koja je sastavljena od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, i k tome N-terminalni, cisteinski ostatak koji može tvoriti most sumpor-sumpor na humanu u-PA katalitičku domenu; i opcijski dodatno jednu ili više sekvencija odabranih iz skupine koja sadrži (i) spojnu sekvenciju koja C-terminalno pokriva "finger" domenu u humanom t-PA ili njezin fragment, spojnu sekvenciju koja N-terminalno pokriva t-PA domenu faktora rasta u humanom t-PA ili njezin fragment, ili sjedinjenu spojnu sekvenciju sastavljenu od rečene obje spojne sekvencije ili njihovih fragmenata, pri čemu su rečene spojne sekvencije ili sjednjene spojne sekvencije smještene između "finger" domene i domene faktora rasta u hibridnom plazminogenskom aktivatoru; (ii) spojnu sekvenciju koja C-terminalno pokriva domenu faktora rasta u humanom t-PA ili njezin fragment, spojnu sekvenciju koja N-terminalno pokriva "kringle" 2 domenu u humanom t-PA ili njezin fragment, ili sjedinjenu spojnu sekvenciju koja se sastoji od obje spomenute spojne sekvencije ili od njihovih fragmenata, pri čemu su rečene spojne sekvencije ili sjedinjene spojne sekvencije smještene između faktora rasta i "kringle" 2 domene u hibridnom plazminogenskom aktivatoru; te (iii) T-regiju humanog t-PA ili njezin N-terminalni fragment, a koja je T-regija ili njezin fragment smještena na N-terminusu hibridnog plazminogenskog aktivatora.10. A eukaryotic host cell, characterized in that it has been transformed with a hybrid vector containing a DNA sequence encoding a single-chain hybrid plasminogen activator consisting of a) human t-PA "kringle" 2 domains, human catalytic u-PA domains and a splice sequence linking the human t-PA "kringle" 2 domain to the human u-PA catalytic domain, wherein the splice sequence is selected from the group that consists of a junction sequence that connects the A-chain with the B-chain in human t-PA, a junction sequence that connects the A-chain with the B-chain in human u-PA, and a hybrid junction sequence composed of subsequences of said junction sequences, whereby said splice sequences and hybrid splice sequences include a plasmin-cleavable processing site, in addition to an N-terminal, cysteine residue capable of forming a sulfur-sulfur bridge to the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group consisting of (i) junction sequences N-terminally covering the "kringle" 2 domain in human t-PA or a fragment thereof, which junction sequence or fragment thereof is located in the hybrid plasminogen activator N-terminal to the human t-PA "kringle" 2 domain ; you (ii) the T-region of human t-PA or its N-terminal fragment, which is the T-region or its fragment located at the N-terminus of the hybrid plasminogen activator; b) human t-PA "finger" domains, human t-PA "kringle" 2 domains, human u-PA catalytic domains and connecting sequences connecting the human t-PA "kringle" 2 domain and the human uPA catalytic domain, which the junction sequence is selected from the group consisting of a junction sequence connecting the A-chain to the B-chain in human t-PA, a junction sequence connecting the A-chain to the B-chain in human u-PA, and hybrid junction sequences consisting of subsequence a of said junction sequences, wherein said junction sequences and hybrid junction sequences include a processing site that can be cleaved by plasmin, and in addition an N-terminal, cysteine residue that can form sulfur-sulfur bridges on the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group consisting of (i) a splice sequence that C-terminally covers the "finger" domain in human t-PA, a splice sequence that N-terminally covers the "kringle" 2 domain in human t-PA, or a combined splice sequence that is composed of both said splice sequences or fragments thereof, and which junction sequence or united junction sequence is located between the t-PA "finger" domain and the t-PA "kringle" 2 domain in the hybrid plasminogen activator; and (ii) the T-region of human t-PA or its N-terminal fragment, which T-region or its fragment is located at the N-terminus of the hybrid plasminogen activator; (c) human t-PA "finger" domains, human t-PA growth factor domains, human t-PA "kringle" 2 domains, human u-PA catalytic domains, and linker sequences connecting human t-PA "kringle" 2 domain with the human u-PA catalytic domain, which linker sequence is selected from the group consisting of a linker sequence connecting the A-chain to the B-chain in human t-PA, a linker sequence connecting the A-chain to the B-chain in human u-PA, and a hybrid splice sequence that is composed of subsequences of said splice sequences, wherein said splice sequences and hybrid splice sequences include a processing site that can be cleaved by plasmin, and in addition an N-terminal, cysteine residue that can form a sulfur bridge sulfur on the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group comprising (i) a junction sequence that C-terminally covers the "finger" domain in human t-PA or a fragment thereof, a junction sequence that N-terminally covers the t-PA growth factor domain in human t-PA or a fragment thereof, or a combined junction sequence composed of of said both junction sequences or fragments thereof, wherein said junction sequences or seated junction sequences are located between the "finger" domain and the growth factor domain in the hybrid plasminogen activator; (ii) a junction sequence that C-terminally covers the growth factor domain in human t-PA or a fragment thereof, a junction sequence that N-terminally covers the "kringle" 2 domain in human t-PA or a fragment thereof, or a combined junction sequence consisting from both mentioned junction sequences or from their fragments, wherein said junction sequences or united junction sequences are located between the growth factor and the "kringle" 2 domain in the hybrid plasminogen activator; you (iii) T-region of human t-PA or its N-terminal fragment, which T-region or its fragment is located at the N-terminus of hybrid plasminogen activator. 11. Eukariotska domaćinska stanica prema zahtjevu 10, naznačena time, da je transformirana pomoću hibridnog vektora koji sadrži sekvenciju DNA šifriranu za jednolančani hibridni plazminogenski aktivator odabran iz skupine koja se sastoji od tPA(1-3)-tPA(176-275)-uPA-(159-411), tPA(1-49)-tPA(176-275)-uPA(159-411) i tPA(1-86)-tPA(176-275)-uPA(159-411).11. The eukaryotic host cell according to claim 10, characterized in that it is transformed using a hybrid vector containing a DNA sequence encoded for a single-chain hybrid plasminogen activator selected from the group consisting of tPA(1-3)-tPA(176-275)-uPA -(159-411), tPA(1-49)-tPA(176-275)-uPA(159-411) and tPA(1-86)-tPA(176-275)-uPA(159-411). 12. Eukariotska domaćinska stanica prema zahtjevu 10, naznačena time, da je transformirana pomoću hibridnog vektora koji sadrži sekvenciju DNA šifriranu za jednolančani hibridni plazminogenski aktivator, a koji je tPA(1-3)-tPA(176-275)-uPA-(159-411).12. The eukaryotic host cell according to claim 10, characterized in that it is transformed using a hybrid vector containing a DNA sequence encoded for a single-stranded hybrid plasminogen activator, which is tPA(1-3)-tPA(176-275)-uPA-(159 -411). 