HRP920220A2 - APPARATUS FOR WATER RESISTANCE COMPENSATION AND COMPLEX BRIDGING - Google Patents

APPARATUS FOR WATER RESISTANCE COMPENSATION AND COMPLEX BRIDGING Download PDF

Info

Publication number
HRP920220A2
HRP920220A2 HRP920220AA HRP920220A HRP920220A2 HR P920220 A2 HRP920220 A2 HR P920220A2 HR P920220A A HRP920220A A HR P920220AA HR P920220 A HRP920220 A HR P920220A HR P920220 A2 HRP920220 A2 HR P920220A2
Authority
HR
Croatia
Prior art keywords
bridge
resistance
amplifier
inverting input
resistor
Prior art date
Application number
HRP920220AA
Other languages
Croatian (hr)
Inventor
Darko Vyroubal
Original Assignee
Darko Vyroubal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Darko Vyroubal filed Critical Darko Vyroubal
Priority to HRP920220AA priority Critical patent/HRP920220A2/en
Publication of HRP920220A2 publication Critical patent/HRP920220A2/en

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

Uređaj za kompenzaciju otpora vodova i kompleksno uravnoteženje polu-mosta namijenjen je za eliminaciju efekata otpora vodova u električnim mjerenjima mjernim mostom. Pored toga uređaj omogućuje kompleksno uravnoteženje mjernog mosta. Reaktivna ravnoteža postiže se podešavanjem potenciometra s čime je izbjegnuta upotreba varijabilnih kondenzatora. Na taj način se smanjuju dimenzije mjernog uređaja i povećava robustnost. Novo rješenje uređaja za kompenzaciju otpora vodova u mjernom mostu je efikasno i u svim slučajevima kada klasične metode, kao 3-žični i "Kreutzer" - spoj nisu upotrebljivi. Uređaj je osnovno namijenjen za mjerenje u 1/4 i 1/2 - mostnoj konfiguraciji, ali se upotrebom dva takva uređaja bez problema može vršiti mjerenje u konfiguraciji punog mosta.The line resistance compensation device and complex semi-bridge balancing is designed to eliminate the effects of line resistance in electrical measurements by a bridge. In addition, the device enables complex balancing of the measuring bridge. Reactive equilibrium is achieved by adjusting the potentiometer, which avoids the use of variable capacitors. This reduces the dimensions of the measuring device and increases the robustness. The new solution of the line resistance compensation device in the metering bridge is effective also in all cases where classical methods such as 3-wire and "Kreutzer" joint are not usable. The device is primarily intended for measurement in 1/4 and 1/2 bridge configuration, but using two such devices can easily be measured in full bridge configuration.

Description

Oblast tehnike u koju spada izum: Technical field to which the invention belongs:

Izum spada u oblast elektroničke mjerne tehnike. Po MPK spada u grupu G01R 17/16. The invention belongs to the field of electronic measuring technology. According to MPK, it belongs to group G01R 17/16.

Tehnički problem Technical problem

U određenim aplikacijama su grane mjernog mosta fizički udaljene i potencijalno na različitoj temperaturi. Fizička udaljenost u-nosi u ekvivalentnu shemu mosta otpor vodova što dovodi do greške mjerenja. Otpor vodova dovodi do smanjenja osjetljivosti mosta, a različiti temperaturni koeficijenti otpora vodova (bakar) i aktivnog elementa (manganin i sl.) ili pak različite temperature grana mosta kvare ravnotežu mosta i dovode do posmaka nule (drifta). In certain applications, the branches of the measuring bridge are physically distant and potentially at different temperatures. The physical distance brings into the equivalent scheme of the bridge the resistance of the lines, which leads to a measurement error. The resistance of the lines leads to a decrease in the sensitivity of the bridge, and different temperature coefficients of the resistance of the lines (copper) and the active element (manganine, etc.) or different temperatures of the bridge branches spoil the balance of the bridge and lead to a shift of zero (drift).

