HRP20211027A1 - Slope woven textile force and strain sensor - Google Patents

Slope woven textile force and strain sensor Download PDF

Info

Publication number
HRP20211027A1
HRP20211027A1 HRP20211027AA HRP20211027A HRP20211027A1 HR P20211027 A1 HRP20211027 A1 HR P20211027A1 HR P20211027A A HRP20211027A A HR P20211027AA HR P20211027 A HRP20211027 A HR P20211027A HR P20211027 A1 HRP20211027 A1 HR P20211027A1
Authority
HR
Croatia
Prior art keywords
yarn
textile
threads
force
woven
Prior art date
Application number
HRP20211027AA
Other languages
Croatian (hr)
Inventor
Željko Knezić
Dubravko Rogale
Original Assignee
Sveučilište U Zagrebu Tekstilno-Tehnološki Fakultet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sveučilište U Zagrebu Tekstilno-Tehnološki Fakultet filed Critical Sveučilište U Zagrebu Tekstilno-Tehnološki Fakultet
Priority to HRP20211027AA priority Critical patent/HRP20211027A1/en
Publication of HRP20211027A1 publication Critical patent/HRP20211027A1/en

Links

Abstract

Tekstilni koso tkani senzor sile i istezanja načinjen je u obliku koso tkane tekstilne vrpce (1). Sastoji se od dvije vrste niti točno određenih karakteristika: konvencionalne češljane više nitne končane pamučne pređe (2) i končane elektrovodljive niti (3). Konvencionalna češljana više nitna končana pamučna pređa (2) sastoji se samo od pamučne češljane pređe (4). Končana elektrovodljiva nit (3) sastoji se od upredene pamučne češljane pređe (4) i elektrovodljivih niti (5). Navedene končane pređe tkaju se tehnikom ručnog kosog tkanja bez izraženog posebnog sustava potke na način da obje vrste pređa tvore dijagonalnu tekstilnu plošnu tvorevinu u platnenom vezu s karakterističnim zatvorenim rubom (6) na kojem niti izmjenice mijenjaju smjer dijagonale, a istodobno imaju zadaću sprječavanja osipanja strukture vrpce. Uzdužnim djelovanjem sile na tekstilni koso tkani senzor sile i istezanja dolazi do istezanja vrpce pri čemu dolazi do njenog suženja i istodobnog povećanja gustoće pređa te pojave kompresijskih sila koje utječu na dijagonalno utkane elektrovodljive niti na način da se smanjuje kontaktni otpor i povećava ukupna električka vodljivost senzora u skladu s veličinom rastezne sile.The slope woven textile force and strain sensor is made in the form of a slope woven textile ribbon (1). It consists of two types of threads with precisely defined characteristics: conventional combed multifilament twisted cotton yarn (2) and twisted electrically conductive yarn (3). Conventional combed multifilament twisted cotton yarn (2) consists only of cotton combed yarn (4). The twisted electrically conductive thread (3) consists of spun cotton combed yarn (4) and electrically conductive threads (5). The above-mentioned twisted yarns are woven using the technique of hand slope weaving without an expressive special weft system in such a way that both types of yarns form a diagonal textile plain fabric in a cloth weave with a characteristic closed edge (6) on which the alternating threads change the direction of the diagonal, and at the same time have the task of preventing the structure from shedding ribbons. Due to the longitudinal action of the force on the slope woven textile force and strain sensor, the ribbon is stretched, which leads to its narrowing and a simultaneous increase in the density of the yarn, as well as the occurrence of compression forces that affect the diagonally woven electrically conductive threads in such a way that the contact resistance is reduced and the overall electrical conductivity of the sensor is increased in accordance with the magnitude of the strain force.The textile diagonally woven force and stretch sensor is made in the form of a diagonally woven textile ribbon (1). It consists of two types of threads with precisely defined characteristics: conventional combed multifilament knitted cotton yarn (2) and knitted electroconductive yarn (3). Conventional combed multifilament knitted cotton yarn (2) consists only of cotton combed yarn (4). The finished electroconductive thread (3) consists of twisted cotton combed yarn (4) and electroconductive threads (5). The above-mentioned knitted yarns are woven using the technique of hand bias weaving without a pronounced special weft system, in such a way that both types of yarn form a diagonal textile fabric in a cloth weave with a characteristic closed edge (6) on which the alternating threads change the direction of the diagonal, and at the same time have the task of preventing the structure from shedding ribbons. Due to the longitudinal action of the force on the textile diagonally woven force and stretch sensor, the ribbon is stretched, which leads to its narrowing and a simultaneous increase in the density of the yarn, as well as the occurrence of compression forces that affect the diagonally woven electrically conductive threads in such a way that the contact resistance is reduced and the overall electrical conductivity of the sensor is increased. in accordance with the magnitude of the stretching force. The slope woven textile force and strain sensor is made in the form of a slope woven textile ribbon (1). It consists of two types of threads with precisely defined characteristics: conventional combed multifilament twisted cotton yarn (2) and twisted electrically conductive yarn (3). Conventional combed multifilament twisted cotton yarn (2) consists only of cotton combed yarn (4). The twisted electrically conductive thread (3) consists of spun cotton combed yarn (4) and electrically conductive threads (5). The above-mentioned twisted yarns are woven using the technique of hand slope weaving without an expressive special weft system in such a way that both types of yarns form a diagonal textile plain fabric in a cloth weave with a characteristic closed edge (6) on which the alternating threads change the direction of the diagonal, and at the same time have the task of preventing the structure from shedding ribbons. Due to the longitudinal action of the force on the slope woven textile force and strain sensor, the ribbon is stretched, which leads to its narrowing and a simultaneous increase in the density of the yarn, as well as the occurrence of compression forces that affect the diagonally woven electrically conductive threads in such a way that the contact resistance is reduced and the overall electrical conductivity of the sensor is increased in accordance with the magnitude of the strain force.