13. Metoda, naznačena time, da je za pripravu jednolančanog hibridnog plazminogenskog aktivatora, koji se sastoji od a) humane t-PA "kringle" 2 domene, humane katalitičke u-PA domene i spojne sekvencije koja povezuje humanu t-PA "kringle" 2 domenu s humanom u-PA katalitičkom domenom, pri čemu je spojna sekvencija odabrana iz skupine koja se sastoji od spojne sekvencije koja povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije sastavljene od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, k tome N-terminalni, cisteinski ostatak sposoban za tvorbu sumpor-sumpor mosta na humanu u-PA katalitičku domenu; i opcijski dodatno jedne ili više sekvencija odabranih iz skupine koja se sastoji od (i) spojne sekvencije koja N-terminalno pokriva "kringle" 2 domenu u humanom t-PA ili njezin fragment, a koja je spojna sekvencija ili njezin fragment smještena u hibridnom plazminogenskom aktivatoru N-terminalno prema humanoj t-PA "kringle" 2 domeni; te (ii) T-regiju humanog t-PA ili njezin N-terminalni fragent, koja je T-regija ili njezin fragment smještena na N-terminusu hibridnog plazminogenskog aktivatora; b) humane t-PA "finger" domene, humane t-PA "kringle" 2 domene, humane u-PA katalitičke domene i spojne sekvencije koja povezuj e humanu t-PA "kringle" 2 domenu i humanu u-PA katalitičku domenu, a koja spojna sekvencija je odabrana iz skupine koja se sastoji od spojne sekvencije što povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije sastavljene od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, i k tome N-terminalni, cisteinski ostatak što može tvoriti mostove sumpor-sumpor na humanu u-PA katalitičku domenu; te opcijski dodatno jednu ili više sekvencija odabranih iz skupine koja se sastoji od (i) spojne sekvencije koja C-terminalno pokriva "finger " domenu u humanom t-PA, spojne sekvencije koja N-terminalno pokriva "kringle" 2 domenu u humanom t-PA, ili sjedinjenu spojnu sekvenciju koja je sastavljena od obje rečene spojne sekvencije ili njihovih fragmenata, a koja spoj na sekvencija ili sjedinjena spoj na sekvencija je smještena između t-PA "finger" domene i t-PA "kringle" 2 domene u hibridnom plazminogenskom aktivatoru; i (ii) T-regije humanog t-PA ili njezin N-terminalni fragment, a koja je T-regija ili njezin fragment smještena na N-terminusu hibridnog plazminogenskog aktivatora; (c) humane t-PA "finger" domene, humane t-PA domene faktora rasta, humane t-PA "kringle" 2 domene, humane u-PA katalitičke domene, i spojne sekvencije koja povezuje humanu t-PA "kringle" 2 domenu s humanom u-PA katalitičkom domenom, a koja spojna sekvencija se odabire iz skupine koja se sastoji od spojne sekvencije koja povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije koja je sastavljena od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, i k tome N-terminalni, cisteinski ostatak koji može tvoriti most sumpor-sumpor na humanu u-PA katalitičku domenu; i opcijski dodatno jednu ili više sekvencija odabranih iz skupine koja sadrži (i) spojnu sekvenciju koja C-terminalno pokriva "finger" domenu u humanom t-PA ili njezin fragment, spojnu sekvenciju koja N-terminalno pokriva t-PA domenu faktora rasta u humanom t-PA ili njezin fragment, ili sjedinjenu spojnu sekvenciju sastavljenu od rečene obje spojne sekvencije ili njihovih fragmenata, pri čemu su rečene spojne sekvencije ili sjedinjene spojne sekvencije smještene između "finger" domene i domene faktora rasta u hibridnom plazminogenskom aktivatoru; (ii) spojnu sekvenciju koja C-terminalno pokriva domenu faktora rasta u humanom t-PA ili njezin fragment, spojnu sekvenciju koja N-terminalno pokriva "kringle" 2 domenu u humanom t-PA ili njezin fragment, ili sjedinjenu spojnu sekvenciju koja se sastoji od obje spomenute spojne sekvencije ili od njihovih fragmenata, pri čemu su rečene spojne sekvencije ili sjedinjene spojne sekvencije smještene između faktora rasta i "kringle" 2 domene u hibridnom plazminogenskom aktivatoru; te (iii) T-regiju humanog t-PA ili njezin N-terminalni fragment, a koja je T-regija ili njezin fragment smještena na N-terminusu hibridnog plazminogenskog aktivatora; pri čemu rečena metoda uključuje kulturu transformiranog eukariotskog domaćina koji sadrži DNA šifriran za rečeni hibridni plazminogenski aktivator pod prikladnim hranidbenim uvjetima, te izolaciju rečenog hibridnog plazminogenskog aktivatora.13. The method, characterized in that it is for the preparation of a single-chain hybrid plasminogen activator, which consists of a) human t-PA "kringle" 2 domain, human catalytic u-PA domain and the junction sequence connecting the human t-PA "kringle" 2 domain with the human u-PA catalytic domain, wherein the junction sequence is selected from the group consists of a splice sequence that connects the A-chain to the B-chain in human t-PA, a splice sequence that connects the A-chain to the B-chain in human u-PA, and a hybrid splice sequence composed of subsequences of said splice sequences, wherein said junction sequences and hybrid junction sequences include a plasmin-cleavable processing site, in addition to an N-terminal, cysteine residue capable of forming a sulfur-sulfur bridge to the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group consisting of (i) a junction sequence N-terminally covering the "kringle" 2 domain in human t-PA or a fragment thereof, which junction sequence or fragment thereof is located in the hybrid plasminogen activator N-terminal to the human t-PA "kringle" 2 domain ; you (ii) the T-region of human t-PA or its N-terminal fragment, which is the T-region or its fragment located at the N-terminus of the hybrid plasminogen activator; b) human t-PA "finger" domains, human t-PA "kringle" 2 domains, human u-PA catalytic domains and connecting sequences connecting the human t-PA "kringle" 2 domain and the human u-PA catalytic domain, and which linker sequence is selected from the group consisting of a linker sequence connecting the A-chain to the B-chain in human t-PA, a linker sequence connecting the A-chain to the B-chain in human u-PA, and hybrid linker sequences composed of subsequences of said junction sequences, wherein said junction sequences and hybrid junction sequences include a processing site that can be cleaved by plasmin, and in addition an N-terminal, cysteine residue that can form sulfur-sulfur bridges on the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group consisting of (i) a splice sequence that C-terminally covers the "finger" domain in human t-PA, a splice sequence that N-terminally covers the "kringle" 2 domain in human t-PA, or a combined splice sequence that is composed of both said splice sequences or fragments thereof, which sequence junction or combined sequence junction is located between the t-PA "finger" domain and the t-PA "kringle" 2 domain in the hybrid plasminogen activator; and (ii) the T-region of human t-PA or its N-terminal fragment, which T-region or its fragment is located at the N-terminus of the hybrid plasminogen activator; (c) human t-PA "finger" domains, human t-PA growth factor domains, human t-PA "kringle" 2 domains, human u-PA catalytic domains, and linker