Uravnoteženje mosta se obično vrši odgovarajućim elementima smještenim u mjernom uređaju. Neke vrste mostova ili pak izvedba mjernog uređaja zahtijevaju izmjeničnu uzbudu mosta. Kod takvog mjerenja potrebno je ostvariti kompleksnu ravnotežu mosta. Elementi za uravnoteženje su tada potenciometri (za radnu ravnotežu), te varijabilni kondenzatori (za reaktivnu ravnotežu). Varijabilni kondenzatori su relativno velikih dimenzija i mehanički osjetljivi. Poseban problem se pokazuje kod multipleksiranja mnogo mostova na jedan mjerni uređaj. Tada ukupni gabariti elemenata za uravnoteženje znatno premašuju veličinu samog mjernog uređaja. Balancing of the bridge is usually done with appropriate elements located in the measuring device. Some types of bridges or the design of the measuring device require alternating excitation of the bridge. With such a measurement, it is necessary to achieve a complex balance of the bridge. Balancing elements are potentiometers (for working balance) and variable capacitors (for reactive balance). Variable capacitors are relatively large and mechanically sensitive. A special problem arises when multiplexing many bridges to one measuring device. Then the overall dimensions of the balancing elements significantly exceed the size of the measuring device itself.

Stanje tehnike State of the art

U tehničkoj praksi se koriste dva kompenzacijska spoja za poništenje utjecaja otpora vodova. To su 3-žični spoj i tzv. "Kreutzer-spoj" opisan u patentnom spisu DBP 2314-754- (Savezna Republika Njemačka). Oba spoja imaju prednosti i nedostatke kako slijedi: In technical practice, two compensation connections are used to cancel the influence of line resistance. These are the 3-wire connection and the so-called "Kreutzer compound" described in patent file DBP 2314-754- (Federal Republic of Germany). Both compounds have advantages and disadvantages as follows:

3-žični spoj 3-wire connection

a) Prednosti a) Advantages

Spoj je vrlo jednostavan i zahtijeva samo jedan dodatni vodič. Otuda i ime spoja. Ne zahtijeva nikakve aktivne elektroničke sklopove. Može se dograditi na postojeći mjerni uređaj. The connection is very simple and requires only one additional conductor. Hence the name of the compound. It does not require any active electronic circuits. It can be added to the existing measuring device.

b) Nedostaci b) Disadvantages

Spoj je efikasan za 1/4 - mostnu konfiguraciju. Zahtijeva jednake otpore dovodne i odvodne žile do aktivne četvrtine mosta. Kompenzacija otpora vodova vrijedi za most u ravnoteži. Spoj ne osigurava uravnoteženje mosta (Potrebni dodatni elementi). The connection is efficient for 1/4 - bridge configuration. It requires equal resistances of the supply and drain lines to the active quarter of the bridge. Line resistance compensation applies to a balanced bridge. The joint does not ensure bridge balancing (Additional elements required).

"Kreutzer"-spoj "Kreutzer" compound

a) Prednosti a) Advantages

Spoj kompenzira utjecaj vodova u 1/4 i 1/2 - mostnoj konfiguraciji. Tolerira različite otpore vodova u pojedinoj grani mosta. Napajanje elemenata mosta je 4-žično. The connection compensates for the influence of the lines in 1/4 and 1/2 - bridge configuration. It tolerates different resistances of the lines in each branch of the bridge. The power supply of the bridge elements is 4-wire.

b) Nedostaci b) Disadvantages

Spoj zahtijeva simetričnu neaktivnu polovinu mosta. Otpori dovodne i odvodne žile do pojedinog elementa polu-mosta moraju biti jednaki. Spoj se bazira na kompenzacijskom djelovanju na izvor uzbude mosta, pa ga nije moguće dograditi na već postojeće mjerni uređaj. Uravnoteženje mosta se ne osigurava ovim spojem (Potrebni dodatni elementi za uravnoteženje). The joint requires a symmetrical inactive half of the bridge. The resistances of the supply and discharge lines to each element of the half-bridge must be equal. The connection is based on compensatory action on the source of bridge excitation, so it is not possible to add it to an already existing measuring device. Balancing of the bridge is not provided by this joint (Additional balancing elements required).

