HRP921479A2 - Method and apparatus for diversity reception of time-dispersed signals - Google Patents

Method and apparatus for diversity reception of time-dispersed signals Download PDF

Info

Publication number
HRP921479A2
HRP921479A2 HR921479A HRP921479A HRP921479A2 HR P921479 A2 HRP921479 A2 HR P921479A2 HR 921479 A HR921479 A HR 921479A HR P921479 A HRP921479 A HR P921479A HR P921479 A2 HRP921479 A2 HR P921479A2
Authority
HR
Croatia
Prior art keywords
signal
aligned
correlation
generating
signals
Prior art date
Application number
HR921479A
Other languages
Croatian (hr)
Inventor
Gerald P Labedz
Frederick G Atkinson
Duane C Rabe
Joseph J Schuler
Alton P Werronen
Original Assignee
Labedz, Gerald P.
Atkinson, Frederick G.
Rabe, Duane C.
Schuler, Joseph J.
Werronen, Alton P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/435,650 external-priority patent/US5031193A/en
Application filed by Labedz, Gerald P., Atkinson, Frederick G., Rabe, Duane C., Schuler, Joseph J., Werronen, Alton P. filed Critical Labedz, Gerald P.
Publication of HRP921479A2 publication Critical patent/HRP921479A2/en

Links

Landscapes

  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

Ovaj izum se općenito odnosi na diverziti (raznovrsne) prijemnike u komunikacijskim sistemima i još specifičnije na prijemnike za raznovrsni prijem za vremenski raspodijeljene signale u komunikacijskim sistemima. This invention relates generally to diversity receivers in communication systems and more specifically to diversity receivers for time-distributed signals in communication systems.

Poboljšana detekcija signala u vremenski raspodjeljivom mediju uglavnom zahtjeva prijemnik da izvrši izjednačavanje nekog tipa reflektiranog signala sa primljenim vremenski raspodijeljenim signalima da proizvede izlaz koji je bolji izlaz nego kad bi se dopustilo da reflektirani signali interferiraju jedan sa drugim. Jedna takva tehnika izjednačavanja koja koristi digitalni radio sistem sa vremenskom raspodjelom (TDMA) je opisana u US Patent No. 4,829,534 naslovljen "Phase Coherent TDMA Quadrature Receiver for Multipath Fading Channels" sadašnjeg stjecatelja prava podnijetog u ime Borth et al. Improved signal detection in a time-distributed medium generally requires the receiver to perform some type of equalization of the reflected signal with the received time-distributed signals to produce an output that is a better output than if the reflected signals were allowed to interfere with each other. One such equalization technique using a time division digital radio system (TDMA) is described in US Patent No. 4,829,534 entitled "Phase Coherent TDMA Quadrature Receiver for Multipath Fading Channels" of the current assignee filed in the name of Borth et al.

Pronalazak Bortha i ostalih opisuje faznu koherentnu metodu za demodulaciju kvadraturnog faznog preklapanja po ključu (QPSK) radio signala koji je podvrgnut višestrukom prigušenju. izjednačavanje je omogućeno preko korelacije memoriranih pripremnih sekvenci, poznatih prijemniku, sa dolazećim signalom, i korištenjem rezultirajuće korelacije za pokretanje fazne razlike između dolazećeg signala i prijemnikovog lokalnog oscilatora, koristeći koherentnu detekciju. Izjednačavanje može onda biti nastavljeno. Druga tehnika je predložena za rad sa intersimbolskom interferencijom koja može biti generirana prenosnom signalu preko vremenski raspodjeljivog prenosnog kanala. Takvi prijemnici opisani su u "Adaptive Maximum Likelihood Receiver for Carrier-Modulated Data-Transmission System", izdato od G. Ungerboecka, IEEE Transaction on Communications, Vol. COM-22, No. 5, May 1974, pp. 624-636 i "Maximum Likelihood Sequence Estimation of Digital Sequences in the Presence of Intersymbol Interference" autora G. D. Forneya, IEEE Transactions on Information Theory, Vol. IT-18 No. 3, May 1972, pp. 363-377. The invention by Borth et al describes a phase coherent method for quadrature phase keying (QPSK) demodulation of a radio signal subjected to multiple attenuation. equalization is enabled by correlating memorized preparatory sequences, known to the receiver, with the incoming signal, and using the resulting correlation to drive the phase difference between the incoming signal and the receiver's local oscillator, using coherent detection. The equalization can then be continued. Another technique is proposed for working with intersymbol interference that can be generated in a transmission signal over a time-distributable transmission channel. Such receivers are described in "Adaptive Maximum Likelihood Receiver for Carrier-Modulated Data-Transmission System", published by G. Ungerboeck, IEEE Transaction on Communications, Vol. COM-22, No. 5, May 1974, pp. 624-636 and "Maximum Likelihood Sequence Estimation of Digital Sequences in the Presence of Intersymbol Interference" by G. D. Forney, IEEE Transactions on Information Theory, Vol. IT-18 No. 3, May 1972, pp. 363-377.

Međutim, u sistemima s velikim protokom podataka gdje je prijenos kroz radio kanal sa velikim širenjem kašnjenja jedan jednograni prijemnik za izjednačavanje može osigurati jednu adekvatno raspoređenu (multi-rej prigušenje) korekciju izobličenja. Na primjer, praktična ugradnja prijemnika za izjednačavanje može imati nepotpunu procjenu kritične pogreške signala u slučaju rješenja izjednačavanja sa povratnom spregom, ili nepotpunu procjenu prijenosa odziva kanalnog impulsa u nekoj drugoj shemi za izjednačavanje. However, in high-data-rate systems where the transmission is over a radio channel with a large delay spread, a single-ended equalization receiver can provide an adequately spaced (multi-ray attenuation) distortion correction. For example, a practical equalization receiver installation may have an incomplete estimate of the critical signal error in the case of a feedback equalization solution, or an incomplete estimate of the channel impulse response transfer in some other equalization scheme.

Stoga diverziti prijem (nekog signala snimljenog na više grana - koji može biti na različitim antenama ili na jednoj anteni u različitim vremenima, ili urađen na drugačiji način, kao što je poznato u tehnici) je tipično nedovoljno za dovoljno smanjenje efekta multi-rej prigušenja. Jedan takav patent opisan je u US Patent No. 4,271,525 naslovljen "Adaptive Diversity Receiver For Digital Communications". Taj patent opisuje prilagodljivi diverziti prijemnik koji koristi adaptivni transverzalni filter za svaku prijemnu granu prateći izjednačavač za odluke s povratnom spregom. Ti izvodi ulaza transverzalnog filtera poboljšani su preko povratne sprege preko izlaza izjednačavača, i drugih točaka u prijemniku. Therefore, diversity reception (of some signal recorded on multiple branches - which can be on different antennas or on the same antenna at different times, or done in a different way, as is known in the art) is typically insufficient to sufficiently reduce the effect of multi-ray attenuation. One such patent is described in US Patent No. 4,271,525 entitled "Adaptive Diversity Receiver For Digital Communications". That patent describes an adaptive diversity receiver that uses an adaptive transverse filter for each receive branch followed by a feedback decision equalizer. These transversal filter input outputs are improved via feedback via the equalizer output, and other points in the receiver.

US Patent 4,731,801 naslovljen "Method For The Reception And Detection Of Digital Signals" otkriva unapređenje nad US Patent No. 4,271,527 i drugog poznatog stanja tehnike unapređujući prijem u visoko disperzivnim prenosnim putevima koristeći koherentnu demodulaciju. Ovaj pronalazak koristi tehniku unutar izlaza tehnike komutacije za bitove i postaje baza za izračunavanje korekcije signala. Referentna noseća frekvencija dobivena skupljanjem signala kvadraturnog opsega modulacione frekvencije i signalima opsega modulacione frekvencije koji su u fazi, je povratna sprega u lokalni oscilator kvadraturnog demodulatora koji unazad kompenzira faznu razliku između primljenog signala i prijemnikovog lokalnog oscilatora za omogućavanje koherentne demodulacije. US Patent 4,731,801 entitled "Method For The Reception And Detection Of Digital Signals" discloses an improvement over US Patent No. 4,271,527 and other prior art by improving reception in highly dispersive transmission paths using coherent demodulation. This invention uses the technique within the output of the switching technique for bits and becomes the basis for calculating signal correction. The reference carrier frequency obtained by summing the modulation frequency quadrature band signal and the modulation frequency band signals that are in phase is fed back into the local oscillator of the quadrature demodulator which backward compensates for the phase difference between the received signal and the receiver's local oscillator to enable coherent demodulation.