sequences connecting human t-PA "kringle" 2 domain with the human u-PA catalytic domain, which linker sequence is selected from the group consisting of a linker sequence connecting the A-chain to the B-chain in human t-PA, a linker sequence connecting the A-chain to the B-chain in human u-PA, and a hybrid splice sequence that is composed of subsequences of said splice sequences, wherein said splice sequences and hybrid splice sequences include a processing site that can be cleaved by plasmin, and in addition an N-terminal, cysteine residue that can form a sulfur bridge sulfur on the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group comprising (i) a junction sequence that C-terminally covers the "finger" domain in human t-PA or a fragment thereof, a junction sequence that N-terminally covers the t-PA growth factor domain in human t-PA or a fragment thereof, or a combined junction sequence composed of of said both junction sequences or fragments thereof, wherein said junction sequences or united junction sequences are located between the "finger" domain and the growth factor domain in the hybrid plasminogen activator; (ii) a junction sequence that C-terminally covers the growth factor domain in human t-PA or a fragment thereof, a junction sequence that N-terminally covers the "kringle" 2 domain in human t-PA or a fragment thereof, or a combined junction sequence consisting from both mentioned junction sequences or from their fragments, wherein said junction sequences or united junction sequences are located between the growth factor and the "kringle" 2 domain in the hybrid plasminogen activator; you (iii) the T-region of human t-PA or its N-terminal fragment, which T-region or its fragment is located at the N-terminus of the hybrid plasminogen activator; wherein said method includes culture of a transformed eukaryotic host containing DNA encoded for said hybrid plasminogen activator under suitable nutrient conditions, and isolation of said hybrid plasminogen activator. 14. Metoda prema zahtjevu 13, naznačena time, da je za pripravu jednolanačanog hibridnog plazminogenskog aktivatora, odabranog iz skupine koja sadrži tPA(1-3)-tPA(176-275)-uPA-(159-411), tPA(1-49)-tPA(176-275)-uPA(159-411) i tPA(1-86)-tPA(176-275)-uPA(159-411).14. The method according to claim 13, characterized in that for the preparation of single-chain hybrid plasminogen activator, selected from the group containing tPA(1-3)-tPA(176-275)-uPA-(159-411), tPA(1- 49)-tPA(176-275)-uPA(159-411) and tPA(1-86)-tPA(176-275)-uPA(159-411). 15. Metoda prema zahtjevu 13, naznačena time, da je za pripravu jednolančanog hibridnog plazminogenskog aktivatora, a koji je tPA(1-3)-tPA(176-275)-uPA-(159-411).15. The method according to claim 13, characterized in that it is for the preparation of a single-chain hybrid plasminogen activator, which is tPA(1-3)-tPA(176-275)-uPA-(159-411). 16. Metoda, naznačena time, da je za pripravu sekvencije DNA, šifrirane za jednolančani hibridni plazminogenski aktivator koji se sastoji od a) humane t-PA "kringle" 2 domene, humane katalitičke u-PA domene i spojne sekvencije koja povezuje humanu t-PA, "kringle" 2 domenu s humanom u-PA katalitičkom domenom pri čemu je spojna sekvencija odabrana iz skupine koja se sastoji od spojne sekvencije koja povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije sastavljene od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sektvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazrninom, k tome N-terminalni, cisteinski ostatak sposoban za tvorbu sumpor-sumpor mosta na humanu u-PA katalitičku domenu; i opcijski dodatno jedne ili više sekvencija odabranih iz skupine koja se sastoji od (i) spojne sekvencije koja N-terminalno pokriva "kringle" 2 domenu u humanom t-PA ili njezin fragment, a koja je spojna sekvencija ili njezin fragment smještena u hibridnom plazminogenskom aktivatoru N-terminalno prema humanoj t-PA "kringle" 2 domeni; te (ii) T-regiju humanog t-PA ili njezin N-terminalni fragment, koja je T-regija ili njezin fragment smještena na N-terminusu hibridnog plazminogenskog aktivatora; b) humane t-PA "finger" domene, humane t-PA "kringle" 2 domene, humane u-PA katalitičke domene i spojne sekvencije koja povezuje humanu t-PA "kringle" 2 domenu i humanu u-PA katalitičku domenu, a koja spoj na sekvencija je odabrana iz skupine koja se sastoji od spojne sekvericije što povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije sastavljene od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, i k tome N-terminalni, cisteinski ostatak što može tvoriti mostove sumpor-sumpor na humanu u-PA katalitičku domenu; te opcijski dodatno jednu ili više sekvencija odabranih iz skupine koja se sastoji od (i) spojne sekvencije koja C-terminalno pokriva "finger" domenu u humanom t-PA, spojne sekvencije koja Nterminalno pokriva "kringle" 2 domenu u humanom tPA, ili sjedinjenu spojnu sekvenciju koja je sastavljena od obje rečene spojne sekvencije ili njihovih fragmenata, a koja je spojna sekvencija ili sjedinjena spojna sekvencija smještena između t-PA "finger" domene i t-PA "kringle" 2 domene u hibridnom plazminogenskom aktivatoru; i (ii) T-regije humanog t-PA ili njezin N-terminalni fragment, a koja je T-regija ili njezin fragment smješten na N-terminusu hibridnog plazminogenskog aktivatora; (c) humane t-PA "finger" domene, humane t-PA domene faktora rasta, humane t-PA "kringle" 2 domene, humane u-PA katalitičke domene, i spojne sekvencije koja povezuje humanu t-PA "kringle" 2 domenu s humanom u-PA katalitičkom domenom, a koja spojna sekvencija se odabire iz skupine koja se sastoji od spojne sekvencije koja povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije koja je sastavljena od subsekvencij a rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, i k tome N-terminalni, cisteinski ostatak koji može tvoriti most sumpor-sumpor na humanu u-PA katalitičku domenu; i opcijski dodatno jednu ili više sekvencija odabranih iz skupine koja sadrži (i) spojnu sekvenciju koja C-terminalno pokriva “finger” domenu uD humanom t-PA ili njezin fragment, spojnu sekvenciju koja N-terminalno pokriva t-PA domenu faktora rasta u humanom t-PA ili njezin fragment, ili sjedinjenu spojnu sekvenciju sastavljenu od rečene obje spojne sekvencije ili njihovih fragmenata, pri čemu su rečene spojne sekvencije ili sjedinjene spojne sekvencije smještene između "finger" domene i domene faktara rasta u hibridnom plazminogenskom aktivatoru; (ii) spojnu sekvenciju koja C-terminalno pokriva domenu faktora rasta u humanom t-PA ili njezin fragment, spojnu sekvenciju koja N-terminalno pokriva "kringle" 2 domenu u humanom t-PA ili njezin fragment, ili sjedinjenu spojnu sekvenciju koja se sastoji od obje spomenute spojne sekvencije ili od njihovih fragmenata, pri čemu su rečene spoj ne sekvencije ili sjedinjene spojne sekvencije smještene između faktora rasta i "kringle" 2 domene u hibridnom plazminogenskom aktivatoru; te (iii) T-regiju humanog t-PA ili njezin N-terminalni fragment, a koja je T-regija ili njezin fragment smještena na N-terminusu hibridnog plazminogenskog aktivatora; pri čemu rečena metoda uključuje kemijsku sintezu DNA ili pripravu fragmenata šifriranih