HRP920602A2 - Composition for introducing nucleic acid complexes into higher eucaryotic cells - Google Patents

Composition for introducing nucleic acid complexes into higher eucaryotic cells Download PDF

Info

Publication number
HRP920602A2
HRP920602A2 HRP920602AA HRP920602A HRP920602A2 HR P920602 A2 HRP920602 A2 HR P920602A2 HR P920602A A HRP920602A A HR P920602AA HR P920602 A HRP920602 A HR P920602A HR P920602 A2 HRP920602 A2 HR P920602A2
Authority
HR
Croatia
Prior art keywords
cells
adenovirus
virus
dna
nucleic acid
Prior art date
Application number
HRP920602AA
Other languages
Croatian (hr)
Inventor
David Curiel
Ernst Wagner
Matt Cotten
Kurt Zatloukal
Cristian Plank
Max L. Birnsteil
Bernd Oberhauser
Original Assignee
Boehringer Ingelheim International Gmbh
The University Of North Carolina At Chapel Hill
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim International Gmbh, The University Of North Carolina At Chapel Hill filed Critical Boehringer Ingelheim International Gmbh
Publication of HRP920602A2 publication Critical patent/HRP920602A2/en

Links

Abstract

Sastav za transfekciju viših eukariontskih stanica, koji obuhvaća komplekse nukleinske kiseline i supstanciju koja ima afinitet za nukleinsku kiselinu te po izboru inkorporirajući faktor, sadrži endosomolitički agens, na pr. virus ili virusnu komponentu, koja može biti konjugirana. Endosomolitički agens, koji može biti dio kompleksa nukleinske kiseline, inkorporira se u stanice zajedno sa kompleksom te oslobađa sadržaje endosoma u citoplazmu, čime se povećava kapacitet prijenosa gena. Objelodanjeni su također farmaceutski pripravci, transfekcijski kompleti i metode za uvođenje nukleinske kiseline u više eukariotične stanice, obradom stanica sastavom.A higher eukaryotic cell transfection composition, comprising nucleic acid complexes and a substance having an affinity for a nucleic acid and optionally incorporating a factor, contains an endosomolytic agent, e.g. a virus or a viral component that can be conjugated. The endosomolytic agent, which may be part of the nucleic acid complex, is incorporated into the cells together with the complex and releases endosome contents into the cytoplasm, thereby enhancing gene transfer capacity. Also disclosed are pharmaceutical compositions, transfection kits and methods for introducing nucleic acid into multiple eukaryotic cells by treating the cells with composition.

Description

Izum je sa područja tehnologije DNA. Izum se posebno odnosi na nove sastave koji se mogu koristiti za uvođenje nukleinskih kiselina u više eukariotične stanice. The invention is from the field of DNA technology. The invention particularly relates to new compositions that can be used to introduce nucleic acids into more eukaryotic cells.

Postoji potreba za djelotvornim sistemom uvođenja nukleinske kiseline u žive stanice, osobito u terapiji gena. Geni se prenose u stanice u svrhu postizavanja “in vivo” sinteze terapetutski učinkovitih genetskih proizvoda, npr. zamjene defektnog gena u slučaju genetičkog nedostatka.”Konvencionalna” se terapija gena zasniva na principu postizavanja trajnog izlječenja jednim jedinim tretmanom u kojem se teraputski djelotvorna DNA (ili mRNA) daje kao lijek (“genetsko terapeutsko sredstvo”) na jednom ili po potrebi više puta za redom. Primjeri genetički prouzrokovanih bolesti, kod kojih genska terapija predstavlja obećavajući pristup, jesu: hemofilija, beta-talasemija i “teški kombinirani imunski nedostatak”, SCID (Severe Combined Immune Definiency), sindrom uzrokovan genetički uvedenim nedostatkom enzima adenozin deaminaze. Druge su primjene moguće u imunskom reguliranju, pri čemu se humoralni ili intracelularni imunitet postiže davanjem funkcionalne nukleinske kiseline, koja djeluje kao prikriveni proteinski antigen ili kao neprikriveni proteinski antigen, koji se može smatrati vakcinacijom.Drugi primjeri genetskih nedostataka, kod kojih se može dvati nukleinska kiselina, kao zamjena za oštećeni gen, npr. u obliku pojedinačno određenom za posebni zahtjev, predstavljaju mišićna distrofija (dystrophin gene), cistična fibroza (gen cistične fibroze koji regulira transmembransku provodljivost), hiperholesterolemija (LDL receptor gen). Metode genske terapije su također potencijalno korisne kada treba u tijelu sintetizirati hormone, faktora rasta ili proteinesa citotoksičnim ili imuno-modulacijskim djelovanjem. There is a need for an effective system for introducing nucleic acid into living cells, especially in gene therapy. Genes are transferred into cells for the purpose of achieving "in vivo" synthesis of therapeutically effective genetic products, for example, replacement of a defective gene in the case of a genetic deficiency. "Conventional" gene therapy is based on the principle of achieving a permanent cure with a single treatment in which therapeutically effective DNA ( or mRNA) is administered as a drug ("genetic therapeutic agent") on one or, if necessary, several times in a row. Examples of genetically caused diseases, in which gene therapy represents a promising approach, are: hemophilia, beta-thalassemia and "severe combined immune deficiency", SCID (Severe Combined Immune Definiency), a syndrome caused by a genetically introduced deficiency of the enzyme adenosine deaminase. Other applications are possible in immune regulation, whereby humoral or intracellular immunity is achieved by administering a functional nucleic acid, which acts as a masked protein antigen or as an unmasked protein antigen, which can be considered as vaccination. Other examples of genetic defects, in which two nucleic acids can be acid, as a replacement for a damaged gene, for example in a form individually determined for a special request, are represented by muscular dystrophy (dystrophin gene), cystic fibrosis (cystic fibrosis gene that regulates transmembrane conductance), hypercholesterolemia (LDL receptor gene). Gene therapy methods are also potentially useful when it is necessary to synthesize hormones, growth factors or proteins with a cytotoxic or immuno-modulating effect in the body.

Genska se terapija javlja kao nada u obradi raka, davanjem tzv. “kancer vakcine”. Radi povećanja imunogeniciteta tumorskih stanica, one se mijenjaju da bi postale više antigenske ili da bi se postiglo da proizvode izvjesne imuno-modulirajuće tvari, npr. citokine, da bi se potaknuo imunski odgovor. To se postiže transfekcijom stanica sa DNA koja označava citokin, npr. IL-2, IL-4, IFN gama TNF alfa. Do danas, većina se prijenosa gena u autologne tumorske stanice postiže putem retroviralnih vektora. Gene therapy appears as a hope in the treatment of cancer, by giving the so-called "vaccine cancer". To increase the immunogenicity of tumor cells, they are altered to become more antigenic or to produce certain immune-modulating substances, eg cytokines, to stimulate an immune response. This is achieved by transfecting cells with DNA that indicates a cytokine, eg IL-2, IL-4, IFN gamma, TNF alpha. To date, most gene transfer into autologous tumor cells is achieved via retroviral vectors.

Tehnologije, koje su do sada najnaprednije u davanju nukleinskih kiselina u genskoj terapiji, koriste retroviralne sisteme za prijenos gena u stanice (Wilson I sur., 1990, Kasid I sur., 1990). Međutim, upotreba retrovirusa je problematična, jer ona donosi, makar u maloj mjeri, opasnost od nuspojava, kao što je infekcija virusom (rekombinacijom sa endogenim virusima ili kontaminacijom sa helper virusima I zatim mogućom mutacijom u patogeni oblik) ili tvorba raka.Nadalje, stalna tansformacija tjelesnih stanica u pacijentu, koja se postiže retrovirusima, nije u svakom slučaju poželjna, jer ona može otežavati obradu u suprotnom smislu, npr. ako se poajve nuspojave. Osim toga, ovom je vrstom terapije teško postići dovoljno visoki titar da bi se inficiralo dosta stanica. The technologies, which are the most advanced so far in the delivery of nucleic acids in gene therapy, use retroviral systems for gene transfer into cells (Wilson I et al., 1990, Kasid I et al., 1990). However, the use of retroviruses is problematic, because it brings, at least to a small extent, the risk of side effects, such as virus infection (by recombination with endogenous viruses or contamination with helper viruses and then possible mutation into a pathogenic form) or the formation of cancer. Furthermore, constant the transformation of body cells in the patient, which is achieved by retroviruses, is not desirable in any case, because it can complicate the treatment in the opposite sense, for example, if side effects occur. In addition, with this type of therapy, it is difficult to achieve a high enough titer to infect enough cells.

Nukleinske kiseline, kao terapeutski djelotvorne supstancije, mogu se također koristiti za inhibiciju određenih staničnih funkcija, npr. RNA i DNA kiseline su se pokazale djelotvorne za selektivnu inhibiciju specifičnih nizova gena. Njihov način djelovanja omogućava da se koriste kao terapeutska sredstva za zaustavljanje izražaja nekih gena “in vivo” (kao što su neodređeni onkogeni ili viralni geni). Već je pokazano da kratki oligonukleotidi mogu biti unešeni u stanice i da tu mogu ispoljavati svoj inhibitorski učinak (Zamecnik I sur., 1986), čak I uz nisku intracelularnu koncentraciju, uzrokovanu, među ostalim, njihovim ograničenim prihvaćanjem po staničnoj membrani kao rezultat jakog negativnog naboja nukleinskih kiselina. Drugi je pristup selektivnoj inhibiciji gena upotreba ribozima. I tu je potrebno osigurati najveću moguću koncentraciju aktivnih ribozima u stanici, pri čemu je transport u stanici jedan od ograničavajućih faktora. Nucleic acids, as therapeutically effective substances, can also be used to inhibit certain cellular functions, eg RNA and DNA acids have been shown to be effective for selective inhibition of specific gene sequences. Their mode of action allows them to be used as therapeutic agents to stop the expression of some genes "in vivo" (such as unspecified oncogenes or viral genes). It has already been shown that short oligonucleotides can be introduced into cells and that they can exert their inhibitory effect there (Zamecnik I et al., 1986), even with a low intracellular concentration, caused, among other things, by their limited uptake by the cell membrane as a result of a strong negative charge of nucleic acids. Another approach to selective gene inhibition is the use of ribozymes. Here, too, it is necessary to ensure the highest possible concentration of active ribozymes in the cell, with transport in the cell being one of the limiting factors.

Primjena genske terapije za postizavanje intracelularnog imuniteta uključuje prevođenje gena koji zaštićuju protiv virusa, t. zv. “zaštitnih gena”, npr. transdominantnih mutanata gena koji znače viralne proteine, ili molekule DNA, koje označavaju t. zv. RNA mamce. Prema tome, postoji potreba za metodama omogućavanja prenošenja i izražaja DNA u stanici. The use of gene therapy to achieve intracellular immunity includes the translation of genes that protect against viruses, i.e. the so-called "protective genes", eg transdominant mutants of genes that mean viral proteins, or DNA molecules, that mean t. the so-called RNA decoys. Therefore, there is a need for methods of enabling the transfer and expression of DNA in a cell.

Poznate su različite tehnike transformacije gena u stanicama sisavaca “in vitro”, ali njihovo korištenje “in vivo” je ograničeno (ove tehnike uključuju uvođenje DNA pomoću liposoma, elektropracije, mikroinjekcije, stanične fuzije, metode DEAE-dekstran ili kalcij fosfat precipitacije). Different techniques of gene transformation in mammalian cells "in vitro" are known, but their use "in vivo" is limited (these techniques include introduction of DNA using liposomes, electroporation, microinjection, cell fusion, DEAE-dextran or calcium phosphate precipitation methods).

U novije vrijeme razvijeni su rekombinantni viralni vektori koji doprinose prijenosu gena korištenjem djelotvornih ulaznih mehanizama njihovih matičnih virusa; ova je strategija korištena u konstrukciji rekombinantnih retroviralnih i adenoviralnih vektora sa ciljem da se postigne visoko učinkovit prijenos gena “in vitro” i “in vivo” (Berkner, 1988). Unatoč njihovoj djelotvornosti ovi su vektori podvrgnuti ograničenjima s obzirom na veličinu i konstrukciju DNA koja se prenosi. Nadalje, ova sredstva predstavljaju sigurnosni rizik s obzorm na istovremeni prijenos za život sposobnih viralnih elemenata gena originalnog virusa. More recently, recombinant viral vectors have been developed that contribute to gene transfer by utilizing the efficient entry mechanisms of their parent viruses; this strategy was used in the construction of recombinant retroviral and adenoviral vectors with the aim of achieving highly efficient gene transfer "in vitro" and "in vivo" (Berkner, 1988). Despite their efficiency, these vectors are subject to limitations regarding the size and construction of the DNA being transferred. Furthermore, these agents pose a safety risk in view of the simultaneous transfer of viable viral elements of the original virus gene.

U svrhu zaobilaženja ovih ograničenja razvijene su alternativne stategije za prijenos gena, koje se osnivaju na mehanizmima koje stanice koriste za prijenos makromolekula. Jedan primjer ovoga je prijenos gena u stanicu osobito djelotvnim putem receptorom posredovane endocitoze (Wu i Wu, 1987, Wagner i sur., 1990., EP-A1 0388 758, čije je otkriće ovdje objavljeno). Ovaj prisutp koristi bifunkcionalne molekularne konjugate koji imaju domenu DNA veze i domenu specifičnu za receptore stanične površine (Wu i Wu, 1987, Wagner i sur. 1990). Ako se porepoznatljiva domena prepoznaje po receptoru stanične površine, konjugat se očituje putem receptorski upravljane endocitoze, u kojoj se DNA veza uz konjugat također prenosi. Korištenjem ove metode moguće je postići brzine prijenosa gena barem tako dobre, kavi se postižu konvencionalnim metodama (Zenke i sur., 1990). Nadalje, pokazano je da aktivnost nukleinske kiseline, npr. inhibitorski učinak ribozima, nije oslabljena sistemom transporta. In order to circumvent these limitations, alternative strategies for gene transfer have been developed, which are based on the mechanisms used by cells to transfer macromolecules. One example of this is the transfer of genes into a cell by a particularly efficient pathway of receptor-mediated endocytosis (Wu and Wu, 1987, Wagner et al., 1990, EP-A1 0388 758, the disclosure of which is published herein). This approach uses bifunctional molecular conjugates that have a DNA binding domain and a domain specific for cell surface receptors (Wu and Wu, 1987, Wagner et al. 1990). If the recognition domain is recognized by a cell surface receptor, the conjugate is expressed via receptor-directed endocytosis, in which the DNA binding to the conjugate is also transferred. Using this method, it is possible to achieve gene transfer rates at least as good as those achieved by conventional methods (Zenke et al., 1990). Furthermore, it was shown that nucleic acid activity, eg ribozyme inhibitory effect, is not weakened by the transport system.

PCT prijava WO 91/17773 odnosi se na sistem prijenosa nukleinskih kiselina specifčne aktivnosti za T-stanice. Ovaj sistem koristi proteine stanične površine porijekla T-stanica, npr. CD4, receptor korišten po HIV virusu. Nukleinska kiselina koju će se unijeti kompleksirana je sa protein-polikationskim konjugatom, čija je proteinska komponenta, t.j. prepoznatljiva domena, protein sposoban da se veže na površinski protein T-stanice, npr. CD4, a stanice koje pokazuju taj površinski protein, dovedene su u kontakt sa nastalim kompleksima protein-polikation/nukleinska kiselina. Pokazano je da DNA transportirana u stanicu ovim sistemom dolazi u stanicu. PCT application WO 91/17773 relates to a delivery system for nucleic acids with specific activity for T-cells. This system uses cell surface proteins of T-cell origin, eg CD4, the receptor used by the HIV virus. The nucleic acid to be introduced is complexed with a protein-polycation conjugate, whose protein component, i.e. recognition domain, a protein capable of binding to a T-cell surface protein, eg, CD4, and cells displaying this surface protein are brought into contact with the resulting protein-polycation/nucleic acid complexes. It has been shown that DNA transported into the cell by this system comes into the cell.

Jedna je osobina zajednička kod oba sistema (izuma) a to je da se kod njih koriste specifične funkcije stanica koje mogućuju ili olakšavaju prijenos nukleinske kiseline u stanicu. U oba se slučaja mehanizmi prihvaćanja dešavaju uz učestvovanje domena prepoznavanja, koje se nazivaju “unutarnjim faktorima” unutar djelokruga sadašnjeg izuma. Taj izraz označava ligande, koji kao specifični za tip stanice u užem ili širem smislu, se vežu na površinu stanice te se uvuku unutra, možda uz sudjelovanje drugih faktora (npr. proteina površine stanice). (U slučaju dvaju gore spomenutih izuma internalizirajući je faktor transferin ili protein koji se veže na antigen površine T-stanice, npr. anti-CD4 antitijelo). Internalizirajući je faktor konjugiran sa supstancijom polikationske prirode koja, na osnovi svojeg afiniteta sa nukleinskim kiselinama, tvori jaku povezanost između internalizirajućeg faktora i nukleinske ksieline. (Tvari ove vrste navode se dalje kao “tvari sa afinitetom za nukleinsku kiselinu” ili s obzirom na DNA, “domena vezanja DNA”. Ako supstancija ove vrste stvara vezu između nukleinske kiseline i internalizirajućeg faktora, ona se u daljnjem tekstu navodi kao “faktor povezivanja”). One feature common to both systems (inventions) is that they use specific cell functions that enable or facilitate the transfer of nucleic acid into the cell. In both cases, the acceptance mechanisms occur with the participation of recognition domains, which are referred to as "intrinsic factors" within the scope of the present invention. This term denotes ligands, which, as being specific for the cell type in a narrower or broader sense, bind to the cell surface and are drawn inside, possibly with the participation of other factors (eg cell surface proteins). (In the case of the two above-mentioned inventions, the internalizing factor is transferrin or a protein that binds to a T-cell surface antigen, eg an anti-CD4 antibody). The internalizing factor is conjugated with a polycationic substance which, based on its affinity with nucleic acids, forms a strong connection between the internalizing factor and nucleic xylene. (Substances of this type are referred to hereafter as "substances with affinity for nucleic acid" or, with respect to DNA, "DNA binding domain". If a substance of this type creates a bond between nucleic acid and an internalizing factor, it is referred to hereafter as a "factor connection").

Tijekom ovih dvaju izuma optimalno je prihvaćanje nukleinske kiseline u stanicu bilo postignuto kad je odnos konjugata prema nukleinskoj kiselini bio takav da su kompleksi internalizirajući faktor-polikation/nukleinska kiselina bili približno elektroneutralni. Polazeći od toga zapažanja, metode koje upotrebljavaju komplekse internalizirajući faktor-faktor povezivanja/nukleinska kiselina za uvođenje nukleinske kiseline u više eukariotične stanice, bile su poboljšane. During these two inventions, optimal nucleic acid uptake into the cell was achieved when the ratio of the conjugate to the nucleic acid was such that the internalizing factor-polycation/nucleic acid complexes were approximately electroneutral. Based on these observations, methods using internalizing factor-binding factor/nucleic acid complexes to introduce nucleic acid into more eukaryotic cells have been improved.

Metodu poboljšanja učinkovitosti sistema u kojima se prihvaćanje nukleinskih kiselina izvodi pomoću internalizirajućih faktora, opisali su Wagner i sur., 1991. U ovoj se metodi količina nukleinske kiseline prihvaćene u stanicu nije smanjila, ako je dio transferinpolikation konjugata zamijenjen nekovalentno vezanim (“slobodnim”) polikationom. U nekim slučajevima to čak može i povećati prihvaćanje DNA u znatnoj mjeri. Istraživanja o molekularnom stanju transferin-polikation-plasmid DNA kompleksa proizvedenih uz optimalne odnose DNA/konjugat, pokazala su da se plasmid DNA u prisutnosti konjugata kondenzira u toroidalne strukture (slične uštipcima) promjera oko 80 do 100 nm. A method of improving the efficiency of systems in which the acceptance of nucleic acids is performed using internalizing factors was described by Wagner et al., 1991. In this method, the amount of nucleic acid accepted into the cell did not decrease, if part of the transferrin polycation conjugate was replaced by non-covalently bound ("free") polycation. In some cases, it can even increase DNA uptake significantly. Research on the molecular state of transferrin-polycation-plasmid DNA complexes produced with optimal DNA/conjugate ratios showed that plasmid DNA in the presence of conjugate condenses into toroidal structures (similar to paper clips) with a diameter of about 80 to 100 nm.

Pokusi provedeni sa proteinima vezanim na stanice kao internalizirajućim faktorom, dali su slične rezultate. Experiments performed with cell-bound proteins as an internalizing factor gave similar results.

Dodatak “slobodnih” supstancija sa afinitetom za nukleinsku kiselinu također rezultira povećanjem učinkovitosti uvođenja sistema, čak i kad se koriste drugi faktori povezivanja. The addition of "free" substances with affinity for nucleic acid also results in an increase in the efficiency of introduction of the system, even when other binding factors are used.

Kompleksi opisani po Wagneru i sur., 1991a, koji su prihvaćeni u više eukariotične stanice putem endocitoze pomoću internalizirajućeg faktora, sadrže nukleinsku kiselinu kompleksiranu sa konjugatom internalizirajućeg faktora i faktora povezivanja. Uz to kompleksi sadrže jednu ili više tvari sa afinitetom za nukleinsku kiselinu, koje mogu biti identične sa faktorom povezivanja, u nekovalentnom obliku, tako da je internalizacija i/ili izražaj nukleinske kiseline postignut pomoću konjugata povećan, što se čini da je uzrokovano prvenstveno kondenzirajućim učinkom, no moguće je da bude uzrokovano i drugim mehanizmima. The complexes described by Wagner et al., 1991a, which are taken up into higher eukaryotic cells via endocytosis by internalizing factor, contain nucleic acid complexed with a conjugate of internalizing factor and binding factor. In addition, the complexes contain one or more substances with affinity for the nucleic acid, which may be identical to the binding factor, in a non-covalent form, so that the internalization and/or expression of the nucleic acid achieved by the conjugate is increased, which appears to be caused primarily by a condensing effect , but it is possible that it is also caused by other mechanisms.

Čak i kad bi brzine izražaja unešene nukleinske kiseline mogle biti ovom metodom povećane, tu još postoje ograničenja. Praktičnost ovog sistema u datom kontekstu nije određena samo prisutnošću receptora stanične površine relevantnog sa sistemom; ograničenja vezana uz upotrebu ovog sistema vjerojatno su rezultat činjenice da konjugat-DNA kompleksi internalizirani u endosima ulaze u lizosome, gdje se enzimatksi degradiraju. Da bi se povećao odnos nukleinske kiseline koja dostiže staničnu jezgru i tu dolazi do izražaja, što se je i željelo, vršeni su pokušaji eksperimentima koji su prethodili ovom izumu, da se provede transfekcija stanica u prisutnosti supstancija koje inhibiraju enzimatsku aktivnost u lizosomima, tzv. lizosomatropskih supstancija. Ovom je strategijom postignut povećani izražaj prenešene DNA; međutim, postignute reakcije bile su vrlo promjenljive, ovisno o upotrebljenoj supstanciji; odabrane lizosomatropske tvari dovele su do povećanja u prijenosu gena, dok su druge upravo to inhibirale. Tako je, na primjer, nađeno da djelotvoran prijenos DNA ovisi o prisutnosti slabe baze klorokina (Zenke i sur. 1990, Cotten i sur., 1990). Ovaj učinak, postignut pomoću klorokina, ne mora, barem isključivo, biti uzrokovan činjenicom da klorokin povećava pH u lizosomima; nađeno je na osnovi brojnih različitih eksperimenata da druge tvari, koje kao i klorokin imaju sposobnost mijenjanja pH, kao monensin, amonijev klorid ili metilamin, ne mogu zamijeniti klorokin, a u nekim eksperimentima neke od tih tvari pokazale čak i inhibirajuće djelovanje. Nađeno je nadalje da razne ciljne stanice pokazuju različite odgovore na iste supstancije koje imaju lizosomatropsko djelovanje. Even if the expression rates of the introduced nucleic acid could be increased by this method, there are still limitations. The practicality of this system in a given context is not only determined by the presence of a cell surface receptor relevant to the system; limitations related to the use of this system are probably the result of the fact that conjugate-DNA complexes internalized in endosomes enter lysosomes, where they are degraded by enzymes. In order to increase the proportion of nucleic acid that reaches the cell nucleus and is expressed there, which was desired, attempts were made in experiments that preceded this invention, to transfect cells in the presence of substances that inhibit enzymatic activity in lysosomes, the so-called lysosomotropic substances. This strategy achieved increased expression of the transferred DNA; however, the reactions achieved were highly variable, depending on the substance used; selected lysosomatotropic substances led to an increase in gene transfer, while others inhibited it. Thus, for example, efficient DNA transfer was found to depend on the presence of the weak base chloroquine (Zenke et al. 1990, Cotten et al. 1990). This effect achieved by chloroquine may not, at least exclusively, be caused by the fact that chloroquine increases the pH in lysosomes; it was found on the basis of numerous different experiments that other substances, which, like chloroquine, have the ability to change pH, such as monensin, ammonium chloride or methylamine, cannot replace chloroquine, and in some experiments some of these substances even showed an inhibitory effect. It was also found that different target cells show different responses to the same substances that have a lysosomotropic effect.

Budući da prijenos gena fiziološkim putem, kao što je predstavljeno receptorski upravljanom endocitozom uz korištenje kompleksa nukleinskih kiselina, ima glavne prednosti (netoksični mehanizam prolaza kroz staničnu membranu; mogućnost davanja biološki aktivnih nukleinskih kiselina, kao što su nukleinske kiseline koje posebno inhibiraju gene, ili stanične funkcije, na ponavljanoj ili kontinuiranoj osnovi; mogućnost stanično speficičnog ciljanja; mogućnost produciranja konjugata u velikim količinama), postoji potreba da se ovaj sistem učini djelotvornijim. Since the transfer of genes by a physiological route, as represented by receptor-directed endocytosis with the use of nucleic acid complexes, has the main advantages (non-toxic mechanism of passage through the cell membrane; the possibility of providing biologically active nucleic acids, such as nucleic acids that specifically inhibit genes, or cellular function, on a repeated or continuous basis; the possibility of cell-specific targeting; the possibility of producing conjugates in large quantities), there is a need to make this system more effective.

Opis slika Description of images

Sl. 1: Učinak infekcije adenovirusom na prijenos gena pomoću transferin-polilisin konjugata. Sl. 1: Effect of adenovirus infection on gene transfer using transferrin-polylysine conjugates.

Sl. 2: Učinak doziranja konjugat-DNA-kompleksa. Sl. 2: Dosing effect of the conjugate-DNA-complex.

Sl. 3: Pojačanje prijenosa gena upravljanog transferin-polilisinom, putem adenovirusa, javlja se pomoću receptorski upravljane endocitoze Sl. 3: Amplification of transferrin-polylysine-directed gene transfer by adenovirus occurs through receptor-directed endocytosis

A) Učinak na kompleksiranu DNA A) Effect on complexed DNA

B) Učinak na receptorski vezanu DNA B) Effect on receptor-bound DNA

C) Učinak na prijenos gena putem transferin-polilizin konjugata. C) Effect on gene transfer via transferrin-polylysine conjugate.

Sl. 4: Učinak adenovirusne infekcije na prijenos gena pomoću transferin-polilizin konjugata i odabranim staničnim linijama. Sl. 4: Effect of adenovirus infection on gene transfer using transferrin-polylysine conjugates and selected cell lines.

Sl. 5: Istraživanja da li pojačanje izražaja gena ovisi o prijenosu gena ili o transaktivaciji. Sl. 5: Investigations whether the amplification of gene expression depends on gene transfer or transactivation.

A) Stanična linija K562 A) Cell line K562

B) Stanična linija K562 10/6 koja konstitucijski izražava luciferazu. B) K562 10/6 cell line constitutively expressing luciferase.

Sl. 6: Tetra-galaktozni peptid-polilizin konjugat. Sl. 6: Tetra-galactose peptide-polylysine conjugate.

Sl. 7: Transfekcija HepG2 stanice u prisutnosti adenovirusa. Sl. 7: Transfection of HepG2 cells in the presence of adenovirus.

Sl. 8: Transfekcija HepG2 stanica u prisutnosti adenovirusa. Sl. 8: Transfection of HepG2 cells in the presence of adenovirus.

Sl. 9: Transfekcija TIB73 stanica Sl. 9: Transfection of TIB73 cells

A) Usporedne vrijednosti sa klorokinom A) Comparative values with chloroquine

B) U prisutnosti adenovirusa. B) In the presence of adenovirus.

Sl. 10: Transfekcija T stanica u prisutnosti adenovirusa: Sl. 10: Transfection of T cells in the presence of adenovirus:

A) H9 stanice A) H9 cells

B) Primarni limfociti. B) Primary lymphocytes.

Sl. 11: UV-inaktivacija adenovirusa: Sl. 11: UV-inactivation of adenoviruses:

A) Pojačanje učinka prijenosa gena u HeLa stanicama sa UV-inaktiviranim virusima A) Enhancement of gene transfer effect in HeLa cells with UV-inactivated viruses

B) Usporedba UV-inaktivacije sa učinkom prijenosa gena. B) Comparison of UV-inactivation with the effect of gene transfer.

Sl. 12: Inaktivacija adenovirusa pomoću formaldehida. Sl. 12: Inactivation of adenovirus using formaldehyde.

Sl. 13: Transfekcija NIH3T3 stanica u prisutnosti Moloney virusa. Sl. 13: Transfection of NIH3T3 cells in the presence of Moloney virus.

Sl. 14: Istraživanja da li učinak prijenosa gena u transfekciji NIH3T3 stanica sa kompleksima transferina-polilizin DNA, može biti pripisan Moloney virusu. Sl. 14: Research on whether the effect of gene transfer in the transfection of NIH3T3 cells with transferrin-polylysine DNA complexes can be attributed to Moloney virus.

Sl. 15: Interakcija između transferina i receptora igraju ulogu u učinku prijenosa gena Moloney virusa. Sl. 15: Interaction between transferrin and receptors play a role in the effect of Moloney virus gene transfer.

Sl. 16: Utjecaj pH na učinak retrovirusa na prijenos gena. Sl. 16: Effect of pH on the gene transfer effect of retroviruses.

Sl. 17: Influenca-hemaglutinin peptid; pokus lipozomskog propuštanja. Sl. 17: Influenza-hemagglutinin peptide; liposome leakage experiment.

Sl. 18: Transfekcija K562 stanica u prisutnosti konjugata influenca peptid, polilizin pl6pL. Sl. 18: Transfection of K562 cells in the presence of influenza peptide, polylysine pl6pL conjugate.

Sl. 19: Transfekcija HeLa stanica u prisutnosti influenca peptid-polilizin konjugata p16pL. Sl. 19: Transfection of HeLa cells in the presence of influenza peptide-polylysine conjugate p16pL.

Sl. 20: Transfekcija HeLa stanica sa transferin-polizin konjugatima u prisutnosti influenca peptid-polilizin konjugata p4IpL. Sl. 20: Transfection of HeLa cells with transferrin-polysine conjugates in the presence of influenza peptide-polylysine conjugate p4IpL.

Sl. 21: In situ dokaz izražaja beta-galaktosidaze nakon transfekcije HeLa stanica u prisutnosti adenovirusa. Sl. 21: In situ evidence of beta-galactosidase expression after transfection of HeLa cells in the presence of adenovirus.

Sl. 22: Transfekcija stanica sa 48 kb kosmidom u prisutnosti adenovirusa Sl. 22: Transfection of cells with a 48 kb cosmid in the presence of adenovirus

A: HeLa stanice A: HeLa cells

B: Stanica neuroblastoma B: Neuroblastoma cell

Sl. 23: Priprema adenovirus-polilizin konjugata kemijskim spajanjem. Sl. 23: Preparation of adenovirus-polylysine conjugate by chemical coupling.

Sl. 24: Transfekcija K562 stanica pomoću kemijski vezanih adenovirus konjugata. Sl. 24: Transfection of K562 cells using chemically linked adenovirus conjugates.

Sl. 25: Transfekcija HeLa stanica pomoću kemijski vezanih adenovirus konjugata. Sl. 25: Transfection of HeLa cells using chemically linked adenovirus conjugates.

Sl. 26: Vezanje polilizina na adenovirus pomoću transglutaminaze. Sl. 26: Binding of polylysine to adenovirus by transglutaminase.

Sl. 27: Transfekcija mišjih hepatocita pomoću transglutaminazom vezanih adenovirus konjugata. Sl. 27: Transfection of mouse hepatocytes using transglutaminase-linked adenovirus conjugates.

Sl. 28: Povećanje učinkovitosti transfekcije sa transglutaminazom vezanim adenovirus konjugatima. Sl. 28: Increasing transfection efficiency with transglutaminase-linked adenovirus conjugates.

Sl. 29: Transfekcija HeLa stanica sa biotin-streptavidin-vezanim adenovirus konjugatima. Sl. 29: Transfection of HeLa cells with biotin-streptavidin-linked adenovirus conjugates.

Sl. 30: Transfekcija K562 stanica sa biotin-streptavidin vezanim adenovirus konjugatima. Sl. 30: Transfection of K562 cells with biotin-streptavidin bound adenovirus conjugates.

Sl. 31: Transfekcija neuroblastomnih stanica sa kb kosmidom pomoću biotin-streptavidin vezanim adenovirusom. Sl. 31: Transfection of neuroblastoma cells with kb cosmid using biotin-streptavidin-linked adenovirus.

Sl. 32: Transfekcija hepatocita u prisutnosti klorokina ili u prisutnosti adenovirusa. Sl. 32: Transfection of hepatocytes in the presence of chloroquine or in the presence of adenovirus.

Sl. 33: Transfekcija K562 stanica u prisutnosti raznih endosomo Sl. 33: Transfection of K562 cells in the presence of various endosomes

Sl. 34: Usporedba transfekcijskih protokola na staničnoj razini sa beta-galaktisidazom kao dokaznim genom, u prisutnosti raznih endosomolitičkih sredstava. Sl. 34: Comparison of transfection protocols at the cellular level with beta-galactisidase as a proof gene, in the presence of various endosomolytic agents.

Sl. 35: Dugotrajnost izražaja luciferaze u spojenim, nerazdvojenim hepatocitima. Sl. 35: Persistence of luciferase expression in confluent, undifferentiated hepatocytes.

Sl. 36: Usporedba izražaja u HeLa stanicama transficiranim u prisutnosti letalnog virusa pilećeg embrija (CELO) u slobodnom obliku i sa CELO virusom vezanim na polilizin putem biotin-streptavidina. Sl. 36: Comparison of expression in HeLa cells transfected in the presence of chicken embryo lethal virus (CELO) in free form and with CELO virus attached to polylysine via biotin-streptavidin.

Sl. 37: Transfekcija mioblasta i miotuba sa DNA/transferin-polilizin kompleksima u prisutnosti slobodnih adenovirusa i u prisutnosti biotin/streptavidinom vezanim adenovirusima. Sl. 37: Transfection of myoblasts and myotubes with DNA/transferrin-polylysine complexes in the presence of free adenoviruses and in the presence of biotin/streptavidin bound adenoviruses.

Sl. 38: Predaja DNA kulturama mišjih primarnih mioblasta i miotuba. Sl. 38: Delivery of DNA to cultures of mouse primary myoblasts and myotubes.

Sl. 39: Komparativna analiza adenovirusa D1312 i CELO virusa kod transfekcije HeLa stanica i C2C12 mioblasta. Sl. 39: Comparative analysis of adenovirus D1312 and CELO virus in transfection of HeLa cells and C2C12 myoblasts.

Sl. 40: Poboljšanje predaje CELO virusa mioblasta uz upotrebu lektin liganda. Sl. 40: Enhancement of CELO myoblast virus delivery using lectin ligands.

Sl. 41: Izražaj pune dužine faktora VIII cDNA u kulturama C2C12 mioblasta i miotuba. Sl. 41: Expression of full-length factor VIII cDNA in C2C12 myoblast and myotube cultures.

Sl. 42: Povećanje predaje DNA po proteinima adenovirusa. Sl. 42: Increase in DNA delivery by adenovirus proteins.

A) HeLa stanice A) HeLa cells

B) Fibroblasti B) Fibroblasts

Sl. 43: Konjugati galaktoza-influenca peptidi za prijenos DNA u hepatocite. Sl. 43: Galactose-influenza peptide conjugates for DNA transfer into hepatocytes.

Sl. 44: Konjugati galaktoza-adenovirusa za prijenos DNA u hepatocite. Sl. 44: Galactose-adenovirus conjugates for DNA transfer into hepatocytes.

Sl. 45: Prijenos DNA sa transferin-polilizinom u prisutnosti rinovirusa Sl. 45: Transfer of DNA with transferrin-polylysine in the presence of rhinovirus

A) Slobodni rinovirus A) Free rhinovirus

B) konjugirani rinovirus B) conjugated rhinovirus

Sl. 46: Transfekcija stanica primarnog humanog melanoma sa kombiniranim kompleksima koji sadrže konjugate adenovirusa. Sl. 46: Transfection of primary human melanoma cells with combined complexes containing adenovirus conjugates.

Sl. 47: Pokus popuštanja liposoma amfipatičnih peptida. Sl. 47: Liposome yielding experiment of amphipathic peptides.

Sl. 48: Pokus propuštanja eritrocita amfipatičnih peptida. Sl. 48: Experiment on erythrocyte leakage of amphipathic peptides.

Sl. 49: Transfekcija BNL CL.2 stanica u prisutnosti amfipatičnih peptida. Sl. 49: Transfection of BNL CL.2 cells in the presence of amphipathic peptides.

Sl. 50: Transfekcija NIH3T3 stanica u prisutnosti amfipatičnih peptida. Sl. 50: Transfection of NIH3T3 cells in the presence of amphipathic peptides.

Sl. 51: Izražaj interferona alfa u HeLa stanicama transficiranim u prisutnosti raznih endosomolitičkih sredstava. Sl. 51: Expression of interferon alpha in HeLa cells transfected in the presence of various endosomolytic agents.

Cilj je sadašnjeg izuma bio da se poboljša prijenos nukleinske kiseline u više eukariotične stanice.(Termin “prijenos” u smislu ovoga izuma znači, mimo uvođenja kompleksa nukleinskih kiselina u stanicu kroz staničnu membranu, transport kompleksa ili nukleinske kiseline oslobođene odatle unutar stanice, sve dok ne dostigne odgovarajući položaj da dođe do izražaja). Više eukariotične stanice su dobro poznate, a ne obuhvaćaju kvaščeve gljivice. Vidi “Molecular Biology of the Gene, James D. Watson i sur., Benjamin-Cummings Publishing Company, Inc., str. 676-677 (1987). The aim of the present invention was to improve the transfer of nucleic acid into more eukaryotic cells. (The term "transfer" in the sense of this invention means, beyond the introduction of the nucleic acid complex into the cell through the cell membrane, the transport of the complex or nucleic acid released therefrom inside the cell, as long as does not reach the appropriate position to express itself). Higher eukaryotic cells are well known and do not include yeasts. See “Molecular Biology of the Gene, James D. Watson et al., Benjamin-Cummings Publishing Company, Inc., p. 676-677 (1987).

Većina virusa ostvaruje svoj ulaz u eukariotične stanice putem mehanizama koji u osnovi odgovaraju mehanizmu receptorski upravljanje endocitoze. Virusna infekcija, bazirana na tom mehanizmu, općenito počinje povezivanjem čestica virusa sa receptorima na staničnoj membrani. Nakon toga virus ulazi u stanicu. Ovaj proces ulaženja slijedi uobičajeni put, koji odgovara ulazu fizioloških liganda ili makromolekula u stanicu: receptori na površini stanice se grupiraju a membrana se okrene prema unutra te stvara mjehurić okružen isprepletenom prevlakom. Most viruses achieve their entry into eukaryotic cells through mechanisms that basically correspond to the mechanism of receptor control of endocytosis. Viral infection, based on this mechanism, generally begins with the binding of virus particles to receptors on the cell membrane. After that, the virus enters the cell. This entry process follows the usual pathway, which corresponds to the entry of physiological ligands or macromolecules into the cell: receptors on the cell surface cluster and the membrane turns inward, forming a bubble surrounded by an interwoven coating.

Nakon toga mjehurić se oslobađa prevlake, dolazi do zakiseljavanja unutar njega putem protonske crpke smještene u membrani. To potiče otpuštanje virusa iz endosoma.Ovisno o tome da li virus ima lipidnu prevlaku ili nema, u obzir dolaze dva tipa otpuštanja virusa iz endosoma: u slučaju t. zv. “golik” virusa (na primjer adenovirusa, poliovirusa, rinovirusa) predpostavljeno je da niski pH uzrokuje promjene konfiguracije virusnih proteina. To ističe hirofobične domene, koje nisu dostupne uz fiziološku pH vrijednost. Ove domene stoga postižu sposobnost da stupe u interakciju sa endosomnom membranom te time uzrokuju odpuštanje virusnog genoma iz endosoma i citoplazmu. Što se tiče virusa sa lipidnom prevlakom (npr. virus vesikularnog stomatitisa, Semliki Forest virus, virus influence), predpostavlja se da niski pH modificira strukturu ili konfiguraciju nekih virusnih proteina, čime se potiče spajanje membrane virusa sa membranom endosoma. Virusi koji penetriraju u stanicu putem ovog mehanizma imaju izvjesne molekularne osbujnosti koje im omogućuju da prekinu membranu endosoma da bi mogli ući u citoplazmu. After that, the bubble is released from the coating, acidification occurs inside it by means of a proton pump located in the membrane. This promotes the release of the virus from the endosome. Depending on whether the virus has a lipid coating or not, two types of virus release from the endosome come into consideration: in the case of t. the so-called "golic" viruses (for example adenovirus, poliovirus, rhinovirus) it was assumed that low pH causes changes in the configuration of viral proteins. This highlights the hydrophobic domains, which are not accessible at physiological pH. These domains therefore acquire the ability to interact with the endosomal membrane and thereby cause the release of the viral genome from the endosome and into the cytoplasm. As for viruses with a lipid coating (eg, vesicular stomatitis virus, Semliki Forest virus, influenza virus), it is assumed that low pH modifies the structure or configuration of some viral proteins, thereby promoting fusion of the virus membrane with the endosomal membrane. Viruses that penetrate the cell through this mechanism have certain molecular features that allow them to break the membrane of the endosome in order to enter the cytoplasm.

Drugi virusi, npr. prevučeni virusi Sendai, HIV i neke vrste Moloney virusa leukemije, ili nepresvučeni virusi SV40 i polioma, ne trebaju niski pH da bi ušli u stanicu. Oni mogu ili dovesti do fuzije sa membranom direktno na površini stanice (Sendai virus, vjerojatno HIV) ili su sposobni da potaknu mehanizme kidanja stanične membrane ili prolaze kroz nju. Predpostavlja se da su virusi, koji su neovisni o pH, također sposobni da se koriste putem endocitoze (McClure i sur., 1990). Other viruses, eg enveloped Sendai viruses, HIV and some Moloney leukemia viruses, or non-enveloped SV40 and polyoma viruses, do not need low pH to enter the cell. They can either lead to fusion with the membrane directly on the cell surface (Sendai virus, probably HIV) or they are capable of triggering mechanisms of tearing the cell membrane or passing through it. Viruses, which are pH independent, are also thought to be capable of being used by endocytosis (McClure et al., 1990).

Pri rješavanju problema izuma početna je premisa bila da se iskoristi mehanizam nekih virusa za ulaz u eukariotične stanice, da bi se poboljšao prijenos kompleksa nukleinskih kiselina u stanicu, a time da se pojača izražaj. When solving the problem of the invention, the initial premise was to use the mechanism of some viruses for entry into eukaryotic cells, in order to improve the transfer of nucleic acid complexes into the cell, thereby enhancing expression.

Izvedeni su pokušaji da se uvedu proteini zajedno sa virusima u stanicu (Otero i Carrasco, 1987). Nađeno je da je propusnost postignuta u stanici virusom, iskorištena za oslobađanje makromolekula. Činilo se da su ti postupci mehanizmi fluidne faze. Attempts have been made to introduce proteins together with viruses into the cell (Otero and Carrasco, 1987). It was found that the permeability achieved in the cell by the virus was used to release macromolecules. These processes appeared to be fluid phase mechanisms.

Korištenjem epidermalnog faktora rasta. EGF, konjugiranog na toksin, nađeno je da taj prirodni ligand, koji je ušao u stanicu endocitozom nakon povezivanja sa svojim receptorom, dospijeva u isti endosom zajedno sa adenovirusom, koji je također ušao u stanicu receptorski upravljanom endocitozom, a otpušten je iz tog endosoma, opet zajedno sa virusom, u citosol (FitzGerald i sur., 1983). Using epidermal growth factor. EGF, conjugated to a toxin, this natural ligand, which entered the cell by endocytosis after binding to its receptor, was found to enter the same endosome together with the adenovirus, which also entered the cell by receptor-driven endocytosis, and was released from that endosome. again together with the virus, into the cytosol (FitzGerald et al., 1983).

Sadašnjim je izumom, iznenađujuće, nađeno da izvjesi agensi (npr. virusi, virusne komponente ili drugi spojevi), koji pokazuju karakteristike određenih virusa s obzirom na njihov mehanizam ulaza u eukariotične stanice, bitno povećavaju izražaj nukleinske kiseline unešene u stanicu kao dio kompleksa. To je otkriće osobito iznenađujuće, jer su kompleksi nukleinskih kiselina, prihvaćeni u stanicu, veoma veliki. The present invention surprisingly found that certain agents (eg viruses, viral components or other compounds), which exhibit the characteristics of certain viruses with regard to their mechanism of entry into eukaryotic cells, significantly increase the expression of nucleic acid introduced into the cell as part of the complex. This discovery is particularly surprising, because the complexes of nucleic acids, accepted into the cell, are very large.

Sadašnji se izum stoga odnosi na sastav za transfekciju viših eukariotičnih stanica sa kompleksom nukleinske kiseline i supstancijom koja ima afinitet za nukleinsku kiselinu, a koja supstancija može biti vezana uz internalizirajući faktor karakteriziran time što sadrži sredstvo sposobno da bude uvučeno u stanice koje se trandficiraju, bilo “per se” ili kao komponenta kompleksa nukleinske kiseline, ili da otpušta sadržaje endosoma u kojima je kompleks smješten nakon ulaska u stanicu, u citoplazmu. The present invention therefore relates to a composition for transfection of higher eukaryotic cells with a complex of nucleic acid and a substance having an affinity for nucleic acid, which substance can be bound to an internalizing factor characterized by containing an agent capable of being drawn into the cells to be transfected, either "per se" or as a component of the nucleic acid complex, or to release the contents of the endosomes in which the complex is located after entering the cell, into the cytoplasm.

Ovaj se agens nadalje spominje kao “endosomolitično sredstvo”. Sposobnost endosomolitičkih sredstava da budu prihvaćena u stanice i da oslobađaju sadržaje endosoma, u kojima su smješteni nakon ulaska u stanicu, u citoplazmu, u daljenjem se tekstu spominje kao “funkcija prihvačanja”. Ova funkcija obuhvaća sposobnost da se aktivno uvuče u stanice putem endocitoze ovisne o receptoru, ili pasivno, putem tekuće faze ili kao konstituent kompleksa nukleinske kiseline, te sposobnost da prekine endosome, što se općenito navodi kao endosomoliza. This agent is further referred to as an "endosomolytic agent". The ability of endosomolytic agents to be accepted into cells and to release the contents of endosomes, in which they are located after entering the cell, into the cytoplasm, is referred to below as the "acceptance function". This function includes the ability to be actively taken into cells by receptor-dependent endocytosis, or passively, via the liquid phase or as a constituent of nucleic acid complexes, and the ability to disrupt endosomes, which is generally referred to as endosomolysis.

U jednom ostvarenju izuma endosomolitično je sredstvo virus. U drugom je endosomolitično sredstvo virusna komponenta. Virus ili virusna komponenta, korištena u ovim ostvarenjima izuma, niže se navodi kao “slobodni” virus (komponenta). In one embodiment of the invention, the endosomolytic agent is a virus. In the second, the endosomolytic agent is a viral component. The virus or viral component used in these embodiments of the invention is referred to below as "free" virus (component).

Na polju sadašnjeg izuma istraživano je djelovanje povećane doze slobodnog adenovirusa na kapacitet prijenosa gena konstantne količine transferin-polilizin konjugata u HeLa stanicama, uz korištenjegena luciferaze kao referentnog gena. Povećanje prijenosa gena do kojeg dolazi dodatkom slobodnog adenovirusa, dostiže maksimum kod 1x104 čestica virusa po stanici, a to je broj koji odgovara približnom broju adenovirusnih receptora po HeLa stanici. Povećanje do 2000 puta izražaja luciferaze, u usporedbi sa izražajem postignutim sa samim transferin-polilizin konjugatima, odgovara višoj dozi virusa. U drugoj seriji pokusa ispitivan je kapacitet graničnih količina kompleksa konjugat-DNA, u prisutnosti konstantne doze slobodnog adenovirusa. Nađeno je da je prihvaćanje adenovirusa u stanicama povećalo prijenos gena upravljanog transferin-polilizinom u širokom rasponu doza DNA. Maksimalni intenzitet izražaja gena postignutog pomoću kompleksa konjugat-DNA, odgovarao je intenzitetu postignutom sa 100 puta manje DNA, kad su adenovirusi bili korišteni za povećanje učinkovitosti transfekcije. In the field of the present invention, the effect of an increased dose of free adenovirus on the gene transfer capacity of a constant amount of transferrin-polylysine conjugate in HeLa cells was investigated, using the luciferase gene as a reference gene. The increase in gene transfer caused by the addition of free adenovirus reaches a maximum at 1x104 virus particles per cell, which is a number that corresponds to the approximate number of adenovirus receptors per HeLa cell. An up to 2000-fold increase in luciferase expression, compared to the expression achieved with transferrin-polylysine conjugates alone, corresponds to a higher dose of virus. In the second series of experiments, the capacity of limiting amounts of the conjugate-DNA complex was examined, in the presence of a constant dose of free adenovirus. Cellular uptake of adenovirus was found to increase transferrin-polylysin-directed gene transfer over a wide range of DNA doses. The maximum intensity of gene expression achieved using the conjugate-DNA complex corresponded to the intensity achieved with 100 times less DNA, when adenoviruses were used to increase transfection efficiency.

Učinak adenoviralne infekcije na prijenos gena isitivan je za nekompleksiranu DNA kao i za DNA kompleksiranu sa polilizinom ili konjugatima transferin-polilizin (Sl. 3A). Po ovoj analizi adenoviralna infekcija nije značajno povećala prijenos gole, nekompleksirane DNA tijekom transfekcije. Nasuprot tome, prijenos DNA kompleksirane sa polilizinom ili konjugatima transferin-polilizin, adenoviralnom je infekcijom povećan. Ovaj je učinak, međutim za konjugate transferin-polilizin znatno veći. Budući da polikationski dio molekule konjugata ne služi samo za pričvršćenje transferina na DNA, nego znatno utječe i na strukturalne promjene u DNA (Sabijanje u toroidalne strukture, Wagner i sur., 1991a), ovi pokusi nisu mogli u početku razlikovati da li su zapaženi učinci na bazi pojačanog fluidno-fazno transporta polikationski kondenzirane DNA ili virusom povećanog prihvaćanja receptorski vezanog kompleksa konjugat-DNA. Radi razlikovanja između ovih mogućnosti izvedeni su daljnji povezani eksperimenti (Sl. 3b). Povezivanje kompleksa transferin-polilizin-DNA ili polilizin-DNA, kod niske temperature bez internalizacije, dopustilo je uklanjanje viška kompleksa u fluidnoj fazi prije adenoviralne infekcije (FitzGerald i sur., 1983). Kad je data u tom obliku, predaja kompleksa receptorski vezanih transferin-polilizin-DNA, bila je znatno povećana dodatkom adenoviralnih čestica, dok za komplekse polilizin-DNA to nije bio slučaj. Stoga je posebno pojačan ulaz DNA putem receptorski upravljanje endocitoze. The effect of adenoviral infection on gene transfer was significant for uncomplexed DNA as well as for DNA complexed with polylysine or transferrin-polylysine conjugates (Fig. 3A). According to this analysis, adenoviral infection did not significantly increase the transfer of bare, uncomplexed DNA during transfection. In contrast, the transfer of DNA complexed with polylysine or transferrin-polylysine conjugates was increased by adenoviral infection. This effect, however, is significantly greater for transferrin-polylysine conjugates. Since the polycationic part of the conjugate molecule not only serves to attach transferrin to DNA, but also significantly affects structural changes in DNA (Compaction into toroidal structures, Wagner et al., 1991a), these experiments could not initially distinguish whether the observed effects on the basis of enhanced fluid-phase transport of polycationic condensed DNA or increased acceptance of the receptor-bound conjugate-DNA complex by the virus. To distinguish between these possibilities, further related experiments were performed (Fig. 3b). Association of transferrin-polylysine-DNA or polylysine-DNA complexes, at low temperature without internalization, allowed removal of excess complexes in the fluid phase prior to adenoviral infection (FitzGerald et al., 1983). When given in this form, delivery of receptor-bound transferrin-polylysine-DNA complexes was significantly increased by the addition of adenoviral particles, while this was not the case for polylysine-DNA complexes. Therefore, the entry of DNA via receptor management of endocytosis is particularly enhanced.

Nadalje, izvršena je analiza specifične adenoviralne funkcije, koja dovodi do pojačanog receptorski upravljanog prijenosa gena (Sl. 3C). Obrada viriona blagim zagrijavanjem ne mijenja njihovu sposobnost da se vežu na ciljane stanične membrane, ali utječe na njihov kapacitet da raskinu endosome nakon interalizacije (Defer i sur., 1990). Stoga se različiti utjecali viralnog povezivanja i viralni ulaz mogu odvojeno ocijenjivati. U ovoj analizi, toplinska inaktivacija adenovirusa potpuno ukida njihovu sposobnost da pojačaju receptorski upravljani prijenos gena. To navodi na to da je kapacitet adenovirusa da prekidaju endosome kao dio njihova ulaznog mehanizma, upravo ono što specifično utječe na pojačanje oslobađanja gena putem konjugata transferin-polilizin. Činjenica da za obnavljanje defektne vrste virusa mogu dovesti do povećanja izražaja gena, potvrđuje predpostavku da taj fenomen ne ovisi o funkciji obnavljanja, nego o funkciji prihvaćanja viriona. Furthermore, an analysis of the specific adenoviral function, which leads to enhanced receptor-driven gene transfer, was performed (Fig. 3C). Mild heat treatment of virions does not alter their ability to bind to target cell membranes, but does affect their capacity to disrupt endosomes after internalization (Defer et al., 1990). Therefore, the different effects of viral association and viral input can be evaluated separately. In this assay, heat inactivation of adenoviruses completely abolishes their ability to enhance receptor-directed gene transfer. This suggests that the capacity of adenoviruses to disrupt endosomes as part of their entry mechanism is what specifically affects the enhancement of gene release via the transferrin-polylysine conjugate. The fact that for recovery defective types of viruses can lead to an increase in gene expression, confirms the assumption that this phenomenon does not depend on the function of recovery, but on the function of virion acceptance.

Da bi se isključila mogućnost da se pojačanje izražaja gena može pripisivati mogućoj transaktivaciji unešenog gena virusom, izvedeni su pokusi sa staničnom linijom, koja konstitutivno izražava gen RSV-LTR luciferaze: adenovirusi ne pokazuju učinke na tu staničnu liniju, dok u matičnoj liniji, u koju je gen bio uveden putem tranferin-polilizin konjugata, postoji značajan porast izražaja gena. Ovo otkriće pokazuje da adenovirus utječe na događaje koji se dešavaju prije prijepisa i da njegov pojačavajući utjecaj na prijenos gena stoga djeluje na razinu prijenosa gena, a ne na razinu izražaja gena (Sl. 5). In order to exclude the possibility that the enhancement of gene expression can be attributed to the possible transactivation of the introduced gene by the virus, experiments were performed with a cell line, which constitutively expresses the RSV-LTR luciferase gene: adenoviruses do not show effects on that cell line, while in the parent line, in which if the gene was introduced via a transferrin-polylysine conjugate, there is a significant increase in gene expression. This finding demonstrates that adenovirus affects pre-transcriptional events and that its enhancing effect on gene transfer therefore acts at the level of gene transfer rather than at the level of gene expression (Fig. 5).

Isto tako su provedena istraživanja u okviru izuma, da bi se pronašlo kakav učinak ima slobodni adenovirus na prijenos gena putem transferin-polilizin konjugata u odabranim staničnim linijama. Nađeno je da prisutnost transferin receptora je na ciljanim stanicama neophodna, no nije u svakom slučaju dovoljna da omogući prijenos gena konjugatima transferin-polilizin. Stanični specifični faktori o kojima ovisi sudbina endosomom internaliziranih kompleksa konjugat-DNA, izvanredno su važan odlučujući faktor za razine prijenosa gena, koje se mogu postići tim putem. S obzirom na to, odabrane su stanične linije ispitivane na prijenos gena transferin-polizin konjugatima kao i na povećanje prijenosa gena adenovirusima (Sl. 4). Stanice stanične linije cistične fibroze (CTFl) pokazale su umjerene razine izražaja gena luciferaze, nakon obrade kompleksima transferin-polilizin-DNA. Ta je razina izražaja znatno uvećana obradom sa adenovirusom d1312. Sasvim suprotno, KB stanica obrađene transferin-polilizin-DNA kompleksima pokazale su razine izražaja gena luciferaze jedva iznad osnovnih razina, usprkos prisutnosti transferin receptora. Obrada adenovursom d1312, međutim, rezultirala je jasno uočljivim aktivnostima luciferaze u tim stanicama. Obrada HeLa stanicama adenovirusima imala je sličan učinak, premda je taj učinak u tim stanicama bio znatno jači. Budući da HeLa stanice i KB stanice posjeduju približno jednaki broj receptora za adenovirus, razlika u povećanju prijenosa gena može biti odraz broja transferin receptora karakterističnog za svaki tip stanica. Međutim, nasuprot ovim rezultatima, stanične linije WI-38 i MRC-5, koje su poznate po tome da veoma slabo podržavaju adenoviralnu infekciju (Precious i Russell, 1985), pokazale su veoma slabo povećanje sa d1312 izražaja gena postignutog pomoću samih konjugat-DNA kompleksa. Obrada slobodnim virusom, npr. adenovirusom, čini se da povećava prijenos gena pomoću konjugat-DNA kompleksa u onim slučajevima gdje je prijenos gena moguć receptorski upravljanim endocitozom, kao u slučaju CFT1 stanica, te u nekim primjerima gdje se prijenos gena ovim putem čini nedjelotvoran, kao kod HeLa i KB stanica. Research was also carried out within the framework of the invention, in order to find out what effect free adenovirus has on gene transfer via transferrin-polylysine conjugates in selected cell lines. It was found that the presence of transferrin receptors on the target cells is necessary, but not sufficient in every case to enable gene transfer by transferrin-polylysine conjugates. The cell-specific factors on which the fate of endosome-internalized conjugate-DNA complexes depends are extremely important determinants of the levels of gene transfer that can be achieved by this pathway. With this in mind, selected cell lines were tested for gene transfer with transferrin-polysin conjugates as well as for increasing gene transfer with adenoviruses (Fig. 4). Cystic fibrosis cell line (CTF1) cells showed moderate levels of luciferase gene expression after treatment with transferrin-polylysine-DNA complexes. This level of expression was significantly increased by treatment with adenovirus d1312. On the contrary, KB cells treated with transferrin-polylysine-DNA complexes showed levels of luciferase gene expression barely above baseline, despite the presence of the transferrin receptor. Adenovirus d1312 treatment, however, resulted in clearly detectable luciferase activities in these cells. Adenovirus treatment of HeLa cells had a similar effect, although the effect was much stronger in these cells. Since HeLa cells and KB cells possess approximately the same number of receptors for adenovirus, the difference in the increase in gene transfer may reflect the number of transferrin receptors characteristic of each cell type. However, in contrast to these results, the WI-38 and MRC-5 cell lines, which are known to support adenoviral infection very poorly (Precious and Russell, 1985), showed very little increase with d1312 in gene expression achieved by the DNA conjugates alone. complex. Treatment with free virus, eg, adenovirus, appears to increase gene transfer by conjugate-DNA complexes in those cases where gene transfer is possible by receptor-directed endocytosis, as in the case of CFT1 cells, and in some examples where gene transfer by this route appears to be ineffective, as with HeLa and KB cells.

Razina postignutog povećanja znatno varira među različitim ciljanim stanicama, što navodi na to da je taj učinak funkcija broja virusnih receptora, npr. receptora adenovirusa, nekog tipa stanica, kao i broja receptora transferina. The level of enhancement achieved varies considerably among different target cells, suggesting that this effect is a function of the number of viral receptors, eg adenovirus receptors, of a cell type, as well as the number of transferrin receptors.

U slučaju upotrebe slobodnog virusa, najradije se konjugira sa internalizirajućim faktorom supstancija koja ima afinitet za nukleinsku kiselinu, obično jedan organski polikation. Prema izumu je, međutim, nađeno da pod izvjesnim okolnostima mogu biti uvedeni u stanicu, u prisutnosti slobodnog virusa, samo DNA kompleksi sa supstancijom koja ima afinitet za nukleinsku kiselinu, t.j. bez internalizirajućeg faktora. Također je nađeno da se neke stanične linije mogu uvesti kroz fluidnu fazu kompleksi, koji se sastoje iz nukleinske kiseline i supstancije koja ima afinitet za nukleinsku kiselinu, ako je koncentacija kompleksa dovoljno visoka. Pokusi izvedeni u okviru sadašnjeg izuma i nekih ranijih, pokazali su da je bitni element za kapacitet prihvaćanja kompleksa nukleinskih kiselina njihova kompaktnost, koja se može pripisati kondenziranju nukleinske kiseline sa supstancijom koja ima afinitet za nukleinsku kiselinu. Ako supstancija, koja ima afinitet za nukleinsku kiselinu, ima dovoljan kapacitet vezanja na površinu stanica radi ulaza u stanicu zajedno s virusom, te koja je sposobna učiniti kompleks gotovo elektroneutralan i kondenzirati nukleinsku kiselinu u kompletnu strukturu, tada nema potrebe povećanja kapaciteta ulaženja kovalentnim povezivanjem internalizirajućeg faktora na supstanciju koja ima afinitet za nukleinsku kiselinu, u svrhu prijenosa kompleksa u stanicu receptorski upravljanom endocitozom. Mnoge stanice imaju relativno visoki afinitet za neke supstancije koje imaju afinitete za nukleinsku kiselinu, tako da se konjugati nukleinske kiseline i faktor povezivanja uvuku u stanicu bez potrebe za internalizirajućim faktorom. To vrijedi, na primjer, za hepatocite, za koje je u okviru sadašnjeg izuma nađeno da prihvaćaju DNA-polilizin komplekse. In the case of using a free virus, it is preferred to conjugate to the internalizing factor a substance having an affinity for nucleic acid, usually an organic polycation. According to the invention, however, it was found that under certain circumstances, in the presence of a free virus, only DNA complexes with a substance having an affinity for nucleic acid can be introduced into the cell, i.e. without an internalizing factor. It has also been found that some cell lines can introduce through the fluid phase complexes, which consist of a nucleic acid and a substance that has an affinity for the nucleic acid, if the concentration of the complex is high enough. Experiments carried out within the framework of the present invention and some earlier ones have shown that an essential element for the capacity to accept nucleic acid complexes is their compactness, which can be attributed to the condensation of nucleic acid with a substance having an affinity for nucleic acid. If the substance, which has an affinity for the nucleic acid, has sufficient binding capacity to the cell surface for entry into the cell together with the virus, and which is capable of making the complex almost electroneutral and condensing the nucleic acid into a complete structure, then there is no need to increase the entry capacity by covalently linking the internalizing factor to a substance that has an affinity for nucleic acid, for the purpose of transferring the complex into the cell by receptor-controlled endocytosis. Many cells have a relatively high affinity for some substances that have affinities for nucleic acid, so that nucleic acid conjugates and binding factor are taken into the cell without the need for internalizing factor. This applies, for example, to hepatocytes, which in the context of the present invention have been found to accept DNA-polylysine complexes.

U iznešenom ostvarenju izuma endosomolitično sredstvo je virus koji je vezan na susptanciju, koja ima afinitet za nukleinsku kiselinu i koja ima sposobnost da uđe u stanicu kao dio kompleksa konjugat/nukleinska kiselina i da oslobodi sadržaje endosoma, u kojima je kompleks smješten nakon ulaska u stanicu, u citplazmi. In the presented embodiment of the invention, the endosomolytic agent is a virus that is bound to a substance, that has an affinity for nucleic acid and that has the ability to enter the cell as part of the conjugate/nucleic acid complex and to release the contents of the endosomes, in which the complex is located after entering the cell , in the cytoplasm.

U drugom iznošenom ostvaranje, endosomolitičko je sredstvo virusna komponenta koja je vezana na supstanciju koja ima afinitet za nukleinsku kiselinu i koja ima sposobnost da uđe u stanicu kao dio kompleksa konjugat/nukleinska kiselina i da oslobodi sadržaje endosoma u kojima je kompleks smješten nakon ulaska u stanicu, u citoplazmu. In another preferred embodiment, the endosomolytic agent is a viral component that is attached to a substance that has an affinity for nucleic acid and that has the ability to enter the cell as part of a conjugate/nucleic acid complex and to release the contents of the endosomes in which the complex is located after entering the cell. , into the cytoplasm.

Virusi ili virusne komponente vezane na domenu nukleinske kiseline, bez obzira na tip veze, niže se označuju kao “viralni konjugati”. Viruses or viral components linked to a nucleic acid domain, regardless of the type of linkage, are referred to below as "viral conjugates".

Viralni konjugati, koji su također predmet sadašnjeg izuma sadrže virus ili virusnu komponentu kao integralni dio njihove funkcionalne strukture te spajaju prednosti vektorskih sistema, koji se zasnivaju na konjugatima internalizirajućeg faktora, sa prednostima koje u te sisteme dnose virusi. Viral conjugates, which are also the subject of the present invention, contain a virus or a viral component as an integral part of their functional structure and combine the advantages of vector systems, which are based on internalizing factor conjugates, with the advantages that viruses bring to these systems.

Nadalje, viralni konjugati, prema ovim ostvarenjima izuma, da sprečavaju osnovno ograničenje svojstveno kod poznatih sistema molekularnih konjugata, time što za razliku od poznatih konjugata, korištenih za prijenos gena putem receptorski upravljane endocitoze, oni imaju specifičan mehanizam koji im omogućuje da budu oslobođeni iz sistema stanične šupljine. Furthermore, viral conjugates, according to these embodiments of the invention, prevent the basic limitation inherent in known systems of molecular conjugates, in that unlike known conjugates, used for gene transfer via receptor-driven endocytosis, they have a specific mechanism that allows them to be released from the system cell cavities.

Vektorski sistem koji koristi viralne konjugate, predstavlja osnovno konceptualno odstupanje od rekombinantnih viralnih vektora po tome što strana DNA, koju treba transportirati, je nošena na vanjskoj strani viriona. Prema tome, viralni konjugati prema iznešenom ostvarenju izuma mogu transportirati veoma velike konstrukcije gena u stanicu, bez ograničenja. A vector system using viral conjugates represents a basic conceptual departure from recombinant viral vectors in that the foreign DNA to be transported is carried on the outside of the virion. Therefore, the viral conjugates according to the presented embodiment of the invention can transport very large gene constructs into the cell, without limitation.

Pogodnost virusa, koji će se koristiti kao slobodni ili vezani virus ili dio virusa kao virusna komponenta, u okviru sadašnjeg izuma određena je po svojem faktoru prihvaćanja, kakav je ovdje definiran. Pogodni virusi su, s jedne strane, oni koji imaju sposobnost ulaženja u stanicu receptorski upravljanom endocitozom tijekom transfekcije stanica sa kompleksom nukleinske kiseline i koji doprinose njihovom oslobađanju - a stoga i oslobađanju nukleinske kiseline - iz endosoma u citoplazmu. Takvi su virusi oni koji su otkriveni ovdje, kao i drugi virusi sposobni da budu prihvaćeni od pojedine stanice, uzrokujući oslobađanje sadržaja endosoma u citoplazmu. The suitability of a virus, to be used as a free or bound virus or part of a virus as a viral component, within the scope of the present invention is determined by its acceptance factor, as defined herein. Suitable viruses are, on the one hand, those that have the ability to enter the cell by receptor-driven endocytosis during transfection of the cells with the nucleic acid complex and that contribute to their release - and therefore the release of the nucleic acid - from the endosomes into the cytoplasm. Such viruses are those discovered here, as well as other viruses capable of being accepted by an individual cell, causing the release of endosomal contents into the cytoplasm.

Za primjer virusa i viših eukariotičnih stanica u koje mogu penetrirati postoje reference od Fieldsa B.N. i Knipe-a, D.M. (1990). Osjetljivost date stanične linije na transformaciju putem virusa kao olakšavača ulaza konjugata kao “slobodnog virusa”, ovisna je o prisutnosti i broju površinskih receptora ciljane stanice za virus. S obzirom na površinski receptor adenoviralne stanice, za određivanje njegova broja na HeLa i KB stanicama predložene su metode po Svenssonu, 1990., i Deferu, 1990. Mislilo se da je receptor za denovirus prilično naširoko izražen. For examples of viruses and higher eukaryotic cells they can penetrate, there are references from Fields B.N. and Knipe, D.M. (1990). The susceptibility of a given cell line to transformation by a virus as a facilitator of conjugate entry as “free virus” is dependent on the presence and number of target cell surface receptors for the virus. With respect to the adenoviral cell surface receptor, the methods of Svensson, 1990, and Defer, 1990 were proposed for determining its number on HeLa and KB cells. It was thought that the adenovirus receptor was rather widely expressed.

Pogodni virusi obuhvaćaju, s jedne strane, one koji su sposobni prodrijeti u stanicu putem receptorski upravljane endocitoze tijekom transfekcije stanica sa kompleksom nukleinske kiseline i koji doprinose njihovom oslobađanju, a stoga i oslobađanju nukleinske kiseline, iz endosoma u citoplazmu. Bez želje vezanja uz tu teoriju, ova aktivnost endosomolize može, u slučaju upotrebe slobodnog virusa, koristiti da se kompleksi nukleinske kiseline prenesu u stanicu, u toliko što se ti kompleksi prenose zajedno sa virusom iz endosoma u citoplazmu, predpostavljajući da oni stižu u iste endosome kao i virusi koji su internalizirani. Kad kompleksi sadrže virus u vezanoj formi, oni se koriste virusnom endosomolitičkom aktivnošću i prenose se iz endosoma u citoplazmu. To sprečava spajanje između endosoma i lizosoma, dakle i enzimatsku degradaciju koja se normalno događa u tim staničnim organima. Suitable viruses include, on the one hand, those capable of entering the cell via receptor-directed endocytosis during transfection of the cells with the nucleic acid complex and which contribute to their release, and thus the release of the nucleic acid, from the endosomes into the cytoplasm. Without wishing to be bound by that theory, this activity of endosomolysis can, in the case of using a free virus, be used to transfer nucleic acid complexes into the cell, insofar as these complexes are transferred together with the virus from the endosomes to the cytoplasm, assuming that they arrive in the same endosomes. as well as viruses that are internalized. When the complexes contain the virus in bound form, they are used by the viral endosomolytic activity and transported from the endosomes to the cytoplasm. This prevents the fusion between endosomes and lysosomes, thus also the enzymatic degradation that normally occurs in these cell organelles.

Osobito, virusi, koji su sposobni za sastav prema izumu i čija se funkcija prihvaćanja, pojavljujući se na početku infekcije, zapaža po receptorski upravljanoj endocitozi, obuhvaćaju s jedne strane viruse bez lipidne prevlake, kao što je adenovirus, poliovirus, rinovirus, a s druge stane presvučene viruse, virus vesikularnog stomatitisa, Semliki Forest virus, virus influence; pogodne su također vrste Maloney virusa, ovisne o pH. Virusi koji se osobito mogu koristiti u praksi izuma, obuhvaćaju Adenovirus podgrupe C, tip 5, Semliki Forest virus, virus vesikularnog stomatitisa, poliovirus, rinovirusi i Maloney virus leukemije. In particular, viruses, which are capable of composition according to the invention and whose acceptance function, appearing at the beginning of infection, is observed by receptor-driven endocytosis, include on the one hand viruses without a lipid coating, such as adenovirus, poliovirus, rhinovirus, and on the other hand coated viruses, vesicular stomatitis virus, Semliki Forest virus, influenza virus; pH-dependent Maloney virus types are also suitable. Viruses that can be particularly used in the practice of the invention include Adenovirus subgroup C, type 5, Semliki Forest virus, vesicular stomatitis virus, poliovirus, rhinoviruses and Maloney leukemia virus.

Upotreba DNA virusa koji nema reverzne transkriptaze, ima u sadašnjem izumu prednost, što transfekcija u prisutnosti takvog virusa ne dovodi do stvaranja viralne DNA u transficiranoj stanici. The use of a DNA virus that does not have reverse transcriptase has the advantage in the present invention that transfection in the presence of such a virus does not lead to the creation of viral DNA in the transfected cell.