Opis rješenja tehničkog problema Description of the solution to the technical problem

Kompenzacijski sklop za poništavanje utjecaja otpora vodova, prikazan slikom 1, bazno je izveden za 1/2 - mostni spoj uz jednostavno prespajanje za 1/4 - mostni spoj. Prespajanje se izvodi nadomještanjem inpedancije jedne aktivne grane (ZA ili ZB) odgovarajućim stabilnim otpornikom, te kratkim spajanjem D+ i S+, te A i A', odnosno korespondentnih stezaljki za drugu granu. The compensating circuit for canceling the influence of line resistance, shown in Figure 1, is basically designed for a 1/2 - bridge connection with a simple connection for a 1/4 - bridge connection. Switching is performed by replacing the impedance of one active branch (ZA or ZB) with a suitable stable resistor, and by short-circuiting D+ and S+, and A and A', that is, the corresponding terminals for the other branch.

Polumost nazivnih impedancija ZA i ZB napaja se izvorom uzbude E. Lokalna povratna veza pojačala A+ i A- kompenzira pad napona na otporima r+ i r-. Pojačalo A1, nadzire razliku potencijala točaka A i B (UAB), te upravlja inverznim strujnim zrcalom. Inverzno strujno zrcalo sastoji se od ponora struje IA, te izvora struje IB uvećane (ili umanjene) za struju ΔI kojom upravlja pojačalo A1. Razlika struja izjednačuje padove napona na otporima r1, i r2, odnosno izjednačuje potencijale točaka A i B. Time se iz raspodjele napona duž polumosta eliminira pad napona na otporima r1 i r2. Pogreška kompenzacije određena je offsetnim naponom pojačala A1, i offsetnim strujama strujnog zrcala. Finim podešavanjem zrcaljenja struje mijenja se napon UA što je ekvivalentno promjeni odnosa impedancija ZA i ZB. Promjenom odnosa struja IB i IA po modulu i argumentu može se kompleksno uravnotežiti most. The half-bridge of the nominal impedances ZA and ZB is fed by the excitation source E. The local feedback connection of the amplifiers A+ and A- compensates the voltage drop on the resistances r+ and r-. Amplifier A1 monitors the potential difference between points A and B (UAB) and controls the inverse current mirror. The inverse current mirror consists of a sink of current IA, and a source of current IB increased (or reduced) by current ΔI controlled by amplifier A1. The current difference equalizes the voltage drops on the resistances r1 and r2, that is, it equalizes the potentials of points A and B. This eliminates the voltage drop on the resistances r1 and r2 from the voltage distribution along the half-bridge. The compensation error is determined by the offset voltage of the amplifier A1, and the offset currents of the current mirror. By fine-tuning the current mirroring, the voltage UA changes, which is equivalent to changing the ratio of impedances ZA and ZB. By changing the ratio of currents IB and IA by module and argument, the bridge can be balanced in a complex manner.

Slijedno pojačalo AG precizno definira potencijal oklopa spojnih vodova polumosta te znatno smanjuje kapacitivno opterećenje točaka A i B. Ostatni kapacitet kompenzira se podešavanjem reaktivne komponente zrcaljenja struje. The subsequent amplifier AG precisely defines the shield potential of the connecting lines of the half-bridge and significantly reduces the capacitive load of points A and B. The remaining capacitance is compensated by adjusting the reactive current mirroring component.