za polinukleotidne sekvencije za u-PA i t-PA cDNA, te njihovo ponovno povezivanje prema prethodno određenom redoslijedu, opcijski uključujući jedan ili više koraka.16. Method, characterized in that it is for the preparation of a DNA sequence coded for a single-stranded hybrid plasminogen activator consisting of a) human t-PA "kringle" 2 domain, human catalytic u-PA domain and a junction sequence connecting the human t-PA, "kringle" 2 domain with the human u-PA catalytic domain, wherein the junction sequence is selected from the group that consists of a splice sequence that connects the A-chain to the B-chain in human t-PA, a splice sequence that connects the A-chain to the B-chain in human u-PA, and a hybrid splice sequence composed of subsequences of said splice sequences, wherein said junction sequences and hybrid junction sequences include a plasmin-cleavable processing site, in addition to an N-terminal, cysteine residue capable of forming a sulfur-sulfur bridge to the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group consisting of (i) a junction sequence N-terminally covering the "kringle" 2 domain in human t-PA or a fragment thereof, which junction sequence or fragment thereof is located in the hybrid plasminogen activator N-terminal to the human t-PA "kringle" 2 domain ; you (ii) the T-region of human t-PA or its N-terminal fragment, which is the T-region or its fragment located at the N-terminus of hybrid plasminogen activator; b) human t-PA "finger" domains, human t-PA "kringle" 2 domains, human u-PA catalytic domains and connecting sequences connecting the human t-PA "kringle" 2 domain and the human u-PA catalytic domain, and which junction sequence is selected from the group consisting of a junction sequence connecting the A-chain to the B-chain in human t-PA, a junction sequence connecting the A-chain to the B-chain in human u-PA, and hybrid junction sequences composed of subsequences of said junction sequences, wherein said junction sequences and hybrid junction sequences include a processing site that can be cleaved by plasmin, and in addition an N-terminal, cysteine residue that can form sulfur-sulfur bridges on the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group consisting of (i) a splice sequence that C-terminally covers the "finger" domain in human t-PA, a splice sequence that Nterminally covers the "kringle" 2 domain in human tPA, or a combined splice sequence that is composed of both said splice sequences or fragments thereof, and which is the splice sequence or the combined splice sequence located between the t-PA "finger" domain and the t-PA "kringle" 2 domain in the hybrid plasminogen activator; and (ii) the T-region of human t-PA or its N-terminal fragment, which T-region or its fragment is located at the N-terminus of the hybrid plasminogen activator; (c) human t-PA "finger" domains, human t-PA growth factor domains, human t-PA "kringle" 2 domains, human u-PA catalytic domains, and linker sequences connecting human t-PA "kringle" 2 domain with the human u-PA catalytic domain, which linker sequence is selected from the group consisting of a linker sequence connecting the A-chain to the B-chain in human t-PA, a linker sequence connecting the A-chain to the B-chain in human u-PA, and a hybrid splice sequence that is composed of subsequences of said splice sequences, wherein said splice sequences and hybrid splice sequences include a processing site that can be cleaved by plasmin, and in addition an N-terminal, cysteine residue that can form a sulfur bridge -sulfur on the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group comprising (i) a splice sequence that C-terminally covers the "finger" domain in D human t-PA or a fragment thereof, a splice sequence that N-terminally covers the t-PA domain of a growth factor in human t-PA or a fragment thereof, or a combined splice sequence composed of of said both junction sequences or fragments thereof, wherein said junction sequences or united junction sequences are located between the "finger" domain and the growth factor domain in the hybrid plasminogen activator; (ii) a junction sequence that C-terminally covers the growth factor domain in human t-PA or a fragment thereof, a junction sequence that N-terminally covers the "kringle" 2 domain in human t-PA or a fragment thereof, or a combined junction sequence consisting from both mentioned junction sequences or from their fragments, wherein said junction sequences or united junction sequences are located between the growth factor and the "kringle" 2 domain in the hybrid plasminogen activator; you (iii) the T-region of human t-PA or its N-terminal fragment, which T-region or its fragment is located at the N-terminus of the hybrid plasminogen activator; wherein said method includes chemical DNA synthesis or preparation of fragments encoded for polynucleotide sequences for u-PA and t-PA cDNA, and their reconnection according to a predetermined order, optionally including one or more steps. 17. Metoda prema zahtjevu 16, naznačena time, da je za pripravu sekvencije DNA šifrirane za jednolančani hibridni plazminogenski aktivator odabran iz skupine koja se sastoji od tPA(1-3)-tPA(176-275)-uPA-(159-411), tPA(1-49)-tPA(176-275)-uPA(159-411) i tPA(1-86)-tPA(176-275)-uPA(159-411).17. The method according to claim 16, characterized in that for the preparation of the DNA sequence coded for single-stranded hybrid plasminogen activator is selected from the group consisting of tPA(1-3)-tPA(176-275)-uPA-(159-411) , tPA(1-49)-tPA(176-275)-uPA(159-411) and tPA(1-86)-tPA(176-275)-uPA(159-411). 18. Metoda prema zahtjevu 16, naznačena time, da je za pripravu sekvencije DNA šifrirane za jednolančani hibridni plazminogenski aktivator, a koji je tPA(1-3)-tPA(176-275)-uPA-(159411).18. The method according to claim 16, characterized in that it is for the preparation of a DNA sequence coded for a single-chain hybrid plasminogen activator, which is tPA(1-3)-tPA(176-275)-uPA-(159411). 19. Metoda, naznačena time, da je za pripravu hibridnog vektora za primjenu u eukariotskom domaćinu koji sadrži sekvenciju DNA šifriranu za jednolančani hibridni plazminogenski aktivator, koji se sastoji od a) humane t-PA "kringle" 2 domene, humane katalitičke u-PA domene i spojne sekvencije koja povezuje humanu t-PA "kringle" 2 domenu s humanom u-PA katalitičkom domenom, pri čemu je spojna sekvencija odabrana iz skupine koja se sastoji od spojne sekvencije koja povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije sastavljene od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, k tome N-terminalni, cisteinski ostatak sposoban za tvorbu sumpor-sumpor mosta na humanu u-PA katalitičku domenu; i opcijski dodatno jedne ili više sekvencija odabranih iz skupine koja se sastoji od (i) spojne sekvencije koja N-terminalno pokriva "kringle" 2 domenu u humanom t-PA ili njezin fragment, a koja je spojna sekvencija ili njezin fragment smještena u hibridnom plazminogenskom aktivatoru N-terminalno prema humanoj t-PA "kringle" 2 domeni; te (ii) T-regiju humanog t-PA ili njezin N-terminalni fragment, koja je T-regija ili njezin fragment smještena na N-terminusu hibridnog