Pokazalo se u sadašnjem izumu da Rinovirus HRV2, predstavnik grupe Picorna virusa, pojačava izražaj referentnog gena. Djelotvornost Rinovirusa bila je izražena i u slobodnoj formi kao i u obliku virusnih konjugata. It has been shown in the present invention that Rhinovirus HRV2, a representative of the Picorna virus group, enhances the expression of the reference gene. The effectiveness of Rhinovirus was expressed both in free form and in the form of viral conjugates.

Unutar okvira sadašnjeg izuma, naznačeni virusi, uz predpostavku da su prihvaćeni u stanicu i da oslobađaju sadržaje endosoma u koje su stigli, obuhvaćaju, uz divlje tipove mutante koji su izgubili izvjesne funkcije divljeg tipa, koje se razlikuju od funkcije njihova prihvaćanja, osobito sposobnost da se obnavljaju, kao rezultat jedne ili više mutacija. Within the scope of the present invention, the indicated viruses, assuming that they are accepted into the cell and that they release the contents of the endosomes in which they have arrived, include, in addition to wild-type mutants that have lost certain functions of the wild type, which differ from their function of acceptance, in particular the ability to are restored, as a result of one or more mutations.

Mutanti su proizvedeni uobičajenim procesima mutageneze, mutacijama u područjima virus-protein, koje su odgovorne za funkcije obnavljanja i koje mogu biti dopunjene omotnim nizom.Ovi mutanti obuhvaćaju, npr. u slučaju adenovirusa, ts-mutante (temperaturno osjetljive mutante), E1A- i E1B-mutante, mutante koji ispoljavaju mutacije u MLP-pokretanim genima (Berkner, 1988) i mutante koji ispoljavaju mutacije u područjima nekih kapsidnih proteina. Virusne vrste koje imaju odgovarajuće prirodne mutacije također su pogodne.Sposobnost virusa da se obnavljaju može se ispitati, na primjer, korištenjem “plaque” pokusa poznatih iz literture, kod kojih se stanične kulture prekrivaju suspenzijama različitih koncentracija virusa, a broj razorenih stanica, koje su vidljive putem prevlake (plaque) se bilježi (Dulbecco, 1980). Mutants are produced by common mutagenesis processes, mutations in virus-protein regions, which are responsible for repair functions and which can be complemented by an envelope sequence. These mutants include, for example in the case of adenoviruses, ts-mutants (temperature-sensitive mutants), E1A- and E1B-mutants, mutants exhibiting mutations in MLP-driven genes (Berkner, 1988) and mutants exhibiting mutations in regions of some capsid proteins. Viral species that have the appropriate natural mutations are also suitable. The ability of viruses to renew themselves can be tested, for example, using "plaque" experiments known from the literature, in which cell cultures are covered with suspensions of different concentrations of virus, and the number of destroyed cells, which are visible through the coating (plaque) is recorded (Dulbecco, 1980).

Drugi virusi koji mogu biti pogodni za upotrebu u okviru izuma obuhvaćaju tzv. defektne viruse, t.j. viruse kojima nedostaje funkcija potrebna za autonomnu virusnu obnovu u jednom ili više gena, za što oni zahtijevaju pomoćne viruse. Primjeri ove kategorije su DI-čestice (Defective Interfering Particles) koje se izvode iz infektivnog standardnog virusa, imaju iste strukturalne proteine kao i standardni virus, imaju mutacije te zahtijevaju standardni virus kao pomoćni virus za obnavljanje (Huang, 1987; Holland, 1990). Primjeri ove grupe osim toga obuhvaćaju satelitne viruse (Holland, 1990). Druga je grupa klasa parvovirusa nazvana adeno-pridruženi virus (Berns, K.I. 1990). Other viruses that may be suitable for use within the scope of the invention include the so-called defective viruses, i.e. viruses that lack the function required for autonomous viral renewal in one or more genes, for which they require helper viruses. Examples of this category are DI-particles (Defective Interfering Particles) which are derived from the infectious standard virus, have the same structural proteins as the standard virus, have mutations and require the standard virus as a helper virus for recovery (Huang, 1987; Holland, 1990). Examples of this group also include satellite viruses (Holland, 1990). Another group of parvovirus classes is called adeno-associated virus (Berns, K.I. 1990).

Budući da ulazni ciklusi mnogih virusa nisu potpuno okarakterizirani, moguće je da su tu drugi virusi koji će ispoljiti endosomolitičnu aktivnost, potrebnu za njihovu prikladnost u sadašnjem izumu. Since the entry cycles of many viruses have not been fully characterized, it is possible that there are other viruses that will exhibit the endosomolytic activity necessary for their usefulness in the present invention.

Osim toga, u okviru ovoga izuma, pogodne mogu biti oslabljene žive vakcine (Ginsberg, 1980) ili sojevi za vakcinaciju. In addition, live attenuated vaccines (Ginsberg, 1980) or vaccine strains may be suitable within the scope of this invention.

Virusi navedeni u okviru sadašnjeg izuma uključuju također inaktivirane viruse, npr. viruse inaktivirane kemijskom obradom, kao što je obrada formaldehidom, UV. zračenjem, kemijskom obradom kombiniranom sa UV-zračenjem, npr. psoralen/UV-zračenje, gama-zračenjem ili neutronskim bombardiranjem. Inaktivirani virusi, npr. takvi kakvi se koriste i za vakcine, mogu se prirediti standardnim metodama poznatim iz literature (Davis i Dulbecco, 1980; Hearst i Thiry, 1977) i ispitanim na pogodnost da povećaju prijenos DNA kompleksa. U pokusima izvedenim u okviru sadašnjeg izuma, pripravci adenovirusa su inaktivirani pomoću uobičajene lampe za UV sterilizaciju ili formaldehidom. Iznenađujuće je pronađeno da je stupanj inaktivacije virusa bitno veći nego što je smanjenje učinka prijenosa gena, koji je postignut kad je adenovirus dodan mediju transfekcije. Viruses mentioned within the scope of the present invention also include inactivated viruses, eg viruses inactivated by chemical treatment, such as treatment with formaldehyde, UV. radiation, chemical treatment combined with UV radiation, eg psoralen/UV radiation, gamma radiation or neutron bombardment. Inactivated viruses, such as those used for vaccines, can be prepared by standard methods known from the literature (Davis and Dulbecco, 1980; Hearst and Thiry, 1977) and tested for their ability to increase transfer of DNA complexes. In experiments performed within the scope of the present invention, adenovirus preparations were inactivated using a conventional UV sterilization lamp or formaldehyde. Surprisingly, it was found that the degree of virus inactivation was significantly greater than the reduction in gene transfer effect, which was achieved when adenovirus was added to the transfection medium.

Eksperimenti koje su izumitelji proveli sa pripravcima biotiniliranim adenovirusom inaktiviranim kombinacijom psoralen/UV-zračenje, koji je spojen sa streptavidinom vezanim polilizinom, također su pokazali da je kao rezultat inaktivacije, titar virusa smanjen znatno jače nego kapacitet prijenosa gena. To je jasni pokazatelj da mehanizmi koji su vezani uz normalno obnavljanje u aktivnom virusu, mogu biti razoreni, a da ne bude razoren učinak bitan za prijenos gena. Experiments conducted by the inventors with preparations of biotinylated adenovirus inactivated by the psoralen/UV-irradiation combination, which was coupled to polylysine-bound streptavidin, also showed that as a result of inactivation, the virus titer was reduced significantly more than the gene transfer capacity. This is a clear indication that the mechanisms associated with normal renewal in an active virus can be disrupted without the disrupted effect being essential for gene transfer.

Izraz “virusne komponente” označava dijelove virusa, npr. proteinski dio oslobođen iz nukleinske kiseline (prazan virusni kapsid koji može biti proizveden rekombinantnim metodama, npr. Ansardi i sur., 1991; Urakawa i sur., 1989), proteine dobivene frakcioniranjem ili peptide koji imaju endosomolitičku funkciju intaktnog virusa. Ove virusne komponente mogu biti proizvedene sintetički, ovisno o njihovoj veličini, bilo sintezom peptida ili rekombinantnim metodama.U sadašnjem izumu pokazano je da proteini adenovirusa konjugirani putem biotin/streptavidina u polilizin, povećavaju prijenos gena. Primjeri fragmenata ili proteini iz drugih virusa, a ne iz adenovirusa, koji su bitni za internalizaciju, uključuju hemaglutinin virusa influenze (HA). N-terminalni niz hemaglutinina virusa influenze, podjedinica HA2, odgovorna je za oslobađanje virusa iz endosoma. Pokazalo se da peptidi toga niza, koji se sastoje iz 20 aminokiselina mogu stapati lipidne membrane i djelomično ih otvarati ili razoriti (Wharton i sur., 1988). U sadašnjem su izumu uspješno upotrebljavani autentični i modificirani peptidi influence u različitim ostvarenjima. Drugi primjeri su proteinske prevlake retrovirusa, npr. HIV gp41 (Rafalski i sur., 1990) ili dijelovi ovih virusnih proteina. The term "viral components" refers to parts of the virus, e.g. the protein part released from the nucleic acid (empty viral capsid which can be produced by recombinant methods, e.g. Ansardi et al., 1991; Urakawa et al., 1989), proteins obtained by fractionation or peptides which have the endosomolytic function of the intact virus. These viral components can be produced synthetically, depending on their size, either by peptide synthesis or recombinant methods. In the present invention, it has been shown that adenovirus proteins conjugated via biotin/streptavidin to polylysine, increase gene transfer. Examples of fragments or proteins from viruses other than adenovirus that are essential for internalization include influenza virus hemagglutinin (HA). The N-terminal sequence of influenza virus hemagglutinin, the HA2 subunit, is responsible for releasing the virus from endosomes. It has been shown that peptides of this sequence, consisting of 20 amino acids, can fuse lipid membranes and partially open or destroy them (Wharton et al., 1988). In the present invention, authentic and modified influenza peptides have been successfully used in various embodiments. Other examples are protein coats of retroviruses, eg HIV gp41 (Rafalski et al., 1990) or parts of these viral proteins.

Upotreba virusa koji su sami po sebi sposobni da uđu u stanicu i time djeluju kao faktori internalizacije, samo je jedan aspekt sadašnjeg izuma. The use of viruses that are themselves capable of entering a cell and thus act as internalization factors is only one aspect of the present invention.

Virusi ili virusne komponente koje same ne donose kapacitet vezanja na stanicu i ulaze u nju, radije se koriste kao viralni konjugati, kao što je gore navedeno. Povezivanje na DNA domenu spajanja, npr. polikation, osigurava da virus (komponenta) stekne visoki afinitet prema DNA molekulama i stoga se kompleksira s njim i transportira u stanicu kao komponenta kompleksa nukleinske kiseline, koji također sadrži konjugat faktora internalizacije i domene vezanja DNA. Uz tako postignut učinak prijenosa, povezivanje virusa (komponente) na domenu povezivanja nukleinske kiseline, može također rezultirati poboljšanjem njegovih endosomolitičkih svojstava. Viruses or viral components that do not themselves bring the capacity to bind to and enter the cell are instead used as viral conjugates, as noted above. Binding to a DNA splicing domain, eg a polycation, ensures that the virus (component) acquires a high affinity for DNA molecules and therefore complexes with it and is transported into the cell as a component of a nucleic acid complex, which also contains a conjugate of the internalization factor and the DNA binding domain. In addition to the transmission effect achieved in this way, binding of the virus (component) to the nucleic acid binding domain may also result in an improvement of its endosomolytic properties.

Odabiranjem drugih faktora internalizacije, opisanih ovdje, praktički svaka viša eukariotična stanica može biti transficirana sastavima sadašnjeg izuma. By selecting the other internalization factors described herein, virtually any higher eukaryotic cell can be transfected with the compositions of the present invention.

Jednostavnom pokusnom provjerom može se odrediti da li neki virus (komponenta) ima funkciju prihvaćanja i da li može biti upotrebljen u praksi izuma. U tom pokusu, npr. za provjeravanje primjenjljivosti virusa kao slobodnog virusa, ciljane se stanice dovedu u dodir sa DNA kompleksom u prisutnosti ili odsutnosti virusa. Količina DNA kompleksa odpuštena u citoplazmu može se zatim lako odrediti detekcijom produkta gena označivača, npr. luciferaze. Ako prisutnost virusa uzrokuje da se DNA kompleks prihvaća i odpušta u citoplazmu na većoj razini nego bez virusa, to se može pripisati funkciji prihvaćanja virusa. Moguće je također usporediti razinu prihvaćanja DNA kompleksa sa test virusom u usporedbi sa drugim virusom poznatim po tome što ima povoljnu funkciju prihvaćanja, npr. adenovirusom podgrupe C, tip 5. Testovi ove vrste mogu se primijeniti i na viralne konjugate, dodatni parametri kao što su različiti konjugati faktora internalizacije u različitim količinama, mogu biti podvrgnuti takvim testovima. Osim toga, osoba osposobljena za taj rad može lako izvesti pokus ove vrste, po želji u kombinaciji sa drugim testovima kao što su npr. pokusi propuštanja liposoma, za ispitivanje komponenata virusa ili drugih sredstava sa potencijalnom endosomolitičkom aktivnošću na njihovu sposobnost povećanja izražaja gena. A simple test can determine whether a virus (component) has an acceptance function and whether it can be used in the practice of the invention. In this experiment, for example to check the applicability of the virus as a free virus, the target cells are brought into contact with the DNA complex in the presence or absence of the virus. The amount of DNA complex released into the cytoplasm can then be easily determined by detecting the product of a marker gene, eg, luciferase. If the presence of virus causes the DNA complex to be taken up and released into the cytoplasm at a higher level than in the absence of virus, this can be attributed to the uptake function of the virus. It is also possible to compare the level of uptake of the DNA complex with the test virus compared to another virus known to have a favorable uptake function, eg adenovirus subgroup C, type 5. Tests of this type can also be applied to viral conjugates, additional parameters such as different internalization factor conjugates in different amounts can be subjected to such tests. In addition, a person trained for this work can easily perform an experiment of this type, if desired in combination with other tests such as, for example, liposome leakage experiments, to test virus components or other agents with potential endosomolytic activity for their ability to increase gene expression.

Kad se koriste netaknuti virusi, testovi se izvode, najbolje paralelno sa preliminarnim testovima sposobnosti virusa da pojača prijenos, da bi se vidjelo da li je virus sposoban za obnavljanje. Istraživanja na sposobnost obnavljanja provode se upotrebom “plaque” pokusa (vidi gore) ili CPE pokusa ili određivanjem ranijeg izražaja gena u slučaju citopatskih virusa ili u slučaju virusa koji značajno ometaju rast domaćinskih stanica. Za druge viruse koriste se metode specifične za dotični virus, npr. test hemaglutinacije, ili kemijsko-fizičke metode, npr. upotreba elektronskog mikroskopa. When intact viruses are used, tests are performed, preferably in parallel with preliminary tests of the ability of the virus to enhance transmission, to see if the virus is capable of recovery. Studies on the ability to renew are carried out using the "plaque" test (see above) or the CPE test or by determining earlier gene expression in the case of cytopathic viruses or in the case of viruses that significantly interfere with the growth of host cells. For other viruses, methods specific to the virus in question are used, eg the hemagglutination test, or chemical-physical methods, eg the use of an electron microscope.

U okviru ovoga izuma, najbolji su virusi, osobito koji se primjenjuju kao slobodni virusi, oni koji se mogu prirediti sa visokim titrom, koji su stabilni, koji imaju slabu patogeničnost u njihovom prirodnom stanju i u kojima je moguća ciljana eliminacija sposobnosti obnavljanja, naročito adenovirusi. Ako treba transficirati specifičnu staničnu populaciju, mogu se upotrijebiti virusi koji naročito inficiraju tu staničnu populaciju. Ako se transfekcijom namjerava ciljati različite tipove stanica, mogu se koristiti virusi koji su infektivni za široki raspon tipova stanica. Within the scope of this invention, the best viruses, especially those used as free viruses, are those that can be prepared with a high titer, that are stable, that have low pathogenicity in their natural state and in which targeted elimination of the ability to renew is possible, especially adenoviruses. If a specific cell population is to be transfected, viruses that specifically infect that cell population can be used. If different cell types are intended to be targeted by transfection, viruses that are infectious for a wide range of cell types can be used.

Zahtjevi na sastave slobodnog virusa sastoje se u biti u tome da pripravak virusa mora biti što je moguće veće čistoće i da pufer za stabilizaciju mora biti takav da se slaže s pojedinim virusom. The requirements for free virus compositions consist essentially in the fact that the virus preparation must be as pure as possible and that the stabilization buffer must be compatible with the individual virus.

U svakom slučaju, za terapeutsku upotrebu izuma mogu se koristiti samo oni virusi ili virusne komponente čiji su rizici sigurnosti minimalni kolikogod je to moguće, osobito rizik obnavljanja virusa u ciljanoj stanici i rekombinacija virusa DNA sa DNA domaćinom. In any case, only those viruses or viral components whose safety risks are as minimal as possible can be used for the therapeutic use of the invention, especially the risk of viral replication in the target cell and recombination of viral DNA with host DNA.

Mehanizam ulaza virusa koji inficiraju životinjska bića, drugačija od ljudskih, korisno se može upotrijebiti za pojačanje prihvaćanja i odpuštanja DNA u više eukariotične stanice, osobito ljudskih, dok god virus izražava aktivnost razaranja endosoma u višim eukariotičnim stanicama. Članovi obitelji adenovirusa bili su izolirani iz ptičjih vrsta, iz vodozemaca i različitih drugih životinja. The entry mechanism of viruses that infect animal beings other than humans can usefully be used to enhance the uptake and release of DNA into higher eukaryotic cells, particularly human, as long as the virus expresses endosomal destruction activity in higher eukaryotic cells. Members of the adenovirus family have been isolated from avian species, amphibians, and various other animals.

Vidi, na primjer, Laver, W.G- i sur., 1971; Bragg, R.R. i sur., 1991; Akopian, T.A. i sur., 1991; Takase, K. i sur., 1990; Khang, C. i Nagaraji, K.V., 1989; i Reece, R.L. i sur., 1987. Adenovirusi vodozemaca, ptica, goveda, pasa, miševa, ovaca, svinja i majmuna, kao i humani adenovirusi mogu se dobaviti od American Type Culture Collection, Rockville, Maryland (Vidi katalog kolekcije kultura životinjskih virusa, antiseruma, Klamida, rikecija, Šesto izdanje, 1990, C. Buck i G. Paulino izdavači, str. 1-17). See, for example, Laver, W.G. et al., 1971; Bragg, R.R. et al., 1991; Akopian, T.A. et al., 1991; Takase, K. et al., 1990; Khang, C. and Nagaraji, K.V., 1989; and Reece, R.L. et al., 1987. Amphibian, avian, bovine, dog, mouse, sheep, pig, and monkey adenoviruses, as well as human adenoviruses, can be obtained from the American Type Culture Collection, Rockville, Maryland (See Animal Virus Culture Collection Catalog, Antisera, Chlamydia , Rickettsia, Sixth Edition, 1990, C. Buck and G. Paulino Publishers, pp. 1-17).

Jedna moguća prednost upotrebe virusa, npr. adenovirusa, iz dalje vrste mogla bi biti smanjena toskičnost u ciljanim stanicama (npr. pileći ili žablji adenovirus ne bi se trebao obnavljati ili potaknuti rani izražaj gena u stanicama sisavaca), smanjena opasnost za istraživača koji priprema dalji adenovirus, u usporedbi sa humanim adenovirusom, te smanjeno upletanje u ciljani organizam iz antitijela protiv humanog ili mišjeg adenovirusa. Odsutnost od upletanja ljudskih ili mišjih antitijela osobito je važna kad se virusi upotrebljavaju u genskoj terapiji kod ljiudi i miševa. One possible advantage of using a virus, e.g. adenovirus, from a different species could be reduced toxicity in target cells (e.g. chicken or frog adenovirus should not replicate or induce early gene expression in mammalian cells), reduced risk for the researcher preparing further adenovirus, compared to human adenovirus, and reduced binding to the target organism by antibodies against human or murine adenovirus. The absence of interference by human or mouse antibodies is particularly important when viruses are used in gene therapy in humans and mice.

Pileći adenovirus CELO (Chick Embrio Lethal Orphan Virus) ne pokazuje reaktivnost na antitijela koja dopuštaju epitope većine grupa adenovirusa koji inficiraju stanice sisavaca. Osim toga, CELO može biti uzgajan na embriju jajeta da bi dostigao visoke razine virusa (0,5 mg/jaje; Lavel i sur., 1971). Kao što je pokazano u Primjerima, CELO-polilizin konjugati pojačavaju otpremu DNA u HeLa stanice na razinama koje se mogu usporediti sa ljudskim adenovirusom d1312. Stoga korištenje CELO konjugata za pojačanje odpuštanja DNA daje velike izglede u eksperimetima humane genske terapije. Chicken adenovirus CELO (Chick Embryo Lethal Orphan Virus) does not show reactivity to antibodies that allow epitopes of most groups of adenoviruses that infect mammalian cells. In addition, CELO can be grown on egg embryos to reach high virus levels (0.5 mg/egg; Lavel et al., 1971). As shown in the Examples, CELO-polylysine conjugates enhance DNA delivery into HeLa cells at levels comparable to human adenovirus d1312. Therefore, the use of CELO conjugates to enhance DNA release offers great prospects in human gene therapy experiments.

Virusi odvojenih vrsta se radije koriste kao konstituenti viralnih konjugata u kombinacijskim kompleksima, kao što je ovdje opisano. Viruses of separate species are preferably used as constituents of viral conjugates in combinatorial complexes, as described herein.

U konjugatima izuma koji sadrže virus, povezivanje virusa na vezujuću domenu nukleinske kiseline može biti kovalentno ili nekovalentno, npr. ionska veza u slučaju virusa ima područja na svojim površinskim proteinima, koja su kisela pa se stoga može vezati na polikation. In the virus-containing conjugates of the invention, the binding of the virus to the nucleic acid binding domain can be covalent or non-covalent, eg, the ionic bond in the case of a virus has regions on its surface proteins, which are acidic and therefore can bind to a polycation.

U pokusima sadašnjeg izuma, kompleksi su stvarani pod uvjetima koji dopuštaju ionsku interakciju između adenovirusa i polilizina, prije kompleksiranja sa DNA. Kontrolni su pokusi provedeni pod uvjetima gdje je polilizin prvo neutraliziran sa DNA pa stoga nije slobodan da veže adenovirus. U tim eksperimentima uspješniji su bili kompleksi sa ionski vezanim adenovirusom. In the experiments of the present invention, complexes were formed under conditions that allow ionic interaction between adenovirus and polylysine, prior to complexation with DNA. Control experiments were performed under conditions where polylysine was first neutralized with DNA and therefore not free to bind adenovirus. In these experiments, complexes with ionically bound adenovirus were more successful.

Primjeri za virusne komponente u endosomolitičkim konjugatima izuma su prazne virusne kapside ili viralni peptidi. Vezanje virusne komponente na povezujuću domenu nukleinske kiseline može biti kovalentno, npr. kemijskim spajanjem viralnog peptida sa polilizinom, ili ne-kovalentno, npr. ionsko, u slučaju da virusna komponenta ima kisele ostatke da se vežu na polikation. Examples of viral components in the endosomolytic conjugates of the invention are empty viral capsids or viral peptides. Binding of the viral component to the linker nucleic acid domain can be covalent, eg by chemical coupling of the viral peptide to a polylysine, or non-covalent, eg ionic, in case the viral component has acidic residues to bind to the polycation.

Odnos virusa ili virusne komponente prema supstanciji koja ima afinitet za nukleinsku kiselinu, može varirati. U slučaju peptid-polilizin konjugata hemaglutinina influence nađeno je u sadašnjem izumu da prijenos gena može biti u znatnoj mjeri pojačan kad je sadržaj viralnog peptida u konjugatima veći. The relationship of a virus or a viral component to a substance that has an affinity for nucleic acid can vary. In the case of influenza hemagglutinin peptide-polylysine conjugates, it was found in the present invention that gene transfer can be significantly enhanced when the viral peptide content in the conjugates is higher.

S druge strane, sadašnji se izum odnosi na metode priprave viralnih konjugata, prema izumu. On the other hand, the present invention relates to methods of preparing viral conjugates, according to the invention.

Konjugati virusa ili virusne komponente i supstancija koja ima afinitt za nukleinsku kiselinu, može se prirediti (kao internalizirajući faktor-polikation konjugati) povezivanjem spojeva ili, ako su virusna komponenta i vezujuća domena nukleinske kiseline polipeptidi, rekombinantnom metodom. S obzirom na metode priprave data je referenca o otkriću EP 388 758. Conjugates of viruses or viral components and substances that have an affinity for nucleic acid can be prepared (as internalizing factor-polycation conjugates) by connecting compounds or, if the viral component and the nucleic acid binding domain are polypeptides, by a recombinant method. With regard to preparation methods, reference is made to the disclosure EP 388 758.

Vezanje virusa ili viralnih proteina, odnosno peptida sa poliaminskim spojevima kemijskom metodom, može se izvesti na način koji je već poznat za spajanje peptida, a po potrebi mogu se pojedine komponente snabdjeti sa povezujućim supstancijama prije reakcije spajanja (ova je mjera potrebna ako nema funkcionalnih grupa koje su priladne za spajanje, npr. merkapto ili alkoholnih grupa). Vezne supstancije su bifunkcionalni spojevi koji reagiraju najprije sa funkcionalnim grupama pojedinih komponenata, nakon čega se modificirane pojedine komponente spajaju. Binding of viruses or viral proteins, i.e. peptides with polyamine compounds using a chemical method, can be carried out in a way that is already known for joining peptides, and if necessary, individual components can be supplied with connecting substances before the joining reaction (this measure is necessary if there are no functional groups which are suitable for coupling, e.g. mercapto or alcohol groups). Binding substances are bifunctional compounds that react first with the functional groups of individual components, after which the modified individual components are joined.

Spajanje se može provesti pomoću: The connection can be done using:

a) Disulfidni mostovi, koji se mogu ponovno cijepati pod ograničenim uvjetom (npr. kad se koristi sukcinimidil-piridilditiopropionat (Jung i sur., 1981). a) Disulfide bridges, which can be re-cleaved under limited conditions (eg when succinimidyl-pyridyldithiopropionate is used (Jung et al., 1981).

b) Spojevi koji su bitno stabilni pod biološkim uvjetima (npr. tioeteri reakcijom meimido spojnika sa sulfhidril grupama spojnika vezanog na drugu komponentu). b) Compounds that are substantially stable under biological conditions (eg thioethers by reaction of the meimido linker with the sulfhydryl groups of the linker attached to another component).

c) Mostovi koji su pod biološkim uvjetima nestabilni, npr. veze estera ili acetalne ili ketalne veze, koje su pod slabo kiselim uvjetima nestabilni. c) Bridges that are unstable under biological conditions, eg ester bonds or acetal or ketal bonds, which are unstable under slightly acidic conditions.

U pokusima izvedenim unutar okvira sadašnjeg izuma, spojeni su endosomolitički HA2-peptidi influenca-hemaglutinina sa poliliznom, kemijskom metodom uz upotrebu sukcinimidilpiridilditiopropionata (SPDP). Pokazano je da modifikacija peptida sa polilizinom povećava endosomolitičku aktivnost. Pokusi transfekcije pokazali su da učinkovitost prijenosa gena, upravljanog transferin-polilizinom, bitno raste ako su konjugati peptida influence-polilizina prisutni zajedno sa transferin-polilizinom u DNA kompleksu. In experiments performed within the framework of the present invention, endosomolytic HA2-peptides of influenza-hemagglutinin were combined with polylysis, a chemical method using succinimidylpyridyldithiopropionate (SPDP). It has been shown that the modification of the peptide with polylysine increases the endosomolytic activity. Transfection experiments showed that the efficiency of transferrin-polylysine controlled gene transfer significantly increases if influenza-polylysine peptide conjugates are present together with transferrin-polylysine in the DNA complex.

Nadalje, u okviru sadašnjeg izuma, adenovirus je bio vezan na polilizin nizom različitih metoda. Jedan način konjugirana virusa sa polilzinom bio je proveden na sličan način kao i proizvodnja transferin-polilizin konjugata (Wagner i sur., 1990) nakon modifikacije oštećenog adenovirusa d1312 pomoću heterobifunkcionalnog reagensa. Nevezani polilizin bio je uklonjen centrifugiranjem. Vezujući kapacitet DNA bio je pokazan u pokusu povezivanja pomoću radioaktiovno označene DNA. Furthermore, within the scope of the present invention, the adenovirus was attached to the polylysine by a number of different methods. One method of conjugating virus with polylysine was carried out in a manner similar to the production of transferrin-polylysine conjugates (Wagner et al., 1990) after modification of damaged adenovirus d1312 using a heterobifunctional reagent. Unbound polylysine was removed by centrifugation. The binding capacity of DNA was demonstrated in a binding experiment using radiolabeled DNA.

(Kod K562 stanica, u odsutnosti klorokina, nađen je bitno viši prijenos gena sa kompleksima koji se sastoje iz DNA, adenovurs-polilizina i transferin-polilizina, nego sa nemodificiranim adenovirusom koji nije vezan na DNA. Nađeno je također da se značajan izražaj gena javlja sa samo 0,0003µg DNA u 5x105 HeLa stanica pomoću polilizinom modificiranog adenovirusa (In K562 cells, in the absence of chloroquine, significantly higher gene transfer was found with complexes consisting of DNA, adenovirus-polylysine and transferrin-polylysine, than with unmodified adenovirus that is not bound to DNA. It was also found that significant gene expression occurs with only 0.0003µg DNA in 5x105 HeLa cells using polylysine-modified adenovirus

Ako virus ili virusna komponenta (ili dodatni faktor internalizacije, kao npr. u slučaju transferina) sadrži pogodne lance ugljikohidrata, oni mogu biti vezani na supstanciju koja ima afinitet za nukleinsku kiselinu, putem jednog ili više ugljikohidratnih lanaca glikoproteina. If the virus or viral component (or additional internalization factor, such as in the case of transferrin) contains suitable carbohydrate chains, they can be attached to a substance having an affinity for nucleic acid, via one or more glycoprotein carbohydrate chains.

Druga pogodna metoda priprave viralnih konjugata ovog izuma je metoda putem enzimatskog spajanja virusa ili virusne komponente sa supstancijom koja ima afinitet za nukleinsku kiselinu, naročito sa poliaminom, pomoću transglutaminaze. Another suitable method of preparing the viral conjugates of this invention is the method by means of enzymatic coupling of the virus or viral component with a substance having an affinity for nucleic acid, especially with polyamine, by means of transglutaminase.

Kategorija transglutaminaze obuhvaća niz različitih ezima, koji se među ostalima javljaju u epidermi (epidermalna transglutaminaza) u krvi (faktor XIII) i u stanicama različitih tkiva (npr. transglutaminaza jetre) (Folk, 1985). Transglutaminaze kataliziraju stvaranje ε-(γ-glutamil)lizin veza u prisutnosti Ca++ i uz kidanje NH3. Uvjet za to je da u proteinima moraju biti prisutni odgovarajući glutamini i lizini, sposobni da reagiraju sa enzimom. The category of transglutaminase includes a number of different enzymes, which occur among others in the epidermis (epidermal transglutaminase), in the blood (factor XIII) and in the cells of various tissues (eg liver transglutaminase) (Folk, 1985). Transglutaminases catalyze the formation of ε-(γ-glutamyl)lysine bonds in the presence of Ca++ and with NH3 cleavage. The condition for this is that the appropriate glutamines and lysines, capable of reacting with the enzyme, must be present in the proteins.

Bez obzira na ε-amino grupu lizina, mogu se kao supstrat koristiti i (poli)amini, kao što je etanolamin, putrescin, spermin, ili spermidin (Clarke i sur., 1959). Za sada još nije jasno koji su kritični faktori koji određuju da li glutamin ili lizin proteina ili poliamin može reagirati sa enzimom. Poznato je samo da poliamini mogu biti vezani pomoću transglutaminaze na brojne stanične proteine, kao što su citokeratini (Zatloukal i sur., 1989), tubulin, proteini stanične membrane i površinski proteini virusa influenze (Iwanij, 1977). Regardless of the ε-amino group of lysine, (poly)amines, such as ethanolamine, putrescine, spermine, or spermidine, can also be used as a substrate (Clarke et al., 1959). For now, it is not yet clear what are the critical factors that determine whether glutamine or lysine of a protein or polyamine can react with the enzyme. It is only known that polyamines can be bound by transglutaminase to numerous cellular proteins, such as cytokeratins (Zatloukal et al., 1989), tubulin, cell membrane proteins and influenza virus surface proteins (Iwanij, 1977).

U okviru sadašnjeg izuma bilo je pokazano da polilizin može biti spojen sa adenovirusima pomoću transglutaminaze. Nađeno je da spajanje može biti izvedeno u prisutnosti glicerola. To ima prednost što se virusni pripravak, npr. preparat adenovirusa koji sadrži glierol kao stabilizator u puferu, može direktno koristiti za spajanje. Upotrebom adenovirus-polilzin konjugata koji su kompleksirani sa plasmid-DNA zajedno sa transferin-polilizin konjugatima, moguće je bilo postići mnogo puta veći izražaj gena nego sa transferinpolilizin konjugatima u prisutnosti adenovirusa koji nije spojen sa polilizinom. Within the scope of the present invention, it has been shown that polylysine can be joined to adenoviruses by means of transglutaminase. It was found that coupling can be performed in the presence of glycerol. This has the advantage that a viral preparation, eg an adenovirus preparation containing glycerol as a stabilizer in the buffer, can be used directly for conjugation. By using adenovirus-polylysine conjugates that are complexed with plasmid-DNA together with transferrin-polylysine conjugates, it was possible to achieve many times higher gene expression than with transferrinpolylysine conjugates in the presence of adenovirus not combined with polylysine.

Druga metoda priprave konjugata koja je u okviru izuma povoljna, sastoji se u spajanju virusa ili virusne komponente sa polikationom putem biotin-protein mosta, naročito bioten-streptavidin mosta. Another method of preparation of the conjugate, which is advantageous within the scope of the invention, consists in connecting the virus or viral component with a polycation via a biotin-protein bridge, especially a biotin-streptavidin bridge.

Poznato jaka veza biotina sa streptavidinom ili avidinom (Wilchek i sur., 1988) korištena je za spajanje adenovirusa sa polilizinom, modificiranjem adenovirsa sa biotinom i kemijskim konjugiranjem streptavidina sa polilizinom, na sličan način kao što se proizvode transferin-polilizin konjugati (Wagner i sur., 1990). Kompleksi koji se sastoje od DNA i streptavidin-polilizina, na koje je vezan biotinom modificirani virus, te po želji nekovalentno vezani polilizin, imaju veoma visoku djelotvornost transfekcije čak i uz niže koncentracije DNA. Osobito učinkoviti kompleksi se stvaraju kad se biotinom modificirani virus prvo veže na strepatvidin-polilizin, a vezanje na DNA se javlja tek u drugoj fazi. The known strong binding of biotin to streptavidin or avidin (Wilchek et al., 1988) was used to link adenovirus to polylysine, by modifying adenovirus with biotin and chemically conjugating streptavidin to polylysine, in a similar way to producing transferrin-polylysine conjugates (Wagner et al. ., 1990). Complexes consisting of DNA and streptavidin-polylysine, to which biotin-modified virus is bound, and optionally non-covalently bound polylysine, have a very high transfection efficiency even with lower concentrations of DNA. Particularly effective complexes are created when the biotin-modified virus first binds to streptavidin-polylysine, and binding to DNA occurs only in the second phase.

Ako se želi, vezanje na biotin može se također izvesti pomoću avidina. If desired, binding to biotin can also be performed using avidin.

Moguće je također uspostaviti vezu između virusa (komponente) i polizina biotiniliranjem virusa, s jedne strane, i konjugiranjem antibiotin antitijela sa polilizinom, s druge strane, te uspostavljanjem veze između virusa i polilizina pomoću veze biotin-antitijelo, korištenjem standardnog komercijalno pristupačnog poliklonala ili monoklonalnih anti-biotin antitijela. It is also possible to establish a link between the virus (component) and the polylysine by biotinylating the virus, on the one hand, and conjugating the antibiotin antibody to the polylysine, on the other hand, and establishing the link between the virus and the polylysine by means of a biotin-antibody link, using standard commercially available polyclonal or monoclonal anti-biotin antibodies.

Povezivanje između virusa i polizina može se također postići spajanjem polizina sa lektinom koji ima afinitet za glikoprotein površine virusa, s tim da je vezanje u takav konjugat izvedeno pomoću veze između lektina i glikoproteina. Ako virus sam nema pogodnog ugljkohidratnog postranog lanca, on se može prikladno modificirati. Virus također može biti vezan na supstanciju, koja ima afinitet za nukleinsku kiselinu, tako da najprije bude modificiran na površini sa antigenom stranim virusu (npr. sa digoksigeninom DIG, koji se može dobiti od Boehringer Mannheim; ili sa biotinom) a onda se ustanovi veza između modificiranog virusa i supstancije koja ima afinitet za nukleinsku ksielinu, putem antitijela koje se veže na taj antigen. Koja će se pojedina metoda koristiti za proizvodnju konjugata prema izumu, ovisi o različitim kriterijima. Conjugation between virus and polysin can also be achieved by conjugating the polysin to a lectin having an affinity for the virus surface glycoprotein, provided that the binding into such a conjugate is accomplished by means of a link between the lectin and the glycoprotein. If the virus itself does not have a suitable carbohydrate side chain, it can be suitably modified. The virus can also be attached to a substance, which has an affinity for nucleic acid, so that it is first modified on the surface with an antigen foreign to the virus (eg with digoxigenin DIG, which can be obtained from Boehringer Mannheim; or with biotin) and then the bond is established between the modified virus and a substance that has an affinity for nucleic xylin, through an antibody that binds to that antigen. Which particular method will be used to produce the conjugate according to the invention depends on various criteria.

Tako na primjer, spajanje pomoću biotina je najmanje specifično pa je stoga to najšire primjenjivana metoda, dok biotinom upravljano povezivanje stvara veoma jaku ne-kovalentnu vezu. Enzimatska reaakcija sa transglutaminazom ima prednost što se može izvesti u veoma malom mjerilu. Kemijsko se spajanje općenito koristi kad treba sintetizirati veće količine konjugata i ova je metoda općenito najbolja kad se spajaju virusni proteini ili peptidi. Ako se koriste inaktivirani virusi, inaktivacija se općenito izvodi prije spajanja, uz predpostavku da inaktivacija nije utjecala na spajanje. For example, coupling using biotin is the least specific and therefore the most widely used method, while biotin-directed coupling creates a very strong non-covalent bond. The enzymatic reaction with transglutaminase has the advantage that it can be performed on a very small scale. Chemical coupling is generally used when larger amounts of conjugates need to be synthesized and this method is generally best when joining viral proteins or peptides. If inactivated viruses are used, inactivation is generally performed prior to conjugation, assuming that inactivation has not affected conjugation.

Ako virus, npr. adenovirus ili njegova endosomolitička komponenta, ima pristupačnu domenu povezivanja, npr. kisele domene za vezanje na polikation, vezanje virusa na polikation, može također biti ionsko. U tom slučaju, pozitivni naboji polikationa, koji se može konjugirati sa internalizirajućim faktorom, djelomično se neutraliziraju kiselom domenom virusa (komonente), a ostatak pozitivnih naboja će uglavnom biti neutraliziran nukleinskom kiselinom. If a virus, eg adenovirus or its endosomolytic component, has an accessible binding domain, eg an acidic polycation binding domain, binding of the virus to the polycation may also be ionic. In this case, the positive charges of the polycation, which can be conjugated with the internalizing factor, are partially neutralized by the acidic domain of the virus (component), and the rest of the positive charges will mostly be neutralized by the nucleic acid.

Ako je supstancija koja ima afinitet za nukleinsku kiselinu, jedna posredna supstancija, ona se modificira sa veznim sredstvom koje je pogodno za pojedino spajanje virusa (komponente), npr. za spajanje sa transglutaminazom, ona se modificira sa sperminom ili sa bifunkcionanom grupom odgovornom za kemijsko spajanje, npr. sa aktivnim esterom. If the substance that has an affinity for nucleic acid is an intermediate substance, it is modified with a binding agent that is suitable for individual joining of the virus (component), e.g. for joining with transglutaminase, it is modified with spermine or with a bifunctional group responsible for chemical coupling, eg with an active ester.

Odnos virusa (komponente) prema supstancijama povezivanja nukleinske kiseline može varirati, što se obično utvrđuj empirijski, npr. spajanjem konstantne količine virusa (komponente) sa različitim količinama polilizina i odabiranjem optimalnog konjugata za transfekciju. The relationship of the virus (component) to the nucleic acid binding substances can vary, which is usually determined empirically, eg by combining a constant amount of virus (component) with different amounts of polylysine and selecting the optimal conjugate for transfection.

U drugom ostvarenju izuma, virusna komponenta, npr. endosomolitički viralni peptid može biti modificiran u svrhu povezivanja direktno na DNA. Konačno, sam peptid može sadržavati domenu vezanja DNA, koja se može postići proizvodnjom peptida pomoću sinteze petida i pribavljanjem dobrog dijela pozitivno nabijenih aminokiselina, osobito proširenjem peptida, najbolje, na C-kraju. In another embodiment of the invention, the viral component, eg an endosomolytic viral peptide can be modified for the purpose of binding directly to DNA. Finally, the peptide itself may contain a DNA binding domain, which can be achieved by producing the peptide using peptide synthesis and obtaining a good proportion of positively charged amino acids, particularly by extending the peptide preferably at the C-terminus.

U još jednom ostvarenju izuma endosomolitično je sredstvo ne-viralni, obično sintetički petid. Peptid ove vrste je obično sadržan u sastavu prema izumu na takav način da je on ionski vezan na supstanciju sa afinitetom za nukleinsku kiselinu, npr. na polilzin u slučaju kompleksa DNA-internalizirajući faktor-polilizin. Stoga je ugradnja endosomolitičkog peptida u komplekse nukleinske kiseline izvršena povezivanjem peptida putem njegovih kiselih aminokiselinskih ostataka na pozitivno nabijenu povezivajuću domenu nukleinske kiseline, najbolje polizin. In yet another embodiment of the invention, the endosomolytic agent is a non-viral, usually synthetic peptide. A peptide of this type is usually contained in the composition according to the invention in such a way that it is ionically bound to a substance with affinity for nucleic acid, eg to polylysine in the case of the DNA-internalizing factor-polylysine complex. Therefore, incorporation of the endosomolytic peptide into nucleic acid complexes is performed by linking the peptide via its acidic amino acid residues to a positively charged nucleic acid binding domain, preferably polysine.

Ovisno o kemijskoj strukturi peptida, osobito s obzirom na njegovu krajnju grupu, povezivanje na polilizin se može obaviti metodama ovdje opisanim za vezanje peptida na polilizin. Konačno, ako se upotrebljava peptid koji se javlja u prirodi, on se može modificirati pogodnom terminalnom aminokiselinom, kao sredstvo za spajanje. Depending on the chemical structure of the peptide, particularly with respect to its terminal group, linking to polylysine can be accomplished by the methods described herein for linking peptides to polylysine. Finally, if a naturally occurring peptide is used, it can be modified with a suitable terminal amino acid as a coupling agent.

Drugi je način ugradnje ne-viralnih endosomolitičkih peptida u komplekse nukleinske kiseline, da ih se opskrbi nastavcima koji se vežu na DNA. Lokacija takvog nastavka mora biti takva da ne interferira sa endosomolitičkom aktivnošću peptida. Stoga su, na primjer, peptidi čije je N-kraj odgovoran za tu aktivnost, rašireni po DNA povezujućim nizovima na C-kraj. Produljenja ove vrste mogu biti homologni ili heterologni kationski oligopeptidi, npr. jedanoligolizinski rep, ili prirodna DNA povezujuća domena, npr. peptid izveden iz histona. Uglavnom ovi DNA povezujući nizovi, kao integralni dio endosomolitičkog peptida, sadrže približno 10 do 40 aminokiselina. Ovo ostvarenje izuma daje mogućnost većeg odnosa endosomolitičkog niza prema DNA povezujućem nizu, nego kod konjugata koji sadrže veće količine polikationa u svrhu postizavanja veće učinkovitosti kompleksa. Another way is to incorporate non-viral endosomolytic peptides into nucleic acid complexes, to provide them with extensions that bind to DNA. The location of such extension must be such that it does not interfere with the endosomolytic activity of the peptide. Therefore, for example, peptides whose N-terminus is responsible for this activity are spread across the DNA linking sequences to the C-terminus. Extensions of this type can be homologous or heterologous cationic oligopeptides, e.g. single-oligolysine tail, or a natural DNA binding domain, e.g. a histone-derived peptide. Mostly these DNA binding sequences, as an integral part of the endosomolytic peptide, contain approximately 10 to 40 amino acids. This embodiment of the invention provides the possibility of a higher ratio of the endosomolytic sequence to the DNA binding sequence, than in the case of conjugates containing larger amounts of polycations in order to achieve a higher efficiency of the complex.

Ne-viralni endosomolitički peptidi moraju ispuniti slijedeće zahtjeve: Non-viral endosomolytic peptides must fulfill the following requirements:

S obzirom na endosomolitičku aktivnost propuštanje lipidne membrane, postignuto peptidom, mora općenito biti više kod niskog pH (5-6) nego kod pH 7. Nadalje, razorene površine membrane moraju biti dovoljno velike da dopuste prolaz velikih kompleksa DNA (male pore nisu dovoljne). U svrhu određivanja da li peptid ispunjava ove zahtjeve, mogu se provesti in vitro testovi primjenom peptida u slobodnom ili vezanom obliku ili ugrađeno u DNA kompleks. Takvi pokusi mogu obuhvaćati pokuse liposomnog propuštanja, pokuse eritrocitnog propuštanja i eksperimente stanične kulture, kojima se određuje povećanje izražaja gena. Testovi ovoga tipa su opisani u poglavlju Eksperimenti, odnosno Primjeri. Optimalna količina peptida se može odrediti preliminarnim titracijama pomoću pokusa učinkovitosti rezultirajućeg prijenosa gena. Treba imati na umu da učinkovitost različitih peptida i optimalni sastav kompleksa može ovisiti o tipu stanice. Given the endosomolytic activity, the permeability of the lipid membrane achieved by the peptide must generally be higher at low pH (5-6) than at pH 7. Furthermore, the disrupted membrane surfaces must be large enough to allow the passage of large DNA complexes (small pores are not sufficient). . In order to determine whether the peptide meets these requirements, in vitro tests can be performed using the peptide in free or bound form or embedded in a DNA complex. Such experiments may include liposomal permeation experiments, erythrocyte permeation experiments, and cell culture experiments to determine increases in gene expression. Tests of this type are described in the Experiments and Examples chapter. The optimal amount of peptide can be determined by preliminary titrations using experiments on the efficiency of the resulting gene transfer. It should be kept in mind that the effectiveness of different peptides and the optimal composition of the complex may depend on the cell type.

Peptidi koji razaraju membranu sadrže, uglavnom, amfipatične nizove, naime hidrofobičnu stranu koja reagira sa lipidnom membranom, hidrofilnu stranu koja stabilizira vodenu fazu na mjestu raskida membrane. Peptides that destroy the membrane contain, mainly, amphipathic sequences, namely the hydrophobic side that reacts with the lipid membrane, the hydrophilic side that stabilizes the aqueous phase at the site of membrane rupture.

Postoji niz primjera u prirodi za peptide koji razaraju membranu, to su obično mali peptidi ili peptidne domene velikih polipeptida. Takvi se peptidi mogu klasificirati prema njihovoj prirodnoj funkciji, naime, ili u peptide koji razaraju membranu (npr. peptide golih virusa) i/ili u peptide koji spajaju membrane (npr. obučeni virusi). U svrhu raskida endosoma, kontekstu sintetičkih peptida, obje klase nizova peptida mogu biti korisne. Većina je prirodnih peptida sposobna stvarati amfipatične α-helikse. There are a number of examples in nature of membrane-disrupting peptides, usually small peptides or peptide domains of large polypeptides. Such peptides can be classified according to their natural function, namely, either membrane-disrupting peptides (eg, naked virus peptides) and/or membrane-binding peptides (eg, enveloped viruses). For the purpose of disrupting endosomes, in the context of synthetic peptides, both classes of peptide arrays can be useful. Most natural peptides are capable of forming amphipathic α-helices.

pH-specifičnot se može postići ugradnjom kiselinskih ostataka na hidrofilnu stranu navodnog amfipatičnog α-heliksa, na taj način da se heliks može stvarati samo uz kiseli pH, ali ne uz neutralni pH, gdje odbojnost između negativno nabijenih kiselinskih ostataka sprečava formiranje heliksa. Ovo je svojstvo nađeno i kod nizova koji se javljaju u prirodi. (npr. influenca HA-2 N-kraj). pH-specificity can be achieved by incorporating acidic residues on the hydrophilic side of the putative amphipathic α-helix, such that the helix can only form at acidic pH, but not at neutral pH, where the repulsion between negatively charged acid residues prevents helix formation. This property is also found in naturally occurring strings. (eg influenza HA-2 N-terminus).

Opisan je potpuno sintetički, racionalno označen, peptid (amfipatični) specifičnih svojstava razaranja membrane s obzirom na pH (Subbarao i sur., 1987; Parente i sur., 1990). Pokazalo se da taj peptid (u slobodnom obliku) stvara samo male pore u membranama, te dopušta propuštanje malih spojeva (Parente i sur. 1990). A fully synthetic, rationally labeled, peptide (amphipathic) with specific pH-dependent membrane disruption properties has been described (Subbarao et al., 1987; Parente et al., 1990). It was shown that this peptide (in its free form) creates only small pores in the membranes, and allows the passage of small compounds (Parente et al. 1990).

Prema ostvarenju izuma u kojem se koriste neviralni, moguće i sintetički peptidi, obično se provode slijedeće faze: niz amfipatskih peptida se odabere iz onih koji se javljaju u prirodi ili iz grupe arificjelnih peptida. Pregled primjera peptida ove vrste, poznatih u praksi, dat je u tabeli 2. According to the embodiment of the invention in which non-viral, possibly synthetic peptides are used, the following stages are usually carried out: a series of amphipathic peptides is selected from those occurring in nature or from the group of artificial peptides. An overview of examples of peptides of this type, known in practice, is given in table 2.

Po potrebi se uvedu kiselinski ostaci (Glu, Asp) da bi aktivitet razaranja peptidne membane bio, s obzirom na pH što specifičniji (npr. dvostruki kiseli mutant hemaglutinin peptida influence, prema primjer 35, označen sa p50). If necessary, acid residues (Glu, Asp) are introduced to make the activity of destruction of the peptide membrane as specific as possible, considering the pH (eg double acid mutant hemagglutinin of the influenza peptide, according to example 35, marked with p50).

Ako je potrebno kiselinski se ostaci mogu uvesti također u svrhu olakšanja veze peptida na polizin. Jedan način da se dobije takva polikationska domena povezivanja, može biti uvođenje produženja (kiselinskog), npr. oligo-Glu-produžetka. If necessary, acidic residues can also be introduced in order to facilitate the binding of the peptide to the polysine. One way to obtain such a polycationic binding domain can be the introduction of an (acidic) extension, eg an oligo-Glu-extension.

Endosomolitički peptidi, pogodni za sadašnji izum, mogu se također dobiti spajanjem nizova koji se javljaju u prirodi sa artificijelnim. U sadašnjem su izumu provedeni eksperimenti sa različitim peptidima koji su bili izvedeni iz sintetičkog peptida GALA, opisanog po Parenteu i sur., 1990. Neki od derivata upotrebljenih u pokusima sadašnjeg izuma, dobiveni su kombinacijom peptida Gala ili njegovih modifikacija, sa nizovima peptida influence ili njegovim modifikacijama, npr. peptidima označenim sa EALA-Inf i EALA-P50, prema primjeru 33. Endosomolytic peptides suitable for the present invention can also be obtained by fusing naturally occurring sequences with artificial ones. In the present invention, experiments were carried out with different peptides that were derived from the synthetic peptide GALA, described by Parente et al., 1990. Some of the derivatives used in the experiments of the present invention were obtained by combining the Gala peptide or its modifications, with sequences of influenza peptides or its modifications, for example peptides labeled with EALA-Inf and EALA-P50, according to example 33.

Dužina peptidnog niza može biti kritična s obzirom na stabilnost amfipatičnog heliksa; povećanje stabiliteta kratkih domena izvedenih iz prirordnih proteina, može se postići produženjem heliksa. The length of the peptide sequence may be critical with respect to the stability of the amphipathic helix; increasing the stability of short domains derived from natural proteins can be achieved by lengthening the helix.

U svrhu povećanja endosomolitičke aktivnosti peptida, mogu se formirati homodimeri, heterodimeri ili oligomeri. U pokusima sadašnjeg izuma pokazalo se je da P50 dimer ima mnogo veću aktivnost nego monomer. In order to increase the endosomolytic activity of the peptide, homodimers, heterodimers or oligomers can be formed. In experiments of the present invention, the P50 dimer has been shown to have much greater activity than the monomer.

Sadašnji su izumitelji pokazali utjecaj sintetičkih peptida na prihvaćanje DNA upravljano transferin-polilizin konjugatima. Sintetiziran je niz različitih peptida, ispitano je njihovo propuštanje liposoma i eritrocita i testiran je njihov utjecaj na izražaj luciferaze u TIB stanicama i u NIH 3T3 stanicama. U jednom drugom ostvarenju izuma može endosomolitičko sredstvo biti ne-peptidna amfipatična supstancija. Zahtjevi koje mora takva supstancija ispuniti da bude pogodna za sadašnji izum su u biti jednaki kao i amfipatične peptide, t.j. sposobnost da budu ugrađeni u komplekse nukleinske kiseline, pH specifičnosti i t.d. The present inventors have demonstrated the effect of synthetic peptides on DNA uptake mediated by transferrin-polylysine conjugates. A number of different peptides were synthesized, their permeability to liposomes and erythrocytes was tested, and their influence on the expression of luciferase in TIB cells and in NIH 3T3 cells was tested. In another embodiment of the invention, the endosomolytic agent may be a non-peptide amphipathic substance. The requirements that such a substance must meet to be suitable for the present invention are essentially the same as for amphipathic peptides, i.e. the ability to be incorporated into nucleic acid complexes, pH specificity, etc.

S drugog se aspekta izum odnosi na komplekse koji su prihvaćeni u više eukariotične stanice, koje sadrže nukleinsku kiselinu i konjugat sposoban da formira kompleks sa nukleinskom kiselinom, za uvođenje nukleinske kiseline u više eukariotične stanice. From another aspect, the invention relates to complexes that are accepted into higher eukaryotic cells, which contain nucleic acid and a conjugate capable of forming a complex with nucleic acid, for the introduction of nucleic acid into higher eukaryotic cells.

Kompleksi su karakterizirani time što se konjugat sastoji iz supstancije koja ima afinitet za nukelinsku kiselinu i endosomolitičnog sredstva koje je vezano na supstanciju koja ima afinitet za nukelinsku kiselinu i koja je sposobna da se internalizira u stanicu kao kompleks konjugat/nukleinska kiselina i da oslobađa sadržaje endosoma u kojima je kompleks smješten nakon ulaska u stanicu, u citoplazmu. The complexes are characterized in that the conjugate consists of a substance having an affinity for nucleic acid and an endosomolytic agent that is bound to a substance having an affinity for nucleic acid and is capable of being internalized into the cell as a conjugate/nucleic acid complex and releasing the contents of the endosome. in which the complex is located after entering the cell, in the cytoplasm.

Kompleksi nukleinske kiseline, korišteni u okviru izuma, uglavnom su oni u kojima je nukleinska kiselina kompleksirana sa supstancijom koja ima afinitet za nukleinsku kiselinu, na taj način da su kompleksi bitno elektroneutralni. Nucleic acid complexes, used within the scope of the invention, are mainly those in which nucleic acid is complexed with a substance that has an affinity for nucleic acid, in such a way that the complexes are substantially electroneutral.

U povoljnom ostvarenju izuma, endosomotično je sredstvo virus ili virusna komponenta kovalentno vezana na polikation. In a favorable embodiment of the invention, the endosomotic agent is a virus or a viral component covalently bound to a polycation.

U okviru sadašnje izuma, endosomolitički konjugati obuhvaćaju, uz konjugate u kojima su endosomolitična sredstva ionski vezana na povezujuću domenu DNA, i ondosomolitična sredstva koja se povezuju na DNA direktno, npr. putem njihova osnovnog produženja, premda se “konjugati” ove vrste, zapravo, ne dobivaju konjugacijom, t.j. spajanjem dviju komponenata međusobno. Funkcija endosomolitičkih sredstava ove vrstem kao spojeva sastava prema izumu, je neovisna o tome da li su ona sintetizirana konjugatom endosomolitičkog sredstva i povezujuće domene DNA ili je povezujuća domena DNA originalno bila prisutna u endosomolitičkom sredstvu. Within the scope of the present invention, endosomolytic conjugates include, in addition to conjugates in which endosomolytic agents are ionically bound to the binding domain of DNA, and endosomolytic agents that bind to DNA directly, e.g., via their basic extension, although "conjugates" of this type, in fact, they do not get by conjugation, i.e. by connecting two components to each other. The function of endosomolytic agents of this type as compounds of the composition according to the invention is independent of whether they are synthesized by the conjugate of the endosomolytic agent and the DNA binding domain or whether the DNA binding domain was originally present in the endosomolytic agent.

U drugom povoljnom ostvarenju izuma kompleksi sadrže, uz endosomolitički konjugat, drugi konjugat u kojem je supstancija, koja ima afinitet za nukleinsku kiselinu, u slučaju endosomolitičkog polikationskog konjugata općenito istog kationa kao u konjugatu, konjugirana uz internalizirajući faktor koji ima afinitet za ciljanu stanicu. Ovo se ostvarenje izuma koristi osobito kad ciljana stanica nema, ili ima malo receptora za upotrebljeni virus kao dio endosomolitičkog konjugata. Druga je primjena ovog ostvarenja izuma kad se upotrebljava virusna komponenta, npr. peptid koji dolazi u prirodi, kao i modificirani peptid, ne-viralni, može i sintetički endosomolitički peptid ili virus iz daljih vrsta, koji nemaju sposobnost da sami po sebi prodru u stanice koje treba transficirati. U prisutnosti dodatnog faktorskog konjugata koji internalizira povezujući faktor, endosomolitički konjugati crpe korist iz interalizirajuće sposobnosti drugog konjugata, time što su kompleksirani na nukleinsku kiselinu zajedno sa drugim konjugatom i što su prihvaćeni u ćeliju kao dio rezultirajućeg kompleksa, koji se u daljnjem tekstu spominje kao “kombinacijski kompleks” ili kao “trostruki kompleks”. Bez obzira na ovu teoriju, kombinacijski se kompleksi prihvaćaju u stanice, bilo povezivanjem na površinski receptor koji je specifičan za dodatni internalizirajući faktor, ili npr. u slučaju virusa ili virusne komponente, povezivanjem na virusni receptor ili povezivanjem uz oba receptora, iztenalizacijom receptorski upravljanom endocitozom. Kad se endosomolitična srdstva oslobađaju iz endosoma, DNA sadržana u kompleksima se također oslobađa u citoplazmu i tako se izbjegava lizosomna degradacija. In another advantageous embodiment of the invention, the complexes contain, in addition to the endosomolytic conjugate, another conjugate in which the substance, which has an affinity for the nucleic acid, in the case of an endosomolytic polycationic conjugate generally of the same cation as in the conjugate, is conjugated to an internalizing factor that has an affinity for the target cell. This embodiment of the invention is particularly useful when the target cell has no or few receptors for the virus used as part of the endosomolytic conjugate. Another application of this embodiment of the invention is when a viral component is used, for example a peptide that comes in nature, as well as a modified peptide, non-viral, can also be a synthetic endosomolytic peptide or a virus from other species, which do not have the ability to penetrate cells by themselves which needs to be transfected. In the presence of an additional factor conjugate that internalizes the binding factor, endosomolytic conjugates benefit from the internalizing ability of the second conjugate by being complexed to nucleic acid together with the second conjugate and being taken up into the cell as part of the resulting complex, hereafter referred to as " combination complex" or as a "triple complex". Regardless of this theory, combination complexes are taken up into cells, either by binding to a surface receptor that is specific for an additional internalizing factor, or, for example, in the case of a virus or viral component, binding to a viral receptor or binding to both receptors, internalization by receptor-driven endocytosis . When the endosomolytic cores are released from the endosomes, the DNA contained in the complexes is also released into the cytoplasm, thus avoiding lysosomal degradation.

U eksperimetima sadašnjeg izuma, gotovo se sve HeLa stanice mogu transficirati sa slobodnim adenovirusom. Djelotvornost za hepatocite se može još dalje poboljašti, ako se koriste trostruki DNA kompleksi u kojima je referentna DNA kompleksirana sa polilizin-transferin konjugatima i povezana uz adenovirus. Ovdje je određivanje mjesta endosomolitičkog virusa i kompleksa receptora liganda u endosomu garantirana donoseći transfekciju u gotovo sve stanice za niz stanica, kao BNL.CL2 i HepG2 stnice. U tom slučaju i viralni i transferin receptori na površini stanice mogu djelovati tako da uhvate trostruke DNA komplekse. Međutim, može se također predvidjeti da DNA trostruki kompleksi mogu biti internalizirani samo djelovanjem celularne asocijacije ligand/receptor. Takva se situacija može aproksimirati u pokusima gdje trostruki DNA kompleksi, koji sadrže transferin, postižu pristup K562 stanicama uglavnom putem tansferinskog receptora, radije nego putem receptora adenovirusa. In experiments of the present invention, almost all HeLa cells can be transfected with free adenovirus. The effectiveness for hepatocytes can be further improved if triple DNA complexes are used in which the reference DNA is complexed with polylysine-transferrin conjugates and linked to the adenovirus. Here, localization of the endosomolytic virus and ligand-receptor complex in the endosome is guaranteed, bringing transfection into almost all cells for a range of cells, such as BNL.CL2 and HepG2 cells. In this case, both viral and transferrin receptors on the cell surface can act to capture triple DNA complexes. However, it can also be predicted that DNA ternary complexes can be internalized only by the action of cellular ligand/receptor association. Such a situation can be approximated in experiments where triple DNA complexes, containing transferrin, gain access to K562 cells mainly through the transferrin receptor, rather than through the adenovirus receptor.

Neočekivano, trostruki su kompelsi prenosili DNA čak i kad su bili prisutni za prijenos DNA u veoma niskim razinama. Tako se uz dodatak od 30 pg DNA/3x105 stanice dobije 1,8x104 jedinica (rezultirajućih iz luciferazom kodiranog plasmida). Kod tog ulaza ima tek 60 molekula DNA i 1 PFU virusa po stanici. To treba usporediti sa manje efikasnim postupkom taloženja kacija, koji upotrebljava 105 molekula DNA po stanici (Molecular Cloning, Samobrook, J. i sur. 2. izdanje, Vol. 3, str. 16.39-16.40, 1989). Stoga sadašnji izum predstavlja značajan napredak u praksi, budući da on omogućava djelotvornu transformaciju viših eukariotičnih stanica sa veoma malom količinom DNA. Unexpectedly, triple complexes transferred DNA even when present for DNA transfer at very low levels. Thus, with the addition of 30 pg DNA/3x105 cells, 1.8x104 units are obtained (resulting from the luciferase-encoded plasmid). At that entrance, there are only 60 DNA molecules and 1 PFU of virus per cell. This should be compared with the less efficient cation deposition process, which uses 105 DNA molecules per cell (Molecular Cloning, Samobrook, J. et al. 2nd edition, Vol. 3, pp. 16.39-16.40, 1989). Therefore, the present invention represents a significant advance in practice, since it enables effective transformation of higher eukaryotic cells with a very small amount of DNA.

Prisutnost virusa, virusnih komponenata ili neviralnih endosomolitičkih agensa u DNA kompleksima, kao konstituenata endosomolitičkih konjugata, ima slijedeće prednosti: The presence of viruses, viral components or non-viral endosomolytic agents in DNA complexes, as constituents of endosomolytic conjugates, has the following advantages:

1) Šira mogućnost primjene tehnologije prijenosa gena kompelsima nukleinske kiseline, budući da sam endosomolitički agnes, osobito u slučaju kad se koristi virus (komponenta), može sadržavati interalizirajući faktor ili može biti također kompleksiran sa DNA zajedno sa drugim internalizirajućim faktorom (npr. transferinom ili asialofetuinom itd.). Na taj je način moguće iskoristiti pozitivni učinak virusa čak i za stanice koje nemaju nikakvog receptora za dotični virus. 1) Broader possibility of applying gene transfer technology with nucleic acid complexes, since the endosomolytic agent itself, especially in the case when a virus (component) is used, may contain an internalizing factor or may also be complexed with DNA together with another internalizing factor (e.g. transferrin or asialofetuin, etc.). In this way, it is possible to use the positive effect of the virus even for cells that do not have any receptor for the virus in question.

2) Poboljšanje djelotvornosti prijenosa gena, budući da vezanje endosomolitičkih konjugata na DNA osigurava da se oni zajednički prihvate u stanice. Koordinirano prihvaćanje i oslobađanje virusa i DNA također povećava mogućnost smanjenja količine DNA i virusa potrebnih za efikasan prijenos gena, što je od osobite važnosti za korištenje in vivo. 2) Improving the efficiency of gene transfer, since the binding of endosomolytic conjugates to DNA ensures that they are co-uptake into cells. Coordinated uptake and release of virus and DNA also increases the possibility of reducing the amount of DNA and virus required for efficient gene transfer, which is of particular importance for in vivo use.

Termin “internalizirajući faktor” odnosi se za svrhe sadašnjeg izuma na ligande ili njihove fragmente, koji se nakon vezanja na stanicu internaliziraju endocitozom, i to receptorski upravljanom endocitozom, ili na faktore čije se povezivanje ili internalizacije izvodi spajanjem sa elementima stanične membrane. The term "internalizing factor" refers, for the purposes of the present invention, to ligands or their fragments, which after binding to the cell are internalized by endocytosis, namely by receptor-controlled endocytosis, or to factors whose binding or internalization is performed by binding to elements of the cell membrane.

Pogodni internalizirajući faktori uključuju ligande kao transferin (Klausner, R.D. i sur.,1983), konalbumin (Sennett, C. i sur., 1981), asialoglikoproteini (kao što je asialotransferin, asialorosomukoid ili asialofetuin) (Ashwell, G. i sur., 1982), lektini (Goldestein i sur., 1980, Shardon, 1987) ili supstancije koje sadrže galaktozu, a internalizirane su asialoglikoproteinskim receptorom kao što su: manozilirani glikoproteini (Stahl, P.D. i sur., 1987), lizosomalni enzimi (Sly, W. i sur., 1982), LDL (Goldstein, J.L. i sur., 1982), modificirani LDL (Goldstein, J.L. i sur., 1979), lipoproteini koji su prihvaćeni u stanicu putem receptora (apo B100/LDL); viralni proteini kao što je HIV protein gp120; antitijela (Mellman, L..S. i sur., 1984., Kuhn, L.C. i sur., 1982, Abrahamson, D.R., i sur., 1982) ili njihovi fragmenti nasuprot antigena stničnih površina, npr. anti-CD4, anti-CD7; citokini kao što je interleukin-1 (Mizel, S.B. i sur., 1987), interleukin-2 (Smith, K.A. i sur., 1985), TNF (imamure, K. i sur., 1987), interferon (Anferson, P. i sur., 1982), faktor koji stimulira kolonije (Walker, F. i sur., 1987); faktori i faktori rasta kao što je insulin Marshall, S., 1985), EGF (Carpenter, G., 1984), faktor rasta izveden iz plateleta (Heldin, C.H. i sur., 1982), transformirajući faktor rasta β(Massague, J. i sur., 1987), insulinu sličan faktor rasta I (Schalch, D.S. i sur., 1986), LH, FSH, (Ascoli, M. i sur., 1978), hormoni rasta (Hizuka, N. i sur., 1981), prolaktin (Posner, B.I. i sur., 1982), glukagon (Asada-Kubota, M. i sur., 1983), hormoni tiroide (Cheng, S. - Y. i sur., 1980); α-2-makroglobulin proteaze (Kaplan, J. i sur., 1979); i “razoružani” toksini. Daljnji su primjeri imunoglobulina ili njegovi fragmenti kao ligandi za Fc receptor ili antiimunoglobulin antitijela, koja se vežu na Sigs (površinske imunoglobuline). Ligandi mogu biti prirodnog ili sintetičkog porjekla. Vidi: Trends Pharmacol. Sci. 10:458-462 (1989) i tu citirane reference. Suitable internalizing factors include ligands such as transferrin (Klausner, R.D. et al., 1983), conalbumin (Sennett, C. et al., 1981), asialoglycoproteins (such as asialotransferrin, asialorosomucoid or asialofetuin) (Ashwell, G. et al. , 1982), lectins (Goldestein et al., 1980, Shardon, 1987) or substances containing galactose, which are internalized by the asialoglycoprotein receptor, such as: mannosylated glycoproteins (Stahl, P.D. et al., 1987), lysosomal enzymes (Sly, W. et al., 1982), LDL (Goldstein, J.L. et al., 1982), modified LDL (Goldstein, J.L. et al., 1979), lipoproteins that are taken up into the cell via receptors (apo B100/LDL); viral proteins such as the HIV protein gp120; antibodies (Mellman, L.S. et al., 1984, Kuhn, L.C. et al., 1982, Abrahamson, D.R., et al., 1982) or fragments thereof against cell surface antigens, e.g., anti-CD4, anti -CD7; cytokines such as interleukin-1 (Mizel, S.B. et al., 1987), interleukin-2 (Smith, K.A. et al., 1985), TNF (imamure, K. et al., 1987), interferon (Anferson, P . et al., 1982), colony stimulating factor (Walker, F. et al., 1987); factors and growth factors such as insulin Marshall, S., 1985), EGF (Carpenter, G., 1984), platelet-derived growth factor (Heldin, C.H. et al., 1982), transforming growth factor β (Massague, J . et al., 1987), insulin-like growth factor I (Schalch, D.S. et al., 1986), LH, FSH, (Ascoli, M. et al., 1978), growth hormones (Hizuka, N. et al. , 1981), prolactin (Posner, B.I. et al., 1982), glucagon (Asada-Kubota, M. et al., 1983), thyroid hormones (Cheng, S. - Y. et al., 1980); α-2-macroglobulin proteases (Kaplan, J. et al., 1979); and "disarmed" toxins. Further examples are immunoglobulins or their fragments as ligands for the Fc receptor or anti-immunoglobulin antibodies, which bind to Sigs (surface immunoglobulins). Ligands can be of natural or synthetic origin. See: Trends Pharmacol. Sci. 10:458-462 (1989) and references cited therein.

Bitni zahtjevi za pogodnost takvih faktora, prema sadašnjem su izumu slijedeći, The essential requirements for the convenience of such factors, according to the present invention, are as follows,

a) oni mogu biti internalizirani specifičnom vrstom stanice u kojima mora biti uvedena nukleinska kiselina, a njihovu sposobnost da budu internalizirni ne utječe, ili samo neznatno utječe, ako su konjugirani sa povezujućim faktorom i a) they can be internalized by the specific type of cell in which the nucleic acid must be introduced, and their ability to be internalized is not affected, or only slightly affected, if they are conjugated with a binding factor and

b) u okviru ovog svojstva oni su sposobni da nose “na leđima” nukleinsku kiselinu u stanicu. b) within this property, they are capable of carrying nucleic acid "on their back" into the cell.