Inverzno strujno zrcalo prikazano je slikom 2. Kod analize sklopa pretpostavljeno je da je ulazni otpor pojačala A1, A2 i A3, mnogo veći od ostalih otpora u sklopu, tako da se može zanemariti. Također se pretpostavlja da offsetne struje stvaraju na otporima sklopa offsetne napone daleko manje od offsetnih napona pojačala. Nakon rješenja sustava jednadžbi čvorova slijedi izraz za struju IB The inverse current mirror is shown in Figure 2. When analyzing the circuit, it was assumed that the input resistance of amplifiers A1, A2 and A3 is much higher than the other resistances in the circuit, so it can be ignored. It is also assumed that the offset currents create offset voltages on the resistances of the circuit far smaller than the offset voltages of the amplifier. After the solution of the system of nodal equations follows the expression for the current IB

IB= A IA+B(IAr1 + IBr2) + B e1 - C e2- D e3 1 IB= A IA+B(IAr1 + IBr2) + B e1 - C e2- D e3 1

odnosno: that is:

IB= A IA+B (IAr1 + IBr2)+ Ios ; Ios=Be1-Ce2-De3 2 IB= A IA+B (IAr1 + IBr2)+ Ios ; Ios=Be1-Ce2-De3 2

gdje su faktori A,B,C i D: where factors A, B, C and D are:

[image] 3 [image] 3

[image] 4 [image] 4

[image] 5 [image] 5

[image] 6 [image] 6

Nezavisnost IB o otporima vodova r1 i r2 postiže se podešavanjem faktora B na nulu: The independence of IB on the resistances of lines r1 and r2 is achieved by setting the factor B to zero:

[image] 7 [image] 7

Vrijednost otpora R1 nezavisna je o uvjetu 7, pa se podešavanje R1 može iskoristiti za poništenje radne komponente neuravnoteženosti mosta. Analizom raspodjele napona duž polu-mosta slijedi za napon UA uz podešeno kompenziranje otpora vodova (B=O): The resistance value of R1 is independent of condition 7, so adjusting R1 can be used to cancel the working component of the bridge unbalance. By analyzing the voltage distribution along the half-bridge, it follows for the voltage UA with adjusted line resistance compensation (B=O):

[image] 8 [image] 8

Izraz 8 pokazuje zavisnost napona UA o faktoru A, tj: o vrijednosti R1, odnosno napon dijagonale mosta direktno je zavisan o izboru R1. Time R1 postaje element za podešavanje radne komponente ravnoteže mosta. Expression 8 shows the dependence of the voltage UA on the factor A, ie: on the value of R1, that is, the voltage of the diagonal of the bridge is directly dependent on the choice of R1. Thus, R1 becomes an element for adjusting the working component of the balance of the bridge.

Reaktivna ravnoteža mosta postiže se modifikacijom sklopa inverznog strujnog zrcala prema slici 3. Potenciometar R8 spojen je između čvorišta B i C, a njegov klizač je preko kondenzatora C spojen na masu. Odvod struje I' i I" zavisi o položaju klizača potenciometra R8: Reactive balance of the bridge is achieved by modifying the inverse current mirror assembly according to Figure 3. Potentiometer R8 is connected between hubs B and C, and its slider is connected to ground via capacitor C. Current drain I' and I" depends on the position of the slider of potentiometer R8:

[image] 9 [image] 9

[image] 10 [image] 10

što rezultira promjenom napona dijagonale mosta UΔ which results in a change in the bridge diagonal voltage UΔ

[image] 11 [image] 11

gdje je: where is:

[image] 12 [image] 12

ekvivalentna admitancija unesena u shemu mosta zavisna o položaju klizača potenciometra R8, a ZC i ZD su impedancije druge polovine mosta. Podešavanjem Y na vrijednost the equivalent admittance entered in the bridge scheme depends on the position of the slider of potentiometer R8, and ZC and ZD are the impedances of the other half of the bridge. By setting Y to a value

[image] 13 [image] 13

postiže se kompleksna ravnoteža mosta sukcesivnim podešavanjem R1 (faktor A) i omjera R6/R7 (admitancija Y). the complex balance of the bridge is achieved by successively adjusting R1 (factor A) and the ratio R6/R7 (admittance Y).