Međutim, izum kao što je opisano u US Patent No. 4,271,525 zahtjeva podešavanje prilagođenih transverzalnih filtera, jednog na svakoj prijemnoj grani u dodavanju krugu za izjednačavanje. Izumi kao US Patent No. 4,731,801 zahtijevaju složeni krug za fazni pomak signala u svakoj raznovrsnoj grani i još važnije, ne mogu dovesti korekcije faznog poravnanja dovoljno brzo da bi se koristila npr. u TDMA sistemima okarakteriziranih informacijom koja je primljena, a mora biti korigirana u kratkom trenutku odvojenom od relativno dugog vremenskog perioda. Za vrijeme tog dugog perioda faza signala u multi-rej prigušenju kanala može se radikalno mijenjati ovisno od prijemnikovog lokalnog oscilatora. However, the invention as described in US Patent No. 4,271,525 calls for fitting custom transverse filters, one on each receive branch in addition to the equalization circuit. Inventions such as US Patent No. 4,731,801 require complex circuitry to phase-shift the signals in each of the various branches and, more importantly, cannot make phase-alignment corrections fast enough to be used, for example, in TDMA systems characterized by the received information having to be corrected at a short time separated by a relatively long time period. During this long period the phase of the signal in the multi-ray attenuation channel can change radically depending on the receiver's local oscillator.

Shodno tome, ovdje postoji potreba za smanjenjem složenosti prijemnika koji izvršava raznovrsni prijem na neprekidnim ili ne-neprekidnim digitalnim signalima sa velikom brzinom i sposoban je znatno smanjiti efekte i širokog fadinga i multi-reja, disperzivnog prigušenja određenog za vremenski raspodjeljiv vremenski medij. Accordingly, there is a need here to reduce the complexity of a receiver that performs versatile reception on high-speed continuous or non-continuous digital signals and is capable of significantly reducing the effects of both wide fading and multi-ray, dispersive attenuation specific to a time-distributable time medium.

Ovi zahtjevi suštinski se zadovoljavaju preko postupaka i uređaja za raznovrsni prijem vremenski raspodjeljenih signala u komunikacionim sistemima opisanim u nastavku. Opisani postupak obuhvaća korelaciju prvog vremenski raspodjeljenog signala primljenog na prvu prijemnu granu sa poznatom referencom dajući prvi korelacioni signal, i korelacijom drugog vremenski raspodjeljenog signala primljenog na najmanje drugu prijemnu granu sa poznatom referencom dajući drugi korelacioni signal, da koristeći korelacione signale prepodešavanje prvog vremenski raspodjeljenog signala i drugog vremenski raspodjeljenog signala za poznatu referencu signala prijema i lokalni oscilator grane davajući prvi poravnati signal i drugi poravnati signal i generirajući rezultirajući signal u vidu prvog poravnatog signala i drugog poravnatog signala. These requirements are substantially satisfied through the methods and devices for the diverse reception of time-distributed signals in the communication systems described below. The described procedure includes the correlation of the first time-distributed signal received on the first receiving branch with a known reference giving the first correlation signal, and the correlation of the second time-distributed signal received on at least the second receiving branch with a known reference giving the second correlation signal, that using the correlation signals the presetting of the first time-distributed signal and a second time-distributed signal for a known receive signal reference and a local branch oscillator providing the first aligned signal and the second aligned signal and generating the resulting signal in the form of the first aligned signal and the second aligned signal.

Poznati referentni signal lociran je u memoriranoj pretraživačkoj tablici (koja sadrži multipl sinhronizacionih sekvenci kao što je predviđeno u slučaju bilo vremenske raspodjele /TDMA/ sistema bilo frekventne raspodjela /FDMA/ sistema sa ugrađenim referentnim signalima). Korelacija određuje, između ostalih stvari, predviđanje impulsnog odziva kanala za radio prijenos. Poslije kompletiranja korelacije, podešeni filter, obično transverzalni filter koji ima izvedene izvode za procjenjeni kanalni odziv je korišten za izvršavanje konvolucije za vremenski raspodjeljene primljene signale, tako što izvršava fazno izjednačavanje. Fazno izjednačavanje suštinski kompenzira faznu razliku između primljenog vremenski raspodjeljenog signala i lokalnog oscilatora u svakoj prijemnoj grani. The known reference signal is located in a memorized lookup table (which contains multiple synchronization sequences as provided in the case of either a time distribution /TDMA/ system or a frequency distribution /FDMA/ system with built-in reference signals). Correlation determines, among other things, the prediction of the impulse response of a radio transmission channel. After completing the correlation, a tuned filter, usually a transverse filter having derivatives for the estimated channel response, is used to perform convolution on the time-distributed received signals, by performing phase equalization. Phase equalization essentially compensates for the phase difference between the received time-distributed signal and the local oscillator in each receive branch.

Uzorci obrađenog signala koji se dobivaju iz svake grane izabrani su, sa dodatnim parametrima koji su povezani sa odzivom kanalnog impulsa (s-parametrima) u tehnici selekcije uzorka i onda sve napajano u procjenjivač sekvence za kompletiranje procesa izjednačavanja na novoformiranom signalu. Različite tehnike kombiniranja signala, kao što je dobro poznato kombiniranje maksimalnog nivoa ili tehnika kombiniranja jednakog ulaza može također služiti kao prihvatljiva tehnika diverzije za kombinirane fazno kombinirane signale i parametre ovisne od kanalnih impulsa koji se mogu koristiti za izjednačavanje. Samples of the processed signal obtained from each branch are selected, with additional parameters related to the channel impulse response (s-parameters) in the sample selection technique and then all fed into the sequence estimator to complete the equalization process on the newly formed signal. Various signal combining techniques, such as the well known maximum level combining or equal input combining techniques can also serve as acceptable diversion techniques for combined phase combined signals and channel pulse dependent parameters that can be used for equalization.

Izum je detaljnije objašnjen uz pomoć priloženog nacrta na kome: The invention is explained in more detail with the help of the attached drawing on which:

Slika 1 prikazuje blok dijagram koji generalno opisuje izum; Figure 1 shows a block diagram generally describing the invention;

Slika 2 prikazuje detaljniji blok dijagram izuma gdje se koristi kvadraturni prijem digitalnih signala; Figure 2 shows a more detailed block diagram of the invention where quadrature reception of digital signals is used;

Slika 3 prikazuje blok dijagram koji generalno opisuje diverziti procesor koji koristi bit-po-bit diverziti selekciju shodno ostvarenoj varijanti izuma; Figure 3 shows a block diagram generally describing a diversity processor using bit-by-bit diversity selection according to an embodiment of the invention;

Slika 4 prikazuje blok dijagram koji generalno opisuje diverziti procesor na koji je primjenjen postupak maksimalnog nivoa kombiniranja shodno izumu; Figure 4 shows a block diagram that generally describes a diverse processor to which the maximum level combining process according to the invention is applied;

Slika 5 prikazuje blok dijagram koji generalno opisuje drugi postupak maksimalnog nivoa kombiniranja shodno izumu, i Figure 5 shows a block diagram that generally describes the second maximum level combining process according to the invention, i

Slika 6 prikazuje blok dijagram koji opisuje pronalazak koji koristi adaptivno linearno izjednačavanje. Figure 6 shows a block diagram describing the invention using adaptive linear equalization.