U pokusima izvedenim prema izumu pokazan je široki raspon korištenja izuma s obzirom na internalizirajući faktor, ili na dodatni internalizirajući faktor, odnosno u kombinacijskim kompleksima, pomoću humanih i mišjih transferin-polilizin konjugata, asialofetuin-pL konjugata, galaktoza-pL konjugata, aglutinin konjugata pšenične klice, za T-stanicu specifični gp120-pL i antiCD7-pL konjugata i pomoću DNA polilizin konjugata koji ne sadrže nikakav internalizirajući faktor. Osim toga, svojstva virusnih konjugata, prema izumu, pokazana su pomoću kompeksa DNA i polilizinom konjugiranog virusa (ili virusne komponente) koji nisu sadržavali dodatnih konjugata internalizirajućeg faktora s faktorom povezivanja In the experiments performed according to the invention, a wide range of use of the invention was demonstrated with respect to the internalizing factor, or to the additional internalizing factor, i.e. in combination complexes, using human and mouse transferrin-polylysine conjugates, asialofetuin-pL conjugates, galactose-pL conjugates, wheat agglutinin conjugates germ, by T-cell-specific gp120-pL and antiCD7-pL conjugates and by DNA polylysine conjugates that do not contain any internalizing factor. In addition, the properties of viral conjugates, according to the invention, were demonstrated using complexes of DNA and polylysine conjugated virus (or viral component) that did not contain additional conjugates of the internalizing factor with the binding factor

Mogu se izvesti specifični prelimiranrni testovi radi odrđivanja da li, u slučaju da je endosomogitični agens slobodni virus, ili slučaju da je endosomolitični agens virus ili virusni spoj ili ne-viralni peptid koji je dio endosomolitičkog konjugata, upotreba internalizirajućeg faktora omogućava ili poboljšava prihvćanje kompleksa nukleinske kiseline. Ovi testovi obuhvaćaju paralelne transfekcije sa kompleksima nukleinske kiseline, prvenstveno bez (dodatnog) faktora internalizacije, npr. u slučaju virusnih konjugata sa kompleksima koji se sastoje od nukleinske kiseline i virusnog konjugata, i u drugom redu sa kompleksima u kojima je nukelinska kiselina kompleksirana sa drugim konjugatom koji se sastoji do dodatnog faktora internalizacije, za koji ciljane stanice imaju receptor, i supstancije koje ima afinitet za nukleinsku kiselinu. Specific preliminary tests can be performed to determine whether, in the event that the endosomolytic agent is a free virus, or in the event that the endosomolytic agent is a virus or a viral compound or a non-viral peptide that is part of an endosomolytic conjugate, the use of an internalizing factor facilitates or enhances the uptake of the nucleic acid complex. acid. These tests include parallel transfections with nucleic acid complexes, primarily without an (additional) internalization factor, e.g. in the case of viral conjugates with complexes consisting of a nucleic acid and a viral conjugate, and secondarily with complexes in which the nucleic acid is complexed with another conjugate which consists of an additional internalization factor, for which target cells have a receptor, and a substance that has an affinity for nucleic acid.

Ako se koristi faktor internalizacije ili ako se koristi dodatni faktor internalizacije, t.j. ako je primjenjen kombinacijski kompleks, time je određeno, osobito po ciljanim stanicama, npr. po specifičnim površinskim antigenima ili receptorima, specifičnim za vrst stanice koja tako omogućava ciljani prijenos nukleinske kiseline u taj tip stanice. If an internalization factor is used or if an additional internalization factor is used, i.e. if the combination complex was applied, it was determined, especially by the target cells, for example by specific surface antigens or receptors, specific to the type of cell that thus enables the targeted transfer of nucleic acid to that type of cell.

Supstancije sa afinitetom za nukleinsku kiselinu, koje se mogu upotrijebiti prema izumu, obuhvaćaju, na primjer homologne organske polikatione, kao što su polilzin, poliarginin, poliornitin, ili heterogene polikatione koji imaju dvije ili više različitih pozitivno nabijenih aminokiselina, a ti polikationi imaju možda lance različitih dužina, te također ne-peptidne sintetičke polikatione kao što je polietilenimin. Druge supstancije sa afinitetom za nukleinsku kiselinu, koje su pogodne, jesu prirodni DNA-vežući proteini polikationske prirode, kao što su histroni ili protamini ili analozi ili njihovi fragmenti, kao i spermin ili spermidini. Nucleic acid affinity substances that can be used according to the invention include, for example, homologous organic polycations, such as polylysine, polyarginine, polyornithine, or heterogeneous polycations having two or more different positively charged amino acids, and these polycations may have chains of different lengths, and also non-peptide synthetic polycations such as polyethyleneimine. Other substances with nucleic acid affinity that are suitable are naturally occurring DNA-binding proteins of a polycationic nature, such as histrons or protamines or analogs or fragments thereof, as well as spermine or spermidines.

Dužina polikationa nije kritična, dok god su kompleksi u biti elektroneutralni. Povoljan je raspon dužine polilizinskog lanca od oko 20 do oko 1000 lizin monomera. Međutim, za datu dužinu DNA, nema kritične dužine polikaziona. Kad se DNA sastoji od 6.000 bp i 12.000 negativnih naboja, količina polikationa po molu DNA može biti, The length of the polycation is not critical, as long as the complexes are essentially electroneutral. A polylysine chain length range of about 20 to about 1000 lysine monomers is advantageous. However, for a given length of DNA, there is no critical polycation length. When DNA consists of 6,000 bp and 12,000 negative charges, the amount of polycations per mole of DNA can be,

60 molova polilizin 200 60 moles of polylysine 200

30 molova polilizina 400; ili 30 moles of polylysine 400; or

120 molova polilizina 100, itd. 120 moles of polylysine 100, etc.

Tko je normalno izvježban u sasvim rutinskoj eksperimentaciji, taj može odabrati druge kombinacije dužine polikationa i molarne količine. Those who are normally trained in quite routine experimentation can choose other combinations of polycation length and molar amount.

Druge pogodne supstancije sa afinitetom za nukleinsku kiselinu, kao dio konjugata, jesu supstancije koje se umeću, kao što su ethidium dimeri, akridin ili peptidi koji se umeću, a sadrže triptofan i/ili tirozin i/ili fenilalanin. Other suitable nucleic acid affinity substances as part of the conjugate are intercalating substances such as ethidium dimers, acridine or intercalating peptides containing tryptophan and/or tyrosine and/or phenylalanine.

Što se tiče kvalitativnog sastava kompleksa nukleinske kiseline, općenito se prvenstveno određuje nukleinska kiselina koju treba prenijeti u stanicu. Nukleinska kiselina je definirana prvenstveno po biološkom utjecaju koji treba postići u stanici te, u slučaju upotrebe za gensku terapiju, po genu ili dijelu gena koji treba biti izražen, npr. u svrhu zamjene oštećenog gena ili po cijlanom nizu gena koji treba inhibirati. Nukleinske kiseline koje će se transportirati u stanicu mogu biti DNA ili RNA, dok na nukleotidni niz nema postavljenih ograničenja. Ako se izum primjenjuje na tumorske stanice, u svrhu njihove upotrebe kao vakcine raka, DNA koju treba uvesti u stanicu, obično se označava kao imuno-modulirajuća supstancija, npr. citokin kao IL-2, IL-4, IFN gama, TNF alfa. Kombinacije DNA koje umeću citokin mogu biti naročito korisne, npr. IL-2 i IFN gama. Drugi korisni gen za uvođenje u tumorske stanice može biti “gen otpornosti na mnoge lijekove” (multi drug resistance gene) mdr. Moguće je također uvesti u stanicu dva ili više različitih niza nukleinske kiseline, npr. cDNA koja sadri plasmid, koji označava dva različita proteina pod kontrolom pogodnih regulatornih nizova, ili dvije različite konstrukcije plasmida koje sadrže različite cDNA. Regarding the qualitative composition of the nucleic acid complex, the nucleic acid to be transferred into the cell is generally determined first. Nucleic acid is defined primarily by the biological impact to be achieved in the cell and, in the case of use for gene therapy, by the gene or part of the gene that should be expressed, for example for the purpose of replacing a damaged gene or by a targeted sequence of genes that should be inhibited. Nucleic acids that will be transported into the cell can be DNA or RNA, while there are no restrictions on the nucleotide sequence. If the invention is applied to tumor cells, for the purpose of their use as a cancer vaccine, the DNA to be introduced into the cell is usually designated as an immuno-modulating substance, eg a cytokine such as IL-2, IL-4, IFN gamma, TNF alpha. DNA combinations that insert a cytokine can be particularly useful, eg IL-2 and IFN gamma. Another useful gene for introducing into tumor cells can be the "multi drug resistance gene" mdr. It is also possible to introduce into the cell two or more different nucleic acid sequences, eg a cDNA containing plasmid, which encodes two different proteins under the control of suitable regulatory sequences, or two different plasmid constructs containing different cDNAs.

Terapeutski djelotvorne inhibirajuće nukleinske kiseline za prijenos u stanice radi inhibicije specifičnih nizova gena obuhvaćaju konstrukcije gena iz kojih su prevedeni antisense-RNA ili ribozimi. Osim toga, moguće je također uvesti oligonukleotide u stanice. Anti sense nukleotidi obuhvaćaju obično 15 ili više nukleotida. Po želji, oligonukleotidi mogu biti multimerizirani. Kad treba u stanicu uvest iribozime, oni se obično uvode kao dio konstrukcije gena, koja sadrži stabilizirajuće elemente gena, npr. tRNA elemente gena. Konstrukcije gena ovoga tima objavljene su u EP A 0 387 775. Therapeutically effective inhibitory nucleic acids for delivery into cells to inhibit specific gene sequences include gene constructs from which antisense-RNA or ribozymes have been translated. In addition, it is also possible to introduce oligonucleotides into cells. Anti sense nucleotides usually comprise 15 or more nucleotides. Optionally, oligonucleotides can be multimerized. When iribozymes are to be introduced into a cell, they are usually introduced as part of a gene construct, which contains stabilizing gene elements, eg tRNA gene elements. The gene constructions of this team were published in EP A 0 387 775.

Bez obzira na molekule nukleinske kiseline koje inhibiraju gene, npr. viralne gene, mogu se, s obzirom na njihovu komplementarnost upotrijebiti geni sa različitim načinom inhibitornog djelovanja. Primjeri su geni označeni kao viralni proteini, koji imaju tzv. trans-dominantne mutacije (Herskowitz, 1987). Izražaj gena u stanici stvara proteine koji dominijraju odgovarajućim prrodnim proteinom i tako zaštićuju stanice, koje stiču “stanični imunitet” inhibiranjući viralnu obnovu. Regardless of the nucleic acid molecules that inhibit genes, eg viral genes, genes with different mode of inhibitory action can be used, given their complementarity. Examples are genes designated as viral proteins, which have so-called trans-dominant mutations (Herskowitz, 1987). Gene expression in the cell creates proteins that dominate the corresponding progenitor protein and thus protect the cells, which acquire "cellular immunity" by inhibiting viral renewal.

Pogodne su trans-dominantne mutacije viralnih proteina, koje su potrebne za obnavljanje i izražaj, npr. Gag-, Tat i Rev mutanti, za koje je pokazano da inhibiraju HIV obnavljanje (Trono i sur., 1989; Green i sur., 1989; Malim i sur., 1989). Trans-dominant mutations of viral proteins required for replication and expression are suitable, eg, Gag-, Tat-, and Rev-mutants, which have been shown to inhibit HIV replication (Trono et al., 1989; Green et al., 1989; Malim et al., 1989).

Jedan drugi mehanizam postizavanja unutarstaničnog imuniteta obuhvaća izražaj molekula RNA koje sadrže mjesto za povezivanje esencijalnog viralnog proteina, na primjer tzv. TAR mamce (Sullenger i sur., 1990). Another mechanism for achieving intracellular immunity involves the expression of RNA molecules that contain a site for connecting an essential viral protein, for example the so-called TAR baits (Sullenger et al., 1990).

Primjeri gena koji se mogu koristiti u somatskoj genskoj terapiji i koji se mogu prenijeti u stanice kao komponente konstrukcije gena, pomoću sadašnjeg izuma, uključuju faktor VIII (hemofilija A) (vidi, npr. Wood i sur., 1984), faktor IX (hemofilija B) (vidi, npr. Kurachi, K. i sur., 1982), adenosin deaminazu (SCID) (vidi, npr. Vlerio, D. i sur., 1984), -1 antitripsin (plućni emfizem) (vidi, npr. Ciliberto, G. i sur., 1985) ili regulatorski gen transmembranske provodljivosti cistične fibroze (vid, na primjer, Riordan, J.R. i sur., 1989). Ovi primjeri ne predstavljaju ni u kom pogledu nikakvo ograničenje. Examples of genes that can be used in somatic gene therapy and that can be transferred into cells as components of a gene construct, using the present invention, include factor VIII (hemophilia A) (see, e.g., Wood et al., 1984), factor IX (hemophilia B) (see, e.g. Kurachi, K. et al., 1982), adenosine deaminase (SCID) (see, e.g. Vlerio, D. et al., 1984), -1 antitrypsin (pulmonary emphysema) (see, e.g. . Ciliberto, G. et al., 1985) or the cystic fibrosis transmembrane conductance regulatory gene (see, for example, Riordan, J.R. et al., 1989). These examples are not limiting in any way.

Što se tiče veličine nukleinskih kiselina, moguć je veliki raspon. Putem sadašnjeg izuma mogu se u stanice prenijeti konstrukcije gena od oko 0,15 kb (u slučaju tRNA gena koji sadrži ribozim) do oko 50 kb ili više. Manje molekule nukleinske kiseline mogu se primjeniti kao oligonukleotidi. As for the size of nucleic acids, a large range is possible. Gene constructs from about 0.15 kb (in the case of a ribozyme-containing tRNA gene) to about 50 kb or more can be transferred into cells by the present invention. Smaller nucleic acid molecules can be used as oligonucleotides.

Jasno je da je najšira mogućnost primjene omogućena upravo činjenicom da sadašnji izum nije podvrgnut nikakvom ograničenju na niz gena te činjenicom da veoma velike konstrukcije gena mogu također biti prenešene putem izuma. It is clear that the widest possibility of application is made possible precisely by the fact that the present invention is not subject to any limitation to the number of genes and by the fact that very large gene constructs can also be transferred via the invention.

Polazeći od nukleinske ksieline, supstancija koja ima afinitet za nukleinsku kiselinu, pogotovo jedna organska polikationska supstancija, određena je da osigura kompleksiranje nukleinske kiseline, s tim da su dobiveni kompleksi bitno elektroneutralni. Ako kompleksi sadrže konjugat dodatnog internalizirajućeg faktora i supstancije koja ima afinitet za nukleinsku kiselinu, polikationska komponenta konjugata se uzima u obzir u odnosu na spekt elektroneutralnosti. Tijekom ranijih izuma bilo je nađeno da se optimalni prijenos nukleinske kiseline u stanicu može postići, ako je odnos konjugata prema nukleinskoj kiselini odabran tako da su kompleksi internalizirajući faktor-polikation/nukleinska kiselina bitno elektroneutralni. Nađeno je da se količina nukleinske kiseline prihvaćene u stanicu ne smanjuje, ako se nešto od transferin-polikation konjugata zamijeni ne-kovalentno povezanim polikationom. U nekim slučajevima može čak biti i bitnog porasta u prihvaćanju DNA (Wagner i sur., 1991a). Bilo je primjećeno da je DNA kompleksa prisutna u obliku pritisnutom u toroidalne strukture s promjerom od 80 do 100 nm. Količina polikationa je stoga odabrana, s obzirom na dva parametra elektroneutralnosti postizavanja kompaktne strukture, dok količinu polikationa koja rezultira iz nabijanja nukleinske ksieline, s obzirom na postugnutu elektroneutralnost, općenito također garantira kompaktnost DNA. Starting from nucleic acid, a substance that has an affinity for nucleic acid, especially an organic polycationic substance, is determined to ensure the complexation of nucleic acid, with the fact that the resulting complexes are essentially electroneutral. If the complexes contain a conjugate of an additional internalizing factor and a substance having an affinity for nucleic acid, the polycationic component of the conjugate is taken into account in relation to the electroneutrality spectrum. During the earlier inventions, it was found that optimal transfer of nucleic acid into the cell can be achieved if the ratio of the conjugate to the nucleic acid is chosen so that the internalizing factor-polycation/nucleic acid complexes are substantially electroneutral. It was found that the amount of nucleic acid accepted into the cell does not decrease, if some of the transferrin-polycation conjugate is replaced by a non-covalently linked polycation. In some cases there may even be a substantial increase in DNA uptake (Wagner et al., 1991a). It was observed that the DNA of the complex is present in a form pressed into toroidal structures with a diameter of 80 to 100 nm. The amount of polycations is therefore chosen, considering the two electroneutrality parameters of achieving a compact structure, while the amount of polycations resulting from the charge of nucleic xylin, considering the achieved electroneutrality, generally also guarantees the compactness of DNA.

Tako, u daljenjem ostvarenju izuma, kompleksi također supstancije koje povezuju nukleinsku kiselinu u ne-kovalentno vezanom obliku, koji može biti jednak ili različit od faktora povezivanja. U slučaju da je endosomolitički agnes slobodni vbirus, kompleksi sadrže nukleinsku ksielinu i konjugat internalizirajućeg faktora. U slučaju da je upotrebljen endosomolitički, npr. viralni konjugat, nukelinska je kiselina kompleksirana s tim konjugatom, u skladu sa konjugatom dodatnog internalizirajućeg faktora. Izbor ne-kovalentno vezanih “slobodnih” supstitucija, koje imaju afinitet za nukleinsku kiselinu, po njihovoj prirodi i količini, također je određen po konjugatu (konjugatima), posebno vodeći računa o faktoru povezivanja sadržanom u konjugatu; ako, na primjer, faktor povezivanja je supstancija koja ima nikakav ili ograničen kapacitet za kondenzaciju DNA, općenito je preporučljivo, s obzirom na postizavanje efikasne internalizacije kompleksa, koristiti supstancije koje imaju afinitet za DNA, i koje imaju to svojstvo u velikoj mjeri. Ako je sam faktor povezivanja supstancije koja kondenzira nukleinsku kiselinu i ako je već postgao kompaktiranje nukleinske kiseline, dovoljno za učinkovitu internalizaciju, preporučljivo je upotrijebiti supstanciju koja ima afinitet za nukleinsku kiselinu, koja dovodi do povećanja izražaja na temelju drugih mehanizama. Thus, in a further embodiment of the invention, the complexes are also substances that bind nucleic acid in a non-covalently bound form, which may be the same or different from the binding factor. In the event that the endosomolytic agent is a free vvirus, the complexes contain nucleic xylin and an internalizing factor conjugate. In the event that an endosomolytic, eg viral conjugate is used, the nucleic acid is complexed with this conjugate, in accordance with the conjugate of the additional internalizing factor. The choice of non-covalently bound "free" substitutions, which have an affinity for nucleic acid, according to their nature and quantity, is also determined by the conjugate(s), especially taking into account the linking factor contained in the conjugate; if, for example, the linking factor is a substance that has no or limited capacity for DNA condensation, it is generally advisable, with regard to achieving efficient internalization of the complex, to use substances that have an affinity for DNA, and that have this property to a large extent. If the binding factor alone of the substance that condenses the nucleic acid and has already achieved compaction of the nucleic acid is sufficient for efficient internalization, it is advisable to use a substance that has an affinity for the nucleic acid, which leads to increased expression based on other mechanisms.

Pogodne “slobodne” supstancije koje imaju afinitet za nukleinsku ksielinu, prema izumu obuhvaćaju spojeve sposobne da sažimlju (kondenziraju) nukleinsku kiselinu i/ili da ju zaštite od nepoželjne degradacije u stanicama, osobito supstancije polikationske prirode koje su prije spomenute. Druga grupa pogodnih supstancija obuhvaća one, koje povezivanjem na nukleinsku kiselinu doprinose poboljšanju njezinog prevođenja/izražaja, poboljšanjem pristupačnosti nukleinske kiseline za mehanizam izražaja stanice. Primjer supstancije ove vrste je kromosomski ne-histonski protein HMG1, za kojeg je bilo nađeno da posjeduje kapacitet da čini DNA kompaktnom te doprinosi izražaju u stanici. Suitable "free" substances that have an affinity for nucleic acid xylin, according to the invention, include compounds capable of condensing (condensing) nucleic acid and/or protecting it from undesirable degradation in cells, especially substances of a polycationic nature that were mentioned before. The second group of suitable substances includes those which, by binding to the nucleic acid, contribute to the improvement of its translation/expression, by improving the accessibility of the nucleic acid to the expression mechanism of the cell. An example of a substance of this type is the chromosomal non-histone protein HMG1, which has been found to have the capacity to make DNA compact and contribute to cell expression.

S obzirom na komplekse, kad se određuju molarni odnosi endosomolitičkog agensa i/ili internalizirajućeg faktora prema supstanciji koja ima afinitet za nukelinsku ksielinu (ili kiseline), treba imati na umu da događa kompleksiranje nukleinske kiseline (kiselina), da se stvoreni kompleksi mogu veziati na stanicu i internalizirati i da se, ili sam po sebi ili uz pomoć endosomolitičkog agensa, oslobađa iz endosoma. With regard to complexes, when determining the molar ratios of an endosomolytic agent and/or internalizing factor to a substance that has an affinity for nucleic acid (or acids), it should be borne in mind that nucleic acid (acid) complexation occurs, that the created complexes can bind to the cell and internalize and that, either by itself or with the help of an endosomolytic agent, it is released from the endosomes.

Odnos internalizirajući faktor: faktor povezivanja; nukleinska kiselina ovisi osobito o veličini polikationskih molekula i o broju i raspodjeli pozitivno nabijenih grupa, čiji kriteriji odgovaraju veličini i strukturi nukleinske kiseline (kiselina) koje treba transportirati. Povoljno je da molarni odnos internalizirajućeg faktora i supstacije koja ima afinitet za nukleinsku kiselinu, bude u rasponu od oko 10/1 do oko 1/10. Relationship internalizing factor: connecting factor; nucleic acid depends particularly on the size of the polycationic molecules and on the number and distribution of positively charged groups, whose criteria correspond to the size and structure of the nucleic acid (acids) to be transported. It is advantageous for the molar ratio of the internalizing factor to the substance having an affinity for the nucleic acid to be in the range of about 10/1 to about 1/10.

Nakon konstrukcije i sinteze konjugata i određivanja optimalnog odnosa konjugata: DNA, za djelotvornu transfekciju, količina konjugata koja se može zamijeniti, ako se želi, slobodnom supstancijom koja ima afinitet za nukleinsku kiselinu, može se odrediti titracijom. Ako se koriste polikationi i kao faktori povezivanja i kao sloodna supstancija koja ima afinitet za nukelinsku ksielinu, polikationi mogu biti identični ili različiti. After constructing and synthesizing the conjugate and determining the optimal conjugate:DNA ratio for effective transfection, the amount of conjugate that can be replaced, if desired, by a free substance having an affinity for the nucleic acid can be determined by titration. If polycations are used both as binding factors and as a similar substance having an affinity for nucleic xylene, the polycations may be identical or different.

Za ostvarenje izuma koji uptorebljava viralne konjugate, metoda pogodna za određivanje odnosa komponenata sadržanih u kompleksima, može se sastojati prvenstveno u određivanju konstrukcije gena kojeg treba uvesti u stanice, a zatim, kao što je gore opsano, u pronalaženju virusa ili virusne komponente pogodne za pojedinu transfekciju. Zatim se virus ili virusna komponenta povezuje sa polikationom i komleksira sa konstrukcijom gena. Polazeći od određene količine viralnog konjugata, titracije se mogu izvoditi obradom ciljanih stanica tom (konstantnom) količinom konjugata te smanjujući koncentracije DNA, ili obratno. Na taj je način određen optimalni odnos DNA: virusni konjugat. Ako se koristi dodatni internalizirajući faktor, postupak može biti izveden, na primjer, za određivanje optimalnog odnosa virusnog konjugata prema konjugatu internalizirajućeg faktora polazeći od konstantne količine DNA, titracijom. For the realization of the invention that uses viral conjugates, a method suitable for determining the ratio of the components contained in the complexes can consist primarily in determining the construction of the gene to be introduced into the cells, and then, as described above, in finding a virus or a viral component suitable for a particular transfection. Then the virus or viral component binds to the polycation and complexes with the gene construct. Starting from a certain amount of viral conjugate, titrations can be performed by treating target cells with that (constant) amount of conjugate and reducing DNA concentrations, or vice versa. In this way, the optimal ratio of DNA: virus conjugate was determined. If an additional internalizing factor is used, the procedure can be performed, for example, to determine the optimal ratio of viral conjugate to internalizing factor conjugate starting from a constant amount of DNA, by titration.

Kompleksi se mogu prirediti mješanjem komponenata 1) nukleinske kiseline, 2) viralnog konjugata po izboru, 3) konjugata internalizirajući faktor/faktor povezivanja, te po izboru, 4) nekovalentno vezane supstancije koja ima afinitet za nukleinsku kiselinu što sve može biti prisutno u obliku razrjeđenih otopina. Ako se poliaktioni koriste kao faktor povezivanja i istovremeno kao “slobodni” polikationi, obično se preporuča prije svega, prirediti smjesu konjugata sa “slobodnim” polikationima, a zatim kombinirati tu smjesu sa DNA. Optimalni odnos DNA: konjugat (i): polikationi određuje se polusima titracije tj. korištenjem u nizu pokusa transfekcije konstantne količine DNA, te povećavanjem količine konjugat/polikation smjese. Optimalni odnos konjugata prema kationima u smjesi postiže se rutinskim pokusima ili uspoređivanjem optimalnih proporcija smjesa korištenih u pokusima titracije. Complexes can be prepared by mixing the components of 1) nucleic acid, 2) viral conjugate of choice, 3) internalizing factor/binding factor conjugate, and optionally, 4) non-covalently bound substance that has an affinity for nucleic acid, all of which can be present in the form of diluted solution. If polycations are used as a binding factor and at the same time as "free" polycations, it is usually recommended first of all to prepare a conjugate mixture with "free" polycations and then combine this mixture with DNA. The optimal ratio of DNA: conjugate (i): polycation is determined by means of titration, i.e. by using a constant amount of DNA in a series of transfection experiments, and by increasing the amount of the conjugate/polycation mixture. The optimal ratio of conjugates to cations in the mixture is achieved by routine experiments or by comparing the optimal proportions of mixtures used in titration experiments.

DNA kompleksi se mogu pripremiti u koncentracijama fiziološke otopine soli. Druga je mogućnost da se koriste visoke koncentracije soli (oko 2 M NaCl) i zatim da se podese na fiziološke uvjete polaganim razređenjem ili dijalizom. DNA complexes can be prepared in saline concentrations. Another possibility is to use high salt concentrations (about 2 M NaCl) and then adjust to physiological conditions by slow dilution or dialysis.

Najpogodniji slijed za miješanje komponenata nukleinske ksieline, konjugata, možda i nekovalentno vezane supstancije sa afinitetom za nukleinsku kiselinu, određen je prijašnjim eksperimentima. U nekim se slučajevima može pokazati preporučljivim najprije kompleksirati nukleinsku ksielinu sa konjugatom (konjugatima), a zatim dodati “slobodnu” supstanciju koja ima afinitet za nukleinsku kiselinu, na primjer, polikation, npr. u slučaju konjugata transferin-etidium dimera i polilizina. The most suitable sequence for mixing nucleic acid components, conjugates, possibly non-covalently bound substances with affinity for nucleic acid, was determined by previous experiments. In some cases it may prove advisable to first complex the nucleic xylin with the conjugate(s) and then add a "free" substance that has an affinity for the nucleic acid, for example, a polycation, eg in the case of transferrin-ethidium dimer and polylysine conjugates.

U povoljnom ostvarenju izuma, internalizirajući faktor, odnosno dodatni internalizirajući faktor je transferin, a faktor povezivanja je polikation. Izraz “transferin” označava prirodne transferione kao i one modifikacije transferina koje su povezane receptorom i transportirane u stanicu. In a favorable embodiment of the invention, the internalizing factor, that is, the additional internalizing factor is transferrin, and the binding factor is a polycation. The term "transferrin" refers to natural transferons as well as those modifications of transferrin that are bound by a receptor and transported into the cell.

Nukleinska se kiselina prihvaća u obliku kompleksa u kojima su konjugati internalizirajući faktor-polikation kompleksirani sa nukleinskom kiselinom. Ako je u sastavu nekovalentno vezana supstancija koja ima afinitet za nukleinsku kiselinu, to je oblično polikation. Taj je drugi polikation identičan ili različit od polikationa sadržanog u konjugatu ili u oba konjugata. Nucleic acid is accepted in the form of complexes in which internalizing factor-polycation conjugates are complexed with nucleic acid. If the composition includes a non-covalently bound substance that has an affinity for nucleic acid, it is usually a polycation. This second polycation is identical or different from the polycation contained in the conjugate or in both conjugates.

U slučaju “kombinacijskih kompleksa” nukleinska kiselina se internalizira u obliku kompleksa u kojima su konjugati internalizirajućeg faktora, s jedne strane, a endosomolitički konjugati, s druge strane, komleksirani sa nukleinskom ksielinom. In the case of "combination complexes", nucleic acid is internalized in the form of complexes in which internalizing factor conjugates, on the one hand, and endosomolytic conjugates, on the other hand, are complexed with nucleic xylin.

Konugati internalizirajućeg faktora i polikationa, koji se koriste zajedno sa slobodnim virusom ili zajedno sa viralnim konjugatima u kombinacijskim kompleksima, mogu se prirediti kemijskom metodom ili rekombinatnom metodom, ako je polikation polipetid. Metode priprve obavljene su izumom EP 388 758. Conjugates of internalizing factor and polycation, which are used together with free virus or together with viral conjugates in combination complexes, can be prepared by a chemical method or a recombinant method, if the polycation is a polypeptide. The methods were first performed by the invention of EP 388 758.

Obično su, u okviru sadašnjeg izuma, korišteni konjugati u kojima su glikoprotein, npr. transferin, i faktor povezivanja međusobno spojeni putem jednog ili više ugljikohidratnih lanaca gliko proteina. Typically, within the scope of the present invention, conjugates have been used in which a glycoprotein, eg, transferrin, and a binding factor are linked to each other via one or more carbohydrate chains of the glycoprotein.

Za razliku od konjugata priređenih konvencionalnim metodama spajanja, konjugati ove vrste su slobodni od modifikacija koje potiču upotrebljenih veznih supstancija. U slučaju glikoproteina koji imaju samo jednu ili tek nekoliko ugljikohidratnih grupa pogodnih za spajanje, npr. transferin, ove konjugati imaju i tu prednost da su točno određeni s obzirom na njihov položaj vezanja za glikoproteine/faktor povezivanja. In contrast to conjugates prepared by conventional coupling methods, conjugates of this type are free from modifications induced by the binding substances used. In the case of glycoproteins that have only one or only a few carbohydrate groups suitable for coupling, eg transferrin, these conjugates also have the advantage that they are precisely determined with respect to their binding position to glycoproteins/coupling factor.

Pogodna metoda pripreme konjugata glikoprotein-polikation, objavljena je u njemačkoj patentnoj priajvi P 41 15 038.4; nedavno su opisali Wagner i sur., 1991b. A suitable method for the preparation of glycoprotein-polycation conjugates is published in German patent application P 41 15 038.4; recently described by Wagner et al., 1991b.

Količina upotrebljenog endosomolitičkog agensa i njegova koncentracija ovise o pojedinim transfekcijama koje su poduzete. Poželjno je koristiti minimalnu količinu virusa ili virusnog konjugata, koja je potrebna da se osigura intrnalizacija virusa (konjugata) i kompleksa nukleinske kiseline i da se oslobodi iz endosoma. Količina virusa se usklađuje sa pojedinom vrstom stanica, a iznad svega treba uzeti u obzir infektivnost virusa za taj tip stanica. Drugi kriterij je pojedini konjugat internalizirajućeg faktora i faktora povezivanja, osobito s obzirom na intenalizirajući faktor, za koji ciljana stanica ima specifični broj receptora. Osim toga, količina virusa (konjugata) ovisiti će o kolilini DNA koju treba unijeti. Općenito, mala količina virusa je dovoljna za stabilnu transfekciju koja zahtijeva samo malu količinu DNA, dok prolazna transfekcija, koja traži velike količine DNA, zahtjeva veliku količinu virusa. Za pojedinu primjenu izvode se testovi sa ciljanim stanicama namijenjenim za transfekciju, po mogućnosti sa miješanom populacijom stanica, a vektorski sistem predviđen za transfekciju, u svrhu određivanja optimalne koncetracije virusa titracijom, dok je upotrebljena DNA konstrukcija gena koja se uvelike slaže sa onom namijenjenom za konkretnu upotrebu, s obzirom na veličinu, te sadrži referentni gen za lakše mjerenje učinkovitosti prijenosa gena. U okviru sadašnjeg izuma pokazali su se pogodni, kao referentni geni za takve testove geniluciferaze i β-galaktosidaze. The amount of endosomolytic agent used and its concentration depend on the individual transfections undertaken. It is preferable to use the minimum amount of virus or viral conjugate necessary to ensure the internalization of the virus (conjugate) and nucleic acid complex and its release from endosomes. The amount of virus is adjusted to the individual type of cells, and above all, the infectivity of the virus for that type of cells should be taken into account. Another criterion is a particular conjugate of internalizing factor and binding factor, especially with regard to internalizing factor, for which the target cell has a specific number of receptors. In addition, the amount of virus (conjugate) will depend on the amount of DNA to be introduced. In general, a small amount of virus is sufficient for stable transfection that requires only a small amount of DNA, while transient transfection, which requires large amounts of DNA, requires a large amount of virus. For a particular application, tests are performed with target cells intended for transfection, preferably with a mixed population of cells, and a vector system intended for transfection, in order to determine the optimal concentration of the virus by titration, while the DNA construction of the gene is used, which largely agrees with that intended for the specific use, given the size, and contains a reference gene for easier measurement of gene transfer efficiency. Within the scope of the present invention, geneluciferase and β-galactosidase have proven to be suitable as reference genes for such tests.

Drugi se aspekt izuma odnosi na proces uvođenja kompleksa nukleinske kiseline, supstancije za povezivanje nukleinske kiseline i, po želji, internalizirajućeg faktora, u više eukariotične stanice. Metoda je karakterizirana time da se stanice dovode u kontakt sa agensom koji ima sposobnost da bude internaliziran u stanice, bilo sam po sebi ili kao komponenta kompleksa nukleinske ksieline, te da oslobađa sadržaje endosoma, u kojima su smješteni kompleksi nukleinske kiseline, u citoplazmi. Another aspect of the invention relates to the process of introducing a nucleic acid complex, a nucleic acid binding substance and, if desired, an internalizing factor into multiple eukaryotic cells. The method is characterized by bringing the cells into contact with an agent that has the ability to be internalized into the cells, either by itself or as a component of the nucleic acid xylin complex, and to release the contents of the endosomes, in which the nucleic acid complexes are located, into the cytoplasm.

Općenito je najbolje da se kompleksi nukleinske ksieline i endosomolitičko sredstvo primjene zajednom no mogu se primjeniti i jedno za drugim. U slučaju odvojenih primjena, slijed primjene nije kritičan dokle god se faze izvode kratko jedna za durgom, da bi se osiguralo da će komponente biti u djelotvornom zajedničkom kontaktu. In general, it is best that the nucleic xylin complexes and the endosomolytic agent are administered together, but they can also be administered one after the other. In the case of separate applications, the order of application is not critical as long as the stages are carried out in short succession to ensure that the components will be in effective mutual contact.

U slučaju upotrebe slobodnog virusa u odvojenom postupku, istovremeno dodavanje pripravka slobodnog virusa sa kompleksima može biti osigurano, ako je virusni pripravak diomedija transfekcije koji sadržava kompleks nukleinske kiseline. In the case of using a free virus in a separate procedure, the simultaneous addition of a free virus preparation with complexes can be ensured, if the viral preparation is a transfection medium containing a nucleic acid complex.

U slučaju istovremenog dodavanja slobodnog virusa, kompleksi nukleinske kiseline i pripravak virusa se zajedno pomiješaju prije nego što će biti dodavani. In the case of simultaneous addition of free virus, the nucleic acid complexes and the virus preparation are mixed together before they are added.

U ponovljenom ostvarenju, endosomolitički je agens komponenta kombinacijskog kompleksa. Da bi se pojačao izražaj gena, sastavi prema ovom izumu mogu se dodavati višestrukim ponavljanjem. In another embodiment, the endosomolytic agent is a component of the combination complex. To enhance gene expression, the compositions of the present invention can be added in multiple repetitions.

U ponovljenom ostvarenju, stanice su prvenstveno tumorske stanice. U osobito povoljnom ostvarenju nukleinska je ksielina DNA koja sadrži jedan ili više nizova označenih kao imuno modulirajuća supstancija, obično citokin. In another embodiment, the cells are primarily tumor cells. In a particularly favorable embodiment, the nucleic acid is xylene DNA that contains one or more sequences labeled as an immunomodulating substance, usually a cytokine.

U drugom su ostvarenju stanice mioblasti, obično primarni mioblasti. In another embodiment, the cells are myoblasts, usually primary myoblasts.

U jednom drugom ostvarenju stanice su fibroblasti, obično primani fibroblasti. In another embodiment, the cells are fibroblasts, usually primary fibroblasts.

U jednom drugom ostvarenju stanice su hepatokrati, obično primarni hepatociti. In another embodiment, the cells are hepatocrates, usually primary hepatocytes.

U jednom drugom ostvarenju stanice su primarne endotelialne stanice. In another embodiment, the cells are primary endothelial cells.

U drugom ostvarenju stanice su primarne značne epitelijske stanice. In another embodiment, the cells are primary epithelial cells.

Tabela 1. pokazuje transfekcije sadašnjeg izuma prikazan primjerima sa nizom različitih vrsta stanica. Table 1 shows transfections of the present invention exemplified with a variety of different cell types.

Sastav izuma ispitan je i za transfekciju fibroblasta psećje hemofilije B. U tim stanicama mogu biti uspješno izražene luciferaza i β-galaktosidaza. Osim toga, sistem je korišten za odpuštanje 1.4kb pasjeg faktora IX cDNA u fibroblaste iz pasje hemofilije. U ELISA sendviču pasji se faktor IX može detektirati 24 sata nakon transfekcije. The composition of the invention was also tested for the transfection of canine hemophilia B fibroblasts. Luciferase and β-galactosidase can be successfully expressed in these cells. In addition, the system was used to deliver 1.4 kb canine factor IX cDNA into fibroblasts from canine hemophilia. Canine factor IX can be detected in ELISA sandwich 24 hours after transfection.

U nekim je slučajevima preporučljivo upotrijebiti lisosomatropnu supstanciju uz endosomolitičko sredstvo, npr. ako je sredstvo konjugat endosomotiličkog peptida ili retrovirus, čije endosomolitičke aktivnosti nisu striktno ovisne o kiselom pH. In some cases, it is advisable to use a lysosomotropic substance with an endosomolytic agent, for example, if the agent is an endosomolytic peptide conjugate or a retrovirus, whose endosomolytic activities are not strictly dependent on acidic pH.

Poznato je da lizosomatropične supstancije inhibiraju aktivnost proteaza i nukleaza te stoga mogu inhibirati degradaciju nukleinskih kiselina (Luthmann i Mangusson, 1983). Ove supstancije obhvaćaju klorokin, monensin, nigericin i metilamin. It is known that lysosomatotropic substances inhibit the activity of proteases and nucleases and therefore can inhibit the degradation of nucleic acids (Luthmann and Mangusson, 1983). These substances include chloroquine, monensin, nigericin and methylamine.

Pokazano je da monensin doprinosi povećanju u izražaju referentnog gena kad se upotreblajva Moloney retrovirus. Monensin has been shown to contribute to an increase in the expression of the reference gene when Moloney retrovirus is used.

Prisutnost klorokina može dovesti do izražaja referentnog gena, unešenog transferinom upravljanim primjesom DNA, u gotovo 100% stanica K562. Hepatociti BNL.CL2 ili HepG2 nisu odgovarali na klorokin tako dobro kao K562 stanice, no one mogu biti transficirane do razine od 5-10% kad se iskoriste endosomotilička svojstva dodanog, za obnavljanje oštećenog ili kemijski inaktiviranog slobodnog adenovirusa. The presence of chloroquine can lead to the expression of the reference gene, introduced by transferrin-driven DNA admixture, in almost 100% of K562 cells. BNL.CL2 or HepG2 hepatocytes did not respond to chloroquine as well as K562 cells, but they could be transfected to a level of 5-10% when the endosomotyl properties of added, damaged or chemically inactivated free adenovirus were exploited.

Pomoću sadašnjeg izuma uvećane su prednosti bioloških vektora. Kao rezultat raspodjele receptora postoji tropizam i za internalizirajući faktor i za virus. Usklađujući ove dvije komponente sa pojedinom populacijom stanica, moguće je postići veću selektivnost koja je od naročite važnosti u terapeutskoj primjeni ovog izuma. By means of the present invention, the advantages of biological vectors are increased. As a result of receptor distribution, there is tropism for both the internalizing factor and the virus. By matching these two components with a particular population of cells, it is possible to achieve greater selectivity, which is of particular importance in the therapeutic application of this invention.

S druge strane, sadašnji se izum odnosi na farmaceutske sastave koje kao aktivnu komponentu sadrže kompleks terapeutski aktivne nukleinske kiseline, obično kao dio konstrukcije gena, endosomolitičko sredstvo (po želji konjugirano) i, možda, konjugat internalizirajućeg faktora. Može se upotrijebiti i svaki, farmaceutski prihvatljiv nosač, kao što je otopina soli ili otopina soli sa fosfatnim puferom, ili svaki takav nosač u kojem se kompleksi DNA dobro otapaju, da bi se koristio u metodi sadašnjeg izuma. Reference su objavljene u Remington’s Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, Osol (ed.) (1980), u vezi sa metodama formulacije farmaceutskih sastava. On the other hand, the present invention relates to pharmaceutical compositions containing as an active component a therapeutically active nucleic acid complex, usually as part of a gene construct, an endosomolytic agent (optionally conjugated) and, possibly, an internalizing factor conjugate. Any pharmaceutically acceptable carrier, such as saline or phosphate buffered saline, or any such carrier in which the DNA complexes are well soluble, may be used for use in the method of the present invention. References are published in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, Osol (ed.) (1980), relating to methods of formulating pharmaceutical compositions.

Sadašnji izum pruža prednost najveće moguće fleksibilnosti u primjeni, među ostalim kao farmaceutski sastav. Sastav izuma se može javljati kao liofilizat ili u pogodnom puferu u duboko zamrznutom stanju. Može također biti predviđen kao reagens spreman za upotrebu u otopini, obično u otopini hlađen. Po želji, komponente potrebne za transfekciju, t.j. DNA, endosomolitičko sredstvo, konjugati ili za konjugiranje spremni sa odvojenim partnerom konjugiranja, supstancija za povezivanje DNA, po želji konjugirana sa internaliziranjućim faktorom, po želji slobodni polikation, mogu biti prisutne u posebnoj puferskoj otopini, ili djelomično odvojene kao sastavni dio kompleta za transfekciju, koji je također predmet sadašnjeg izuma. U takvom kompletu za transfekciju mogu biti prisutne različite DNA kiseline, npr. koje predstavljaju za različite antigene, i/ili različiti konjugati internalizirajućeg faktora, da bi se komplet zatransfekciju mogao koristiti kao prilagodljiv sistem. Da li su konstituenti prisutni kao “za upotrebu spremni” pripravak ili zasebnom, da bi se pomiješali neposredno prije upotrebe, ovisi, bez obzira na specifičnu primjenu, o stabilnosti kompleksa, koja može bii određena rutinskim testovima stabilnosti. Kao sastavni dio kompleta koristi se, u povoljnom slučaju, transglutaminazom spojen konjugat adenovirus-polilzin, koji se je pokazao stabilnim pri uskladištenju. U drugom povoljnom ostvarenju miješaju se prije upotrebe biotinilirani adenovirusi steptavidin-polilizin. Obično uvježbani praktičar može razraditi niz različitih kompleta za transfekciju da bi se ostvarila prednost fleksibilnsoti izuma. The present invention offers the advantage of the greatest possible flexibility in application, among others as a pharmaceutical composition. The composition of the invention can appear as a lyophilizate or in a suitable buffer in a deep-frozen state. It may also be provided as a ready-to-use reagent in solution, usually cooled in solution. Optionally, components required for transfection, i.e. DNA, endosomolytic agent, conjugates or ready for conjugation with separate conjugation partner, DNA binding substance, optionally conjugated with internalizing factor, optionally free polycation, may be present in a separate buffer solution, or partially separated as an integral part of the transfection kit, which is also the subject of the present invention. Different DNA acids can be present in such a transfection kit, for example representing different antigens, and/or different internalizing factor conjugates, so that the transfection kit could be used as an adaptable system. Whether the constituents are present as a "ready-to-use" preparation or separately, to be mixed immediately before use, depends, regardless of the specific application, on the stability of the complex, which can be determined by routine stability tests. Adenovirus-polylysine conjugate linked by transglutaminase, which has proven to be stable during storage, is used as an integral part of the kit. In another advantageous embodiment, steptavidin-polylysine biotinylated adenoviruses are mixed before use. A number of different transfection kits can be devised by the ordinarily skilled practitioner to take advantage of the flexibility of the invention.

Za terapeutske potrebe, sastav se može primjeniti sistemično obično intravenoznim putem, kao dio farmaceutskog sastava. Ciljani organi za ovu primjenu mogu biti npr. jetra, slezena, pluća, koštana srž i tumori. For therapeutic purposes, the composition can be administered systemically, usually intravenously, as part of a pharmaceutical composition. The target organs for this application can be, for example, the liver, spleen, lungs, bone marrow and tumors.

Primjer lokalne primjen je plućno tkivo (upotreba sastava prema izumu kao dio farmaceutskog sastava u tekućem obliku za ulijevanje ili kao aerosol za inhaliranje). Osim toga, farmaceutski sastavi izuma mogu se davati direktnom injekcijom u jetru, mišićno tkivo, u tumor ili lokalnom primjenom u intestinalni tract. Daljnja metoda primjene farmaceutskog sastava je davanje putem sustava žučne drenaže. Ova metoda primjene omogućava direktan pristup membranama hepatocita u žučnim vodovima, sprečavajući interakciju sastava sa sastojcima krvi. An example of local application is lung tissue (use of the composition according to the invention as part of a pharmaceutical composition in liquid form for infusion or as an aerosol for inhalation). In addition, the pharmaceutical compositions of the invention can be administered by direct injection into the liver, muscle tissue, into a tumor or by local application into the intestinal tract. A further method of administration of the pharmaceutical composition is administration via the biliary drainage system. This method of application enables direct access to the membranes of hepatocytes in the bile ducts, preventing interaction of the composition with blood components.

Nedavno je prikazana mogućnsot korištenja mioblasta (nedozrelih mišićnih stanica) za prijenos gena u mišićna vlakna miševa. S obzirom da je pokazano da mioblasti izlučuju produkt gena u krv, ova metoda može imati mnogo širu primjenu nego što je obrada genetičnih oštećenja mišićnih stanica, kao što je oštećenje prisutno kod mišićne distrofije. Tako, izvedeni mioblasti mogu biti korišteni za odpuštanje proizvoda gena koji djeluju u krvi ili se putem krvi transportiraju. Eksperimenti su u sadašnjem izumu pokazali da se kulture mioblasta kao i miotuba, osobito efikasno mogu transficirati. Najuspješnija sredina za transfekciju sadržava kombinacijske komplekse biotiniliranog adenovirusa, transferin-polilizina i streptavidin-polilizina. Uz referentne gene luciferazu i β-galaktosidazu u mišićnim je stanicama izražen faktor VIII. Osim toga, upotrebljavan je pileći adenovirus CELO u kombinacijskim kompleksima, koji sadrže aglutinin pšenične klice kao dodatni internaliozirajući faktor. Recently, the possibility of using myoblasts (immature muscle cells) for gene transfer into the muscle fibers of mice was demonstrated. Since myoblasts have been shown to secrete the gene product into the blood, this method may have a much wider application than treating genetic damage to muscle cells, such as the damage present in muscular dystrophy. Thus, derived myoblasts can be used to release gene products that act in the blood or are transported through the blood. Experiments in the present invention have shown that myoblast cultures as well as myotubes can be transfected particularly efficiently. The most successful medium for transfection contains combination complexes of biotinylated adenovirus, transferrin-polylysine and streptavidin-polylysine. In addition to the reference genes luciferase and β-galactosidase, factor VIII is expressed in muscle cells. In addition, chicken adenovirus CELO was used in combination complexes, which contain wheat germ agglutinin as an additional internalizing factor.

Terapeutska primjena može također biti “ex vivo”, pri čemu se obrađene stanice, npr. koštne srži, hepatociti ili mioblasti, vraćaju u tijelo (npr. Ponder i sur., 1991, Dhawan i sur., 1991). Daljnja primjena ex vivo sadašnjeg izuma, odnosi se na tzv. “kancer vakcine”. Osnova ovog terapeutskog pristupa je u izolaciji tumorskih stanica iz pacijenta, te transfekciji stanica sa citokinom označenom DNA. Slijedeća faza može obuhvatiti inaktivaciju stanica, npr. ozračivanjem, na takav način da se one ne mogu više obnavljati, no još uvijek izražavaju citokin. Zatim se genetski modificirane stanice dodaju pacijentu iz kojega su bile izolirane, kao vakcina. U okolini mjesta vakcijacije izlučeni citokini aktiviraju imunski sustav, među ostalim, putem aktiviranja citotoskičnih T stanica. Ove aktivirane stanice su sposobne da izraze svoj utjecaj na drugim dijelovima tijela i da napadnu i netretirane tumorske stanice.Tako je rizik ponovnog javljanja tumora i razvoja metastaze smanjen. Pogodan način primjene kancer vakcina za gensku terapiju opisali su Rosenberg i sur., 1992. Umjesto retroviralnih vektora koje predlaže Rosenberg, može se upotrijebiti sistem prijenosa gena prema sadašnjem izumu. U pokusima sadašnjeg izuma primarne su stanice melanoma bile uspješno transficirane referentnim genom sadržanim u kombinacijskim kompleksima poliliziranom vezanih adenovirusa i transfein polilizina. Therapeutic application can also be "ex vivo", whereby the treated cells, eg bone marrow, hepatocytes or myoblasts, are returned to the body (eg Ponder et al., 1991, Dhawan et al., 1991). Further ex vivo application of the present invention refers to the so-called "vaccine cancer". The basis of this therapeutic approach is the isolation of tumor cells from the patient, and the transfection of cells with cytokine-labeled DNA. The next phase may involve inactivating the cells, eg by irradiation, in such a way that they can no longer regenerate, but still express the cytokine. The genetically modified cells are then added to the patient from whom they were isolated, as a vaccine. In the vicinity of the vaccination site, secreted cytokines activate the immune system, among other things, by activating cytotoxic T cells. These activated cells are able to express their influence on other parts of the body and to attack untreated tumor cells. Thus, the risk of tumor recurrence and the development of metastasis is reduced. A suitable way of applying cancer vaccines for gene therapy was described by Rosenberg et al., 1992. Instead of the retroviral vectors proposed by Rosenberg, the gene transfer system according to the present invention can be used. In experiments of the present invention, primary melanoma cells were successfully transfected with a reference gene contained in combination complexes of polylyzed adenoviruses and transfein polylysine.

Sadašnji se izum može također koristiti u pokusima za određivanje domaćinskog imunskog odgovora na dati antigen. Takvi se pokusi osnivaju na prijenosu gena na antigenom izražene stanice. The present invention can also be used in experiments to determine the host immune response to a given antigen. Such experiments are based on gene transfer to antigen-expressed cells.

Antigen-specifični citotoksični T limfociti (CTL) koji ubijaju inficirane stanice, igraju važnu ulogu u samoobrani protiv viralnih infekcija ili tumora. Interakcija između T-stanice i stanice predstavljene antigenom (APC) je ograničena humanim limfocitnim antigenima (HLA). Za studiranje CTL ubijanja stanica, koje izražavaju antigen u in vitro pokusu CTL ubijanja, mora se prikazati antigen na CTL u ispravnom HLA kontekstu, što obično znači na ciljanu stnicu. Antigen-specific cytotoxic T lymphocytes (CTL), which kill infected cells, play an important role in self-defense against viral infections or tumors. The interaction between a T-cell and an antigen-presenting cell (APC) is limited by human lymphocyte antigens (HLA). To study CTL killing of antigen-expressing cells in an in vitro CTL killing experiment, the antigen must be presented to the CTL in the correct HLA context, which usually means the target cell.

Pokus CTL-uništavanja može biti izveden kako slijedi: The CTL-killing experiment can be performed as follows:

APC stanice se transformiraju sklopom DNA koja sadrži antigenom označen niz. Antigen epitopi će biti vezani na MHC klase I molekule i pridodane na površinu stanice kao cilj za specifični CTL odgovor. Tako će, nakon inkubacije sa uzorkom pacijentova seruma, ovisno o prisutnosti specifičnih CTL limfocita, ACP stanice biti razorene. Raspored se mjeri praćenjem odpuštanja, npr. radioaktivnog kroma koji je bio ugrađen u APV staice prije dodatka seruma. APC cells are transformed by DNA assembly containing an antigen-tagged sequence. Antigen epitopes will be bound to MHC class I molecules and added to the cell surface as a target for a specific CTL response. Thus, after incubation with the patient's serum sample, depending on the presence of specific CTL lymphocytes, ACP cells will be destroyed. The schedule is measured by monitoring the release, for example, of radioactive chromium that was incorporated into the APV cells before the addition of serum.

Utvrđeni protokoli (Walkner i sur., 1989) koriste B-LCL uvedene da izraze antigen gene transfekcijom sa rekombinantnim caccinia virusima. No, stanice koje izražavaju antigen efikasno za oko jedan dan, umiru radi razarajućeg djelovanja vaccinia virusa. Established protocols (Walkner et al., 1989) use B-LCLs introduced to express antigenic genes by transfection with recombinant caccinia viruses. However, the cells that express the antigen effectively die in about a day due to the destructive action of the vaccinia virus.

Ove se poteškoće mogu predusresti pokusima CTL uništavanja uz upotrebu sistema prijenosa gena, izuma za uvođenje antigenom označenih struktura DNA, npr. struktura koje označavaju HIV ili tumorkse antigene u fibrolaste, da bi im se vratio antigenski izražaj. These difficulties can be overcome by CTL knockdown experiments using gene transfer systems, inventions for introducing antigen-tagged DNA structures, eg structures that tag HIV or tumor antigens, into fibroblasts to restore antigenic expression.

Primarni se fibroblasti lako dobiju iz biopsija, lako se razviju, a pokazalo se je da se mogu transficirati sa osobito visokim učinkom (oko 50 do 70%) po sadašnjem izumu. Primary fibroblasts are easily obtained from biopsies, are easily developed, and it has been shown that they can be transfected with a particularly high efficiency (about 50 to 70%) according to the present invention.

Takvi su pokusi korisni za identifikaciju epitopa uočenih po stanicama ubojicama, u pogledu građe vakcina. Nadalje, oni mogu biti korisno upotrebljeni u svrhu određivanja pojedinog sa HLA ograničenog imunog odgovora protiv datog antigena. Such experiments are useful for the identification of epitopes observed on killer cells, with regard to the composition of vaccines. Furthermore, they can be usefully used to determine an individual's HLA-restricted immune response against a given antigen.

Budući da se visoka razina izražaja prenešenih gena može postići u gotovo svim stanicama, izum se može koristiti za proizvodnju rekombinantnih proteina. No, tu nema, ili ima malo ograničenja u vezi sa slijedom, odnosno molekularnom težinom prenešene DNA. Postoji također široki spekar tipova stanica koje se mogu transfektirati sa strukturama DNA sadašnjeg izuma. Prema tome, za produkciju rekombinantnih proteina može se upotreijebii gotovo svaki tip stanice, koji osigurava da je rekombinantni protein proizveden u pouzdanom i potpuno modificiranom obliku koji garantira visoku biološku aktivnost produkta. Since a high level of expression of the transferred genes can be achieved in almost all cells, the invention can be used for the production of recombinant proteins. However, there are no or few restrictions regarding the sequence or molecular weight of the transferred DNA. There is also a wide spectrum of cell types that can be transfected with the DNA constructs of the present invention. Therefore, almost any type of cell can be used for the production of recombinant proteins, which ensures that the recombinant protein is produced in a reliable and completely modified form that guarantees a high biological activity of the product.

Prijenos gena u stanice može se izvršiti kao što je pokazano za luciferazu i za interferon alfa, a gotovo svaka konstrukcija gena koja daje porast željenoj produkciji proteina, može biti prenešena. Željeni se proteinski produkt može dobiti iz transficirane stanične kulture (ili staničnog supernatanta ili odgovarajućeg staničnog homogenata, prema protokolu za pojedini proteinski produkt), 24 sata do tjedan dana, ili više, nakon transfekcije. Gene transfer into cells can be performed as demonstrated for luciferase and interferon alpha, and almost any gene construct that increases the desired protein production can be transferred. The desired protein product can be obtained from the transfected cell culture (or cell supernatant or appropriate cell homogenate, according to the protocol for the individual protein product), 24 hours to a week, or more, after transfection.

Primjena sistena prijenosa gena, prema sadašnjem izmu za proizvodnju rekombinantnih proteina ima slijedeće prednosti: The use of gene transfer systems, according to the current ism for the production of recombinant proteins, has the following advantages:

1) Zbog visoke učinkovitosti transfekcije (više od 90% transficiranih stanica može iskazati prenešeni gen u velikoj mjeri), nije potrebno unaprijed birati pozitivno transficirane stanice i nema potrebe za ustanovljenje stabilnih staničnih linija. Stanična kultura u malom mjerilu može biti dovoljna za proizvodnju upotrebljivih količina proteina. 1) Due to the high efficiency of transfection (more than 90% of transfected cells can express the transferred gene to a large extent), it is not necessary to select positively transfected cells in advance and there is no need to establish stable cell lines. Small-scale cell culture may be sufficient to produce usable amounts of protein.

2) Velike konstukcije gena se mogu prenositi uspiješno su prenešene do sada i do 48 kb. 2) Large gene constructs can be transferred, and up to 48 kb have been successfully transferred so far.

3) Izražaj gena može se očitovati u stanicama koje obećavaju odgovarajuću obradu i modifikaciju (npr. karboksilacija faktora zgrušavanja ovisna o vitaminu K, vidi: Armentano, i sur., 1990, ili glikosilacija specifičnog tipa stanice). 3) Gene expression can be expressed in cells that promise appropriate processing and modification (eg, vitamin K-dependent carboxylation of clotting factors, see: Armentano, et al., 1990, or cell type-specific glycosylation).

4) Upotrebom ove metode omogućen je širi izbor vrsta ciljanih stanica za izražaj gena. 4) The use of this method enables a wider selection of target cell types for gene expression.

Nakon što je općenito opisan izum, on će biti još razumljiviji putem reference slijedećih primjera, koji su iznešeni ilustracijama, no nije im namjera da budu na bilo koji način faktor ograničenja. Svi su patenti i publikacije, koje su ovdje navedene, iznešene u cjelosti. Having generally described the invention, it will be further understood by reference to the following examples, which are set forth by way of illustration, but are not intended to be in any way limiting. All patents and publications listed here are presented in their entirety.

PRIMJERI EXAMPLES

U Primjerima koji slijede, a koji prikazuju sadašnji izum, korišteni su slijedeći mateijali i metode (ako nije drugačije naznačeno). In the following Examples illustrating the present invention, the following materials and methods were used (unless otherwise indicated).

Priprava kompleksa transferin-polilizin/DNA Preparation of the transferrin-polylysine/DNA complex

a) Humani transferin-polilizin konjugati a) Human transferrin-polylysine conjugates

Korištena je metoda opisana po Wagneru i sur., 1991b, prema kojoj je polilizin spojen na lance ugljikohidratne strane transferina. Otopina od 280 mg (3,5 µmol) humanog transferina (bez željeza, Sigma) u 6 ml matrij acetatnog pufera 30 mM, pH 5, ohladi se na 0ºC i doda se 750 µl 30mM Na-acetatnog pufera pH 5, koji sadrži 11 mg (51µmol) natrijeva perjodata. Smjesa se ostavi 90 minuta u mraku na ledenoj kupelji. The method described by Wagner et al., 1991b, was used, according to which polylysine was attached to the chains of the carbohydrate side of transferrin. A solution of 280 mg (3.5 µmol) of human transferrin (iron-free, Sigma) in 6 ml of 30 mM Na-acetate buffer, pH 5, was cooled to 0ºC and 750 µl of 30 mM Na-acetate buffer, pH 5, containing 11 mg (51 µmol) sodium periodate. The mixture is left for 90 minutes in the dark on an ice bath.

Radi uklanjanja niskomolekularnih produkata, izvedena je gel filtracija (Sephadex G-25, Pharmacia), što daje otopinu koja sadržava oko 250 mg oksidairanog transferina (mjereno ninhidrin pokusom). (Da bi se pokazao oksidirani oblik, koji sadrži aldehide i daje obojenu reakciju sa anisaldehidom, uzorci su dodani, kap po kap, na tankoslojnu ploču silika gela i osušeni, a ploče su zatim uronjene u p-anisaldehid/sumporna kiselina/etanol (1/1/18), osušene i zagrijane). Otopina modificiranog transferina dodana je brzo (unutar 10 do 15 minuta) u otopinu koja sadrži 1,5µmola fluoresceinom obilježenog poli(l)lizina prosječne dužine lanca od 190 monomera lizina, u 4,5 ml 10 mM natrijeva acetata pH 5. pH otopine se podesi na pH 7,5 dodatkom 1 M natrijum bikarbonatnog pufera. U smjesu se dodaje u razmacima od jednog sata, 4 obroka od 28,5 mg (450µmola) natrijeva cijanoborhidrida. Nakon 17 sati doda se 2 ml 5M natrijeva klorida da bi se postigla ukupna koncentracija otopine na 0,75M. Reakcijska se smjesa doda u kolonu sa kationskim izmjenjivačem (Pharmacia Mono S HR 10/10) i eluira sa gradijentom soli od 0,75M do 2,5M natrijeva klorida sa stalnim sadržajem od 25 mM HEPES, pH 7,3. Visoka koncentracija soli pri dodavanju u kolonu i u početku gradijenta, bitna je za dobivanje polikationskih konjugata. Protokom se eluira nešto transferina (oko 30%) zajedno sa slabom fluorescentnom aktivnosti. Glavni dio fluorosceinom označenog konjugata eluira se kod koncentracije soli između 1,35M i 1,9M, i hvata u tri frakcije. ove frakcije (redom kojim su eluirane) dale su nakon dvije dijalize prema 2 lit. 25M HEPES.a pH 7,3, frakciju A (TfpL190A) koja je sadržavala 45 mg (0,56 µmola) transferina, modificiranog sa 366 µmola polilizina, frakciju B (TfpL190B) koja je sadržavala 72 mg (0,90 µmola) transferina, modificiranog sa 557 µmola polilizina te frakciju C (TfpL190C), koja je sadržavala 7 mg (85 nmola) transferina, modificiranog sa 225 nmola polilizina. Ako se ne koriste odmah, konjugati se zamrznu tekućim dušikom i čuvaju kod -20ºC u obliku “bez željeza”. Prije unošenja željeza, uzorci (0,5 do 1 mg) se podese na fiziološku koncentraciju soli (150 mM) natrijevim kloridom. Željezo se unosi dodavanjem 4 µl 10mM željezo(III)citrat pufera (koji sadrži 200 mM citrata, a podešen je na pH 7,8 dodatkom natrijeva bikarbonata) po miligramu sadržaja transferina. Konjugati koji sadrže željezo, podijeljeni su u male alikvote prije upotrebe za DNA kompleksiranje, zatim su zamrznuti u tekućem dušiku ili smjesi suhog leda i etanola, te čuvani na -20ºC. (Ovaj se postupak pokazao pogodnim, no nađeno je da ponavljano otapanje i zamrzavanje uzrokuje gubitak aktivnosti konjugata. In order to remove low-molecular products, gel filtration (Sephadex G-25, Pharmacia) was performed, which gives a solution containing about 250 mg of oxidized transferrin (measured by the ninhydrin test). (To show the oxidized form, which contains aldehydes and gives a colored reaction with anisaldehyde, samples were added dropwise to a silica gel thin-layer plate and dried, and the plates were then immersed in p-anisaldehyde/sulfuric acid/ethanol (1 /1/18), dried and heated). A solution of modified transferrin was added rapidly (within 10 to 15 minutes) to a solution containing 1.5 µmol of fluorescein-labeled poly(l)lysine with an average chain length of 190 lysine monomers, in 4.5 ml of 10 mM sodium acetate pH 5. The pH of the solution was adjust to pH 7.5 by adding 1 M sodium bicarbonate buffer. 4 portions of 28.5 mg (450µmol) of sodium cyanoborohydride are added to the mixture at intervals of one hour. After 17 hours, 2 ml of 5M sodium chloride was added to bring the total concentration of the solution to 0.75M. The reaction mixture is added to a column with a cation exchanger (Pharmacia Mono S HR 10/10) and eluted with a salt gradient from 0.75M to 2.5M sodium chloride with a constant content of 25 mM HEPES, pH 7.3. A high salt concentration when added to the column and at the beginning of the gradient is essential for obtaining polycationic conjugates. Some transferrin (about 30%) is eluted with the flow along with weak fluorescent activity. The bulk of the fluoroscein-labeled conjugate eluted at salt concentrations between 1.35M and 1.9M, and was captured in three fractions. these fractions (in the order in which they were eluted) gave after two dialysis according to 2 lit. 25M HEPES.a pH 7.3, fraction A (TfpL190A) containing 45 mg (0.56 µmol) transferrin, modified with 366 µmol polylysine, fraction B (TfpL190B) containing 72 mg (0.90 µmol) transferrin , modified with 557 µmol of polylysine and fraction C (TfpL190C), which contained 7 mg (85 nmole) of transferrin, modified with 225 nmole of polylysine. If not used immediately, conjugates are frozen with liquid nitrogen and stored at -20ºC in “iron-free” form. Before iron administration, samples (0.5 to 1 mg) were adjusted to physiological salt concentration (150 mM) with sodium chloride. Iron is introduced by adding 4 µl of 10 mM iron(III) citrate buffer (containing 200 mM citrate, adjusted to pH 7.8 with the addition of sodium bicarbonate) per milligram of transferrin content. Iron-containing conjugates were divided into small aliquots before use for DNA complexation, then frozen in liquid nitrogen or a mixture of dry ice and ethanol, and stored at -20ºC. (This procedure proved convenient, but repeated thawing and freezing was found to cause loss of conjugate activity.

b) Transferin-polilizin konjugati glodavaca b) Rodent transferrin-polylysine conjugates

Slična je metoda upotrebljena kao za humani transferin, po tome što je spajanje izvedeno putem lanana ugljikohidratne strane. Konjugati od 15,5 nmola transferina glodavaca i 13 umola pL290 dobiveni su iz 4,1 mg (51 nmol) transferina glodavaca i 2,1 mg (34 nmola) pL290. A similar method was used as for human transferrin, in that the coupling was performed via the lanane of the carbohydrate side. Conjugates of 15.5 nmol rodent transferrin and 13 umol pL290 were obtained from 4.1 mg (51 nmol) rodent transferrin and 2.1 mg (34 nmol) pL290.

Plasmid-DNA Plasmid-DNA

a) pRSVL-DNA a) pRSVL-DNA

DNA plasmid pRSVL (koji sadržava Photinus pyralis gen luciferaze pod kontrolom Rous Sarcoma Virusa LTR Enhancer/Promoter (Uchida i sur., 1977, De Wet i sur., 1987), priređen je korištenjem Triton- x Lysis standardne metode (Maniatis), a zatim Cs/EtBr ravnotežnim centrifugiranjem gradijentom gustoće dekoloriranjem sa butanolom te dijalizom prema 10mM Tris/HC1 pH 7,5 1 mM EDTA). Za stvaranje kompleksa, uglavnom, miješa se 6 µg DNA plasmid materijala u 350 µl HBS (150 mM NaCl, 20 mM HEPES, pH 7,3) sa 12 µg transferin-polilizin konjugata u 150 µl HBS, 30 minuta prije dodavanja stanicama. The DNA plasmid pRSVL (containing the Photinus pyralis luciferase gene under the control of the Rous Sarcoma Virus LTR Enhancer/Promoter (Uchida et al., 1977, De Wet et al., 1987)) was prepared using the Triton-x Lysis standard method (Maniatis), and then Cs/EtBr equilibrium centrifugation by density gradient decolorization with butanol and dialysis against 10 mM Tris/HCl pH 7.5 1 mM EDTA). For complex formation, generally, 6 µg DNA plasmid material in 350 µl HBS (150 mM NaCl, 20 mM HEPES, pH 7.3) is mixed with 12 µg transferrin-polylysine conjugate in 150 µl HBS, 30 min before addition to the cells.

b)pCMVL-DNA b) pCMVL-DNA

Plasmid pCMVL (referentna struktura gena koja sadrži Photinus pyralis gen luciferaze pod kontrolom citomegalovirusnog promotora) pripremljen je uklanjanjem BamHI-Inserta plasmida pSTCX556 (Severne i sur., 1988), plasmid je obrađen Klenow fragmentom i HindIII/Sspl te Klenow-obrađenim fragmentom iz plasmida pRSVL, koji sadrži niz naznačen za luciferazu, te je uveden. pCMV gal opisali su MacGregor i Caskey (1989). Pripravak DNA je izrađen analogno kao pRSVL. Plasmid pCMVL (reference gene construct containing the Photinus pyralis luciferase gene under the control of the cytomegalovirus promoter) was prepared by removing the BamHI-Insert of plasmid pSTCX556 (Severne et al., 1988), the plasmid was treated with the Klenow fragment and HindIII/SspI and the Klenow-treated fragment from the plasmid pRSVL, containing the sequence indicated for luciferase, was introduced. pCMV gal was described by MacGregor and Caskey (1989). The DNA preparation was made analogously to pRSVL.

Proizvodnja virusnih pripravaka Production of viral preparations

a) Pripravci adenovirusa a) Adenovirus preparations

Korišten je soj adenovirusa d1312, opisan po Jonesu i Shenku, 1979, koji ima nedostatak u Ela području. Obnavljanje virusa izvedeno je u Ela-trans-dopunjavajućoj staničnoj liniji 293, a purifikacija je u velikom mjerilu obavljena kao što su opisali Davidson i Hassell, 1987. Pročišćeni virus je spremljen u pufer (100 mM Tris, pH 8,0 100 mM, NaCl, 0,1%, BSA, 50% glicerola) ili u HBS/40% glicerola, a alikvoti su čuvani na -70ºC. Koncentracija viriona je određena UV-spektrofotometrijskom analizom ekstrahirane genomične viralne DNA The adenovirus strain d1312, described by Jones and Shenk, 1979, which is deficient in the Ela region, was used. Virus recovery was performed in the Ela- trans -complementing cell line 293, and large-scale purification was performed as described by Davidson and Hassell, 1987. Purified virus was stored in buffer (100 mM Tris, pH 8.0, 100 mM NaCl , 0.1%, BSA, 50% glycerol) or in HBS/40% glycerol, and aliquots were stored at -70ºC. The virion concentration was determined by UV-spectrophotometric analysis of the extracted genomic viral DNA

(Formula: jedna jedinica optičke gustoće, OD, A260, odgovara 1012 viralnih čestica/ml) (Chardonnet i Dales, 1970). (Formula: one optical density unit, OD, A260, corresponds to 1012 viral particles/ml) (Chardonnet and Dales, 1970).

(b) Priprema retrovirusa (b) Preparation of retroviruses

Moloney retrovirus leukemije glodavaca N2 je pakovan ekotrpskim načinom pakovanja (Keller i sur., 1985, Armentano i sur., 1987). Supernatanti virusnih izažetih stanica su sabrani, zamrznuti u tekućem dušiku i čuvani na -20ºC. Korišteni supernatanti u Primjerima, imali su titar od približno 106 cfu/ml, mjeren formiranjem kolonije otporne na neomicin sa NIH3T3 stanicama. Za pokuse virusne koncentracije, superntanti su propušteni kroz 300 kD nepropusnu membranu (FILTRON) u AMICON staničnom koncetratoru, pod tlakom dušika. Ovom se metodom normalno koncentrira 10 do 30 ml supernatanta deset puta. Moloney murine leukemia retrovirus N2 was packaged using the ecotropic packaging method (Keller et al., 1985, Armentano et al., 1987). Supernatants of virally expressed cells were collected, frozen in liquid nitrogen and stored at -20ºC. The supernatants used in the Examples had a titer of approximately 10 6 cfu/ml, as measured by neomycin-resistant colony formation with NIH3T3 cells. For virus concentration experiments, supernatants were passed through a 300 kD impermeable membrane (FILTRON) in an AMICON cell concentrator, under nitrogen pressure. This method normally concentrates 10 to 30 ml of supernatant ten times.