plazminogenskog aktivatora; b) humane t-PA "finger" domene, humane t-PA "kringle" 2 domene, humane u-PA katalitičke domene i spojne sekvencije koja povezuj e humanu t-PA "kringle" 2 domenu i humanu u-PA katalitičku domenu, a koja spojna sekvencija je odabrana iz skupine koja se sastoji od spojne sekvencije što povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije sastavljene od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, i k tome N-terminalni, cisteinski ostatak što može tvoriti mostove sumpor-sumpor na humanu u-PA katalitičku domenu; te opcijski dodatno jednu ili više sekvencija odabranih iz skupine koja se sastoji od (i) spojne sekvencije koja C-terminalno pokriva "finger" domenu u humanom t-PA, spojne sekvencije koja N-terminalno pokriva "kringle" 2 domenu u humanom t-PA, ili sjedinjenu spojnu sekvenciju koja je sastavljena od obje rečene spojne sekvencije ili njihovih fragmenata, a koja spojna sekvencija ili sjedinjena spojna sekvencija je smještena između t-PA "finger" domene i t-PA "kringle" 2 domene u hibridnom plazminogenskom aktivatoru; i (ii) T-regije humanog t-PA ili njezin N-terminalni fragment, a koja je T-regija ili njezin fragment smještena na N-terminusu hibridnog plazminogenskog aktivatora; (c) humane t-PA "finger" domene, humane t-PA domene faktora rasta, humane t-PA "kringle" 2 domene, humane u-PA katalitičke domene, i spojne sekvencije koja povezuje humanu t-PA "kringle" 2 domenu s humanom u-PA katalitičkom domenom, a koja spojna sekvencija se odabire iz skupine koja se sastoji od spojne sekvencije koja povezuje A-lanac s B-lancem u humanom t-PA, spoj ne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije koja je sastavljena od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, i k tome N-terminalni, cisteinski ostatak koji može tvoriti most sumpor-sumpor na humanu u-PA katalitičku domenu; i opcijski dodatno jednu ili više sekvencija odabranih iz skupine koja sadrži (i) spojnu sekvenciju koja C-terminalno pokriva "finger" domenu u humanom t-PA ili njezin fragment, spojnu sekvenciju koja N-terminalno pokriva t-PA domenu faktora rasta u humanom t-PA ili njezin fragment, ili sjedinjenu spojnu sekvenciju sastavljenu od rečene obje spojne sekvencije ili njihovih fragmenata, pri čemu su rečene spojne sekvencije ili sjedinjene spojne sekvencije smještene između "finger" domene i domene faktora rasta u hibridnom plazminogenskom aktivatoru; (ii) spojnu sekvenciju koja C-terminalno pokriva domenu faktora rasta u humanom t-PA ili njezin fragment, spojnu sekvenciju koja N-terminalno pokriva, "kringle" 2 domenu u humanom t-PA ili njezin fragment ili sjedinjenu spojnu sekvenciju koja se sastoji od obje spomenute spojne sekvencije ili od njihovih fragmenata, pri čemu su rečene spojne sekvencije ili sjedinjene spojne sekvencije smještene između faktora rasta i "kringle" 2 domene u hibridnom plazminogenskom aktivatoru; te (iii) T-regiju humanog t-PA ili njezin N-terminalni fragment, a koja je T-regija ili njezin fragment smještena na N-terminusu hibridnog plazminogenskog aktivatora; pri čemu rečena metoda uključuje povezivanje DNA segmenata koji sadrže eukariotski promotor, šifrirajuće područje za hibridni plazminogenski aktivator, sekvenciju eukariotskog gena koja prekriva položaj 3' i vektor DNA.19. The method, characterized in that it is for the preparation of a hybrid vector for use in a eukaryotic host containing a DNA sequence coded for a single-stranded hybrid plasminogen activator, consisting of a) human t-PA "kringle" 2 domain, human catalytic u-PA domain and the junction sequence connecting the human t-PA "kringle" 2 domain with the human u-PA catalytic domain, wherein the junction sequence is selected from the group consists of a splice sequence that connects the A-chain to the B-chain in human t-PA, a splice sequence that connects the A-chain to the B-chain in human u-PA, and a hybrid splice sequence composed of subsequences of said splice sequences, wherein said junction sequences and hybrid junction sequences include a plasmin-cleavable processing site, in addition to an N-terminal, cysteine residue capable of forming a sulfur-sulfur bridge to the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group consisting of (i) a junction sequence N-terminally covering the "kringle" 2 domain in human t-PA or a fragment thereof, which junction sequence or fragment thereof is located in the hybrid plasminogen activator N-terminal to the human t-PA "kringle" 2 domain ; you (ii) the T-region of human t-PA or its N-terminal fragment, which is the T-region or its fragment located at the N-terminus of hybrid plasminogen activator; b) human t-PA "finger" domains, human t-PA "kringle" 2 domains, human u-PA catalytic domains and connecting sequences connecting the human t-PA "kringle" 2 domain and the human u-PA catalytic domain, and which linker sequence is selected from the group consisting of a linker sequence connecting the A-chain to the B-chain in human t-PA, a linker sequence connecting the A-chain to the B-chain in human u-PA, and hybrid linker sequences composed of subsequences of said junction sequences, wherein said junction sequences and hybrid junction sequences include a processing site that can be cleaved by plasmin, and in addition an N-terminal, cysteine residue that can form sulfur-sulfur bridges on the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group consisting of (i) a splice sequence that C-terminally covers the "finger" domain in human t-PA, a splice sequence that N-terminally covers the "kringle" 2 domain in human t-PA, or a combined splice sequence that is composed of both said splice sequences or fragments thereof, and which junction sequence or united junction sequence is located between the t-PA "finger" domain and the t-PA "kringle" 2 domain in the hybrid plasminogen activator; and (ii) the T-region of human t-PA or its N-terminal fragment, which T-region or its fragment is located at the N-terminus of the hybrid plasminogen activator; (c) human t-PA "finger" domains, human t-PA growth factor domains, human t-PA "kringle" 2 domains, human u-PA catalytic domains, and linker sequences connecting human t-PA "kringle" 2 domain with the human u-PA catalytic domain, which junction sequence is selected from the group consisting of the junction sequence connecting the A-chain to the B-chain in human t-PA, the junction of the sequence connecting the A-chain to the B-chain in human u-PA, that hybrid splice sequence that is composed of subsequences of said splice sequences, wherein said splice sequences and hybrid splice sequences include a processing site that can be cleaved by plasmin, and in addition an N-terminal, cysteine residue that can form a sulfur bridge -sulfur on the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group comprising (i) a junction sequence that C-terminally covers the "finger" domain in human t-PA or a fragment thereof, a junction sequence that N-terminally covers the t-PA growth factor domain in human t-PA or a fragment thereof, or a combined junction sequence composed of of said both junction sequences or fragments thereof, wherein said junction sequences or united junction sequences are located between the "finger" domain and the growth factor domain in the hybrid plasminogen activator; (ii) a junction sequence that C-terminally covers the growth factor domain in human t-PA or a fragment thereof, a junction sequence that N-terminally covers the "kringle" 2 domain in human t-PA or a fragment thereof, or a combined junction sequence consisting from both mentioned junction sequences or from their fragments, wherein said junction sequences or united junction sequences are located between the growth factor and the "kringle" 2 domain in the hybrid plasminogen activator; you (iii) the T-region of human t-PA or its N-terminal fragment, which T-region or its fragment is located at the N-terminus of the hybrid plasminogen activator; wherein said method involves linking DNA segments containing a eukaryotic promoter, a coding region for a hybrid plasminogen activator, a eukaryotic gene sequence covering the 3' position, and a DNA vector. 