Slika 1 generalno opizuje izum kao prilagođenje na izjednačavajući prijemnik opisan od G. Ungerboecka i objašnjen iznad. Primijenjena je demodulacija kvadraturnog faznog preklapanja po ključu (QPSK). Međutim, druga digitalna višedimenziona signalizacija, kao GMSK, može isto tako biti primjenjena. Kao što je pokazano izum obuhvaća prvu prijemnu granu 100 i najmanje drugu granu prijemnika 101, svaku granu koja obuhvaća stanje radio frekventne demodulacije i samo dio od obrađivanja neophodnog za korekciju vremenski raspodijeljenog primljenog signala 102 i 103. Premda opis izuma govori o prijemniku koji ima dvije grane otkriveni izum lako se primjenjuje za prijemnike koji imaju N grana. Figure 1 generally depicts the invention as an adaptation of the equalizing receiver described by G. Ungerboeck and explained above. Quadrature phase keying (QPSK) demodulation was applied. However, other digital multidimensional signaling, such as GMSK, can also be used. As shown, the invention includes a first receiving branch 100 and at least a second receiving branch 101, each branch comprising a state of radio frequency demodulation and only part of the processing necessary to correct the time-distributed received signal 102 and 103. Although the description of the invention speaks of a receiver having two branches the disclosed invention is easily applied to receivers having N branches.

Obje prijemne grane opskrbljene su memoriranom očekivanom referentnom sekvencom 104 za omogućavanje post-demodulacione korelacije između primljenih vremenski raspodijeljenih signala i referentne sekvence koristeći poznatu korelacionu tehniku. Korelaciona informacija osigurava sinhronizacionu informaciju, i parametre od kojeg kanala podešenog filtera može biti napravljena. Primljeni vremenski raspodjeljeni signal obrađen je kroz taj podešeni filter i dobiveni fazno podešeni signal iz svake grane je onda iskorišten preko bloka za određivanje diverzije 105 za generiranje izlaznog signala. Korelacija dalje osigurava informaciju koja može biti iskorištena u predviđanju kontrola ulaza 106 za održavanje primljenog signala unutar određenog naponskog opsega. Ne obnavljanje kruga noseće frekvencije (povratna sprega fazne kompenzacije) je neophodno za korektne modulirane vremenski raspodijeljene signale u relaciji sa lokalnim oscilatorom u svakoj grani osiguran da odziv prenosa kanalnog impulsa, prema korelaciji i prema izvodima podešenog filtera, ne mijenja se značajno za vrijeme vremenskog perioda kada je primljen podatak koji će biti obrađen. U svakom, TDMA ili FDMA sistemu, može biti neophodno podesiti lokalne oscilatore na granama prijemnika ili obraditi primljene podatke preko drugog sredstva, ako to nije slučaj. Both receive branches are provided with a stored expected reference sequence 104 to enable post-demodulation correlation between the received time-distributed signals and the reference sequence using a known correlation technique. Correlation information provides synchronization information, and parameters from which channel the tuned filter can be made. The received time distributed signal is processed through this tuned filter and the resulting phase tuned signal from each branch is then used via the diversion determination block 105 to generate the output signal. The correlation further provides information that can be used to predict input controls 106 to maintain the received signal within a specified voltage range. Not renewing the circuit of the carrier frequency (phase compensation feedback) is necessary for correct modulated time-distributed signals in relation to the local oscillator in each branch ensuring that the response of the channel pulse transmission, according to the correlation and according to the outputs of the tuned filter, does not change significantly during the time period when the data to be processed is received. In any TDMA or FDMA system, it may be necessary to adjust the local oscillators on the receiver branches or to process the received data through another means, if this is not the case.

Detaljniji blok dijagram izuma prikazan je na slici 2. Prva grana 100 diverziti prijemnika i druga grana 101 diverziti prijemnika primaju siganale prenošene iz iste točke, ali koji će postati vremenski raspodijeljeni, na različite načine, u putu od predajnika do svake grane prijemnika. Ti signali obrađeni su poznatom tehnikom i bivaju pojačani i pomiješani u međufrekventnim stanjima 200 i 201. Poslije toga signali su demodulirani (transformirani za opseg modulacione frekvencije) u signale koji su u fazi, 11 i 12, i kvadraturne fazne signale Q1 i Q2 preko kvadraturni demodulatora 202 i 203, poznatih u tehnici, čiji ulazi dolaze iz lokalnih oscilatora 208 i 209. To je već poznato u stanju tehnike da isti lokalni oscilator može biti korišten za različite grane. A more detailed block diagram of the invention is shown in Figure 2. The first diversity receiver branch 100 and the second diversity receiver branch 101 receive signals transmitted from the same point, but which will become time-distributed, in different ways, en route from the transmitter to each receiver branch. These signals are processed by a known technique and are amplified and mixed in the intermediate frequency states 200 and 201. After that, the signals are demodulated (transformed for the range of the modulation frequency) into the in-phase signals, 11 and 12, and the quadrature phase signals Q1 and Q2 via the quadrature demodulators 202 and 203, known in the art, whose inputs come from local oscillators 208 and 209. It is already known in the art that the same local oscillator can be used for different branches.

Svaki od signala koji su u fazi i kvadraturnih signala svake grane prolazi na svoj širokopojasni filter 220, 230, 240, 250 i ispitan od analogno-digitalnog (A/D) konvertora 204, 205, 206, 207. Svaki od tih uzoraka signala donijet je u korelatore tako da ispitan signal 11 napajan je u korelator No. 1 (210), ispitan signal 12 napajan je u korelato No. 2 (212), Q1 je također napajan u korelator No. 1 (210) i Q2 također napajan u korelator No. 2 (212). Poznata referenca 104 memorirana je u korelatorskoj memoriji ili na neku drugu podesnu lokaciju, kao reprodukcija očekivanog bita ili uzorka, da obuhvaća amplitudu i fazu informacije bitno jednostavnije od idealnog signala koji nije podvrgnut vremenski raspodijeljenom prigušenju. Each of the in-phase and quadrature signals of each branch is passed to its broadband filter 220, 230, 240, 250 and examined by an analog-to-digital (A/D) converter 204, 205, 206, 207. Each of these signal samples brought is in the correlators so that the tested signal 11 is fed into the correlator No. 1 (210), the tested signal 12 is fed into correlator No. 2 (212), Q1 is also fed into correlator No. 1 (210) and Q2 also fed into correlator No. 2 (212). The known reference 104 is stored in correlator memory or some other convenient location, as a reproduction of the expected bit or pattern, to capture amplitude and phase information substantially simpler than an ideal signal not subjected to time-distributed attenuation.

Odabrani signali korelirani su sa memoriranom referentnom informacijom koja je data u nekoliko veličina. To uključuje procjenu impulsa odziva transmisione veze (ili mjerenje vremenski raspodijeljene distorzije sredine), onda procjenu frekventno/faznog ofseta zavisnog od poznate reference i neko mjerenje jačine signala. Mjerenja jačine su od ulaza do ulaznog kontrolera 106 koji unazad individualno podešava ulaz svake grane shodno predodređenim ulazom za izjednačavanje podesnim za aplikaciju. To je već poznato u tehnici, ulaz svakog IF (međufrekventnog) stanja 200 i 201 svake grane 100 i 101 može biti simultano podešen za proizvodnju istog ulaza na svakoj grani. The selected signals are correlated with the memorized reference information which is given in several sizes. This involves estimating the impulse response of the transmission link (or measuring the time-distributed distortion of the medium), then estimating the frequency/phase offset relative to a known reference, and some measurement of the signal strength. The power measurements are from the input to the input controller 106 which in turn individually adjusts the input of each branch according to a predetermined equalization input suitable for the application. As is already known in the art, the input of each IF (intermediate frequency) state 200 and 201 of each branch 100 and 101 can be simultaneously adjusted to produce the same input on each branch.

Druge veličine korištene su za konstrukciju kanalno podešenog filtera za svaku granu, kao što je poznato u tehnici. Poslije prolaska signala uzoraka kroz svaki podešeni filter 214, 215 grane, izlazni signali imaju efekte vremenski raspodijeljene distorsije i fazne pogreške sa svakim lokalnim oscilatorom grane koji se značajno pomaknuo. Other sizes were used to construct the channel-tuned filter for each branch, as is known in the art. After passing the sampled signal through each tuned branch filter 214, 215, the output signals have the effects of time-distributed distortion and phase error with each local branch oscillator having shifted significantly.