Navod o najboljem načinu za privrednu upotrebu: Citation of the best way for commercial use:

Uz poštivanje općih pravila elektroničke tehnologije potrebno je za optimalnu upotrebu osigurati slijedeće: In addition to respecting the general rules of electronic technology, it is necessary to ensure the following for optimal use:

1. Za minimiziranje drifta i pogreške mjerenja operacijska pojačala A1, A2 i A3 moraju biti visokokvalitetna s offsetnim naponima manjim od 100 μV i strujama manjim od 10 nA. 1. To minimize drift and measurement error, operational amplifiers A1, A2 and A3 must be of high quality with offset voltages less than 100 μV and currents less than 10 nA.

2. Otpornici R1, R2, R3, R4 i R5 moraju biti elementi hibridne otporne mreže s dobrom uparenosti temperaturnih koeficijenata pojedinih otpornika. 2. Resistors R1, R2, R3, R4 and R5 must be elements of a hybrid resistance network with a good matching of the temperature coefficients of individual resistors.

3. Nominalna vrijednost otpornika R1, R2, R3, R4 i R5 treba biti 100 Ohma. Time se osigurava optimalni rad uređaja za uzbudu mosta od 5 V i otpor grana mosta 350 Ohma. (praktički industrijski standard za mjerenje s rasteznim mjernim trakama-"strain gauges") 3. The nominal value of resistors R1, R2, R3, R4 and R5 should be 100 Ohms. This ensures optimal operation of the 5 V bridge excitation device and 350 Ohm bridge branch resistance. (practical industry standard for measuring with strain gauges)

4. Za podešavanje radne ravnoteže mosta treba otporniku R1 paralelno dodati stabilni otpornik od 1 kOhm, a u seriju precizni potenciometar od 20 Ohma. 4. To adjust the working balance of the bridge, a stable resistor of 1 kOhm should be added in parallel to resistor R1, and a precision potentiometer of 20 Ohm in series.

5. Potenciometar R8 za podešavanje reaktivne ravnoteže treba biti nominalne vrijednosti 1 kOhm i visoke stabilnosti. 5. Potentiometer R8 for adjusting the reactive balance should be of nominal value 1 kOhm and of high stability.

6. Kondenzator C treba biti nominalne vrijednosti 10 nF i visoke stabilnosti. 6. Capacitor C should be of nominal value 10 nF and of high stability.

7. Maksimalna izlazna struja A1, A2 i A3 mora biti barem 20 mA za nominalne vrijednosti otpornika R1 do R5 od 100 Ohma i nominalni otpor grana mosta 350 Ohma, te uzbudu mosta od 5 V. 7. The maximum output current of A1, A2 and A3 must be at least 20 mA for the nominal values of resistors R1 to R5 of 100 Ohms and the nominal resistance of the bridge branches of 350 Ohms, and the bridge excitation of 5 V.

Claims (3)