Description

Područje tehnike na koje se izum odnosi Technical field to which the invention relates

Područje tehnike na koji se izum odnosi prema Međunarodnoj klasifikaciji patenata MKP je Fizika G, Mjerenja sile G01L, korištenjem promjena omskog otpora, odnosno G01L 5/161 i Tekstil D, Tkanje D03 korištenjem specijalnog razmještaja osnove ili potke npr. s dijagonalnim osnovama ili potkama, odnosno D03D 13/00. The field of technique to which the invention relates according to the International Classification of Patents MKP is Physics G, Force Measurements G01L, using ohmic resistance changes, i.e. G01L 5/161 and Textiles D, Weaving D03 using a special arrangement of the warp or weft, for example with diagonal warps or wefts, or D03D 13/00.

Tehnički problem za čije se rješenje traži zaštita Technical problem for the solution of which protection is requested

Razvojem inteligentne odjeće pojavila se potreba ugradnje senzora, procesora, aktuatora, baterija, ožičenja i prikaznika u odjevne predmete. Poseban problem predstavlja ugradnja senzorike čija je zadaća praćenje stanja u okolišu odjevnog predmeta, unutar odjevnog predmeta i biometrijskog stanja nositelja takve vrste odjeće. Pokazalo se da su postojeće vrste senzora najčešće ugrađene u metalna, plastična ili staklena kućišta koja su dimenzijski znatno veća od debljina tkanina, sklona su lomu i oštećenjima, kruta su (nesavitljiva i nerastezljiva) te izazivaju neugodan osjećaj pri dodiru s tijelom, iritaciju, pa čak i bol, tako da nisu primjerena za izravnu ugradnju u odjeću. With the development of intelligent clothing, there was a need to incorporate sensors, processors, actuators, batteries, wiring and displays into clothing items. A special problem is the installation of sensors whose task is to monitor the condition in the environment of the garment, inside the garment and the biometric state of the wearer of this type of clothing. It has been shown that the existing types of sensors are most often installed in metal, plastic or glass housings, which are dimensionally significantly larger than the thickness of the fabrics, are prone to breakage and damage, are rigid (inflexible and non-stretchable) and cause an unpleasant sensation when touching the body, irritation, etc. even pain, so they are not suitable for direct incorporation into clothing.

Rješenje navedenog problema ogleda se u izumu senzora čija je struktura najvećim dijelom tekstilna čime poprimaju i pozitivna tekstilna obilježja ugode nošenja: mekoću, savitljivost, podatnost, istezljivost, toplinsku ugodu i kontaktnu ugodu tijekom izravnog dodira takvog senzora s kožom ljudskog tijela. Takav senzor se može izravno ugraditi u inteligentnu odjeću ne narušavajući pozitivna obilježja odjeće. Za njegovu izvedbu potrebna je pređa sa svojstvima električne vodljivosti i posebna tehnika tkanja koja će senzoru dati potrebnu elastičnost, mekoću i čvrstoću na istezanje. Za potrebe ugradnje senzora ugrađenih u inteligentnu odjeću najviše se traži senzor sile i istezanja koji se može upotrijebiti kao senzor respiracije nositelja mjereći silu i istezanje prsnog koša, a koji se u obliku tkane tekstilne elastične vrpce izravno ušiva u odjevni predmet. Služi za registriranje respiracije u sportskoj odjeći, ali i za medicinske svrhe za liječenje apneje (zastoja disanja u odraslih i dojenčadi). Isto tako mogu se registrirati pokreti udova sportaša i starijih osoba. Sile istezanja u takvih senzora moraju biti male da ne ometaju disanje i kretanje udova tijela, a tekstilni karakter im omogućava primjenu konvencionalnih tehnika spajanja koje se upotrebljavaju u tehnološkim procesima proizvodnje odjeće. The solution to the mentioned problem is reflected in the invention of a sensor whose structure is mostly textile, which takes on the positive textile characteristics of wearing comfort: softness, flexibility, pliability, stretchability, thermal comfort and contact comfort during direct contact of such a sensor with the skin of the human body. Such a sensor can be directly incorporated into intelligent clothing without impairing the positive characteristics of the clothing. Its execution requires yarn with electrical conductivity properties and a special weaving technique that will give the sensor the necessary elasticity, softness and tensile strength. For the purposes of installing sensors built into intelligent clothing, a force and stretch sensor that can be used as a wearer's respiration sensor by measuring the force and stretch of the chest, and which is sewn directly into the garment in the form of a woven textile elastic band, is most sought after. It is used for registering respiration in sports clothes, but also for medical purposes for the treatment of apnea (stoppage of breathing in adults and infants). Limb movements of athletes and the elderly can also be registered. The stretching forces in such sensors must be small so as not to interfere with breathing and the movement of the body's limbs, and their textile character enables the application of conventional joining techniques used in the technological processes of clothing production.

