HRP20020009A2 - Two-process rotary internal combustion engine - Google Patents

Two-process rotary internal combustion engine Download PDF

Info

Publication number
HRP20020009A2
HRP20020009A2 HR20020009A HRP20020009A HRP20020009A2 HR P20020009 A2 HRP20020009 A2 HR P20020009A2 HR 20020009 A HR20020009 A HR 20020009A HR P20020009 A HRP20020009 A HR P20020009A HR P20020009 A2 HRP20020009 A2 HR P20020009A2
Authority
HR
Croatia
Prior art keywords
heat
medium
cylinder
expansion
combustion
Prior art date
Application number
HR20020009A
Other languages
Croatian (hr)
Inventor
Branko Krajnovi
Original Assignee
Branko Krajnovi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Branko Krajnovi filed Critical Branko Krajnovi
Priority to HR20020009A priority Critical patent/HRP20020009B1/en
Priority to AU2002230009A priority patent/AU2002230009A1/en
Priority to EP02711119A priority patent/EP1461518A1/en
Priority to PCT/HR2002/000007 priority patent/WO2003058045A1/en
Publication of HRP20020009A2 publication Critical patent/HRP20020009A2/en
Publication of HRP20020009B1 publication Critical patent/HRP20020009B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • F01C11/004Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle and of complementary function, e.g. internal combustion engine with supercharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2250/00Special cycles or special engines
    • F02G2250/09Carnot cycles in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2250/00Special cycles or special engines
    • F02G2250/15Sabathe mixed air cycles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Description

Područje na koje se izum odnosi The field to which the invention relates

Pretvaranje toplinske energije u mehanički rad u motorima s unutarnjim sagorijevanjem. Conversion of thermal energy into mechanical work in internal combustion engines.

Tehnički problem Technical problem

Slabo iskorištenje toplinske energije goriva i premalo dobivenog mehaničkog rada. Weak utilization of thermal energy of the fuel and too little obtained mechanical work.

U svim dosadašnjim konstrukcijama motora s unutarnjim sagorijevanjem iskorištenje energije relativno je slabo. Četverotaktna klipna konstrukcija motora s unutarnjim sagorijevanjem, koja je danas u najširoj upotrebi, bazirana je na neefikasnom mehaničkom i termičkom konceptu. In all previous designs of internal combustion engines, the energy utilization is relatively low. The four-stroke piston construction of the internal combustion engine, which is the most widely used today, is based on an inefficient mechanical and thermal concept.

Mehanička konstrukcija u kojoj se smjer djelovanja sile i dužina kraka sile mijenjaju od vrijednosti 0 u GMT i završavaju na vrijednosti 0 u DMT, vrlo je nepovoljna mehanička konstrukcija koja ne može iskoristiti postignute vrijednosti tlaka. A mechanical construction in which the direction of force action and the length of the force arm change from the value 0 in GMT and end at the value 0 in DMT is a very unfavorable mechanical construction that cannot use the achieved pressure values.

U današnjim klipnim konstrukcijama svi taktovi procesa odvijaju se u jednom volumenu što je za postizanje većeg iskorištenja energije termički vrlo nepovoljno. In today's piston constructions, all process cycles take place in one volume, which is thermally very unfavorable for achieving greater energy utilization.

NAJBOLJI POZNATI teoretski proces toplinske iskoristivosti (Carnot), termički je mnogo bolje VOĐEN. THE BEST KNOWN theoretical process of heat utilization (Carnot) is thermally much better CONTROLLED.

U tom procesu toplina se mediju ODVODI u vrijeme kompresije, a DOVODI u vrijeme ekspanzije. Dovođenjem topline tokom izotermne ekspanzije, u vrijeme kada se dobiva rad, u Carnotovom kružnom procesu uz T1= konst., ODRŽAVA se unutarnja energija mediju postignuta na kraju kompresije. In this process, heat is REMOVED from the medium at the time of compression, and SUPPLYED at the time of expansion. By supplying heat during isothermal expansion, at the time when work is obtained, in the Carnot circular process with T1= const., the internal energy of the medium achieved at the end of compression is MAINTAINED.

