HRP20221026T1 - Sustav i postupak daljinskog nadzora integriteta cijevi pod pritiskom pomoću vibroakustičnih izvora - Google Patents

Sustav i postupak daljinskog nadzora integriteta cijevi pod pritiskom pomoću vibroakustičnih izvora Download PDF

Info

Publication number
HRP20221026T1
HRP20221026T1 HRP20221026TT HRP20221026T HRP20221026T1 HR P20221026 T1 HRP20221026 T1 HR P20221026T1 HR P20221026T T HRP20221026T T HR P20221026TT HR P20221026 T HRP20221026 T HR P20221026T HR P20221026 T1 HRP20221026 T1 HR P20221026T1
Authority
HR
Croatia
Prior art keywords
pipe
pressure
fluid
point
acoustic signal
Prior art date
Application number
HRP20221026TT
Other languages
English (en)
Inventor
Giuseppe Giunta
Giancarlo Bernasconi
Massimo Signori
Original Assignee
Eni S.P.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eni S.P.A. filed Critical Eni S.P.A.
Publication of HRP20221026T1 publication Critical patent/HRP20221026T1/hr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • G01M3/2815Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes using pressure measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0025Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of elongated objects, e.g. pipes, masts, towers or railways
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/043Complex trajectories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2636Surfaces cylindrical from inside
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves

Claims (10)