Stanice i hranilišta Stations and feedlots

HeLa stanice su kultivirane u DMEM-hranilištu, kojemu je dodano 5% toplinski inkativiranog seruma telećeg fetusa (FCS), penicilina u količinama od 100 i.j./ml, streptomicina (100 ug/ml) i 2 mM glutamina. WI-38, MRC-5 i KB stanice kultivirane su u EMEM-hranilištu (Eagle-ov Modificirani Esencijalni Medij), dopunjenom sa 10% toplinski inaktiviranog FCS, antibioticima, kao što je DMEM hranilište, 10 mM ne-esencijalnih aminokiselina i 2mM glutamina. CFT1, linije epitelijalnih stanica respiratorne cistične fibroze (pripremljena je metodom opisanom po Yankaskasu i sur., 1991; CFT1 stanična linija je karakterizirana time što je homozigotična za CF-mutaciju F508 raspada) kultivirana je u F12-7x-hranilištu (Willumsen i sur., 1989). Za eksperimente prijenosa gena stanice su kultivirane u 6 cm pločama, sve dok nisu bile 50% skupljene (5 x 105 stanica). Hranilište je uklonjeno i dodan 1 ml DMEM ili EMEM/2% FCS hranilišta. Zatim su dodani konjugat-DNA kompleksi, a odmah nakon toga adenovirus d1312 (0,05 - 3,2 x 104 čestica po stanici) ili usporedljivi volumen pufera za čuvanje virusa 1 - 80 ul). Ploče su vraćene na jedan sat u inkubator (5% CO2, 37ºC), a zatim je dodano 3 ml kompletnog hranilišta. Nakon daljnjih 24 sata inkubacije stanice su sabrane radi mjerenja izražaja gena luciferaze. U slučaju CFT1, stanice su kultivirane 4 sata u F12-7X hranilištu bez humanog transfera, prije eksperimenta prijenosa gena. HeLa cells were cultured in DMEM medium supplemented with 5% heat-inactivated fetal calf serum (FCS), 100 IU/ml penicillin, 100 µg/ml streptomycin and 2 mM glutamine. WI-38, MRC-5 and KB cells were cultured in EMEM medium (Eagle's Modified Essential Medium), supplemented with 10% heat-inactivated FCS, antibiotics, such as DMEM medium, 10 mM non-essential amino acids and 2 mM glutamine . CFT1, a respiratory cystic fibrosis epithelial cell line (prepared by the method described by Yankaskas et al., 1991; the CFT1 cell line is characterized by being homozygous for the CF-mutation F508 decay) was cultured in F12-7x medium (Willumsen et al. , 1989). For gene transfer experiments, cells were cultured in 6 cm plates until they were 50% confluent (5 x 10 5 cells). The medium was removed and 1 ml of DMEM or EMEM/2% FCS medium was added. Conjugate-DNA complexes were then added, followed immediately by adenovirus d1312 (0.05 - 3.2 x 104 particles per cell) or a comparable volume of virus storage buffer (1 - 80 µl). The plates were returned for one hour to the incubator (5% CO2, 37ºC) and then 3 ml of complete medium was added. After a further 24 hours of incubation, the cells were collected to measure the expression of the luciferase gene. In the case of CFT1, cells were cultured for 4 hours in F12-7X medium without human transfer, before the gene transfer experiment.

Slijedeće stanične linije dobavljene su od ATCC, a mogu se dobiti pod datim brojevima kataloga. HeLa stanice: CCL 2, K562 stanice: CCL 243, HepG2 stanice: HB 8065, TIB-73-stanice: TIB 73 (BNL CL.2), NIH3T3 stanice: CRL 1658, 293 stanice: CRL 1573, KB stanice: CCL 17, Wi-38 stanice: CCL 75, MRC 5 stanice CCL171. H9 stanice su dobavljene iz AIDS Research and Reference Reagent Program, U.S. Department of Health and Human Services, Katalogu broj 87. The following cell lines were obtained from ATCC and can be obtained under the catalog numbers given. HeLa cells: CCL 2, K562 cells: CCL 243, HepG2 cells: HB 8065, TIB-73-cells: TIB 73 (BNL CL.2), NIH3T3 cells: CRL 1658, 293 cells: CRL 1573, KB cells: CCL 17 , Wi-38 stations: CCL 75, MRC 5 stations CCL171. H9 cells were obtained from the AIDS Research and Reference Reagent Program, U.S. Department of Health and Human Services, Catalog number 87.

Primarni limfociti su dobiveni uzimanjem 25 ml krvi pupčane vrpce u epruvete koje su sadržavale EDTA. Alikvoti su preliveni sa 4,5 ml reagensa Ficoll-Hypaque (Pharmacia) te su centrifugirani 15 minuta sa 2500 rpm. Smeđi sloj između gornjeg sloja plazme i bistrog sloja Ficolla se ukloni (oko 10 ml). Doda se 40 ml IMDM sa 10% FCS, uzorak se centrifugira sa 1200 rpm 15 minuta, a stanična se peleta suspendira u 50 ml svježeg IMDM sa 10% FCS (gustoća sanica bila je oko 2 x 106 stanica/ml). Doda se 250 ul fitohemaglutinina (PHA P, DIFCO), kultura se inkubira 48 sati kod 37ºC i uz 5% CO2, doda se rekombinant IL-2 (BMB) u koncentraciji od 20 jedinica/ml. Stanice se zatim razdijele 1:3 sa IMDM/20% FCS, 2 jedinice/ml IL-2. Alikvoti stanica se zamrznu u tekućem dušiku u FCS sa 5% DMSO. Prije upotrebe stanice se razmnože u IMDM sa 20% FCS i 2 jedinice/ml IL-2. Primary lymphocytes were obtained by taking 25 ml of umbilical cord blood into test tubes containing EDTA. Aliquots were poured with 4.5 ml of Ficoll-Hypaque reagent (Pharmacia) and centrifuged for 15 minutes at 2500 rpm. The brown layer between the upper plasma layer and the clear Ficoll layer is removed (about 10 ml). 40 ml of IMDM with 10% FCS was added, the sample was centrifuged at 1200 rpm for 15 minutes, and the cell pellet was suspended in 50 ml of fresh IMDM with 10% FCS (the pellet density was about 2 x 106 cells/ml). 250 ul of phytohemagglutinin (PHA P, DIFCO) is added, the culture is incubated for 48 hours at 37ºC and with 5% CO2, recombinant IL-2 (BMB) is added at a concentration of 20 units/ml. Cells are then split 1:3 with IMDM/20% FCS, 2 units/ml IL-2. Aliquots of cells were frozen in liquid nitrogen in FCS with 5% DMSO. Before use, cells were propagated in IMDM with 20% FCS and 2 units/ml of IL-2.

Za daljnja istraživanja povezivanja HeLa stanice su održavane kod 4ºC u 1 ml DMEM, uz dodatak 2% FCS. Dodani su konjugat-DNA kompleksi, kao i u drugim testovima, i ploče se inhibiraju 2 h kod 4ºC. Zatim se ploče temeljito peru ledenim DMEM/2% FCS, i onda se doda 2 ml toga hranilišta. Adenovirus d1312 ili virusni pufer se zatim doda i stnice se ostave da se polako ugriju prije nego što se stave u inkubator na daljnja 24 sata. Nakon ove inkubacije stanice se pokupe i ispitaju na izražaj gena luciferaze. For further binding studies HeLa cells were maintained at 4ºC in 1 ml DMEM supplemented with 2% FCS. Conjugate-DNA complexes were added, as in other assays, and plates were incubated for 2 h at 4ºC. The plates are then thoroughly washed with ice-cold DMEM/2% FCS, and then 2 ml of this medium is added. Adenovirus d1312 or virus buffer is then added and the cells are allowed to warm slowly before being placed in the incubator for a further 24 hours. After this incubation, the cells are collected and tested for the expression of the luciferase gene.

Pokus luciferaze The luciferase experiment

Priprema staničnih ekstrakata, standardzacija sadržaja potebna i određivanje aktivnosti luciferaze izvodi se kao što su opisali Zenke i sur., 1990, Cotten i sur., 1990, te EP 388 758. Preparation of cell extracts, standardization of the necessary content and determination of luciferase activity are performed as described by Zenke et al., 1990, Cotten et al., 1990, and EP 388 758.

Primjer 1 - Određivanje učinka obrade adenovirusom na prijenos gena transferin-polilizin konjugatima. Example 1 - Determination of the effect of adenovirus treatment on gene transfer by transferrin-polylysine conjugates.

Prije svega ispitivan je bio učinak povećanja doze virusa na sposobnost određene količine konjugat_DNA kompleksa da bi se postigao prijenos gena. Za stvaranje kompleksa pomiješa se 6µg plasmida pRSVL sa 12µg humanog transferin-polilizin konjugata (hTfpL190B). Kompleks konjugat-DNA sa različitim količinama adenovirusa d1312 (0,05 - 3,2 x 104 čestica virusa po stanici) dodavan je stanicama HeLa. Rezultati ove analize prikazani su na slici 1. Aktivnost luciferaze je izražena u jedinicama od 50µg ukupnog staničnog proteina. Prema toj analizi povećanje količina dodanog adenovirusa dovodi do povećanja prijenosa gena. Slika prikazuje prosječne vrijednosti iz 2 do 4 posebna pokusa. Razmaknute crte prikazuju standardne devijacije. First of all, the effect of increasing the virus dose on the ability of a certain amount of the conjugate-DNA complex to achieve gene transfer was examined. To create the complex, mix 6 µg of plasmid pRSVL with 12 µg of human transferrin-polylysine conjugate (hTfpL190B). The conjugate-DNA complex with different amounts of adenovirus d1312 (0.05 - 3.2 x 104 virus particles per cell) was added to HeLa cells. The results of this analysis are shown in Figure 1. Luciferase activity is expressed in units of 50 µg of total cellular protein. According to this analysis, an increase in the amount of added adenovirus leads to an increase in gene transfer. Figure shows average values from 2 to 4 separate experiments. The spaced lines show the standard deviations.

Primjer 2 - Učinak doziranja kompleksa konjugat-DNA Example 2 - Dosing effect of the conjugate-DNA complex

Logoritamska razređenja kompleksa konjugat-DNA, pripremljena kao u primjeru 1, dodana su HeLa stanicama, sa ili bez dodatka stalne doze adenovirusa d1312 (1 x 104 viralnih čestica po stanici). Aktivnost luciferaze je određena kao u primjeru 1. Rezultati su prikazani na slici 2. Logarithmic dilutions of the conjugate-DNA complex, prepared as in Example 1, were added to HeLa cells, with or without the addition of a constant dose of adenovirus d1312 (1 x 104 viral particles per cell). Luciferase activity was determined as in Example 1. The results are shown in Figure 2.

Primjer 3 - Povećanje prijenosa gena uzrokovano transferin polilizinom pomoću adenovirusa, javlja se putem receptorski upravljane endocitoze. Example 3 - Enhancement of gene transfer caused by transferrin polylysine by adenovirus, occurs via receptor-directed endocytosis.

a) Učinak adenovirusne obrade na prijenos kompeksirane DNA. a) The effect of adenoviral treatment on the transfer of compacted DNA.

Za transfekciju su upotrebljene slijedeće komponente: The following components were used for transfection:

6µg pRSVL-DNA bez transferin-polilizin konjugata (DNA); 6µg pRSVL-DNA ijoš k tome 6µg nekonjugiranog polilizina 270 (DNA+pL); 6ug PRSVL-DNA sa 12 ug transferin-polilizin konjugata korištenog u prijašnjim primjerima (DNA + HTfpL190B). ovi materijali za transfekciju dodavani su HeLa stanicama sa ili bez adenovirusa d1312 (1 x 104 virusnih čestica po stanici. Priprava staničnih ekstrakata, standardizacija ukupnog proteina te određivanje aktivnosti luficeraze izvedeno je ako i u prijašnjima primjerima. Rezultati testova prikazani su slikom 3A. 6 µg of pRSVL-DNA without transferrin-polylysine conjugate (DNA); 6 µg of pRSVL-DNA plus 6 µg of unconjugated polylysine 270 (DNA+pL); 6 µg of PRSVL-DNA with 12 µg of the transferrin-polylysine conjugate used in the previous examples (DNA + HTfpL190B). these transfection materials were added to HeLa cells with or without adenovirus d1312 (1 x 104 viral particles per cell. Preparation of cell extracts, standardization of total protein, and determination of luficerase activity were performed as in previous examples. The results of the tests are shown in Figure 3A.

b) Učinak obrade adenovirusom na prijenos receptorski vezane DNA. b) The effect of adenovirus treatment on the transfer of receptor-bound DNA.

Kompleksi konjugat-DNA (DNA + hTfpL190B) ili polilizin-DNA kompleksi (DNA + pL) povezani su sa HeLa, bez internalizacije, inkubiranjem kod 4ºC. Nevezani kompleks je uklonjen prije dodatka adenovirusa d1312 (d1312) (1 x 104 virusnih čestica po stanici) ili odgovarajućeg volumena pufera. Nakon toga izvedena je inkubacija kod 37ºC, da bi se omogućila internalizacija vezanih DNA kompleksa i adenovirusa. Aktivnost luciferaze određena je kao što je opisano (slika 38). Conjugate-DNA complexes (DNA + hTfpL190B) or polylysine-DNA complexes (DNA + pL) were associated with HeLa, without internalization, by incubation at 4ºC. Unbound complex was removed prior to the addition of adenovirus d1312 (d1312) (1 x 104 viral particles per cell) or an appropriate volume of buffer. After that, incubation was performed at 37ºC, to enable the internalization of bound DNA complexes and adenoviruses. Luciferase activity was determined as described (Figure 38).

c) Učinak obrade adenovirusom na prijenos gena konjugatima transferin-polilizin. c) Effect of adenovirus treatment on gene transfer by transferrin-polylysine conjugates.

Kompleksi konjugat-DNA koji sadrže 6 µg pRSVL-DNA i uz to 12µg transferin-polilizina (DNA +hTfpL190B) dodani su HeLa stanicama sa 104 čestica adenovirusa (d1312) po stanici ili odgovarajuća količina toplinski inaktiviranog adenovirusa d1312 (d1312 h.i.). Toplinska je inaktivacija izvedena inkubiranjem 30 minuta kod 45ºC (Defer i sur., 1990). Slika 3C pokazuje aktivnost luciferaze. Conjugate-DNA complexes containing 6 µg of pRSVL-DNA and in addition 12 µg of transferrin-polylysine (DNA +hTfpL190B) were added to HeLa cells with 104 adenovirus particles (d1312) per cell or the corresponding amount of heat-inactivated adenovirus d1312 (d1312 h.i.). Thermal inactivation was performed by incubating for 30 minutes at 45ºC (Defer et al., 1990). Figure 3C shows luciferase activity.

Primjer 4 - Učinak obrade adenovirusom na prijenos gena konjugatima transferin-polilizin u odabranim staničnim linijama. Example 4 - Effect of adenovirus treatment on gene transfer by transferrin-polylysine conjugates in selected cell lines.

Konjugat-DNA kompleksi (6 µg pRSVL + 12 µg hTfpL190B) dodani su stanicama staničnih linija CFT1, KB, HeLa, WI38 i MRC5, sa ili bez adenovirusa d1312 (1 x 104 čestica virusa po stanici). Učinkovitost prijenosa gena za različite linije stanica određena je kao i u prijašnjim primjerima pokusom luciferaze (slika 4). Conjugate-DNA complexes (6 µg pRSVL + 12 µg hTfpL190B) were added to cells of the cell lines CFT1, KB, HeLa, WI38 and MRC5, with or without adenovirus d1312 (1 x 104 virus particles per cell). The efficiency of gene transfer for different cell lines was determined as in the previous examples by the luciferase experiment (Figure 4).

Primjer 5 - Pojačanje funkcija izražaja gena luciferaze na razini prijenosa gena, a ne na razini tansaktivacije Example 5 - Enhancement of luciferase gene expression functions at the level of gene transfer and not at the level of transactivation

Stanična linija označena sa K562 10/6 koja po sastavu izražava luciferazu, pripremljena je transfekcijom stanica sa plasmidom koji je sadržavao fragment gena luciferaze RSV (Apal/Pvul fragment pRSVL; De Wet i sur., 1987), kloniran u Clal položaj pUCµ Locusa (Collis i sur., 1990). ovaj je plasmid kompleksiran sa transferin-polilizin konjugatom, a K562 stanice su transferirane tim kompleksima, po metodi koju su opisali Cotten i sur., 1990. Budući da pUCµ Locus plasmid sadrži gen otporan na neomicin, moguće je odabrati ga za klonove koji izražavaju luciferazu, na osnovu otpornosti na neomicin. Za daljnje je pokuse odabran klon K562 10/6. The cell line designated K562 10/6, which constitutively expresses luciferase, was prepared by transfecting the cells with a plasmid containing a fragment of the RSV luciferase gene (Apal/Pvul fragment pRSVL; De Wet et al., 1987), cloned into the ClaI position of the pUCµ Locus ( Collis et al., 1990). this plasmid was complexed with a transferrin-polylysine conjugate, and K562 cells were transfected with these complexes, according to the method described by Cotten et al., 1990. Since the pUCµ Locus plasmid contains a neomycin resistance gene, it is possible to select for clones expressing luciferase , based on neomycin resistance. K562 10/6 clone was selected for further experiments.

Alikvoti roditeljske stanične linije K562 (u 200 µl RPMI 1640 sa 2% FCS; 500.000 stanica po uzorku) obađeni su ili s 12µg TfpL plus 6µg pRSVL, ili sa 4 µg pL 90 plus 6 µg pRSVL, u 500 µl HBS u oba slučaja. Specificirane količine adenovirusa d1312 (Slika 5) ostavljene su da djeluju na stanice 1,5 sati kod 37ºC, nakon čega je dodano 2 ml RIMI i 10% FCS. Zatim se inkubacija nastavlja kod 37ºC još 24 sata i zatim se stanice pripreme Aliquots of the parental cell line K562 (in 200 µl RPMI 1640 with 2% FCS; 500,000 cells per sample) were treated with either 12 µg TfpL plus 6 µg pRSVL, or 4 µg pL 90 plus 6 µg pRSVL, in 500 µl HBS in both cases. Specified amounts of adenovirus d1312 (Figure 5) were allowed to act on the cells for 1.5 hours at 37ºC, after which 2 ml RIMI and 10% FCS were added. Then the incubation is continued at 37ºC for another 24 hours and then the cells are prepared

za mjerenje aktivnosti luciferaze. Nađeno je da je inkubacija sa adenovirusom dovodi do značajnog porasta aktivnosti luciferaze (Slika 5A). To se primjenjuje kako na TfpI komplekse (2000 lakih jedinica u usporedbi sa 25.000 lakih jedinica), tako na pL 90 kompleksa (0 u usporedbi sa 1,9 x 106 lakih jedinica). To pokazuje da stanična linija K562 ima sposobnost da internalizira pRSVL polilizin kompleksa i da je ta internalizacija, mjerena izražajem luciferaze, znatno povećana prisutnošću adenovirusa. to measure luciferase activity. Incubation with adenovirus was found to lead to a significant increase in luciferase activity (Figure 5A). This applies to both TfpI complexes (2000 light units compared to 25,000 light units) and pL 90 complexes (0 compared to 1.9 x 106 light units). This shows that the K562 cell line has the ability to internalize the pRSVL polylysine complex and that this internalization, as measured by luciferase expression, is significantly increased by the presence of adenovirus.

Analogni su testovi izvedeni sa K561 10/6 stanicama, koje po prirodi izražavaju RSVI gen luciferaze, a upotrebljene su slične količine adenovirusa d1312. Alikvoti od 500.000 stanica (u 200 µl RPMI sa2% FCS) inihibirani su kod 37ºC 1,5 h, sa količinama adenovirusa d1312 naznačenim u Sl. 5B. Zatim se doda, kao i u roditeljskoj staničnoj liniji, RPMI plus 10% FCS, inhibicija se nastavlja 24 sata i odredi se aktivnost luciferaze. Kao što se vidi iz slika 5B, obrada ovih stanica sa adenovirusom nije imala uočljivi utjecaj na aktivnost luciferaze. Kontrolne su vrijednosti u istom rasponu kao i vrijednosti za virusom obrađene uzorke. Analogous tests were performed with K561 10/6 cells, which naturally express the RSVI luciferase gene, and similar amounts of adenovirus d1312 were used. Aliquots of 500,000 cells (in 200 µl RPMI with 2% FCS) were inhibited at 37ºC for 1.5 h, with the amounts of adenovirus d1312 indicated in FIG. 5B. Then, as in the parental cell line, RPMI plus 10% FCS is added, inhibition is continued for 24 hours, and luciferase activity is determined. As seen in Figure 5B, treatment of these cells with adenovirus had no detectable effect on luciferase activity. The control values are in the same range as the values for the virus-treated samples.

Primjer 6 - Transfekcija stanica jetre sa konjugatima asialofetuin-polilizin (AFpL) ili sa konjugatima Tetra-galaktoza peptid-pL (gal 4pL) u prisutnosti adenovirusa. Example 6 - Transfection of liver cells with asialofetuin-polylysine (AFpL) conjugates or with tetra-galactose peptide-pL (gal 4pL) conjugates in the presence of adenovirus.

a) Priprava laktosiliranog peptida a) Preparation of lactosylated peptide

3,5 mg (1,92 umola) razgranatog peptida Lys-(N-Liz)Lys-Gly-Ser- Gly-Gly-Ser - Gly-Gly-Ser- Gly-Gly-Cys, pripremljenog Fmoc metodom korištenjem “Applied Biosystems 431A Peptide Synthesizer, koji sadrži ditiopiridinsku grupu za Cys, obrađivano je otopinom od 7,85 mg laktoze u 40 µl 10 mM vodene otopine natrijeva acetata pH 5, kod 37ºC. Otopini se doda 4 alikvota po 0,6 mg (10 µmola) natrijeva cijanoborhidrida, u intevalima od oko 10 sati. Nakon ukupno 64 sata doda se kod 37ºC, 0.5 ml HEPES pH 7,3 i 15 mg ditiotreitola (DTT). Frakcioniranje gel filtracijom (Sephadex G-10, 12 y 130 mm. Eluent: 20 mM NaCl) pod argonom dalo je 3,6 ml otopine laktosiliranog peptida u slobodnoj merkapto formi (1,74µmola što odgovara Ellmann-ovu testu prinos 84%). Uzorci modificiranog peptida pokazali su reakciju obojenja sa anisaldehidom, ali sa ninhidrinom nije bilo reakcije. To se slaže s pretpostavkom da su sve četiri terminalne amino grupe laktosilirane. Konjugat tetra-galaktoze peptid-polilizin prikazan je na slici 6. 3.5 mg (1.92 umole) of the branched peptide Lys-(N-Liz)Lys-Gly-Ser- Gly-Gly-Ser - Gly-Gly-Ser- Gly-Gly-Cys, prepared by the Fmoc method using "Applied Biosystems 431A Peptide Synthesizer, containing a dithiopyridine group for Cys, was treated with a solution of 7.85 mg of lactose in 40 µl of 10 mM aqueous sodium acetate pH 5, at 37ºC. 4 aliquots of 0.6 mg (10 µmol) of sodium cyanoborohydride are added to the solution, at intervals of about 10 hours. After a total of 64 hours at 37ºC, 0.5 ml of HEPES pH 7.3 and 15 mg of dithiothreitol (DTT) are added. Fractionation by gel filtration (Sephadex G-10, 12 y 130 mm. Eluent: 20 mM NaCl) under argon gave 3.6 ml of lactosylated peptide solution in free mercapto form (1.74 µmol corresponding to Ellmann test yield 84%). Samples of the modified peptide showed a staining reaction with anisaldehyde, but no reaction with ninhydrin. This agrees with the assumption that all four terminal amino groups are lactosylated. The tetra-galactose peptide-polylysine conjugate is shown in Figure 6.

b) Priprema 3-ditioiridin propionatom modificiranog polizina. b) Preparation of polyzine modified with 3-dithioiridine propionate.

400 µl 15mM etanolne otopine SPDP (6,0 µmola) da se, uz snažno miješanje, gel-filtriranoj otopini 0,60 µmola poli-L-lizina sa prosječnom dužinom lanca od 290 monomera lizina (pL290, hidrobromid, Sigma) u 1,2 ml 100 nm HEPES Ph 7,9. Jedan sat kasnije, 500 µl 1M natrijeva acetata, pH 5, doda se nakon gel-filtracije (Sephadex G-15) sa 100 mM natrijeva acetata, otopina je sadržavala 0,56 µmola pL290 sa 5,77 µmola ditiopiridin vezane. 400 µl of a 15 mM ethanolic solution of SPDP (6.0 µmol) was added, with vigorous stirring, to a gel-filtered solution of 0.60 µmol of poly-L-lysine with an average chain length of 290 lysine monomers (pL290, hydrobromide, Sigma) in 1, 2 ml 100 nm HEPES Ph 7.9. One hour later, 500 µl of 1M sodium acetate, pH 5, was added after gel-filtration (Sephadex G-15) with 100 mM sodium acetate, the solution contained 0.56 µmol of pL290 with 5.77 µmol of dithiopyridine bound.

c) Spajanje peptida sa polilizinom. c) Connection of the peptide with polylysine.

Konjugati su pripremljeni miješanjem 1,5 µmola laktosiliranog peptida priređenog u a) u 3 ml 20mM NaCl s 0,146 µl modificiranog pL290 dobivenog iz b) u 620 µl 100mM natrij-acetatnog pufera, pod argonom. Nakon dodatka 100 µl 2M HEPES, pH 7,9, reakcijska se smjesa ostavi stajati 18 sati na sobnoj temperaturi, Dodatkom BNaCl koncentracija soli se podesi na 0,66 M i konjugati se izoliraju kromatografijom sa kationskim izmjenjivačem (Pharnacia Mono S kolona HR 5/5; gradijent eluiranja: Pufer A 50 mM HEPES pH 7,3; Pufer B: pufer A sa 3 M NaCl). Frakcije produkta su eluirane sa koncentracijom soli od oko 1,2 M - 1,8 M, a hvatane su u dvije frakcije konjugata: frakcije konjugata su nazvane ga14pL1 i ga14pL2. Dializa sa 25 mM HEPES pH 7,3 dala je frakcija konjugata ga14pL1, sa 24 nmola modificiranog pL290 i ga13pL2 sa 24,5 nmola modificiranog pL290. Conjugates were prepared by mixing 1.5 µmol of the lactosylated peptide prepared in a) in 3 ml of 20 mM NaCl with 0.146 µl of modified pL290 obtained from b) in 620 µl of 100 mM sodium-acetate buffer, under argon. After the addition of 100 µl of 2M HEPES, pH 7.9, the reaction mixture was left to stand for 18 hours at room temperature, with the addition of BNaCl the salt concentration was adjusted to 0.66 M and the conjugates were isolated by chromatography with a cation exchanger (Pharnacia Mono S column HR 5/ 5; elution gradient: Buffer A 50 mM HEPES pH 7.3; Buffer B: buffer A with 3 M NaCl). The product fractions were eluted with a salt concentration of about 1.2 M - 1.8 M, and were captured in two conjugate fractions: the conjugate fractions were named ga14pL1 and ga14pL2. Dialysis with 25 mM HEPES pH 7.3 gave a conjugate fraction of ga14pL1, with 24 nmoles of modified pL290 and ga13pL2 with 24.5 nmoles of modified pL290.

d) Priprava asialofetuin konjugata d) Preparation of asialofetuin conjugate

Konjugati su priređeni na istoj osnovi kao transferin konjugati. Sličnu metodu priprave asialoorosomukoid-polilizin konjugata opisali su Wu i Wu 1988. The conjugates were prepared on the same basis as the transferrin conjugates. A similar method for the preparation of asialoorosomucoid-polylysine conjugate was described by Wu and Wu in 1988.

Spajanje asialofetuina sa polilizinom izvedeno je sa bifunkcionalnim reagensom SPDP (Pharmacia). Otopina od 100 mg (2,2 µmola) asialofetuina (Sigma) u 2 ml 100mM HEPES pH 7,9 podvrgnuta je gelfiltraciji na Sephadex G-25 koloni. U 4 ml dobivene otopine dade se 330 µm 15mM etanolne otopine SPDP (5,0 µmola), uz snažno mješanje. Nakon jednog sata stajanja na sobnoj temperaturi, purifikacija se izvodi drugom gel filtracijom (Sephadex G-25); tako da se dobiva 5 ml otopine 1,4 µmola asialofetuina, modificiranog sa 2,5 µmola ditiopiridin veziva. Coupling of asialofetuin with polylysine was performed with the bifunctional reagent SPDP (Pharmacia). A solution of 100 mg (2.2 µmol) of asialofetuin (Sigma) in 2 ml of 100 mM HEPES pH 7.9 was subjected to gel filtration on a Sephadex G-25 column. 330 µm of a 15mM ethanol solution of SPDP (5.0 µmole) was added to 4 ml of the resulting solution, with vigorous mixing. After standing for one hour at room temperature, purification is performed by another gel filtration (Sephadex G-25); so that 5 ml of a solution of 1.4 µmol of asialofetuin, modified with 2.5 µmol of dithiopyridine binder, is obtained.

Konjugati se pripremaju miješanjem 1,4 µmola asialofetuina u 5 ml 100mM HEPES pH 7,9, sa 0,33 µmola modificiranog pL190 (koji sadrži 1,07 µmola merkaptopropionatnih grupa; isti je postupak korišten za pripravu transferin konjugata) u 6,5 ml 100mM HEPES pH 7,6, pod atmosferom dušika. Reakcijska se smjesa ostavi 24 sata na sobnoj temperaturi. Konjugati se izoliraju iz reakcijske smjese kromatografijom na kationskom izmjenjivaču (pharmacia Mon s-kolona HR 10/10; gradijent eluiranja, pufer A: 50mM HEPES pH 7,9; pufer B: pufer A plus 3M natrijeva klorida) i doda se natrijeva klorida toliko da se postigne konačna koncentracija 0,6 M, prije dodatka u kolonu. Frakcija produkta se eluira uz koncentraciju soli od oko 1,5 M. Dijaliza sa HBS dala je konjugate, koji su sadržavali 0,52 µmola asialofetuina modificiranog sa 0,24 µmola pL190. Conjugates are prepared by mixing 1.4 µmol of asialofetuin in 5 ml of 100 mM HEPES pH 7.9, with 0.33 µmol of modified pL190 (containing 1.07 µmol of mercaptopropionate groups; the same procedure was used to prepare the transferrin conjugate) in 6.5 ml 100mM HEPES pH 7.6, under nitrogen atmosphere. The reaction mixture is left for 24 hours at room temperature. The conjugates are isolated from the reaction mixture by chromatography on a cation exchanger (pharmacia Mon s-column HR 10/10; elution gradient, buffer A: 50 mM HEPES pH 7.9; buffer B: buffer A plus 3M sodium chloride) and sodium chloride is added until to reach a final concentration of 0.6 M, before addition to the column. The product fraction was eluted with a salt concentration of about 1.5 M. Dialysis with HBS gave conjugates, which contained 0.52 µmol of asialofetuin modified with 0.24 µmol of pL190.

e) Transfekcija HepG2 stanica sa pRSVL-DNA kompleksima. e) Transfection of HepG2 cells with pRSVL-DNA complexes.

HepG2 stanice su uzgajane u DMEM hranilištu plus 10% FCS, 100 i.j./ml penicilina, 100 µg/ml steptomicina i 2 mM glutamina, u T25 bočicama. Transfekcije su obavljene uz gustoću od 400.000 stanica po bočici. Prije transfekcije, stanice su prane sa 4 ml svježeg hranilišta koje je sadržavalo 10% FCS. Neposredno prije transfekcije doda se klorokina (Sigma) toliko da konačna koncentracija u staničnoj suspenziji (sa DNA-otopinom) bude 100 µM. HepG2 cells were grown in DMEM medium plus 10% FCS, 100 IU/ml penicillin, 100 µg/ml steptomycin and 2 mM glutamine, in T25 vials. Transfections were performed at a density of 400,000 cells per vial. Before transfection, cells were washed with 4 ml of fresh medium containing 10% FCS. Immediately before transfection, chloroquine (Sigma) is added in such a way that the final concentration in the cell suspension (with DNA solution) is 100 µM.

10 ug pRSVL-DNA u 330 µl HBS pomiješa se sa količinama TfpL190B konjugata, asialofetuina pL90 konjugata (AFpL), polilizina 290 (pL) ili tetra-galaktozopeptid polilizin konjugata ga14pL, specificiranim u slici 7, u 170 µl HBS. U usporednim pokusima doda se nakon 30 min. 40 µg asialofetuina (gal)4pL +Af) ili 30 µg laktosiliranog peptida ((gal)4pL + (gal)4). Smjesa se doda u stanice. Stanice se inkubiraju kod 37ºC, 4 sata, a zatim se transfektivni medij zamijeni sa 4 ml svježeg DMEM medija plus 10% FCS. Nakon 24 sata stanice se pokupe za pokus luciferaze. Vrijednosti date u slici 7 prikazuju ukupu aktivnost luciferaze transficiranih stanica. Kao što slika pokazuje, pL i TfpL pokazuju slabu aktivnost luciferaze. (gal)4pL pokazuje vrijednosti jednako visoke kao AfpL. (gal)4 ili Af se takmiče za asialoglikoproteinski receptor i, kao što se očekivalo, snizuju vrijednosti. 10 µg of pRSVL-DNA in 330 µl HBS was mixed with the amounts of TfpL190B conjugate, asialofetuin pL90 conjugate (AFpL), polylysine 290 (pL) or tetra-galactosepeptide polylysine conjugate ga14pL, specified in Figure 7, in 170 µl HBS. In comparative experiments, it is added after 30 min. 40 µg of asialofetuin (gal)4pL +Af) or 30 µg of lactosylated peptide ((gal)4pL + (gal)4). The mixture is added to the cells. Cells are incubated at 37ºC for 4 hours, and then the transfection medium is replaced with 4 ml of fresh DMEM medium plus 10% FCS. After 24 hours the cells are collected for the luciferase experiment. The values given in Figure 7 show the total luciferase activity of the transfected cells. As the figure shows, pL and TfpL show weak luciferase activity. (gal)4pL shows values as high as AfpL. (gal)4 or Af compete for the asialoglycoprotein receptor and, as expected, decrease values.

f) Transfekcija HepG2 stanica sa pCMVL-DNA kompleksima. f) Transfection of HepG2 cells with pCMVL-DNA complexes.

HepG2 stanice su uzgajane na 6 cm pločama, do gustoće od 300.000 stanica po ploči, kao što je opisano pod e). Prije transfekcije stanice su isprane sa 1 ml svježeg medija, koji je sadržavao 2% FCS. HepG2 cells were grown on 6 cm plates, to a density of 300,000 cells per plate, as described under e). Before transfection, the cells were washed with 1 ml of fresh medium containing 2% FCS.

6 µg pCMVL-DNA u HBS pomiješa se sa količinama TfpL10B konjugata (TfpL), asialofetuin-pL konjugata (AfpL), polilizina 290 (pLys290), (gal)4pL1 ili (gal)4pL2, kakve su specificirne u slici 8, u 170µ1 HBS. Nakon 30 minuta svakom se DNA-konjugat kompleksu doda 1 ml DMEM koji sadržava 2% FCS, i 50 µl standardne otopine adenovirusa d1312C. U paralelnim pokusima dodano je 30 µg laktosiliranog peptida (gal)4pL ((gal)4pL1 + (gal)4 ili (gal)4pL2 + (gal)4), kao što je specificiramo. Smjesa se doda stanicama. Stanice se inkubiraju 2 h kod 37ºC, a zatim se doda 1,5 ml medija koji sadržava 10% FCS. Dva sata kasnije transfekcijski se medij zamijeni sa 4 ml svježeg DMEM medija plus 10% FCS. Nakon 24 sata stanice se pokupe za pokus luciferaze. Vrijednosti u slici 8 prikazuju ukupnu aktivnost lucifera transformiranih stanica. pLys290 pokazuje učinak, (gal)4pL pokazuje jači učinak; dodatak (gal)4, koji se takmiči za asialogilikoproteinski receptor, smanjuje vrijednosti do vrijednosti dobivene za polilizin. 6 µg of pCMVL-DNA in HBS was mixed with amounts of TfpL10B conjugate (TfpL), asialofetuin-pL conjugate (AfpL), polylysine 290 (pLys290), (gal)4pL1 or (gal)4pL2, as specified in Figure 8, in 170 µl HBS. After 30 minutes, 1 ml of DMEM containing 2% FCS and 50 µl of standard adenovirus d1312C solution were added to each DNA-conjugate complex. In parallel experiments, 30 µg of the lactosylated peptide (gal)4pL ((gal)4pL1 + (gal)4 or (gal)4pL2 + (gal)4) was added, as specified. The mixture is added to the cells. The cells are incubated for 2 h at 37ºC, and then 1.5 ml of medium containing 10% FCS is added. Two hours later, the transfection medium was replaced with 4 ml of fresh DMEM medium plus 10% FCS. After 24 hours the cells are collected for the luciferase experiment. The values in Figure 8 show the total luciferin activity of the transformed cells. pLys290 shows an effect, (gal)4pL shows a stronger effect; addition of (gal)4, which competes for the asialoglycoprotein receptor, reduces the values to those obtained for polylysine.

g) Transfekcija TIB73 stanica sa pCMVL-DNA kompleksima. g) Transfection of TIB73 cells with pCMVL-DNA complexes.

Stanice linije jetrenih stanica embrija glodavaca ATCC TIB73 (BNL CL.2; Patek i sur., 1978) uzgajane su kod 37ºC u atmosferi sa 5% Co2, u “visoko glukoznom” DMEM (0,4% glukoze), uz dodatak 10% toplinski inaktiviranog FCS, koji sadržava 100 i.j./ml penicilina, 100 µg/ml streptomicina 2 mM glutamina, u pločama od 6 cm. Cells of the ATCC TIB73 rodent embryo liver cell line (BNL CL.2; Patek et al., 1978) were grown at 37ºC in a 5% Co2 atmosphere, in “high glucose” DMEM (0.4% glucose), supplemented with 10% of heat-inactivated FCS, containing 100 IU/ml penicillin, 100 µg/ml streptomycin 2 mM glutamine, in 6 cm plates.

Transfekcije su izvedene do gustoće stanica od 300.000 stanica po ploči. Prije transfekcije, stanice su isprane sa 1 ml svježeg medija plus 2% FCS. Transfections were performed to a cell density of 300,000 cells per plate. Before transfection, cells were washed with 1 ml of fresh medium plus 2% FCS.

6 µg pCMVL u 300 µl HBS pomiješa se sa specificiranim količinama transferin-polilizin 290 konjugata glodavaca (mTfpL), asialofetuin-pL konjugata (AFpL), polilizina 290 (pLys290), (gal)4pL1 ili (gal)4pL2, u 170 µl HBS. Nakon 30 minuta, svakom se kompleksu DNA konjugata doda 1 ml DMEM, koji sadržava 2% FCS, i 50 µl standardne otopine adenovirusa d1312. Smjesa se doda stanicama, stanice se inkubiraju 2 sata kod 37ºC, a onda se doda 1,5 ml medija koji sadržava 10% FCS. Dva sata kasnije, transfekcijski se medij zamijeni sa 4 ml svježeg medija. Nakon 24 sata stanice se pokupe za pokus luciferaze. Vrijednosti prikazane u slici 9B pokazuju ukupnu akivnost luciferaze transficiranih stanica. 6 µg pCMVL in 300 µl HBS was mixed with specified amounts of rodent transferrin-polylysine 290 conjugate (mTfpL), asialofetuin-pL conjugate (AFpL), polylysine 290 (pLys290), (gal)4pL1 or (gal)4pL2, in 170 µl HBS. . After 30 minutes, 1 ml of DMEM, containing 2% FCS, and 50 µl of standard adenovirus d1312 solution were added to each DNA conjugate complex. The mixture is added to the cells, the cells are incubated for 2 hours at 37ºC, and then 1.5 ml of medium containing 10% FCS is added. Two hours later, the transfection medium was replaced with 4 ml of fresh medium. After 24 hours the cells are collected for the luciferase experiment. The values shown in Figure 9B show the total luciferase activity of the transfected cells.

Za usporedbu transfekcija je izvedena bez adenovirusa u prisutnosti klorikina. Transfekcija je obavljena uz gustoću stanica od 300 tisuća stanica po ploči. Prije transfekcije stanice su ispirane sa 1 ml svježeg medija, koji je sadržavao 2% FCS. Neposredno prije transfekcije doda se klorokina (Sigma) toliko da konačna koncentracija u suspenziji stanica (plus Dna-otopina) bude 100 µM. 6 ug pCMVL-DNAu 330 µl HBS miješa se sa specificiranim količinama mTfpL, AFpL, pLys290, (gal)4pL1 ili (gal)4pL2, u 170 µl HBS. Nakon 30 minuta daju se u stanice DNA kompleksi. Stanice se inkubiraju 2 sata kod 37ºC, a zatim se doda 1,5 ml medija koji sadržava 10% FCS, te 100 µM klorokina. Dva sata kasnije transfekcijski se medij zamijeni sa 4 ml svježeg medija. Nakon 24 sata stanice se pokupe za mjerenje luciferaze. Vrijednosti dobivene za aktivnost luciferaze prikazane su na slici 9A. For comparison, transfection was performed without adenovirus in the presence of chlorquine. Transfection was performed at a cell density of 300,000 cells per plate. Before transfection, the cells were washed with 1 ml of fresh medium containing 2% FCS. Immediately before transfection, chloroquine (Sigma) is added so much that the final concentration in the cell suspension (plus DNA solution) is 100 µM. 6 µg pCMVL-DNA in 330 µl HBS is mixed with specified amounts of mTfpL, AFpL, pLys290, (gal)4pL1 or (gal)4pL2, in 170 µl HBS. After 30 minutes, DNA complexes are injected into the cells. The cells are incubated for 2 hours at 37ºC, and then 1.5 ml of medium containing 10% FCS and 100 µM chloroquine are added. Two hours later, the transfection medium is replaced with 4 ml of fresh medium. After 24 hours the cells are harvested for luciferase measurement. The values obtained for luciferase activity are shown in Figure 9A.

Primjer 7- Uvođenje DNA u T stanice. Example 7 - Introduction of DNA into T cells.

a) Priprava antiCD7 polilizin190 konjugata. a) Preparation of antiCD7 polylysine190 conjugate.

Otopina od 1,3 mg antiCD7 antitijela (Immunotech) u 50 mM HEPES pH 7,9, pomiješa se sa 49 µl 1 mM etanolne otopine SPDP (Pharmacia). Jedan sat nakon stajanja na sobnoj temperaturi smjesa se filtrira kroz Sephadex G-25 gel kolonu (eluent 50 mM HEPES pufer pH 7,9), pri čemu se dobije 1,19 mg (7,5 nmola) anti CD7, modificiranog sa 33 nmola piridilditiopropionat grupa.Poli(L)lizin190, označen fluoresceinom FITC, modificiran je analogno kao i SPDP i doveden je u formu modificiranu sa slobodnim merkapto grupama, obradom sa ditiotreitolom, a zatim gel filtracijom. Otopina od 1 nmola polizina190 modificiranog sa 35 nmola merkapto grupa, u 0,2 ml 30 mM natrij acetatnog pufera, miješa se sa modificiranim antiCD7 (u0,5 ml 300 mM HEPES pH 7,9), uz isključenje kisika, i sotavi preko noći na sobnoj temperaturi. Reakcijska se smjesa podesi na sadržaj od oko 0,6 M, dodatkom 5 M otopine NacL. Izolacija konjugata izvedena je kromatografijom putem ionske izmjene (Mono S, Pharmacia, 50 mM HEPES pH 7,3 gradijent soli 0,6 M do 3 M NaCl). Nakon dijalize prema HEPES (10 mM, pH 7,3) dobiveni su odgovarajući konjugati, koji su se sastojali od 0,51 mg (3,2 nmola) antiCD7-antitijela, modificiranog sa 6,2 nmola polilizina 190. A solution of 1.3 mg of antiCD7 antibody (Immunotech) in 50 mM HEPES pH 7.9 was mixed with 49 µl of a 1 mM ethanol solution of SPDP (Pharmacia). One hour after standing at room temperature, the mixture is filtered through a Sephadex G-25 gel column (eluent 50 mM HEPES buffer pH 7.9), whereby 1.19 mg (7.5 nmol) of anti-CD7, modified with 33 nmol pyridyldithiopropionate group. Poly(L)lysine190, labeled with fluorescein FITC, was modified analogously to SPDP and was brought into a form modified with free mercapto groups, by treatment with dithiothreitol, and then by gel filtration. A solution of 1 nmol of polysine190 modified with 35 nmol of mercapto groups, in 0.2 ml of 30 mM sodium acetate buffer, is mixed with modified antiCD7 (in 0.5 ml of 300 mM HEPES pH 7.9), with exclusion of oxygen, and left overnight at room temperature. The reaction mixture is adjusted to a content of about 0.6 M by adding a 5 M NacL solution. Isolation of the conjugate was performed by ion exchange chromatography (Mono S, Pharmacia, 50 mM HEPES pH 7.3 salt gradient 0.6 M to 3 M NaCl). After dialysis against HEPES (10 mM, pH 7.3), the corresponding conjugates were obtained, which consisted of 0.51 mg (3.2 nmol) of antiCD7-antibody, modified with 6.2 nmol of polylysine 190.

b) Priprava gp120-polilizin190 konugata. b) Preparation of gp120-polylysine190 conjugate.

Spajanje je provedeno metodama poznatim iz literature, tioeterskim povezivanjem nakon modifikacije sa N-hidroksisukcinimid esterom 6-maleimidokapronske kiseline (EMCS, Sigma) (Fujiwara i sur., 1981). Tieterski vezani gp120-polilizin190 konjugati: The coupling was carried out by methods known from the literature, by thioether coupling after modification with N-hydroxysuccinimide ester of 6-maleimidocaproic acid (EMCS, Sigma) (Fujiwara et al., 1981). Tiether bound gp120-polylysine190 conjugates:

Otopina od 2 mg rekombinantnog gp120 u 0,45 ml 100 mM HEPES pH 7,9 pomiješa se sa 17 µl 10 mM otopine EMCS u dimetilformamidu. Nakon jednog sata kod sobne temperature, provede se filtracija kroz Sephadex G-25 gel kolonu (eluent 100 mM HEPES-pufer 7,9). Dobivena otopina (1,2 ml) odmah reagira, uz isključenje kisika, s otopinom od 9,3 nmola polilizina 190, označenog fluoresceinom i modificiranog sa 30 nmola merkapto grupa (u 90 µl 30 mM natrijeva acetata pH 5,0), te se ostavi preko noći na sobnoj temperaturi. Reakcijska se smjesa podesi na sadržaj od oko 0,6 M dodatkom 5 M NaCl. Konjugati se izoliraju kromatografijom ionske izmjene (Mono S, Pharmacia 50 mM HEPES pH 7,3, gradijent soli 0,6 M do 3 M NaCl). Nakon frakcioniranja i dijalize prema 25 mM HEPES pH 7,3, dobivene su 3 frakcije konjugata A, B i C, koje su se sastojale od: 0,40 mg rgp120 modificiranog sa 1,9 nmola polilizina 190 (u slučaju frakcije A), ili 0,25 mg rpg120 modificiranog sa 2,5 nmola polilizina 190 (frakcija B), ili 0,1 mg rgp120 modificirano sa 1,6 nmola polilizina 190 (frakcija C). A solution of 2 mg of recombinant gp120 in 0.45 ml of 100 mM HEPES pH 7.9 was mixed with 17 µl of a 10 mM solution of EMCS in dimethylformamide. After one hour at room temperature, filtration is carried out through a Sephadex G-25 gel column (eluent 100 mM HEPES-buffer 7.9). The resulting solution (1.2 ml) reacts immediately, with the exclusion of oxygen, with a solution of 9.3 nmol of polylysine 190, labeled with fluorescein and modified with 30 nmol of mercapto groups (in 90 µl of 30 mM sodium acetate pH 5.0), and leave overnight at room temperature. The reaction mixture is adjusted to a content of about 0.6 M by the addition of 5 M NaCl. Conjugates are isolated by ion exchange chromatography (Mono S, Pharmacia 50 mM HEPES pH 7.3, salt gradient 0.6 M to 3 M NaCl). After fractionation and dialysis against 25 mM HEPES pH 7.3, 3 conjugate fractions A, B and C were obtained, which consisted of: 0.40 mg rgp120 modified with 1.9 nmol polylysine 190 (in the case of fraction A), or 0.25 mg rpg120 modified with 2.5 nmol polylysine 190 (fraction B), or 0.1 mg rgp120 modified with 1.6 nmol polylysine 190 (fraction C).

pCMVL-DNA (6 µg/uzorak) kompleksirani su sa specificiranim količinama polilizina90 ili specificiranim polilizin konjugatima u 500 ul HBS. Istovremeno priređeni su alikvoti od H9 stanice (106 stanica u 5 ml RPMI sa 2% FCS) ili primarnih humanih limfocita (3 x 106 stanica u Dulbeccovom mediju, modificirano po Iscove-u (IMDM) sa 2% FCS). Svakom uzorku stanica dodani su polilizin-DNA kompleksi. Nakon 5 minuta je specificirana količina adenovirusa d1312. Stanice su zatim inkubirane 1,5 h kod 37ºC, a onda se u svaki uzorak doda 15 ml RPMI (u slijaču H9 stanica) ili IMDM (u slučaju primarnih limfocita) plus 20% FCS. Stanice se inkubiraju 24 sata kod 37ºC, pokupe se u obradu kao u drugim primjerima za određivanje aktivnosti luciferaze. Rezultati izvedenih testova dati su u slici 10A (H9 stanice) i slici 10B (primarni limfociti): u H9 stanicama antiCD7 konjugat (sl. 10A stupac 7 do 9) i gp120 konjugat (sl. 10A, stupci 10 do 12) pokazali su najbolje rezultate, s obzirom na prijenos gena, postignute sa adenovirusom, dok je gp120 konjugat postigao jasniji izražaj gena luciferaze čak i udsutnosti adenovirusa. Vrijedno je zapaziti da je u izvedenim testovima, samo gp120 konjugat imao sposobnost da uvede DNA u primarne limfocite, i to samo u pristnosti oštećenog adenovirusa (Slika 10B, stupci 7 i 8). pCMVL-DNA (6 µg/sample) were complexed with specified amounts of polylysine90 or specified polylysine conjugates in 500 µl HBS. At the same time, aliquots of H9 cells (106 cells in 5 ml RPMI with 2% FCS) or primary human lymphocytes (3 x 106 cells in Dulbecco's medium, modified according to Iscove (IMDM) with 2% FCS) were prepared. Polylysine-DNA complexes were added to each cell sample. After 5 minutes, the amount of adenovirus d1312 was determined. The cells were then incubated for 1.5 h at 37ºC, and then 15 ml of RPMI (in the case of H9 cells) or IMDM (in the case of primary lymphocytes) plus 20% FCS was added to each sample. Cells are incubated for 24 hours at 37ºC, harvested for processing as in other examples for determination of luciferase activity. The results of the performed tests are given in Fig. 10A (H9 cells) and Fig. 10B (primary lymphocytes): in H9 cells, the antiCD7 conjugate (Fig. 10A, columns 7 to 9) and the gp120 conjugate (Fig. 10A, columns 10 to 12) showed the best results, regarding gene transfer, achieved with adenovirus, while the gp120 conjugate achieved a clearer expression of the luciferase gene even in the absence of adenovirus. It is worth noting that in the tests performed, only the gp120 conjugate had the ability to introduce DNA into primary lymphocytes, and only in the presence of damaged adenovirus (Figure 10B, columns 7 and 8).

Primjer 8 - Inaktivacija adenovirusa Example 8 - Adenovirus inactivation

a) UV inaktivacija a) UV inactivation

Pripravak adenovirusa d1312, priređen i pohranjen kao što je opisano u uvodnom dijelu Primejra, stavi se u udubljenje, promjera 2 cm, ploče za stanične kulture (300 ul po udubini) na ledu, udaljenje 8 cm od dvije UV lampe (Philips TUV15, G15 T8). Virus je izložen UV zračenju u vremenima specificiranim u slici 11A, i alikvoti svakog pripravka su ispitivani na njihov virusni titar, da bi se odredilo da li su, i u kojoj mjeru su sposobni pojačati prijenos gena sa polilizin-transferin konjugatima u HeLa sanicama. The d1312 adenovirus preparation, prepared and stored as described in the introductory section of the Primer, is placed in a well, 2 cm in diameter, of a cell culture plate (300 µl per well) on ice, 8 cm away from two UV lamps (Philips TUV15, G15 T8). The virus was exposed to UV radiation for the times specified in Figure 11A, and aliquots of each preparation were assayed for their viral titer, to determine whether, and to what extent, they were able to enhance gene transfer with polylysine-transferrin conjugates in HeLa cells.

Kultiviranje stanica i transfekcija izvedena je uglavnom kao što je upisano gore od “stnice i hranilišta”. Komponente upotrebljene za transfekciju prikazane su na slici 11A. Kompleksi pCMVL i 12 µg TfpL priređeni su u 500 ul HBS i dodani su 3x105 HeLa stanicama (u 1 ml DMEM plus 2% FCS. Oko 5 minuta kasnije, svakoj se kulturi doda 54 µl svakog virusnog prirpavka i kultura se inkubira kod 37ºC 1,5 do 2 sata. Zatim se 5 ml alikvot DMEM plus 10% FCS doda svakoj kulturi, inkubacija se nastavlja kod 37ºC za 24 sata i kulture se pokupe i ispituju na aktivnost luciferaze. Količina od 54 ul ne-ozračenog virusa nije u okviru zasićenja, t.j. test je osjetljiv na količinu virusa koja je barem tri puta veća. Rezultati dobiveni za izražaj luciferaze prikazani su na slici 11B (iscrtkani pravokutnici). Virusni titar svakog pripravka određen je uporabom “Ela dopunske stanične linije 293”. Serijska razrjeđenja ne-označenih i označenih uzoraka virusa priređeni su u DMEM plus 2% FCS. Usporedo s tim, priređeni su uzorci od 5x104 293 stanica (u udubljenja od 2 cm) u 200 µl DMEM plus 2% FCS. U svaku je udubinu stavljen alikvot od 5 µl svakog razrjeđenja. Da bi se omogućilo da se virus veže na stanice, izvedena je inkubacija od 37ºC 1,5 h, a zatim je u svaku udubinu dodano 2 ml DMEM plus 10% FCS. Nakon 48 sati kulture se ispitaju da bi se odredio citopatski utjecaj. Gornje virusno razrjeđenje, u kojem manje od 50% stanica u kulturi pokazuje značajni citopatski učinak nakon 48 sati, ukazuje na relativnu količinu infektivnog virusa u svakom virusnom pripravku. Dobiveni rezultati su prikazani na slici 11B (prazni pravokutnici). Rezultati testova izvedenih u ovom primjeru, pokazuju da je smanjenje za 4 log u tiru virusa, kao rezultat UV zračenja, povezano sa samo dvadeseterostrukim smanjenjem prijenosa gena luciferaze. To pokazuje da mehanizmi, koji su presudni za infektivnost virusa, mogu biti uništeni bez utjecaja na sposobnost virusa da pojača prijenos gena. Cultivation of cells and transfection was carried out mainly as written above from "cells and feeders". Components used for transfection are shown in Figure 11A. Complexes of pCMVL and 12 µg of TfpL were prepared in 500 µl of HBS and added to 3x105 HeLa cells (in 1 ml of DMEM plus 2% FCS. About 5 min later, 54 µl of each viral preparation was added to each culture and the culture was incubated at 37ºC for 1, 5 to 2 hours. Then a 5 ml aliquot of DMEM plus 10% FCS is added to each culture, incubation is continued at 37ºC for 24 hours and the cultures are harvested and assayed for luciferase activity. A 54 µl amount of non-irradiated virus is not within saturation, i.e., the assay is sensitive to an amount of virus that is at least threefold higher. The results obtained for luciferase expression are shown in Figure 11B (dashed rectangles). The viral titer of each preparation was determined using the "Ela complement cell line 293". Serial dilutions of unlabeled and labeled virus samples were plated in DMEM plus 2% FCS. In parallel, samples of 5x104 293 cells (in 2 cm wells) were plated in 200 µl DMEM plus 2% FCS. A 5 µl aliquot of each dilution was placed in each well To enable s e virus binds to the cells, incubation at 37ºC for 1.5 h was performed, and then 2 ml of DMEM plus 10% FCS was added to each well. After 48 hours, the cultures are examined to determine the cytopathic effect. The above virus dilution, in which less than 50% of cells in culture show a significant cytopathic effect after 48 hours, indicates the relative amount of infectious virus in each virus preparation. The obtained results are shown in Figure 11B (empty rectangles). The results of the tests performed in this example show that a 4-log decrease in viral titer, as a result of UV irradiation, is associated with only a twenty-fold decrease in luciferase gene transfer. This shows that the mechanisms, which are crucial for viral infectivity, can be destroyed without affecting the ability of the virus to enhance gene transfer.

Zapaženo je da pri niskim dozama virusa, povećanje prijenosa gena, prouzrokovano virusom, ponešto opada (Slika 11A, stupci 3 do 6) i da je taj učinak značajniji kod viših doza (stupci 7 do 10). It was observed that at low doses of virus, the increase in gene transfer caused by the virus decreases somewhat (Figure 11A, columns 3 to 6) and that this effect is more significant at higher doses (columns 7 to 10).

b) Inaktivacija adenovirusa formaldehidom. b) Inactivation of adenovirus with formaldehyde.

2 ml pripravka adenovirusa propušta se kroz 10 ml G25 kolonu (Pharmacia Sephadex G 25, PD10), priređenu sa 150 mM NaCl, 25 mM HEPES pH 7,9 10% glicerola i dovedenu do volumena od 2,5 ml. Alikvoti gel-filtriranog virusnog pripravka inkubirani su 20 sati na ledu, bez formaldehida (O), sa 0,01%, 0,1% ili 1% formaldehida. Zatim se doda tris pH 7,4 da se dobije koncentracija od 100 mM, a onda se uzorci dijaliziraju, naprije prema 1 litri 150 mM NaCl, 50 mM Tris pH 7,4 i 50% glicerola, a zatim, preko noći, prema 2 x 1 lit 150 mM NaCl, 20 mM HEPES pH 7,9 i 50% glicerola. 2 ml of the adenovirus preparation is passed through a 10 ml G25 column (Pharmacia Sephadex G 25, PD10), prepared with 150 mM NaCl, 25 mM HEPES pH 7.9, 10% glycerol and made up to a volume of 2.5 ml. Aliquots of the gel-filtered virus preparation were incubated for 20 hours on ice, without formaldehyde (O), with 0.01%, 0.1% or 1% formaldehyde. Tris pH 7.4 is then added to give a concentration of 100 mM, and then the samples are dialyzed, first against 1 liter of 150 mM NaCl, 50 mM Tris pH 7.4, and 50% glycerol, and then, overnight, against 2 x 1 liter 150 mM NaCl, 20 mM HEPES pH 7.9 and 50% glycerol.

Alikvoti virusa su zatim ispitivani na njihov titar na 293 stanice (pokus CPE završne točke, ili “plaque” pokus, Precious i Russel, 1985). Zatim je određivan utjecaj formaldehidom obrađenih virusa na prijenos gena, u HeLa stanicama (300.000), kao i u prijašnjim primjerima, mjerenjem aktivnosti luciferaze. 90 ul virusnog pripravka dovelo je do prijenosa DNA, koji je odgovarao kao više od 108 lakih jedinica. Obrada virusa sa 0,01% ili sa 0,1% formaldehida rezultirala je slabim smanjenjem aktivnosti prijenosa gena (približno deterostruko smanjenje kod 0,1%). Premda obrada sa 1% formaldehida uzrokuje upadljiv gubitak aktivnosti prijenosa gena, 90 µl virusa je još bilo dovoljno da proizvede izražaj gena koji odgovaraju 104 lakih jedinica. Aliquots of virus were then assayed for their titer on 293 cells (CPE end point assay, or “plaque” assay, Precious and Russell, 1985). Then, the influence of formaldehyde-treated viruses on gene transfer was determined in HeLa cells (300,000), as in previous examples, by measuring luciferase activity. 90 µl of the viral preparation resulted in DNA transfer, which corresponded to more than 108 light units. Treatment of the virus with 0.01% or 0.1% formaldehyde resulted in a weak reduction in gene transfer activity (approximately a fourfold reduction at 0.1%). Although treatment with 1% formaldehyde caused a striking loss of gene transfer activity, 90 µl of virus was still sufficient to produce gene expression corresponding to 104 light units.

Pri obradi sa 0,1% formaldehida redukcija virusnog titra na 105 PFU (jedinice koje formiraju “plaque”) bila je povezana sa smanjenjem aktivnosti luciferaze za samo 10%. Rezultati testa su prikazani na slici 12A. When treated with 0.1% formaldehyde, the reduction of viral titer to 105 PFU (plaque-forming units) was associated with a reduction of luciferase activity by only 10%. The test results are shown in Figure 12A.

c) Inaktivacija adenovirusa sa dugovalnim UV zračenjem + 8-metoksi psoralenom. c) Adenovirus inactivation with long-wave UV radiation + 8-methoxy psoralen.

Alikvoti pročišćenog virusa su podešeni na 0,33 µg/µl sa 8-metoksi psoralenom (standardna je koncentracija 33 µg/µl 8-metoksi psoralena otopljenog u DSMO) te su izloženi izvoru UV zračenja valne dužine 365 nm (UVP model TL-33), na ledu, u udaljenosti od 4 cm od filtera lampe. Izlaganje UV svjetlu trajalo je 15-30 minuta, kako to pokazuje legenda slike. Virusni su uzorci zatim propušteni kroz Sephadex G-25 kolonu (Pharnacia, PD-10), pripremljeni sa HBS + 40% glicerola te su čuvani na -70ºC. Aliquots of the purified virus were adjusted to 0.33 µg/µl with 8-methoxy psoralen (the standard concentration is 33 µg/µl of 8-methoxy psoralen dissolved in DSMO) and were exposed to a source of UV radiation with a wavelength of 365 nm (UVP model TL-33). , on ice, at a distance of 4 cm from the lamp filter. Exposure to UV light lasted 15–30 minutes, as indicated in the figure legend. Viral samples were then passed through a Sephadex G-25 column (Pharnacia, PD-10), prepared with HBS + 40% glycerol and stored at -70ºC.

Virusni su pripravci testirani ili na njihovu aktivnost u povećanju odpuštanja pCMVL/hTfpL konjugata u HeLa stanice (kao što je očito po rezultatitma lakih jedinica aktivnosti luciferaze, slika 12B, desna ordinata) ili na sposobnost obnavljanja u 293 stanice (viralni titar, lijeva ordinata slike 12B). Viral preparations were tested either for their activity in increasing the release of pCMVL/hTfpL conjugates in HeLa cells (as evident by the score of light units of luciferase activity, Fig. 12B, right ordinate) or for their ability to restore in 293 cells (viral titer, left ordinate of Fig. 12B).

U primjerima koji slijede, a koji pokazuju povećanje internalizacije transferin-polilizin-DNA kompleksa pomoću retrovirusa, upotreljene su slijedeće metode i materijali: In the examples that follow, which show an increase in the internalization of the transferrin-polylysine-DNA complex using retroviruses, the following methods and materials were used:

Transferin-polilizin190 konjugati i konjugat-DNA kompleksi priređeni su jednako kao u prethodnim primjerima. NIH3T3 stanice su uzgajane na DMEM mediju, uz dodatak 10% FCS, 100 i.j. penicilina, 100 µg(ml streptomicina i 2 mM glutamina. Za transfekciju je 5 do 7x105 stanica po T25 izdvajano iz ploče 18 do 24 sata prije transfekcije. Neposredno prije trnsfekcije, stanice su stavljene na svježi medij te su dodavane razne komponente korištene za transfekciju, slijedećim redom: klorokin (100 uM, gdje je navedeno), polilizin-transferin-DNA kompleks i pripravak retovirusa. Stanice su zatim inkubirane 4 sata kod 37ºC, medij je promijenjen i stanice su nakon 24 sata pokupljene. Ekstrakti su pripremljeni u tri ciklusa zamrzavanje-topljenje. Alikvoti ekstrakta, standardizirani na sadržaj proteina, ispitani su na aktivnost luciferaze, kao što je navedeno u prethodnim primjerima. Transferrin-polylysine 190 conjugates and conjugate-DNA complexes were prepared in the same way as in the previous examples. NIH3T3 cells were grown on DMEM medium, supplemented with 10% FCS, 100 i.u. penicillin, 100 µg(ml streptomycin and 2 mM glutamine. For transfection, 5 to 7x105 cells per T25 were isolated from the plate 18 to 24 hours before transfection. Immediately before transfection, cells were placed on fresh medium and various components used for transfection were added, in the following order: chloroquine (100 uM, where indicated), polylysine-transferrin-DNA complex and retovirus preparation. The cells were then incubated for 4 hours at 37ºC, the medium was changed and the cells were harvested after 24 hours. The extracts were prepared in three freezing cycles - melting Aliquots of the extract, standardized for protein content, were tested for luciferase activity, as indicated in the previous examples.

Primjer 9 - Transfekcija NIH 3T3 stanice sa Moloney virusom. Example 9 - Transfection of NIH 3T3 cells with Moloney virus.

Pod uvjetima koji su navedeni, transfekcije 106 NIH3T3 stanica izvedene su sa TfpL-DNA kompleksima u prisutnosti 100 µM klorokina, ili bez klorokina, kao što pokazuje slika 13. Nađeno je da bez klorokina vrijednosti za aktivnost luciferaze dostižu jedva osnovnu razunu (stupac 1), dok je u prisutnosti klorokina izmjeren visoki izražaj pRSVL referentnog gena (stupac 2). Povećane količine Maloneyvirusa leukemije (na slici označenog sa RVS), koje su dodavane stanicama istovremeno sa DNA kompleksima, bile su u stanju da povećaju još više izražaj gena luciferaze. Under the conditions indicated, transfections of 106 NIH3T3 cells were performed with TfpL-DNA complexes in the presence of 100 µM chloroquine, or without chloroquine, as shown in Figure 13. It was found that without chloroquine, the values for luciferase activity reached barely the baseline (column 1). , while in the presence of chloroquine a high expression of the pRSVL reference gene was measured (column 2). Increasing amounts of Maloney leukemia virus (labeled RVS in the image), which were added to the cells at the same time as the DNA complexes, were able to further increase the expression of the luciferase gene.

Primjer 10 - Istraživanja da li utjecaj prijenosa gena u transfekciji NIH3T3 stanica sa transferin-polilizin DNA kompleksima, može biti pripisan Moloney virusu. Example 10 - Research on whether the influence of gene transfer in the transfection of NIH3T3 cells with transferrin-polylysine DNA complexes can be attributed to Moloney virus.

Virusni pripravak korišten u Primjeru 9, bio je sirov, nefrakcioniran supernatant stanica koje izražavaju retrovirus. Sa ciljem da se dobije uvid da porast u prijenosu DNA, postignut sa tim virusnim pripravkom, može doista biti pripisan virusu, supernatant je podvrgnut purifikaciji dijalizom/koncentriranjem opisanom gore, s da je retrovirusni supernatant (prikazan kao RVS na crtežu) koncentriran faktorom 10. Ako je retrovirus odgovoran za porast, aktivnost zadržana membranom morala bi, bez obzira na bilo kakvu inaktivaciju ekstremno nestabilnog retrovirusa tijekom faze koncentriranja, biti približno 10 puta veća od polaznog supernatanta. Kao i u prijašnjem primjeru, 106NIH3T3 stanica je bilo transficirano pod uvjetima datim na slici 14. Slika 14 pokazuje da je rastući utjecaj na prijenos gena prisutan u retentatu membrane (20 do 600 ul je upotrebljeno, stupci 3-6). Također je nađeno da je 200 do 600 ul deseterostrukog koncentrata pripravka za oko polovine manje aktivno, nego 2 do 6 ml originalnog, nekoncentriranog pripravka retrovirusa (stupci 7 i 8). Paralelni su testovi izvedeni sa humanim stanicama K562, koje nemaju receptora za ekotropne retroviruse glodavaca. Kao što je bilo očekivano, tu nije bilo porasta u izražaju gena. The viral preparation used in Example 9 was a crude, unfractionated supernatant of retrovirus-expressing cells. In order to gain insight into whether the increase in DNA transfer achieved with this viral preparation could indeed be attributed to the virus, the supernatant was subjected to dialysis/concentration purification as described above, with the retroviral supernatant (shown as RVS in the drawing) being concentrated by a factor of 10. If a retrovirus is responsible for the increase, the activity retained by the membrane should, regardless of any inactivation of the extremely unstable retrovirus during the concentration phase, be approximately 10 times greater than the starting supernatant. As in the previous example, 106NIH3T3 cells were transfected under the conditions given in Figure 14. Figure 14 shows that the increasing effect on gene transfer is present in the membrane retentate (20 to 600 µl was used, columns 3-6). It was also found that 200 to 600 ul of a tenfold concentrate preparation is about half as active as 2 to 6 ml of the original, unconcentrated retrovirus preparation (columns 7 and 8). Parallel tests were performed with human K562 cells, which do not have receptors for ecotropic rodent retroviruses. As expected, there was no increase in gene expression.

Primjer 11 - Interakcije između transferina i njegova receptora igraju ulogu u utjecaju Moloney virusa na prijenos gena. Example 11 - Interactions between transferrin and its receptor play a role in the effect of Moloney virus on gene transfer.

Radi isključivanja mogućnosti da se prijenos TfpL/pRSVL kompleksa u stanici može pripisati nespecifičnom povezivanju polilizina sa retrovirusom, i sa ciljem da se objasni mehanizam ulaza detaljnije, ispitana je sposobnost retrovirusa da transportira plasmid DNA, kompleksiran samo sa polilizinom, u stanicu. Količina potrebnog polilizina odgovara optimumu količine određene ranije, koja doprinosi ukupnoj kondenzaciji plasmidne DNA, a slična je količini polilizina potrebnog za polilizin-transferin konjugat (Wagner sur., 1991). Testovi, čiji su rezultati prikazani na slici 15, pokazali su da referentni gen, u odsutnosti klorokina, nije izražen niti u formi kompleksa TfpL-pRSVL, niti u formi pL-pRSVL kompleksa (stupci 1 i 2). U prisutnosti retrovirusa, s druge strane, referentna DNA, primijenjena kao TfpL kompleks, bila je izražena, ali ne u obliku pL-DNA kompleksa (vidi stupce 3 i 4 zajedno sa stupcima 5 i 6). Osim toga, izvedeni su testovi pokazali su da je prisutnost viška slobodnog transferina rezultirala smanjenjem prijenosa DNA, olakšanog retrovirusom (stupci 7 i 8). Ovi su rezultati potvrda predpostavke da interakcija između transferina i njegova receptora igra bitnu ulogu u povećanju prihvaćanja DNA, na koji utječe retrovirus. In order to exclude the possibility that the transfer of the TfpL/pRSVL complex in the cell can be attributed to the non-specific binding of polylysine to the retrovirus, and with the aim of explaining the entry mechanism in more detail, the ability of the retrovirus to transport plasmid DNA, complexed only with polylysine, into the cell was examined. The amount of required polylysine corresponds to the optimum amount determined earlier, which contributes to the total condensation of plasmid DNA, and is similar to the amount of polylysine required for the polylysine-transferrin conjugate (Wagner et al., 1991). The tests, the results of which are shown in Figure 15, showed that the reference gene, in the absence of chloroquine, was not expressed either in the form of the TfpL-pRSVL complex, or in the form of the pL-pRSVL complex (columns 1 and 2). In the presence of retrovirus, on the other hand, reference DNA, administered as a TfpL complex, was expressed, but not as a pL-DNA complex (see columns 3 and 4 together with columns 5 and 6). In addition, assays performed showed that the presence of excess free transferrin resulted in a reduction in retrovirus-facilitated DNA transfer (columns 7 and 8). These results confirm the assumption that the interaction between transferrin and its receptor plays an essential role in increasing the uptake of DNA, which is affected by the retrovirus.

Primjer 12 - Utjecaj pH na učinak retrovirusa na prijenos gena. Example 12 - Influence of pH on the effect of retroviruses on gene transfer.

Izvedeni pokusi u ovom primjeru, obavljeni su sa ciljem da se ispita utjecaj pH na sposobnost retrovirusa da pojačaju prijenos gena. Eksperimenti transfekcije su izvedeni kao u prethodnim primjerima. Upotrebljena su dva dobro ocijenjena inhibitora endosomne pH redukcije monensin i amonijev klorid. Rezultati pokusa prikazani su na slici 16. Ispitivan je utjecaj ovih dviju supstancija na TfpL-DNA prijenos i nađeno je da nijedna od njih ne može dolično zamijeniti klorokin. Međutim, nađeno je da više koncentracija amonijeva klorida ponešto povećavaju izražaj gena luciferaze (stupci 1 do 5). Sam retrovirus pokazuje neznatno povećanje prijenosa DNA, prema zapaženom u prijašnjim primjerima (stupac 6). Nagli je porast zapažen kad je retrovirus upotrebljen u prisutnosti 1 uM monensina (stupac 7). Manji je učinak zapažen kod više koncentracija monensine (stupac 8) i u prisutnosti amonijeva klorida (stupci 9 i 10). The experiments performed in this example were performed with the aim of examining the effect of pH on the ability of retroviruses to enhance gene transfer. Transfection experiments were performed as in previous examples. Two well-rated inhibitors of endosomal pH reduction, monensin and ammonium chloride, were used. The results of the experiment are shown in Figure 16. The influence of these two substances on TfpL-DNA transfer was tested and it was found that none of them could adequately replace chloroquine. However, higher concentrations of ammonium chloride were found to slightly increase the expression of the luciferase gene (columns 1 to 5). The retrovirus itself shows a slight increase in DNA transfer, as observed in previous examples (column 6). A sharp increase was observed when the retrovirus was used in the presence of 1 µM monensin (column 7). A smaller effect was observed at higher concentrations of monensin (column 8) and in the presence of ammonium chloride (columns 9 and 10).