U današnjim klipnim konstrukcijama dovođenje topline i povećanje unutarnje energije mediju odvija se u nepovoljno vrijeme, kada se zbog mehaničke konstrukcije ne može dobiti rad. Rad se uglavnom dobiva adijabatskom ekspanzijom, kojom se u vrijeme kada se dobiva rad, unutarnja energija mediju UMANJUJE. To je razlog zbog kojeg klipne konstrukcije ne mogu dati bolje termičke rezultate. In today's reciprocating constructions, bringing heat and increasing internal energy to the medium takes place at an unfavorable time, when work cannot be obtained due to the mechanical construction. Work is mainly obtained by adiabatic expansion, by which at the time when work is obtained, the internal energy of the medium is DECREASED. This is the reason why piston constructions cannot give better thermal results.

Kako su motori s unutarnjim sagorijevanjem toplinski motori u kojima se toplinska energija pretvara u mehanički rad neophodno je tu toplinu maksimalno iskoristiti. Since internal combustion engines are heat engines in which thermal energy is converted into mechanical work, it is necessary to make maximum use of this heat.

Kod današnjih konstrukcija uključujući i Wankelovu rotacionu, to nije tako. With today's constructions, including the Wankel rotary engine, this is not the case.

Prilikom izgaranja goriva velik dio oslobođene topline prelazi na stijenke sistema koje okružuju volumen izgaranja. Ako se taj dio topline odmah vodom odvede u hladnjak i preda okolišu, kako se to radi u današnjim konstrukcijama, čine se veliki nepovratni toplinski gubitci. Slijedeći nepovratni toplinski gubitci današnjih konstrukcija odvijaju se odvođenjem dijela topline iz sistema preko velikih vanjskih površina sistema - zračenjem. Kada se ovome zbroji toplina ispušnih plinova, koja se direktno i nepovratno odvodi u okoliš, iskorištenje topline kod današnjih konstrukcija vrlo je slabo. During fuel combustion, a large part of the released heat passes to the walls of the system surrounding the combustion volume. If that part of the heat is immediately taken to the refrigerator with water and given to the environment, as is done in today's constructions, large irreversible heat losses occur. The following irreversible heat losses of today's constructions take place by removing part of the heat from the system via the large external surfaces of the system - by radiation. When the heat of exhaust gases is added to this, which is directly and irreversibly discharged into the environment, the use of heat in today's constructions is very poor.

Današnje konstrukcije iskorištavaju oko 35 % uložene energije. Today's constructions use about 35% of the energy invested.

Preostala energija gubi se odvođenjem topline: vodom, zračenjem i ispušnim plinovima. The remaining energy is lost through heat removal: water, radiation and exhaust gases.

Ove gubitke potrebno je svesti na manju mjeru čime će i iskorištenje energije biti veće. It is necessary to reduce these losses to a smaller extent, which will also increase the utilization of energy.

Stanje tehnike State of the art

Nedostaci današnjih klipnih konstrukcija motora s unutarnjim sagorijevanjem Disadvantages of today's piston designs of internal combustion engines

Klipna konstrukcija ima velik broj mehaničkih i toplinskih nedostataka. The piston construction has a large number of mechanical and thermal defects.

U mehaničkom smislu ima velik nedostatak u pretvaranju pravocrtnog gibanja klipa u kružno gibanje radilice pa se mijenja smjer djelovanja sile. U vrijeme postizanja najvećeg tlaka i temperature, dakle ostvarivanja najveće unutarnje energije medija, smjer djelovanja sile gotovo je okomit na os vrtnje pa se dobiva vrlo mali rad i okretni moment. In the mechanical sense, it has a big disadvantage in converting the rectilinear motion of the piston into the circular motion of the crankshaft, so the direction of force action changes. At the time of reaching the highest pressure and temperature, thus achieving the highest internal energy of the medium, the direction of force action is almost perpendicular to the axis of rotation, so very little work and torque is obtained.

Promjena volumena odvija se hodom klipa od GMT do DMT u kojima klip doslovno stane radi promjene smjera hoda pri čemu se javljaju neugodne inercione sile koje uzrokuju nemiran rad. The change in volume takes place by the stroke of the piston from GMT to DMT, in which the piston literally stops to change the direction of the stroke, causing unpleasant inertial forces that cause restless operation.