1. Sustav nadzora cijevi (10) za transport fluida na unaprijed definiranoj vrijednosti (P) pritiska, pri čemu sustav sadrži najmanje jedan uređaj (12) generatora impulsa pritiska hidraulički povezan sa fluidom kojeg transportira cijev (10), pri čemu svaki uređaj (12) generatora impulsa pritiska sadrži: - najmanje jedan prvi rezervoar (14), projektiran da sadrži prvu unaprijed definiranu količinu fluida koji dolazi iz cijevi (10) i da održava navedenu prvu unaprijed definiranu količinu fluida na prvoj vrijednosti (P1) pritiska koja je manja od unaprijed definirane vrijednosti (P) pritiska fluida kojeg transportira cijev (10); - najmanje jedan drugi rezervoar (16), projektiran da sadrži unaprijed definiranu količinu fluida koja dolazi iz cijevi (10) i da održava navedenu drugu unaprijed definiranu količinu fluida na drugoj vrijednosti (P2) pritiska koja je veća od unaprijed definirane vrijednosti (P) pritiska fluida kojeg transportira cijev (10), pri čemu su navedeni prvi rezervoar (14) i navedeni drugi rezervoar (16) konfigurirani da generiraju, tim redoslijedom, impuls negativnog pritiska, izazvan prolazom fluida iz cijevi (10) do navedenog prvog rezervoara (14), i impuls pozitivnog pritiska, izazvan prolaskom fluida iz navedenog drugog rezervoara (16) do cijevi (10); - najmanje jedan pretvarač (18) pritiska, projektiran da mjeri vrijednosti pritiska fluida i da konvertira navedene vrijednosti pritiska u odgovarajuće snimljene akustične signale (s(t)), - sustav nadzora koji pored toga sadrži najmanje jednu mjernu stanicu (22, 24) postavljenu duž cijevi i opremljenu jednim ili više vibroakustičnih senzora konfiguriranih da snimaju akustične signale (sA(t), sB(t)) koje generira jedan ili više uređaja (12) generatora impulsa pritiska.
2. Sustav prema patentnom zahtjevu 1, koji sadrži najmanje jedan par mjernih stanica (22, 24) postavljenih na unaprijed definiranoj udaljenosti duž cijevi (10) .
3. Sustav prema patentnom zahtjevu 1 ili 2, gdje svaki uređaj (12) generatora impulsa pritiska sadrži veći broj elektromagnetnih ventila (20) projektiranih da kontroliraju kretanje fluida kroz cijev (10) do uređaja (12) generatora impulsa pritiska i obrnuto.
4. Sustav prema bilo kojem od patentnih zahtjeva od 1 do 3, koji sadrži centraliziranu jedinicu za obradu koja je konfigurirana da obrađuje podatke koji dolaze od navedenog najmanje jednog uređaja (12) generatora impulsa pritiska i navedene najmanje jedne mjerne stanice (22, 24).
5. Postupak nadzora cijevi (10) korištenjem sustava prema bilo kojem od prethodnih patentnih zahtjeva, pri čemu postupak obuhvata sljedeće korake: - generiranje najmanje jednog akustičnog signala od strane odgovarajućeg uređaja (12) generatora impulsa pritiska; - prijem, od strane najmanje jedne mjerne stanice (22, 24), navedenog najmanje jednog akustičnog signala (sA(t), sB(t)) ; - filtriranje navedenog najmanje jednog akustičnog signala (sA(t), sB(t)), kako bi se održao navedeni najmanje jedan zvučni signal (sA(t), sB(t)) u unaprijed definiranom opsegu frekvencija, korisnom za dobivanje energije navedenog najmanje jednog akustičnog signala (sA(t), sB(t)); - povratna propagacija navedenog najmanje jednog akustičnog signala (sA(t), sB(t)) na odgovarajućem skupu točaka duž cijevi (10); - za svaku točku skupa, izvođenje unakrsne korelacije na pokretnom vremenskom periodu na navedenom najmanje jednom akustičnom signalu (sA(t), sB(t)) koji se povratno širi na način da se iz njih izvuče energetska vrijednost. - za svaku točku skupa, dobivanje integrala kao funkcije vremena vrijednosti energije dobivene u fazi unakrsne korelacije i primjena graničnog kriterija za aktiviranje mogućeg alarmnog signala, gdje skup energetskih vrijednosti integriran kao funkcija vremena formira mapu u odnosu na vrijeme i položaj duž cijevi na kojoj su moguće anomalije cijevi (10) predstavljene vrhovima navedenih energetskih vrijednosti.
6. Postupak prema patentnom zahtjevu 5, gdje dva različita akustična signala (sA(t), sB(t)) snimaju dvije mjerne stanice (22, 24) nakon aktiviranja uređaja (12) generatora impulsa pritiska, pri čemu navedena dva akustična signala (sA(t), sB(t)) primaju dvije susjedne mjerne stanice (22,24) postavljene na suprotnim krajevima A i B dionice (A-B) cijevi (10) unaprijed definirane dužine.
7. Postupak prema patentnom zahtjevu 6, gdje navedena dva akustična signala (sA(t), sB(t)) se povratno šire, tim redoslijedom, od točke A do točke B i od točke B do točke A navedene dionice (A-B) cijevi (10) na odgovarajućim skupovima točaka duž navedene dionice (A-B) cijevi (10).
8. Postupak prema patentnom zahtjevu 6 ili 7, gdje je integral kao funkcija vremena energetske vrijednosti, na generičkoj poziciji (x) duž navedene dionice (A-B) cijevi (10): [image] gdje - [image] je Furieova transformacija procijenjenog signala koji se generira u navedenoj generičkoj poziciji (x) pomoću povratne propagacije akustičnog signala (sA(t)) mjereno u točki A; - SA(f) je Furieova transformacija akustičnog signala sA(t), gdje je (f) frekvencija; - ŝCA(t) je inverzna Furieova transformacija od ŜCA(f); - [image] je Furieova transformacija procijenjenog signala koji se generira u navedenoj generičkoj poziciji (x) pomoću povratne propagacije akustičnog signala (sB(t)) mjereno u točki B; - SB(f) je Furieova transformacija akustičnog signala sB(t), gdje je (f) frekvencija; - ŝCB(t) je inverzna Furieova transformacija od ŜCB(f); - HAB(f) je funkcija prijenosa za prelaze pritiska koji se šire od točke A do točke B navedene dionice (A-B) cijevi (10); i - v je brzina zvuka unutar fluida koji teče od točke A do točke B navedene dionice (A-B) cijevi (10).
9. Postupak prema bilo kojem od patentnih zahtjeva 5 do 8, gdje na navedenom najmanje jednom akustičnom signalu (sA(t), sB(t)) najmanje jedna od sljedećih procedura se primjenjuje na osnovu pravca dolaska navedenog najmanje jednog akustičnog signala (sA(t), sB(t)): - prilagođeno filtriranje; - dekonvolucija; - adaptivno smanjenje šuma.
10. Postupak prema bilo kojem od patentnih zahtjeva 5 do 9, koji obuhvaća korak kalibracije sustava da bi se postavila vrijednost praga da bi se primijenio navedeni granični kriterij.
HRP20221026TT 2017-11-15 2018-11-14 Sustav i postupak daljinskog nadzora integriteta cijevi pod pritiskom pomoću vibroakustičnih izvora HRP20221026T1 (hr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT201700130593 2017-11-15
PCT/EP2018/081245 WO2019096854A1 (en) 2017-11-15 2018-11-14 System and method of remote monitoring of the integrity of pressurised pipes by means of vibroacoustic sources
EP18799561.8A EP3710804B1 (en) 2017-11-15 2018-11-14 System and method of remote monitoring of the integrity of pressurised pipes by means of vibroacoustic sources