Stanje tehnike State of the art

U patentu US2007141939A1 opisan je senzor koji ima troslojnu konstrukciju koja obuhvaća prvu pletenu vodljivu tekstilnu ravninu, drugu vodljivu tekstilnu ravninu i međuodvojnu ravninu za razdvajanje u koju prodire prva pletena vodljiva tekstilna ravnina kako bi se omogućilo da prva vodljiva tekstilna ravnina i druga vodljiva tekstilna ravnina ostvare električni kontakt pod mehaničkom interakcijom. Srednja razdvajajuća ravnina definira strukturne krajnje točke od kojih se prva pletena vodljiva tekstilna ravnina deformira prema drugoj vodljivoj tekstilnoj ravnini pod mehaničkom interakcijom. Prva pletena vodljiva tekstilna ravnina ima provodnu pređu pletenu da tvori ponavljajući uzorak pletiva, od kojih svaki sadrži dio vodljivu pređu tako da struktura može ostvariti električni kontakt pod djelovanjem sile, odnosno tvori tekstilnu tipku ili sklopku. US2007141939A1 describes a sensor having a three-layer construction comprising a first knitted conductive textile plane, a second conductive textile plane and an intermediate separation plane into which the first knitted conductive textile plane penetrates to allow the first conductive textile plane and the second conductive textile plane to achieve electrical contact under mechanical interaction. The middle parting plane defines the structural endpoints from which the first knitted conductive textile plane deforms towards the second conductive textile plane under mechanical interaction. The first knitted conductive textile plane has conductive yarns knitted to form a repeating weave pattern, each of which contains a portion of conductive yarn so that the structure can make electrical contact under the action of force, i.e. forming a textile button or switch.

Metoda za izradu tekstilnog senzora opisana je u patentu WO2015022671A1 i može obuhvaćati odabir kombinacije varijabli iz skupine koja se sastoji od varijabli pređe, varijabli šava i varijabli pletiva s elektrovodljivom pređom u tekstilnom senzoru pri čemu je kombinacija varijabli odabrana tako da daje kontroliranu količinu kontaktnog otpora u tekstilnom senzoru. Postupak i tekstil mogu obuhvaćati kapacitivni tekstilni senzor koji ima najmanje dva cjelovito pletena elementa kondenzatorske ploče i ima konfiguraciju prilagođenu senzorskoj aktivnosti. Otpor u tekstilnom senzoru može se automatski kalibrirati na stabilnu osnovnu razinu nakon što se tekstilni senzor nanese na tijelo. A method for fabricating a textile sensor is described in WO2015022671A1 and may include selecting a combination of variables from the group consisting of yarn variables, seam variables, and conductive yarn knitting variables in the textile sensor, wherein the combination of variables is selected to provide a controlled amount of contact resistance in textile sensor. The method and the textile may comprise a capacitive textile sensor having at least two integrally knitted capacitor plate elements and having a configuration adapted to the sensing activity. The resistance in the textile sensor can be automatically calibrated to a stable baseline level after the textile sensor is applied to the body.

Senzorsku odjeću koja uključuje uprtač opisuje patent US10154694B2 U jednoj prikazanoj izvedbi takve odjeće i ugradnje senzora uključuje dio od tekstila, element za zadržavanje uređaja spojen s dijelom od tekstila i rastezljivi pojas koji je povezan s dijelom od tekstila. Kabelski svežanj (ožičenje) uključuje provodni element raspoređen između slojeva filma. Vodljivi element uključuje prvu završnu točku na elementu za zadržavanje uređaja, konfiguriran za povezivanje s nadzornim uređajem. Vodljivi element uključuje drugu završnu točku konfiguriranu za spajanje na senzor ili primopredajnik. A sensor garment that includes a harness is described in patent US10154694B2 In one illustrated embodiment of such a garment and sensor installation includes a textile part, a device retention element connected to the textile part, and a stretchable belt connected to the textile part. The cable harness (wiring) includes a conductive element arranged between layers of film. The conductive element includes a first termination point on the device retention element, configured to connect to a monitoring device. The conductive element includes a second termination point configured to connect to a sensor or transceiver.