Primjer 13 - porast prijenosa gena postignut transferin konjugatima pomoću N-terminalnog endosomolitičkog peptida hemaglutinina influence HA2. Example 13 - increase in gene transfer achieved by transferrin conjugates using the N-terminal endosomolytic peptide of influenza HA2 hemagglutinin.

a)Sinteza peptida a) Peptide synthesis

Peptid niza (SEQ ID NO:1) Gly-Leu-Phe-Glu-Ala-Ile-Ala-Gly-Phe-Ile-Glu-Asn-Gly-Trp-Glu-Gly-Met-Ile-Asp-Gly-Gly-Gly-Cys, sintetiziran je metodom Fmoc (fluorenylmetoksikarbonil) (Atherton i sur., 1979), uz upotrebu Applied “Biosystems 431A Peptide Synthesizer”-a. Zaštitne grupe postranog lanca bile su t-butil za Cys, Glu i Asp i tritil za Asn. Nakon reakcije spajanja izveden je ninhidrin test, koji je pokazao razinu spajanja veću od 98% za svaku fazu. Dvostruka su spajanja izvedena počevši od aminokiseline 19. N-terminalna Fmoc grupa je uklonjena iz dijela peptidne smole sa 20% piperidinom u NMP (N-metilpiperidinu). Zatim su frakcije Fmoc, zaštićene i nezaštićene, isprane sa DCM (diklormetanom) te osušene pod visokim vakuumom. Prinosi su bili 294 mg F-moc-slobodne peptidne smole i 367 mg F-moc-zaštićene peptidne smole. Količina od 111 mg Fmoc-slobodne peptidne smole podvrgnuta je cijepanju trifluoroctenom kiselinom, u vremenu do 1,5 h, pomoću smjese od 10 ml TFA, 0,75 g fenola, 300 µl EDT (etanditiola), 250 µl Et-S-Me (etilmetilsulfida) i 500 µl vode. Peptid se filtrira iz smole kroz stakleni sinter filtar. Smola se ispere sa DCM i doda filtratu. Filtrat se koncentrira do oko 2 ml i zatim se doda, kap po kap, u 40 ml etera, uz miješanje. Peptidni se talog ukloni centrifugiranjem, a eterski se supernatant odbaci. Talog se pere tri puta sa 40 ml etera i suši u visokom vakuumu. 58 mg dobivenog sirovog produkta se otopi u 3,5 ml 20 mM NH4HCO3, u kojem je sadržano 300 µl 25% NH3/1. Otopina se gel-filtrira upotrijebivši isti pufer na prethodno punjenoj Sephadex G-25 koloni (Pharmacia PD-10). Sav je materijal stavljen na Mono Q kolonu (Pharmacia); gradijent: C10 min 100% A, 10-100 min 0-100% B. A: 20 mM NH4HCO3 + 300 ul NH3/1. B: A + 3 M NaCl. Mjereno kod 280 nm, Trp-fluorescencija detektirana kod 354 nm. Brzina protoka: 1 ml/min. Produkt je eluiran sa 1 M NaCl. Glavna frakcija Mono Q kolone je dalje pročišćavana reverznom faznom HPLC (visokotlačnom tekućinskom kromatografijom) sa kolonom BIORAD-HI-Pore RP-304 (250x10 mm); gradijent 50 do 100% pufera B u 12,5 min, 12,5 do 25 min 100% B; A: 20mM NH4HCO3 + 300 µl NH3/1, B: A u 98% metanolu. Brzina protoka: 3 ml/min. Mjereno kod 237 nm. Produkt je eluiran do 100% B. Frakcije produkta su odparene na Speedovac isparivaču, ponovno otopljene u puferu A te konačno liofilizirane. Dobiven je prinos od 8,4 mg HPLC-pročišćenog produkta u obliku zaštićenom cisteinom. Ovaj je peptid označen sa P16. U svrhu dobivanja P16 u slobodnoj merkapto formi, t-butilom zaštićena supstancija se obrađuje 30 minuta kod sobne temperature sa tioanisol/etanditiol/trifluoroctena kiselina/trifluorometansulfonska kiselina (2/1/40/3). Trifluorometansulfonska kiselina je dodana u navedenoj proporciji, nakon drugih komponenata. Peptid je izoliran taloženjem sa eterom i zatim gel filtracijom (Sephadex G-25) uz upotrebu gore spomenutog pufera A, pod atmosferom argona. Peptide sequence (SEQ ID NO:1) Gly-Leu-Phe-Glu-Ala-Ile-Ala-Gly-Phe-Ile-Glu-Asn-Gly-Trp-Glu-Gly-Met-Ile-Asp-Gly-Gly -Gly-Cys, was synthesized by the Fmoc (fluorenylmethoxycarbonyl) method (Atherton et al., 1979), using the Applied Biosystems 431A Peptide Synthesizer. Side chain protecting groups were t-butyl for Cys, Glu and Asp and trityl for Asn. After the coupling reaction, a ninhydrin test was performed, which showed a coupling level of more than 98% for each phase. Double couplings were performed starting at amino acid 19. The N-terminal Fmoc group was removed from a portion of the peptide resin with 20% piperidine in NMP (N-methylpiperidine). Then the Fmoc fractions, protected and unprotected, were washed with DCM (dichloromethane) and dried under high vacuum. The yields were 294 mg of F-moc-free peptide resin and 367 mg of F-moc-protected peptide resin. An amount of 111 mg of Fmoc-free peptide resin was subjected to trifluoroacetic acid cleavage for up to 1.5 h using a mixture of 10 ml TFA, 0.75 g phenol, 300 µl EDT (ethanedithiol), 250 µl Et-S-Me (ethylmethylsulfide) and 500 µl of water. The peptide is filtered from the resin through a glass sinter filter. The resin is washed with DCM and added to the filtrate. The filtrate is concentrated to about 2 ml and then added dropwise to 40 ml of ether with stirring. The peptide precipitate is removed by centrifugation, and the ether supernatant is discarded. The precipitate is washed three times with 40 ml of ether and dried under high vacuum. 58 mg of the obtained crude product is dissolved in 3.5 ml of 20 mM NH4HCO3, which contains 300 µl of 25% NH3/1. The solution is gel-filtered using the same buffer on a pre-packed Sephadex G-25 column (Pharmacia PD-10). All material was applied to a Mono Q column (Pharmacia); gradient: C10 min 100% A, 10-100 min 0-100% B. A: 20 mM NH4HCO3 + 300 ul NH3/1. B: A + 3 M NaCl. Measured at 280 nm, Trp-fluorescence detected at 354 nm. Flow rate: 1 ml/min. The product was eluted with 1 M NaCl. The main fraction of the Mono Q column was further purified by reverse phase HPLC (high pressure liquid chromatography) with a BIORAD-HI-Pore RP-304 column (250x10 mm); gradient 50 to 100% buffer B in 12.5 min, 12.5 to 25 min 100% B; A: 20mM NH4HCO3 + 300 µl NH3/1, B: A in 98% methanol. Flow rate: 3 ml/min. Measured at 237 nm. The product was eluted to 100% B. The product fractions were evaporated on a Speedovac evaporator, redissolved in buffer A and finally lyophilized. A yield of 8.4 mg of HPLC-purified product was obtained in the form protected by cysteine. This peptide is designated as P16. In order to obtain P16 in free mercapto form, the t-butyl protected substance is treated for 30 minutes at room temperature with thioanisole/ethanedithiol/trifluoroacetic acid/trifluoromethanesulfonic acid (2/1/40/3). Trifluoromethanesulfonic acid was added in the specified proportion, after the other components. The peptide was isolated by ether precipitation followed by gel filtration (Sephadex G-25) using the aforementioned buffer A, under an argon atmosphere.

b) Spajanje peptida influence na polilizin b) Attachment of influenza peptide to polylysine

b1) Direktno povezivanje putem SPDP (sunkcinimidilpiridilditiopropionata) b1) Direct connection via SPDP (succinimidylpyridyldithiopropionate)

19,8 mg polilizin 300 hidrobromida (Sigma) gel-filtrira se na Sephadex G-25 koloni (Pharmacia PD-10) u natrijevom accetatu pH 5, da bi se eliminirale niskomolekularne frakcije. Na osnovi ninhidrin testa, koncentracija pL nakon gel filtracije, bila je 3,16 mg/ml. pH vrijednost otopine se podesi na 7-8 sa 1M maOH. 0,64 µmola SPDP (Pharmacia: 40 mM otopine u apsolutnom etanolu) doda se u 2,5 mlpL otopine (7,5 mg pL = 0,13 µmola). To odgovara molarnom odnosu SPDP naprama pL od 5:1. Smjesa se ostavi da reagira preko noći te se gel-filtrira u 20 mM NH4HCO3 pH 8,2, na G-25 koloni. Nakon redukcije 1 alikvota filtrata sa DTT (ditiotreitolom), mjerenje tiopiridona je pokazalo da je reakcija dovršena. 19.8 mg of polylysine 300 hydrobromide (Sigma) was gel-filtered on a Sephadex G-25 column (Pharmacia PD-10) in sodium acetate pH 5 to eliminate low molecular weight fractions. Based on the ninhydrin test, the pL concentration after gel filtration was 3.16 mg/ml. The pH value of the solution is adjusted to 7-8 with 1M maOH. 0.64 µmole of SPDP (Pharmacia: 40 mM solution in absolute ethanol) was added to 2.5 mlpL of solution (7.5 mg pL = 0.13 µmole). This corresponds to a SPDP to pL molar ratio of 5:1. The mixture is left to react overnight and is gel-filtered in 20 mM NH4HCO3 pH 8.2, on a G-25 column. After reduction of 1 aliquot of the filtrate with DTT (dithiothreitol), measurement of thiopyridone showed that the reaction was complete.

0,3 µmola pL modificiranog sa PDP (na bazi umola PDP) u 2,2 ml, ostavi se da reagira sa 0,35 µmola peptida u tiol formi. Bijeli talog koji se javlja kad se peptid i pL pomiješa, otopi se podešavanjem otopine na 2 M gvanidinium hidroklorid, s tim da reakcija teče preko noći. Fotometrijsko mjerenje tiopiridona u reakcijskoj smjesi ponovo potvrđuje da je reakcija dovršena. Smjesa se zatim dijalizira dva puta prema 2 litre 20 mM HEPES/0,5 M gvanidinuim hidroklorida. Dobivena se otopina doda u Mono S kolonu (0,7 x 6 cm, Pharmacia) (gradijent: 0 do 20 min 100% A, 20 do 140 min 0-100% B. A: 20 mM HEPES pH 7,3/0,5 M gvanidinium hidroklorida, B: 20 mM HEPES pH 7,3/3 M gvavndinium hidroklorida, 0,3 ml/min. Detekcija kod 280 nm, a fluorescentna detekcija kod 354 nm, ekscitacija kod 280 nm). Frakcija produkta, koja je eluirana sa 1,5 M gvanidinium hidrokloridom, dijalizirana je prema 2 litre HBS. Nakon toga, određivanje koncentracije pL, minhidrin testom, pokazalo je koncentraciju od oko 1,14 ml/ml. Količina peptida u otopini konjugata izračunata je iz njegove apsorpcije kod 280 nm; to je dalo molarni odnos peptida prema pL od 4:1. 0.3 µmole pL modified with PDP (on a mol PDP basis) in 2.2 ml, is allowed to react with 0.35 µmole peptide in thiol form. The white precipitate that occurs when the peptide and pL are mixed is dissolved by adjusting the solution to 2 M guanidinium hydrochloride, allowing the reaction to proceed overnight. Photometric measurement of thiopyridone in the reaction mixture again confirms that the reaction is complete. The mixture is then dialyzed twice against 2 liters of 20 mM HEPES/0.5 M guanidinium hydrochloride. The resulting solution is added to a Mono S column (0.7 x 6 cm, Pharmacia) (gradient: 0 to 20 min 100% A, 20 to 140 min 0-100% B. A: 20 mM HEPES pH 7.3/0 .5 M guanidinium hydrochloride, B: 20 mM HEPES pH 7.3/3 M guanidinium hydrochloride, 0.3 ml/min.Detection at 280 nm, and fluorescence detection at 354 nm, excitation at 280 nm). The product fraction, which was eluted with 1.5 M guanidinium hydrochloride, was dialyzed against 2 liters of HBS. After that, the determination of the pL concentration by the minhydrin test showed a concentration of about 1.14 ml/ml. The amount of peptide in the conjugate solution was calculated from its absorbance at 280 nm; this gave a peptide to pL molar ratio of 4:1.

b2) Povezivanje putem polietilenglikolne veze. b2) Connecting via a polyethylene glycol bond.

14,6 mg pL 300 hidrobromida (Sigma) gel-filtrirano je što je opisano u b1). Prema ninhidrin testu, koncentacija pL nakon gel filtracije, bila je 4,93 mg/ml. pH-vrijednost otopine podešena je na 7 do 8 sa 1 M NaOH. U 2,7 ml pL otopine (13,3 mg pL = o,22 µmola) doda se 4,33 µmola PDP (Pharmacia; 30 mM otopina u apsolutnom etanolu). To odgovara molarnom odnosu PDP:pL od 20:1. Nakon 1,5 h reakcijska se smjesa filtrira u Sephadex G-25 koloni u 0,1 M otopini natrijeva acetata/3M gvanidinium hidroklorida. Nakon redukcije jednog alikvota filtrata sa DTT, odredi se tiopiridon, čime je pokazano da frakcija produkta sadržava 3,62 µmola PDP. Sa PDP modificiran pL reduciran je dodatkom 79 mg DTT. Nakon 2 sata redukcija otopina se ponovno filtrira na G-25, pod specificiranim uvjetima. Test na tiol po Ellamanu pokazao je koncentraciju tiola od 3,15 µmola u 2,224 ml. 14.6 mg pL 300 hydrobromide (Sigma) was gel-filtered as described in b1). According to the ninhydrin test, the pL concentration after gel filtration was 4.93 mg/ml. The pH value of the solution was adjusted to 7 to 8 with 1 M NaOH. 4.33 µmol PDP (Pharmacia; 30 mM solution in absolute ethanol) was added to 2.7 ml pL solution (13.3 mg pL = 0.22 µmole). This corresponds to a PDP:pL molar ratio of 20:1. After 1.5 h, the reaction mixture is filtered in a Sephadex G-25 column in a 0.1 M sodium acetate/3 M guanidinium hydrochloride solution. After reduction of an aliquot of the filtrate with DTT, thiopyridone was determined, which showed that the product fraction contained 3.62 µmol of PDP. PDP-modified pL was reduced by the addition of 79 mg DTT. After 2 hours of reduction, the solution is again filtered on G-25, under the specified conditions. The thiol test according to Ellaman showed a thiol concentration of 3.15 µmole in 2.224 ml.

U 500 µl 20 mM NaHCO3/3 M gvanidinium hidroklorida otopi se 17,6 mg = 5 µmola POE (polioksietilen-bis(6-aminoheksil), Sigma) i regira sa 13,8 mg EMCS (N-hidroksisukcinimid ester -meleimidokapronske kiseline, Sigma) = 44, 7 µmola, otopljenog u dimetilformamidu, 300 ul. Nakon 30 minuta otopina se gel-filtrira na G-25 (20 mM NaHCO3/3 M gvanidinium hidroklorid). Fotometrijsko je mjerenje, kod 300 nm, pokazalo koncentraciju od 6,36 µmola reagiranog EMCS u 2 ml otopine. In 500 µl of 20 mM NaHCO3/3 M guanidinium hydrochloride, 17.6 mg = 5 µmol of POE (polyoxyethylene-bis(6-aminohexyl), Sigma) is dissolved and treated with 13.8 mg of EMCS (N-hydroxysuccinimide ester -maleimidocaproic acid, Sigma) = 44.7 µmol, dissolved in dimethylformamide, 300 ul. After 30 minutes, the solution is gel-filtered on G-25 (20 mM NaHCO3/3 M guanidinium hydrochloride). Photometric measurement, at 300 nm, showed a concentration of 6.36 µmol of reacted EMCS in 2 ml of solution.

1,39 umola peptida u formi tiola (u 2, ml 20 mM NaHCO3/3 M gvanidinium hidroklorida) doda se, kap po kap, u 1,05 ml ove otopine (što odgovara 3,34 µmola EMCS) uz intenzivno miješanje smjese, u struji argona. Nakon 15 minuta nije se moglo Ellmanovim testom ustanoviti prisutnost slobodnih tiolnih grupa. Otopina reduciranog, merkaptomodificiranog pL podesi se na pH 7-8 dodatkom 1 M NaOH. 1,37 ml ove otopine doda se u gornju reakcijsku smjesu uz intenzivno miješanje izvedeno pomoću Vortex mješalice. To je dalo molarni odnos peptid-SH: POE-EMCS:pL-SH od 1:2, 4:1,4 (na bazi EMCS i SH). Nakon 2,5 h reakcije, nije se više moglo Ellmanovim testom dokazati prisutnost tiolnih grupa. Materijal je dijaliziran preko noći prema 2 litre 20 mM HEPES pH 7,3/0,6 M NaCl, a zatim je dodan u Mono S kolonu (gradijent: O do 20 min 22%A, 20-150 min 22-100% B. A: 20 mM HEPES pH 7,3, B: A + 3 M NaCl. Brzina protoka 0,3 ml/min. UV mjerenja su vršena kod 280 nm te mjerenja fluorescencije kod 354 nm). Produkt koji je eluiran sa 1,5 - 1,6 M NaCl, dijaliziran je prema 2 litre HBS. Mjerenje koncentracije pL pomoću minhidrin testa te fotomaterijsko određivanje koncentracije peptida, kod 280 nm, dalo je izračunati pL odnos od 12:1, uz koncentraciju pL od 0,49 mg/ml u ukupnom volumenu od 4,5 ml. 1.39 umole of peptide in thiol form (in 2.ml of 20 mM NaHCO3/3 M guanidinium hydrochloride) was added dropwise to 1.05 ml of this solution (corresponding to 3.34 umole of EMCS) with vigorous mixing of the mixture, in a stream of argon. After 15 minutes, the Ellman test could not detect the presence of free thiol groups. The solution of reduced, mercaptomodified pL is adjusted to pH 7-8 by adding 1 M NaOH. 1.37 ml of this solution was added to the above reaction mixture with vigorous stirring using a Vortex mixer. This gave a peptide-SH:POE-EMCS:pL-SH molar ratio of 1:2, 4:1.4 (based on EMCS and SH). After 2.5 h of reaction, the Ellman test could no longer prove the presence of thiol groups. The material was dialyzed overnight against 2 liters of 20 mM HEPES pH 7.3/0.6 M NaCl and then added to a Mono S column (gradient: O to 20 min 22%A, 20-150 min 22-100% B A: 20 mM HEPES pH 7.3, B: A + 3 M NaCl. Flow rate 0.3 ml/min. UV measurements were performed at 280 nm and fluorescence measurements at 354 nm). The product eluted with 1.5 - 1.6 M NaCl was dialyzed against 2 liters of HBS. Measurement of the pL concentration using the minhydrin test and photomaterial determination of the peptide concentration, at 280 nm, gave a calculated pL ratio of 12:1, with a pL concentration of 0.49 mg/ml in a total volume of 4.5 ml.

c) Priprava liposoma c) Preparation of liposomes

Liposomi su priređeni metodom REV (reverznim faznim odparavanjem) (Szoka i Papahađopoulos, 1978; Straubinger i Papahađopoulos, 1983): vodena faza 10 mM HEPES pH 7,3; 100 mM kalceina/150 mM NaCl; organska faza: otopina od 300 umola L-α-lecitina (iz žumanjca jajeta, uglavnom palmitoiloleoilfosfatidilholin; Avanti Polar Lipidi) u 260 ul kloroforma ispari se na rotirajućem isparivaču. Materijal se zatim suši u visokom vakuumu te ponovno otopi u 3 ml dietiletera. 1 ml vodene faze se dobro ispere eterskom fazom pomoću Vortex mješalice, a zatim se obradi ultrazvukom, 5 min kod 0ºC, (u “sonikatoru” tipa kupelji). Nakon 30 minuta na ledu, materijal se ponovno tretira ultrazvukom daljnjih 10 minuta. Dobivena stabilna emulzija se polako otpari na rotacionom isparivaču. Nakon što je dietileter uklonjen kod 100 mbara, doda se 0,75 ml vodene faze. Preostali tragovi dietil etera se uklone daljnjim odparavanjem kod 50 mbara, 30 minuta. Dobiveni je pripravak centrifugiran sa 500 rpm. Od toga je 1 ml istisnut kroz “nucleopore” polikarbonatnu membranu (0,1 um), te je dobiven konačni volumen od 0,7 ml otopine liposoma. Liposomi su odjeljeni od nepripadajućeg materijala gel filtracijom (Sephadex G-50, Pharmacia; 23 ml gel volumen, 10 mM HEPES pH 7,3/150 mM NaCl). Skupljeno je 6 frakcija od 500 ul. Lipidni je fosfor određen metodom Bartlet-a, 1959, sa 2 mM. Liposomes were prepared by the REV (reverse phase evaporation) method (Szoka and Papahađopoulos, 1978; Straubinger and Papahađopoulos, 1983): aqueous phase 10 mM HEPES pH 7.3; 100 mM calcein/150 mM NaCl; organic phase: a solution of 300 µmol of L-α-lecithin (from egg yolk, mainly palmitoyloleoylphosphatidylcholine; Avanti Polar Lipids) in 260 µl of chloroform is evaporated on a rotary evaporator. The material is then dried under high vacuum and redissolved in 3 ml of diethyl ether. 1 ml of the aqueous phase is washed well with the ether phase using a Vortex mixer, and then it is treated with ultrasound for 5 min at 0ºC (in a bath-type "sonicator"). After 30 minutes on ice, the material is again treated with ultrasound for a further 10 minutes. The resulting stable emulsion is slowly evaporated on a rotary evaporator. After the diethyl ether has been removed at 100 mbar, 0.75 ml of the aqueous phase is added. The remaining traces of diethyl ether are removed by further evaporation at 50 mbar for 30 minutes. The resulting preparation was centrifuged at 500 rpm. Of this, 1 ml was squeezed through a "nucleopore" polycarbonate membrane (0.1 μm), resulting in a final volume of 0.7 ml of liposome solution. Liposomes were separated from extraneous material by gel filtration (Sephadex G-50, Pharmacia; 23 ml gel volume, 10 mM HEPES pH 7.3/150 mM NaCl). 6 fractions of 500 ul were collected. Lipid phosphorus was determined by the method of Bartlet, 1959, with 2 mM.

d) Pokus propuštanja liposoma d) Liposome leakage experiment

Oslobađanje sadržaja liposoma (propuštanje) mjereno je pomoću izlaza uključenog kalceina i rezultirajućeg razrjeđenja, koje zaustavlja gašenje fluorescencije (Bondeson i sur., 1984). Fluorescencija kalceina je mjerena KONTRON SMF 25 spektralnim fluorometrom (pobuđivanje kod 490 nm, emisija kod 515 nm). U tu su svrhu alikoti otopine liposoma razrjeđeni 100 puta sa 0,1 M natrijevim acetatom/50 mM NaCl ili 10 mM HEPES/150 mM NaCl puferom odgovarajuće pH vrijednosti (4,3, 4,5, 5,0, 6,0, 7,3), da bi se postigla vrijednost do 1 ml. Otopinama je dodano 2,5 µl peptida (t-butilom zaštićenog oblika; 1 µg/µl otopine u HBS), u kivete, uz blagu struju argona (Konačna koncentracija 400 nM peptida). Fluorescencija kaceina je mjerena u različitim vremenskim razmacima nakon dodatka peptida. Vrijednosti za 100% propuštanje u određene dodatkom 2 µl Tritona X-100 (Fluka). Release of liposome contents (leakage) was measured by the release of incorporated calcein and the resulting dilution, which stops fluorescence quenching (Bondeson et al., 1984). Calcein fluorescence was measured with a KONTRON SMF 25 spectral fluorometer (excitation at 490 nm, emission at 515 nm). For this purpose, aliquots of the liposome solution were diluted 100 times with 0.1 M sodium acetate/50 mM NaCl or 10 mM HEPES/150 mM NaCl buffer of the appropriate pH value (4.3, 4.5, 5.0, 6.0, 7.3), to achieve a value of up to 1 ml. 2.5 µl peptide (t-butyl protected form; 1 µg/µl solution in HBS) was added to the solutions, in the cuvettes, under a gentle stream of argon (Final concentration 400 nM peptide). Casein fluorescence was measured at different time intervals after peptide addition. Values for 100% permeation were determined by addition of 2 µl Triton X-100 (Fluka).

Isti je postupak korišten za mjerenje fluorescencije kalceina nakon dodatka peptid-pL konjugata u otopinu liposoma. 2,5 µg konjugata (1 µg/µl koncentracija na bazi samog pL) doda se u 1 ml otopine liposoma (konačna koncentracija 20 nM modificiranog peptida). Slično, 2,5 µg peptid-polilizin konjugata je podvrgnuto pokusu propuštanja, nakon inkubacije sa 4 µg DNA (15 minuta). The same procedure was used to measure the fluorescence of calcein after the addition of the peptide-pL conjugate to the liposome solution. 2.5 µg of conjugate (1 µg/µl concentration based on pL alone) was added to 1 ml of liposome solution (final concentration of 20 nM modified peptide). Similarly, 2.5 µg of the peptide-polylysine conjugate was subjected to a leak-through experiment, after incubation with 4 µg of DNA (15 minutes).

Nađeno je da peptid uzrokuje oslobađanje liposoma samo u kiselom području (slika 17). Peptidni je konjugat bio aktivan kod bitno niže pH vrijednosti, dok je čak i kod neutralnog pH nađena jaka aktivnost, koja je dalje rasla s opadanjem pH vrijednosti. Kompleksiranje konjugata sa DNA eliminaralo je aktivnost kod neutralnog pH, dok je kod kiselih pH vrijednosti postojala znatna aktivnost. The peptide was found to cause liposome release only in the acidic region (Figure 17). The peptide conjugate was active at a significantly lower pH value, while even at neutral pH a strong activity was found, which further increased with decreasing pH value. Complexation of the conjugate with DNA eliminated the activity at neutral pH, while there was significant activity at acidic pH values.

e) Transfekcija K562 stanica e) Transfection of K562 cells

K562-stanice su uzgajane u suspenziji na RPMI 1640 mediju (Gibco BRL plus 2 g natrijeva bikarobnata/1) plus 10% FCS, 100 i.j. po ml penicilina, 100 µg/ml streptomicina i 2mM glutamina, do gustoće od 500.000 stanica/ml. 12 do 15 sati prije transfekcije, stanice su stavljene u svježi medij koji je sadržavao 50 µM desferioksamina (ova je mjera poduzeta da bi se povećao broj receptora transferina). Na dan transfekcije, stanice su skupljene, suspendirane u svježem mediju, koji je sadržavao 10% FCS plus 50 µM desferioksamina (250.000 stanica po ml) i 2 ml obroci su smješteni na ploču sa 24 udubljenja. K562 cells were cultured in suspension in RPMI 1640 medium (Gibco BRL plus 2 g sodium bicarbonate/l) plus 10% FCS, 100 i.u. per ml penicillin, 100 µg/ml streptomycin and 2 mM glutamine, up to a density of 500,000 cells/ml. 12 to 15 hours before transfection, cells were placed in fresh medium containing 50 µM desferrioxamine (this measure was taken to increase the number of transferrin receptors). On the day of transfection, cells were harvested, suspended in fresh medium containing 10% FCS plus 50 µM desferrioxamine (250,000 cells per ml) and 2 ml aliquots were plated in a 24-well plate.

6 µg pCMVL-DNA u 160 µl HBS pomiješa se sa količinama tFpL konjugata specificiranim na slici 18. ili sa pL300 u 160 ul HBS, zatim nakon 15 minuta se dodaju navedene količine peptid-pL-konjugata influence (P16pL), a nakon daljnjih 15 minuta smjesa se doda stanicama K562. Stanice se inkubiraju 24 sata kod 37ºC i zatim skupe za test luciferaze. Aktivnost luciferaze je određena kao što je navedeno u ranijim primjerima. Vrijednosti date u slici 18 predstavljaju ukupnu aktivnost luciferaze transficiranih stanica. 6 µg of pCMVL-DNA in 160 µl of HBS is mixed with the amounts of tFpL conjugate specified in Figure 18 or with pL300 in 160 µl of HBS, then after 15 minutes the specified amounts of influenza peptide-pL-conjugate (P16pL) are added, and after a further 15 minutes, the mixture is added to the K562 cells. Cells are incubated for 24 hours at 37ºC and then harvested for the luciferase assay. Luciferase activity was determined as described in earlier examples. The values given in Figure 18 represent the total luciferase activity of the transfected cells.

f) Transfekcija HeLa stanica f) Transfection of HeLa cells

HeLa stanice su kultivirane u posudicama od 6 cm, kao što je opisano pod “stanice i hranilišta”. Transfekcije su izvedene kod gustoće od 300.000 stanica po ploči. Prije fransfekcije stanice su inkubirane sa 1 ml svježeg medija, koji je sadržavao 2% FCS. 6 ug pCMVL-DNA u 160 ml HBS pomiješa se sa količinama TfpL konjugata specificiranim na slici 19, ili sa pL300 ili sa smjesom jednog i drugog u 160 µl HBS. Nakon 15 minuta dodaju se naznačene količine peptid-pL-konjugata influence (p16pL) te nakon daljnjih 15 minuta, smjesa se doda stanicama. Stanice se inkubiraju 2 sata kod 37ºC, zatim se doda 2,5 ml svježeg medija uz dodatak 10% FCS. Stanice se inkubiraju 24 sata kod 37ºC i zatim se skupe za pokus luciferaze. Aktivnost luciferaze se odredi kao što je opisano u prethodnim primjerima. Vrijednosti date na slici predstavljaju ukupnu aktivnost luciferaze fransficiranih stanica. HeLa cells were cultured in 6 cm dishes, as described under “cells and feeders”. Transfections were performed at a density of 300,000 cells per plate. Before transfection, the cells were incubated with 1 ml of fresh medium containing 2% FCS. 6 µg pCMVL-DNA in 160 ml HBS was mixed with the amounts of TfpL conjugate specified in Figure 19, or with pL300 or a mixture of both in 160 µl HBS. After 15 minutes, the indicated amounts of influenza peptide-pL-conjugate (p16pL) are added, and after a further 15 minutes, the mixture is added to the cells. The cells are incubated for 2 hours at 37ºC, then 2.5 ml of fresh medium with the addition of 10% FCS is added. Cells are incubated for 24 hours at 37ºC and then harvested for the luciferase assay. Luciferase activity was determined as described in the previous examples. The values given in the figure represent the total luciferase activity of transfected cells.

Primjer 14 - Pojačanje prijenosa gena postignuto konjugatima transferina, pomoću drugog N-terminalnog endosomolitičkog peptida hemaglutinina influence HA2 Example 14 - Enhancement of gene transfer achieved by transferrin conjugates, using the second N-terminal endosomolytic peptide of influenza HA2 hemagglutinin

a) Sinteza peptid influence - polilizin konjugata a) Synthesis of influenza peptide - polylysine conjugate

Peptid niza (SEQ ID MO:2) Gly-Leu-Phe-Gly-Ala-Ile-Ala-Gyl-Phe-Ile-Gli-Asn-Gly-Trp-Glu-Gly-Met-Ile-Asp-Gly-Gly-Cys (označen P41), sintetiziran je na isti način kao i peptid opisan u primjeru 13,a). Spajanje peptida influence sa polilizinom (pL300) izvršeno je kao i u primjeru 13, b1), vezanjem putem SPDP. Time su dobiveni konjugati (P41pL) sa molarnim odnosom peptida prema pL od 4:1. Peptide sequence (SEQ ID MO:2) Gly-Leu-Phe-Gly-Ala-Ile-Ala-Gyl-Phe-Ile-Gli-Asn-Gly-Trp-Glu-Gly-Met-Ile-Asp-Gly-Gly -Cys (marked P41), was synthesized in the same way as the peptide described in example 13,a). Connection of the influenza peptide with polylysine (pL300) was performed as in example 13, b1), by binding via SPDP. This resulted in conjugates (P41pL) with a molar ratio of peptide to pL of 4:1.

b) Transfekcija HeLa stanica. b) Transfection of HeLa cells.

HeLa stanice su uzgajane na DMEM hranilištu 5% FCS, 100 i.j. penicilina po ml, 100 µg/ml streptomicina i 2 mM glutamina, u pločama od 6 cm. Transfekcije su izvršene uz gustoću od 300.000 stanica po ploči. Prije transfekcije stanice su inkubirane sa 1,5 ml svježeg hranilišta, koje je sadržavalo 2% FCS. 6 µg pCMVL-DNA u 160 µl HBS (150 mM NaCl, 20 mM HEPES 7,3) pomiješa se sa 6 µg TfpL190B konjugata u 160 µl HBS, a nakon 15 minuta doda se 10 µg peptid-pL-konjugata influence P41pL ili, za usporedbu, 18 µg peptid-pL-konjugata influence P16pL (vidi primjer 13), (slika 20). Navenene količine dvaju peptidnih konjugata provjerene su kao optimalne količine za povećanje prijenosa gena. Nakon daljnjih 15 minuta smjesa se doda stanicama. Stanice se inkubiraju kod 37ºC 4 sata, zatim se doda 2 ml hranilišta, koje sadržava 18% FCS. Nakon 24 sata stanice se pokupe za test luciferaze. Vrijednosti koje su prkazane na slici 20 predstavljaju ukupnu aktivnost luciferaze transficiranih stanica. HeLa cells were grown in DMEM medium 5% FCS, 100 i.u. of penicillin per ml, 100 µg/ml streptomycin and 2 mM glutamine, in 6 cm plates. Transfections were performed at a density of 300,000 cells per plate. Before transfection, the cells were incubated with 1.5 ml of fresh medium containing 2% FCS. 6 µg pCMVL-DNA in 160 µl HBS (150 mM NaCl, 20 mM HEPES 7.3) was mixed with 6 µg TfpL190B conjugate in 160 µl HBS, and after 15 min 10 µg peptide-pL-conjugate influenza P41pL or, for comparison, 18 µg of peptide-pL-conjugate influenza P16pL (see example 13), (Figure 20). The indicated amounts of the two peptide conjugates were verified as optimal amounts for increasing gene transfer. After a further 15 minutes, the mixture is added to the cells. The cells are incubated at 37ºC for 4 hours, then 2 ml of medium containing 18% FCS is added. After 24 hours the cells are harvested for the luciferase assay. The values shown in Figure 20 represent the total luciferase activity of the transfected cells.

Usporedba eksperimenata sa dva peptidna konjugata pokazuje više nego 3,5 puta veće povećanje prijenosa gena postignutog sa drugim peptidnim konjugatom P41pL. Comparison of experiments with the two peptide conjugates shows a greater than 3.5-fold increase in gene transfer achieved with the second P41pL peptide conjugate.

c) Transfekcija BNL CL.2 stanica sa peptid-polilizin konjugatima influence. c) Transfection of BNL CL.2 cells with influenza peptide-polylysine conjugates.

BNL CL.2 stanice su uzgajane kao što je opisano u primjeru 6. Peptid influence P14 konjugiran je sa polilizinom 300 uz molarni odnos peptida prema polilizinu 1:1, 3:1 i 8:1, BNL CL.2 cells were cultured as described in example 6. Influenza P14 peptide was conjugated to polylysine 300 with a molar ratio of peptide to polylysine of 1:1, 3:1 and 8:1,

Stanicama su dodani kompleksi od 6 µg pCMVL DNA i 20 µg konjugata. Za usporedbu, upotrebljeno je 20 µg pL300 ili 20 µg P16 polilizin konjugata, priređenog kaa što je opisano u primjeru 13. Stanice su inkubirane kod 37ºC 4 sata, i zatim je dodano 2 ml medija koji je sadržavao 18% FCS. Nakon 24 sata stanice se pokupe za pokus luciferaze, čije rezultate pokazuje slika 20B. Sadržaj peptida u konjugatima u odnosu je sa pojačanjem izražaja gena. U pokusima propuštanja liposoma (slika 20C), koji su izvedeni kao što je opisano u pokusu 13, aktivnost je konjugata (kod pH 5, koja odgovara količini od 2,5 µg polilizina) rasla sa njihovim sadržajem peptida. (na slici P41 je označen sa “influ2”). Complexes of 6 µg pCMVL DNA and 20 µg conjugate were added to the cells. For comparison, 20 µg of pL300 or 20 µg of P16 polylysine conjugate, prepared as described in Example 13, were used. Cells were incubated at 37ºC for 4 hours, and then 2 ml of medium containing 18% FCS was added. After 24 hours, the cells are harvested for the luciferase experiment, the results of which are shown in Figure 20B. The peptide content in the conjugates is related to the enhancement of gene expression. In liposome permeation experiments (Figure 20C), which were performed as described in experiment 13, the activity of the conjugates (at pH 5, corresponding to 2.5 µg of polylysine) increased with their peptide content. (in the picture P41 is marked with "influ2").

Primjer 15 - Transfekcija HeLa stanica sa konstrukcijom referentnog gena β-galaktosidaze i “in situ” prikaz izražavanja β-galaktosidaze. Example 15 - Transfection of HeLa cells with the β-galactosidase reference gene construct and "in situ" display of β-galactosidase expression.

a) Kultiviranje i transfekcija stanica. a) Cultivation and transfection of cells.

Za transfekciju, HeLa stanice su uzgajanje u DMEM hranilištu, koje je sadržavalo 5% FCS, penicilina, streptomicina i glutamina, kao što je opisano u prethodnim primjerima, u posudicama s poklopcima /vel. 3 cm). (3 x 104 stanica po posudici). For transfection, HeLa cells were cultured in DMEM medium containing 5% FCS, penicillin, streptomycin and glutamine, as described in the previous examples, in dishes with lids /vel. 3 cm). (3 x 104 cells per dish).

Za transfekciju kompleksira se 6 µg β-galaktosidaze konstrukcije referentnog gena (pCMV-β-gal) u 160 µl HBS sa 12 µg TfpL190B u 160 µl HBS te se inkubira 30 minuta kod sobne temperature. For transfection, 6 µg β-galactosidase reference gene construct (pCMV-β-gal) in 160 µl HBS is complexed with 12 µg TfpL190B in 160 µl HBS and incubated for 30 minutes at room temperature.

U drugom primjeru, 6 µg pCMV-β-gal u 160 µl HBS inkubira se sa 6 µg TfpL190B u 80 µl HBS, 15 minuta kod sobne temperature. Zatim se doda 12 µg peptidnog konjugata influenze (P16pL), priređenog u primjeru 13 u 80 µl HBS, i smjesa se inkubira daljnjih 15 minuta. Ovi se DNA-polikationski kompleksi pomiješaju sa 1 ml DMEM plus 2% FCS, antibioticima i glutaminom, kao što je gore opisano. Da bi se pokazao učinak klorokina i adenovirusa na uspiješnost transfekcije, u dodatnim je eksperimentima također dodan klorokin u hranilište, koje je sadržavalo DNA polikationske komplekse, u konačnoj koncetraciji od 100 µmola ili 50 µl otopine adenovirusa soja d1312. In another example, 6 µg pCMV-β-gal in 160 µl HBS is incubated with 6 µg TfpL190B in 80 µl HBS, for 15 minutes at room temperature. Then 12 µg of the influenza peptide conjugate (P16pL), prepared in Example 13 in 80 µl of HBS, was added and the mixture was incubated for a further 15 minutes. These DNA-polycation complexes are mixed with 1 ml of DMEM plus 2% FCS, antibiotics and glutamine, as described above. To demonstrate the effect of chloroquine and adenovirus on transfection success, in additional experiments, chloroquine was also added to the medium containing DNA polycation complexes, in a final concentration of 100 µmol or 50 µl of adenovirus strain d1312 solution.

Za transfekciju je originalno hranilište uklonjeno od stanica i dodan je 1 ml hranilišta koje je sadržavalo DNA komplekse sa ili bez klorokina ili virusa. Napokon perioda inkubacije od 2 sata kod 37º doda se stanicama 1 ml DMEM, koji je sadržavao 10% FCS, antibiotike i glutamin i inkubacija je nastavljena daljnja dva sata. Zatim je medij uklonjen i stanice su uzgajane u 3 ml svježeg DMEM plus 10FCS, antibioticima i glutamin. For transfection, the original medium was removed from the cells and 1 ml of medium containing DNA complexes with or without chloroquine or virus was added. At the end of the incubation period of 2 hours at 37º, 1 ml of DMEM containing 10% FCS, antibiotics and glutamine was added to the cells and the incubation was continued for another two hours. Then the medium was removed and the cells were grown in 3 ml of fresh DMEM plus 10FCS, antibiotics and glutamine.

b) Pokus β-galaktosidaze b) β-galactosidase experiment

48 sati nakon transfekcije hranilište je uklonjeno, stanice su isprazne jedanput sa otopinom fosfatnog pufera (PBS) i fiksirane sa 5% glutardialdehidom u PBS 5 minuta kod sobne temperature. Zatim se fiksativ odbaci, a stanice se isperu jedanput sa PBS. Zatim se provodi inkubacija sa otopinom za bojadisanje (10mM fosfatnog pufera pH 7,0, 150mM NaCl, 1 mM MgCl2, 3,3 mM K4Fe(CN)6·3H2O, 3,3 mM K3Fe(CN)6 i 0,2% 5-bromo-4-kloro-3-indolil-β-galaktopiranozid), kod 37ºC, 20 minuta do 3 sata (lim i Chae, 1989). Zatim se poklpci isperu u PBS, vodi i 96% etanolu, osuše i stave u “Mowiol” na objektna stakla. Za analizu je upotrebljen Zeiss Axiophot mikroskopa. 48 hours after transfection the culture medium was removed, the cells were washed once with phosphate buffer solution (PBS) and fixed with 5% glutardialdehyde in PBS for 5 minutes at room temperature. Then the fixative is discarded, and the cells are washed once with PBS. Then, incubation with the staining solution (10 mM phosphate buffer pH 7.0, 150 mM NaCl, 1 mM MgCl2, 3.3 mM K4Fe(CN)6·3H2O, 3.3 mM K3Fe(CN)6 and 0.2% 5-bromo-4-chloro-3-indolyl-β-galactopyranoside), at 37ºC, 20 minutes to 3 hours (Lim and Chae, 1989). Then the coverslips are washed in PBS, water and 96% ethanol, dried and placed in "Mowiol" on glass slides. A Zeiss Axiophot microscope was used for analysis.

Slika 21 pokazuje mikroskopska povećanja (112 puta). A: HeLa stanice transformirane sa 6 µg pCMV-β-gal, kompleksirane sa 12 µg TfpL190B. Reakcija bojenja za β-galaktosidazu trajala je 3 sata. Slika pokazuje da tek nekoliko stanica izražava gen β-galaktosidaze (55 stanica; obojene stanice su označene strelicom). B: HeLa stanice transficirane sa 6 µg pCMV-β-gal, kompleksirane sa 6 µg TfpL190B i 12 µg P16pL. reakcija bojenja: 3 sata. Nekoliko stanica (250 stanica) izražava β-galaktosidaze. Međutim, reakcija stanica je jača nego u A. C: HeLa stanice transficirane sa 6 µg pCMV-β-gal, kompleksirane sa 6 µg TfpL190B i 12 µg Pl6pL u prisutnosti 100 µM klorokina. Reakcija bojenja. 3 sata. Brojne grupe stanica pokazuju jako pozitivnu reakciju (više od 1.000 stanica). D: HeLa stanice transficirane sa 6 µg pCMV-β-gal, kompleksirane sa 12 µg TfpL190 u prisutnosti adenovirusa d1312. Reakcija bojenja: 20 minuta. Gotovo sve stanice (više od 90% pokazuju pozitivnu reakciju. E. Ne-tranficirane HeLa stanice (kontrola na specifičnost reakcije -galaktosidaze). Figure 21 shows microscopic magnifications (112 times). A: HeLa cells transformed with 6 µg of pCMV-β-gal, complexed with 12 µg of TfpL190B. The staining reaction for β-galactosidase lasted for 3 hours. The image shows that only a few cells express the β-galactosidase gene (55 cells; colored cells are indicated by an arrow). B: HeLa cells transfected with 6 µg pCMV-β-gal, complexed with 6 µg TfpL190B and 12 µg P16pL. staining reaction: 3 hours. A few cells (250 cells) express β-galactosidase. However, the cell response is stronger than in A. C: HeLa cells transfected with 6 µg pCMV-β-gal, complexed with 6 µg TfpL190B and 12 µg Pl6pL in the presence of 100 µM chloroquine. Staining reaction. 3 hours. Numerous groups of cells show a very positive reaction (more than 1,000 cells). D: HeLa cells transfected with 6 µg of pCMV-β-gal, complexed with 12 µg of TfpL190 in the presence of adenovirus d1312. Staining reaction: 20 minutes. Almost all cells (more than 90%) show a positive reaction. E. Non-transfected HeLa cells (control for the specificity of the -galactosidase reaction).

Primjer 16 - Transfekcija HeLa stanica sa 48 kb kosmidom u prisutnosti adenovirusa. Example 16 - Transfection of HeLa cells with a 48 kb cosmid in the presence of adenovirus.

a) Priprava kosmida koji sadrži luciferazom označeni niz. a) Preparation of a cosmid containing a luciferase-tagged sequence.

Fragment 3,0 kb Sal I, koji sadrži pojedinčani P. pyralis niz označen luciferazom, pod kontrolom RSV promotora, izoliran je iz plasmida p220RSVLuca i povezan u jedinstvenom Sal I položaju kosmidnog klona Cl-7aAl, da bi se formirali konkatameri. (Cl-7aAl ouhvaća 37 kb humani genomični DNA Sau3A fragment, koji ne označava očito gene, kloniran u BamHI položaju kosmičkog vektora pWE15 (Stratagen). Produkt reakcije vezanja je zatim spojen “in vitro”, a rezultirajuće čestice faga su inficirane u E. coli NM544 i stavljene na LB amp ploče. Rekombinanti su podvrgnuti selekciji hibridizacijom kolonija, uz upotrebu 3,0 kb Sal I fragmenta (32p označenog slučajnim namazom) kao ispitivača hibridizacije, i brojnih činjenica analiziranih prema ustanovljenim ograničenjima. Struktura kosmida (CosLuc), koja sadrži pojedinačni uzorak Sal I uloška, uzgajana je i pročišćena na CsCl gradijentu (ukupne veličine = 48 kb). A 3.0 kb Sal I fragment, containing a single P. pyralis luciferase-tagged sequence, under the control of the RSV promoter, was isolated from plasmid p220RSVLuca and ligated into the unique Sal I position of cosmid clone Cl-7aAl, to form concatamers. (Cl-7aAl captures a 37 kb human genomic DNA Sau3A fragment, which does not obviously tag genes, cloned into the BamHI site of the cosmic vector pWE15 (Stratagen). The product of the ligation reaction was then ligated “in vitro”, and the resulting phage particles were infected into E. coli NM544 and plated on LB amp plates. Recombinants were subjected to colony hybridization selection, using a 3.0 kb Sal I fragment (32p random smear labeled) as a hybridization probe, and numerous facts analyzed according to established restrictions. The structure of the cosmid (CosLuc), which contains a single sample of the Sal I insert, grown and purified on a CsCl gradient (total size = 48 kb).

Mali je kontrolni kosmid pWELuc (12 kb) pripremljen digeriranjem CosLuc sa Not I, ponovnim povezivanjem, transformiranjem bakterija i izoliranjem klona koji sadržava odgovarajući plasmid. To je rezultiralo 12 kb DNA molekulom kojoj nedostaje humani DNA umetak i dio “polilinkeea” CosLuc. Plasmid pSPNeoLuc (8 kb) je plasmid opisan u primjeru 5, koji sadrži fragment gena RSV-luciferaze (Apal/Pvul fragment pRSVL, kloniran u Cla 1 položaju pUCu Locus-a). The small control cosmid pWELuc (12 kb) was prepared by digesting CosLuc with Not I, religating, transforming the bacteria, and isolating a clone containing the appropriate plasmid. This resulted in a 12 kb DNA molecule lacking the human DNA insert and part of the CosLuc “polylinkee”. Plasmid pSPNeoLuc (8 kb) is the plasmid described in example 5, which contains a fragment of the RSV-luciferase gene (ApaI/Pvul fragment of pRSVL, cloned in the Cla 1 position of the pUCu Locus).

b) Odpuštanje kosmida u HeLa stanice. b) Cosmid release into HeLa cells.

HeLa stanice (3 x 104stanica po posudici od 6 cm) prekrivene su sa 1 ml DMEM + 2% FCS te inkubirane sa TfpL/DNA kompleksima pripremljenim kao što je opisano u poglavlju “Materijali i metode”, koji su sadržavali navedene količine hTfpL, slobodnog pL i DNA. Smjesa stanične inkubacije sadržavala je, osim toga, ili 100 µg klorokina (stupci 1 i 2) ili 10 µl adenovirusa d1312 koji je sadržavao 5x1011 čestica po ml, (stupci 3-12). Nakon 2 sata inkubacije kod 37º doda se 4 ml DMEM + 10% FCS u svaku posudicu. Nakon 24 sata stanice se pokupe (požanju) i izmjeri se aktivnost luciferaze. Rezultati su prikazani na slici 22A. HeLa cells (3 x 104 cells per 6 cm dish) were covered with 1 ml of DMEM + 2% FCS and incubated with TfpL/DNA complexes prepared as described in the chapter "Materials and methods", which contained the specified amounts of hTfpL, free pL and DNA. The cell incubation mixture contained, in addition, either 100 µg of chloroquine (columns 1 and 2) or 10 µl of adenovirus d1312 containing 5x1011 particles per ml, (columns 3-12). After 2 hours of incubation at 37º, add 4 ml of DMEM + 10% FCS to each container. After 24 hours the cells are collected (harvested) and the luciferase activity is measured. The results are shown in Figure 22A.

c) Odpuštanje kosmida u Neuroblastoma stanice. c) Cosmid release in Neuroblastoma cells.

Stanice neuroblastomne stanične linije, označene sa GIME-N (Donti i sur. 1988) (1x106 stanica po posudici od 6 cm), prekrivene sa 1 ml DMEM + 2% FCS, inkubirane su sa TfpL/DNA kompleksima pripremljenim kao što je opisano u poglavlju “Materijali i metode”, koje su sadržavali navedene količine hTfpL, slobodnog pL i DNA. Smjese za inkubaciju stanica sadržavale su, osim toga, ili 100 µM klorokina (stupci 3 i 4) ili 10 µl adenovirusa d1312, koji je sadržavao 5 x 1011 čestica po ml, (stupci 5 i 6). Nakon 2 sata inkubacije kod 37ºC doda se u svaku posudicu po 4 ml DMEM + 10% FCS. Nakon 24 sata stanice se pokupe izmjeri se aktivnost luciferaze. Rezultati su prikazani na slici 22B. Cells of the neuroblastoma cell line, labeled GIME-N (Donti et al. 1988) (1x106 cells per 6 cm dish), covered with 1 ml DMEM + 2% FCS, were incubated with TfpL/DNA complexes prepared as described in chapter "Materials and methods", which contained the specified amounts of hTfpL, free pL and DNA. Cell incubation mixtures contained, in addition, either 100 µM chloroquine (columns 3 and 4) or 10 µl adenovirus d1312, which contained 5 x 1011 particles per ml, (columns 5 and 6). After 2 hours of incubation at 37ºC, add 4 ml of DMEM + 10% FCS to each container. After 24 hours the cells are collected and the luciferase activity is measured. The results are shown in Figure 22B.

Primjer 17 - Prijenos gena putem kemijski vezanih konjugata adenovirus-polilizin Example 17 - Gene transfer via chemically bound adenovirus-polylysine conjugates

a) Priprema konjugata adenovirus-polilizin kemijskim povezivanjem. a) Preparation of adenovirus-polylysine conjugate by chemical linking.

2,35 ml gel-filtrirane otopine adenovirusa (Sephadex G-25 PD10.Pharmacia) (d1312, pribl. 1011 čestica) u 150 mM NaCl/25 mM HEPES, pH 7,9/10% glicerola, pomiješa se sa 10 ul (10nmola) 1 mM otopine SPDP (Pharmacia). Nakon 3,5 sata kod sobne temperature, modificirani se virus odijeli od viška reagensa gel filtracijom (kao gore). Otopina se pročisti argonom i ostavi da reagira, uz isključenje kisika (pod argonom) sa 42 ul otopine FITC-om označenog polilizina (1nmol), modificiranog s 2,3 nmola merkaptopropionatnih grupa (pripremljenih kao što je opisano u EP 388 758). Nakon 18 sati stajanja na sobnoj temperaturi, polovina otopine se prenese u epruvetu za cntrfugiranje, pažljivo se prekrije s otopinom cezijeva klorida (gustoće 1,33 g/ml) i centrifugira kod sobne temperature, 2 sata sa 35000 rpm (SW60 rotor). Virusni se sloj skupi, kao 200 ul frakcija cezijeva klorida, i razrijedi se na 1 ml sa HBS/50% glicerol. Pokus pokazuje da DNA izveden je sa 200 ul modificiranog virusa;: virusna je otopina razrijeđena sa 1 ml HBS i pomiješana sa 100 µl ootpine DNA, označene sa 35S (15 ng pRSVL, priređenog premještanjem po Micku). Za kontrolu, paralelno je izveden isti pokus sa istom količinom nemodificiranog virusa d1312. Nakon 30 minuta uzorci su prenešeni u epruvete za centrifugirnje, pažljivo su prekriveni sa po 1 ml otopine cezijeva klorida (gustoća 1,33 g/ml) i centrifugirani 2 sata u 35000 rpm (SW60 rotor) kod sobne temperature. Gradijent je podijeljen u 5 frakcija: frakcija 1, 1 ml; frakcija 2, 0,6 ml; frakcija 3-5, svaka 200 µl. Radioaktivnost 200 µl svih frakcija je mjerena, a rezultate pokazuje slika 23. Frakcije koje sadržavaju viru, osobito frakcija 3, pokazuju znantno veću radioaktivnost nego konrolirana frakcija. To se može pripisati posebnom povezivanju polilzinom modificiranom adenovirusu sa označenom DNA, a prisutnost cezijeva klorida možda uzrokuje djelomičnu disocijaciju kompleksa. 2.35 ml of a gel-filtered solution of adenovirus (Sephadex G-25 PD10.Pharmacia) (d1312, approx. 1011 particles) in 150 mM NaCl/25 mM HEPES, pH 7.9/10% glycerol, was mixed with 10 ul ( 10 nmol) of a 1 mM solution of SPDP (Pharmacia). After 3.5 hours at room temperature, the modified virus is separated from the excess reagent by gel filtration (as above). The solution is purged with argon and allowed to react, under exclusion of oxygen (under argon), with 42 µl of a solution of FITC-labeled polylysine (1 nmol), modified with 2.3 nmol of mercaptopropionate groups (prepared as described in EP 388 758). After standing for 18 hours at room temperature, half of the solution is transferred to a centrifuge tube, carefully covered with a solution of cesium chloride (density 1.33 g/ml) and centrifuged at room temperature for 2 hours at 35,000 rpm (SW60 rotor). The viral layer was collected as a 200 µl cesium chloride fraction and diluted to 1 ml with HBS/50% glycerol. The experiment shows that the DNA was derived from 200 µl of the modified virus;: the virus solution was diluted with 1 ml of HBS and mixed with 100 µl of the 35S-labeled DNA solution (15 ng of pRSVL, prepared by Mick transfer). As a control, the same experiment was performed in parallel with the same amount of unmodified d1312 virus. After 30 minutes, the samples were transferred to centrifuge tubes, carefully covered with 1 ml of cesium chloride solution (density 1.33 g/ml) and centrifuged for 2 hours at 35000 rpm (SW60 rotor) at room temperature. The gradient is divided into 5 fractions: fraction 1, 1 ml; fraction 2, 0.6 ml; fraction 3-5, each 200 µl. The radioactivity of 200 µl of all fractions was measured, and the results are shown in Figure 23. Fractions containing virus, especially fraction 3, show significantly higher radioactivity than the control fraction. This can be attributed to the specific binding of the polylysine-modified adenovirus to the labeled DNA, and the presence of cesium chloride may cause partial dissociation of the complex.

b) Transfekija K562 stanica. b) Transfection of K562 cells.

K-562 stanice (ATCC CCL 243) su uzgajane u suspenziji u RPMI 1640 hranilištu (Givco BRL, + 2g natrijeva bikarbonata/1 10% FCS, 100 j./ml penicilina, 100 µl/ul streptomicina i 2 mM glutamina) do gustoće od 500.000 stanica/ml. 12 do 20 sati prije transfekcije stanice su stavljene u svjesubstrat koji je sadržavao 50 µM desferioksamina (ova je mjera poduzeta da poveća broj receptora transferina). Na dan transfekcije stanice se sakupe, suspendiraju u svježem mediju, koji je sadržavao 10% FCS + 50 µM desferioksamina (250.000 stanica po ml) i 2 ml obroci su stavljeni na ploču sa 24 udubljenja. K-562 cells (ATCC CCL 243) were cultured in suspension in RPMI 1640 medium (Givco BRL, + 2g sodium bicarbonate/1 10% FCS, 100 U/ml penicillin, 100 µl/ul streptomycin and 2 mM glutamine) until density of 500,000 cells/ml. 12 to 20 hours before transfection, cells were placed in a medium containing 50 µM desferrioxamine (this measure was taken to increase the number of transferrin receptors). On the day of transfection, cells were harvested, suspended in fresh medium containing 10% FCS + 50 µM desferrioxamine (250,000 cells per ml) and 2 ml aliquots were plated in a 24-well plate.

Određene količine pCMVL-DVA (6, 0,06, 0,06 µg) u 100 µl HBS, pomiješane su sa 50 µl polilizin adenovirusa (pLadeno) ili sa odgovarajućim količinama (35 µl) kontroliranog adenovirusa d1312). Nakon 20 minuta dodaju se odgovarajuće količine (12, 1,2, 0,12 µg) konjugata TfpL1=OB u 150 µl HBS. Nakon daljnjih 20 minuta, smejsa se doda stanicama K562. Stanice se inkubiraju 24 sata kod 37ºC, a zatim se sakupe za pokus luciferaze. Aktivnost luciferaze se odredi kao u prethodnim primjerima. Vrijednosti date na slici 24 predstavljaju ukupnu aktivnost luciferaza transficiranih stanica. Determined amounts of pCMVL-DVA (6, 0.06, 0.06 µg) in 100 µl HBS were mixed with 50 µl polylysine adenovirus (pLadeno) or with corresponding amounts (35 µl) of the control adenovirus (d1312). After 20 minutes, appropriate amounts (12, 1.2, 0.12 µg) of TfpL1=OB conjugate in 150 µl HBS are added. After a further 20 minutes, the mixture is added to the K562 cells. Cells are incubated for 24 hours at 37ºC and then harvested for the luciferase assay. Luciferase activity was determined as in the previous examples. The values given in Figure 24 represent the total luciferase activity of the transfected cells.

c) Transfekcija HeLa stanica. c) Transfection of HeLa cells.

Jedna metoda ispitivanja aktivnosti konjugata polilizin-virus, sastoji se u provjeravanju sposobnosti konjugata da prenosi veoma male količine DNA (manje od 0,1 µg). Povećan kapacitet prijenosa DNA je bio očekivan, ako je adenovirus direktno vezan na polilizinom kondenziraju DNA, jer su internalizirajući faktori (transferin i adenovirus (protein)) direktno vezani sa DNA koja će se transportirati. Da bi se provjerila ova pretpostavka, konstantna je količina konjugata polilizin-adenovirus (2,5 µl, oko 5x107 virusnih čestica) kompleksirana sa različitim količinama (3 do 0,0003 µg) referentnog plasmida u 475 µl HBS. Nakon 15 minuta inkubacije kod sobne temperature, doda se količina transferin-polilizina koja odgovara masi DNA, u svaki uzorak (ova je količina TfpL odabrana, jer ona garantira potpuno “omatanje” (elektroneutralnost) 50% plasmidne DNA, a u isto vrijeme osigurava prostor za povezivanje konjugata virus-polilizin. Nakon dodatka TfpL smjese se inkubiraju 15 minuta, a zatim je svaka smjesa stavljena u uzgojnu posudicu od 6 cm, koja sadrži 300.000 HeLa stanica u 1 ml DMEM/2% FCS. Zatim se stanice inkubiraju 1,5 h kod 37ºC, a onda se doda 4 ml DMEM/10% FCS. Paralelno se ekvivalentne količine DNA kompleksiraju sa dvostrukom masom TfpL (količina za potpunu kondenzaciju DNA) i upotrebe za prijenos gena u stanice HeLa (jedanput same i jedanput sa 25 ul pripravka adenovirusa d1312 koji nije vezan na polilizin). Nakon 24 sata stanice se pokupe, pripreme se ekstrakti i alikvoti se ispitaju na aktivnost luciferaze. Rezultati ovih testova su prikazani na slici 25. U odsutnosti adenovirusa nije se mogla ustanoviti aktivnost luciferaze u količini DNA manjoj od 0,3 µg. Adenovirus vezan na polilizin, kao i nevezan, djelovali su dobro sa velikim količinama DNA (3 µg i 0,3 µg). Međutim, sa nevezanim adenovirusom pokazao se približno stostruki pad aktivnosti sa 0,03 µg, a tek neznatna aktivnost ispod te količine DNA. Nasuprot tome, polilizin vzean adenovirus zadržava svoj kapacitet prijenosa gena i uz 0,0003 µg, DNA. Ova količina DNA odgovara količini od 150 DNA molekula po stanici i oko jedne virusne čestice po stanici. One method of testing the activity of the polylysine-virus conjugate consists in checking the ability of the conjugate to transfer very small amounts of DNA (less than 0.1 µg). An increased DNA transfer capacity was expected, if the adenovirus is directly attached to the polylysine to condense the DNA, because the internalizing factors (transferrin and adenovirus (protein)) are directly attached to the DNA that will be transported. To test this assumption, a constant amount of polylysine-adenovirus conjugate (2.5 µl, about 5x107 viral particles) was complexed with varying amounts (3 to 0.0003 µg) of reference plasmid in 475 µl HBS. After 15 minutes of incubation at room temperature, an amount of transferrin-polylysine corresponding to the mass of DNA is added to each sample (this amount of TfpL was chosen, because it guarantees complete "wrapping" (electroneutrality) of 50% of the plasmid DNA, and at the same time provides space for binding of the virus-polylysine conjugate. After the addition of TfpL, the mixtures were incubated for 15 minutes, and then each mixture was placed in a 6 cm culture dish containing 300,000 HeLa cells in 1 ml of DMEM/2% FCS. The cells were then incubated for 1.5 h at 37ºC, and then 4 ml of DMEM/10% FCS is added. In parallel, equivalent amounts of DNA are complexed with twice the mass of TfpL (amount for complete DNA condensation) and used for gene transfer into HeLa cells (once alone and once with 25 ul of the adenovirus preparation d1312 which is not attached to polylysine).After 24 hours the cells are harvested, extracts are prepared and aliquots are tested for luciferase activity. The results of these tests are shown in Figure 25. In the absence of adenovirus, no to determine luciferase activity in an amount of DNA smaller than 0.3 µg. Adenovirus bound to polylysine, as well as unbound, performed well with large amounts of DNA (3 µg and 0.3 µg). However, with unbound adenovirus, an approximately one-hundred-fold drop in activity was shown with 0.03 µg, and only slight activity below that amount of DNA. In contrast, the polylysine-derived adenovirus retains its gene transfer capacity even with 0.0003 µg of DNA. This amount of DNA corresponds to the amount of 150 DNA molecules per cell and about one virus particle per cell.

Primjer 18 - Prinos gena pomoću adenovirusa enzimatski vezanih na polilizin. Example 18 - Gene yield using adenoviruses enzymatically linked to polylysine.

a) Enzimatska reakcija a) Enzymatic reaction

2 ml pripravka adenovirusa (soj d1312; 5x1010PFU/ml) stavi se u Sephadex G-25 kolonu za gel filtraciju (Pharmacia) puferira sa 25 ml reakcijskog pufera (0,1 M Tris-HC1; pH 8,0 2 mM DTT, 30% glicerola). Eluiranje je izvedeno sa 3,5 ml reakcijskog pufera. Reakcijska smjesa za enzimatsko povezivanje sastoji se od 1150 µl frakcije virusnog eluata, 0,5 nmola transglutaminaze jetre zamorca (TG) (Sigma), 2 nmola ili 20 nmola polilizina 290, 10nm CaCl2 i reakcijskog pufera do konačnog volumena od 1500 µl. Reakcija se provodi 1 sat kod 37ºC, a zatim je zaustavljena dodatkom 30 µl 0,5 M EDTA. U svrhu praćenja specifičnosti povezivanja, reakcijske su smjese također priređene bez transglutaminaze. Ne-ugrađeni polilizin se odvoji od virusa centrifugiranjem u CsCl gradijentu (gustoća 1,33 g/ml; 170.000xg, 2 sata). Frakcija koja sadrži viruse se skupi, pomiješa sa jednakim volumenom glicerola, zamrzne u tekućem dušiku i čuva na -70ºC. 2 ml of the adenovirus preparation (strain d1312; 5x1010 PFU/ml) was placed in a Sephadex G-25 gel filtration column (Pharmacia) buffered with 25 ml of reaction buffer (0.1 M Tris-HC1; pH 8.0 2 mM DTT, 30 % glycerol). Elution was performed with 3.5 ml of reaction buffer. The enzyme ligation reaction mixture consists of 1150 µl of the viral eluate fraction, 0.5 nmol of guinea pig liver transglutaminase (TG) (Sigma), 2 nmol or 20 nmol of polylysine 290, 10 n m CaCl2 and reaction buffer to a final volume of 1500 µl. The reaction is carried out for 1 hour at 37ºC, and then it is stopped by the addition of 30 µl of 0.5 M EDTA. In order to monitor the binding specificity, reaction mixtures were also prepared without transglutaminase. Unincorporated polylysine is separated from the virus by centrifugation in a CsCl gradient (density 1.33 g/ml; 170,000xg, 2 hours). The fraction containing the viruses is collected, mixed with an equal volume of glycerol, frozen in liquid nitrogen and stored at -70ºC.

b) Prikaz povezivanja polilizina sa adenovirusima. b) Presentation of association of polylysine with adenoviruses.

Reakcija se izvodi kao što je gore opisano, sa polilizinom označenim sa J125 (sa Bolton-Hunter reagensom, Amersham). Nakon centrifugiranja CsCl gradijenta, virusna je frakcija uklonjena i odijeljena pomoću drugog CsCl gradijenta. Gradijent je zatim frakcioniran i određena je radioaktivnost svake frakcije upotrebom scintilacijskog brojača. Kao što pokazuje slika 26, jasno je da je u radioaktivnoj smjesi sa TG (d1312/TG-pL) radioaktivni polilizin akumuliran u virusnoj frakciji (virus). U kontrolnoj smjesi bez TG (d1312/pL) nije bilo nagomilavanja radioaktivnog polilizina u virusnoj frakciji. The reaction is performed as described above, with polylysine labeled with J125 (with Bolton-Hunter reagent, Amersham). After centrifugation of the CsCl gradient, the viral fraction was removed and separated using another CsCl gradient. The gradient was then fractionated and the radioactivity of each fraction determined using a scintillation counter. As shown in Figure 26, it is clear that in the radioactive mixture with TG (d1312/TG-pL), the radioactive polylysine is accumulated in the viral fraction (virus). In the control mixture without TG (d1312/pL), there was no accumulation of radioactive polylysine in the viral fraction.

c) Testiranje polilizinom modificiranih frakcija adenovirusa na njihov utjecaj na učinkovitost transfekcije. c) Testing polylysine-modified adenovirus fractions for their influence on transfection efficiency.

I) Stanice i hranilišta I) Stations and feeding grounds

Za transfekciju nasađeno je u posudice od 6 cm 5x105 stanica (hepatociti glodavaca; ATCC No.: TIB 73) u DMEM sa 10% toplinski inaktiviranog fetalnog telećeg seruma (FCS), 2 mM glutamina, 100 i.j. po ml penicilina i 100 µg/ml streptomicina. For transfection, 5x105 cells (rodent hepatocytes; ATCC No.: TIB 73) were seeded in 6 cm dishes in DMEM with 10% heat-inactivated fetal calf serum (FCS), 2 mM glutamine, 100 i.u. per ml penicillin and 100 µg/ml streptomycin.

II) Stvaranje kompleksa virus-DNA-transferin. II) Creation of the virus-DNA-transferrin complex.

50 µl polilizinom modificirane frakcije virusa pomiješa se sa 6 µg DNA plasmida pCMVL u 10 µl HBS i inkubira 20 minuta na sobnoj temperaturi. Zatim se 8 µg mišjeg transferin-polilizina290B (mTfpL) doda smjesi i inkubira se dalje još 20 minta. 50 µl of the polylysine-modified virus fraction was mixed with 6 µg of pCMVL plasmid DNA in 10 µl of HBS and incubated for 20 minutes at room temperature. Then 8 µg of mouse transferrin-polylysine 290B (mTfpL) is added to the mixture and further incubated for another 20 minutes.

III) Transfekcija mišjih hepatocita III) Transfection of mouse hepatocytes

Virus.DNA-transferin kompleksi se pomiješa sa 1,5 ml substrata (DMEM sa 2% FCS, 2 mM glutamina i antibioticima) i dodaju se stanicama, nakon uklanjanja starog substrata. Nakon 2 sata inkubacije kod 37ºC doda se stanicama 2 ml DMEM sa 10% FCS, glutaminom i antibioticima. Nakon daljnja dva sata uzgoja čitav se substrat ukloni i doda se stanicama 4 ml svježeg DMEM sa 10% FCS, glutaminom i antibioticima. Virus.DNA-transferrin complexes are mixed with 1.5 ml of substrate (DMEM with 2% FCS, 2 mM glutamine and antibiotics) and added to the cells, after removing the old substrate. After 2 hours of incubation at 37ºC, 2 ml of DMEM with 10% FCS, glutamine and antibiotics are added to the cells. After another two hours of cultivation, the entire substrate is removed and 4 ml of fresh DMEM with 10% FCS, glutamine and antibiotics are added to the cells.

IV) Određivanje izražaja luciferaze. IV) Determination of luciferase expression.

24 sata nakon transfekcije stanice se pokupe i izvede se pokus luciferaze, kao što je gore opisano. Kao što se može vidjeti iz slike 17, virusni pripravak u kojem su adenovirusi bili obrađeni sa TG i 20 nmola polilizina (d1312/TG-20 nmola pL) pokazao je najjači izražaj 153540000 “lakih jedinica”). Virusni pripravak sa TG i 2 nmola polilizina (d1312/TG-1 nmola pL) je nešto manje aktivan (57880000 lakih jedinica). Kontrolna frakcija u kojoj su adenovirusi bili obrađeni sa 20 nmola polilizina, ali bez TG, bila je manje djelotvorna, približno za faktor 500. Za usporedbu, daljnji su kompleksi, korišteni za transfekciju sa početnim pripravkom adenovirusa obrađenim i bez TG i bez polilizina (d1312). Ovaj je pripravak dao prinos od 440300 l.j. 24 hours after transfection cells were harvested and the luciferase assay was performed as described above. As can be seen from Figure 17, the virus preparation in which adenoviruses were treated with TG and 20 nmoles of polylysine (d1312/TG-20 nmoles pL) showed the strongest expression of 153540000 “light units”). The viral preparation with TG and 2 nmoles of polylysine (d1312/TG-1 nmole pL) is slightly less active (57880000 light units). A control fraction in which adenoviruses were treated with 20 nmol polylysine but no TG was less effective, approximately by a factor of 500. For comparison, further complexes were used for transfection with an adenovirus primer treated with both TG and no polylysine (d1312 ). This preparation gave a yield of 440300 l.j.

d) Povećanje učinkovitosti transfekcije polilizinom modificiranih adenovirusa u usporedbi sa nemodificiranim adenovirsima, osobito s malim količinama DNA d) Increasing the transfection efficiency of polylysine-modified adenoviruses compared to unmodified adenoviruses, especially with small amounts of DNA

Transfekcija je izvedena kao što je opisano u primjeru c), sa 50 µl frakcije adenovirusa d1312/TG-20 nmola pL i 6 µg pCMV-Luc/8 ug mTfpL, 0,06 µg pCMVL(=pCMV-Luc)/0,8 µg mTfpL ili 0,06 µg pCMV-Luc/0,08 µg mTfpL za kompleksiranje. Za usporedbu, transfekcije su izvedene također sa 6 µg, 0,6 µg, 0,06 µg pCMV-Luc/mTfpL kompleksa i nemodificiranim adenovirusima (d1312). Nađeno je da kompleksi sa polilizinom modificiranim adenovirusima daju visoke razine izražaja, čak i sa malim količinama DNA, dok je sa nemodificiranim adenovirusima izražaj jako smanjen (slika 28). Transfection was performed as described in example c), with 50 µl of adenovirus fraction d1312/TG-20 nmol pL and 6 µg pCMV-Luc/8 µg mTfpL, 0.06 µg pCMVL(=pCMV-Luc)/0.8 µg mTfpL or 0.06 µg pCMV-Luc/0.08 µg mTfpL for complexation. For comparison, transfections were also performed with 6 µg, 0.6 µg, 0.06 µg pCMV-Luc/mTfpL complex and unmodified adenoviruses (d1312). Complexes with polylysine-modified adenoviruses were found to give high levels of expression, even with small amounts of DNA, while with unmodified adenoviruses expression was greatly reduced (Figure 28).