1. Uređaj za kompenzaciju otpora vodova i kompleksno uravnoteženje električnog mosta prema slici 1, naznačen time, što je jedan polizvora uzbude mosta E spojen na neinvertirajući ulaz operacijskog pojačala A+ čiji izlaz preko otpora vodiča r+ napaja jedan kraj impedancije grane mosta ZA dok je isti kraj ZA preko otpora drugog vodiča r'+ spojen na invertirajući ulaz pojačala A+, te je drugi kraj impedancije Z, preko otpora vodiča r'+ spojen na invertirajući ulaz operacijskog pojačala A+, a preko otpora vodiča r'+ spojen na strujni ponor upravljanog inverznog strujnog zrcala, dok je izvor strujnog zrcala preko otpora vodiča r1 spojen na jedan kraj impedancije grane mosta ZB koji je preko otpora vodiča r2spojen na neinvertirajući ulaz pojačala A1 i operacijskog pojačala AG čiji izlaz je spojen na invertirajući ulaz pojačala AG i na sve oklope kablova do impedancija ZA i ZB, a izlaz pojačala A1 spojen je na upravljačku stezaljku upravljanog strujnog zrcala, dok je drugi kraj impedancije ZB preko otpora vodiča r_ spojen na izlaz operacijskog pojačala A_, a preko otpora vodiča r'_ spojen je na invertirajući ulaz pojačala A_ čiji neinvertirajući ulaz je spojen na drugi pol izvora uzbude mosta E.1. Device for compensating line resistance and complex balancing of an electric bridge according to Figure 1, indicated by the fact that one polysource of the bridge excitation E is connected to the non-inverting input of the operational amplifier A+ whose output through the conductor resistance r+ supplies one end of the impedance of the bridge branch ZA while the same end is ZA is connected to the inverting input of the amplifier A+ through the resistance of the second conductor r'+, and the other end of the impedance Z, through the resistance of the conductor r'+ is connected to the inverting input of the operational amplifier A+, and through the resistance of the conductor r'+ is connected to the current sink of the controlled inverse current mirror, while the source of the current mirror is connected through the resistance of the conductor r1 to one end of the impedance of the branch of the bridge ZB, which is connected through the resistance of the conductor r2 to the non-inverting input of the amplifier A1 and the operational amplifier AG whose output is connected to the inverting input of the amplifier AG and to all cable shields to the impedances ZA and ZB, and the output of the amplifier A1 is connected to the control terminal of the controlled current mirror, while the other end of the impedance ZB through the resistance of the conductor r_ connected to the output of the operational amplifier A_, and through the resistance of the conductor r'_ it is connected to the inverting input of the amplifier A_ whose non-inverting input is connected to the other pole of the excitation source of the bridge E. 2. Uređaj za kompenzaciju otpora vodova i kompleksno uravnoteženje električnog mosta prema zahtjevu 1, sa inverznim strujnim zrcalom prema slici 2, naznačen time, što je jedan kraj impedancije grane mosta ZA preko otpora vodiča r'1 spojen s invertirajućim ulazom operacijskog pojačala A1, a preko otpora vodiča r1 spojen s neinvertirajućim ulazom operacijskog pojačala A3, i jednim krajem otpornika R1, čiji je drugi ,kraj spojen s izlazom pojačala A1, i jednim krajem otpornika R2 čiji je drugi kraj spojen s invertirajućim ulazom operacijskog pojačala A2 i jednim krajem otpornika R3, dok je drugi kraj otpornika R3 spojen s izlazom pojačala A2 i jednim krajem otpornika R4 čiji je drugi kraj spojen s neinvertirajućim ulazom pojačala A2 i jednim krajem otpornika R5, te je preko otpora vodiča r2 spojen s jednim krajem impedancije grane mosta ZB, a taj kraj ZB je preko otpora vodiča r'2 spojen s neinvertirajućim ulazom pojačala A1, dok je drugi kraj otpora R5 spojen s invertirajućim ulazom i izlazom pojačala A.2. Device for compensating line resistance and complex balancing of an electric bridge according to claim 1, with an inverse current mirror according to Figure 2, indicated by the fact that one end of the impedance of the bridge branch ZA is connected to the inverting input of the operational amplifier A1 through the resistance of the conductor r'1, and through the resistance of the conductor r1 connected to the non-inverting input of the operational amplifier A3, and one end of the resistor R1, the other end of which is connected to the output of the amplifier A1, and one end of the resistor R2, the other end of which is connected to the inverting input of the operational amplifier A2 and one end of the resistor R3 , while the other end of the resistor R3 is connected to the output of the amplifier A2 and one end of the resistor R4, the other end of which is connected to the non-inverting input of the amplifier A2 and one end of the resistor R5, and is connected through the resistance of the conductor r2 to one end of the impedance of the branch of the bridge ZB, and that end ZB is connected to the non-inverting input of the amplifier A1 through the resistance of the conductor r'2, while the other end of the resistance R5 is connected to the inverting input and from by amplifier A. 3. Uređaj za kompenzaciju otpora vodova i kompleksno uravnoteženje električnog mosta prema zahtjevu 1, s podešavanjem reaktivne ravnoteže mosta prema slici 3, naznačen time, što je izlaz operacijskog pojačala A, spojen s jednim krajem otpornika R1, i jednim krajem otpornika R2 čiji je drugi kraj spojen s jednim krajem potenciometra R8, invertirajućim ulazom operacijskog pojačala A2 i jednim krajem otpornika R3, čiji je drugi kraj spojen s izlazom pojačala A2 i jednim krajem otpornika R4 dok je drugi kraj otpornika R4 spojen s ne-invertirajućim ulazom pojačala A2, jednim krajem otpornika R5, te s drugim krajem potenciometra R8 čiji je klizač spojen na jedan kraj kondenzatora C dok je drugi kraj kondenzatora spojen na referentni potencijal (masu).3. Device for compensation of line resistance and complex balancing of an electric bridge according to claim 1, with adjustment of the reactive balance of the bridge according to Figure 3, indicated by the fact that the output of the operational amplifier A is connected to one end of the resistor R1, and one end of the resistor R2, the other of which is end connected to one end of the potentiometer R8, the inverting input of the operational amplifier A2 and one end of the resistor R3, the other end of which is connected to the output of the amplifier A2 and one end of the resistor R4 while the other end of the resistor R4 is connected to the non-inverting input of the amplifier A2, one end resistor R5, and with the other end of the potentiometer R8 whose slider is connected to one end of the capacitor C while the other end of the capacitor is connected to the reference potential (ground).
HRP920220AA 1992-07-14 1992-07-14 APPARATUS FOR WATER RESISTANCE COMPENSATION AND COMPLEX BRIDGING HRP920220A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP920220AA HRP920220A2 (en) 1992-07-14 1992-07-14 APPARATUS FOR WATER RESISTANCE COMPENSATION AND COMPLEX BRIDGING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP920220AA HRP920220A2 (en) 1992-07-14 1992-07-14 APPARATUS FOR WATER RESISTANCE COMPENSATION AND COMPLEX BRIDGING