Jedan tekstilni osjetnik naprezanja prikazan je u patentu CN110411622A. Potpuno tekstilni senzor naprezanja sadrži fleksibilnu platnenu podlogu, fleksibilni senzor naprezanja i čvor od tekstilne žice za pričvršćivanje fleksibilnog senzora naprezanja na fleksibilnoj platnenoj podlozi s time da fleksibilni senzor naprezanja sadrži dva snopa vodljivih vlakana, pri čemu je svaki snop provodnih vlakana labave strukture, a labave strukture dva snopa vodljivih vlakana međusobno su prekrižene i složene da bi stvorile strukturu poprečnog spoja. Prednosti potpuno tekstilnog naprezanja su što se može očistiti, ne može lako pasti, otporan je na smetnje kretanja, visoke razlučivosti, visoke osjetljivosti i kompatibilan je s postojećom tekstilnom tehnologijom. One textile strain sensor is shown in patent CN110411622A. The all-textile strain sensor comprises a flexible fabric substrate, a flexible strain sensor and a knot of textile wire for attaching the flexible strain sensor to the flexible fabric substrate, wherein the flexible strain sensor comprises two bundles of conductive fibers, each bundle of conductive fibers having a loose structure and the loose structures of two bundles of conductive fibers are crossed and stacked to form a cross-junction structure. The advantages of the all-textile strain are that it can be cleaned, does not fall off easily, is resistant to motion disturbances, high resolution, high sensitivity, and is compatible with existing textile technology.

Patent WO2016198969A1 opisuje multifunkcionalni tekstilni senzor kroz stvaranje fleksibilne tekstilne strukture sa senzorskim i svjetlosnim mogućnostima bez gubitka važnih karakteristika tipičnog tekstila, npr. udobnosti, bešavne i mehaničke fleksibilnosti. Kao primjene osjetljivosti opisana su tri različita pristupa koja mogu, ali i ne moraju raditi zajedno u istom sustavu: izravno tiskani samokapacitivni senzor, pleteni tekstilni senzor i integracija kapacitivnih senzora za temperaturu i vlagu izravno na tekstil. Kao aplikacije za osvjetljenje u dekorativne i reklamne svrhe koriste se dva različita pristupa koja mogu raditi pojedinačno ili zajedno: elektroluminiscentni senzorski uređaj i upotreba hibridnog senzora koji uključuje upotrebu SMD LED-a i tiskani samo-kapacitivni senzor. Patent WO2016198969A1 describes a multifunctional textile sensor by creating a flexible textile structure with sensing and light capabilities without losing important characteristics of typical textiles, eg comfort, seamlessness and mechanical flexibility. Three different approaches are described as sensing applications that may or may not work together in the same system: a direct printed self-capacitive sensor, a woven textile sensor, and the integration of capacitive sensors for temperature and humidity directly on textiles. As decorative and advertising lighting applications, two different approaches are used that can work individually or together: an electroluminescent sensor device and the use of a hybrid sensor that includes the use of SMD LEDs and a printed self-capacitive sensor.

Patent WO2011134864A1 odnosi se na posmični senzor koji se sastoji od dvije ili više elektroda i elektrovodljivog tekstila, pri čemu je spomenuti senzor prilagođen mjerenju promjene otpornosti kao reakcija na posmičnu deformaciju, pri čemu se navedeni tekstil sastoji od provodnih vlakana s više vlakana koja imaju vrlo visoku otpornost (između 102 Ohm.cm i 107 Ohm.cm) i krutost te nije pogodan za ugradnju u odjeću. Isto tako navedeni izum sadrži polimernu matricu i vodljivo punilo na standardiziranim i uobičajenim vezovima tkanina što ga dodatno degradira spram primjene u odjevnim predmetima. Patent WO2011134864A1 relates to a shear sensor consisting of two or more electrodes and an electrically conductive textile, wherein said sensor is adapted to measure a change in resistance in response to shear deformation, wherein said textile is comprised of multi-fiber conductive fibers having a very high resistance (between 102 Ohm.cm and 107 Ohm.cm) and stiffness and is not suitable for installation in clothing. Likewise, the mentioned invention contains a polymer matrix and a conductive filler on standardized and common fabric embroideries, which further degrades it when used in garments.