Nagla promjena volumena koja se odvije u pola okretaja radilice s gledišta boljeg iskorištenja energije također je vrlo nepovoljna. Osim smanjenog puta djelovanja sila (tokom ekspanzije), bitno su skraćena i vremena potrebna za obavljanje pojedinih taktova što zahtjeva veliku brzinu odvijanja procesa. A sudden change in volume that takes place in half a revolution of the crankshaft is also very unfavorable from the point of view of better utilization of energy. In addition to the reduced path of action of forces (during expansion), the times required to perform individual strokes are significantly shortened, which requires a high speed of the process.

Četverotaktna konstrukcija koja je danas u najširoj upotrebi u 720° okretaja radilice daje rad na putu od 180° (1 Pi). Odvijanje procesa u cilindru u kojem se klip pravocrtno giba klipnjačom povezan s radilicom uvjetuje gabarite stroja, čime se kod izvedbi manjih gabarita ne može postići veći krak sile pa time postići i veći okretni moment. The four-stroke construction which is the most widely used today in 720° rotation of the crankshaft gives work on a path of 180° (1 Pi). The development of the process in the cylinder in which the piston is moved in a straight line by the connecting rod connected to the crankshaft determines the dimensions of the machine, which means that in the case of designs with smaller dimensions, it is not possible to achieve a larger force arm and thereby achieve a higher torque.

Dužina kraka sile kreće se od 0 do dužine koja iznosi maksimalno pola hoda klipa jer je to radius radilice. U trenutku postizanja maksimalnog kraka sile tlakovi su ekspanzijom već bitno pali, a u daljnjem okretanju krak sile ponovo pada prema 0 i smjer sile prema osi vrtnje što je razlog da se dužom ekspanzijom u klipnoj konstrukciji vrlo malo ili gotovo ništa ne dobiva. The length of the force arm ranges from 0 to a length that is a maximum of half the stroke of the piston because it is the radius of the crankshaft. At the moment of reaching the maximum force arm, the pressures have already dropped significantly due to the expansion, and in the further rotation, the force arm drops again towards 0 and the direction of the force towards the axis of rotation, which is the reason that very little or almost nothing is gained with a longer expansion in the piston construction.

Radi visokih temperatura medija na kraju kompresije današnji se klipni motori konstruiraju s relativno malim omjerima kompresije. Due to the high temperatures of the medium at the end of compression, today's piston engines are designed with relatively low compression ratios.

Nizak tlak ostvaren kompresijom podiže se izgaranjem goriva kod konstantnog volumena ili uz vrlo mali porast volumena pri kraju izgaranja. Tako se, u Ottovom procesu, zbog kompresije koja je završila visokom temperaturom i relativno niskim tlakom, dovođenje topline izgaranjem goriva, tlak i temperatura, kao i unutarnja energija medija, povećavaju u vrijeme vrlo male promjene volumena, dakle u vrijeme kada se NE VRŠI RAD. Oslobođena toplina tokom izgaranja ne služi samo povećanju unutarnje energije medija nego i zagrijavanju relativno hladnih okolnih stijenci. Izgaranje goriva počinje prije kraja kompresije (oko 30° prije GMT i traje približno toliko poslije GMT), a kasniji bi početak izgaranja (početkom ekspanzije - poslije GMT), bio još nepovoljniji radi prekratke ekspanzije i toplinskih gubitaka previsokim temperaturama i tlakovima ispušnih plinova. U Dieselovom ili Sabhateovom procesu promjena volumena u vrijeme izgaranja nešto je veća pa su i rezultati nešto bolji. Zbog ovog povećanja volumena tokom izgaranja potrebni su i poželjni veći tlakovi na početku izgaranja pa s tim u vezi i veći omjeri kompresije, a kako se u tim procesima komprimira zrak, temperatura na kraju kompresije nije limitirana. Visoka temperatura i tlak na kraju kompresije u ovim procesima, a radi prekratkog trajanja ekspanzije, kao i velike mase medija, također rezultira toplinskim gubicima visokom temperaturom i tlakom ispušnih plinova, pa su time početni efekti bitno umanjeni. RAD se u navedenim procesima uglavnom dobiva na račun unutarnje energije medija adijabatskom ekspanzijom kojom pada temperatura mediju, čime se unutarnja energija mediju umanjuje. The low pressure achieved by compression is raised by the combustion of fuel at a constant volume or with a very small increase in volume at the end of combustion. Thus, in the Otto process, due to the compression that ended with a high temperature and relatively low pressure, the introduction of heat by the combustion of fuel, the pressure and temperature, as well as the internal energy of the medium, increase at the time of a very small change in volume, i.e. at the time when NO WORK IS DONE . The heat released during combustion serves not only to increase the internal energy of the medium, but also to heat the relatively cold surrounding walls. Fuel combustion begins before the end of compression (about 30° before GMT and lasts approximately as long after GMT), and a later start of combustion (at the beginning of expansion - after GMT) would be even more unfavorable due to too short expansion and heat losses due to excessively high temperatures and exhaust gas pressures. In Diesel's or Sabhate's process, the change in volume during combustion is slightly larger, so the results are slightly better. Due to this increase in volume during combustion, higher pressures at the beginning of combustion are necessary and desirable, and in connection with this, higher compression ratios, and since air is compressed in these processes, the temperature at the end of compression is not limited. The high temperature and pressure at the end of compression in these processes, and due to the too short duration of the expansion, as well as the large mass of the medium, also results in heat losses due to the high temperature and pressure of the exhaust gases, so the initial effects are significantly reduced. In the mentioned processes, WORK is mainly obtained at the expense of the internal energy of the medium through adiabatic expansion, which lowers the temperature of the medium, thereby reducing the internal energy of the medium.