20. Metoda prema zahtjevu 19, naznačena time, da je za pripravu hibridnog vektora za primjenu u eukariotskom domaćinu koji uključuje sekvenciju DNA šifriranu za jednolančani hibridni plazminogenski aktivator odabran iz skupine koja se sastoji od tPA(1-3)-tPA(176-275)-uPA-(159-411), tPA(1-49)-tPA(176-275)-uPA(159-411) i tPA(1-86)-tPA(176-275)-uPA(159-411).20. The method according to claim 19, characterized in that for the preparation of a hybrid vector for use in a eukaryotic host that includes a DNA sequence coded for a single-chain hybrid plasminogen activator selected from the group consisting of tPA(1-3)-tPA(176-275 )-uPA-(159-411), tPA(1-49)-tPA(176-275)-uPA(159-411) and tPA(1-86)-tPA(176-275)-uPA(159-411 ). 21. Metoda prema zahtjevu 19, naznačena time, da je za pripravu hibridnog vektora za primjenu u eukariotskom domaćinu koji uključuje sekvenciju DNA šifriranu za jednolančani hibridni plazminogenski aktivator, a koji je tPA(1-3)-tPA(176-275)-uPA-(159-411).21. The method according to claim 19, characterized in that it is for the preparation of a hybrid vector for use in a eukaryotic host that includes a DNA sequence coded for a single-chain hybrid plasminogen activator, which is tPA(1-3)-tPA(176-275)-uPA -(159-411). 22. Metoda, naznačena time, da je za pripravu transformirane eukariotske stanice, transformirane s hibridnim vektorom koji sadrži sekvenciju DNA šifriranu za jednolančani hibridni plazminogen koji se sastoji od a) humane t-PA "kringle" 2 domene, humane katalitičke u-PA domene i spojne sekvencije koja povezuje humanu t-PA "kringle" 2 domenu s humanom u-PA katalitičkom domenom, pri čemu je spojna sekvencija odabrana iz skupine koja se sastoji od spojne sekvencije koja povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuj e A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije sastavljene od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesori položaj koji se može cijepati plazminom, k tome N-terminalni, cisteinski ostatak sposoban za tvorbu sumpor-sumpor mosta na humanu u-PA katalitičku domenu; i opcijski dodatno jedne ili više sekvencija odabranih iz skupine koja se sastoji od (i) spojne sekvencije koja N-terminalno pokriva "kringle" 2 domenu u hurnanom t-PA ili njezin fragment, a koja je spojna sekvencija ili njezin fragment smještena u hibridnom plazminogenskom aktivatoru N-terminalno prema humanoj t-PA "kringle" 2 domeni; te (ii) T-regiju humanog t-PA ili njezin N-terminalni fragment, koja je T-regija ili njezin fragment smještena na N-terminusu hibridnog plazminogenskog aktivatora; b) humane t-PA "finger" domene, humane t-PA "kringle" 2 domene, humane u-PA katalitičke domene i spojne sekvencije koja povezuj e humanu t-PA "kringle" 2 domenu i humanu u-PA katalitičku domenu, a koja spojna sekvencija je odabrana iz skupine koja se sastoji od spojne sekvencije što povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije sastavljene od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, i k tome N-terminalni, cisteinski ostatak što može tvoriti mostove sumpor-sumpor na humanu u-PA katalitičku domenu; te opcijski dodatno jednu ili više sekvencija odabranih iz skupine koja se sastoji od (i) spojne sekvencije koja C-terminalno pokriva "finger" domenu u humanom t-PA, spojne sekvencije koja N-terminalno pokriva "kringle" 2 domenu u humanom t-PA, ili sjedinjenu spojnu sekvenciju koja je sastavljena od obje rečene spojne sekvencije ili njihovih fragmenata, a koja spoj na sekvencija ili sjedinjena spoj na sekvencija je smještena između t-PA "finger" domene i t-PA "kringle" 2 domene u hibridnom plazminogenskom aktivatoru; i (ii) T-regije humanog t-PA ili njezin N-terminalni fragment, a koja je T-regija ili njezin fragment smješten na N-terminusu hibridnog plazminogenskog aktivatora; (c) humane t-PA "finger" domene, humane t-PA domene faktora rasta, humane t-PA "kringle" 2 domene, humane u-PA katalitičke domene, i spoj ne sekvencije koja povezuj e humanu t-PA "kringle" 2 domenu s humanom u-PA katalitičkom domenom, a koja spojna sekvencija se odabire iz skupine koja se sastoji od spojne sekvencije koja povezuje A-lanac s B-lancem u humanom t-PA, spojne sekvencije koja povezuje A-lanac s B-lancem u humanom u-PA, te hibridne spojne sekvencije koja je sastavljena od subsekvencija rečenih spojnih sekvencija, pri čemu rečene spojne sekvencije i hibridne spojne sekvencije uključuju procesni položaj koji se može cijepati plazminom, i k tome N-terminalni, cisteinski ostatak koji može tvoriti most sumpor-sumpor na humanu u-PA katalitičku domenu; i opcijski dodatno jednu ili više sekvencija odabranih iz skupine koja sadrži (i) spojnu sekvenciju koja C-terminalno pokriva "finger" domenu u humanom t-PA ili njezin fragment, spojnu sekvenciju koja N-terminalno pokriva t-PA domenu faktora rasta u humanom t-PA ili njezin fragment, ili sjedinjenu spojnu sekvenciju sastavljenu od rečene obje spojne sekvencije ili njihovih fragmenata, pri čemu su rečene spojne sekvencije ili sjedinjene spojne sekvencije smještene između "finger" domene i domene faktora rasta u hibridnom plazminogenskom aktivatoru; (ii) spojnu sekvenciju koja C-terminalno pokriva domenu faktora rasta u humanom t-PA ili njezin fragment, spojnu sekvenciju koja N-terminalno pokriva "kringle" 2 domenu u humanom t-PA ili njezin fragment, ili sjedinjenu spojnu sekvenciju koja se sastoji od obje spomenute spojne sekvencije ili od njihovih fragmenata, pri čemu su rečene spojne sekvencije ili sjedinjene spojne sekvencije smještene između faktora rasta i "kringle" 2 domene u hibridnom plazminogenskom aktivatoru; te (iii) T-regiju humanog t-PA ili njezin N-terminalni fragment, a koja je T-regija ili njezin fragment smještena na N-terminusu hibridnog plazminogenskog aktivatora; pri čemu metoda uključuje transformaciju eukariotskih domaćinskih stanica s rečenim hibridnim vektorom.22. The method, characterized in that it is for the preparation of transformed eukaryotic cells, transformed with a hybrid vector containing a DNA sequence coded for a single-chain hybrid plasminogen consisting of a) human t-PA "kringle" 2 domain, human catalytic u-PA domain and the junction sequence connecting the human t-PA "kringle" 2 domain with the human