Senzor za mjerenje fizioloških električnih signala, EP3169219A1, koji se sastoji od: tekstilne elektrode koja se sastoji od detektirajućeg tekstilnog dijela za detekciju fizioloških električnih signala i perifernog tekstilnog dijela koji je neposredno uz detekcijski dio. Detekcijski dio ima električno vodljivu površinu koja je namijenjen kontaktu s kožom pojedinca i električno je povezan s uređajem za prikupljanje i obradu fizioloških signala koje detektira tekstilna elektroda. A sensor for measuring physiological electrical signals, EP3169219A1, which consists of: a textile electrode consisting of a detectable textile part for detecting physiological electrical signals and a peripheral textile part which is immediately next to the detection part. The detection part has an electrically conductive surface intended for contact with the individual's skin and is electrically connected to a device for collecting and processing physiological signals detected by the textile electrode.

U patentu US2016238468A1 opisan je prošiveni senzor koji uključuje veći broj niti ušivenih šivaćim strojem određenim tipom strojnog šivaćeg uboda na tekstilu. Mnoštvo niti uključuje vodljivu nit, a geometrija šava je konfigurirana tako da se električno svojstvo prošivenog senzora mijenja na temelju istezanja, opuštanja ili savijanja tekstila. Također su opisane metode za oblikovanje prošivenog senzora. Patent US2016238468A1 describes a stitched sensor that includes a number of threads sewn by a sewing machine with a certain type of machine sewing stitch on textiles. The plurality of threads includes a conductive thread, and the seam geometry is configured such that the electrical property of the stitched sensor changes based on the stretching, relaxation, or bending of the textile. Methods for shaping the stitched sensor are also described.

1. Tehniku šivanja i tehnike ukrasnog veza razni autori su koristili za izradu senzora sile i opisali u znanstvenim radovima. Tehniku ukrasnog veza opisuje Jung-Sim Roh (Roh, Jung-Sim. Conductive Yarn Embroidered Circuits for System on Textiles. 10.5772/intechopen.76627., 2018, 161-174). Orathai Tangsirinaruenart i George Stylios (Tangsirinaruenart, O.; Stylios, G. A Novel Textile Stitch-Based Strain Sensor for Wearable End Users. Materials, 2019, 12) opisuju sensor naprezanja izveden u tehnici strojnih šivaćih uboda. Mary Ruppert-Stroescu i Mahendran Balasu istražuju utjecaj različitih tipova strojnih šivaćih uboda na električka svojstva vodljivih konaca (Ruppert-Stroescu, M.; Balasubramanian, M. Effects of stitch classes on the electrical properties of conductive threads. Textile Research Journal. 2017. 88). Valja istaknuti da tehnike ukrasnog veza i šivanja ne daju željena svojstva za izradu tekstilnog senzora sile i istezanja opisanih u točki 2, prije svega zbog male elastičnosti i električke osjetljivosti. 1. Sewing techniques and decorative embroidery techniques have been used by various authors to create force sensors and described in scientific works. The decorative embroidery technique is described by Jung-Sim Roh (Roh, Jung-Sim. Conductive Yarn Embroidered Circuits for System on Textiles. 10.5772/intechopen.76627., 2018, 161-174). Orathai Tangsirinaruenart and George Stylios (Tangsirinaruenart, O.; Stylios, G. A Novel Textile Stitch-Based Strain Sensor for Wearable End Users. Materials, 2019, 12) describe a strain sensor made in the technique of machine sewing stitches. Mary Ruppert-Stroescu and Mahendran Balasu investigate the influence of different types of machine sewing stitches on the electrical properties of conductive threads (Ruppert-Stroescu, M.; Balasubramanian, M. Effects of stitch classes on the electrical properties of conductive threads. Textile Research Journal. 2017. 88 ). It should be noted that the techniques of decorative embroidery and sewing do not provide the desired properties for the production of the textile force and stretch sensor described in point 2, primarily due to low elasticity and electrical sensitivity.

2. Svi navedeni izvori u ovom poglavlju o stanju tehnike nisu u suprotnosti s izumom za kojeg se traži patent. 2. All sources cited in this state-of-the-art chapter are not inconsistent with the invention for which a patent is sought.

Otkrivanje biti izuma na način koji omogućava razumijevanje tehničkog problema i njegovog rješenja te navođenje prednosti izuma u odnosu na stanje tehnike Revealing the essence of the invention in a way that enables the understanding of the technical problem and its solution and stating the advantages of the invention in relation to the state of the art