Na primjer, u radio TDMA komunikacijskom sistemu koristi se sinhronizacona sekvenca u jednom dodijeljenom vremenskom okviru prenošenog kratkog impulsa, memorirana reprodukcija sinhronizacione sekvence očekivane u prijemniku može biti podatak memoriran u pretraživačkoj tablici. Prijemnik vrši korelaciju primljenog signala obiju grana 100 i 101 sa memoriranom očekivanom sinhronizacijom uzorka za određivanje vremenski raspodijeljenog profila modela (odziv kanalnog impulsa) svake grane izračunava koeficijente podešenog filtera zasnovanih na uzorcima dobivenih korelacijom ili predviđanjem odziva kanalnih impulsa. For example, in a radio TDMA communication system, a synchronization sequence is used in one allocated time frame of a transmitted short pulse, the memorized reproduction of the synchronization sequence expected in the receiver can be the data memorized in the lookup table. The receiver correlates the received signal of both branches 100 and 101 with the memorized expected sample synchronization to determine the time-distributed model profile (channel impulse response) of each branch calculates the adjusted filter coefficients based on the samples obtained by correlation or prediction of the channel impulse response.

Fazno poravnati signali izvan podešenog filtera 214 u prvoj grani 100 prikazani su preko IM1, QM1 dok fazno poravnati signali izvan podešenog filtera 215 u drugoj grani 101 su prikazani preko IM2 i QM2. Diverziti procesor 105 onda koristi najmanje prociju od najmanje jednog od tih poravnatih signala od obje grane (i drugu odgovarajuću informaciju, kao što je mjerenje jačine signala) za najbolje određivanje podatka originalnog prenošenog signala. The phase-aligned signals outside the tuned filter 214 in the first branch 100 are displayed via IM1, QM1 while the phase-aligned signals outside the tuned filter 215 in the second branch 101 are displayed via IM2 and QM2. The diversity processor 105 then uses at least a proportion of at least one of these aligned signals from both branches (and other relevant information, such as signal strength measurements) to best determine the data of the original transmitted signal.

Diverziti procesor 105 može koristiti različite tehnike da postigne optimum prikazivanja originalno prenošenog signala. The diversity processor 105 can use different techniques to achieve optimum rendering of the original transmitted signal.

Slika 3 opisuje diverziti procesor koji koristi bit-po-bit diverziti selekciju unutar selektiranih korelacionih parametara grane, nazvanih s-parametri, i selektiranih uzoraka od poravnatih signala koji napadaju sekvencijalni izjednačavač koji generira prikaz originalnog prenošenog signala. Figure 3 describes a diversity processor that uses bit-by-bit diversity selection within selected branch correlation parameters, called s-parameters, and selected samples from the aligned signals that attack a sequential equalizer that generates a representation of the original transmitted signal.

Detaljniji opis generiranja s-parametara u prijemniku dat je u prijavi Ungerboecka, navedenoj iznad, jednadžbom 17. Svaka grana izvodi svoje vlastite s-parametre za korelaciju, zasnovane na konvoluciji procjenjenog odziva impulsa kanala i impulsnog odziva respektivno podeđenog filtera. A more detailed description of the generation of s-parameters in the receiver is given in the Ungerboeck report, cited above, by equation 17. Each branch derives its own s-parameters for correlation, based on the convolution of the estimated channel impulse response and the impulse response of the respectively tuned filter.

Poravnati signal prve grane AS1 i poravnati signal druge grane AS2 su ulaz u stanje obrade 300. Jedan uzorak za prenošeni simbol podatka svakog od poravnatih signala je uspoređen sa odgovarajućim prenošenim uzorkom simbola podatka svake grane. Apsolutne vrijednosti tih uzoraka su uspoređene i aktualni uzorak sa najvećom apsolutnom vrijednošću stavlja se u grupu simbola koja će kasnije proći kroz stanje za procjenu sekvence 305, koji obuhvaća procjenu sekvence koja je poznata u tehnici. Premda najveća apsolutna vrijednost je osnova za selekciju u ovoj varijanti, najniža apsolutna vrijednost ili druga pogodna osnova isto tako može biti korištena. The aligned signal of the first branch AS1 and the aligned signal of the second branch AS2 are input to the processing state 300. One sample for the transmitted data symbol of each of the aligned signals is compared to the corresponding transmitted sample of the data symbol of each branch. The absolute values of these samples are compared and the current sample with the highest absolute value is placed in a group of symbols that will later pass through the sequence evaluation state 305, which comprises sequence evaluation as is known in the art. Although the highest absolute value is the basis for selection in this embodiment, the lowest absolute value or other suitable basis may also be used.

Štoviše, sakupljač za svaku granu raspoloživ je za snimanje broja uzoraka selektiranih od svake grane tako da se stavljaju u grupu simbola. Kada se posljednji simbol uzoraka signala usporedi, brojači su uspoređeni da odrede koja grana osigurava većinu uzoraka za grupu simbola. S-parametri (ss) od grane koja osigurava većinu uzoraka za grupu simbola, šalju se u procjenjivač sekvence sa određenom informacijom intersimbolske interferencije. Sekvencijalni procjenjivač onda kompletira proces izjednačavanja. Moreover, a collector for each branch is available to record the number of samples selected from each branch so that they are placed in a group of symbols. When the last symbol of the signal patterns is compared, the counters are compared to determine which branch provides the most samples for the symbol group. The s-parameters (ss) from the branch providing the most samples for a group of symbols are sent to the sequence estimator with certain intersymbol interference information. The sequential estimator then completes the equalization process.

Selekcija s-parametara može biti eliminirana i skup s-parametara izabranih slučajno od jedne od grana može biti korištena u Ungerboeckovom prijemniku, ali žele se dobiti bolje karakteristike. Prijemnik koji koristi procjenjivač frekvencije nije u opisanom tipu Ungerboecka i ne koristi s-parametre, ali još uvijek predstavlja selekciju na bazi uzoraka simbola prateći podešeni filter i predstavlja jednaku selekciju od bilo kojeg kanalnog parametra za distorziju i kompenziranje koji može biti korišten preko procjenjivača sekvence. The s-parameter selection can be eliminated and a set of s-parameters chosen randomly from one of the branches can be used in the Ungerboeck receiver, but better characteristics are desired. A receiver using a frequency estimator is not of the Ungerboeck type described and does not use s-parameters, but still represents a selection based on the symbol patterns following the tuned filter and represents an equal selection from any distortion and compensation channel parameters that may be used via the sequence estimator.

Kao što je navedeno kombiniranje pojavljivanja signala u sredini izjednačavača da olakša raznovrsnost, utoliko što se izjednačavač tog tipa u jednoj grani prijemnika može smatrati kombinacijom podešenog filtera i sekvencijalnog procjenjivača. Sadašnji izum želi samo objediniti funkciju podešenog filtera, ali ne i funkciju sekvencijalnog procjenjivača u diverziti prijemniku. As mentioned combining the appearance of signals in the middle of the equalizer to facilitate diversity, inasmuch as an equalizer of this type in one receiver branch can be considered a combination of a tuned filter and a sequential estimator. The present invention only wants to unify the function of the tuned filter, but not the function of the sequential estimator in the diversity receiver.

Slika 4 opisuje drugu tehniku diverziti obrade, umjesto korištenja kombiniranja analogno maksimalnom nivou kombiniranja poravnatih signala, pri čemu je težišni faktor određen jačinom primljenih signala shodno tehnici opisanoj u patentnoj prijavi sadašnjeg stjecatelja prava No. 07/358325, podnijetoj 26.05.1989. godine, pod nazivom "Rapid Received Signal Strength Indication" pronađenom od Labedza i ostalih. Težišni faktor najbolje je izveden iz skupljanja kvadrata kvadraturnih komponenti energije pri relativnom maksimumu korelacija između orimljenih reflektiranih signala i memoriranih referentnih sekvenci. Tako korelirana energija mjerenja integrirana je da odredi energiju prikazanu između multipla vremenski raspodijeljenih reflektiranih signala, i rezultirajućeg ključnog faktora koji se naziva "Indikator snage primljenih signala". Međutim, uzorak ili integracija nekoliko uzoraka primljene anvelope signala može se također koristiti. Figure 4 describes another diversity processing technique, instead of using combining analogously to the maximum level of combining aligned signals, where the weighting factor is determined by the strength of the received signals according to the technique described in the patent application of the current assignee of rights No. 07/358325, filed on May 26, 1989. year, under the name "Rapid Received Signal Strength Indication" found by Labedz and others. The gravity factor is best derived from the summation of the square of the quadrature components of the energy at the relative maximum of correlations between the measured reflected signals and the memorized reference sequences. Such correlated energy measurements are integrated to determine the energy displayed between multiple time-distributed reflected signals, and the resulting key factor is called the "Received Signal Strength Indicator". However, a sample or integration of several samples of the received signal envelope may also be used.