Publications (1)

Publication Number Publication Date
HRP20221026T1 true HRP20221026T1 (hr) 2022-11-11

Family

ID=61527286

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP20221026TT HRP20221026T1 (hr) 2017-11-15 2018-11-14 Sustav i postupak daljinskog nadzora integriteta cijevi pod pritiskom pomoću vibroakustičnih izvora

Country Status (9)

Country Link
US (1) US11442043B2 (hr)
EP (1) EP3710804B1 (hr)
DK (1) DK3710804T3 (hr)
EA (1) EA202091008A1 (hr)
HR (1) HRP20221026T1 (hr)
HU (1) HUE059652T2 (hr)
PL (1) PL3710804T3 (hr)
RS (1) RS63560B1 (hr)
WO (1) WO2019096854A1 (hr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11455445B2 (en) * 2018-08-20 2022-09-27 Halliburton Energy Services, Inc. Method and system for non-intrusively inspecting a fluidic channel

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3045660C2 (de) * 1980-12-04 1982-10-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Verfahren und Einrichtung zum Orten von Leckstellen in Rohrleitungen
TW295623B (hr) 1994-08-19 1997-01-11 Caldon Co
DE69610907D1 (de) 1995-03-14 2000-12-14 Profile Technologies Inc Reflektometrieverfahren für isolierte Röhren
AU1984597A (en) 1996-02-27 1997-09-16 Profile Technologies, Inc. Pipe testing apparatus and method
US6751560B1 (en) 2000-08-01 2004-06-15 The Charles Stark Draper Laboratory, Inc. Non-invasive pipeline inspection system
WO2008066904A2 (en) 2006-11-30 2008-06-05 Profile Technologies, Inc. Systems and methods for detecting anomalies on internal surfaces of hollow elongate structures using time domain or frequency domain reflectometry
GB2444955A (en) 2006-12-20 2008-06-25 Univ Sheffield Leak detection device for fluid filled pipelines
US20120312078A1 (en) 2011-06-09 2012-12-13 Mehrdad Sharif Bakhtiar Pipeline reflectometry apparatuses and methods
DE102012101416C5 (de) 2012-02-22 2019-03-28 Hochschule Offenburg Verfahren und Vorrichtung zur Bestimmung von Eigenschaften einer Rohrleitung, insbesondere der Position eines Abzweigs einer Abwasserrohrleitung
GB201211515D0 (en) 2012-06-28 2012-08-08 Pipelines 2 Data P2D Ltd Methods and apparatus for acoustic assessment of fluid conduits
ITMI20122197A1 (it) 2012-12-20 2014-06-21 Eni Spa Metodo e sistema di monitoraggio continuo da remoto dell'integrita' di condotte in pressione e delle proprieta' dei fluidi trasportati
GB2517411A (en) 2013-07-17 2015-02-25 Atmos Wave Ltd Monitoring pipelines
EA028210B1 (ru) 2014-05-14 2017-10-31 Эни С.П.А. Способ и система для непрерывного дистанционного контроля положения и скорости продвижения скребкового устройства внутри трубопровода
US11060668B2 (en) 2015-07-16 2021-07-13 Adelaide Research & Innovation Pty Ltd Multiple transducer method and system for pipeline analysis