Primjer 19 - Prijenos gena sa konjugatima u kojima je veza između adenovirusa i polilizina postignuta putem biotin-streptavidin mosta Example 19 - Gene transfer with conjugates in which the connection between adenovirus and polylysine is achieved via a biotin-streptavidin bridge

a) Biotiniliranje adenovirusa d1312. a) Biotinylation of adenovirus d1312.

2,4 ml gel-filtrirane otopine (Sephadex G-25 PD102, Pharmacia) adenovirusa d1312 (oko 1011 čestica) u 150 mM NaCl/5 mM HEPES, pH 7,9/10% glicerola, miješa se sa 10 ul (10 nmola) 1 mM otopine NHS-LC biotina (Pierce 21335). Nakon 3 sata stajanja kod sobne temperature biotinom modificirani virus se odijeli od viška reagensa gel filtracijom (kao gore). Otopina se podesi na koncnetraciju glicerola od 40% dodatkom glicerola (ukupni volumen 3,2 ml) i čuva se na -25ºC. Biotinilacija virusa je dokazana kvalitativnim pokusom, nakon dodatka, kap po kap, različitih razrjeđenja na membranu od celuloznog nitrata. Nakon sušenja kod 80ºC, 2 sata u vakuum sušioniku, nakon “blokiranja” sa BSA, inkubacije sa streptovidinom konjugiranom alkalnom fosfatazom (BRL), pranja i 1 sat inkubacije sa otopinom za razvijanje NBT/X-fosfatom (nitro-plava-tetrazolium sol/5 bromo-4-kloro-3-indolilfosfat, toluidin sol, Boehringen Mannheim), dobivena je pozitivna reakcija obojenja. 2.4 ml of a gel-filtered solution (Sephadex G-25 PD102, Pharmacia) of adenovirus d1312 (about 1011 particles) in 150 mM NaCl/5 mM HEPES, pH 7.9/10% glycerol, was mixed with 10 µl (10 nmol ) 1 mM solution of NHS-LC biotin (Pierce 21335). After standing for 3 hours at room temperature, the biotin-modified virus is separated from the excess reagent by gel filtration (as above). The solution is adjusted to a glycerol concentration of 40% by the addition of glycerol (total volume 3.2 ml) and stored at -25ºC. Biotinylation of the virus was proven by a qualitative experiment, after the addition, drop by drop, of different dilutions to the cellulose nitrate membrane. After drying at 80ºC, 2 hours in a vacuum dryer, after "blocking" with BSA, incubation with streptovidin conjugated alkaline phosphatase (BRL), washing and 1 hour incubation with NBT/X-phosphate developing solution (nitro-blue-tetrazolium sol/ 5 bromo-4-chloro-3-indolyl phosphate, toluidine salt, Boehringen Mannheim), a positive staining reaction was obtained.

b) Priprava streptovidin-polilizin konjugata. b) Preparation of streptovidin-polylysine conjugate.

Spajanje streptovidina na polilizin je izvedeno metodom opisanom po Wagneru i sur., 1990, te u EP-Al 388 758. 79 nmola (4,7 mg) streptavidina u 1 ml 20 mM HEPES pH 7,9 i 300 mM NaCl, obradi se sa 15 mM etanolne otopine SPDP (236 nmola). Nakon 1,5 h kod sobne temperature modificirani se protein gel filtrira preko Sephadex G-15 kolone, pri čemu se dobije 75 nmola streptovidina modificiranog sa 196 nmola ditiopiridinskog povezivača. Modificirani protein reagira pod atmosferom argona, sa 3-merkaptopropionatom modificiranim polilizinom (75 nmola, prosječne dužine lanca od 290 monomera lizina, modificiranog sa 190 nmola merkapto-propionat povezivača) u 2,6 ml 100 mM HEPES pH 7,9, 150 mM NaCl. Konjugati su izolirani kromatografijom sa kationskim izmjenjivačem kao Mono S HR5 koloni (Pharmacia). Gradijent: 20-100% pufera B. Pufer A: 50 mM HEPES pH 7,9; pufer B: pufer A + 3 M natrijev klorid). Frakcija produkta je eluirana uz koncnetraciju soli između 1,2 M i 1,7 M. Dijaliza prema HBS (20 mM HEPES pH 7,3, 150 mM NaCl) dala je konjugat koji je sačinjen od 45 nmola streptavidina i 53 nmola polilizina. Coupling of streptovidin to polylysine was performed by the method described by Wagner et al., 1990, and in EP-Al 388 758. 79 nmoles (4.7 mg) of streptavidin in 1 ml of 20 mM HEPES pH 7.9 and 300 mM NaCl were treated with a 15 mM ethanolic solution of SPDP (236 nmoles). After 1.5 h at room temperature, the modified protein gel is filtered through a Sephadex G-15 column, whereby 75 nmoles of streptovidin modified with 196 nmoles of a dithiopyridine linker are obtained. The modified protein is reacted under an argon atmosphere with 3-mercaptopropionate modified polylysine (75 nmol, average chain length of 290 lysine monomers, modified with 190 nmol mercapto-propionate linker) in 2.6 ml of 100 mM HEPES pH 7.9, 150 mM NaCl . Conjugates were isolated by cation exchange chromatography on a Mono S HR5 column (Pharmacia). Gradient: 20-100% buffer B. Buffer A: 50 mM HEPES pH 7.9; buffer B: buffer A + 3 M sodium chloride). The product fraction was eluted with a salt concentration between 1.2 M and 1.7 M. Dialysis against HBS (20 mM HEPES pH 7.3, 150 mM NaCl) yielded a conjugate composed of 45 nmol streptavidin and 53 nmol polylysine.

c) Transfekcija HeLa stanica. c) Transfection of HeLa cells.

HeLa stanice su uzgajane na posudicama od 6 cm, kao što je opisano u primjeru 13. Transfekcije su izvedene uz gustoću od 300.000 stanica po ploči. Prije transfekcije stanice su inkubirane sa 1 ml svježeg substrata koji je sadržavao 2% FCS. HeLa cells were grown on 6 cm dishes as described in Example 13. Transfections were performed at a density of 300,000 cells per plate. Before transfection, cells were incubated with 1 ml of fresh substrate containing 2% FCS.

6 µg pCMVL-DNA u 100 µl HBS, pomiješa se sa 0,8 µg streptovidin-polilizina u 170 µl HBS. Nakon 20 minuta doda se 3 µg polilizina pL300 u 170 µl HBS. Nakon drugih 20 minuta doda se 65 µl biotidiniliranog adenovirusa ili, za kontrolu, odgovarajuća količina adenovirusa d1312 (30 µl, početnog virusa za modifikaciju). Smjesa kompleksa (“biotinAdV/kompleks A” ili “kontrolni AdV”, vidi sliku 29) se ostave da stoje daljnjih 20 minuta. 6 µg pCMVL-DNA in 100 µl HBS, mixed with 0.8 µg streptovidin-polylysine in 170 µl HBS. After 20 minutes, 3 µg of polylysine pL300 in 170 µl of HBS is added. After another 20 minutes, 65 µl of biotidinylated adenovirus or, as a control, an appropriate amount of adenovirus d1312 (30 µl, initial virus for modification) is added. The complex mixture (“biotinAdV/complex A” or “control AdV”, see Figure 29) is allowed to stand for a further 20 minutes.

Drugi je način kompleksiranja izveden mješanjem 65 µl biotiniliranog adenovirusa, prvo se sa 0,8 µg streptovidin-polilizina u 50 µl HBS, zatim dodavanjem 6 µl pCMVL-DNA u 170 µl HBS, nakon 20 minuta, a nakon daljnjih 20 minuta, dodavanjem 3 µg polilizina pL300 u 200 µL HBS. (kompleksna smjesa (“biotinAdV/kompleks B).” Another method of complexation was performed by mixing 65 µl of biotinylated adenovirus, first with 0.8 µg of streptovidin-polylysine in 50 µl of HBS, then by adding 6 µl of pCMVL-DNA in 170 µl of HBS, after 20 minutes, and after a further 20 minutes, by adding 3 µg polylysine pL300 in 200 µL HBS. (complex mixture (“biotinAdV/complex B).”

0,6 µg pCMVL-DNA u 67 µl HBS, pomiješa se sa 0,3 µg streptavidin-polilizina u 33 µl HBS. Nakon 20 minuta doda se 65 µl biotiniliranog adenovirusa ili, za kontroli, odgovarajuće količine adenovirusa d1312 (30 µl, polaznog virusa za modifikaciju). Kompleksne smjese (“biotinAdV/kompleks A” ili “kontrolni AdV”, vidi sliku 29) se ostave da stoje daljnjih 20 minuta., a zatim se razrijede na 500 µl sa HBS. Alternativno je kompleksiranje izvedeno miješanjem 65 µl biotiniliranog adenovirusa, najprije sa 0,3 µg streptavidin-polilizina u 50 µl HBS, nakon 20 minuta dodatkom 0,6 µg pCMVL-DNA u 50 µl HBS. Kompleksna se smjesa (“biotinAdV/kompleks B)” ostavi daljnjih 20 minuta, a zatim se razrijedi do 500 µl sa HBS. 0.6 µg pCMVL-DNA in 67 µl HBS, mixed with 0.3 µg streptavidin-polylysine in 33 µl HBS. After 20 minutes, add 65 µl of biotinylated adenovirus or, as a control, an appropriate amount of adenovirus d1312 (30 µl, starting virus for modification). Complex mixtures (“biotinAdV/complex A” or “control AdV”, see Fig. 29) are allowed to stand for a further 20 min., and then diluted to 500 µl with HBS. Alternatively, complexation was performed by mixing 65 µl of biotinylated adenovirus, first with 0.3 µg of streptavidin-polylysine in 50 µl of HBS, after 20 minutes by adding 0.6 µg of pCMVL-DNA in 50 µl of HBS. The complex mixture (“biotinAdV/complex B)” is left for a further 20 minutes and then diluted to 500 µl with HBS.

Smjese se dodaju stanicama, stanice se inkubiraju 2 sata kod 37ºC, a zatim se doda 2,5 ml svježeg medija, koji je sadržavao 10% GCS. Stanice se inkubiraju 24 sata kod 37ºC, te se skupe (požanju) za pokus luciferaze. Aktivnost luciferaze je određena kao što je opisano u prethodnim primjerima, Vrijednosti date u slici 29 predstavljaju ukupnu aktivnost luciferaze transferiranih stanica. The mixtures are added to the cells, the cells are incubated for 2 hours at 37ºC, and then 2.5 ml of fresh medium containing 10% GCS is added. The cells are incubated for 24 hours at 37ºC, and collected (harvested) for the luciferase experiment. Luciferase activity was determined as described in the previous examples. The values given in Figure 29 represent the total luciferase activity of the transfected cells.

Paralelno su izvedene transfekcije HeLa stanica uz korištenje kao virusne komponente konjugata, bitiniliranog virusa, koji je bio inaktiviran obradom sa psoralen/UV-zrčenjem. Inaktivacija je izvedena na slijedeći način: šarža od po 200 µl biotiniliranog virusa smjeste se u dvije udubine ploče za kulturu tkiva, od 1,6 cm. U svaki se uzorak doda µl (33 mg/ml) 8-metoksipsoralena (u DMSO), posudica se stavi na led te zrači 10 minuta UV-lampom (365 nm; UVP TL-33 lampa) na udaljenosti uzorka od 4 cm od filtra. Nakon zračenja dva se uzorka spoje i gel-filtriraju (G-50, Nick kolona, Pharmacia), kroz kolonu koja je prethodno pripravljena sa 40% glicerola u HBS. Alikvoti od 75 µl su kompleksirani sa 0,8 µg streptavidin-polilizinom i upotrebljeni za transfekciju HeLa stanica kao što je gore opisano. In parallel, transfections of HeLa cells were carried out using a bitinylated virus conjugate as a viral component, which was inactivated by treatment with psoralen/UV-irradiation. Inactivation was performed as follows: a batch of 200 µl of biotinylated virus was placed in two wells of a 1.6 cm tissue culture plate. µl (33 mg/ml) 8-methoxypsoralen (in DMSO) is added to each sample, the container is placed on ice and irradiated for 10 minutes with a UV lamp (365 nm; UVP TL-33 lamp) at a distance of 4 cm from the sample to the filter . After irradiation, the two samples are combined and gel-filtered (G-50, Nick column, Pharmacia), through a column previously prepared with 40% glycerol in HBS. Aliquots of 75 µl were complexed with 0.8 µg streptavidin-polylysine and used to transfect HeLa cells as described above.

Pokusom citopatske završne točke utvrđeno je da se virusni titar smanjuje za faktor veći od 104 inaktivacijom, dok se kapacitet prijenosa smanjuje za manje od 50% visokih koncentracija, a za faktor 5 kod niskih koncentracija. The cytopathic end point experiment found that the viral titer is reduced by a factor greater than 104 upon inactivation, while the transmission capacity is reduced by less than 50% at high concentrations and by a factor of 5 at low concentrations.

d) Frakcija K562 stanica. d) Fraction of K562 cells.

K562 stanice se uzgajaju u suspenziji u RPMI 1640 substratu (Gibco BRL, +2g natrijeva bikarbonata na 1 litru) + 10% FCS, 100 jedinica/ml penicilina, 100 µg/ml streptomicina i 1mM glutamina, te postižu gustoću od 500.000 stanica/ml. Na 16 sati prije transfekcije stanice su stavljene u svježi substrat, koji je sadržavao 50 µM desferioksamina (Sigma). Jutrom nakon transfekcije, stanice se skupe, ponovno suspendiraju u svježi medij, koji je sadržavao 10% FCS (+50% uM desferioksamina) do 250.000 stanica po ml, te se stave na ploču sa 24 udubljenja (2 ml po udubljenju). K562 cells are grown in suspension in RPMI 1640 substrate (Gibco BRL, +2g sodium bicarbonate per 1 liter) + 10% FCS, 100 units/ml penicillin, 100 µg/ml streptomycin and 1mM glutamine, and reach a density of 500,000 cells/ml. . At 16 hours before transfection, the cells were placed in a fresh substrate containing 50 µM desferrioxamine (Sigma). The morning after transfection, cells are harvested, resuspended in fresh medium containing 10% FCS (+50% µM desferrioxamine) to 250,000 cells per ml, and plated in a 24-well plate (2 ml per well).

Priređena su tri različita tipa kompleksa: a) Otopina od 6 µg pMCVL-DNA u 160 ul HBS (150 mM NaCl, 20 mM HEPES 7,3) pomiješa se sa 12 µg TfpL190B konjugatom u 160 µl HBS, nakon 30 minuta doda se 20 µl adenovirusa d1312 i smjesa se doda K562 stanicama. b) Otopina od 800 ng streptavidin-polilizina u 160 µl HBS pomiješa se sa 20 µl biotiniliranog adenovirusa, priređenog kao što je opisano pod a), nakon 30 minuta doda se otopina od 6 µg pCMVL-DNA u 160 µl HBS i nakon daljnjih 30 minuta otopine se pomiješa sa 10 µg TfpL190B konjugatom u 160 µl HBS. nakon 30 minuta doda se stanicama. Three different types of complexes were prepared: a) A solution of 6 µg pMCVL-DNA in 160 µl HBS (150 mM NaCl, 20 mM HEPES 7.3) was mixed with 12 µg TfpL190B conjugate in 160 µl HBS, after 30 minutes 20 µl adenovirus d1312 and the mixture was added to K562 cells. b) A solution of 800 ng of streptavidin-polylysine in 160 µl of HBS is mixed with 20 µl of biotinylated adenovirus, prepared as described under a), after 30 minutes a solution of 6 µg of pCMVL-DNA in 160 µl of HBS is added and after a further 30 minute solution was mixed with 10 µg TfpL190B conjugate in 160 µl HBS. after 30 minutes it is added to the cells.

c) DNA kompleksi su priređeni jednako kao u b) s razlikom što je umjesto TfpL190B konjugata dodana otopina od 3,5 µg poli(L)lizina, p(Lys)290. c) DNA complexes were prepared in the same way as in b) with the difference that instead of the TfpL190B conjugate a solution of 3.5 µg of poly(L)lysine, p(Lys)290 was added.

Stanice se inkubiraju kod 37ºC 24 sata i zatim se požanju za pokus luceraze. Vrijednosti koje prikazuje slika 30 predstavljaju ukupnu aktivnost luciferaze transferiranih stanica. Cells are incubated at 37ºC for 24 hours and then harvested for the Lucerase assay. The values shown in Figure 30 represent the total luciferase activity of the transferred cells.

Primjer 20 - Prinos gena u izvorne stanice koštane srži. Example 20 - Gene delivery to original bone marrow cells.

Izvorne stanice koštane srži su skupljene iz miševa ubrzigavanjem medija za kulturu (IMDM koji sadržava 10% FCS, 5x10-5 M β-merkaptoetanola, 1% IL-3 prilagođenog medija i antibiotika) injekcijskom iglom, (0,4 mm ili 0,5 mm promjera) nataknutom na špricu od 1 ml, kroz izolirane femure i tibije. Stanice se zatim ispiru jednom u mediju kulture centrifugiranjem sa 100xg, 8 minuta. Nakon toga stanice se ponovno suspendiraju u koncentraciji od 107 stanica/ml i nasade u boce za kulture. Nakon 4 sata neprimljene se stanice prenesu u nove T25 boce i uzgajaju se preko noći u prisutnosti 50 µM desferioksamina. Bone marrow stem cells were harvested from mice by inoculating the culture medium (IMDM containing 10% FCS, 5x10-5 M β-mercaptoethanol, 1% IL-3 adapted medium and antibiotics) with an injection needle, (0.4 mm or 0.5 mm diameter) attached to a 1 ml syringe, through isolated femurs and tibias. The cells are then washed once in the culture medium by centrifugation at 100xg, 8 minutes. After that, the cells are resuspended at a concentration of 107 cells/ml and planted in culture flasks. After 4 hours, non-adherent cells are transferred to new T25 flasks and cultured overnight in the presence of 50 µM desferrioxamine.

b) Stvaranje adenovirus-DNA-transferin kompleksa. b) Creation of adenovirus-DNA-transferrin complex.

Za stvaranje adenovirus-DNA-transferin kompleksa, 50 µl biotiniliranog adenovirusa se inkubira s streptavidinom modificiranog polilizina u 20 µl HBS, 20 minuta. Zatim se doda 20 µl HBS koji sadrži 6 µg pCMVL. Nakon perioda inkubacije od 20 minuta doda se 7 µg mišjeg transferin-polilizin konjugata (mTfpL) u 160 µl HBS i čitava se smjesa inkubira daljnjih 20 minuta. To form the adenovirus-DNA-transferrin complex, 50 µl of biotinylated adenovirus is incubated with streptavidin-modified polylysine in 20 µl of HBS for 20 minutes. Then 20 µl of HBS containing 6 µg of pCMVL is added. After an incubation period of 20 minutes, 7 µg of mouse transferrin-polylysine conjugate (mTfpL) was added to 160 µl of HBS and the entire mixture was incubated for a further 20 minutes.

c) Transfekcija c) Transfection

Za transfekciju se stanice koštane srži dobiju iz medija kulture boca T25 centrifugiranjem sa 100xg, 8 minuta. Stanični se talog ponovno suspendira u 3 ml substrata koji sadrži 2% FCS i 250 µl kompleksa adenovirus-DNA-transferin, i razmaže se u novoj T25 boci, 3 sata kod 37ºC. Zatim se doda 3 ml te nakon 2 sata daljnjih 6 ml substrata koji sadrži 10% FCS. For transfection, bone marrow cells are obtained from the culture medium of T25 flasks by centrifugation at 100xg for 8 minutes. The cell pellet is resuspended in 3 ml of substrate containing 2% FCS and 250 µl of the adenovirus-DNA-transferrin complex, and spread in a new T25 bottle, for 3 hours at 37ºC. Then 3 ml is added and after 2 hours a further 6 ml of substrate containing 10% FCS is added.

d) Određivanje izražaja luciferaze. d) Determination of luciferase expression.

Stanice koštane srži se požanju 48 sati nakon transfekcije i analiziraju na izražaj luciferaze, kao što je gore opisano. Transfekcija je dovela do izražaja aktivnosti luciferaze, koji odgovara 310x103 l.j. (light units) na 100 µg ukupnog staničnog proteina. Bone marrow cells were harvested 48 hours after transfection and analyzed for luciferase expression as described above. Transfection led to the expression of luciferase activity, which corresponds to 310x103 l.j. (light units) per 100 µg of total cellular protein.

Primjer 21 - Transfekcija stanice neuroblastoma sa 48 kb kosmida u prisutnosti adenovirusa. Example 21 - Transfection of a neuroblastoma cell with a 48 kb cosmid in the presence of adenovirus.

a) Priprava kosmida koji sadrži luciferazom označeni niz. a) Preparation of a cosmid containing a luciferase-tagged sequence.

3,0 kb Sal I fragment, koji sadržava pojedinačni P. pyralis luciferazom označni niz pod kontrolom RSV promotora (De Wet i sur., 1987), povezan je na jedinstveni Sal I položaj kosmidnog klona Cl-7aAl, da bi se stvorili konkatameri. (Cl-7aAl obuhvaća 37 kb humani genomični fragment DNA Sau 3A, koji ne označava jasno gene, kloniran u Bam HI položaju kosmidnog vektora pWE15 Stratagena). Produkt reakcije povezivanja je zatim uklonjen in vitro i alikvot dobivenih čestica faga inficiran u E. coli NM544 i stavljen na LB amp ploče. Rekombinanti su prikazani hibridizacijom kolonije, korištenjem 3,0 kb Sal I fragmenta, kao provjerom hibridizacije i niza činjenica analiziranih obilježavanjem ograničenja. Kosmidni sastav (CosLuc) koji sadržava pojedini primjerak Sal I uloška, uzgajan je i pročišćen na CsCl gradijentu (ukupna veličina = 48 kb). A 3.0 kb Sal I fragment, containing a single P. pyralis luciferase tag sequence under the control of the RSV promoter (De Wet et al., 1987), was ligated to the unique Sal I site of cosmid clone Cl-7aAl, to generate concatamers. (Cl-7aAl comprises a 37 kb human genomic DNA fragment of Sau 3A, which does not clearly tag genes, cloned into the Bam HI position of Stratagen's cosmid vector pWE15). The product of the ligation reaction was then removed in vitro and an aliquot of the resulting phage particles infected into E. coli NM544 and plated on LB amp plates. Recombinants were screened by colony hybridization, using a 3.0 kb Sal I fragment, as a hybridization check and array of facts analyzed by restriction labeling. A cosmid assembly (CosLuc) containing a single copy of the Sal I insert was grown and purified on a CsCl gradient (total size = 48 kb).

Mali kontrolni kosmid pWELuc (12kb) priređen je digeriranjem CosLuc sa Not I, ponovnim povezivanjem, transformiranjem bakterija i izoliranjem klona, koji sadrži odgovarajući plasmid. To je rezultiralo da je u 12 kb DNA molekuli nedostajao uložak humane DNA i dio polilinkera CosLuc.a. The small control cosmid pWELuc (12kb) was prepared by digesting CosLuc with Not I, religating, transforming the bacteria and isolating a clone containing the corresponding plasmid. This resulted in the missing human DNA insert and part of the CosLuc.a polylinker in the 12 kb DNA molecule.

b) Odpuštanje kosmida u stanice neuroblastoma. b) Cosmid release into neuroblastoma cells.

Stanice linije Neuroblastoma, označena sa GI-ME-N (Donti i sur., 1988) (1 x 106 stanice po posudici od 6 cm) prekrivene sa 1 ml DMEM +2% FCS, inkubirane su sa TfpL/DNA kompleksima priređenim kao što je opisano u poglavlju “Materijali i metode”, koji su sadržavali navedene količine hTfpL, slobodnog pL i DNA. Kao što je pokazano, smjese stanične inkubacije obuhvaćale su, osim toga, ili 10 µM klorokina (stupci 3 i 4) ili 10 µl adenovirusa d1312 koji je sadržavao 5 x 1011 čestica po ml (stupci 5 i 6). Posljednja dva uzorka (označena sa StpL/Biotin) sadržavala su ul biotiniliranog adenovirusa d1312 (1 x 10 11 čestica) inkubirana su sa streptovidin-polilizinom (0,8 µg pripremljenog kao u primjeru 19) 30 minuta, u 150 µl HBS. Zatim se doda 6 µg DNA (u 150 µl HBS) uzorku na 30 minuta kod sobne temperature, a onda još 150 µl HBS) uzorku na 30 minuta kod sobne temperature, a onda još 150 µl HBS koja sadržava 6 µg hTfpL + 1 µg slobodnog pL. Nakon daljnjih 30 minuta inkubacije kod sobne temperature, smjesa se doda stanicama. Nakon 2 sata inkubacije kod 37 ºC doda se u svaku posudicu 4 ml DMEM + 10% FCS. 24 sata kasnije stanice se pokupe i izmjeri se aktivnost luciferaze. Rezultate pokazuje slika 31. Cells of the Neuroblastoma line, designated GI-ME-N (Donti et al., 1988) (1 x 106 cells per 6 cm dish) covered with 1 ml of DMEM +2% FCS, were incubated with TfpL/DNA complexes prepared as was described in the chapter "Materials and methods", which contained the indicated amounts of hTfpL, free pL and DNA. As shown, the cell incubation mixtures contained, in addition, either 10 µM chloroquine (columns 3 and 4) or 10 µl adenovirus d1312 containing 5 x 10 11 particles per ml (columns 5 and 6). The last two samples (labeled StpL/Biotin) containing ul of biotinylated adenovirus d1312 (1 x 10 11 particles) were incubated with streptovidin-polylysine (0.8 µg prepared as in Example 19) for 30 minutes, in 150 µl HBS. Then 6 µg DNA (in 150 µl HBS) is added to the sample for 30 min at room temperature, then another 150 µl HBS) is added to the sample for 30 min at room temperature, then another 150 µl HBS containing 6 µg hTfpL + 1 µg free pl. After a further 30 minutes of incubation at room temperature, the mixture was added to the cells. After 2 hours of incubation at 37 ºC, add 4 ml of DMEM + 10% FCS to each dish. 24 hours later cells are harvested and luciferase activity is measured. Figure 31 shows the results.

Primjer 22 - Prijenos gena u izvorne “airway” epitelne stanice uz primjenu molekularnih vektora konjugata. Example 22 - Gene transfer into original "airway" epithelial cells with the use of conjugate molecular vectors.

Početne studije radi ocjenjivanja mogućnosti upotrebe prijenosa gena uz primjenu molekularnih vektora konjugata za genetsku korekciju cistične fibroze, pokazala su da neumrtvljene stanične linije, izvedene iz humanog “airway” epitela, izražavaju osjetljivotst za ovu metodu prijenosa gena. Da bi se isključila mogućnost da taj fenomen bude rezultat imortalizacijom uvedenih izmjena respiratornog epitela, transferin-polilizin molekularni konjugat se također vrednuje u stanicama izvornog respiratornog humanog epitela (1ºAE). Initial studies to evaluate the possibility of using gene transfer with the use of molecular vector conjugates for genetic correction of cystic fibrosis have shown that non-dead cell lines, derived from human airway epithelium, express sensitivity to this method of gene transfer. In order to rule out the possibility that this phenomenon is the result of immortalization of changes in the respiratory epithelium, the transferrin-polylysine molecular conjugate is also evaluated in cells of the original human respiratory epithelium (1ºAE).

1ºAE stanice su dobivene iz uzoraka nazalnog polipa pacijenta, kao što su opisali Yankaskas, J.R. i sur., 1987. Ukratko, tkiva se isperu sterilnom otopinom soli, zatim Joklik-ovim “Minimalnim Esencijalnim Medijem” (MEM) + antibiotici (penicilin 50 j/ml, streptomicin 50 µg/ml, gentamicin 40 µg/ml) i prenesu se u laboratorij uz temperaturu od 4ºC. Hrskavica i višak submukoznog tkiva se ukloni, a epitelni se listići inkubiraju otopini proteaze (Sigma, tip 14, 0,1 mg/dl) u MEM kod 4ºC, 16 do 18 sati (Wu, R. 1985). Fetalni serum goveda (FBS, 10%) se doda da se neutralizira proteaza i stanice se odvoje blagim miješanjem. Dobivena suspenzija se filtrira kroz 10 um nylom mesh, da se uklone ostaci, zatim se tabletira centrifugiranjem (150 x g, 5 min) i ispere u F12 + 10% FBS. 1ºAE cells were obtained from patient nasal polyp samples as described by Yankaskas, J.R. et al., 1987. Briefly, tissues are washed with sterile saline, then with Joklik's "Minimal Essential Medium" (MEM) + antibiotics (penicillin 50 µg/ml, streptomycin 50 µg/ml, gentamicin 40 µg/ml) and transferred to the laboratory at a temperature of 4ºC. Cartilage and excess submucosal tissue are removed, and epithelial sheets are incubated with protease solution (Sigma, type 14, 0.1 mg/dl) in MEM at 4ºC for 16 to 18 hours (Wu, R. 1985). Fetal bovine serum (FBS, 10%) was added to neutralize the protease and the cells were detached by gentle mixing. The resulting suspension is filtered through 10 µm nylon mesh to remove debris, then pelleted by centrifugation (150 x g, 5 min) and washed in F12 + 10% FBS.

1ºAE stanice se zatim obrade sa transferin-polilizin konjugatm (hTfpL) koji sadržava luciferazom označen plasmid (pRSVL) kao reporter gen (L.U.). U toj analizi izvorne stanice nisu pokazale osjetljivost na ovaj vektor izražen odgovarajućim neumtrvljenim staničnim linijama (1ºAE: osnova = 429 ±41; + hTfpL = 543 ±L.U.), vjerojatno pokazujući relativno mali broj receptora transferina na 1ºAE. 1ºAE cells are then treated with a transferrin-polylysine conjugate (hTfpL) containing a luciferase-tagged plasmid (pRSVL) as a reporter gene (L.U.). In this analysis, the original cells showed no sensitivity to this vector expressed by the corresponding non-immobilized cell lines (1ºAE: baseline = 429 ±41; + hTfpL = 543 ±L.U.), probably reflecting the relatively low number of transferrin receptors at 1ºAE.

Da bi se iskoristio alternativni ciljni receptor na 1ºAE, konjugati su konstruirani tako da ugrađuju za obnovu nesposoban adenovirus kao dio liganda (bAdpL; vidi primjer 19a i 19b) za pripravu biotiniliranog adenovirusa i streptavidin-polilizin konjugata. Luciferazom označen plasmid je upotrebljen kao reporter gen). Humani 1ºAE obrađen ovim konjugatom pokazuje razine izražaja reporter-gena znatno jači nego osnova (+ bAdpL = 2585753 ±453585 L.U.). Osim toga, 1ºAE izveden iz drugih vrsta, također pokazuje visoku razinu osjetljivosti na prijenos gena ovim putem (miš = 3230244 ±343153; majmun = 5348880 ±869481 L.U.). Stoga, sposobnost da se obavi prijenos gena do 1ºAE utvrđuje potencijalnu korist ovoga pristupa za postizavanje direktnog “in vivo” oslobađanja gena. To exploit an alternative target receptor at 1ºAE, conjugates were designed to incorporate a recovery-incompetent adenovirus as part of the ligand (bAdpL; see Example 19a and 19b) to prepare biotinylated adenovirus and streptavidin-polylysine conjugates. A plasmid labeled with luciferase was used as a reporter gene). Human 1ºAE treated with this conjugate shows levels of expression of the reporter gene significantly stronger than the background (+ bAdpL = 2585753 ±453585 L.U.). In addition, 1ºAE derived from other species also shows a high level of sensitivity to gene transfer by this route (mouse = 3230244 ±343153; monkey = 5348880 ±869481 L.U.). Therefore, the ability to perform gene transfer up to 1ºAE establishes the potential utility of this approach for achieving direct “in vivo” gene delivery.

Primjer 23 - Prijenos gena na hepatocite sa vektorima molekularnih konjugata Example 23 - Gene transfer to hepatocytes with molecular conjugate vectors

a) Transfekcija stanica kulture tkiva. a) Transfection of tissue culture cells.

Stanice hepatocitne linije mišjeg embrija BNL CL.2 (ATCC TIB 73) uzgajaju se kao što je opisano u primjeru 6. HeLa stanice i hepatociti su uzgajani na 6 cm plastičnim petrijevim posudicama. Transfekcija je izvedena uz gustoću stanica od oko 3 x 105 stanica po posudici. Prije transfekcije zamijenjen je standardni medij sa 1 ml svježeg medija, koji sadržava 2% FCS. Cells of the mouse embryo hepatocyte line BNL CL.2 (ATCC TIB 73) were cultured as described in Example 6. HeLa cells and hepatocytes were cultured in 6 cm plastic petri dishes. Transfection was performed with a cell density of about 3 x 105 cells per dish. Before transfection, the standard medium was replaced with 1 ml of fresh medium containing 2% FCS.

b) Stvaranje binarnih kompleksa. b) Creation of binary complexes.

Biotinilirani adenovirusi (pribl. 109 PFU; vidi primjer 19 a) i 19 b) reagiraju sa 800 ng streptavidiniliranog polilizina u 50 µl HBS. Nakon 30 minuta kod sobne temperature, doda se 6 µg pCMVL-DNA u 170 µl HBS, inkubira se 30 minuta i zatim se doda 3 µg polilizina pL300 u 200 µl HBS, a onda se, nakon daljnjih 30 minuta otopina koristi za pokuse transfekcije. Biotinylated adenoviruses (approx. 109 PFU; see Example 19 a) and 19 b) are reacted with 800 ng of streptavidinylated polylysine in 50 µl of HBS. After 30 min at room temperature, 6 µg pCMVL-DNA in 170 µl HBS was added, incubated for 30 min and then 3 µg polylysine pL300 in 200 µl HBS was added, and then, after a further 30 min, the solution was used for transfection experiments.

c) Stvaranje ternarnih kompleksa. c) Creation of ternary complexes.

Ternarni DNA kompleksi, koji sadržavaju adenovirus i transferin, stvarani su na slijedeći način: biotinilirani adenovirusi (oko 109 viralnih čestica) pomiješa se sa 800 ng streptavidiniliranog polilizina. Nakon 30 minuta kod sobne temperature, otopina se miješa sa 6 µg plasmid DNA u 170 ml HBS, inkubira 30 minuta, zatim se doda 10 µg transferin-polilizina TfpL190B (Wagner, E. i sur., 1991b) u 200 ul HBS, a nakon daljnjih 30 minuta otopina se koristi za pokuse transfekcije. Ternary DNA complexes, containing adenovirus and transferrin, were created as follows: biotinylated adenoviruses (about 109 viral particles) were mixed with 800 ng of streptavidinylated polylysine. After 30 min at room temperature, the solution is mixed with 6 µg of plasmid DNA in 170 ml of HBS, incubated for 30 min, then 10 µg of transferrin-polylysine TfpL190B (Wagner, E. et al., 1991b) in 200 µl of HBS is added, and after a further 30 minutes the solution is used for transfection experiments.

d) Pokusi β-galaktosidaze d) β-galactosidase experiments

BNL CL.2 stanice se nasade na poklopce i 24 sata kasnije stanice se transficiraju u pCMV-β-gal (Lim, K. i Chae, 1989) reporter genom. Nakon 48 sati β-galaktosidaza je ispitivana prema Limu i Chae-u. BNL CL.2 cells were plated on coverslips and 24 hours later the cells were transfected with the pCMV-β-gal (Lim, K. and Chae, 1989) reporter gene. After 48 hours, β-galactosidase was tested according to Lim and Chae.

Birani prijenosno kompleksi. Biotinilirani adenovirus je spojen sa streptovidiniliranim polilizinom. Alternativno, adenovirus je povezan kovalentno sa polilizinom putem djelovanja transglutaminaze. Adenovirus-polilizin konjugat je dodan DNA, omogućujući stvaranje kompleksa između DNA i polilizina, i tako neutralizirajući poznatu frakciju (cca 1/4) negativnih naboja DNA. Zatim je dodana izračunata količina polilizina, da bi se neutralizirali preostali naboji. Kompleksi koji se sastoje od DNA vezane na adenovirus-polilizin konjugat i na polilizin objavljeni su kao binarni transportni kompleksi. Selected portable complexes. Biotinylated adenovirus was fused to streptovidinylated polylysine. Alternatively, adenovirus is linked covalently to polylysine by the action of transglutaminase. Adenovirus-polylysine conjugate is added to DNA, enabling the formation of a complex between DNA and polylysine, and thus neutralizing a known fraction (approx. 1/4) of the negative charges of DNA. A calculated amount of polylysine was then added to neutralize the remaining charges. Complexes consisting of DNA bound to an adenovirus-polylysine conjugate and to polylysine have been reported as binary transport complexes.

Postoje, u biti, dva načina sasavljanja binarnih prijenosnih kompleksa. DNA može biti vezana na strepatvinilirani polilizin i zatim spojena na biotinilirani adenovirus ili je adenovirus vezan na polilizin, a kasnije se kompleksno veže sa DNA. Potonji postupak, posve jasno, daje bolje rezultate, naročito uz niski sadržaj DNA, te je stoga radije korištena metoda za sastavljanje i binarnih i ternarnih kompleksa. There are essentially two ways to assemble binary transmission complexes. DNA can be bound to strepatvinylated polylysine and then attached to biotinylated adenovirus, or adenovirus is bound to polylysine, and later complexed with DNA. The latter procedure, quite clearly, gives better results, especially with a low DNA content, and is therefore the preferred method for assembling both binary and ternary complexes.

Ternarni prijenosni kompleksi koji sadrže transferin. Ternary transfer complexes containing transferrin.

Adenovirus-polilizin konjugati dodaju se DNA, omogućujući stvaranje kompleksa i neutralizaciju dijela (oko 1/4) negativnih naboja DNA. Izračunata količina transferin-polilizin konjugata doda se zatim kompleksu i neutralizira ostatak DNA. Kompleksi koji sadrže DNA, adenovirus-polilizin i transferin-polilizin, opisuju se kao ternarni kompleksi. U osnovi, takovi bi ternarni kompleksi morali imati kapacitet da budu endocitozirani povezivanjem bilo na stanične receptore adenovirusa ili na receptore transferina. Adenovirus-polylysine conjugates are added to DNA, enabling complex formation and neutralization of part (about 1/4) of the negative charges of DNA. The calculated amount of transferrin-polylysine conjugate is then added to the complex and neutralizes the rest of the DNA. Complexes containing DNA, adenovirus-polylysine and transferrin-polylysine are described as ternary complexes. Essentially, such ternary complexes should have the capacity to be endocytosed by binding to either cellular adenovirus receptors or transferrin receptors.

Povezivanje između DNA kondenzata i adenovirusa znatno pojačava izražaj reporterskog gena luciferaze. Fizičko se povezivanje između adenovirusa, soja d1312, i polilizina može postići ili inkubiranjem dvaju komponenata sa transglutaminazom, ili biotinilacijom adenovirusa i streptavidinilacijom polilizina. Utjecaj povezivanja na učinkovitost transfekcije (ovaj termin označava transferinom upravljanu transfekciju) u prisutnosti slobodnog adenovirusa je porasla, pokazujući tipično pojačanje oslobađanja transferin.-polilizin DNA kompleksa u stanice. Na određenom mjestu pLAdenoV/TpfL, adenovirus se konjugira sa polilizinom pomoću transflutaminaze i zatim reagira sa DNA neutralizirajući dio negativnih naboja DNA. Kasnije se doda transferin-polilizinm koji neutralizira ostatak naboja. Na taj se način sintetizira trenarni kompleks adenovirus-polilizin/transferin-polilizin/DNA. Kao što se može vidjeti, izvanredno visoka vrijednost od 1,5 x 109 l.j. (light units) luciferaze se postiže (ili pribl. 5000 l.j. po stanici). The association between DNA condensate and adenovirus significantly enhances the expression of the luciferase reporter gene. Physical association between adenovirus, strain d1312, and polylysine can be achieved either by incubating the two components with transglutaminase, or by biotinylation of adenovirus and streptavidinylation of polylysine. The effect of ligation on transfection efficiency (this term denotes transferrin-directed transfection) in the presence of free adenovirus increased, showing a typical enhancement of the release of transferrin-polylysine DNA complexes into cells. At a specific site in pLAdenoV/TpfL, the adenovirus is conjugated to polylysine by transflutaminase and then reacts with DNA neutralizing some of the negative charges on the DNA. Later, transferrin-polylysine is added, which neutralizes the remaining charge. In this way, the training complex adenovirus-polylysine/transferrin-polylysine/DNA is synthesized. As can be seen, the remarkably high value of 1.5 x 109 l.j. (light units) of luciferase is achieved (or approx. 5000 l.j. per cell).

Da bi se pokazala specifičnost transglutaminazom upravljanog povezivanja polilizina sa virusom, enzim se izostavlja. Zatim se virusni pripravak kompleksira sa istom količinom DNA i TfpL kao i u pLAdenoV/TfpL. U tom je slučaju transfekcija bila umjerena, kao i u AdenoV + TfpL, jer je u oba eksperimenta zajedničko mjesto virusa i transferin DNA stohastički proces, nasuprot PLAdenoV/TfpL gdje ko-internalizacija osigurana fizičkom vezom virusa i DNA i ternarnom kompleksu daje visoku razinu transferinfekcije. In order to demonstrate the specificity of transglutaminase-directed binding of polylysine to the virus, the enzyme is omitted. The viral preparation is then complexed with the same amount of DNA and TfpL as in pLAdenoV/TfpL. In this case, the transfection was moderate, as in AdenoV + TfpL, because in both experiments the shared location of the virus and transferrin DNA is a stochastic process, in contrast to PLAdenoV/TfpL where co-internalization ensured by the physical connection of virus and DNA and the ternary complex gives a high level of transferinfection.

Transfekcija K562 stanica odaje endosomolitička svojstva adenovirusa. Humana eritroleukemična stanična linija K562 sadrži cca 150.000 transferin receptora (Klausner, R.D., i sur., 1983b). U prisutnosti klorokina, kao što su ranije objavili Cotton M. i sur., 1990, ove stanice mogu biti transferinficirane u veoma visokoj mjeri, sa polilizin-transferin reporter DNA kompleksima, čak i u odsutnosti adenovirusa (TfpL, slika 33). Isti kompleksi sa dodatkom slobodnog adenovirusa, i u odsutnosti korokina, dali su relativno slabe razine izražaja reporter-gena (AdenoV/TfpL), vjerojatno zato što K562 stanice, kao i druge krvne stanice, (Silver, L. i sur., 1988; Horvath, J. i sur., 1988), imaju niske razine adenovirusnih receptora. Kad se adenovirus poveže na polilizin putem biotih/streptavidin mosta, a reporter DNA se sasvim kondenzira dodatkom više polilizina da bi se popunio binarni kompleks, (pLAdenoV/pL), adenovirusom podpomognuta transfekcija dostiže srednje razine. Vjerojatno se neki receptori adenovirusa na K562 stanicama koriste djelotvorno. Ako se, međutim, vezana adenovirus-polilizin-reporter DNA potpuno kondenzira i neutralizira dodatkom polilizin-transferina, da bi se formirao ternarni kompleks pLAdenoV/TfpL i da bi brojni stanični receptori transferina dobili ulogu, učinkovitost transfekcije, zahvaljujući kako efikasnom povezivanju transferina, tako i endosomolitičkim svojstvima virusa, povećava se najmanje za dva reda veličine (slika 33). Transfection of K562 cells reveals endosomolytic properties of adenovirus. The human erythroleukemic cell line K562 contains approximately 150,000 transferrin receptors (Klausner, R.D., et al., 1983b). In the presence of chloroquine, as previously reported by Cotton M. et al., 1990, these cells can be highly transfected with polylysine-transferrin reporter DNA complexes, even in the absence of adenovirus (TfpL, Figure 33). The same complexes supplemented with free adenovirus, and in the absence of corokin, gave relatively weak levels of expression of the reporter gene (AdenoV/TfpL), probably because K562 cells, like other blood cells, (Silver, L. et al., 1988; Horvath , J. et al., 1988), have low levels of adenovirus receptors. When the adenovirus binds to the polylysine via a biotic/streptavidin bridge, and the reporter DNA is completely condensed by the addition of more polylysine to fill the binary complex, (pLAdenoV/pL), adenovirus-assisted transfection reaches intermediate levels. It is likely that some adenovirus receptors on K562 cells are used effectively. If, however, the bound adenovirus-polylysine-reporter DNA is completely condensed and neutralized by the addition of polylysine-transferrin, in order to form a ternary pLAdenoV/TfpL complex and for numerous cellular transferrin receptors to play a role, the efficiency of transfection, thanks to both the efficient binding of transferrin and and endosomolytic properties of the virus, increases at least by two orders of magnitude (Figure 33).

Ternarni DNA kompleksi dovode do izražaja reporter-gena gotovo u 100% hepatocita. Djelotvornost novih DNA transportnih kompleksa testirana je također u mišjim hepatocitima (BNL CL.2), određivanjem postotaka stanica, koje se mogu dostići našim raznim protokolima transfekcije. Kao reporter-gen upotrebljavan je gen β-galaktosidaze, tjeran CMV promotorom. Nakon ustaljivanja stanica ustanovi se aktivnost - galaktosidaze prema Limu i Chae-u, 1989. Ternary DNA complexes lead to reporter gene expression in almost 100% of hepatocytes. The efficiency of the new DNA transport complexes was also tested in mouse hepatocytes (BNL CL.2), by determining the percentages of cells that can be reached by our various transfection protocols. The β-galactosidase gene, driven by the CMV promoter, was used as a reporter gene. After the cells have settled, the activity of galactosidase is established according to Lim and Chae, 1989.

Slika 34 pokazuje pokus galaktosidaze na mišjim hepatocitima nakon a) transferinfekcije u prisutnosti klorokina, b) transferinfekcije u prisutnosti slobodnog d1312 adenovirusa i c) transfekcije sa ternarim, povezanim (d1312) kompleksima adenovirus-polilizin-transferin-reporter DNA. U odsutnosti adenovirusa, nakon standardne transferinfekcije reporter-DNA, tek nekoliko stanica izražava reporter gen. Postotak transfekcije je manji od 0,1%. Kad je uključen klorokin, procenat poraste do oko 0,2% (slika 34a). Sa slobodnim adenovirusom oko 5 do 10% stanica izražava reporter-gen (slika 34b), dok ternarni kompleksi sa transglutaminazom modificiranim virusom dovode do izražaja u većini, ako ne u svim stanicama (slika 34c). Budući da se ternarni kompleksi mogu upotreblajvati u velikom razrjeđivanju, toksički se učinak, koji je uočljiv kod visokih doza adenovirusa (slobodnog, inaktiviranog) obično ne pojavljuje. No, treba naglasiti da se u slučaju kad se ternarni kompleksi pojavljuju u visokoj koncentraciji sa ciljem da se dohvati 100% stanica kulture tkiva, postaje uočljiv sličan tolsični učinak. Toksični učinci mogu biti uzrokovani preostalom viralnom aktivnošću gena, endosomolitičkim osobinama dodanog virusa ili jednostavno kao posljedica veoma visoke razine izražaja transficiranog gena. Figure 34 shows a galactosidase experiment on mouse hepatocytes after a) transfer infection in the presence of chloroquine, b) transfer infection in the presence of free d1312 adenovirus and c) transfection with ternary, linked (d1312) adenovirus-polylysine-transferrin-reporter DNA complexes. In the absence of adenovirus, after standard reporter-DNA transfer infection, only a few cells express the reporter gene. The percentage of transfection is less than 0.1%. When chloroquine is included, the percentage increases to about 0.2% (Figure 34a). With free adenovirus, about 5 to 10% of cells express the reporter gene (Figure 34b), while ternary complexes with transglutaminase-modified virus lead to expression in most, if not all, cells (Figure 34c). Since ternary complexes can be used in high dilution, the toxic effect, which is noticeable with high doses of adenovirus (free, inactivated) usually does not appear. However, it should be emphasized that in the case when ternary complexes appear in high concentration with the aim of reaching 100% of tissue culture cells, a similar tolstic effect becomes noticeable. Toxic effects may be caused by residual viral activity of the gene, endosomolytic properties of the added virus, or simply as a result of very high expression levels of the transfected gene.

Izražaj transficiranog reporter gena je prolazan, no u nepodijeljenim hepatocitima traje tjednima. Ternarni transportni kompleksi (pLAdenoV/TfpL) su načinjeni sa d1312 polilizin adenovirusom i d1312 modificiranim adenovirusom, zatim su inaktivirani reakcijom virusa sa psoraleom. Dvije trećine spojene hepatocitične kulture stanica transficirano je kao na slici 34b, sa reporter genom luciferaze CMVL, a aktivnost luciferaze je određena u različitim vremenskim točkama. Kao što se može vidjeti iz slike 35, aktivnost luciferaze je najveća nakon tri dana, kad kultura hepatocitičnih stanica postane zajedno skupljena i stanice se prestanu dijeliti. Izražaj reporter gena ostaje u nepodijeljenim stanicama kulture, bez primjene selekcije za održavanje gena i traje najmanje 6 tjedana, osobito kad se za stvaranje ternarnih transferin transportnih kompleksa koristi proralenom inaktivirani adenovirus. The expression of the transfected reporter gene is transient, but lasts for weeks in non-dividing hepatocytes. Ternary transport complexes (pLAdenoV/TfpL) were made with d1312 polylysine adenovirus and d1312 modified adenovirus, then they were inactivated by reacting the virus with psoralen. Two-thirds of confluent hepatocytic cell cultures were transfected as in Figure 34b, with the luciferase reporter gene CMVL, and luciferase activity was determined at different time points. As can be seen from Figure 35, the luciferase activity is highest after three days, when the hepatocytic cell culture becomes clumped together and the cells stop dividing. Expression of the reporter gene remains in undivided culture cells, without the application of selection for gene maintenance, and lasts at least 6 weeks, especially when proralen-inactivated adenovirus is used to create ternary transferrin transport complexes.

Primjer 24 - Upotreba pilećeg adenovirusa CELO za povećanje predaje DNA u humane stanice. Example 24 - Use of chicken adenovirus CELO to increase DNA delivery to human cells.

U ovom je primjeru testiran pileći adenovirus CELO na njegovu sposobnost da pojača prenošenje DNA u humane HeLa stanice, na način jednak kao u gornjim eksperimentima u kojima se koristi humani adenovirus 5. In this example, chicken adenovirus CELO was tested for its ability to enhance DNA transfer into human HeLa cells, in a manner similar to the above experiments using human adenovirus 5.

Pileći adenovirus CELO (Phelps soj, serotip FAV-1,7, prolaz pilećih bubrežnih stanica) je korišten u ovim pokusima. Virus (2 ml) se propušta kroz kolonu za gel filtraciju, pripremljenu sa 20 mM HEPES pH 7,3 150 mM NaCl, (HBS) + 10% glicerola i 2 ml eluenta reagira sa 20 µl l mM NHS-LC-biotin (Pierce), 3 sata kod sobne temperature. Biotinilirani se virus zatim dijalizira prema 3 x 300 ml HBS + 40% glicerola, kod 40ºC i alikvoti se čuvaju na -70ºC. Chicken adenovirus CELO (Phelps strain, serotype FAV-1.7, chicken kidney cell passage) was used in these experiments. Virus (2 ml) is passed through a gel filtration column, prepared with 20 mM HEPES pH 7.3 150 mM NaCl, (HBS) + 10% glycerol and 2 ml eluent is reacted with 20 µl l mM NHS-LC-biotin (Pierce ), 3 hours at room temperature. Biotinylated virus is then dialyzed against 3 x 300 ml HBS + 40% glycerol at 40ºC and aliquots are stored at -70ºC.

HeLa stanice (5x105 stanica po posudici od 6 cm) inkubiraju se u 2 ml DMEM + 2% FCS sa 6 µg plasmida pCMVL kompleksiranog sa polilizinom (pLys) ili transferin-polilizinom (TfpL) smjesama u 500 µl HBS (kompleksi su prethodno inkubirani 30 minuta kod sobne tempeature). Uzorci se zatim dodaju stanicama kod 37ºC u prisutnosti količine virusa naznačene na slici 36. Sa uzorcima koji sadrže biotinilirani CELO virus, navedena količina streptavidin-polilizina (StrpL) u 200 µl HBS se prethodno inkubira 30 minuta kod sobne temperature, prije dodavanja 6 µl plasmida (pCLuc) u 100 µl HBS. Nakon 30 minuta inkubacije kod sobne temperature, naznačena se količina TfpL materijala doda stanicama kod 37ºC. Dva sata kasnije doda se 5 ml DMEM + 10% FCS, a 24 sata kasnije stanice se požanju i prirede za pokus luciferaze. Rezultati su prikazani na slici 36. HeLa cells (5x105 cells per 6 cm dish) are incubated in 2 ml DMEM + 2% FCS with 6 µg plasmid pCMVL complexed with polylysine (pLys) or transferrin-polylysine (TfpL) mixtures in 500 µl HBS (the complexes were pre-incubated for 30 minutes at room temperature). Samples are then added to the cells at 37ºC in the presence of the amount of virus indicated in Figure 36. With samples containing biotinylated CELO virus, the indicated amount of streptavidin-polylysine (StrpL) in 200 µl HBS is pre-incubated for 30 minutes at room temperature, before the addition of 6 µl plasmid. (pCLuc) in 100 µl HBS. After 30 minutes of incubation at room temperature, the indicated amount of TfpL material was added to the cells at 37ºC. Two hours later, 5 ml of DMEM + 10% FCS was added, and 24 hours later the cells were harvested and prepared for the luciferase experiment. The results are shown in Figure 36.

Kao što se na slici 36 vidi, CELO virus kao slobodni entitet, pojačava prijenos DNA u HeLa stanice (stupci 1-6). Međutim, kad je CELO virus modificiran sa biotinom i uključen u kompleks sa streptavidinom, bilo sa ili bez dodatnog transferin-polilizina, nađeno je da virus pojačava prijenos DNA na razinu koja se može usporediti s onom postignutom uz upotrebu humanog adenovirusa d1312. Pojedine linije HeLa stanica pokazuju veliki kapacitet povezivanja sa polilizin/DNA kompleksima u odsutnosti transferina (usporedi aktivnost luciferaze uzoraka 1 i 4 na slici 36), stoga je uključivanje CELO virusa u polilizin/DNA kompleks dovoljno da potakne prihvaćanje virusa. As seen in Figure 36, CELO virus as a free entity enhances DNA transfer into HeLa cells (columns 1-6). However, when CELO virus was modified with biotin and complexed with streptavidin, either with or without additional transferrin-polylysine, the virus was found to enhance DNA transfer to a level comparable to that achieved using human adenovirus d1312. Some HeLa cell lines show a high capacity to associate with polylysine/DNA complexes in the absence of transferrin (compare the luciferase activity of samples 1 and 4 in Figure 36), therefore inclusion of the CELO virus in the polylysine/DNA complex is sufficient to induce viral uptake.

Primjer 25 - Transfekcija mioblasta. Example 25 - Transfection of myoblasts.

a) Transfekcija mioblasta i miotuba sa DNA/transferin-polilizin kompelksima u prisutnosti slobodnog adenovirusa i u prisutnosti biotin/streptavidinom vezanog adenovirusa a) Transfection of myoblasts and myotubes with DNA/transferrin-polylysine complexes in the presence of free adenovirus and in the presence of biotin/streptavidin bound adenovirus

C2Cl2 mioblasti (Blau i sur., 1985; ACTT No.: CRL 1772) i G8 mioblasti (ATCC No.: 1456) uzgajani su u visoko glukoznom DMEM + 10% FCS. Kulture mioblasta su transferirane sa cca 5 x 105 stanica po posudici. Kulture miotuba su pripremljene stavljanjem mioblasta na ploče 6 cm posudica (ca 5 x 105 stanica po posudici) i mijenjanjem medija sa visoko glukoznim DMEM + 2% konjskog seruma kad stanice dostignu spajanje (Barr i Leiden, 1991; Dhawan i sur., 1991). Transfekcija miotuba se izvede 5-7 dana kasnije. Transfekcijski su kompleksi priređeni kao što je opisano u primjeru 19, uz upotrebu naznačenih količina TfpL, StrpL i biotiniliranog adenovirusa d1312. Stanice se pokupe 20 sati nakon transfekcije i izvede se mjerenje aktivnosti luciferaze. Slika 37 pokazuje dobivene aktivnosti luciferaze u l.j. (Light Units) za cijeli uzorak stanica. Kulture mioblasta kao i kulture miotuba mogu se transficirati voema efikasno. Po diferencijaciji na miotube bilo je manje od jednog log smanjenja djelotvornosti transfekcije (C2Cl2), ili nije bilo značajnijeg smanjenja (G8). Udio u stvaranju miotuba zapažen je kod nižih gustoća sa G8 linijom, koja se može pripisati nedostatku primjetljivog smanjenja efikasnosti kod diferencirane kulture. Uloga transferin/transferin receptorske interakcije u prijenosu DNA u taj tip stanice nije velik. U sva četiri pripravka stanca bilo je slabog prijenosa DNA pomoću TfpL/DNA kompleksa, u prisutnosti slobodnog adenovirusa d1312 (stupci 1, 4, 7, 10). Učinkovitost transfekcije je pojačana upotrebom spojenih virusnih sustava (stupci 2, 3, 5, 6, 8, 9, 11, 12). Tu je biilo manje od 1 log povećanja učinkovitosti, upoređujući prijenos sa kombinacijskim kompleksima koji su sadržavali samo virus i polilizin/StrpL kondenziran na komplekse, koji obuhvaćaju transferin-polilizin (usporedi, na primjer, stupce 2, bez transferina, sa stupcem 3, transferin). Slaba transfekcija sa slobodnim virusom i visoka transfekcija sa spojenim virusnim kompleksima, bilo u prisutnosti ili u odsutnosti transferin-pL, sugerira da adenovirus služi kao ligand u tim stanicama te u odsutnosti spajanja slobodni virus može ući u stanice ali TfpL/DNA kompleks ne ulazi. (DNA korištena u ovom primjeru je bila pCMVL, označena kao pCLuc na slici). C2Cl2 myoblasts (Blau et al., 1985; ACTT No.: CRL 1772) and G8 myoblasts (ATCC No.: 1456) were cultured in high glucose DMEM + 10% FCS. Myoblast cultures were transferred with approximately 5 x 105 cells per dish. Myotube cultures were prepared by plating myoblasts on 6 cm dishes (about 5 x 105 cells per dish) and changing the medium to high-glucose DMEM + 2% horse serum when the cells reached confluence (Barr and Leiden, 1991; Dhawan et al., 1991). . Transfection of myotubes is performed 5-7 days later. Transfection complexes were prepared as described in Example 19, using the indicated amounts of TfpL, StrpL, and biotinylated adenovirus d1312. Cells were harvested 20 hours after transfection and luciferase activity was measured. Figure 37 shows the obtained luciferase activities in l.j. (Light Units) for the entire cell sample. Myoblast cultures as well as myotube cultures can be transfected very efficiently. Upon differentiation to myotubes, there was less than one log reduction in transfection efficiency (C2Cl2), or no significant reduction (G8). The proportion of myotube formation was observed at lower densities with the G8 line, which can be attributed to the lack of a noticeable decrease in efficiency in the differentiated culture. The role of the transferrin/transferrin receptor interaction in the transfer of DNA in that cell type is not great. In all four cell preparations, there was weak transfer of DNA by TfpL/DNA complexes, in the presence of free adenovirus d1312 (columns 1, 4, 7, 10). Transfection efficiency was enhanced by the use of pooled viral systems (columns 2, 3, 5, 6, 8, 9, 11, 12). There was less than a 1 log increase in efficiency comparing transfer with combination complexes containing only virus and polylysine/StrpL fused to complexes comprising transferrin-polylysine (compare, for example, column 2, no transferrin, with column 3, transferrin ). Low transfection with free virus and high transfection with attached viral complexes, either in the presence or absence of transferrin-pL, suggests that adenovirus serves as a ligand in these cells and in the absence of attachment free virus can enter cells but the TfpL/DNA complex does not. (The DNA used in this example was pCMVL, labeled pCLuc in the figure).

b) Histokemijska analiza učestalosti transfekcije u miotuba. b) Histochemical analysis of transfection frequency in myotubes.

C2Cl2 kulture miotuba (5 x 105 stanica, kao mioblasta, nasađenih po posudici od 6 cm i diferenciranih u miotube) pripremljene su na u a). Sa uzorcima slobodnog virusa kompleksira se pCMV-β-gal DNA (6 µg) sa 8 µg TfpL u 500 µl HBS i doda se stanicama u prisutnosti 18 µl adenovirusa d1312 (1 x 1012 virusa/ml) u 2 ml DMEM/2% FCS. Spojeni uzorci virusa se pripremaju sa pCMVLacZ DNA (6 µg) kompleksiranom sa 7 µg TfpL i 800 ng StrpL + 18 µl biotiniliranog adenovirusa d 1312 (1 x 1012 virusa po ml) u 500 µl HBS i doda se stanicama u 2 ml DMEM/2% FCS. Nakon 24 sata inkubacije stanice su pripremljene za aktivnost β-galaktosidaze, kao što je opisano u primjeru 15. Za β-galaktosidazu označeni primjerci bili su u skladu sa rezultatitma transfekcija uz luciferazu kao reporter gen (vidi a). Veoma slabi izražaj gena je postignut u kulturama miotuba sa slobodnim virusom, dok je spajanje virusa i DNA dovelo do visoke razine izražaja gena. Prisutnost plavkastih multi-nuklearnih tubula pokazala je uspješani prijenos gena ovim diferenciranim stanicama, u prisutnosti slobodnog adenovirusa. C2Cl2 cultures of myotubes (5 x 105 cells, as myoblasts, seeded per 6 cm dish and differentiated into myotubes) were prepared in a). With free virus samples, pCMV-β-gal DNA (6 µg) is complexed with 8 µg TfpL in 500 µl HBS and added to the cells in the presence of 18 µl adenovirus d1312 (1 x 1012 virus/ml) in 2 ml DMEM/2% FCS . Pooled virus samples are prepared with pCMVLacZ DNA (6 µg) complexed with 7 µg TfpL and 800 ng StrpL + 18 µl biotinylated adenovirus d 1312 (1 x 1012 virus per ml) in 500 µl HBS and added to cells in 2 ml DMEM/2 % FCS. After 24 hours of incubation, the cells were prepared for β-galactosidase activity, as described in example 15. Samples labeled for β-galactosidase were in accordance with the results of transfection with luciferase as a reporter gene (see a). Very weak gene expression was achieved in myotube cultures with free virus, while fusion of virus and DNA led to high levels of gene expression. The presence of bluish multi-nuclear tubules indicated successful gene transfer by these differentiated cells, in the presence of free adenovirus.

c) Prijenos DNA mišjem izvornom mioblastu i kulturama miotuba. c) DNA transfer to mouse primary myoblast and myotube cultures.

Veći skeletni mišići stražnjih nogu 4 tjedna starog miša mužjaka (C5781/6) sterilno su izolirani u PBS i samljeveni u komadiće od cca 5 mm. Tkivo je suspendirano u 20 ml PBS, ostavljeno da se slegne cca 2 minute i supernatant je odsisan. Ovo je pranje ponovljeno tri puta. Tkivo se zatim pomiješa sa 3,5 ml PBS + 0,5 ml tripsin/EDTA, 0,5 ml 1% (tež.) kolagenaze (tip II, Sigma), i 0,5 ml 1% BSA (frakcija V, u 4 mM CaCl2) i ostavljeno je na inkubaciji kod 37ºC 30 min, uz češće blago miješanje. Nakon 30 minuta inkubacije ostavi se preostalo tkivo da se slegne i supernatant se ukloni i pomiješa sa 5 ml DMEM + 20% FCS. Inkubacija sa proteazom se ponavlja 3-4 puta, sve dok se tkivo potpuno ne dispergira. Suspenzija stanica se zatim propušta kroz cjedilo za stanice (Falcon) da se uklone nakupine i fragmenti tkvia te se centrifugira kod 500 g, 15 minuta. Peleta stanice se ponovo suspendira u 10 ml DMEM + 20% FCS i fibroblasti se uklone razmazom stanica na nepokrivenu posudu za kulturu tkiva, promjera 15 cm, 60 minuta. Slobodne stanice se zatim pažljivo uklone i razmažu na 5 lamininom prevučenih posudica za kulturu tkiva, od 10 cm Ø, sa 15 ml DMEM + 20 FCS po posudici. Nakon što se stanice spoje (približno nakon tjedan dana), one se tripsiniziraju i ponovno razmažu na lamininom prevučene posudice od 6 cm, približno 1 x 106 stanica po posudici. Da bi se stvorile kulture miotuba, približno 5 dana kasnije (kad stanice postignu spajanje), medij se izmijeni na DMEM + 2% konjskog seruma te jedam tjedan kasnije izvede se transfekcija u 6 cm posudicama uz cca 80% spajanja stanica. Lamininom presvučene ploče za kulture stanica pripremljene su na slijedeći način. Posudice za stanične kulture prevuku se sa 0,025 mg/ml polilizina (m.tež. 30.000 do 70.000, Sigma) u sterilnoj vodi, 30 minuta kod sobne temperature. Ploče se isperu tri puta sterinom vodom i osuše na zraku. Zatim se ploče premažu sa 8 µg/ml laminina (EHS, Sigma) u vodi, preko noći kod sobne temperature. Ploče se zatim isperu tri puta sterilnom vodom, prije nasađivanja stanica. The larger skeletal muscles of the hind legs of a 4-week-old male mouse (C5781/6) were sterilely isolated in PBS and ground into pieces of approx. 5 mm. The tissue was suspended in 20 ml of PBS, allowed to settle for about 2 minutes and the supernatant was aspirated. This washing was repeated three times. The tissue was then mixed with 3.5 ml PBS + 0.5 ml trypsin/EDTA, 0.5 ml 1% (wt) collagenase (type II, Sigma), and 0.5 ml 1% BSA (fraction V, in 4 mM CaCl2) and was left to incubate at 37ºC for 30 min, with gentle stirring more often. After 30 minutes of incubation, the remaining tissue is allowed to settle and the supernatant is removed and mixed with 5 ml of DMEM + 20% FCS. Incubation with protease is repeated 3-4 times, until the tissue is completely dispersed. The cell suspension is then passed through a cell strainer (Falcon) to remove clumps and tissue fragments and centrifuged at 500 g for 15 minutes. The cell pellet is resuspended in 10 ml DMEM + 20% FCS and fibroblasts are removed by spreading the cells onto an uncovered 15 cm diameter tissue culture dish for 60 minutes. Free cells are then carefully removed and spread on 5 laminin-coated tissue culture dishes, 10 cm Ø, with 15 ml of DMEM + 20 FCS per dish. Once the cells are confluent (after approximately one week), they are trypsinized and re-plated onto laminin-coated 6 cm dishes, approximately 1 x 106 cells per dish. In order to create myotube cultures, approximately 5 days later (when the cells reach confluence), the medium is changed to DMEM + 2% horse serum, and one week later transfection is performed in 6 cm dishes with approx. 80% confluence of cells. Laminin-coated cell culture plates were prepared as follows. Cell culture dishes are coated with 0.025 mg/ml polylysine (m.wt. 30,000 to 70,000, Sigma) in sterile water for 30 minutes at room temperature. The plates are washed three times with sterile water and air-dried. The plates are then coated with 8 µg/ml laminin (EHS, Sigma) in water overnight at room temperature. The plates are then washed three times with sterile water, before plating the cells.

DNA kompleksi uzeti za transfekciju priređeni su razrjeđenjem navedene količine psoralena ili UV-zračenjem inaktiviranog biotiniliranog adenovirusa d1312 (pripremljenog kao što je opisano u primjeru 19) u 150 µl HBS te dodatkom 1 µg StrpL u 150 µl HBS , a zatim inkubacijom kod sobne temperture 30 minuta. Zatim se doda HBS (100 µl) koji sadržava 6 µg pCMVL (označenog u slici sa pCLuc) u svaki uzorak, a inkubacija se provodi još 30 minuta kod sobne temperature. Na kraju se doda 7 µg TfpL u 100 µl HBS, svakom uzorku inkubiranom 30 minuta, te se doda ili kulturi mioblasta ili kulturi miotuba, u posudicama od 6 cm, koja sadrži 2 ml DMEM + 2% FCS. Nakon jednog sata inkubacije, medij se zamijeni sa 5 ml DMEM + 20% FCS (mioblasti) ili DMEM + 2% konjskog seruma (miotubi) i 48 sati kasnije stanice se požanju za analizu luciferaze. Aktivnost lucifraze iz čitavog uzorka stanica prikazana je na slici 38. DNA complexes taken for transfection were prepared by diluting the specified amount of psoralen or UV-irradiation inactivated biotinylated adenovirus d1312 (prepared as described in example 19) in 150 µl HBS and adding 1 µg of StrpL in 150 µl HBS, followed by incubation at room temperature 30 minute. Then, HBS (100 µl) containing 6 µg of pCMVL (marked in the figure with pCLuc) is added to each sample, and incubation is carried out for another 30 minutes at room temperature. Finally, 7 µg of TfpL in 100 µl of HBS is added to each sample incubated for 30 minutes, and added to either myoblast culture or myotube culture, in 6 cm dishes, containing 2 ml of DMEM + 2% FCS. After one hour of incubation, the medium was replaced with 5 ml of DMEM + 20% FCS (myoblasts) or DMEM + 2% horse serum (myotubes) and 48 hours later cells were harvested for luciferase analysis. Luciferase activity from the whole cell sample is shown in Figure 38.

Primjer 26 - Poboljšanje prijelaza CELO virusa u mioblaste uz upotrebu lektin liganda Example 26 - Improvement of CELO virus transition into myoblasts using lectin ligands

a) Komparativna analiza adenovirusa d1312 i CELO virusa u HeLa i C2Cl2 mioblastima, a) Comparative analysis of adenovirus d1312 and CELO virus in HeLa and C2Cl2 myoblasts,

Uzorci ili HeLa stanica ili C2Cl2 mibolasta (5 x 105 stanica po posudici od 6 cm) transficiraju se sa 6 ug pCML (označeno u slici sa pCluc) kompleksiranog sa 1 µg StrpL/7 µg TfpL + 5 µl biotiniliranog adenovirusa d1312 (vidi primjer 19, 1 x 1012 čestica/ml) ili 18 ul biotiliniliranog CELO virusa (vidi primjer 24, 0,3 x 1012 čestica po ml. Nakon 20 sati inkubacije stanice se pokupe i pripreme za mjerenje aktivnosti luciferaze. Rezultate aktivnosti luciferaze svakog cijelog uzorka stanica prikazuje slika 39. Samples of either HeLa cells or C2Cl2 myoblasts (5 x 105 cells per 6 cm dish) were transfected with 6 µg of pCML (marked in the figure as pCluc) complexed with 1 µg of StrpL/7 µg of TfpL + 5 µl of biotinylated adenovirus d1312 (see Example 19 , 1 x 1012 particles/ml) or 18 µl of biotinylated CELO virus (see Example 24, 0.3 x 1012 particles per ml. After 20 hours of incubation, cells are harvested and prepared for measurement of luciferase activity. The results of luciferase activity of each whole cell sample are shown picture 39.

Treansfekcija u HeLa stanicama se može izvesti sa usporedljivim učincima pomoću adenovirus d1312/StrpL/TfpL/DNA kompleksa, koji mogu ući u stanice putem adenovirusnih receptora ili putem transferin receptora, ili pomoću kompleksa virus/StrL/TfpL/DNA, koji mogu ući putem transferin receptora. Međutim, dok prijelaz DNA u C2Cl2 mioblaste može biti efikasno proveden sa kompleksima adenovirusa d1312, kompleksi koji sadrže CELO virus, u tim stanicama djeluju slabo. Prijašnji su pokusi pokazali da transferin receptor ima malu ulogu u prijelazu kombinacijskog kompleksa u stanice. Vjerojatno je receptor adenovirusu glavno mjesto ulaza. Slaba aktivnost CELO virusa u mioblastu može, zatim, biti uzrokovana slabom vezom i CELO virusa i transferia sa C2C12 mioblastima. Transfection in HeLa cells can be performed with comparable effects using adenovirus d1312/StrpL/TfpL/DNA complexes, which can enter cells via adenoviral receptors or via transferrin receptors, or using virus/StrL/TfpL/DNA complexes, which can enter via transferrin. receptors. However, while the transfer of DNA into C2Cl2 myoblasts can be efficiently carried out with adenovirus d1312 complexes, complexes containing CELO virus work weakly in these cells. Previous experiments have shown that the transferrin receptor plays a small role in the transition of the combination complex into the cells. It is likely that the adenovirus receptor is the main site of entry. The weak activity of CELO virus in myoblast may, then, be caused by the weak binding of both CELO virus and transferria to C2C12 myoblasts.

b) Poboljšanje transfekcije mioblasta C2Cl2 virusom CELO, pomoću aglutinina pšeničnih klica kao liganda. b) Improvement of transfection of C2Cl2 myoblasts with CELO virus, using wheat germ agglutinin as a ligand.

Radi slobog prijelaza postignutog u a), odabran je novi ligand kao zamjena za transferin. Due to the free transition achieved in a), a new ligand was chosen as a substitute for transferrin.