Tekstilni koso tkani senzor sile i istezanja načinjen je u obliku koso tkane tekstilne vrpce (1). Sastoji se od dvije vrste niti točno određenih karakteristika: konvencionalne češljane više nitne končane pamučne pređe (2) i končane elektrovodljive niti (3). Konvencionalna češljana više nitna končana pamučna pređa (2) sastoji se samo od pamučne češljane pređe (4). Končana elektrovodljiva nit (3) sastoji se od upredene pamučne češljane pređe (4) i elektrovodljivih niti (5). Navedene končane pređe tkaju se tehnikom ručnog kosog tkanja bez izraženog posebnog sustava potke na način da obje vrste pređa tvore dijagonalnu tekstilnu plošnu tvorevinu u platnenom vezu s karakterističnim zatvorenim rubom (6) na kojem niti izmjenice mijenjaju smjer dijagonale, a istodobno imaju zadaću sprječavanja osipanja strukture vrpce. Uzdužnim djelovanjem sile na tekstilni koso tkani senzor sile i istezanja dolazi do istezanja vrpce pri čemu dolazi do njenog suženja i istodobnog povećanja gustoće pređa te pojave kompresijskih sila koje utječu na dijagonalno utkane končane elektrovodljive niti na način da se smanjuje kontaktni otpor i povećava ukupna električka vodljivost senzora. Djelovanje senzora moguće je ugradnjom samo jedne ili više elektrovodljivih niti. Senzor se umjerava na način da se izmjeri ovisnost električnog otpora ugrađene končane elektrovodljive pređe pri određenoj vrijednosti djelujuće rastezne sile na vrpcu. Poznavanjem funkcijske ovisnosti istezanja vrpce o djelujućoj sili moguće je mjeriti i istezanje, odnosno pomak. The textile diagonally woven force and stretch sensor is made in the form of a diagonally woven textile ribbon (1). It consists of two types of threads with precisely defined characteristics: conventional combed multifilament knitted cotton yarn (2) and knitted electroconductive yarn (3). Conventional combed multifilament knitted cotton yarn (2) consists only of cotton combed yarn (4). The finished electroconductive thread (3) consists of twisted cotton combed yarn (4) and electroconductive threads (5). The above-mentioned knitted yarns are woven using the technique of hand bias weaving without a pronounced special weft system in such a way that both types of yarns form a diagonal textile flat fabric in a cloth weave with a characteristic closed edge (6) on which the alternating threads change the direction of the diagonal, and at the same time have the task of preventing the structure from shedding ribbons. The longitudinal effect of force on the textile diagonally woven force and stretch sensor leads to stretching of the ribbon, which leads to its narrowing and a simultaneous increase in yarn density, as well as the appearance of compression forces that affect the diagonally woven electroconductive threads in such a way as to reduce the contact resistance and increase the total electrical conductivity sensor. The operation of the sensor is possible by installing only one or more electrically conductive threads. The sensor is calibrated in such a way as to measure the dependence of the electrical resistance of the incorporated knitted electroconductive yarn at a certain value of the stretching force acting on the ribbon. By knowing the functional dependence of the stretching of the tape on the acting force, it is possible to measure the stretching, that is, the displacement.

Prednosti tekstilnog koso tkanog senzora sile i istezanja su mogućnosti mjerenja vrlo malih sila pri razmjerno velikim istezanjima tako da su primjereni ugradnji u odjeću koja ima velika rastezna svojstva pa takav senzor ne utječe na promjenu karakteristika odjeće. Osim toga, senzor je tekstilnog tipa pa je fleksibilan i mijenja oblik u skladu s promjenama oblika odjeće pri nošenju, a pri dodiru s kožom, zbog svoje mekoće i dobrog taktilnog osjeta stvara osjećaj ugode. Tekstilna struktura senzora omogućuje ugradnju u odjeću primjenom konvencionalnih strojeva i uređaja odjevne tehnologije, npr. ušivanjem šivaćim strojem. The advantages of textile diagonally woven force and stretch sensors are the ability to measure very small forces at relatively large stretches, so they are suitable for installation in clothes that have high stretch properties, so such a sensor does not affect the change in the characteristics of the clothes. In addition, the sensor is of the textile type, so it is flexible and changes its shape in accordance with the changes in the shape of the clothes when worn, and when in contact with the skin, due to its softness and good tactile sensation, it creates a feeling of comfort. The textile structure of the sensor enables it to be incorporated into clothing using conventional clothing technology machines and devices, for example by sewing with a sewing machine.

Kratak opis slika Short description of the pictures

Na sl. 1 prikazana je površinska struktura tekstilnog koso tkanog senzora sile i istezanja u obliku tekstilne vrpce (1) s vidljivim dijagonalno utkanim končanim elektrovodljivim nitima (3) i zatvorenim rubovima vrpce (6). Na desnom dijelu crteža prikazani su poprečni presjeci konvencionalne češljane više nitne končane pamučne pređe (2) i končane elektrovodljive niti (3) načinjenih od upredene pamučne češljane pređe (4) i elektrovodljivih niti (5). Fig. 1 shows the surface structure of a textile diagonally woven force and stretch sensor in the form of a textile ribbon (1) with visible diagonally woven electroconductive threads (3) and closed edges of the ribbon (6). The right part of the drawing shows cross-sections of conventional combed multifilament retted cotton yarn (2) and retted electroconductive threads (3) made of twisted cotton combed yarn (4) and electroconductive threads (5).