Štetni prostor neizbježan u toj konstrukciji zadržava izgorjele plinove iz prethodnog okretaja, smanjuje volumetrijski stupanj punjenja, čime se u proces uvodi manja masa medija. The harmful space inevitable in this construction retains the burnt gases from the previous revolution, reduces the volumetric degree of filling, which introduces a smaller mass of media into the process.

Konstrukcija radi uz pomoć mnogobrojnih ventila (otpori strujanju) pokretanih bregastim vratilima te za to potrebnim prijenosom i oprugama, pa za navedeno, uz gubitke trenja treba utrošiti i određeni rad. Podešavanjem momenata otvaranja i zatvaranja ventila dobilo se na vremenu za pojedine taktove. The structure works with the help of numerous valves (flow resistance) driven by camshafts and the necessary transmission and springs, so for the above, in addition to friction losses, a certain amount of work must be spent. By adjusting the opening and closing moments of the valves, the time for individual strokes was obtained.

Najvažniji takt ekspanzije, dakle takt u kojem se dobiva rad, bitno je skraćen (ispušni ventili otvaraju se već nakon 130 –135° ekspanzije) čime se, unatoč početku izgaranja još u vrijeme kompresije, velik dio topline ispušnim plinovima odvodi u okoliš. Smatra se povoljnim gubitak od nekoliko bara tlaka na početku ispuha kako bi se postigla čim veća brzina ispuha. Ovo dokazuje nedostatak vremena, jer gubitak principijelno ne može biti povoljan. No, zbog mehaničke konstrukcije (smjer i krak sile pri kraju ekspanzije ponovo su nepovoljni, promjena volumena je premala), pa se visoka temperatura izgorjelih plinova koja bi mogla duže održati tih nekoliko bara tlaka i ostvariti dobivanje određenog rada, ne koristi, nego se predaje u okoliš, što direktno uzrokuje velike toplinske gubitke. The most important expansion stroke, i.e. the stroke in which work is obtained, is significantly shortened (exhaust valves open already after 130-135° expansion), which, despite the start of combustion during compression, removes a large part of the heat into the environment through exhaust gases. A loss of a few bars of pressure at the beginning of the exhaust is considered advantageous in order to achieve the highest possible exhaust speed. This proves the lack of time, because the loss cannot be advantageous in principle. However, due to the mechanical construction (the direction and arm of the force at the end of the expansion are again unfavorable, the change in volume is too small), so the high temperature of the burnt gases, which could maintain those few bars of pressure for longer and achieve a certain amount of work, is not used, but is given up into the environment, which directly causes large heat losses.

S gledišta iskorištenja topline odvijanje procesa u jednom volumenu vrlo je nepovoljno. From the point of view of heat utilization, the development of the process in one volume is very unfavorable.