Indikator jačine primljenog signala za prvu granu RSSI1 400 pomnožen je sa poravnatim signalom iz prve grane AS1 koji koristi množač 410 i formira ključni poravnati signal za prvu granu. Indikator za jačinu primljenog signala za drugu granu RSSI2 405 pomnožen je sa poravnatim signalom druge grane AS2 koji koristi množač 415 i formira ključni poravnati signal za drugu granu. Ti ključni signali se onda sumiraju u točki 420 dajući signal obuhvaćen ključnim signalima iz obje grane. The received signal strength indicator for the first branch RSSI1 400 is multiplied by the aligned signal from the first branch AS1 using a multiplier 410 to form the key aligned signal for the first branch. The received signal strength indicator for the second branch RSSI2 405 is multiplied by the aligned signal of the second branch AS2 using the multiplier 415 to form the key aligned signal for the second branch. These key signals are then summed at point 420 to provide a signal comprised of the key signals from both branches.

S-parametri opisani iznad obrađeni su na sličan način. Indikator snage primljenih signala za prvu granu RSSI1 400 pomnožen je sa s-parametrima iz prve grane (s-para1) koristeći množač 430 i formirajući ključnu grupu s-parametara iz prve grane. Indikator snage primljenih signala za drugu granu RSSI2 405 pomnožen je sa s-parametrima iz druge grane (s-para2) koristeći množač 440 i formirajući ključnu grupu s-parametara iz druge grane. Ti ključni parametri onda se sumiraju u točki 450 dajući signal obuhvaćen ključnom grupom s-parametara iz obje grane. Ova tehnika također može biti korištena kada se koristi N prijemnih grana. The S-parameters described above are processed in a similar way. The received signal strength indicator for the first branch RSSI1 400 is multiplied by the s-parameters from the first branch (s-para1) using the multiplier 430 and forming the key group of s-parameters from the first branch. The received signal strength indicator for the second branch RSSI2 405 is multiplied by the s-parameters from the second branch (s-para2) using the multiplier 440 and forming the key group of the s-parameters from the second branch. These key parameters are then summed at point 450 to provide a signal comprised of the key group of s-parameters from both branches. This technique can also be used when using N receiving branches.

Ponovno, kombiniranje s-parametara može biti eliminirano u prijemniku Ungerboecka, ali bi se ovako dobile bolje karakteristika. Prijemnik koji koristi procjenjivao sekvence nije tip koji je opisan od strane Ungerboecka i koji koristi s-parametre, ali još uvijek izvršava kombinaciju na bazi uzorka simbola prateći podešeni filter i predviđena kombinacija bilo kojeg parametra distorzije-kompenzacije može biti korištena preko procjenjivača sekvence. Again, combining the s-parameters can be eliminated in the Ungerboeck receiver, but better characteristics would be obtained this way. A receiver using a sequence estimator is not the type described by Ungerboeck that uses s-parameters, but still performs combination based on the symbol pattern following a tuned filter and the intended combination of any distortion-compensation parameter can be used via the sequence estimator.

U slučaju gdje se ne koriste težine jačina signala, da su RSSI1 400 i RSSI2 415 efektivne grupe jednake 1, slična tehnika za dobivanje jednakog ulaza za kombiniranje daje i množač 410 i 415 i 430 i 440 nisu više neophodni. In the case where no signal strength weights are used, if RSSI1 400 and RSSI2 415 are effective groups equal to 1, a similar technique to obtain an equal input to combine gives and multiplier 410 and 415 and 430 and 440 are no longer necessary.

Slika 5 opisuje drugu metodu raznovrsnog ugrađivanja odgovarajuće tehnike za maksimalni nivo kombiniranja poravnatih signala koristeći indikator jačine signala (SSI) koji je dobiven iz određivanja jačine signala mjerene pri međufrekventnim stanjima 200 i 201 svake grane. Ova varijanta kombinira složene (u-faznoj i kvadraturno faznoj) poravnate signale iz svake grane, prije nego što oni prođu kroz složeni demultiplekser 520 signala. Figure 5 describes another method of variously incorporating a suitable technique for the maximum level of combining aligned signals using a signal strength indicator (SSI) obtained from determining the signal strength measured at the intermediate frequency states 200 and 201 of each branch. This variant combines the complex (in-phase and quadrature-phase) aligned signals from each branch, before they pass through the complex signal demultiplexer 520 .

Težišno izjednačavanje jačine signala 500 određuje relativnu težinu dodjeljenu poravnatom signalu u fazi (IM1 i IM2) u svakoj grani i poravnati kvadraturni fazni signal (QM1 i QM2) u svakoj grani. Ovo izjednačavanje težina IM1 i QM1 preko RSSI1/(RSSI1 +RSSI2) i težina IM2 i QM2 preko RSSI1/(RSSI1+RSSI2). Ključni ufaženi signali (ISS1 i ISS2) sumirani su u točki 510 dajući u kombiniranoj kvadraturi signal za oba kanala. Jednaki dovod kombiniranja signala ili bita unutra može također da obavlja pogodna tehnika raznovrsnog (diverziti) odlučivanja. Takav jednak dovod kombiniranja za diverziti prijem opet bi uključio postavljanje vrijednosti RSSI1 i RSSI2 jednakim 1. Weighted signal strength equalization 500 determines the relative weight assigned to the in-phase aligned signal (IM1 and IM2) in each branch and the quadrature-phase aligned signal (QM1 and QM2) in each branch. This equalizes the weights of IM1 and QM1 via RSSI1/(RSSI1 +RSSI2) and the weights of IM2 and QM2 via RSSI1/(RSSI1+RSSI2). The key input signals (ISS1 and ISS2) are summed at point 510 giving a combined quadrature signal for both channels. Equal input of combining signals or bits inside can also be performed by a suitable diversity decision technique. Such an equal combining input for diversity reception would again involve setting the values of RSSI1 and RSSI2 equal to 1.

Premda je prikazana varijanta pogodna za usporedbu u sistemima sa velikim brzinama, ne-neprekidni signali kao u TDMA sistemima koji imaju kratak interval signala, jedna alternativna varijanta izuma može bit predviđena kod primanja dovoljno dugih nizova podataka gdje se prijenos odziva kanalnog impulsa znatno mijenja kroz vremenski period, za vrijeme kojeg je obrađeni podatak primljen. Although the illustrated embodiment is suitable for comparison in systems with high speed, non-continuous signals as in TDMA systems having a short signal interval, an alternative embodiment of the invention may be envisaged when receiving sufficiently long data streams where the transmission of the channel impulse response changes significantly over time. period, during which the processed data was received.

Slika 6 prikazuje jednu granu prikazanog izuma koja korizti adaptivni linearni izjednačavač. U toj varijanti početna korelacija izvedena je tako da koristi poznatu referencu za procjenjivanje odziva kanalnog impulsa (CIR) i izjednačavač izvoda dovoda (Ck(0)). Poslije toga izvod dovoda izjednačavača je podešen koristeći tipičnu tehniku adaptivnog linearnog izjednačavanja (kao što je opisano u "Digital Communications" od John G. Proakis, McGraw - Hill Book Company 1983, na stranama 357 - 386), za nastavljanje predpodešavanja primljenog signala. Stoga, koherentno prepodešavanje primljenog signala uključuje najmanje korelaciju signala sa poznatom referencom (početnom), a onda kasnije, podešavanje izvoda dovoda izjednačavača u skladu sa poznatom tehnikom adaptivnog linearnog izjednačavanja. Figure 6 shows one branch of the present invention utilizing an adaptive linear equalizer. In this variant, the initial correlation is performed using a known reference to estimate the channel impulse response (CIR) and the feed line equalizer (Ck(0)). The output of the equalizer feed is then adjusted using a typical adaptive linear equalization technique (as described in "Digital Communications" by John G. Proakis, McGraw-Hill Book Company 1983, pages 357-386), to continue pre-tuning the received signal. Therefore, coherent pre-tuning of the received signal involves at least correlating the signal with a known reference (initial) and then later, adjusting the input terminal of the equalizer in accordance with the known technique of adaptive linear equalization.