Legenda: Legend:

(1) Tekstilni koso tkani senzor sile i istezanja načinjen je u obliku koso tkane tekstilne vrpce (1) The textile diagonally woven force and stretch sensor is made in the form of a diagonally woven textile ribbon

(2) Konvencionalna češljana više nitna končana pamučna pređa (2) Conventional combed multifilament knitted cotton yarn

(3) Končana elektrovodljiva nit (3) Finished electroconductive thread

(4) Pamučna češljana pređa (4) Cotton combed yarn

(5) Elektrovodljiva nit (5) Conductive thread

(6) Zatvoreni rub na kojem niti mijenjaju smjer dijagonale (6) A closed edge where the threads change the direction of the diagonal

Detaljan opis najmanje jednog od načina izvođenja izuma A detailed description of at least one of the ways of carrying out the invention

Tekstilni koso tkani senzor sile i istezanja izrađen je tehnikom ručnog kosog tkanja pri čemu je korišteno 12 niti osnove. Od upotrijebljenih 12 niti, 9 niti redom posloženih je konac (120 uvoja po dužnom metru u Z smjeru) izrađen od četiri niti neobojene češljane pamučne pređe (220 uvoja po dužnom metru u S smjeru, finoće 42 tex x 4S), a preostale 3 niti u nizu su tvorene od dvije niti češljane pamučne pređe (220 uvoja po metru, finoće 42 tex x 2S) i jedne dvonitne končane niti elektrovodljive filamentne pređe Poliamid 6.6. (117 dtex x 17 x 2Z) sa nanosom 99% srebra (električkog otpora < 300 Ω/m). The textile bias woven force and stretch sensor is made using the manual bias weaving technique, using 12 warp threads. Of the 12 threads used, 9 threads are arranged in a row (120 twists per long meter in the Z direction) made of four threads of undyed combed cotton yarn (220 twists per long meter in the S direction, fineness 42 tex x 4S), and the remaining 3 threads in a row, they are made of two strands of combed cotton yarn (220 twists per meter, fineness 42 tex x 2S) and one double-strand netted strand of electroconductive filament yarn Polyamide 6.6. (117 dtex x 17 x 2Z) with coating of 99% silver (electrical resistance < 300 Ω/m).

Svaka od 12 niti, dužine 3m, namotana je na zasebne namotke i provedena u utore (različite dubine) otvorenog češlja za tvorbu zijeva potrebnog pri tkanju. Krajevi niti su zajedno zavezani za čvrstu kukicu zbog ostvarivanja napetosti niti za vrijeme tkanja. Na početku tkanja, da bi se ostvario raspored niti, urađen je križ niti između dva štapića. Koso tkanje se odvija tako da u stvoreni zijev lagano napetih niti (svaka druga nit je u gornjem, odnosno donjem položaju) unosi prva nit s desne strane pod kutom od oko 450, položi u prvi slobodni utor na lijevoj strani (uz dvanaestu nit). Promijeni se zijev (niti iz gornjeg položaja stave se u donji, a niti iz donjeg položaja u gornji) te se unosi slijedeća prva nit s desne strane, polaže u zijev do niti unesene u prethodnom zijevu. Postupak se ponavlja (neprekidno unoseći niti s desne strane na lijevu nakon svake promjene zijeva) ostvarujući željenu gustoću kosog tkanja u vezu platno (u ovom slučaju je 12 niti na 0,8 cm širine i 10 koso unesenih niti na 1 cm) do potrebne duljine. Each of the 12 threads, 3m long, is wound on separate coils and inserted into the grooves (of different depths) of the open comb to create the gap necessary for weaving. The ends of the threads are tied together with a strong hook to create thread tension during weaving. At the beginning of weaving, in order to achieve the arrangement of threads, a thread cross was made between two sticks. Oblique weaving is carried out by inserting the first thread from the right side at an angle of about 450 into the created gap of lightly tensioned threads (every second thread is in the upper and lower positions), then laying it in the first free groove on the left side (next to the twelfth thread). The gap is changed (the threads from the upper position are placed in the lower one, and the threads from the lower position are placed in the upper one) and the next first thread is inserted from the right side, laid in the gap next to the thread entered in the previous gap. The process is repeated (continually inserting threads from the right side to the left after each change of gap) achieving the desired density of oblique weaving in the canvas weave (in this case it is 12 threads per 0.8 cm width and 10 diagonally inserted threads per 1 cm) to the required length .

Konačni rezultat je ostvariv provođenjem cijelog postupka i od lijeve u desnu stranu. The final result can be achieved by carrying out the entire procedure from left to right.