u-PA catalytic domain, wherein the junction sequence is selected from the group consists of a junction sequence that connects the A-chain with the B-chain in human t-PA, a junction sequence that connects the A-chain with the B-chain in human u-PA, and a hybrid junction sequence composed of subsequences of said junction sequences, whereby said junction sequences and hybrid junction sequences include a processor site that can be cleaved by plasmin, in addition an N-terminal, cysteine residue capable of forming a sulfur-sulfur bridge to the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group consisting of (i) a junction sequence that N-terminally covers the "kringle" 2 domain in human t-PA or a fragment thereof, and which junction sequence or a fragment thereof is located in the hybrid plasminogen activator N-terminal to the human t-PA "kringle" 2 domain ; you (ii) the T-region of human t-PA or its N-terminal fragment, which is the T-region or its fragment located at the N-terminus of hybrid plasminogen activator; b) human t-PA "finger" domains, human t-PA "kringle" 2 domains, human u-PA catalytic domains and connecting sequences connecting the human t-PA "kringle" 2 domain and the human u-PA catalytic domain, and which linker sequence is selected from the group consisting of a linker sequence connecting the A-chain to the B-chain in human t-PA, a linker sequence connecting the A-chain to the B-chain in human u-PA, and hybrid linker sequences composed of subsequences of said junction sequences, wherein said junction sequences and hybrid junction sequences include a processing site that can be cleaved by plasmin, and in addition an N-terminal, cysteine residue that can form sulfur-sulfur bridges on the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group consisting of (i) a splice sequence that C-terminally covers the "finger" domain in human t-PA, a splice sequence that N-terminally covers the "kringle" 2 domain in human t-PA, or a combined splice sequence that is composed of both said splice sequences or fragments thereof, which sequence junction or combined sequence junction is located between the t-PA "finger" domain and the t-PA "kringle" 2 domain in the hybrid plasminogen activator; and (ii) the T-region of human t-PA or its N-terminal fragment, which T-region or its fragment is located at the N-terminus of the hybrid plasminogen activator; (c) human t-PA "finger" domains, human t-PA growth factor domains, human t-PA "kringle" 2 domains, human u-PA catalytic domains, and a fusion of the human t-PA "kringle" linking sequence " 2 domain with the human u-PA catalytic domain, which junction sequence is selected from the group consisting of a junction sequence connecting the A-chain to the B-chain in human t-PA, a junction sequence connecting the A-chain to the B- chain in human u-PA, and a hybrid junction sequence that is composed of subsequences of said junction sequences, wherein said junction sequences and hybrid junction sequences include a processing site that can be cleaved by plasmin, and in addition an N-terminal, cysteine residue that can form a bridge sulfur-sulfur on the human u-PA catalytic domain; and optionally additionally one or more sequences selected from the group comprising (i) a junction sequence that C-terminally covers the "finger" domain in human t-PA or a fragment thereof, a junction sequence that N-terminally covers the t-PA growth factor domain in human t-PA or a fragment thereof, or a combined junction sequence composed of of said both junction sequences or fragments thereof, wherein said junction sequences or united junction sequences are located between the "finger" domain and the growth factor domain in the hybrid plasminogen activator; (ii) a junction sequence that C-terminally covers the growth factor domain in human t-PA or a fragment thereof, a junction sequence that N-terminally covers the "kringle" 2 domain in human t-PA or a fragment thereof, or a combined junction sequence consisting from both mentioned junction sequences or from their fragments, wherein said junction sequences or united junction sequences are located between the growth factor and the "kringle" 2 domain in the hybrid plasminogen activator; you (iii) the T-region of human t-PA or its N-terminal fragment, which T-region or its fragment is located at the N-terminus of the hybrid plasminogen activator; wherein the method includes transforming eukaryotic host cells with said hybrid vector. 23. Metoda prema zahtjevu 22, naznačena time, da je za pripravu transformiranih eukariotskih stanica, transformiranih pomoću hibridnog vektora koji sadrži sekvenciju DNA šifriranu za jednolančani hibridni plazminogenski aktivator odabran iz skupine koja se sastoji od tPA(1-3)-tPA(176-275)-uPA-(159-411), tPA(1-49)tPA(176-275)-uPA(159-411) i tPA(1-86)-tPA(176-275)-uPA(159-411).23. The method according to claim 22, characterized in that for the preparation of transformed eukaryotic cells, transformed using a hybrid vector containing a DNA sequence coded for a single-chain hybrid plasminogen activator selected from the group consisting of tPA(1-3)-tPA(176- 275)-uPA-(159-411), tPA(1-49)tPA(176-275)-uPA(159-411) and tPA(1-86)-tPA(176-275)-uPA(159-411 ). 24. Metoda prema zahtjevu 22, naznačena time, da je za pripravu transformiranih eukariotskih stanica, transformiranih pomoću hibridnog vektora koji sadrži sekvenciju DNA šifriranu za jednolančani hibridni plazminogenski aktivator, a koji je tPA(1-3)-tPA(176-275)-uPA-(159-411).24. The method according to claim 22, characterized in that it is for the preparation of transformed eukaryotic cells, transformed using a hybrid vector containing a DNA sequence encoded for a single-chain hybrid plasminogen activator, which is tPA(1-3)-tPA(176-275)- uPA-(159-411). 25. Farmaceutski pripravak, naznačen time, da sadrži jednolančani hibridni plazminogenski aktivator prema zahtjevima 1 do 3, zajedno s farmaceutski prihvatljivim nosivim tvarima.25. Pharmaceutical preparation, characterized in that it contains a single-chain hybrid plasminogen activator according to claims 1 to 3, together with pharmaceutically acceptable carrier substances. 26. Jednolančani hibridni plazminogenski aktivator prema zahtjevima 1 do 3, naznačen time, da se uporabi u metodi terapijske profilaktičke obradbe u ljudskom tijelu.26. Single-chain hybrid plasminogen activator according to claims 1 to 3, indicated to be used in a method of therapeutic prophylactic treatment in the human body. 27. Primjena jednolančanog hibridnog plazminogenskog aktivatora prema zahtjevima 1 do 3, naznačena time, da je za pripravu farmaceutskih pripravaka.27. Use of a single-chain hybrid plasminogen activator according to claims 1 to 3, characterized in that it is for the preparation of pharmaceutical preparations.
HRP-195/88A 1988-02-01 1994-08-10 Hybride proteins HRP940440B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP-195/88A HRP940440B1 (en) 1988-02-01 1994-08-10 Hybride proteins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
YU00195/88A YU19588A (en) 1988-02-01 1988-02-01 Hybride proteins
HRP-195/88A HRP940440B1 (en) 1988-02-01 1994-08-10 Hybride proteins