Kao što je pokazano primljeni signal prolazi kroz kvadraturni demodulator 600 stanja i onda po izvršenom odabiranju i digitaliziranu u A/D konvertor 605 stanja koji daje kompleksni signal (R(n)). Taj signal je koreliran sa memoriranom referencom u korelacijskom stanju 210 rezultirajući odziv kanalnog impulsa (CIR) koji se koristi u početnom izjednačavaču izvoda dovoda (Ck(n)) izračunavanja 615 i procjenjivanje amplitude signala 620. Kriteriji procjenjivanja amplitude signala doprinose da je ključni faktor određen u težinskom stanju signala 265. Kao što je otkriveno, R(n) je također ulaz u izjednačavač 630 unutar koga se generira, na poznati način, soft informacija (S(n)). Soft informacija (S(n)) na izlazu izjednačavača usmjerena je ka krugu 635 za odluku unutar koga je napravljena probna odluka S(n) u smislu poboljšanja izjednačavača izvoda 640 dovoda, kao primljenog signala. Generiran je jedan pogodan S(n) signal, koji je ključni u bloku 625 i izlaz do sumirajuće točke 645 koja kombinira neke ili sve od izlaznih signala ove grane (u slučaju dvogranog prijemnika) prije krajnje odluke za bit. Izlazni signal svake grane može biti predviđen uglavnom da spoji drugi izjednačavački dovod ili kriterij maksimalnog nivoa kombiniranja ili može biti kombiniran pri upotrebi selekcije bit-po-bit, kao što je ranije otkriveno. As shown, the received signal passes through the state quadrature demodulator 600 and then after selection and digitized in the state A/D converter 605 which gives a complex signal (R(n)). This signal is correlated with a stored reference in a correlation state 210 resulting in a channel impulse response (CIR) used in the initial feed terminal equalizer (Ck(n)) calculation 615 and signal amplitude estimation 620. The signal amplitude estimation criteria contribute to the key factor being determined in the weighted state of the signal 265. As disclosed, R(n) is also the input to the equalizer 630 within which the soft information (S(n)) is generated, in a known manner. The soft information (S(n)) at the output of the equalizer is directed to a decision circuit 635 within which a tentative decision S(n) is made in terms of improving the equalizer output 640 feed, as a received signal. A suitable S(n) signal is generated, which is keyed in block 625 and output to a summing point 645 which combines some or all of the outputs of this branch (in the case of a two-branch receiver) before the final bit decision. The output signal of each branch may be provided mainly to combine the other equalization feed or the criterion of the maximum level of combining or may be combined using bit-by-bit selection, as previously disclosed.

Kao što znaju prosječni stručnjaci u tehnici, prikazani izum također se može primijeniti za prijemnike koji koriste izjednačavače sa odlukom u krugu povratna sprege ili bilo koji predviđeni nelinearni izjednačavač (ekvilajzer) na primjer, S(n) može biti soft informacija izvedena iz izjednačavača sa odlukom u krugu povratna sprege prije kruga za odluku. Također, selekcija uzoraka simbola ili kombiniranje, može se pojaviti poslije prednapojnog filtera (što je također poznato u tehnici) za svaku diverziti granu ili bilo koju drugu predviđenu točku unutar samog bloka za izjednačavanje. As those of ordinary skill in the art know, the present invention can also be applied to receivers using decision equalizers in a feedback loop or any non-linear equalizer provided for example, S(n) can be soft information derived from a decision equalizer in the feedback loop before the decision loop. Also, symbol pattern selection, or combining, may occur after the pre-feed filter (which is also known in the art) for each diversity branch or any other intended point within the equalization block itself.

Claims (21)