Also Published As

Publication number Publication date
PL3710804T3 (pl) 2022-11-14
WO2019096854A1 (en) 2019-05-23
RS63560B1 (sr) 2022-10-31
EP3710804B1 (en) 2022-08-03
HUE059652T2 (hu) 2022-12-28
DK3710804T3 (da) 2022-08-29
EA202091008A1 (ru) 2020-07-29
US11442043B2 (en) 2022-09-13
EP3710804A1 (en) 2020-09-23
US20200309741A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
DK2944857T3 (en) PROCEDURE AND SYSTEM FOR THE CONTINUOUS REMOTE MONITORING OF A BORN INSTALLATION AND DETECTION OF ANOMALIES IN A PRESSURE PIPELINE
NO20073480L (no) Fremgangsmate, apparater og systemer for akustisk propageringshastighetsmodellering
AU2015402240B2 (en) Multiple transducer method and system for pipeline analysis
WO2014091513A3 (en) System and method for supervising, managing, and monitoring the structural integrity of a fluid-transportation pipeline network, for locating the leaking point, and for evaluating the extent of the failure
EA201590959A1 (ru) Способ и система для непрерывного дистанционного контроля целостности трубопроводов под давлением и свойств транспортируемых текучих сред
WO2017132765A3 (en) Systems and methods for sensing an environment with wireless communication signals
EP3739296A4 (en) METHOD, SYSTEM AND DEVICE FOR TRIP PLANNING OF MULTIPLE VEHICLES ON THE BASIS OF TIME WINDOW, AND STORAGE MEDIA
Liu et al. Leakage monitoring research and design for natural gas pipelines based on dynamic pressure waves
WO2017011850A8 (en) Method and system for pipeline condition analysis
MX2016011359A (es) Descomposicion de tiempo-frecuencia de la señal ultrasonica para la evaluacion del agujero o la inspeccion de la linea de conduccion.
HRP20221026T1 (hr) Sustav i postupak daljinskog nadzora integriteta cijevi pod pritiskom pomoću vibroakustičnih izvora
RU2015113235A (ru) Способ и система для непрерывного дистанционного контроля деформаций в находящемся под давлением трубопроводе
US20230024577A1 (en) System and method for detecting a defect in a railway track rail
MX368948B (es) Método ultrasónico y dispositivo para medir flujo de fluido.
EP4155165A4 (en) TRAIN INTEGRITY MONITORING DEVICE AND METHOD BASED ON RFID TECHNOLOGY
WO2016118393A3 (en) Acoustic transducers for fiber-optic-based acoustic sensing
CN106289121A (zh) 一种变径管等效管长的计算方法
AR104123A1 (es) Sistemas y métodos para la estimación de estados, estimación de perturbaciones y adaptación de modelos para sistemas de perforación rotativos direccionales
CN203948955U (zh) 一种管道堵塞监测系统
CN105953080A (zh) 基于同侧传感器布置的声波泄漏定位方法
MX2018003383A (es) Determinación de profundidad de nodo y velocidad de tránsito de columna de agua.
US20160258834A1 (en) Synchronization-free pipeline leak detection system and method
Reza Asadi Asad Abad et al. Discrete wavelet transform and artificial neural network for gearbox fault detection based on acoustic signals
WO2020072116A3 (en) System and method for acoustic detection of emergency sirens
CN204026159U (zh) 一种管道堵塞监测系统