Claims (2)

1. Tekstilni koso tkani senzor sile i istezanja, pogodan za ugradnju u odjeću, koji je načinjen u obliku koso tkane tekstilne vrpce koja se sastoji od dvije vrste niti točno određenih karakteristika, odnosno od konvencionalne češljane više nitne končane pamučne pređe i končane elektrovodljive niti naznačen time da se konvencionalna češljana više nitna končana pamučna pređa sastoji samo od pamučne češljane pređe, a končana elektrovodljiva nit sastoji se od upredene pamučne češljane pređe i elektrovodljivih niti s time da se končane pređe tkaju tehnikom ručnog kosog tkanja bez izraženog posebnog sustava potke na način da obje vrste pređa tvore dijagonalnu tekstilnu plošnu tvorevinu tako da uzdužnim djelovanjem sile na senzor dolazi do istezanja vrpce što rezultira njenim suženjem i istodobnim povećanjem gustoće pređa te pojave kompresijskih sila koje utječu na dijagonalno utkane elektrovodljive niti na način da se smanjuje kontaktni otpor i povećava ukupna električka vodljivost senzora u skladu s veličinom sile.1. A textile diagonally woven force and stretch sensor, suitable for installation in clothing, which is made in the form of a diagonally woven textile ribbon consisting of two types of threads of precisely defined characteristics, i.e. of conventional combed multifilament retted cotton yarn and retted electroconductive thread indicated by the fact that the conventional combed multifilament knitted cotton yarn consists only of cotton combed yarn, and the finished electroconductive thread consists of twisted cotton combed yarn and electroconductive threads, with the fact that the knitted yarns are woven using the manual bias weaving technique without a pronounced special weft system in such a way that both types of yarn form a diagonal textile flat structure so that the longitudinal force on the sensor causes the ribbon to stretch, which results in its narrowing and simultaneous increase in yarn density, as well as the appearance of compression forces that affect the diagonally woven electroconductive threads in such a way as to reduce the contact resistance and increase the total electrical sensor conductivity in according to the magnitude of the force. 2. Tekstilni koso tkani senzor sile i istezanja prema zahtjevu 1, naznačen time da je izrađen u platnenom vezu s karakterističnim zatvorenim rubom na kojem niti izmjenice mijenjaju smjer dijagonale, a istodobno imaju zadaću sprječavanja osipanja strukture vrpce.2. Textile diagonally woven force and stretch sensor according to claim 1, characterized by the fact that it is made in a cloth weave with a characteristic closed edge where the alternating threads change the direction of the diagonal, and at the same time have the task of preventing the tape structure from shedding.
HRP20211027AA 2021-06-29 2021-06-29 Slope woven textile force and strain sensor HRP20211027A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP20211027AA HRP20211027A1 (en) 2021-06-29 2021-06-29 Slope woven textile force and strain sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP20211027AA HRP20211027A1 (en) 2021-06-29 2021-06-29 Slope woven textile force and strain sensor

Publications (1)

Publication Number Publication Date
HRP20211027A1 true HRP20211027A1 (en) 2023-01-06

Family

ID=88069604

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP20211027AA HRP20211027A1 (en) 2021-06-29 2021-06-29 Slope woven textile force and strain sensor

Country Status (1)

Country Link
HR (1) HRP20211027A1 (en)

Similar Documents

Publication Publication Date Title
US10950779B2 (en) Piezoelectric element and device using same
DE602004007266T2 (en) ELECTRICALLY CONDUCTIVE, ELASTIC COMPOSITE YARN, MANUFACTURING METHOD AND OBJECTS CONTAINING SUCH YARN
CN107109723A (en) Possess the flexible knitted fabric of electric conductivity and conductive accessory of the variable characteristic of resistance
CN107385623B (en) A kind of flexibility strain sensing woven fabric and its manufacture craft
TWI689263B (en) Device for monitoring a physiological parameter of a user as a clothing item
EP0296203A1 (en) Knitted fabric having improved electrical charge dissipation and absorption properties.
JP7460535B2 (en) Cloth material with electrode wiring
CN113286990A (en) System for insulating temperature sensors incorporated in a base fabric layer
WO2015108427A1 (en) A linear flexible textile product for textronic applications
EP2208816A1 (en) Elastic fabric
CN111091922A (en) Elastic conductive wire and manufacturing method thereof
CN105734806B (en) A kind of manufacturing method of the low sluggish sensor elastic fabric of underrelaxation
HRP20211027A1 (en) Slope woven textile force and strain sensor
JUCHNEVIČIENĖ et al. The research on the width of the closed-circuit square-shaped embroidery element
TW202134491A (en) Elastic thread with limited elasticity and textile with such elastic thread
CN114411304B (en) Resistance type flexible strain sensing braid and preparation method thereof
Sofronova et al. A method for testing of the conductivity decay of threads for embedded wearable electronic devices in smart textiles
CN209602710U (en) A kind of wearable conductive fabric of elasticity
TW202203848A (en) Motion detecting member
KR20210141679A (en) clothes
KR100895092B1 (en) Electrically conductive sewing thread for power and data transmission line of smart interactive textile systems
CN117966324A (en) Flexible strain sensing composite yarn and preparation method and application thereof
WO2023249064A1 (en) Biometric information measurement device
Sun et al. Appearance and conductivity of weft-knitted unibody positioning flexible sensor
CN114279312B (en) High-sensitivity braided strain sensor and preparation method thereof

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application