1. Prijemnik za osiguravanje raznovrsnog prijema koji ima korelaciona sredstva 210, 212 za generiranje prvog i drugog korelacionog signala od prvog i drugog vremenski raspodijeljenog signala primljenog na prvu i drugu prijemnu granu 100 i 101, preraspodjeljujuća sredstva 214, 215 operativno povezana za korelaciona sredstva 210, 212 za generiranje prvog povratnog signala pomoću koherentnog prepodešenog prvog vremenski raspodijeljenog signal sa referentnom frekvencijom preko korištenja najmanje prvog korelacionog signala i za generiranje drugog povratnog signala preko koherentnog drugog vremenski raspodijeljenog signala sa referentnom frekvencijom korištenjem najmanje drugog korelacionog signala i sredstva za generaciju signala 105 operativno povezana sa preraspodjeljujućim sredstvima 214, 215 za generiranje signala izvedenog od prvog i drugog poravnatog signala, ima poboljšanje, naznačen time, što korelativna sredstva (210, 212) karakterizirana sredstvima za generiranje prvog korelacionog signala preko korelacije prvog vremenski raspodjeljenog signala primljenog na prvu prijemnu granu (100) sa poznatom referencom (104) i sredstvima za generiranje drugog korelacionog signala preko korelacije drugog vremenski raspodjeljenog signala primljenog na drugu prijemnu granu (101) sa poznatom referencom (104).1. A receiver for providing diversity reception having correlation means 210, 212 for generating first and second correlation signals from first and second time-distributed signals received on first and second reception branches 100 and 101, redistributing means 214, 215 operatively connected to the correlation means 210 , 212 for generating a first feedback signal using a coherent preset first time-distributed signal with a reference frequency through the use of at least a first correlation signal and for generating a second feedback signal through a coherent second time-distributed signal with a reference frequency using at least a second correlation signal and signal generation means 105 operative connected to redistributing means 214, 215 for generating a signal derived from the first and second aligned signals, has an improvement, characterized in that the correlative means (210, 212) characterized by the means for generating the first correlation og signal through the correlation of the first time-distributed signal received on the first receiving branch (100) with a known reference (104) and means for generating a second correlation signal through the correlation of the second time-distributed signal received on the second receiving branch (101) with a known reference (104). 2. Prijemnik prema zahtjevu 1, naznačen time, što je poznata referenca (104) unutar njega karakterizirana poznatom sinhronizacionom sekvencom.2. Receiver according to claim 1, characterized in that the known reference (104) within it is characterized by a known synchronization sequence. 3. Prijemnik prema zahtjevu 1, naznačen time, što su sredstva za generiranje signala (105) unutar njega karakterizirana sredstvima za osiguravanje diverziti selekcije bit-po-bit (300, 305).3. The receiver according to claim 1, characterized in that the means for generating the signal (105) within it are characterized by means for ensuring bit-by-bit diversity selection (300, 305). 4. Prijemnik prema zahtjevu 1, naznačen time, što su sredstva za generiranje signala (105) unutar njega karakterizirana sredstvima za osiguravanje maksimalnog omjera kombiniranja (420, 450).4. The receiver according to claim 1, characterized in that the signal generating means (105) within it are characterized by means for ensuring a maximum combining ratio (420, 450). 5. Prijemnik prema zahtjevu 2, naznačen time, što poznata sinhronizaciona sekvenca unutar njega ima dodijeljen vremenski okvir kratkog TDMA signala.5. Receiver according to claim 2, characterized in that the known synchronization sequence within it has an assigned time frame of a short TDMA signal. 6. Prijemnik prema zahtjevu 3, naznačen time, što korelativna sredstva (210, 212) unutar njega su dalje karakterizirana sredstvima za generiranje s-parametara i za prvu prijemnu granu (100) i za drugu prijemnu granu (101) zasnovanu na procijenjenom odzivu kanalnog impulsa na svakoj prijemnoj grani (100, 101) i odzivu podešenog filtera na svakoj podešenoj grani.6. A receiver according to claim 3, characterized in that the correlative means (210, 212) therein are further characterized by means for generating s-parameters for both the first receive branch (100) and the second receive branch (101) based on the estimated response of the channel pulse on each receiving branch (100, 101) and the response of the tuned filter on each tuned branch. 7. Prijemnik prema zahtjevu 3, naznačen time, što sredstva (300, 305) unutar njega za osiguravanje raznovrsnosti bit-po-bit imaju: sredstva (300) za selekciju između uzoraka simbola i prvog poravnatog signala, tako da ta bit-po-bit selekcija daje grupu simbola od selektiranih uzoraka simbola; sredstva (300) za određivanje koji poravnati signal je doprinjeo predviđenom broju selektiranih uzoraka simbola za izlaznu grupu; i sredstva (300) za osiguravanje procjenjivača sekvence (305) sa grupom uzoraka simbola i grupom s-parametara povezanih sa prijemnom granom čiji poravnati signal doprinosi predviđenom broju selektiranih uzoraka simbola.7. The receiver according to claim 3, characterized in that the means (300, 305) within it for ensuring bit-by-bit diversity have: means (300) for selection between the symbol samples and the first aligned signal, so that this bit-by- bit selection gives a group of symbols from the selected symbol samples; means (300) for determining which aligned signal contributed to the predicted number of selected symbol patterns for the output group; and means (300) for providing the sequence estimator (305) with a group of symbol patterns and a group of s-parameters associated with the receiving branch whose aligned signal contributes to the predicted number of selected symbol patterns. 8. Prijemnik prema zahtjevu 1, naznačen time, što sredstva za generaciju signala (905) unutar njega imaju mjerna sredstva za simbole uzoraka signala od svakog poravnatog signala; sredstva za sumiranje simbola, operativno povezana sa mjernim sredstvima za sumiranje uzoraka simbola iz svakog poravnatog signala tako da formiraju kombiniranu grupu uzoraka simbola; sredstva za sumiranje parametara operativno povezana sa sredstvima za sumiranje simbola, za sumiranje s-parametara povezanih sa svakom prijemnom granom (100, 101) tako da formiraju kombiniranu grupu s-parametara; i sredstva, operativno povezana sa oba sumirajuća sredstva za osiguravanje procjenjivača sekvence sa kombiniranom grupom simbola uzoraka; i kombiniranom grupom s-parametara.8. A receiver according to claim 1, characterized in that the means for generating the signal (905) has within it means for measuring the symbols of the signal samples from each aligned signal; symbol summing means operatively connected to the measurement means for summing the symbol patterns from each aligned signal to form a combined group of symbol patterns; parameter summing means operatively connected to symbol summing means, for summing the s-parameters associated with each receiving branch (100, 101) to form a combined group of s-parameters; and means, operatively connected to both summing means for providing the sequence estimator with the combined group of pattern symbols; and a combined group of s-parameters. 9. Prijemnik prema zahtjevu 1, naznačen time, što sredstva za generiranje signala (105) unutar njega su karakterizirana sredstvima za maksimalni omjer kombiniranja gdje je ključni faktor određen indiktorom jačine primljenog signala (400, 405) određenim za obrađivanje kanala zvučnom tehnikom koristeći vremenski raspodjeljivu funkciju, kao što je odziv kanalnog impulsa, za određivanje energetskog nivoa za prijem vremenski raspodjeljenog signala.9. A receiver according to claim 1, characterized in that the signal generating means (105) within it are characterized by means for a maximum combining ratio where the key factor is determined by a received signal strength indicator (400, 405) determined for processing the channel by a sound technique using a time-distributable function, such as channel impulse response, to determine the energy level for receiving a time-distributed signal. 10. Prijemnik prema zahtjevu 1, naznačen time, što sredstva za generiranje signala (105) unutar njega su okarakterizirana sredstvima za osiguravanje maksimalnog nivoa kombiniranja preko generiranja ključnog faktora zasnovanog na mjerenju jačine signala mjerenog u međufrekventnom stanju.10. The receiver according to claim 1, characterized in that the means for generating the signal (105) within it are characterized by means for ensuring the maximum level of combining through the generation of a key factor based on the measurement of the signal strength measured in the intermediate frequency state. 11. Postupak za osiguravanje raznovrsnog prijema gdje su prvi i drugi korelacioni signali generirani iz prvog i drugog vremenski raspodjeljenog signala primljenog na prvu i drugu prijemnu granu (100, 101) generirajući prvi prijemni signal preko koherentnog prepodešenog koreliranog signala za referentnu sekvencu koristeći najmanje prvi korelacioni signal, generirajući drugi povratni signal preko koherentnog prepodešenog drugog korelacionog signala za referentnu frekvenciju korištenjem najmanje drugog korelacionog signala i generiranjem signala izvedenog iz prvog i drugog poravnatog signala ima unapređenje, naznačen time, što je generiranje prvog korelacionog signala preko korelacije prvog vremenski raspodjeljenog signala primljenog na prvu prijemnu granu (100) sa poznatom referencom (104); i što je generiranje drugog korelacionog signala preko korelacije drugog vremenski raspodjeljenog signala na drugu prijemnu granu (101) sa poznatom referencom (104).11. A method for providing diversity reception, wherein the first and second correlation signals are generated from the first and second time-distributed signals received on the first and second reception branches (100, 101) by generating the first reception signal via a coherent preset correlated signal for the reference sequence using at least the first correlation signal, generating a second feedback signal via a coherent preset second correlation signal for the reference frequency using at least a second correlation signal and generating a signal derived from the first and second aligned signals has an improvement, characterized in that the generation of the first correlation signal via the correlation of the first time-distributed signal received at a first receiving branch (100) with a known reference (104); and generating a second correlation signal via correlation of the second time-distributed signal on the second receiving branch (101) with a known reference (104). 12. Postupak prema zahtjevu 11, naznačen time, što poznata referenca (104) unutar njega ima očekivanu poznatu sinhronizacionu sekvencu.12. The method according to claim 11, characterized in that the known reference (104) has an expected known synchronization sequence within it. 13. Postupak prema zahtjevu 11, naznačen time, što je generacija signala izvedenog iz prvog i drugog poravnatog signala karakterizirana osiguravanjem diverziti selekcije bit-po-bit.13. The method according to claim 11, characterized in that the generation of the signal derived from the first and second aligned signals is characterized by providing bit-by-bit diversity selection. 14. Postupak prema zahtjevu 11, naznačen time, što je generacija signala izvedenog iz prvog i drugog poravnatog signala karakterizirana osiguravanjem maksimalnog nivoa kombiniranja.14. The method according to claim 11, characterized in that the generation of the signal derived from the first and second aligned signals is characterized by ensuring the maximum level of combining. 15. Postupak prema zahtjevu 11, naznačen time, što je poznata sinhronizaciona sekvenca dodijeljena vremenskom okviru kratkog TDMA signala.15. The method according to claim 11, characterized in that a known synchronization sequence is assigned to the time frame of a short TDMA signal. 16. Postupak prema zahtjevu 11, naznačen time, što je generacija korelacionih signala karakterizirana generacijom s-parametara za prvu prijemnu granu (100) i drugu prijemnu granu (101) zasnovana na procijenjenom odzivu kanalnog impulsa svake prijemne grane i odziva podešenog filtera za svaku prijemnu granu (100, 101).16. The method according to claim 11, characterized in that the generation of correlation signals is characterized by the generation of s-parameters for the first receiving branch (100) and the second receiving branch (101) based on the estimated channel impulse response of each receiving branch and the response of the adjusted filter for each receiving branch branch (100, 101). 17. Postupak prema zahtjevu 13, naznačen time, što je osiguravanje bit-po-bit diverziti selekcije okarakterizirano: selekcijom između uzoraka simbola u prvom poravnatom signalu i uzoraka simbola u drigom poravnatom signalu, tako da bit-po-bit selekcija daje grupu simbola od selektiranih uzoraka simbola; određivanjem koji poravnati signal je doprinjeo predviđenom broju selektiranih uzoraka simbola za grupu simbola; i osiguravanjem procjenjivača frekvencije sa grupom simbola; i grupe s-parametara povezanih sa prijemnom granom čiji poravnati signal doprinosi predviđenom broju selektiranih uzoraka simbola.17. The method according to claim 13, characterized in that ensuring bit-by-bit diversity selection is characterized by: selection between symbol samples in the first aligned signal and symbol samples in the second aligned signal, so that the bit-by-bit selection provides a group of symbols from selected symbol samples; determining which aligned signal contributed to the predicted number of selected symbol patterns for the symbol group; and by providing a frequency estimator with a group of symbols; and groups of s-parameters associated with the receiving branch whose aligned signal contributes to the predicted number of selected symbol patterns. 18. Postupak prema zahtjevu 11, naznačen time, što generiranje signala izvedenog iz prvog i drugog poravnatog signala okarakterizirano: mjerenjem signala simbola iz svakog poravnatog signala; sumiranjem uzoraka simbola iz svakog poravnatog signala tako što se formira kombinirana grupa uzoraka simbola; sumiranjem s-parametara povezanih sa svakom prijemnom granom (100, 101) tako što formira kombiniranu grupu s-parametara; i osiguravanjem procjenjivača sekvence sa grupom kombiniranih uzoraka simbola; i grupom kombiniranih s-parametara.18. The method according to claim 11, characterized in that the generation of the signal derived from the first and second aligned signals is characterized by: measuring the symbol signal from each aligned signal; summing the symbol patterns from each aligned signal to form a combined group of symbol patterns; summing the s-parameters associated with each receiving branch (100, 101) to form a combined group of s-parameters; and providing a sequence estimator with a group of combined symbol patterns; and a group of combined s-parameters. 19. Postupak prema zahtjevu 11, naznačen time, što generiranje signala izvedenog iz prvog i drugog poravnatog signala je karakterizirano osiguravanjem maksimalnog omjera kombiniranja gdje je težišni faktor određen iz indikatora jačine prijemnog signala određen obrađenom zvučnom kanalnom tehnikom koristeći vremenski raspodijeljenu funkciju, kao odziv kanalnog impulsa za određivanje energetskog nivoa primljenih vremenski raspodijeljenih signala.19. The method according to claim 11, characterized in that the generation of the signal derived from the first and second aligned signals is characterized by providing the maximum combining ratio where the weighting factor determined from the received signal strength indicator is determined by the processed sound channel technique using a time-distributed function, as a channel impulse response for determining the energy level of received time-distributed signals. 20. Postupak prema zahtjevu 11, naznačen time, što je generiranje signala izvedeno iz prvog i drugog poravnatog signala okarakterizirano osiguravanjem maksimalnog omjera kombiniranja preko generiranja ključnog faktora zasnovanog na mjerenju jačine signala izmjerenog u međufrekventnom stanju.20. The method according to claim 11, characterized in that the signal generation derived from the first and second aligned signals is characterized by providing the maximum combining ratio through the generation of a key factor based on the measurement of the signal strength measured in the intermediate frequency state. 21. Postupak za osiguravanje raznovrsnog prijema unutar kojeg je prvi i drugi korelacioni signal generiran iz prvog i drugog digitalno vremenski raspodijeljenog signala snimljenog na prvu i drugu prijemnu granu (100, 101) generiranjem prvog poravnatog signala preko koherentnog prvog korelativnog signala za preraspodjeljivanje za lokalni oscilator (208) prve grane korištenjem najmanje prvog korekacionog signala, generiranjem drugog poravnatog signala koherentnim drugim korelativnim signalom za preraspodjeljivanje za lokalni oscilator (209) druge grane korištenjem najmanje drugog korelacionog signala i generiranjem signala izvedenog iz prvog i drugog poravnatog signala, naznačen time, što je generiranje prvog korelacionog signala preko korelacije prvog vremenski raspodijeljenog signala primljenog u prvu prijemnu granu sa poznatom sinhronizacionom sekvencom (104); generiranje drugog korelacionog signala preko korelacije drugog vremenski raspodijeljenog signala primljenog na drugu prijemnu granu sa poznatom sinhronizacionom sekvencom (104); i generiranje signala izvedenog iz prvog i drugog poravnatog signala karakteriziranog sa: uzimanjem uzoraka simbola iz svakog poravnatog signala; selektiranjem predviđenog uzorka simbola iz najmanje jednog od poravnatih signala bazirano na apsolutnoj vrijednosti najmanje jednog simbola od svakog poravnatog signala tako da je selekcija bit-po-bit napravljena između simbola u prvom poravnatom signalu i simbola u drugom poravnatom signalu i bazirana na apsolutnoj vrijednosti svakog uzorka simbola tako da formira grupu simbola selektiranih uzoraka simbola; sakupljanjem broja uzoraka simbola selektiranih iz svakog poravnatog signala; i osiguravanjem procjenjivača sekvence sa grupom simbola i grupom s-parametara povezanih sa prijemnom granom (100, 101) koja ima željeni broj sabranih uzoraka simbola.21. A method for providing diversity reception wherein first and second correlation signals are generated from first and second digitally time-resolved signals recorded on first and second receive branches (100, 101) by generating a first aligned signal via a coherent first correlative redistribution signal for a local oscillator (208) a first branch using at least a first correction signal, generating a second aligned signal with a coherent second correlative redistribution signal for a local oscillator (209) a second branch using at least a second correlation signal and generating a signal derived from the first and second aligned signals, characterized in that generating a first correlation signal by correlating the first time-distributed signal received in the first receiving branch with a known synchronization sequence (104); generating a second correlation signal by correlating the second time-distributed signal received on the second receiving branch with the known synchronization sequence (104); and generating a signal derived from the first and second aligned signals characterized by: sampling symbols from each aligned signal; selecting the intended symbol pattern from at least one of the aligned signals based on the absolute value of at least one symbol from each aligned signal such that a bit-by-bit selection is made between the symbols in the first aligned signal and the symbols in the second aligned signal and based on the absolute value of each pattern symbols so that it forms a symbol group of selected symbol patterns; by collecting the number of symbol samples selected from each aligned signal; and providing a sequence estimator with a group of symbols and a group of s-parameters associated with the receive branch (100, 101) having the desired number of summed symbol samples.
HR921479A 1989-11-13 1992-12-30 Method and apparatus for diversity reception of time-dispersed signals HRP921479A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/435,650 US5031193A (en) 1989-11-13 1989-11-13 Method and apparatus for diversity reception of time-dispersed signals
YU214390 1990-11-12