Publications (2)

Publication Number Publication Date
HRP940440A2 true HRP940440A2 (en) 1997-08-31
HRP940440B1 HRP940440B1 (en) 2000-10-31

Family

ID=26317039

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP-195/88A HRP940440B1 (en) 1988-02-01 1994-08-10 Hybride proteins

Country Status (1)

Country Link
HR (1) HRP940440B1 (en)

Also Published As

Publication number Publication date
HRP940440B1 (en) 2000-10-31

Similar Documents

Publication Publication Date Title
US5147643A (en) DNA sequences encoding human t-PA substituted at position 275 or at positions 275 and 277 and pharmaceutical compositions
KR950000303B1 (en) Tissue plasminogen activator (tpa) analogs
FI91160C (en) A method for producing a modified human t-PA protein
JP2527454B2 (en) New thrombolytic protein
FI89723C (en) Method for Preparation of Tissue Plasminogen Activator, Encoding Recombinant DNA Them and a Transformation Cell
EP0277313B1 (en) Hybrid plasminogen activators
BG60253B2 (en) Human tissue plasminogen activator
JPH08502176A (en) Cloning and use of enterokinase
HU201115B (en) Process for producing fibrinolitic materials with yeast
WO1988005081A2 (en) Novel plasminogen activator
HU210863B (en) Method for expression of zymogen forms of human protein c and for preparation of vectors for these
EP0299706A2 (en) Nonglycosylated plasminogen activator and method of preparation
US5281520A (en) Method for producing acyloxyacyl hydrolase
US5242819A (en) DNA molecules encoding hybrid proteins of tissue plasminogen activator and urokinase
US5580559A (en) Hybrid plasminogen activator
HRP940440A2 (en) Hybride proteins
CA1341318C (en) Dna clones of human placental plasminogen activator inhibitor
EP0400054A1 (en) Modified gene sequences encoding modified tpa and products therefrom
Collen et al. K1K2Pu, a recombinant t-PA/u-PA Chimera with increased thrombolytic potency, consisting of amino acids 1 to 3 and 87 to 274 of human tissue-type plasminogen activator (t-PA) and amino acids 138 to 411 of human single chain urokinase-type plasminogen activator (scu-PA). Purification in centigram quantities and conditioning for use in man
WO1989007146A1 (en) Rearranged tissue plasminogen activators and method for producing same
US5409700A (en) Pharmaceutical compositions comprising modified and unmodified plasminogen activators
SI8810195A (en) Hybride proteins
JP2518832B2 (en) Deformed tissue plasminogen activator
AU619803B2 (en) Rearranged tissue plasminogen activators and method for producing same
EP0373896A1 (en) Novel thrombolytic proteins, process for producing the same, and drugs containing the same as active ingredient

Legal Events

Date Code Title Description
A1OB Publication of a patent application
PPPP Transfer of rights

Owner name: NOVARTIS AKTIENGESELLSCHAFT, CH

AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
B1PR Patent granted
ODRP Renewal fee for the maintenance of a patent

Payment date: 20070110

Year of fee payment: 20

PB20 Patent expired after termination of 20 years

Effective date: 20080202