Biotinilirani alutinin pšenične klice (2-4 mola biotina na mol proteina) nabavljen je od Boerhringer Mannheim. Biotinilirani CELO virus je priređen kao što je prethodno opisano. Kompleksi, koji sadrže 6 µg pCMVL + naznačene količine StrpL, TfpL, biotiniliranog aglutinina pšeničnih kica (WGA-B) i CELO virus, priređeni su na slijedeći način. Virus i WGA su zajedno razrjeđeni u 150 µl HBS i obje su otopine pomiješane i inkubirane kod sobne temperature, 30 minuta. Otopini StrL/Virus/WGA doda se DNA razrjeđena u 100 µl HBS i inkubacija se provodi daljnjih 30 minuta, kod sobne temperature. Konačno, doda se TfpL u 100 µl HBS i smjesa se inkubira još 30 minuta kod sobne temperature. Kompleksi se dodaju C2Cl2 mioblastima (5 x 105 stanica po 6 cm posudici) u 2 ml DMEM + 2% FCS. Jedan sat kasnije doda se stanicama 5 ml DMEM + 10% FCS, a 20 sati kasnije stanice se prirede za mjerenje aktivnosti luciferaze. Aktivnost (light units) u svakom cijelom uzorku stanica iskazana je na slici 40. (DNA korištena u tom primjeru bila je PCMVL, označena na slici kao pCluc). Biotinylated wheat germ alutinin (2–4 mol biotin per mol protein) was purchased from Boerhringer Mannheim. Biotinylated CELO virus was prepared as previously described. The complexes, which contain 6 µg of pCMVL + indicated amounts of StrpL, TfpL, biotinylated wheat germ agglutinin (WGA-B) and CELO virus, were prepared as follows. Virus and WGA were diluted together in 150 µl HBS and both solutions were mixed and incubated at room temperature for 30 minutes. DNA diluted in 100 µl HBS is added to the StrL/Virus/WGA solution and incubation is carried out for a further 30 minutes at room temperature. Finally, TfpL in 100 µl HBS was added and the mixture was incubated for another 30 min at room temperature. The complexes are added to C2Cl2 myoblasts (5 x 105 cells per 6 cm dish) in 2 ml DMEM + 2% FCS. One hour later, 5 ml of DMEM + 10% FCS was added to the cells, and 20 hours later the cells were prepared for measuring luciferase activity. The activity (light units) in each whole cell sample is shown in Figure 40. (The DNA used in this example was PCMVL, labeled in the figure as pCluc).

U odsutnosti virusa postignut je veoma slabi prijelaz DNA, bilo sa ili bez WGA (stupci 1, 6). Umjereni prijelaz je postignut sa spojenim CELO virusom (stupac 2), međutim, ako je u kompleks bio uključen WGA, postignuto je 16-erostruko povećanje prijelaza. Povećanje količine WGA u kompleksu (od 1 µg do 5 µg) dovelo je do neznatnog smanjenja prijelaza (usporedi stupce 3 i 4) dok je povećanje sadržaja StrpL u kompleksu (od 1 µg do 2 µg) neznatno povećalo prijelaz (usporedi stupce 3 i 5). Ovi rezultati očito pokazuju da WGA-B kao ligand, povećava CELO virusom upravljani prijenos DNA u C2Cl2 stanice. In the absence of virus, very weak DNA transfer was achieved, either with or without WGA (columns 1, 6). Moderate transition was achieved with the fused CELO virus (column 2), however, if WGA was included in the complex, a 16-fold increase in transition was achieved. Increasing the amount of WGA in the complex (from 1 µg to 5 µg) led to a slight decrease in the transition (compare columns 3 and 4), while increasing the content of StrpL in the complex (from 1 µg to 2 µg) slightly increased the transition (compare columns 3 and 5 ). These results clearly demonstrate that WGA-B as a ligand increases CELO virus-driven DNA transfer into C2Cl2 cells.

d) Izražaj pune dužine gena fatora VIII u kulturama C2Cl2 mioblasta i mituba. d) Expression of the full-length factor VIII gene in C2Cl2 myoblast and myotube cultures.

Kulture C2Cl2 mioblasta i miotuba priređene su kao što je gore opisano. Transfekcije su izvedene sa 6 µg plasmida koji označava punu dužinu humanog faktora VIII cDNA (Wood i sur., 1984; Eaton i sur., 1986) kompleksirane sa 5 ili 15 ul biotiniliranog adenovirusa (kako je naznačeno) + 0,5 ili 1 µg StrpL, i 7 ili 6 µg TfpL u standardnom protokolu stvaranja kompleksa. Cultures of C2Cl2 myoblasts and myotubes were prepared as described above. Transfections were performed with 6 µg of plasmid encoding full-length human factor VIII cDNA (Wood et al., 1984; Eaton et al., 1986) complexed with 5 or 15 µl of biotinylated adenovirus (as indicated) + 0.5 or 1 µg StrpL, and 7 or 6 µg of TfpL in a standard complexation protocol.

Kompleksi DNA/virs dodani su stanicama u 2% FCS/DMEM. Nakon 4 sata inkubacije kod 37ºC, doda se u svaku posudicu po 3 ml svježeg DMEM + 10% FCS. Nakon 18 sati substrat se požanje i izvede se pokus na prisutnost faktora VIII, pomoću COATEST (KABI, Pharmacia) test sistema sa internacionalnim standardom kao referentnim uzorkom. Faktor VIII je unešen u dijagram u m jedinicama stvorenim u 24 sata po 1 x 106 stanica (slik 41). DNA/virus complexes were added to the cells in 2% FCS/DMEM. After 4 hours of incubation at 37ºC, add 3 ml of fresh DMEM + 10% FCS to each dish. After 18 hours, the substrate is harvested and a test for the presence of factor VIII is carried out, using the COATEST (KABI, Pharmacia) test system with an international standard as a reference sample. Factor VIII is entered in the diagram in m units created in 24 hours per 1 x 106 cells (Figure 41).

Primjer 27 - Upotreba proteina adenovirusa za prijenos DNA. Example 27 - Use of adenovirus protein for DNA transfer.

Adenovirus wt300 uzgajan je u HeLa stanicama, pročišćen i biotiniliziran kao što je opisano za adenovirus d1312. 1,2 ml virusa se dijalizira prema 3 x 300 ml 5 mM MES, 1 mM EDTA pH 6,25 4ºC, 18 sati. Materijal je zatim centrifugiran 30 minuta kod 27 K u SW60 rotoru. Supernatant je pažljivo uklonjen, peleta je ponovno suspendirana u HBS/40% glicerola. HEPES pH 7,4 i NaCl se doda supernatantu do 20 mM i 150 mM, a zatim su dijelovi pelete (koji sadržavaju virusnu jezgru i masu hekson kapsida, “jezgra” u slici 42) kao i supernatanta testirani na DNA prijelaz i u Mov13 mišje fibroblaste (Strauss i Jaenisch, 1992) i u HeLa stanice. Adenovirus wt300 was grown in HeLa cells, purified and biotinylated as described for adenovirus d1312. 1.2 ml of virus is dialyzed against 3 x 300 ml of 5 mM MES, 1 mM EDTA pH 6.25 4ºC, 18 hours. The material was then centrifuged for 30 minutes at 27 K in a SW60 rotor. The supernatant was carefully removed, the pellet was resuspended in HBS/40% glycerol. HEPES pH 7.4 and NaCl were added to the supernatant to 20 mM and 150 mM, and then parts of the pellet (containing the viral core and the hexon capsid mass, the “core” in Figure 42) as well as the supernatant were tested for DNA transfer into Mov13 mouse fibroblasts as well (Strauss and Jaenisch, 1992) and in HeLa cells.

Stvaranje kompleksa sa DNA je izvedeno na slijedeći način. Naznačene količine svake frakcije, raspadnuti virus prije centrifugiranja ili intaktni virus (izražen u ug proteina određenim po Bradfordu), razrjeđeni su u 300 µl HBS). Streptavidin-polilzin (3 µg u 50 µl HBS) se doda, a zatim se inkubira 30 minuta kod sobne temperature. 6 µg pCMVL (na slici označenog pCluc) razrijedi se u 100 µl HBS i doda prvoj otopini za inkubaciju 30 minuta. U uzorcima priređenim samo sa TflpL u 170 µl HBS pomiješa se sa 6 µg pCMVL u 330 µl HBS, 30 minuta kod sobne temperature. Naznačene količine virusnog proteina razrijedi se u 300 µl HBS i aztim se dodaju kompleksima TfpL/DNA. Svi su uzorci zatim dodani u 5 x 105 stanica, u posudici od 6 cm, koja je sadržavala 2 ml DMEM/10% FCS (bilo HeLa ili Mov13 fibroblasti), na 1 sat. Zatim se doda 5 ml sviježeg medija koji sadržava 10% FCS i stanice se prirede za aktivnost luciferaze 20 sati kasnije. Rezultat aktivnosti luciferaze (u jedinicama l.j. - “Light units”) prikazan je na slici 42, za HeLa stanice (grafikon A) ili za Mov13 fibroblaste (grafikon B). The creation of a complex with DNA was carried out in the following way. Indicated amounts of each fraction, lysed virus prior to centrifugation or intact virus (expressed in µg protein as determined by Bradford), were diluted in 300 µl HBS). Streptavidin-polylysine (3 µg in 50 µl HBS) was added and then incubated for 30 min at room temperature. 6 µg of pCMVL (labeled pCluc in the image) was diluted in 100 µl of HBS and added to the first solution for incubation for 30 minutes. Samples prepared with only TflpL in 170 µl HBS were mixed with 6 µg pCMVL in 330 µl HBS for 30 min at room temperature. The indicated amounts of viral protein are diluted in 300 µl HBS and then added to the TfpL/DNA complexes. All samples were then added to 5 x 10 5 cells, in a 6 cm dish, containing 2 ml DMEM/10% FCS (either HeLa or Mov13 fibroblasts), for 1 hour. Then 5 ml of fresh medium containing 10% FCS is added and the cells are prepared for luciferase activity 20 hours later. The result of luciferase activity (in light units) is shown in Figure 42, for HeLa cells (graph A) or for Mov13 fibroblasts (graph B).

Kod oba tima stanica postoji o dozi ovisna aktivnost prijela DNA, vezana na najvišu frakciju (uzorak 4-6 u obadva grafikona). Kad je ista količina biotiniliranog virusnog proteina obuhvaćena sa kompleksima TfpL/DNA, bez streptavidin-polilizina, zapažen je prijelaz DNA sasvim na razinama osnove (uzorak 3 u svakom grafikonu). In both groups of cells, there is a dose-dependent activity of DNA translation, related to the highest fraction (sample 4-6 in both graphs). When the same amount of biotinylated viral protein was encapsulated with TfpL/DNA complexes, without streptavidin-polylysine, a DNA transition was observed quite at baseline levels (sample 3 in each graph).

Primjer 28 - Pojačani prijenos gena upotrebom DNA ternarnih kompleksa, koji sadrže konjugat galaktoznog liganda. Example 28 - Enhanced gene transfer using DNA ternary complexes containing a galactose ligand conjugate.

a) Ternarni kompleksi koji sadrže konjugat peptida influence. a) Ternary complexes containing influenza peptide conjugate.

Prisutnost polilizinom konjugiranih peptida, koji sadrže nizove izvedene iz N-terminusa virusnog hemaglutinina influence, podjedinice HA-2, DNA/transferin-polilizin kompleksima bitno povećava prijenos gena upravljan transferin-polilizinom. (Primjeri 13 i 14). The presence of polylysine-conjugated peptides, which contain sequences derived from the N-terminus of the influenza viral hemagglutinin, subunit HA-2, in DNA/transferrin-polylysine complexes significantly increases gene transfer controlled by transferrin-polylysine. (Examples 13 and 14).

Slični kombinacijski DNA kompleksi, koji sadrže “tetra-antenski” ligand-polilizin konjugat galaktoze i polilizinom modificirani peptid influence InflupL (pripremljen kao što je opisano u primjeru 6, odnosno 13), priređeni su dodavanjem konjugata ligand-polilizin plasmidu DNA pCMVL, da se neutralizira polovina DNA naboja, s tim da se ostatak naboja koristi za nabijanje kompleksa sa konjugatom influence. Prijelaz ovih DNA kompleksa, koji sadrže sitetički ligand (gal)4, BNLCL.2 hepatocitima (transfekcije su izvedene kao što je opisano u primjeru 6 g), rezultirao je izražajem gena luciferaze (slika 43) koji je znatno veći od izražaja postignutog sa transferinom kao ligandom. Izražaj je više od 500 puta veći nego kod kontrolnih eksperimenata, postignut sa DNA kompleksima bez peptida influence, ali sa istom količinom polilizina (slika 43). Aktivnost postignuta sa DNA kombinacijskim kompleksima, bila je također oko 30 puta veća nego sa DNA/(gal)4pL kompleksima inkubiranim sa stanicama u prisutnosti klorokina. Similar combinatorial DNA complexes, containing a "tetra-antenna" ligand-polylysine conjugate of galactose and the polylysine-modified influenza peptide InflupL (prepared as described in Example 6 and 13, respectively), were prepared by adding the ligand-polylysine conjugate to plasmid DNA pCMVL, to neutralizes half of the DNA charge, with the rest of the charge being used to charge the complex with the influenza conjugate. The transfection of these DNA complexes, which contain the synthetic ligand (gal)4, with BNLCL.2 hepatocytes (transfections were performed as described in example 6 g), resulted in the expression of the luciferase gene (Figure 43) which is significantly higher than the expression achieved with transferrin as a ligand. The expression is more than 500 times higher than in control experiments, achieved with DNA complexes without influenza peptide, but with the same amount of polylysine (Figure 43). The activity achieved with DNA combination complexes was also about 30 times higher than with DNA/(gal)4pL complexes incubated with cells in the presence of chloroquine.

b) Ternarni kompleksi koji sadrže konjugat adenovirusa. b) Ternary complexes containing adenovirus conjugate.

Kompleksi su pripremljeni kako slijedi: biotinilirani adenovirus d1312 (priređen kao u primjeru 19; 2 µl, 6 µl ili 18 µl; 1012 čestica/ml) u 50 µl HBS, pomiješa se sa streptavidin-polilizinom (100 ng, 160 ng ili 480 ng) u 100 µl hbs. Nakon 30 minuta inkubacije doda se otopina od 6 µg pCMV-L u 200 µl HBS i, nakon daljnjih 30 minuta, doda se otopina od 3,8 µg (gal)4pL (priređenog kao u primjeru 6) ili 7 µg TfpL u 150 µl HBS. Complexes were prepared as follows: biotinylated adenovirus d1312 (prepared as in Example 19; 2 µl, 6 µl or 18 µl; 1012 particles/ml) in 50 µl HBS, was mixed with streptavidin-polylysine (100 ng, 160 ng or 480 ng ) in 100 µl hbs. After 30 min of incubation, a solution of 6 µg of pCMV-L in 200 µl of HBS was added and, after a further 30 min, a solution of 3.8 µg of (gal)4pL (prepared as in Example 6) or 7 µg of TfpL in 150 µl was added. HBS.

Otopina DNA kompleksa se dodaju na svakih 300.0000 stanica (ATCC TIB 73, ATCC TIB74, ATCC TIB75, ATCC TIB76) uzgajanih na pločama od 6 cm u visoko glukoznom DMEM + 2% FCS. Daljnji pokusi kultura stanica i testovi luciferaze, izvedeni su kao što je opisano. Izražaj gena (nakon 24 sata) prikazan je na slici 44. The DNA complex solution is added to every 300,0000 cells (ATCC TIB 73, ATCC TIB74, ATCC TIB75, ATCC TIB76) grown on 6 cm plates in high glucose DMEM + 2% FCS. Further cell culture experiments and luciferase assays were performed as described. Gene expression (after 24 hours) is shown in Figure 44.

Primjer 29 - Prijenos DNA sa transferin-polilizinom u prisutnosti slobodnog i konjugiranog rhinovirusa Example 29 - Transfer of DNA with transferrin-polylysine in the presence of free and conjugated rhinovirus

a) Priprema rhinovirusa HRV-2. a) Preparation of rhinovirus HRV-2.

Rhinovirus HRV-2 je priređen i pročišćen kao što je opisano (Skern i sur., 1984). Rhinovirus HRV-2 was prepared and purified as described (Skern et al., 1984).

400 µl otopine rhinovirusa (pribl. 30 µg) u HBS (150 mM NaCl/5mM HEPES pH 7,9)/10% glicerola, obradi se sa 10 nmola NHS-LC-biotina (Pierce 21335). Nakon 3 sata inkubacije kod sobne temperature, virus je odijeljen od neugrađenog biotina dugom dijalizom prema HBS/glicerolu kod 4ºC. 400 µl of rhinovirus solution (approx. 30 µg) in HBS (150 mM NaCl/5 mM HEPES pH 7.9)/10% glycerol, was treated with 10 nmol NHS-LC-biotin (Pierce 21335). After 3 hours of incubation at room temperature, the virus was separated from unincorporated biotin by long dialysis against HBS/glycerol at 4ºC.

Na svjetlo osjetljivi rhinovirus, pripremljen uzgojem virusa u prisutnosti akritin-oranža, inaktiviran je kao što je opisano (Madshus i sur., 1984). Light-sensitive rhinovirus, prepared by growing the virus in the presence of acritin orange, was inactivated as described (Madshus et al., 1984).

b) Priprava DNA kompleksa i transfekcije. b) Preparation of DNA complex and transfection.

I)Transferin-polilizin / DNA kompleksi su priređeni miješanjem otopine od 6 µg DNA plasmida pCMVL i 330 µl HBS (150 mM NaCl, 20 mM HEPES, pH 7,3) sa otopinom od 8 µg TfpL290 u 170 µl HBS. I) Transferrin-polylysine / DNA complexes were prepared by mixing a solution of 6 µg DNA plasmid pCMVL and 330 µl HBS (150 mM NaCl, 20 mM HEPES, pH 7.3) with a solution of 8 µg TfpL290 in 170 µl HBS.

DNA kompleksi se miješaju sa 1,5 ml substrata (DMEM + 2% FCS) i sa 0,14 µg do 3,5 µg rhinovirusa HRV-2 (ili inaktiviranog HRV-2). Smjesa se doda u NIH 3T3 stanice (300.000 stanica po 6 cm ploči). Četiri sata kasnije transficirani se medij zamijeni sa 4 ml svježeg DMEM + 10% FCS. Stanice se pokupe nakon 24 sata i izmjeri se aktivnost luciferaze kao što je prije opisano (slika 45A). DNA complexes are mixed with 1.5 ml of substrate (DMEM + 2% FCS) and with 0.14 µg to 3.5 µg of rhinovirus HRV-2 (or inactivated HRV-2). The mixture is added to NIH 3T3 cells (300,000 cells per 6 cm plate). Four hours later, the transfected medium was replaced with 4 ml of fresh DMEM + 10% FCS. Cells were harvested after 24 hours and luciferase activity was measured as previously described (Figure 45A).

II) DNA kombinacijski kompleksi, koji sadržavaju transferin-polilizin i rhnovirus-polilizin konjugate, pripremljeni su kako slijedi: II) DNA combination complexes, which contain transferrin-polylysine and rhinovirus-polylysine conjugates, were prepared as follows:

100 µl otopine biotiniliranog rhinovirusa HRV-2 (3,5 µg) u HBS pomiješa se sa 1 µg streptavidiniliranog polilizina u 100 µl HBS. (druge su kombinacije virusa pomiješane sa odgovarajućim količinama). Nakon 30 minuta kod sobne temperature, otopina se pomiješa sa 6 µg DNA plasmida u 150 µl HBS, inkubira se daljnjih 30 minuta kod sobne temperature i zatim se pomiješa sa 6 µg TfpL290 u 150 µl HBS. 100 µl of a solution of biotinylated rhinovirus HRV-2 (3.5 µg) in HBS was mixed with 1 µg of streptavidinylated polylysine in 100 µl of HBS. (other combinations of viruses are mixed with appropriate amounts). After 30 min at room temperature, the solution was mixed with 6 µg of plasmid DNA in 150 µl of HBS, incubated for a further 30 min at room temperature and then mixed with 6 µg of TfpL290 in 150 µl of HBS.

DNA kompleksi se miješaju sa 1,5 ml medija (DMEM + 2% FCS) i dodaju se stanicama NIH 3T3 (300.000 stanica po ploči od 6 cm). DNA complexes are mixed with 1.5 ml medium (DMEM + 2% FCS) and added to NIH 3T3 cells (300,000 cells per 6 cm plate).

Daljnja obrada kultura i test na aktivnost luciferaze izveden je kao što je opisano u I) (slika 45B). Further processing of cultures and assay for luciferase activity was performed as described in I) (Fig. 45B).

Primjer 30 - Transfekcija HeLa stanice sa kombinacijskim kompleksima koji sadrže ionski vezani adenovirus Example 30 - Transfection of HeLa cells with combination complexes containing ionically bound adenovirus

Stvaranje kompleksa A) DNA kompleksi se priređuju miješanjem 30 µl adenovirusa d1312 (pribl. 109 PFUs) sa 1 µg polilizina pLys450 (prosječne dužine lanca od 450 monemera) u 170 µl HBS i, nakon 30 minuta kod sobne temperature, miješanjem sa 6 µg pCMVL-DNA u 170 µl HBS. Nakon inkubacije daljnjih 30 minuta, kompleksi se miješaju sa 9 µg TfpL190 u 170 µl HBS. Alikvot kompleksne smjese (10% = 50 µl otopine, 600 ng DNA; ili 1% 0 5 µl otopine 60 ng DNA) razrijedi se u 1,5 ml DMEM + 2% FCS i doda na 300.000 HeLa stanica. Nakon 4 sata doda se 2 ml DMEM + 20% FCS. 24 sata nakon transfekcije izvrši se žetva stanica i pokus lucireraze, kako je opisano. Aktivnost luciferaze, koja odgovara ukupnom ekstraktu, bila je 29115000 l.j. (“Light units”), u slučaju 600 ng DNA te 1090000 l.j. u slučaju od 60 ng DNA. Complex formation A) DNA complexes are prepared by mixing 30 µl of adenovirus d1312 (approx. 109 PFUs) with 1 µg of polylysine pLys450 (average chain length of 450 monomers) in 170 µl of HBS and, after 30 min at room temperature, mixing with 6 µg of pCMVL -DNA in 170 µl HBS. After incubation for a further 30 min, the complexes were mixed with 9 µg of TfpL190 in 170 µl of HBS. An aliquot of the complex mixture (10% = 50 µl solution, 600 ng DNA; or 1% 0 5 µl solution 60 ng DNA) is diluted in 1.5 ml DMEM + 2% FCS and added to 300,000 HeLa cells. After 4 hours, 2 ml of DMEM + 20% FCS is added. 24 hours after transfection, cell harvest and luciferase assay were performed as described. The luciferase activity, corresponding to the total extract, was 29115000 l.j. ("Light units"), in the case of 600 ng DNA and 1090000 l.j. in the case of 60 ng DNA.

Kontrolni eksperiment: Stvaranje kompleksa B) DNA kompleksi su priređeni najprije miješanjem 6 µg pCMVL-DNA u 170 µl HBS sa 1 µg polilizina pLys450 (prosječne dužine lanca od 450 monomera) u 170 µl HBS i nakon 30 minuta kod sobne temperature, miješanjem sa 9 µg TfpL190 u 170 µl HBS. Nakon daljnjih 30 minuta inkubacije, kompleksi se miješaju sa 30 µl adenovirusa d1312 (pribl. 109 PFUs). Alikvot smjese kompleksa (10% 0 50 µl otopine, 600 ng DNA; ili 1% = 5 µl otopine, 60 ng DNA) razrijedi se u 1,5 ml DMEM + 2% FCS i doda se na 300.000 HeLa stanica. Nakon 4 sata doda se 2 ml DMEM + 20% FCS. 24 sata nakon transfekcije se obavi žetva stanica i pokus luciferaze, kao što je prije opisano. Aktivnost luciferaze, koja odgovara ukupnom ekstraktu bila je 405000 l.j. (u slučaju 600 ng DNA) i 200 l.j. (u slučaju 60 ng DNA). Control experiment: Complex formation B) DNA complexes were prepared by first mixing 6 µg pCMVL-DNA in 170 µl HBS with 1 µg polylysine pLys450 (average chain length of 450 monomers) in 170 µl HBS and after 30 minutes at room temperature, mixing with 9 µg TfpL190 in 170 µl HBS. After a further 30 min of incubation, the complexes are mixed with 30 µl of adenovirus d1312 (approx. 109 PFUs). An aliquot of the complex mixture (10% 0 50 µl solution, 600 ng DNA; or 1% = 5 µl solution, 60 ng DNA) is diluted in 1.5 ml DMEM + 2% FCS and added to 300,000 HeLa cells. After 4 hours, 2 ml of DMEM + 20% FCS is added. Cell harvest and luciferase assay were performed 24 hours after transfection, as previously described. The luciferase activity corresponding to the total extract was 405,000 l.j. (in the case of 600 ng DNA) and 200 l.j. (in the case of 60 ng DNA).

Primjer 31 - Lokalna primjena DNA/adenovirus/transferin-polilizin konjugata u jetru štakora. Example 31 - Local application of DNA/adenovirus/transferrin-polylysine conjugate in rat liver.

a) Direktna injekcija a) Direct injection

Kompleksi su pripremljeni kao što je opisano u primjeru 19. Oni obuhvaćaju 200 µl biotiniliranog adenovirusa d1312, 6,4 µg streptavidin-polilizina, 48 µg pCMVL i 48 µg TfpL290 u ukupnom volumenu od 2000 µl HBS. Mužjak štakora Sprague-Dawley, od 240 g je anesteziran Avertinom i izvršena je laparotomija od 4 cm. Otopina kompleksa je injektirana u lijevi režanj jetre. zatim je rana zatvorena u slojevima. Nakon 48 sati injekcije kompleksa štakor je žrtvovan i izmjerena j aktivnost luciferaze. U području injiciranja je izmjereno 5615 l.j./po mg proteina homogenata jetre. Ukupna aktivnost luciferaze, na mjestu injiciranja, bila je 370.600 l.j. The complexes were prepared as described in Example 19. They comprise 200 µl of biotinylated adenovirus d1312, 6.4 µg of streptavidin-polylysine, 48 µg of pCMVL and 48 µg of TfpL290 in a total volume of 2000 µl of HBS. A 240 g male Sprague-Dawley rat was anesthetized with Avertin and a 4 cm laparotomy was performed. The complex solution was injected into the left lobe of the liver. then the wound is closed in layers. After 48 hours of injection of the complex, the rat was sacrificed and the luciferase activity was measured. In the area of injection, 5615 IU/per mg of liver homogenate protein was measured. The total luciferase activity at the injection site was 370,600 l.j.

b) Primjena konjugata u jetru putem sustava žučne drenaže. b) Administration of the conjugate in the liver via the bile drainage system.

Kompleksi su pripremljeni kako slijedi: 200 µl biotiniliranog adenovirusa d1312 razrijedi se sa 200 µl HBS i inkubira sa 6,4 µg streptavidinom modificiranog polilizina u 400 µg pCMVL u 800 µl HBS. Nakon 30 minuta inkubacije, doda se još 48 µg TfpL u 900 µl HBS. Za primjenu kompleksa anestezirani su mužjaci štakora Sprague-Dawley (250 g tjelesne težine) Avertinom i otvoren je abdomen središnjim rezom. Crijeva su pomaknuta na lijevu stranu tijela i u žučni vod je uložena igla G 27, koja je pričvršćena na cijev i špricu od 1 ml. Injekcija kompleksa je izvedena tijekom perioda od 4 minute. Zatim je igla izvučena iz učovoda i mjesto injiciranja je zalijepljeno fibrinskim ljepilom (immuno). Abdominalna je rana zatvorena šavovima i metalnim kopčama. Nakon 30 sati štakor je žrtvovan i uzorci različitih režnjeva jetre su ispitani na izražaj gena luciferaze. Maksimum aktivnosti luciferaze bio je 19000 l.j./mg proteina, a izračunati ukupni izražaj u cijeloj jetri bio je u rasponu od 2,7 x 106 light units. Complexes were prepared as follows: 200 µl of biotinylated adenovirus d1312 was diluted with 200 µl of HBS and incubated with 6.4 µg of streptavidin-modified polylysine in 400 µg of pCMVL in 800 µl of HBS. After 30 min of incubation, another 48 µg of TfpL in 900 µl of HBS was added. For the application of the complex, male Sprague-Dawley rats (250 g body weight) were anesthetized with Avertin and the abdomen was opened through a central incision. The intestines were moved to the left side of the body and a G 27 needle was inserted into the bile duct, which was attached to a tube and a 1 ml syringe. The injection of the complex was performed over a period of 4 minutes. Then the needle was withdrawn from the catheter and the injection site was glued with fibrin glue (immuno). The abdominal wound is closed with stitches and metal clips. After 30 hours, the rat was sacrificed and samples from different lobes of the liver were examined for the expression of the luciferase gene. The maximum of luciferase activity was 19,000 l.j./mg protein, and the calculated total expression in the whole liver was in the range of 2.7 x 106 light units.

Primjer 32 - Lokalna primjena DNA/adenovirus/tranferin-polilizin konjugata u štipaljkom stisnutoj veni mišjeg repa. Example 32 - Local application of DNA/adenovirus/tranferin-polylysine conjugate in a clamped mouse tail vein.

Kompleksi su pripravljeni kao što je opisano u primjeru 19. Complexes were prepared as described in Example 19.

Oni sadržavaju 45 µl biotiniliranog adenovirusa d 1312, 0,8 µg streptavidin-polilizina, 6 µg pCMVL i 24 µg TfpL290 u ukupnom volumenu od 170 µl HBS. Kompleksi su injektirani u venu repa mužjaka C3H/He miša (starog dva mejseca), koji je anesteziran Avertinom. Neposredno nakon injektiranja vena je na 20 minuta stegnuta štiopaljkom na proksimalnom i distalnom kraju repa, tako da je otopina kompelksa orgraničena na segment vene repa u koji je uštrcana, a ne može se razići putem krvi. 48 sati nakon injekcije miš je žrtvovan i vena repa je preprarirana. Izražaj luciferaze je izmjeren u homogenatu segmenta vne repa. Izražaj je rezultirao u 2.600 l.j./3 cm repa. They contain 45 µl biotinylated adenovirus d 1312, 0.8 µg streptavidin-polylysine, 6 µg pCMVL and 24 µg TfpL290 in a total volume of 170 µl HBS. The complexes were injected into the tail vein of a male C3H/He mouse (two months old), which was anesthetized with Avertin. Immediately after the injection, the vein was clamped for 20 minutes at the proximal and distal ends of the tail, so that the complex solution was limited to the segment of the tail vein into which it was injected, and could not spread through the blood. 48 hours after the injection, the mouse was sacrificed and the tail vein was dissected. Luciferase expression was measured in the homogenate of the vne tail segment. The expression resulted in 2,600 l.j./3 cm tail.

Primjer 33 - Transfekcija izvornih stanica humanog melanoma. Example 33 - Transfection of original human melanoma cells.

Stanice primarnog melanoma izolirane su iz melanoma, koji je bio kiruški uklonjen iz pacijenta, mehaničkim mrvljenjem tumora u RPMI 1640 mediju + 5% FCS, 2 mM glutamina i antibiotika te tlačenjem fragmenata tkiva kroz čelično sito. Tumorske su stanice isprane centrifugiranjem i ponovnim suspendiranjem te su nasađene u T25 bočice za kulturu stanica. 24 sata nakon izolacije tumorske su stanice transficirane kombinacijskim kompleksima koji su sadržavali 3 µl, 9 µl ili 27 µl biotiniliranog adenovirusa d1312 (1 x 1012 virusa/ml), 0,5 µg streptavidinin-polilizina, 6 µg pCMVL i 7 µg TfpL290 u ukupnom volumenu od 500 µl HBS. 36 sati nakon transfekcije stanice se pokupe i odredi se izražaj luciferaze. Rezultati su prikazani na slici 46. Primary melanoma cells were isolated from melanoma, which was surgically removed from the patient, by mechanically crushing the tumor in RPMI 1640 medium + 5% FCS, 2 mM glutamine and antibiotics and pressing the tissue fragments through a steel sieve. Tumor cells were washed by centrifugation and resuspended and seeded into T25 vials for cell culture. 24 hours after isolation, tumor cells were transfected with combination complexes containing 3 µl, 9 µl or 27 µl of biotinylated adenovirus d1312 (1 x 1012 virus/ml), 0.5 µg of streptavidin-polylysine, 6 µg of pCMVL and 7 µg of TfpL290 in total. volume of 500 µl HBS. 36 hours after transfection, cells are harvested and luciferase expression is determined. The results are shown in Figure 46.

Primjer 34 - Transfekcija izvornih humanih fibroblasta. Example 34 - Transfection of original human fibroblasts.

Biopsije humane kože stavljene su na petrijevu posudicu od 6 cm, koja je sadržavala DMEM, 2 mM glutamina, 20% FCS i antibiotike. Zatim su biopsije temeljito usitnjene kiruškim nožem i uzgajane u prisutnosti 3 ml substrata, 5 dana. Nakon toga stanice su isprane svježim DMEM, koji je sadržavao 2 mM glutamina, 10% FCS i antibiotike, i uzgajane su daljnjih 7 dana. Nakon toga stanice su tripsinizirane i opet uzgajane u novim petrijevim posudicama. Kad su se stanice gotovo spojile, one su ponovno tripsinizirane i čuvane zamrznute do transfekcije. Za transfekciju stanice se rastope i nasade u 6 cm petrijeve posudice te se uzgajaju u DMEM, koji sadrži 2 mM glutamina 10% FCS i antibiotike. Transficirani se konjugati pripremaju kako slijedi: 3 µl, 10 µl, 20 µl i 30 µl biotiniliranog adenovirusa d1312 inkubiraju se sa 0,1 µg, 0,3 µg, 0,5 µg i 0,8 µg polilizinom modificiranog streptavidina u 150 µl HBS, 30 minuta kod sobne temperature. Zatim se doda 6 µg pCMV- gal plasmida u 170 µl HBS i smjesa se inkubira daljnjih 30 minuta. U konačnoj se fazi doda 7,8 µg TfpL za konjugate sa 3 µl d1312, 7 µg TfpL za 10 µl d1312 i 6 µg TfpL za konjugate sa 20 µl i 30 µl d1312 i 179 µg HBS. Nakon 30 minuta inkubacije konjugati se dodaju stanicama u 2 ml DMEM koji sadrži 2 mM glutamina, 2% FCS i antibiotike i stanice se inkubiraju 4 sata kod 37ºC sa DMEM kojis adržu 2mM glutamina, 10% FCS i antibiotike. Nakon 48 sati pokazan je izražaj β-galaktosidaze, kao što je opisano u prethodnim primjerima. Human skin biopsies were placed on a 6 cm petri dish containing DMEM, 2 mM glutamine, 20% FCS and antibiotics. Then the biopsies were thoroughly minced with a surgical knife and cultured in the presence of 3 ml of substrate for 5 days. After that, the cells were washed with fresh DMEM, containing 2 mM glutamine, 10% FCS and antibiotics, and cultured for a further 7 days. After that, the cells were trypsinized and grown again in new petri dishes. When the cells were almost confluent, they were trypsinized again and kept frozen until transfection. For transfection, cells are thawed and planted in 6 cm petri dishes and grown in DMEM, which contains 2 mM glutamine, 10% FCS and antibiotics. Transfected conjugates are prepared as follows: 3 µl, 10 µl, 20 µl and 30 µl of biotinylated adenovirus d1312 are incubated with 0.1 µg, 0.3 µg, 0.5 µg and 0.8 µg of polylysine-modified streptavidin in 150 µl HBS , 30 minutes at room temperature. Then, 6 µg of pCMV-gal plasmid was added to 170 µl of HBS and the mixture was incubated for a further 30 minutes. In the final step, 7.8 µg TfpL for conjugates with 3 µl d1312, 7 µg TfpL for 10 µl d1312 and 6 µg TfpL for conjugates with 20 µl and 30 µl d1312 and 179 µg HBS are added. After 30 minutes of incubation, the conjugates are added to the cells in 2 ml of DMEM containing 2 mM glutamine, 2% FCS and antibiotics and the cells are incubated for 4 hours at 37ºC with DMEM containing 2 mM glutamine, 10% FCS and antibiotics. After 48 hours, the expression of β-galactosidase was demonstrated, as described in the previous examples.

U transfekciji sa 3 µl d1312 14% stanica je pokazalo produkciju β-galaktosidaze, sa 10 µl d1312 32% pozitivnih stanica je dobiveno, sa 20 µl d1312 39% i sa 30 µl d1312 64% stanica bilo pozitivno. In transfection with 3 µl d1312 14% of cells showed β-galactosidase production, with 10 µl d1312 32% of positive cells were obtained, with 20 µl d1312 39% and with 30 µl d1312 64% of cells were positive.

Primjer 35 - Prijenos gena pomoću ne-virusnih adenosomolitičkih agensa. Example 35 - Gene transfer using non-viral adenosomolytic agents.

a) Sinteza peptida koji razaraju membrane. a) Synthesis of membrane-disrupting peptides.

I) Sinteza peptida: I) Peptide synthesis:

Peptidi su sintetizirani na automatskom sinthesizeru (ABI 431A) metodom čvrste faze, uz upotrebu p-alkoksibenzilalkoholne smole (0,97 nmola/g) kao čvrstog nosača i Fmoc-zaštićenih aminokiselina. Karboksi-terminalna aminokiselina se spaja sa smolom putem 1-hidroksi-benzotriazol-dicikloheksilkarbodiimida. Slijedeće su zaštitne grupe postranog lanca upotrebljene: (Trt)Asn, (Trt)Cys (t-Bu)Cys u slučaju EALA i CLF, (t-Bu)Glu, (Trt)His, (t-Bu)Ser. Peptides were synthesized on an automatic synthesizer (ABI 431A) by the solid-phase method, using p-alkoxybenzylalcohol resin (0.97 nmol/g) as a solid support and Fmoc-protected amino acids. The carboxy-terminal amino acid is coupled to the resin via 1-hydroxy-benzotriazole-dicyclohexylcarbodiimide. The following side chain protecting groups were used: (Trt)Asn, (Trt)Cys (t-Bu)Cys in the case of EALA and CLF, (t-Bu)Glu, (Trt)His, (t-Bu)Ser.

EALA: (SEQ ID NO:5) Trp Glu Ala Ala Leu Ala Glu Ala Leu Ala Glu Leu Ala Glu His Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser Cys EALA: (SEQ ID NO:5) Trp Glu Ala Ala Leu Ala Glu Ala Leu Ala Glu Leu Ala Glu His Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser Cys

GLF (SEQ ID NO:6) Gly Leu Phe Gly Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu His Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Cly Ser Cys GLF (SEQ ID NO:6) Gly Leu Phe Gly Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu His Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Cly Ser Cys

GLF-II (SEQ ID No:7) Gly Leu Phe Gly Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser Cys GLF-II (SEQ ID No:7) Gly Leu Phe Gly Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Ser Cys

GLF-delta (SEQ ID No:8) Gly Leu Phe Glu Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser Cys. GLF-delta (SEQ ID No:8) Gly Leu Phe Glu Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser Cys.

EALA-Inf (SEQ ID No:9) Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Asn Gly Trp Glu Gly Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser Cys EALA-Inf (SEQ ID No:9) Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Asn Gly Trp Glu Gly Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser Cys

EALA-P50 (SED ID No:10) Gly Leu Phe Glu Ala Ile Glu Gly Phe Ile Glu Asn Gly Trp Glu Gly Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser Cyd EALA-P50 (SED ID No:10) Gly Leu Phe Glu Ala Ile Glu Gly Phe Ile Glu Asn Gly Trp Glu Gly Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser Cyd

P50 (SED ID No:11) Gly Leu Phe Glu Ala Ile Glu Gly Phe Ile Glu Asn Gly Trp Glu Gly Met Ile Asp Gly Gly Gly Cys P50 (SED ID No:11) Gly Leu Phe Glu Ala Ile Glu Gly Phe Ile Glu Asn Gly Trp Glu Gly Met Ile Asp Gly Gly Gly Cys

Peptidi se odcijepe iz smole i odstrane se zaštitne grupe postranog lanca (izuzev (t-But)Cys), obradom 100 mg nosača na kojem je peptid, sa 3 ml smjese fenol/etanditiol/tioanisol/voda/trifluoroctena kiselina u omjeru 0,75 : 0,25 : 0,5 : 0,5 : 10, kod sobne temperature 1,5 h. Sirovi peptidi se istalože u eteru i isperu dvaput. S-t-Bu zaštićeni peptidi EALA i GLF otope se u malom volumenu 1M trietil-amonijeva bikarobnata (TEAB) pH 8, razrijede se na 100 mM TEAB i dalje pročišćavaju reverzno fazom visoko tlačnom tekućinskom kromatografijom (HPLC) na koloni Nucleosil 500-5C4 (0,1% TFA-acetonitril gradijent). I jedni i drugi peptidi se eluiraju sa oko 50% Ac-nitrila. Slobodna Cys-SH forma peptida dobije se deprotektiranjem TrT-Cys peptida, na isti način kako je gore opisano. Sirovi se peptidi (5mg) otope u 100 µl 100 mM TEAB, pH 8, koji sadrži 1 µl β-markaptoetanola i pročišćavaju gel filtracijom (Sephadex G-25, 100 mM TEAB, 0,5 mM EDTA) i sušenjem zamrzavanjem, ili ionsko-izmjenjivačkom kromatografijom (Mono Q Pharmacia, 20 mM HEPES, pH 7,3 gradijent 0 do 3M NaCl, peptid se eluira sa 1,5 M NaCl). The peptides are cleaved from the resin and the protective groups of the side chain (except (t-But)Cys) are removed, by treating 100 mg of the support on which the peptide is, with 3 ml of a mixture of phenol/ethanedithiol/thioanisole/water/trifluoroacetic acid in a ratio of 0.75 : 0.25 : 0.5 : 0.5 : 10, at room temperature for 1.5 h. Crude peptides are precipitated in ether and washed twice. The S-t-Bu protected peptides EALA and GLF were dissolved in a small volume of 1M triethylammonium bicarbonate (TEAB) pH 8, diluted to 100 mM TEAB and further purified by reverse phase high pressure liquid chromatography (HPLC) on a Nucleosil 500-5C4 column (0 ,1% TFA-acetonitrile gradient). Both peptides are eluted with about 50% Ac-nitrile. The free Cys-SH form of the peptide is obtained by deprotection of the TrT-Cys peptide, in the same way as described above. Crude peptides (5 mg) were dissolved in 100 µl 100 mM TEAB, pH 8, containing 1 µl β-marcaptoethanol and purified by gel filtration (Sephadex G-25, 100 mM TEAB, 0.5 mM EDTA) and freeze-drying, or ion -exchange chromatography (Mono Q Pharmacia, 20 mM HEPES, pH 7.3 gradient 0 to 3M NaCl, peptide is eluted with 1.5 M NaCl).

II) Modifikacija sa N-(hidroksietil)maleimidom II) Modification with N-(hydroxyethyl)maleimide

C-terminalna SH grupa GLF-delta, GLF-II, EALA-Inf, EALA-P50, P50 se blokira nakon gel filtracije slobodne SH forme (sephadex G-25, 20 mM HEPES, pH 7,3 0,5 mM EDTA) reakcijom sa 1,3 - 10-ostrukim molarnim viškom N-(hidroksietil)maleimida (1 h kod sobne temperature). Višak maleimida se ukloni gel filtracijom (Sephadex G-25, 100 mM TEAB, pH 8) i peptid (GLF-delta-mal, GLF-II-mal, EALA-Inf-mal. EALA-P50-mal,, P50-mal) se dobiju kao trietilamonijeve soli, nakon sušenja zamrzavanjem. The C-terminal SH group of GLF-delta, GLF-II, EALA-Inf, EALA-P50, P50 is blocked after gel filtration of the free SH form (sephadex G-25, 20 mM HEPES, pH 7.3 0.5 mM EDTA) by reaction with a 1.3 - 10-fold molar excess of N-(hydroxyethyl)maleimide (1 h at room temperature). Excess maleimide is removed by gel filtration (Sephadex G-25, 100 mM TEAB, pH 8) and peptide (GLF-delta-mal, GLF-II-mal, EALA-Inf-mal. EALA-P50-mal,, P50-mal ) are obtained as triethylammonium salts, after freeze-drying.

III) Modifikacija sa 2,2’-ditiobispiridinom: III) Modification with 2,2'-dithiobispiridine:

Slobodni SH peptidi reagiraju sa 10 ekvivalenata 2,2’-ditiobispiridina (20 mM HEPWS, pH 7,9 0,5 mM EDTA) preko noći, kod sobne temperature. Višak reagensa se ukloni gel filtracijom (Sephadex G-25), 100 mM REAB, pH 8) ili kromatografijom ionskim izmjenjivačem (Mono Q Pharmacia, 20 mM HEPES, pH 7,3, gradijent 0 do 3 M NaCl, peptid eluiran sa 1,5 M NaCl) te se dobiju (2-piridiltio)-Cys peptidi (GLF-delta-SSPy, GLF-II-SSPy, EALA-P50-SSPy, P50-SSPY). Free SH peptides are reacted with 10 equivalents of 2,2'-dithiobispyridine (20 mM HEPWS, pH 7.9 0.5 mM EDTA) overnight at room temperature. Excess reagents were removed by gel filtration (Sephadex G-25, 100 mM REAB, pH 8) or ion exchange chromatography (Mono Q Pharmacia, 20 mM HEPES, pH 7.3, gradient 0 to 3 M NaCl, peptide eluted with 1, 5 M NaCl) and (2-pyridylthio)-Cys peptides (GLF-delta-SSPy, GLF-II-SSPy, EALA-P50-SSPy, P50-SSPY) are obtained.

IV) Dimerizacija peptida: IV) Peptide dimerization:

Monomer peptida 150 (150 dim) priređen je reakcijom ekvimolarnih količina P50-Cys-(2-piridiltio) i P50-Cys-SH u 20 mM HEPES, pH 7,3, tri dana, kod sobne temperature. Reakcijska se smjesa odijeli na Mono Q koloni (HR 5/5 Pharmacia; 20 mM HEPES, pH 7,3, gradijent 0,09 3 M NaCl, P50-dimer eluiran sa 1,1 NaCl). Heterodimer GLF-SS-P50 je priređen analogno, reakcijom peptida P50, slobodne merkapto forme, sa piridiltio-modificiranim peptidom GLF. Peptide monomer 150 (150 dim) was prepared by reacting equimolar amounts of P50-Cys-(2-pyridylthio) and P50-Cys-SH in 20 mM HEPES, pH 7.3, for three days at room temperature. The reaction mixture was separated on a Mono Q column (HR 5/5 Pharmacia; 20 mM HEPES, pH 7.3, gradient 0.09 3 M NaCl, P50-dimer eluted with 1.1 NaCl). The heterodimer GLF-SS-P50 was prepared analogously, by reacting the peptide P50, free mercapto form, with the pyridylthio-modified peptide GLF.

b) Pokus propuštanja liposoma: b) Liposome leakage experiment:

Sposobnost sintetičkih peptida da razore liposome ispitivana je oslobađanjem fluprescentne boje iz liposoma nabijenih samogasećom koncentracijom kalceina. Liposomi su priređeni iz fosfatidilholina jajeta reverzno faznim odparavanjem (Szoka i Papahadjopoulos, 1978) sa vodenom fazom od 100 mM kalceina, 375 mM Na+, 50 mM NaCl, pH 7,3 i protiskivanjem kroz 100 nm polikarbonatni filter (MacDonald i sur., 1991) da bi se postigla jednolična raspodjela veličine. Liposomi su odjeljeni iz jednolikog materijala gel filtracijom na Sephadex G-25, sa izo-osmotskim puferom (200 mM NaCl, 25 mM Hepes, pH 7,3). Za ispitivanje propuštanja kod različitih pH vrijednosti, standardna je otopina liposoma razrijeđena 6 µl/ml) u 2 x test puferu (400 mM NaCl, 40 mM Na-citrata). Alikvot od 100 µl se doda u 80 µl serijskog razrjeđenja peptida u vodi, u mikro-titar ploči sa 96 udubljenja (konačna koncentracija lipida: 25 µM) te se ispita na fluorescenciju kalceina kod 600 nm (ekscitacija 490 nm) fluorescentnim fotometrom za mikrotitar ploče, nakon 30 minuta inkubacije kod sobne temperature. Vrijednost za 100% propuštanje dobivena je dodatkom 1 µl 10% otopine Tritona X-100. Jedinice propuštanja su izračuinate kao recipročna vrijednost koncentracije peptida, gdje je zapaženo 50% propuštanje (t.j. volumen (µl), liposomne otopine koja sadrži do 50% po µg peptida. Vrijednosti ispod 20 jedinica se ekstrapoliraju. Rezultati pokusa propuštanja liposoma su prikazani na slici 47. GLF i EALA pokazuju najviše pH specifične aktivnosti. The ability of synthetic peptides to disrupt liposomes was investigated by releasing fluprescent dye from liposomes charged with a self-quenching concentration of calcein. Liposomes were prepared from egg phosphatidylcholine by reverse-phase evaporation (Szoka and Papahadjopoulos, 1978) with an aqueous phase of 100 mM calcein, 375 mM Na+, 50 mM NaCl, pH 7.3 and passing through a 100 nm polycarbonate filter (MacDonald et al., 1991). ) to achieve a uniform size distribution. Liposomes were separated from the uniform material by gel filtration on Sephadex G-25, with iso-osmotic buffer (200 mM NaCl, 25 mM Hepes, pH 7.3). For permeation testing at different pH values, a standard liposome solution was diluted (6 µl/ml) in 2x test buffer (400 mM NaCl, 40 mM Na-citrate). An aliquot of 100 µl is added to 80 µl of a serial dilution of the peptide in water, in a 96-well microtiter plate (final lipid concentration: 25 µM) and examined for calcein fluorescence at 600 nm (excitation 490 nm) with a microtiter plate fluorescence photometer. , after 30 minutes of incubation at room temperature. The value for 100% leakage was obtained by adding 1 µl of 10% Triton X-100 solution. Permeation units were calculated as the reciprocal of the peptide concentration, where 50% permeation was observed (i.e., the volume (µl) of the liposomal solution containing up to 50% per µg of peptide. Values below 20 units are extrapolated. The results of liposome permeation experiments are shown in Figure 47 GLF and EALA show the highest pH-specific activities.

c) Pokus raspada eritrocita: c) Erythrocyte disintegration experiment:

Svježi humani eritrociti se isperu nekoliko puta sa HBS i ponovno suspendiraju 2x test puferu odgovarajuće pH vrijednosti (300 mM NaCl, 30 mM Na-citrata) u koncentraciji od 6,6 x 107/ml. Alikvot od 75 ul se doda na 75 ul serijskog razrjeđenja peptida u vodi, u mikro-titar ploči sa 96 udubljenja (konični tip) i inkubira se 1 h kdo 37ºC, uz stalno mućkanje. Nakon uklanjanja neraspadnutih eritrocita centrifugiranjem (1000 rcf, 5 min), 100 ul supernatanta se prenese u novu mikro-titar ploču i odredi se osorpcija hemoglobina kod 450 nm (korekcija osnove kod 750 nm). 100% raspad je određen dodatkom 1 µl 10% Tritona X-100, prije centrifugiranja. Hemolitičke jedinice su izračunate kao recipročna vrijednost koncetracije peptida, kad je zapažen 50% raspad (t.j. volumen (µl) otopine eritrocita koja je raspadnuta od 50% po µg peptida). Vrijednosti ispod 3 hemolitičke jedinice se ekstrapoliraju. Vrijednosti su date na slici 48. Kao što se može vidjeti, P50 dim i EALA-P50 pokazuju najveće pH specifične aktivnosti s obzirom na raspad stanica i/ili oslobađanja većih molekula kao što je hemoglobin. P50 monomeri P50mal i P50 SS-Py imaju nižu aktivnost. Melitin je pokazao najveću aktivnost, no ta aktivnost nije specifična za kisele pH vrijednosti. Fresh human erythrocytes are washed several times with HBS and resuspended 2x in test buffer of the appropriate pH value (300 mM NaCl, 30 mM Na-citrate) in a concentration of 6.6 x 107/ml. An aliquot of 75 µl is added to 75 µl of a serial dilution of the peptide in water, in a 96-well micro-titre plate (conical type) and incubated for 1 h at 37ºC, with constant shaking. After removal of undegraded erythrocytes by centrifugation (1000 rcf, 5 min), 100 ul of the supernatant is transferred to a new microtiter plate and hemoglobin absorbance at 450 nm (baseline correction at 750 nm) is determined. 100% dissolution was determined by addition of 1 µl of 10% Triton X-100, before centrifugation. Hemolytic units were calculated as the reciprocal of the peptide concentration, when 50% lysis was observed (ie, the volume (µl) of erythrocyte solution that was 50% lysed per µg of peptide). Values below 3 hemolytic units are extrapolated. The values are given in Figure 48. As can be seen, P50 dim and EALA-P50 show the highest pH specific activities with respect to cell lysis and/or release of larger molecules such as hemoglobin. P50 monomers P50mal and P50 SS-Py have lower activity. Melitin showed the highest activity, but this activity is not specific for acidic pH values.

d) Priprava DNA kombinacijskih kompleksa: d) Preparation of DNA combination complexes:

DNA kompleksi su pripremljeni najprije miješanjem 6 µg pCMVL-DNA u 150 µl HBS sa 4 µg TfpL290 u 150 µl HBS, a zatim miješanjem sa 4 do 20 µg poli(L)lizina290 u 100 µl HBS, nakon 30 minuta kod sobne temperature. Nakon daljnjih 30 minuta inkubacije kod sobne temperature, doda se 0,3 do 30 µg peptida u 100 µl HBS i inkubira se još 30 minuta. Optimalna količina endosomolitičkog agensa se odredi prethodnim titracijama ispitivanjem djelotvornosti prijenosa gena (vidi tabelu 3, za prijenos gena u BNLCL.2 stranice). Istovremeni dodatak plVS i endosomolitičkog agens, kao i upotreba većih volumena za pripravu kompleksa (1,5 ml konačni volumen) dao je, kao što se vidi, usporedljive (ili bolje) učinke transfekcije. Ovim pokusima pokazalo se da ne-peptidni amfipatski spojevi, dezoksiholinska kiselina i oleinska kiselina, također pojačavaju DNA prijelaz. DNA complexes were prepared by first mixing 6 µg pCMVL-DNA in 150 µl HBS with 4 µg TfpL290 in 150 µl HBS, and then mixing with 4 to 20 µg poly(L)lysine290 in 100 µl HBS, after 30 minutes at room temperature. After a further 30 min of incubation at room temperature, 0.3 to 30 µg of peptide in 100 µl of HBS is added and incubated for another 30 min. The optimal amount of endosomolytic agent is determined by previous titrations testing the efficiency of gene transfer (see Table 3, for gene transfer in BNLCL.2 pages). The simultaneous addition of plVS and the endosomolytic agent, as well as the use of larger volumes for complex preparation (1.5 ml final volume) gave, as can be seen, comparable (or better) transfection effects. These experiments showed that non-peptide amphipathic compounds, deoxycholic acid and oleic acid, also enhance DNA transfer.

e) Transfekcija stanica: e) Cell transfection:

Pripadne stanične linije (BNL CL.2 hepatociti ili NIH 3T3 stanice) uzgajane su u 6 cm posudicama 1 do 2 dana prije transfekcije (DMEM medij sa 10% FCS; 300.000 stanica po posudici). Medij se ukloni i doda se k,5 ml DMEM (2% FCS) i 500 µl DNA kompleksa. Alternativno, koristi se 0,5 ml DMEM 6% FCS i 1,5 ml DNA kompleksa. Nakon 4 sata inkubacije doda se 2 ml DMEM (18% FCS). The respective cell lines (BNL CL.2 hepatocytes or NIH 3T3 cells) were grown in 6 cm dishes for 1 to 2 days before transfection (DMEM medium with 10% FCS; 300,000 cells per dish). The medium is removed and k.5 ml of DMEM (2% FCS) and 500 µl of DNA complex are added. Alternatively, use 0.5 ml DMEM 6% FCS and 1.5 ml DNA complex. After 4 hours of incubation, 2 ml of DMEM (18% FCS) was added.

Alternativno, transfekcijski se medij može zamijeniti sa 4 ml DMEM sa 10% FCS. Žetva stanica i pokusi luciferaze obavljeni su 24 sata nakon transfekcije, kako je to prije opisano. Vrijednosti l.j. - (lihgt units) koje su pokazane predstavljaju ukupnu aktivnost luciferaze transficiranih stanica. Alternatively, the transfection medium can be replaced with 4 ml of DMEM with 10% FCS. Cell harvesting and luciferase assays were performed 24 hours after transfection, as previously described. Values of l.j. - (lihgt units) that are shown represent the total luciferase activity of the transfected cells.

Transfekcija BNL CL.2 hepatocita prikazana je na slici 49. Transfection of BNL CL.2 hepatocytes is shown in Figure 49.

Slika 49A) DNA kompleksi su priređeni, prvo, miješanjem 6 µg pCMVL-DNA u 250 µl HBS sa 4 µg TfpL290 u 250 µl HBS, a zatim miješanjem sa 20 µg poli(lizina290 u 750 µl HBS, nakon 30 minuta kod sobne temperature. Nakon daljnjih 30 minuta inkubacije kod sobne temperature, naznačene količine peptida u 250 µl HBS, dodaju se smjesi. Nakon inkubacije u daljnjih 30 minuta, kompleksi se miješaju sa 0,5 ml DMEM + 6% FCS i dodaju se na 450.000 stanica. Figure 49A) DNA complexes were prepared, first, by mixing 6 µg pCMVL-DNA in 250 µl HBS with 4 µg TfpL290 in 250 µl HBS, and then mixing with 20 µg poly(lysine290 in 750 µl HBS) after 30 minutes at room temperature. After a further 30 min incubation at room temperature, the indicated amounts of peptides in 250 µl HBS were added to the mixture.After a further 30 min incubation, the complexes were mixed with 0.5 ml DMEM + 6% FCS and added to 450,000 cells.

Slika 49B) DNA kompleksi se pripremaju kako slijedi: Otopina od 6 µg pCMVL-DNA u 500 µl HBS miješa se sa 4 µg TfpL290 u 250 µl HBS i ostavi se 30 minuta od sobne temperature. Otopina od 20 µg poli(L)-lizia u 500 µl HBS, miješa se sa naznačenim količinama peptida u 250 µl HBS i odmah se doda smjesi TfpL/DNA. Nakon daljnjih 30 minuta inkubacije kod sobne temperature, kompleksi se pomiješaju sa 0,5 ml DMEM + 6% i dodaju se u 450.000 stanica. Žetva stanica 24 sata nakon transfekcije i testovi luficeraze provedeni su kao što je prije opisano. Figure 49B) DNA complexes are prepared as follows: A solution of 6 µg pCMVL-DNA in 500 µl HBS is mixed with 4 µg TfpL290 in 250 µl HBS and left for 30 min at room temperature. A solution of 20 µg poly(L)-lysine in 500 µl HBS is mixed with the indicated amounts of peptide in 250 µl HBS and immediately added to the TfpL/DNA mixture. After a further 30 min of incubation at room temperature, the complexes were mixed with 0.5 ml of DMEM + 6% and added to 450,000 cells. Cells were harvested 24 hours after transfection and luciferase assays were performed as previously described.

Eksperimenti izvedeni sa NIH3T3 stanicama prikazani su na slici 50. Priprema kompleksa, prema A9 i B) bila je ista kao i za transfekciju TIB 73. Experiments performed with NIH3T3 cells are shown in Figure 50. Complex preparation, according to A9 and B) was the same as for TIB 73 transfection.

U pokusima kulture stanica, p50 dim i ELA P50 pokazali su naveću aktivnost, EALA i GLF srednju, dok su P50 monomeri i melitin imali slabu aktivnost. In cell culture experiments, p50 dim and ELA P50 showed the highest activity, EALA and GLF medium, while P50 monomers and melittin had weak activity.

Primjer 36 - Prijenos gena upotrebom sintetičkog ne-virusnog peptida sa oligolizinskim C-terminalnim produženjem. Example 36 - Gene transfer using a synthetic non-viral peptide with an oligolysine C-terminal extension.

Peptid niza (SEQ ID NO:4) Met Ala Gln Asp Ile Ile Ser Thr Ile Gly Asp Leu Val Lys Trp Ile Ile Asp Thr Val Asn Lys Phe Thr Lys Lys Lys Lys Lys Lys Lys Lys Lys Lys Lys Lys, sintetiziran je i pročišćen prema metodi opisanoj u prethodnom primjeru. Ovaj je peptid izveden iz δ-toksina Staphylococcusa aureusa (SEQ ID NO:3) Met Ala Gln Asp Ile Ile Ser Thr Ile Gly Asp Leu Val Lys Trp Ile Ile Asp Thr Val Asn Lys Phe Thr Lys Lys, za koji se zna da posjeduje specifičnost za razaranje membrane kod kiselog pH (Thiaudiere i sur., 1991; Alouf i sur., 1989), proširenjem sa dodatnih 10 ostataka lizina The peptide sequence (SEQ ID NO:4) Met Ala Gln Asp Ile Ile Ser Thr Ile Gly Asp Leu Val Lys Trp Ile Ile Asp Thr Val Asn Lys Phe Thr Lys Lys Lys Lys Lys Lys Lys Lys Lys Lys Lys Lys, was synthesized and purified according to the method described in the previous example. This peptide is derived from Staphylococcus aureus δ-toxin (SEQ ID NO:3) Met Ala Gln Asp Ile Ile Ser Thr Ile Gly Asp Leu Val Lys Trp Ile Ile Asp Thr Val Asn Lys Phe Thr Lys Lys, which is known to possess specificity for membrane disruption at acidic pH (Thiaudiere et al., 1991; Alouf et al., 1989), by extension with an additional 10 lysine residues

DNA kompleksi su priređeni, najkasnije, miješanjem 6 µg pCMVL-DNA u 170 µl HBS sa 4 µg TfpL290 u 170 µl HBS, a zatim miješanjem sa približno 3 µg peptida u 170 µl HBS, nakon 30 minuta kod sobne temperature. Nakon inkubacije od daljnjih 30 minuta kompleksi se pomiješaju sa 1,5 ml DMEM + 2% FCS i dodaju k 450.000 BNL CL.2 hepatocita. Nakon 2 sata doda se 2 ml DMEM + 20% FCS. Žetva stanica 24 sata naon transfekcije te mjerenje aktivnosti luciferaze provodi se kao što je opisano u prethodnim primjerima. Aktivnost luciferaze koja odgovara ukupnom ekstraktu iznosila je 481.000 “light units”. DNA complexes were prepared, at the latest, by mixing 6 µg pCMVL-DNA in 170 µl HBS with 4 µg TfpL290 in 170 µl HBS, and then mixing with approximately 3 µg peptide in 170 µl HBS, after 30 minutes at room temperature. After incubation for a further 30 minutes, the complexes are mixed with 1.5 ml of DMEM + 2% FCS and added to 450,000 BNL CL.2 hepatocytes. After 2 hours, 2 ml of DMEM + 20% FCS is added. Harvesting of cells 24 hours after transfection and measurement of luciferase activity is carried out as described in the previous examples. The luciferase activity corresponding to the total extract was 481,000 light units.

Primjer 37 - Transfekcija hepatocita u prisutnosti melitin-peptida sa C-terminalnim oligo-Lys repom. Example 37 - Transfection of hepatocytes in the presence of melittin-peptide with a C-terminal oligo-Lys tail.

Peptidi niza (N do C kraj) (SEQ ID NO:12) Gly Ile Gly Ala Val Leu Lys Val Leu Thr Thr Gly Leu Pro Ala Leu Ile Ser Trp Ile Lys Arg Lys Arg Gln Gln Lys Lys Lys Lys Lys Lys Lys Lys Lys Lys (označen sa mel 1) Sequence peptides (N to C terminus) (SEQ ID NO:12) Gly Ile Gly Ala Val Leu Lys Val Leu Thr Thr Gly Leu Pro Ala Leu Ile Ser Trp Ile Lys Arg Lys Arg Gln Gln Lys Lys Lys Lys Lys Lys Lys Lys Lys Lys (marked with mel 1)

i (SEQ ID NO:13) Gly Ile Gly Ala Val Leu Glu Val Leu Glu Thr Gly Leu Pro Ala Leu Ile Serp Trp Ile Lys Arg Lys Ark Gln Gln Lys Lys Lys Lys Lys Lys Lys Lys Lys Lys (kiseli mutant, označen sa mel 2), sintetizirani kao što je opisano u primjeru 36. and (SEQ ID NO:13) Gly Ile Gly Ala Val Leu Glu Val Leu Glu Thr Gly Leu Pro Ala Leu Ile Serp Trp Ile Lys Arg Lys Ark Gln Gln Lys Lys Lys Lys Lys Lys Lys Lys Lys Lys (acidic mutant, indicated mel 2), synthesized as described in Example 36.

DNA kompleksi su priređeni, prvo, miješanjem 6 µg pCMVL-DNA u 170 µl HBS sa 4 µg TfpL290 u 170 µl HBS, a zatim miješanjem sa približno 3 µg peptida mel l ili 5 µg peptida mel 2 u 170 µl HBS, nakon 30 minuta, kompleksi se pomiješaju sa 1,5 ml DMEM + 2% FCS i dodaju u 450.000 BNL CL. 2 stanica, uzganih kao što je opisano u primjeru 36. Nakon 4 sata doda se 2 ml DMEM + 20% FCS. Žetva stanica, 24 h nakon transfekcije te testovi luciferaze, obavljeni su kao što je opisano. Aktivnost luciferaze, koja odgovara ukupnom ekstraktu, bila je 9200 “light units” (u slučaju mel l) i 9400 “light units” (u slučaju mel 2). DNA complexes were prepared, first, by mixing 6 µg pCMVL-DNA in 170 µl HBS with 4 µg TfpL290 in 170 µl HBS, and then mixing with approximately 3 µg peptide mel l or 5 µg peptide mel 2 in 170 µl HBS, after 30 minutes. , complexes are mixed with 1.5 ml DMEM + 2% FCS and added to 450,000 BNL CL. 2 cells, grown as described in example 36. After 4 hours, 2 ml of DMEM + 20% FCS are added. Cell harvest, 24 h after transfection and luciferase assays, were performed as described. The luciferase activity, corresponding to the total extract, was 9200 "light units" (in the case of mel l) and 9400 "light units" (in the case of mel 2).

Primjer 38 - Izražaj interferona alfa u HeLa stanicama. Example 38 - Expression of interferon alpha in HeLa cells.

HeLa stanice (5 x 105 stanica po posudici od 6 cm) su transficirane sa pAD-CMVl-IFN kodiranim humanim interferonom alfa2c, pod kontrlom CMV pojačala/promotora (opisanog u DE 40 21 917 A. pADCMV1-ifn je dobiven rekloniranjem HindIII-XbaI IFN-2c inserta u pADCNV1). Uzorci od 6 µg DNA u 330 µl HBS, pomiješaju se sa 8 µg TfpL u 330 µl HBS i ostavljeni su da se povežu, 30 minuta kod sobne temperature. Uzorci 6-10 sadržavali su samo 4 µg TfpL, a nakon prvih 30 minuta inkubacije dodan je alikvot od P16pL (20 µg) u 160 µl HBS u uzorke 6 i 7 te alikvot pLys 290 (20 µg) u uzorke 8 i 10. Nakon daljnjih 30 minuta inkubacije doda se alikvot od 160 µl HBS, koji je sadržavao 10 µl (uzorak 8) ili 50 µl (uzorci 9 i 10) slobodnog P16 (vidi primjer 13 za sintezu P16 i P16pL). Nakon dodatnih 30 minuta inkubacije uzorci se dodaju HeLa stanicama u 2 ml DMEM/2%FCS, u prisutnosti slijedećih dodatnih spojeva. Uzorci 2, 7 i 10 su sadržavali 100 µM klorokina, uzorak 3 i 4 sadržavao je 5 i 15 µl adenovirusa d1312, (1 x 1012 čestica/ml), uzorak 5 je sadržavao 15 µl istog virusa inaktiviranog psoralenom. Za kontrolu adenovirusne stimulacije produkcije endogenog interferona, uzorci 11, 12 i 13 obrađeni su sa alikvotima virusa jednakim uzorcima 3, 4 i 5). Dva sata nakon transfekcije doda se 5 ml svježeg DMEM + 10% FCS. 48 sati nakon transfekcije medij se ukloni i zamijeni sa 2 ml svježeg DMEM + 10% FCS. Ovaj se medij požanje 72 sata nakon transfekcije i obavi se ELISA analiza na interferon alfa, kao što je opisano u DE 40 21 017. Razine interferona alfa (u ng/ml) prikazane su na slici 51. TfpL je djelovao slabo na prijelaz IFN gena ovim stanicama, u suglasnosti sa prethodnim zapažanjima sa luciferazom ili β-gal reporter genima. Prisutnost klorokina je stvorila uočljivi signal (cca 7 ng/ml, uzorak 2), no adenovirus d1312 je stimulirao prijelaz DNA u mjeri ovisnoj o dozi (uzorci 3 i 4). Obrada ovih stanica sa uporedljivim količinama virusa, u odsutnosti IFN DNA kompleksa, nije dovela do primjetnog signala interferona (uzorci 11 i 12). HeLa cells (5 x 10 5 cells per 6 cm dish) were transfected with pAD-CMV1-IFN encoded by human interferon alfa2c, under the control of the CMV enhancer/promoter (described in DE 40 21 917 A. pADCMV1-IFN was obtained by HindIII-XbaI recloning IFN-2c insert in pADCNV1). Samples of 6 µg DNA in 330 µl HBS were mixed with 8 µg TfpL in 330 µl HBS and allowed to bind for 30 min at room temperature. Samples 6-10 contained only 4 µg of TfpL, and after the first 30 minutes of incubation, an aliquot of P16pL (20 µg) in 160 µl of HBS was added to samples 6 and 7 and an aliquot of pLys 290 (20 µg) to samples 8 and 10. After for a further 30 min of incubation, an aliquot of 160 µl of HBS was added, which contained 10 µl (sample 8) or 50 µl (samples 9 and 10) of free P16 (see example 13 for the synthesis of P16 and P16pL). After an additional 30 minutes of incubation, the samples are added to HeLa cells in 2 ml of DMEM/2%FCS, in the presence of the following additional compounds. Samples 2, 7 and 10 contained 100 µM chloroquine, sample 3 and 4 contained 5 and 15 µl of adenovirus d1312, (1 x 1012 particles/ml), sample 5 contained 15 µl of the same virus inactivated by psoralen. To control adenoviral stimulation of endogenous interferon production, samples 11, 12 and 13 were treated with virus aliquots equal to samples 3, 4 and 5). Two hours after transfection, 5 ml of fresh DMEM + 10% FCS was added. 48 hours after transfection, the medium is removed and replaced with 2 ml of fresh DMEM + 10% FCS. This medium was harvested 72 hours after transfection and an ELISA assay for interferon alpha was performed, as described in DE 40 21 017. Levels of interferon alpha (in ng/ml) are shown in Figure 51. TfpL had a weak effect on IFN gene switching these cells, in agreement with previous observations with luciferase or β-gal reporter genes. The presence of chloroquine produced a detectable signal (approx. 7 ng/ml, sample 2), but adenovirus d1312 stimulated DNA transfer in a dose-dependent manner (samples 3 and 4). Treatment of these cells with comparable amounts of virus, in the absence of the IFN DNA complex, did not result in a detectable interferon signal (samples 11 and 12).

Transfekcija sa sintetičkim, iz influence izvedenim endosomolitičkim peptidom P16 (vidi primjer 13), kao konjugatom (uzorak 6, 7) ili kao ionski povezanim peptidom na površinu TfpL/DNA kompleksa (uzorci 8, 9 i 1o; za vezanje peptida vidi primjer 35) stvorila je primjetne razine produkcije interferona, koja je povećana peptidnim konjugatom u prisutnosti koorokina (uzorak 7) Transfection with the synthetic, influenza-derived endosomolytic peptide P16 (see Example 13), as a conjugate (sample 6, 7) or as an ionically linked peptide to the surface of the TfpL/DNA complex (samples 8, 9 and 10; for peptide binding see Example 35) produced noticeable levels of interferon production, which was increased by the peptide conjugate in the presence of coorokine (sample 7)

Bibliography Bibliography

Abrahamson, D.R. et al., 1981, J.Cell Biol., 91 270-280 Abrahamson, D.R. et al., 1981, J.Cell Biol., 91 270-280

Akopian, T.A. et al., 1991, Nulc. Acids Res. 19, 424. Akopian, T.A. et al., 1991, Nulc. Acids Res. 19, 424.

Alouf J.E., Dufourcq J., Siffert O., Thiaudiere E. and Geoffroy Ch., 1989, Eur. J.Biochem. Alouf J.E., Dufourcq J., Siffert O., Thiaudiere E. and Geoffroy Ch., 1989, Eur. J. Biochem.

183, 381-390 183, 381-390

Anderson, P. et al., 1982, J.Biol. Chem., 157, 11301-11304. Anderson, P. et al., 1982, J. Biol. Chem., 157, 11301-11304.