Publications (1)

Publication Number Publication Date
HRP921479A2 true HRP921479A2 (en) 1995-08-31

Family

ID=27030630

Family Applications (1)

Application Number Title Priority Date Filing Date
HR921479A HRP921479A2 (en) 1989-11-13 1992-12-30 Method and apparatus for diversity reception of time-dispersed signals

Country Status (2)

Country Link
HR (1) HRP921479A2 (en)
SI (1) SI9012143A (en)

Also Published As

Publication number Publication date
SI9012143A (en) 1998-02-28

Similar Documents

Publication Publication Date Title
AU638785B2 (en) Diversity reception of time-dispersed signals
US5621769A (en) Adaptive-sequence-estimation apparatus employing diversity combining/selection
CA2036423C (en) Method of reducing the influence of fading of a viterbi receiver having at least two antennas
US5465276A (en) Method of forming a channel estimate for a time-varying radio channel
US6246732B1 (en) Demodulator including adaptive equalizer and demodulating method in digital communications
US4271525A (en) Adaptive diversity receiver for digital communications
KR100386797B1 (en) Generalized Direct Update Bitter Equalizer
WO2011129362A1 (en) Cross polarization interference compensation device, cross polarization interference compensation method and program
KR20010099769A (en) Diversity receiver for radio communications ence in radio communications
EP1138136A1 (en) Synchronization tracking method
EP0527190B1 (en) A method of equalization in a receiver of signals having passed a transmission channel
AU2231799A (en) Method and apparatus for tracking the characteristics of a channel
Capellano et al. Adaptive multichannel equalizer for underwater communications
US20020167999A1 (en) Equalizer, receiver, and equalization method and reception method
JP3424816B2 (en) Diversity receiver and diversity reception control method
HRP921479A2 (en) Method and apparatus for diversity reception of time-dispersed signals
Hafeez et al. Co-channel interference cancellation for D-AMPS hand set
JP3256646B2 (en) Adaptive interference cancellation receiver
Safavi et al. A non-coherent equaliser receiver structure for DECT-type systems
JPH05344029A (en) Interference wave eliminating device
Bores et al. Adaptive space-time equalization for rapidly fading communication channels
JP2595282B2 (en) Decision feedback equalizer
JPH05292139A (en) Receiver estimating maximum likelihood series
Uesugi et al. Interference cancellation method using DFE
JPH06350467A (en) Receiver for digital communications

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
OBST Application withdrawn