Publications (1)

Publication Number Publication Date
HRP920220A2 true HRP920220A2 (en) 1994-04-30

Family

ID=59076270

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP920220AA HRP920220A2 (en) 1992-07-14 1992-07-14 APPARATUS FOR WATER RESISTANCE COMPENSATION AND COMPLEX BRIDGING

Country Status (1)

Country Link
HR (1) HRP920220A2 (en)

Similar Documents

Publication Publication Date Title
Hamon A 1-100 Ω build-up resistor for the calibration of standard resistors
EP2993480A1 (en) Voltage sensor
US9753062B2 (en) System and method for current measurement in the presence of high common mode voltages
US4158808A (en) Load source simulator
US4393347A (en) Common mode voltage rejection circuit
US20040100248A1 (en) Constant input impedance AC coupling circuit for a current probe system
JPH01191067A (en) Measuring method and circuit for ohm meter
US5606250A (en) Measurement device with common mode current cancellation
HRP920220A2 (en) APPARATUS FOR WATER RESISTANCE COMPENSATION AND COMPLEX BRIDGING
Yamada et al. Design method for a wideband resistive voltage divider based on average impedance matching with optimal solution methods
KR20160144262A (en) Current detecting circuit
JP3332660B2 (en) Electric quantity measuring device
KR850000359B1 (en) In-phase voltage elimination circuit for hall element
JPH04269660A (en) Electric measuring apparatus
JP3716308B2 (en) High resistance measuring method and high resistance measuring apparatus
Rymer et al. Potentiometer circuit for measurement of high potential
CN109991478A (en) Inductance measurement device and inductance measurement method
US3443222A (en) Means for eliminating the effects of resistances in electrical measuring apparatus
SU822079A1 (en) Low-resistance complex resistance meter
WO2001051937A1 (en) Device and method for calibration of an electricity meter
SU1170378A1 (en) Two-terminal network voltage-current characteristic meter
SU1718126A1 (en) Ac transformer bridge
SU873153A1 (en) Device for measuring voltage follower input impedance and input capacitance
JPH055503Y2 (en)
CZ35768U1 (en) Apparatus for measuring mains voltage parameters

Legal Events

Date Code Title Description
A1OB Publication of a patent application
ODBC Application rejected