Andrews N.W., Abrams C.K., Slatin S.L: and Grifiths G., 1990, Cell 61, 1277-87 Andrews N.W., Abrams C.K., Slatin S.L: and Grifiths G., 1990, Cell 61, 1277-87

Ansardi, D.C. et al., 1991, J.Virology 65, 2088-2092 Ansardi, D.C. et al., 1991, J. Virology 65, 2088-2092

Agriolas A. and Pisano J,.J. 1985, J.Biol. Chem. 260, 1437-1444. Agriolas A. and Pisano J,.J. 1985, J. Biol. Chem. 260, 1437-1444.

Armentano, D., Yu, S., Kantoff, P., von Rüden, T., Anderson, W.F. and Gilboa, E., 1987, J. Virol. 61, 1647-1650. Armentano, D., Yu, S., Kantoff, P., von Rüden, T., Anderson, W.F. and Gilboa, E., 1987, J. Virol. 61, 1647-1650.

Armentano, D. et. al., 1990, Proc. Natl. Acad. Sci. USA, 87, 6141-6145. Armentano, D. et al. al., 1990, Proc. Natl. Acad. Sci. USA, 87, 6141-6145.

Asada-Kubota, M. et al., 1983, Exp. Pathol., 23, 95-101. Asada-Kubota, M. et al., 1983, Exp. Pathol., 23, 95-101.

Ascoli, M.. et al., 1987, J. Biol. Chem., 253, 7832-7838. Ascoli, M.. et al., 1987, J. Biol. Chem., 253, 7832-7838.

Ashwell, G. et al., 1982, Annu. Rev. Biochem., 51, 531*554. Ashwell, G. et al., 1982, Annu. Rev. Biochem., 51, 531*554.

Atherton, E., Gait, M.J., Sheppard, R.C. and Williams, B.J., 1979, Bioorg. Chem. 8 351. Atherton, E., Gait, M.J., Sheppard, R.C. and Williams, B.J., 1979, Bioorg. Chem. 8 351.

Barr, E. and Leiden, J., 1991, Science 154, 1507-1509. Barr, E. and Leiden, J., 1991, Science 154, 1507-1509.

Bartlett, G.R., 1959, J. Biol. Chem. 234, 466. Bartlett, G.R., 1959, J. Biol. Chem. 234, 466.

Berkner, K.L., 1988, BioTechniques 6, 616-629. Berkner, K.L., 1988, BioTechniques 6, 616-629.

Berns, K.I., 1990, Viroloy, 2nd Edition, Ed. by Fields, B.N., Kipe, D.M. et al., Raven Press Ltd., New York, 1743-1759. Berns, K.I., 1990, Viroloy, 2nd Edition, Ed. by Fields, B.N., Kipe, D.M. et al., Raven Press Ltd., New York, 1743-1759.

Bhakdi S. and Tranum-Jensen J., 1991, Immunology today 12, 318-320. Bhakdi S. and Tranum-Jensen J., 1991, Immunology today 12, 318-320.

Blau, H. et al., 1985, Science 230, 758-766. Blau, H. et al., 1985, Science 230, 758-766.

Blobel C.P. Wolfsberg T.G., Turuck C.W., Myles D.G., Primakoff P. and White J.M., 1992, Nature 356, 248-252. Blobel C.P. Wolfsberg T.G., Turuck C.W., Myles D.G., Primakoff P. and White J.M., 1992, Nature 356, 248-252.

Blondalle S.E. and Houghten R.A., 1991, Biochemistry 30, 4671-4678. Blondalle S.E. and Houghten R.A., 1991, Biochemistry 30, 4671-4678.

Bondeson, J., Wijkande, J. and Sundler, R. 1984, Biochim. Biophys. Acta 777, 21-27. Bondeson, J., Wijkande, J. and Sundler, R. 1984, Biochim. Biophys. Acta 777, 21-27.

Boulanger, P.A. and Puvion, F., 1973, Eur. J. Biochem. 39, 309-310. Boulanger, P.A. and Puvion, F., 1973, Eur. J. Biochem. 39, 309-310.

Carpenter, G., 1984, Cell, 37, 357-358. Carpenter, G., 1984, Cell, 37, 357-358.

Charonnet, Y. and Dales, S., 1970. Viology 40, 462-477. Charonnet, Y. and Dales, S., 1970. Viology 40, 462-477.

Cheng, S-Y. et al., 1980, Proc. Natl. Acad. Sci. USA, 77, 3425-3429. Cheng, S-Y. et al., 1980, Proc. Natl. Acad. Sci. USA, 77, 3425-3429.

Ciliberto, G. Dente, L., Cortese, R., 1985,Cell 41, 531-540. Ciliberto, G. Dente, L., Cortese, R., 1985, Cell 41, 531-540.

Clarke, D.D., Mycek, M.J., Neidle, A. and Waelsch, H., 1959, Arch. Biochem. Biphys. 79, 338-354. Clarke, D.D., Mycek, M.J., Neidle, A. and Waelsch, H., 1959, Arch. Biochem. Biphys. 79, 338-354.

Collis, P., Antonou, M. and Grosveld, F., 199, EMBO J. 9, 233-240. Collis, P., Antonou, M. and Grosveld, F., 199, EMBO J. 9, 233-240.

Cotten, M., Laengle-Rouault, F., Kirlappos., H., Wagner, E., Mechtler, K., Zenke, M., Beug, H., and Birnstiel, M.L., 1990, proc.Natl.Acad.Sci. USA 87, 4033-4037. Cotten, M., Laengle-Rouault, F., Kirlappos., H., Wagner, E., Mechtler, K., Zenke, M., Beug, H., and Birnstiel, M.L., 1990, proc.Natl.Acad .Sci. USA 87, 4033-4037.

Davidson, D. and Hassell, J.A. 1987, J. Virol. 61, 1226-1239. Davidson, D. and Hassell, J.A. 1987, J. Virol. 61, 1226-1239.

Davis, B.D. and Dulbecco, R., 1980, Microbiology, 3rd Edition, Ed. by Davis, B.D. et al., Harper & Row, Sterilization and Disingection, 1263-1274. Davis, B.D. and Dulbecco, R., 1980, Microbiology, 3rd Edition, Ed. by Davis, B.D. et al., Harper & Row, Sterilization and Disinfection, 1263-1274.

Defer, C., Belin, M., Caillet-Boudin, M. and Boulanger P., 1990, J.Virol. 64, 3661-3673. Defer, C., Belin, M., Caillet-Boudin, M. and Boulanger P., 1990, J. Virol. 64, 3661-3673.

Dempsey C.E., Bazzo R., Harvey T.S., Syperek I., Boheim G. and Campbell I.D., 1991, FEBS Lett. 281, 240-244. Dempsey C.E., Bazzo R., Harvey T.S., Syperek I., Boheim G. and Campbell I.D., 1991, FEBS Lett. 281, 240-244.

De Wet, J., Wood, K., DeLuca, M., Helinski, D., and Subramani, S., 1987, Mol. Cell. Biol. 7, 725-737. De Wet, J., Wood, K., DeLuca, M., Helinski, D., and Subramani, S., 1987, Mol. Cell. Biol. 7, 725-737.

Dhawan, J., et al., 1991, Science 154, 1509-1512. Dhawan, J., et al., 1991, Science 154, 1509-1512.

Donti, E., et al., 1988, Cancer Genet. Cytogenet. 30,225-231. Donti, E., et al., 1988, Cancer Genet. Cytogenet. 30,225-231.

Dulbecco, R., 1980, Microbiology, 3rd Edition, Ed. by Davis, B.D. et al., Harper & Row, The Nature of Viruses, 853-884. Dulbecco, R., 1980, Microbiology, 3rd Edition, Ed. by Davis, B.D. et al., Harper & Row, The Nature of Viruses, 853-884.

Eaton, D.L. et al., 1986, Biochemistry 25, 8343-8347. Eaton, D.L. et al., 1986, Biochemistry 25, 8343-8347.

Esser A.F., 1991, Immunology today 12, 316-318. Esser A.F., 1991, Immunology today 12, 316-318.

Fields, B.N. and Knipe, D.M., 1990, Virology 2nd edition, Raven Press, Ltd., New York. Fields, B.N. and Knipe, D.M., 1990, Virology 2nd edition, Raven Press, Ltd., New York.

FitzGerald, D., Padmanabhan, R., Pastan, I. and Willingham, M., 1983, Cell 32, 607-617 FitzGerald, D., Padmanabhan, R., Pastan, I. and Willingham, M., 1983, Cell 32, 607-617

Folk, J.E., 1985, Methods Enzymol. 113, 358-375. Folk, J.E., 1985, Methods Enzymol. 113, 358-375.

Franchini G., 1989, Science 244, 694-697. Franchini G., 1989, Science 244, 694-697.

Fricks C.E. and Hogle J.M., 1990, J. Virol. 64, 1934-1945. Fricks C.E. and Hogle J.M., 1990, J. Virol. 64, 1934-1945.

Fujiwara et al., 1981, J.Immunol. Meth. 45, 195. Fujiwara et al., 1981, J. Immunol. Meth. 45, 195.

Geoffroy C., Gaillard J._l., Alouf J.E. and Berche P., 1987, Infection and Immunity 55, 1641-1646 Geoffroy C., Gaillard J._l., Alouf J.E. and Berche P., 1987, Infection and Immunity 55, 1641-1646

Gething M.J., White J.M. and Waterfield M.D., 1978, Proc. Natl. Acad. Sci. USA 75, 2737-2740. Gething M.J., White J.M. and Waterfield M.D., 1978, Proc. Natl. Acad. Sci. USA 75, 2737-2740.

Gonseberg, H.S., 1980, Microbiology, 3rd Edition, Ed. by Davis, B.D. et el., Harper & Row, Picornaviruses, 1095-1117. Gonseberg, H.S., 1980, Microbiology, 3rd Edition, Ed. by Davis, B.D. et al., Harper & Row, Picornaviruses, 1095-1117.

Goldmacher,V.S., Blättler, W.A., Lambert, J.M., McIntyre, G. and Steward, J., 1989, Molecular Pharmacology 36, 818-822. Goldmacher, V.S., Blättler, W.A., Lambert, J.M., McIntyre, G. and Steward, J., 1989, Molecular Pharmacology 36, 818-822.

Goldstein, J.L., et al., 1982, Clin.Res., 30, 417-426. Goldstein, J.L., et al., 1982, Clin.Res., 30, 417-426.

Goldstein, J.L., et al., 1989, Proc. Natl Acad. Sci. USA, 76, 333-337. Goldstein, J.L., et al., 1989, Proc. Natl Acad. Sci. USA, 76, 333-337.

Goldstein, J.L., et al., 1980, Nature 285, 66 Goldstein, J.L., et al., 1980, Nature 285, 66

Gong S., Lai C. and Esteban M., 1990, Virology 178, 81-91. Gong S., Lai C. and Esteban M., 1990, Virology 178, 81-91.

Green, M et al., 1989, Cell 59, 215-223. Green, M et al., 1989, Cell 59, 215-223.

Hearst, J.E. and Thiry, L., 1977, Nucl. Acids Res. 4, 1339-1347. Hearst, J.E. and Thiry, L., 1977, Nucl. Acids Res. 4, 1339-1347.

Heldin, C-H. et. al., 1982, J. Biol. Chem., 257, 4216-4221. Heldin, C-H. etc. al., 1982, J. Biol. Chem., 257, 4216-4221.

Herskowitz, I., 1987, Nature 329, 219. Herskowitz, I., 1987, Nature 329, 219.

Hizuka, N. et al., 1981, J. Biol. Chem., 256, 4591-4597. Hizuka, N. et al., 1981, J. Biol. Chem., 256, 4591-4597.

Hoekstra D., 1990, J. Bioenerg. Biomembr. 22, 121-155. Hoekstra D., 1990, J. Bioenerg. Biomembr. 22, 121-155.

Holland, J.J., 1990. Virology, 2nd Edition, Ed. by Fields, B.N., Knipe, D.M., et al., Raven Press Ltd., Nwe York, Defective Viral Genomes, 151-165. Holland, J.J., 1990. Virology, 2nd Edition, Ed. by Fields, B.N., Knipe, D.M., et al., Raven Press Ltd., New York, Defective Viral Genomes, 151-165.

Horvath, J. et al., 1988, J. Virol. 62, 341-345. Horvath, J. et al., 1988, J. Virol. 62, 341-345.

Horwitz, M.S., 1990, Virology, 2nd Edition, Ed. by Fields, B.N., Knipe, D.M. et el., Raven Press Ltd., New York, Adenoviridae and their Replication, 1679-1721. Horwitz, M.S., 1990, Virology, 2nd Edition, Ed. by Fields, B.N., Knipe, D.M. et al., Raven Press Ltd., New York, Adenoviridae and their Replication, 1679-1721.

Hosang, M. et al., 1987, EMBO J., 6, 1197-1202. Hosang, M. et al., 1987, EMBO J., 6, 1197-1202.

Huang, A.S., 1987, The Molecular Basis of Viral Replication, Ed. by Bercoff, R.P., Plenum Press New York and London, The Role of Defective Interfering (DI) Particles in Viral Infection, 191-194. Huang, A.S., 1987, The Molecular Basis of Viral Replication, Ed. by Bercoff, R.P., Plenum Press New York and London, The Role of Defective Interfering (DI) Particles in Viral Infection, 191-194.

Ikura T., Go N. and Inagaki F., 1991, Proteins 9, 81-89. Ikura T., Go N. and Inagaki F., 1991, Proteins 9, 81-89.

Imamura, K. et al., 1987, J.Immunol., 139, 2989-2992. Imamura, K. et al., 1987, J. Immunol., 139, 2989-2992.

Iwanij, V., 1977, Eur. J. Biochem. 80, 359-368. Iwanij, V., 1977, Eur. J. Biochem. 80, 359-368.

Jones, N. and Shenk, T., 1979, Proc. Natl. Adac. Sci. USA 76, 3665-3669. Jones, N. and Shenk, T., 1979, Proc. Natl. Adac. Sci. USA 76, 3665-3669.

Jung et el., 1981, Biochem. Res. Commun. 104, 599. Jung et al., 1981, Biochem. Crisp. Commun. 104, 599.

Kaplan, J. et al., 1979, J. Biol. Chem., 254, 7323-7328. Kaplan, J. et al., 1979, J. Biol. Chem., 254, 7323-7328.

Kasid, A., Morecki, S., Aebersold, P., Cornetta, K., Culver, K., Freeman, ., Director, E., Lotze, M.T., Blaese, R.M., Anderson, W.F. and Rosenberg, S.A., 1990, Proc. Natl. Acad. Sci. UsA 87, 473-477. Kasid, A., Morecki, S., Aebersold, P., Cornetta, K., Culver, K., Freeman, ., Director, E., Lotze, M.T., Blaese, R.M., Anderson, W.F. and Rosenberg, S.A., 1990, Proc. Natl. Acad. Sci. UsA 87, 473-477.

Kehoe M.A., Miller L., Walker J.A. and Boulnois G. J., 1987, Infect. Immun. 55, 3228-3232. Kehoe MA, Miller L, Walker JA. and Boulnois G. J., 1987, Infect. Immun. 55, 3228-3232.

Keller, G., Paige, C., Gilboa, E. and Wagner, E.F., 1985, G., Nature 318, 149-154. Keller, G., Paige, C., Gilboa, E. and Wagner, E.F., 1985, G., Nature 318, 149-154.

Khang, C. and Nagaraji. K.V., 1989, Am. J. Vet. Res. 50, 1466-1470. Khang, C. and Nagaraji. K.V., 1989, Am. J. Vet. Crisp. 50, 1466-1470.

Klausner, R.D. et. al., 1983, J.Biol. Chem., 258, 4715-4724. Klausner, R.D. etc. al., 1983, J. Biol. Chem., 258, 4715-4724.

Klausner, R.D. et al., 1983, Proc. Natl. Acad. Sci. USA 80, 2263-2266. Klausner, R.D. et al., 1983, Proc. Natl. Acad. Sci. USA 80, 2263-2266.

Kuhn, L.C. et al., 1982, Trends Biochem, Sci., 7, 299-302. Kuhn, L.C. et al., 1982, Trends Biochem, Sci., 7, 299-302.

Kurachi, K., Davie, E.W., 1982, Proc. Natl. Acad. Sci USA 79, 6461-6464. Kurachi, K., Davie, E.W., 1982, Proc. Natl. Acad. Sci USA 79, 6461-6464.

Laver, W.G. et al., 1971, Virology 45, 598-614. Laver, W.G. et al., 1971, Virology 45, 598-614.

Lehrer R.I., Ganz T. and Selsted M.E., 1991, Cell 64, 229-230. Lehrer R.I., Ganz T. and Selsted M.E., 1991, Cell 64, 229-230.

Leippe M., Ebel S., Schoenberger O.L., Horstmann R.D. and Müller-Eberhard H.J., 1991, Proc. Natl. Acad. Sci. USA 88, 7659-7663. Leippe M., Ebel S., Schoenberger O.L., Horstmann R.D. and Müller-Eberhard H.J., 1991, Proc. Natl. Acad. Sci. USA 88, 7659-7663.

Lim K. and Chae, C.B., 1989, BioTechniques 7, 576-579. Lim K. and Chae, C.B., 1989, BioTechniques 7, 576-579.

Luthmann, H. and Magnusson, G., 1983, Nucl. Acids Res. 11, 1295-1308. Luthmann, H. and Magnusson, G., 1983, Nucl. Acids Res. 11, 1295-1308.

MacDonald, R.C. et al., 1991, Biochim, Biophys, Acta 1061, 297-303. MacDonald, R.C. et al., 1991, Biochim, Biophys, Acta 1061, 297-303.

Macgregor, G. and Caskey, C.T., 1989, Mucl. Acids Res. 17, 2365. Macgregor, G. and Caskey, C.T., 1989, Mucl. Acids Res. 17, 2365.

Mackow E.R., Shaw R.D., Matsui S.M., Vo P.T., Dang M.N. and Greenberg H.B., 1988, Proc. Natl. Avad. Sci. USA 85, 645-649. Mackow ER, Shaw RD, Matsui SM, Vo PT, Dang MN. and Greenberg H.B., 1988, Proc. Natl. Avad. Sci. USA 85, 645-649.

Madsus, I.H., Olsens, S. and Sandvig, K., 1984, Virology 139, 346-357. Madsus, I.H., Olsens, S. and Sandvig, K., 1984, Virology 139, 346-357.

Malim, M. et al., 1989, Cell 58, 205-214. Malim, M. et al., 1989, Cell 58, 205-214.

Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982) Molecular Cloning A. Laboratory Manual. Cold Spring Harbor Laboratory, 474. Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982) Molecular Cloning A. Laboratory Manual. Cold Spring Harbor Laboratory, 474.

Marion D., Zasloff M. and Box A., 1988, FEB 227, 21. Marion D., Zasloff M. and Box A., 1988, FEB 227, 21.

Marshall, S., 1985, J Biol. Chem., 250, 4133-4144. Marshall, S., 1985, J Biol. Chem., 250, 4133-4144.

Massague, J. et al., 1986, J. Cell. Physiol., 128, 216-222. Massague, J. et al., 1986, J. Cell. Physiol., 128, 216-222.

McClure, M.O., Sommerfelt, M.A., Marsh, M. and Weiss, R.A., 1990, J. General Virol. 71, 767-773. McClure, M.O., Sommerfelt, M.A., Marsh, M. and Weiss, R.A., 1990, J. Gen. Virol. 71, 767-773.

Mellman, I.S. et al., 1984. J. Cell Biol., 98, 1170-1177. Mellman, I.S. et al., 1984. J. Cell Biol., 98, 1170-1177.

Mizel, S.B., et al., 1987, 1987, J. Immunol., 138, 2906-2912. Mizel, S.B., et al., 1987, 1987, J. Immunol., 138, 2906-2912.

Ojcius D.M. and Young J.D., 1991, TIBS 16, 225-229. Ojcius D.M. and Young J.D., 1991, TIBS 16, 225-229.

Oropeza-Werkerle R.L., Muller S., Briand J.P., Benz R., Schmid A. and Goebel W., 1992, Mol. Microbiol. 6, 115-121. Oropeza-Werkerle R.L., Muller S., Briand J.P., Benz R., Schmid A. and Goebel W., 1992, Mol. Microbiol. 6, 115-121.

Otero, M.J. and Carrasco, L., 1987, Virology 160, 75-80. Otero, M.J. and Carrasco, L., 1987, Virology 160, 75-80.

Perente, R.A. et al., 1990, Biochemistry 29, 8720-8728. Perente, R.A. et al., 1990, Biochemistry 29, 8720-8728.

Petek, P.Q., Collins, J.L. and Cohn, M. 1978, Nature 276, 510-511.Ponder, J.P. et al., Proc. Natl. Acad, Sci,. USA, 1991, 88, 1217-1221. Petek, P.Q., Collins, J.L. and Cohn, M. 1978, Nature 276, 510-511. Ponder, J.P. et al., Proc. Natl. Acad, Sci,. USA, 1991, 88, 1217-1221.

Posner, B.I. et al., 1982, J. Cell Biol., 93, 560-567. Posner, B.I. et al., 1982, J. Cell Biol., 93, 560-567.

Precious, B. and Russell, W.C., 1985, Virology, ed. Mahy, B.W.J., IRL Press, Oxford, Washington, DC, 193-205. Precious, B. and Russell, W.C., 1985, Virology, ed. Mahy, B.W.J., IRL Press, Oxford, Washington, DC, 193-205.

Rfačslo, M., Lear, J.D. and DeGrado, W.F., 1990, Biochemistry 29, 7917-7922. Rfačslo, M., Lear, J.D. and DeGrado, W.F., 1990, Biochemistry 29, 7917-7922.

Reece, R.L., et al., 1987, Aust. Ver. J. 64, 365-367. Reece, R.L., et al., 1987, Aust. Ver. J. 64, 365-367.

Riordan, J.R., et al., 1989, Science, 245, 1066-1073. Riordan, J.R., et al., 1989, Science, 245, 1066-1073.

Rosenberg, St.A. et al., 1992, Human Gene Therapy 3, 75-90. Rosenberg, St.A. et al., 1992, Human Gene Therapy 3, 75-90.

Ruysschaert J.M., and Vandenbranden M., 1991, Biochem. Biophys. Res. Commun. 175, 872-879. Ruysschaert J.M., and Vandenbranden M., 1991, Biochem. Biophys. Crisp. Commun. 175, 872-879.

Schalch, D.S. et al., 1986, Endocrinology, 118, 1590-1597. Schalch, D.S. et al., 1986, Endocrinology, 118, 1590-1597.

Sennett, C. et al., 1981, Annu. Rev. Biochem., 50, 1053-1086. Sennett, C. et al., 1981, Annu. Rev. Biochem., 50, 1053-1086.

Seth, P., FitzGerald, D., Ginsberg, H., Willingham, M. and Pastan, I., 1984, Mol. Cell. Biol. 4, 1528-1533. Seth, P., FitzGerald, D., Ginsberg, H., Willingham, M. and Pastan, I., 1984, Mol. Cell. Biol. 4, 1528-1533.

Severne, Y., Wieland, S., Schaffner, W. and Rusconi, S., 1988, EMBO J. 7, 2503-2508. Severne, Y., Wieland, S., Schaffner, W. and Rusconi, S., 1988, EMBO J. 7, 2503-2508.

Shai Y., Bach D. and Yanovsky A., 1990, JBS 265, 20202-20209. Shai Y., Bach D. and Yanovsky A., 1990, JBS 265, 20202-20209.

Sharon, N., 1987, Cell Separation: Methods and Selected Applications, Vol. 5, Academic Press Inc., pp.13-44. Sharon, N., 1987, Cell Separation: Methods and Selected Applications, Vol. 5, Academic Press Inc., pp. 13-44.

Silver, L. et al., 1988, Virology 165, 377-387. Silver, L. et al., 1988, Virology 165, 377-387.

Sipe, D.M. et al., 1991, J. Biol. Chem. 256, 3469-3474. Cuttlefish, D.M. et al., 1991, J. Biol. Chem. 256, 3469-3474.

Skern, T. et al., 1984, Virology 136, 125-132. Skern, T. et al., 1984, Virology 136, 125-132.

Slepushkin V.A., Andreev S.M., Siderova M.V., Melikyan G.B., Grigoriev V.B., Chumakov V.M., Gringeldt A.E., Manukyan R.A. and Karamov E.V., 1992, AIDS Res. Human Retroviruses 8, 9-18. Slepushkin V.A., Andreev S.M., Siderova M.V., Melikyan G.B., Grigoriev V.B., Chumakov V.M., Gringeldt A.E., Manukyan R.A. and Karamov E.V., 1992, AIDS Res. Human Retroviruses 8, 9-18.

Sly, W. et al., 1982, J. Cell Biochem., 18, 67-85. Sly, W. et al., 1982, J. Cell Biochem., 18, 67-85.

Smith, K.A. et al., 1985, Proc. Natl. Acad. Sci. USA, 82, 864-867. Smith, K.A. et al., 1985, Proc. Natl. Acad. Sci. USA, 82, 864-867.

Stahl, P.D. et al., 1978, Proc. Natl. Acad. Sci. USA, 75, 1399-1403. Stahl, P.D. et al., 1978, Proc. Natl. Acad. Sci. USA, 75, 1399-1403.

Straubinger, R.M. and Papahadjopoulos, D., 1983, Meth. Enz\mol. 101, 512-527. Straubinger, R.M. and Papahadjopoulos, D., 1983, Meth. Enz\mol. 101, 512-527.

Strauss W. and Jaenisch, R., 1992, EMBO J. 11, 417-422. Strauss W. and Jaenisch, R., 1992, EMBO J. 11, 417-422.

Subbarao, N.K. et al., 1987, Biochemistry 26, 2964-2972. Subbarao, N.K. et al., 1987, Biochemistry 26, 2964-2972.

Sillenger, B.A:, et al., 1990, Cell 63, 601-608. Sillenger, B.A:, et al., 1990, Cell 63, 601-608.

Svensson, U., 1985, J. Virol., 55, 442-449. Svensson, U., 1985, J. Virol., 55, 442-449.

Szoka, F. and Papahadjopoulos, D., 1978, Proc. Natl. Acad. Sci. USA 75, 4194-4198. Szoka, F. and Papahadjopoulos, D., 1978, Proc. Natl. Acad. Sci. USA 75, 4194-4198.

Takahashi S., 1990, Biochemistry 29, 6257-6264. Takahashi S., 1990, Biochemistry 29, 6257-6264.

Takese, K. et al., 1990, Nippon Juigaki Zasshi 52, 207-215. Takese, K. et al., 1990, Nippon Juigaki Zasshi 52, 207-215.

Thiaudiere E., Siffert O., Talbot J.-C., Bolard J., Alouf J.E. and Dufourcq J., 1991, Eur. J. Biochem. 195, 203-213. Thiaudiere E., Siffert O., Talbot J.-C., Bolard J., Alouf J.E. and Dufourcq J., 1991, Eur. J. Biochem. 195, 203-213.

Trono, D. et al., 1989, Cell 59, 113-120. Trono, D. et al., 1989, Cell 59, 113-120.

Uchida, Y., Tsujada, U. and Sugimori, T., 1977, J. Biochem. 82, 1425-1433. Uchida, Y., Tsujada, U. and Sugimori, T., 1977, J. Biochem. 82, 1425-1433.

Urakawa, T., et al., 1989, J. Gen. Virol. 70m 1453-1463. Urakawa, T., et al., 1989, J. Gen. Virol. 70m 1453-1463.

Valerio, D., McIvor, R.S., Williams, S.R., Duyvesteyn, M.G.C., Van Ormondt, H., Van der Eb., A.J., Martin, D.W. Jr, 1984, Gene, 31, 147-153. Valerio, D., McIvor, R.S., Williams, S.R., Duyvesteyn, M.G.C., Van Ormondt, H., Van der Eb., A.J., Martin, D.W. Jr, 1984, Gene, 31, 147-153.

van Oostrum, J. and Nurnett, R.M., 1985, J. Virol, 56, 439-448. van Oostrum, J. and Nurnett, R.M., 1985, J. Virol, 56, 439-448.

Wagner, E., Zenke, M., Cotten, M., Beug, H. and Birnstiel, M.L., 1990, Proc. Natl. Acad. Sci. USA 87, 3410-3414. Wagner, E., Zenke, M., Cotten, M., Beug, H. and Birnstiel, M.L., 1990, Proc. Natl. Acad. Sci. USA 87, 3410-3414.

Wagner, E., Cotten, M., Foisner, R. and Birnstiel, M.L., 1991a, Proc. Natl. Acad. Sci. USA 88, 4255-4259. Wagner, E., Cotten, M., Foisner, R. and Birnstiel, M.L., 1991a, Proc. Natl. Acad. Sci. USA 88, 4255-4259.

Wagner, E., Cottn, M., Mechtler, K., Kirlappos, H. and Birnstiel, M.L., 1991b, Bioconjugate Chemistry 2, 226-231. Wagner, E., Cottn, M., Mechtler, K., Kirlappos, H. and Birnstiel, M.L., 1991b, Bioconjugate Chemistry 2, 226-231.

Walker, F. et al., 1987, J. Cell Physiol, 130, 255-261. Walker, F. et al., 1987, J. Cell Physiol, 130, 255-261.

Walker, R.D. et al., 1989, Proc. Natl. Acad. Sci. USA 86, 9514-9518. Walker, R.D. et al., 1989, Proc. Natl. Acad. Sci. USA 86, 9514-9518.

Wharton, S.A., Martin, S.R., Ruigrok, R.W.H., Shehel, J.J. and Wiley, D.C., 1988, J. Gen. Virol. 69, 1847-1857. Wharton, S.A., Martin, S.R., Ruigrok, R.W.H., Shehel, J.J. and Wiley, D.C., 1988, J. Gen. Virol. 69, 1847-1857.

White J.M., 1990, Annu. Rev. Physiol 52, 675-697. White J.M., 1990, Annu. Rev. Physiol 52, 675-697.

Wilchek, M. et al., 1988, Anal. Biochem. 171, 1. Wilchek, M. et al., 1988, Anal. Biochem. 171, 1.

Wilson, J.M., Danos, O., Grossman, M., Raulet, D.H. and Mulligan, R.C., 1990, Proc. Atl. Acad. Sci. USA 87, 439-443. Wilson, J.M., Danos, O., Grossman, M., Raulet, D.H. and Mulligan, R.C., 1990, Proc. Atl. Acad. Sci. USA 87, 439-443.

Willumsen, N.J., Davis, C.W. and Boucher, R.C., 1989, Am. J. Physiol. 256 (Cell Physiol. 25), 1033-1044. Willumsen, N.J., Davis, C.W. and Boucher, R.C., 1989, Am. J. Physiol. 256 (Cell Physiol. 25), 1033-1044.

Wood, W.I., Capon, D.J., Simonsen, SC.C., Eaton, D.L., Gitschier, J., Keyt, B., Seeurg, P.H., Smith, D.H., Hollishead, P., Wion, K.L., Delwart, E., Tuddenham, E.G.D., Vehar, G.A:, Lawn, R.M., 1984, Nature, 312, 330-337. Wood, W.I., Capon, D.J., Simonsen, SC.C., Eaton, D.L., Gitschier, J., Keyt, B., Seeurg, P.H., Smith, D.H., Hollishead, P., Wion, K.L., Delwart, E. , Tuddenham, E.G.D., Vehar, G.A:, Lawn, R.M., 1984, Nature, 312, 330-337.

Wu, R., Yankaskas, J.R., Cheng, E., Knowles, M.R. and Boucher, R., 1985, Am, Rev. Respir. Dis. 132, 311-320. Wu, R., Yankaskas, J.R., Cheng, E., Knowles, M.R. and Boucher, R., 1985, Am, Rev. Breathe. Dis. 132, 311-320.

Wu, G.Y. and Wu, C.H., 1987, J. Biol. Chem. 262, 44429-4432. Wu, G.Y. and Wu, C.H., 1987, J. Biol. Chem. 262, 44429-4432.

Wu, G.Y. and Wu, C.H., 1988, J. iol. Chem. 263, 14621-14624. Wu, G.Y. and Wu, C.H., 1988, J. iol. Chem. 263, 14621-14624.

Yankaskas, J.R., Stutts, M.J., Cotton, C,U., Knowles, M.R., Gatzy, J.T. and Boucher, R.C., 1987, Genetics and Epithelial Cell Dysfunction in Cystic Fibrosis, Alan R. Liss, Inc., pp. 139-149. Yankaskas, J.R., Stutts, M.J., Cotton, C,U., Knowles, M.R., Gatzy, J.T. and Boucher, R.C., 1987, Genetics and Epithelial Cell Dysfunction in Cystic Fibrosis, Alan R. Liss, Inc., pp. 139-149.

Yankaskas, J.R., Haizlip, J.E., Conrad, M., Koval, D., Schlegel, R. and Boucher, R.C., 1991, Am. Rev. Respir. Dis. 143, A139. Yankaskas, J.R., Haizlip, J.E., Conrad, M., Koval, D., Schlegel, R. and Boucher, R.C., 1991, Am. Rev. Breathe. Dis. 143, A139.

Zamecnik, P.C., Goodchild, J., Taguchi, Y. and Sarion, P.S., 1986, Proc. Natl. Acad. Sci.USA 83, 4143-4146. Zamecnik, P.C., Goodchild, J., Taguchi, Y. and Sarion, P.S., 1986, Proc. Natl. Acad. Sci. USA 83, 4143-4146.

Zatloukal, K., Denk, H., Lackinger, E. and Rainer, I., 1989., Lab. Invest. 61, 603-608. Zatloukal, K., Denk, H., Lackinger, E. and Rainer, I., 1989, Lab. Invest. 61, 603-608.

Zenke, M., Steinlein, P., Wagner, E., Cotten, M., Beug, H. and Birnstiel, M.L., 1990. Proc. Natl. Acad. Sci. USA 87, 3655-3659. Zenke, M., Steinlein, P., Wagner, E., Cotten, M., Beug, H. and Birnstiel, M.L., 1990. Proc. Natl. Acad. Sci. USA 87, 3655-3659.

Zon, G., 1988, Pharmaceut. Research 5, No.9, 539-549. Zon, G., 1988, Pharmaceut. Research 5, No. 9, 539-549.

SEQUENCE LISTING SEQUENCE LISTING

(I GNERAL INFORMATION: (AND GENERAL INFORMATION:

(ii) TITLE OF INVENTION: Composition for introducing nucleic acid complexes intro higher eucaryotic colls (ii) TITLE OF INVENTION: Composition for introducing nucleic acid complexes intro higher eukaryotic colls

(iii) NUMBER OF SEQUENCES: 13 (iii) NUMBER OF SEQUENCES: 13

(iv) COMPUTER READABLE FORM: (iv) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk (A) MEDIUM TYPE: Floppy disk

(B) COMPUTER: IBM PC compatible (B) COMPUTER: IBM PC compatible

(C) OPERATING SYSTEM: PC-DOS/MS-DOS (C) OPERATING SYSTEM: PC-DOS/MS-DOS

(D) SOFTWARE: Patentin Release #1.0. Version #1.25 (EPO) (D) SOFTWARE: Patentin Release #1.0. Version #1.25 (EPO)

(2) INFORMATION FOR SEQ ID NO:1: (2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 23 amino acids (A) LENGTH: 23 amino acids

(B) TYPE: amino acid (B) TYPE: amino acid

(C) STANDEDNESS: single (C) STANDEDNESS: single

(D) TOPOLOGY: both (D) TOPOLOGY: both

(ii) MOLECULE TYPE: peptide (ii) MOLECULE TYPE: peptides

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Gly Leu Phe Glu Ala Ile Ala Gly Phe Ile Glu Asn Gly Trp Glu Gly Gly Leu Phe Glu Ala Ile Ala Gly Phe Ile Glu Asn Gly Trp Glu Gly

1 5 10 15 1 5 10 15

Met Ile Asp Gly Gly Gly Cys Met Ile Asp Gly Gly Gly Cys

20 20

(2) INFORMATION FOR SEQ ID NO: 2: (2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 23 amino acids (A) LENGTH: 23 amino acids

(B) TYPE: amino acid (B) TYPE: amino acid

(C) STANDEDNESS: single (C) STANDEDNESS: single

(D) TOPOLOGY: both (D) TOPOLOGY: both

(ii) MOLECULE TYPE: peptide (ii) MOLECULE TYPE: peptides

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Gly Leu Phe Glu Ala Ile Ala Gly Phe Ile Glu Asn Gly Trp Glu Gly Gly Leu Phe Glu Ala Ile Ala Gly Phe Ile Glu Asn Gly Trp Glu Gly

1 5 10 15 1 5 10 15

Met Ile Asp Gly Gly Gly Cys Met Ile Asp Gly Gly Gly Cys

20 20

(2) INFORMATION FOR SEQ ID NO: 3: (2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 26 amino acids (A) LENGTH: 26 amino acids

(B) TYPE: amino acid (B) TYPE: amino acid

(C) STANDEDNESS: single (C) STANDEDNESS: single

(D) TOPOLOGY: both (D) TOPOLOGY: both

(ii) MOLECULE TYPE: peptide (ii) MOLECULE TYPE: peptides

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Met Ala Gln Asp Ile Ile Ser Thr Ile Gly Asp Leu Val Lys Tpr Ile Met Ala Gln Asp Ile Ile Ser Thr Ile Gly Asp Leu Val Lys Tpr Ile

1 5 10 15 1 5 10 15

Ile Asp Thr Val Asn Lys Phe Thr Lys Lys Ile Asp Thr Val Asn Lys Phe Thr Lys Lys

20 25 20 25

(2) INFORMATION FOR SEQ ID NO: 4: (2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 36 amino acids (A) LENGTH: 36 amino acids

(B) TYPE: amino acid (B) TYPE: amino acid

(C) STANDEDNESS: single (C) STANDEDNESS: single

(D) TOPOLOGY: both (D) TOPOLOGY: both

(ii) MOLECULE TYPE: peptide (ii) MOLECULE TYPE: peptides

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Ala Gln Asp Ile Ile Ser Thr Ile Gly Asp Leu Val Lys Tpr Ile Met Ala Gln Asp Ile Ile Ser Thr Ile Gly Asp Leu Val Lys Tpr Ile

1 5 10 15 1 5 10 15

Ile Asp Thr Val Asn Lys Phe Thr Lys Lys Lys Lys Lys Lys Lys Lys Lys Lys Lys Lys Ile Asp Thr Val Asn Lys Phe Thr Lys Lys Lys Lys Lys Lys Lys Lys Lys Lys Lys

20 25 30 35 20 25 30 35

(2) INFORMATION FOR SEQ ID NO: 5: (2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 34 amino acids (A) LENGTH: 34 amino acids

(B) TYPE: amino acid (B) TYPE: amino acid

(C) STANDEDNESS: single (C) STANDEDNESS: single

(D) TOPOLOGY: both (D) TOPOLOGY: both

(ii) MOLECULE TYPE: peptide (ii) MOLECULE TYPE: peptides

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

Trp Glu Ala Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu His Trp Glu Ala Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu His

1 5 10 15 1 5 10 15

Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala GLy Gly Ser Cys Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala GLy Gly Ser Cys

20 25 30 20 25 30

(2) INFORMATION FOR SEQ ID NO: 6: (2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 35 amino acids (A) LENGTH: 35 amino acids

(B) TYPE: amino acid (B) TYPE: amino acid

(C) STANDEDNESS: single (C) STANDEDNESS: single

(D) TOPOLOGY: both (D) TOPOLOGY: both

(ii) MOLECULE TYPE: peptide (ii) MOLECULE TYPE: peptides

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Gly Leu Phe Gly Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu Gly Leu Phe Gly Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu

1 5 10 15 1 5 10 15

His Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser Cys His Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser Cys

20 25 30 35 20 25 30 35

(2) INFORMATION FOR SEQ ID NO: 7: (2) INFORMATION FOR SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 35 amino acids (A) LENGTH: 35 amino acids

(B) TYPE: amino acid (B) TYPE: amino acid

(C) STANDEDNESS: single (C) STANDEDNESS: single

(D) TOPOLOGY: both (D) TOPOLOGY: both

(ii) MOLECULE TYPE: peptide (ii) MOLECULE TYPE: peptides

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

Gly Leu Phe Gly Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu Gly Leu Phe Gly Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu

1 5 10 15 1 5 10 15

Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Glu Gly Ser Cys Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Glu Gly Ser Cys

20 25 30 35 20 25 30 35

(2) INFORMATION FOR SEQ ID NO: 8: (2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 34 amino acids (A) LENGTH: 34 amino acids

(B) TYPE: amino acid (B) TYPE: amino acid

(C) STANDEDNESS: single (C) STANDEDNESS: single

(D) TOPOLOGY: both (D) TOPOLOGY: both

(ii) MOLECULE TYPE: peptide (ii) MOLECULE TYPE: peptides

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Gly Leu Phe Gly Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu Ala Gly Leu Phe Gly Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu Ala

1 5 10 15 1 5 10 15

Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser Cys Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser Cys

20 25 30 20 25 30

(2) INFORMATION FOR SEQ ID NO: 9: (2) INFORMATION FOR SEQ ID NO: 9:

(i) SEQUENCE CHARACTERISTICS: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 34 amino acids (A) LENGTH: 34 amino acids

(B) TYPE: amino acid (B) TYPE: amino acid

(C) STANDEDNESS: single (C) STANDEDNESS: single

(D) TOPOLOGY: both (D) TOPOLOGY: both

(ii) MOLECULE TYPE: peptide (ii) MOLECULE TYPE: peptides

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

Gly Leu Phe Gly Ala Ile Ala Gluy Phe Ile Glu Asn Glu Trp Glu Gly Gly Leu Phe Gly Ala Ile Ala Gluy Phe Ile Glu Asn Glu Trp Glu Gly

1 5 10 15 1 5 10 15

Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser Cys Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser Cys

20 25 30 20 25 30

(2) INFORMATION FOR SEQ ID NO: 10: (2) INFORMATION FOR SEQ ID NO: 10:

(i) SEQUENCE CHARACTERISTICS: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 34 amino acids (A) LENGTH: 34 amino acids

(B) TYPE: amino acid (B) TYPE: amino acid

(C) STANDEDNESS: single (C) STANDEDNESS: single

(D) TOPOLOGY: both (D) TOPOLOGY: both

(ii) MOLECULE TYPE: peptide (ii) MOLECULE TYPE: peptides

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Gly Leu Phe Glu Ala Ile Glu Gly Phe Ile Glu Asn Gly Trp Glu Gly Gly Leu Phe Glu Ala Ile Glu Gly Phe Ile Glu Asn Gly Trp Glu Gly

1 5 10 15 1 5 10 15

Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser Cys Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser Cys

20 25 30 20 25 30

(2) INFORMATION FOR SEQ ID NO: 11: (2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 23 amino acids (A) LENGTH: 23 amino acids

(B) TYPE: amino acid (B) TYPE: amino acid

(C) STANDEDNESS: single (C) STANDEDNESS: single

(D) TOPOLOGY: both (D) TOPOLOGY: both

(ii) MOLECULE TYPE: peptide (ii) MOLECULE TYPE: peptides

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

Gly Leu Phe Glu Ala Ile Glu Gly Phe Ile Glu Asn Gly Trp Glu Gly Gly Leu Phe Glu Ala Ile Glu Gly Phe Ile Glu Asn Gly Trp Glu Gly

1 5 10 15 1 5 10 15

Met Ile Asp Gly Gly Gly Cys Met Ile Asp Gly Gly Gly Cys

20 20

(2) INFORMATION FOR SEQ ID NO: 12: (2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 36 amino acids (A) LENGTH: 36 amino acids

(B) TYPE: amino acid (B) TYPE: amino acid

(C) STANDEDNESS: single (C) STANDEDNESS: single

(D) TOPOLOGY: both (D) TOPOLOGY: both

(ii) MOLECULE TYPE: peptide (ii) MOLECULE TYPE: peptides

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

Gly Ile Gly Ala Val Leu Lys Val Leu Thr Thr Gly Leu Pro Ala Leu Gly Ile Gly Ala Val Leu Lys Val Leu Thr Thr Gly Leu Pro Ala Leu

1 5 10 15 1 5 10 15

Ile Ser Trp Ile Lys Arg Lys Arg Gln Gln Lys Lys Lys Lys Lys Lys Lys Lys Lys Lys Ile Ser Trp Ile Lys Arg Lys Arg Gln Gln Lys Lys Lys Lys Lys Lys Lys Lys Lys

20 25 30 35 20 25 30 35

(2) INFORMATION FOR SEQ ID NO: 13: (2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 36 amino acids (A) LENGTH: 36 amino acids

(B) TYPE: amino acid (B) TYPE: amino acid

(C) STANDEDNESS: single (C) STANDEDNESS: single

(D) TOPOLOGY: both (D) TOPOLOGY: both

(ii) MOLECULE TYPE: peptide (ii) MOLECULE TYPE: peptides

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

Gly Ile Gly Ala Val Leu Glu Val Leu Glu Thr Gly Leu Pro Ala Leu Gly Ile Gly Ala Val Leu Glu Val Leu Glu Thr Gly Leu Pro Ala Leu

1 5 10 15 1 5 10 15

Ile Ser Trp Ile Lys Arg Lys Arg Gln Gln Lys Lys Lys Lys Lys Lys Lys Lys Lys Lys Ile Ser Trp Ile Lys Arg Lys Arg Gln Gln Lys Lys Lys Lys Lys Lys Lys Lys Lys

20 25 30 35 20 25 30 35

Claims (95)

1. Sastav za transfekciju viših eukariotičnih stanica sa kompleksom nukleinske kiseline i supstancijom koja ima afinitet za nukleinsku kiselinu, koja supstancija može biti povezana s internalizirajućim faktorom za navedene stanice, naznačen time što spomenuti sastav sadrži agens koji ima sposobnost da bude izternaliziran u stanice, bilo “per se” ili kao komponenta kompleksa nukleinske kiseline, te da odpušta sadržaje endosoma, u kojem je kompleks smješten nakon ulaska u stanicu, u citoplazmu.1. A composition for transfection of higher eukaryotic cells with a complex of nucleic acid and a substance having an affinity for nucleic acid, which substance can be associated with an internalizing factor for said cells, characterized in that said composition contains an agent that has the ability to be externalized into cells, either "per se" or as a component of the nucleic acid complex, and to release the contents of the endosome, in which the complex is located after entering the cell, into the cytoplasm. 2. Sastav prema zahtjevu 1, naznačen time što je endosomolitički agens virus ili virusna komponenta koja je internalizirajući faktor “per se” za spomenute stanice. 2. The composition according to claim 1, characterized in that the endosomolytic agent is a virus or a viral component that is an internalizing factor "per se" for said cells. 3. .Sastav prema zahtjevu 1, naznačen time što endosomolitički agensima domenu za povezivanje nukleinske ksieline ili je povezan sa supstancijom koja ima afinitet za nukleinsku kisleinu i ima sposobnost da bude internaliziran u spomenute stanice kao komponenta kompleksa konjugat/nukleinska kiselina, a spomenuti kompleks dalje može sadržavati internalizirajući faktor za stanice. 3. The composition according to claim 1, characterized in that endosomolytic agents bind nucleic acid to a domain or is associated with a substance that has an affinity for nucleic acid and has the ability to be internalized into said cells as a component of the conjugate/nucleic acid complex, and said complex further may contain internalizing factor for cells. 4. Sastav prema zahtjevu 3, naznačen time što je endosomolitički agens kovalentno vezan na supstanciju koja ima agfinitet za nukleinsku kiselinu.4. Composition according to claim 3, characterized in that the endosomolytic agent is covalently bound to a substance that has an affinity for nucleic acid. 5. Sastav prema zahtjevu 3, naznačen time što endosomolitički agens nije kovalentno povezan sa supstancijom koja ima afinitet za nukleisnku kiselinu.5. Composition according to claim 3, characterized in that the endosomolytic agent is not covalently linked to a substance having an affinity for nucleic acid. 6. Sastav prema zahtjevu 5, naznačen time što se povezivanje vrši putem biotin-streptavidin mosta.6. Composition according to claim 5, characterized in that the connection is made via a biotin-streptavidin bridge. 7. Sastav prema zahtjevu 5, naznačen time što se spajanje postiže ionskim načinom.7. Composition according to claim 5, characterized in that the coupling is achieved by an ionic method. 8. Sastav prema zahtjevu 3, naznačen time što je endosomolitilki agens vezan na nukelinsku kiselinu direktno putem povezujuće domene nukleinske kiseline.8. The composition according to claim 3, characterized in that the endosomolytic agent is bound to the nucleic acid directly via the linking domain of the nucleic acid. 9. Sastav prema zahtjevu 3, naznačen time što je endosomolitički agens virus ili virusna komponenta.9. Composition according to claim 3, characterized in that the endosomolytic agent is a virus or a viral component. 10. Sastav prema zahtjevima 2 i 9, naznačen time što je endosomolitički agens adenovirus.10. Composition according to claims 2 and 9, characterized in that the endosomolytic agent is an adenovirus. 11. Sastav prema zahtjevu 10, naznačen time što je adenovirus mutant.11. The composition according to claim 10, characterized in that the adenovirus is a mutant. 12. Sastav prema zahtjevu 11, naznačen time što je adenovirus za obnavljanje neodgovoran mutant.12. The composition according to claim 11, characterized in that the adenovirus is an irresponsible mutant for recovery. 13. Sastav prema zahtjevu 12, naznačen time što adenovirus ima jednu ili više muacija i/ili raspada u ElA području.13. The composition according to claim 12, characterized in that the adenovirus has one or more mutations and/or breaks in the ElA region. 14. Sastav prema zahtjevu 10, naznačen time što je adenovirus inaktiviran.14. Composition according to claim 10, characterized in that the adenovirus is inactivated. 15. Sastav prema zahtjevu 14, naznačen time što je adenovirus inaktiviran kratkovalnim UV-zračenjem.15. Composition according to claim 14, characterized in that the adenovirus is inactivated by short-wave UV radiation. 16. Sastav prema zahtjevu 14, naznačen time što je adenovirus inaktiviran pomoću UV/psoralena.16. Composition according to claim 14, characterized in that the adenovirus is inactivated by UV/psoralen. 17. Sastav prema zahtjevu 14, naznačen time što je adenovirus inaktiviran formaldehidom.17. Composition according to claim 14, characterized in that the adenovirus is inactivated by formaldehyde. 18. Sastav prema zahtjevu 9, naznačen time što je virusna komponenta jedan ili više adenovirusnih proteina.18. Composition according to claim 9, characterized in that the viral component is one or more adenovirus proteins. 19. Sastav prema zahtjevu 2 ili 9, naznačen time što je virus picorna virus, prvenstveno rhinovirus.19. Composition according to claim 2 or 9, characterized in that the virus is a picorna virus, primarily a rhinovirus. 20. Sastav prema zahtjevu 19, naznačen time što je rhinovirus inaktiviran.20. Composition according to claim 19, characterized in that the rhinovirus is inactivated. 21. Sastav prema zahtjevu 3, naznačen time što je endosomolitički agens nije internalizirajući faktor “per se” za stanicu i što kompleks nukleinske kiseline osim toga obuhvaća internalizirajući faktor za dotičnu stanicu, koji faktor je vezan na supstanciju koja ima afinitet za nukleinsku kiselinu.21. Composition according to claim 3, characterized in that the endosomolytic agent is not an internalizing factor "per se" for the cell and that the nucleic acid complex additionally comprises an internalizing factor for the cell in question, which factor is bound to a substance that has an affinity for nucleic acid. 22. Sastav prema zahtjevu 21, naznačen time što je endosomolitički agens virus ili virusna komponenta koja nije internalizirajući faktor za humanu stanicu.22. The composition according to claim 21, characterized in that the endosomolytic agent is a virus or a viral component that is not an internalizing factor for a human cell. 23. Sastav prema zahtjevu 22, naznačen time što je endosomolitički agens virus koji je infektiviran za vrste koje nisu ljudske.23. The composition according to claim 22, characterized in that the endosomolytic agent is a virus that infects non-human species. 24. Sastav prema zahtjevu 23, naznačen time što je virus adenovirus.24. Composition according to claim 23, characterized in that the virus is an adenovirus. 25. Sastav prema zahtjevu 24, naznačen time što je adenovirus avian.25. The composition according to claim 24, characterized in that the adenovirus is avian. 26. Sastav prema zahtjevu 23, naznačen time što je adenovirus virus posmtrtnog pilećeg embrija. 26. The composition according to claim 23, characterized in that the adenovirus is a virus of a postmortem chicken embryo. 27. Sastav prema zahtjevu 21, naznačen time što endosomolitički agens može biti modificirani endosomolitički virusni peptid.27. Composition according to claim 21, characterized in that the endosomolytic agent can be a modified endosomolytic viral peptide. 28. Sastav prema zahtjevu 27, naznačen time što je endosomolitički peptid, peptid hemaglutinina HA2 influence.28. Composition according to claim 27, characterized in that the endosomolytic peptide is the hemagglutinin HA2 influenza peptide. 29. Sastav prema zahtjevu 28, naznačen time što peptid iam niz Gly Leu Phe Glu Ala Ile Ala Gly The Ile Glu Asn Gly Trp Glu Gly Met Ile Asp Gly Gly Gly Cys.29. The composition according to claim 28, characterized in that the peptide has the sequence Gly Leu Phe Glu Ala Ile Ala Gly The Ile Glu Asn Gly Trp Glu Gly Met Ile Asp Gly Gly Gly Cys. 30. Sastav prema zahtjevu 28, naznačen time što peptid ima niz Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Asn Gly Trp Glu Gly Met Ile Ap Gly Gly Gly Cis.30. Composition according to claim 28, characterized in that the peptide has the sequence Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Asn Gly Trp Glu Gly Met Ile Ap Gly Gly Gly Cis. 31. Sastav prema zahtjevu 21, naznačen time što je endosomolitički agens ne-virusni, po želji modificirani prirodni ili sintetički peptid.31. Composition according to claim 21, characterized in that the endosomolytic agent is a non-viral, optionally modified natural or synthetic peptide. 32. Sastav prema zahtjevu 27 ili 31, naznačen time što peptid ima domenu povezivanja nukleinske ksieline.32. Composition according to claim 27 or 31, characterized in that the peptide has a nucleic xylin binding domain. 33. Sastav prema zahtjevu 3 ili 21, naznačen time što je internalizirajući faktor transferin.33. Composition according to claim 3 or 21, characterized in that the internalizing factor is transferrin. 34. Sastav prema zahtjevu 3 ili 21, naznačen time što je internalizirajući faktor ligand za hepatocite.34. Composition according to claim 3 or 21, characterized in that the internalizing factor is a ligand for hepatocytes. 35. Sastav prema zahtjevu 34, naznačen time što je internalizirajući faktor ligand za asialoglikoprotein receptor.35. The composition according to claim 34, characterized in that the internalizing factor is a ligand for the asialoglycoprotein receptor. 36. Sastav prema zahtjevu 35, naznačen time što je internalizirajući faktor tetra-galaktoza-polilizin.36. Composition according to claim 35, characterized in that the internalizing factor is tetra-galactose-polylysine. 37. Kompleks nukleinske ksieline upotrebljiv kao konstituent sastava prema svim zahtjevima od 3 do 36, s tim da navedeni kompleks uključuje jednu ili više nukleinskih ksielina koje će biti izražene u stanici, endosomolitičko sredstvo koje izvorno ima domenu koja povezuje nukleinsku kiselinu ili koje je vezano na supstancu koja ima afininitet za nukleinsku kiselinu, koji kompleks osim toga može sadržavati internalizirajući faktor koji je povezan na supstanciju koja ima afinitet za nukelinsku ksielinu.37. Nucleic xylin complex usable as a constituent of the composition according to all claims 3 to 36, with the said complex including one or more nucleic xylins to be expressed in the cell, an endosomolytic agent that originally has a nucleic acid binding domain or that is attached to a substance having an affinity for nucleic acid, which complex may additionally contain an internalizing factor linked to a substance having an affinity for nucleic acid. 38. Kompleks prema zahtjevu 37, naznačen time što je nukelinska kiselina terapijski aktivna. 38. Complex according to claim 37, characterized in that the nucleic acid is therapeutically active. 39. Kompleks prema zahtjevu 38, naznačen time što spomenuta nukleinska kiselina obuhvaća jednu ili više molekula DNA koja su aktivne u genskoj terapiji.39. Complex according to claim 38, characterized in that said nucleic acid comprises one or more DNA molecules that are active in gene therapy. 40. Kompleks prema zahtjevu 39, naznačen time što spomenuta DNA molekule kodiraju citokine.40. Complex according to claim 39, characterized in that said DNA molecules encode cytokines. 41. Kompleks prema zahtjevu 38, naznačen time što spomenuta nukleinska kiselina sadrži niz nukleotida, iz koejg se mogu prevesti RNA molekule, koej specifično inhibiraju stanične funkcije.41. Complex according to claim 38, characterized in that said nucleic acid contains a series of nucleotides, from which RNA molecules can be translated, which specifically inhibit cellular functions. 42. Kompleks prema zahtjevu 37, naznačen time što je supstancija, koja ima afinitet za nukleinsku ksielinu, organski polikatiopn.42. Complex according to claim 37, characterized in that the substance, which has an affinity for nucleic xylin, is an organic polycation. 43. Kompleks prema zahtjevu 42, naznačen time što je polikation, polilizin.43. Complex according to claim 42, characterized in that it is a polycation, polylysine. 44. Kompleks prema zahtjevu 37, naznačen time što je i endosomolitički agens i internalizirajući faktor povezan na istu supstanciju, koja ima afinitet za nukleinsku kiselinu.44. The complex according to claim 37, characterized in that both the endosomolytic agent and the internalizing factor are linked to the same substance, which has an affinity for nucleic acid. 45. Kompleks prema zahtjevu 44, naznačen time što su i endosomolitički agens i internalizirajući faktor vezani na polilizin.45. Complex according to claim 44, characterized in that both the endosomolytic agent and the internalizing factor are bound to polylysine. 46. Kompleks prema zahtjevu 45, naznačen time što on osim toga, sadrži nekovalentno vezani polilizin.46. Complex according to claim 45, characterized in that it additionally contains non-covalently bound polylysine. 47. Konjugat upotrebljiv kao konstituent kompelksa prema zahtjevima 37 do 46, naznačen time što spomenuti konjugat obuhvaća endosomolitički agens koji je vezan na supstanciju koja ima afinitet za nukelinsku kiselinu.47. Conjugate usable as a constituent of the complex according to claims 37 to 46, characterized in that said conjugate comprises an endosomolytic agent which is bound to a substance having an affinity for nucleic acid. 48. Konjugat prema zahtjevu 47, naznačen time što je endosomolitički agens kovalentno vezan na supstanciju koja ima afinitt za nukelinsku kiselinu.48. Conjugate according to claim 47, characterized in that the endosomolytic agent is covalently bound to a substance having an affinity for nucleic acid. 49. Konjugat prema zahtjevu 47, naznačen time što je endosomolitički agens ne-kovalentno vezan na supstanciju koja ima afinitet za nukleinsku ksielinu.49. The conjugate according to claim 47, characterized in that the endosomolytic agent is non-covalently bound to a substance having an affinity for nucleic xylin. 50. Konjugat prema zahtjevu 49, naznačen time što je povezivanje izvedeno putem biotin-strptavidin mosta-50. Conjugate according to claim 49, characterized in that the connection is performed via a biotin-strptavidin bridge. 51. Konjugat prema zahtjevu 49, naznačen time što je povezivanje izvedeno ionski.51. Conjugate according to claim 49, characterized in that the connection is ionic. 52. Konjugat prema zahtjevu 47, naznačen time što je endosomolitički agens virus ili virusna komponenta.52. Conjugate according to claim 47, characterized in that the endosomolytic agent is a virus or a viral component. 53. Konjugat prema zahtjevu 52, naznačen time što je endosomolitički agens adenovirus.53. Conjugate according to claim 52, characterized in that the endosomolytic agent is an adenovirus. 54. Konjugat prema zahtjevu 53, naznačen time što je adenovirus mutant.54. The conjugate according to claim 53, characterized in that the adenovirus is a mutant. 55. Konjugat prema zahtjevu 54, naznačen time što je adenovirus za obnavljanje neodgovoran mutant.55. Conjugate according to claim 54, characterized in that the adenovirus is an irresponsible mutant for recovery. 56. Konjugat prema zahtjevu 55, naznačen time što adenovirus ima jednu ili više mutacija i/ili raspada u ElA pdoručju.56. Conjugate according to claim 55, characterized in that the adenovirus has one or more mutations and/or breaks in the E1A region. 57. Konjugat prema zahtjevu 53, naznačen time što je adenovirus inaktiviran.57. Conjugate according to claim 53, characterized in that the adenovirus is inactivated. 58. Konjugat prema zahtjevu 57, naznačen time što je adenovirus inaktiviran kratkovalnim UV-zračenjem.58. Conjugate according to claim 57, characterized in that the adenovirus is inactivated by short-wave UV radiation. 59. Konjugat prema zahtjevu 57, naznačen time što je adenovirus inaktiviran UV/psoralenom.59. Conjugate according to claim 57, characterized in that the adenovirus is inactivated by UV/psoralen. 60. Konjugat prema zahtjevu 57, naznačen time što je adenovirus inaktiviran formaldehidom.60. Conjugate according to claim 57, characterized in that the adenovirus is inactivated by formaldehyde. 61. Konjugat prema zahtjevu 52, naznačen time što je virusna komponenta adenovirusni protein.61. Conjugate according to claim 52, characterized in that the viral component is an adenoviral protein. 62. Konjugat prema zahtjevu 52, naznačen time što je virus picorna-virus, poglavito rhinovirus.62. Conjugate according to claim 52, characterized in that the virus is a picorna virus, especially a rhinovirus. 63. Konjugat prema zahtjevu 62, naznačen time što je rhinovirus inaktiviran.63. Conjugate according to claim 62, characterized in that the rhinovirus is inactivated. 64. Konjugat prema zahtjevu 47, naznačen time što je endosomolitički adenovirus nije internalizirajući faktor sam po sebi, za stanicu koja će biti transficirana.64. The conjugate according to claim 47, characterized in that the endosomolytic adenovirus is not an internalizing factor per se, for the cell to be transfected. 65. Konjugat prema zahtjevu 64, naznačen time što je endosomolitički agens virus ili virusna komponenta koja nije internalizirajući faktor za humanu stanicu.65. The conjugate according to claim 64, characterized in that the endosomolytic agent is a virus or a viral component that is not an internalizing factor for a human cell. 66. Konjugat prema zahtjevu 64, naznačen time što je andosomolitički agens virus koji je infektivan za vrste koje nisu ljudske.66. The conjugate according to claim 64, characterized in that the endosomolytic agent is a virus that is infectious for non-human species. 67. Konjugat prema zahtjevu 66, naznačen time što je virus adenovirus.67. Conjugate according to claim 66, characterized in that the virus is an adenovirus. 68. Konjugat prema zahtjevu 67, naznačen time što je adenovirus avian.68. Conjugate according to claim 67, characterized in that the adenovirus is avian. 69. Konjugat prema zahtjevu 68, naznačen time što je adenovirus posmrtni virus pilećeg ambrija.69. Conjugate according to claim 68, characterized in that the adenovirus is a post-mortem chicken embryo virus. 70. Konjugat prema zahtjevu 64, naznačen time što endosomolitički agens može biti modificirani endosomolitički virusni peptid.70. Conjugate according to claim 64, characterized in that the endosomolytic agent can be a modified endosomolytic viral peptide. 71. Konjugat prema zahtjevu 70, naznačen time što je endosomolitički agens peptid hemaglutinina influence HA2.71. Conjugate according to claim 70, characterized in that the endosomolytic agent is the influenza HA2 hemagglutinin peptide. 72. Konjugat prema zahtjevu 71, naznačen time što peptid ima niz Gly Leu Gly Ala Ile Ala Gly Phe Ile Glu Asn Gly Trp Glu Gly Met Ile Asp Gly Gly Gly Cys.72. Conjugate according to claim 71, characterized in that the peptide has the sequence Gly Leu Gly Ala Ile Ala Gly Phe Ile Glu Asn Gly Trp Glu Gly Met Ile Asp Gly Gly Gly Cys. 73. Konjugat prema zahtjevu 71, naznačen time što peptid ima niz Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Asn Gly Trp Glu Gly Net Ile Asp Gly Gly Gly Cys73. Conjugate according to claim 71, characterized in that the peptide has the sequence Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Asn Gly Trp Glu Gly Net Ile Asp Gly Gly Gly Cys 74. Konjugat prema zahtjevu 47, naznačen time što je endosomolitički agens ne-virusni, po želji modificirani prirodni ili sintetički peptid.74. The conjugate according to claim 47, characterized in that the endosomolytic agent is a non-viral, optionally modified natural or synthetic peptide. 75. Endosomolitički peptid upotrebljiv kao sastojak sastava iz zahtjeva 32, naznačen time što ima endosomolitičku domenu i vezujuću domenu nukleinske kiseline.75. An endosomolytic peptide usable as an ingredient of the composition of claim 32, characterized in that it has an endosomolytic domain and a nucleic acid binding domain. 76. Endosomolitički peptid iz zahtjeva 75, naznačen time što je vezujuća domena nukleinske kiseline produžetak oligolizina.76. The endosomolytic peptide of claim 75, characterized in that the nucleic acid binding domain is an oligolysine extension. 77. Postupak priprave konjugata iz zahtjeva 48, naznačen time što je virus ili (poli)peptidni endosomolitički agens i poliamin enzimatski vezan u prisutnosti transflutaminaze.77. The method for preparing the conjugate from claim 48, characterized in that the virus or (poly)peptide endosomolytic agent and the polyamine are enzymatically linked in the presence of transflutaminase. 78. Postupak priprave konjugata iz zahtjeva 48, naznačen time što je virus ili (poli)peptidni endosomolitički agens i poliamin, kemijski vezan.78. The method for preparing the conjugate from claim 48, characterized in that the virus or (poly)peptide endosomolytic agent and the polyamine are chemically linked. 79. Postupak priprave konjugata iz zahtjeva 49 koji obuhvaća a) modifikaciju virusa ili virusne komponente sa biotinom i b) povezivanje modificiranog virusa ili modificirane virusne komponente dobive u fazi a), u treptavidinom vezani poliamin.79. The process for preparing the conjugate from claim 49, which includes a) modification of virus or viral component with biotin i b) connecting the modified virus or the modified viral component obtained in phase a), to the treptavidin-bound polyamine. 80. Postupak za uvođenje nukleinske kiseline u vieš eukariotične stanice, naznačen time što su stanice u vezi sa sastavom prema vilo kojem zahtjevu od 1 do 36.80. A method for introducing nucleic acid into eukaryotic cells, characterized in that the cells are related to the composition according to any of claims 1 to 36. 81. Postupak prema zahtjevu 80, naznačen time što su stanice humane stanice.81. The method according to claim 80, characterized in that the cells are human cells. 82. Postupak prema zahtjevu 81, naznačen time što su stanice humane tumorske stanice.82. The method according to claim 81, characterized in that the cells are human tumor cells. 83. Postupak prema zahtjevu 81, naznačen time što su stanice humani mioblasti.83. The method according to claim 81, characterized in that the cells are human myoblasts. 84. Postupak prema zahtjevu 81, naznačen time što su stanice humani fibroblasti.84. The method according to claim 81, characterized in that the cells are human fibroblasts. 85. Postupak prema zahtjevu 81, naznačen time što su stanice humani hepatociti.85. The method according to claim 81, characterized in that the cells are human hepatocytes. 86. Postupak prema zahtjevu 81, naznačen time što su stanice humane endotelne stanice.86. The method according to claim 81, characterized in that the cells are human endothelial cells. 87. Postupak prema zahtjevu 81, naznačen time što su stanice humane epitelne stanice pluća.87. The method according to claim 81, characterized in that the cells are human lung epithelial cells. 88. Postupak prema zahtjevu 81, naznačen time što je nukleinska kiselina sastava DNA aktivna u genskoj terapiji.88. The method according to claim 81, characterized in that the nucleic acid of the DNA composition is active in gene therapy. 89. Postupak prema zahtjevu 82 i 88, naznačen time što su stanice tumora u kontaktu sa sastavom “ex vivo” i što spomenuta DNA kodira jednu ili više imuno modulirajućih supstancija, osobito citokine.89. The method according to claims 82 and 88, characterized in that the tumor cells are in contact with the composition "ex vivo" and that the mentioned DNA encodes one or more immunomodulating substances, especially cytokines. 90. Postupak priprave proteina od interesa u višoj eukariotičnoj stanici, naznačen time što se stanice obrađuju sa sastavom iz zahtjeva 1, što nukleinska kiselina obuhvaća DNA niz koji kodira željeni protein, što se stanice uzgajaju pod uvjetima pogodnim za izražaj proteina, i što se protein regenerira.90. A method of preparing a protein of interest in a higher eukaryotic cell, characterized in that the cells are treated with the composition of claim 1, that the nucleic acid comprises a DNA sequence encoding the desired protein, that the cells are grown under conditions suitable for protein expression, and that the protein regenerates. 91. Farmaceutski pripravak koji obuhvaća sastav iz bilo kojeg zahtjeva od 1 do 36, u kojem je nukleinska kiselina terapeutski aktivna i farmaceutski prihvatljiv nosač.91. A pharmaceutical composition comprising the composition of any one of claims 1 to 36, wherein the nucleic acid is a therapeutically active and pharmaceutically acceptable carrier. 92. Transfekcijski komplet, naznačen time što sadržava konstituente kompleksa nukleinske kiseline sastava iz zahtjeva 1 i/ili endosomolitički agens spomenutog sastava ili konstituente spomenutog endosomolitičkog agensa, kao odvojene ili djelomično odvojene komponente.92. Transfection kit, characterized in that it contains the constituents of the nucleic acid complex of the composition from claim 1 and/or the endosomolytic agent of the said composition or the constituents of the said endosomolytic agent, as separate or partially separated components. 93. Transfekcijski komplet iz zahtjeva 92, naznačen time što sadržava transglutaminazom vezan konjugat adenovirus-polilizin, kao odvojeni konstituent.93. The transfection kit from claim 92, characterized in that it contains the adenovirus-polylysine conjugate bound by transglutaminase, as a separate constituent. 94. Transfekcijski komplet iz zahtjeva 92, naznačen time što sadržava biotinom modificirani endosomolitički agens i steptavidinom modificiranu supstanciju koja ima afinitet za nukelinsku ksielinu kao odvojeni konstituent za konjugate neposredno prije primjene.94. The transfection kit of claim 92, characterized in that it contains a biotin-modified endosomolytic agent and a steptavidin-modified substance having an affinity for nucleic xylin as a separate constituent for the conjugates immediately before administration. 95. Transfekcijski komplet iz zahtjeva 94, naznačen time što sadržava biotinilirani adenovirus i streptavidin-polilizin.95. The transfection kit of claim 94, characterized in that it contains biotinylated adenovirus and streptavidin-polylysine.
HRP920602AA 1991-09-30 1992-09-29 Composition for introducing nucleic acid complexes into higher eucaryotic cells HRP920602A2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US76778891A 1991-09-30 1991-09-30
US76803991A 1991-09-30 1991-09-30
US87210392A 1992-01-30 1992-01-30
US82710292A 1992-01-30 1992-01-30
US86475992A 1992-04-07 1992-04-07

Publications (1)

Publication Number Publication Date
HRP920602A2 true HRP920602A2 (en) 1994-04-30

Family

ID=59076247

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP920602AA HRP920602A2 (en) 1991-09-30 1992-09-29 Composition for introducing nucleic acid complexes into higher eucaryotic cells

Country Status (1)

Country Link
HR (1) HRP920602A2 (en)

Similar Documents

Publication Publication Date Title
US6077663A (en) Composition for introducing nucleic acid complexes into higher eucaryotic cells
US5981273A (en) Composition comprising an endosomolytic agent for introducing nucleic acid complexes into higher eucaryotic cells
US5521291A (en) Conjugates for introducing nucleic acid into higher eucaryotic cells
JP3479298B2 (en) Novel conjugates for introducing nucleic acids into higher eukaryotic cells
Cotten et al. [42] Receptor-mediated transport of DNA into eukaryotic cells
US5695991A (en) Targeted delivery of virus vector to mammalian cells
CA2222550A1 (en) Nucleic acid transporters for delivery of nucleic acids into a cell
JPH08507921A (en) Method for preparing cancer vaccine
US5830852A (en) Compositions for insulin-receptor mediated nucleic acid delivery
CN101289500A (en) Long lasting fusion peptide inhibitor of viral infection
HRP920602A2 (en) Composition for introducing nucleic acid complexes into higher eucaryotic cells
KR100241685B1 (en) Composition for inserting nucleic acid complexes into higher eukaryotic cells
RU2138553C1 (en) Transfection composition for higher eucaryotic cells, nucleic acid complex useful as component of transfection composition, conjugate useful as component of transfection composition, endosomolytic peptide useful as component of transfection composition
WO1998035984A2 (en) Compositions and methods for highly efficient transfection
Zhang Enhancement of targeted gene expression by incorporation of Listeriolysin O into protein-DNA complexes
AU1185097A (en) Improved pharmaceutical compositions

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODBC Application rejected