U toplinskim motorima nastoji se ostvariti čim veći tlak i temperatura medija na kraju kompresije. In heat engines, the pressure and temperature of the medium at the end of compression is as high as possible.

Prilikom naglog usisa medija u jednovolumni klipni motor, te velike brzine strujanja medija tokom usisa dolazi do intenzivnog prijelaza topline sa vrućih stijenci na medij, čime se temperatura mediju podiže već prilikom usisa. Prijelaz topline s vrućih okolnih stijenci na medij traje i početkom kompresije, pa se ubrzo stvara visoka temperatura medija. Time se povećava i unutarnja energija mediju prije no što je nad medijem izvršen rad, pa je za takvu kompresiju potrebno uložiti više rada. During the sudden suction of the medium into the single-volume piston engine, and the high speed of the flow of the medium during the suction, there is an intense transfer of heat from the hot walls to the medium, which raises the temperature of the medium already during the suction. The transfer of heat from the hot surrounding walls to the medium continues even at the beginning of compression, so a high temperature of the medium is soon created. This increases the internal energy of the medium before work is done on the medium, so more work needs to be invested for such compression.

Temperatura medija tokom kompresije postaje veća od temperature okolnih stijenci, pa prijelaz topline krene obrnuto sa medija na stijenke. Odvođenje topline prekasno je i preslabo da bi se kompresiju moglo vršiti do većih omjera kompresije. Kompresija se odvija uz visok prosječni eksponent politrope kompresije, a zbog prerano postignute visoke temperature medija, kompresiju se mora završiti na malim omjerima kompresije, što rezultira niskim tlakom na kraju kompresije. During compression, the temperature of the medium becomes higher than the temperature of the surrounding walls, so the heat transfer starts in reverse from the medium to the walls. Heat removal is too late and too weak to allow compression to higher compression ratios. Compression takes place with a high average exponent of polytropic compression, and due to the prematurely reached high temperature of the medium, the compression must be completed at low compression ratios, which results in a low pressure at the end of compression.

Visoku temperaturu na kraju kompresije moguće je postići hlađenjem medija tokom kompresije, dužim komprimiranjem medija do većih omjera kompresije, čime se postiže veći tlak na kraju kompresije, ali je to u jednovolumnoj klipnoj konstrukciji neizvedivo. A high temperature at the end of compression can be achieved by cooling the medium during compression, by compressing the medium longer to higher compression ratios, which achieves a higher pressure at the end of compression, but this is impossible in a one-volume piston design.

Wankelova rotaciona konstrukcija u smislu većeg kraka sile pa i okretnog momenta nešto je bolja od klipnih, ali je u termičkom smislu koncipirana slično klipnim konstrukcijama, jer se svi taktovi odvijaju u jednom kućištu u kojem je teško postići poželjne temperaturne uvjete, rotor se kreće planetarno, omjeri kompresije se mijenjaju i konstrukcijski su ograničeni, postoje problemi s obodnim brtvenjem, proizvodnja je složena i skupa, a iskorištenje energije je i nešto manje no kod klipnih konstrukcija. Wankel's rotary construction in terms of a larger force arm and torque is somewhat better than piston constructions, but thermally it is designed similarly to piston constructions, because all strokes take place in one housing in which it is difficult to achieve the desired temperature conditions, the rotor moves planetary, compression ratios change and are structurally limited, there are problems with circumferential sealing, production is complex and expensive, and the use of energy is somewhat less than with piston structures.

Za efikasnije korištenje energije i dobivanje većeg rada, bilo bi povoljno vršiti kompresiju kao što vidimo u Carnotovom kružnom procesu, s intenzivnim ODVOĐENJEM topline iz medija tokom “prvog stupnja” kompresije, čime bi se postigli visoki tlakovi nakon ove kompresije, s manje uloženog rada. Ova kompresija trebala bi se odvijati među IZVANA INTENZIVNO HLAĐENIM stijenkama koje okružuju kompresioni volumen. Kompresiju bi trebalo vršiti polaganije kako bi se toplinu stiglo odvoditi. Hlađenje medija tokom kompresije omogućuje vršenje kompresije do većih omjera kompresije. U teoretskom Carnotovom kružnom procesu temperatura medija na kraju izotermne kompresije teoretski ostaje početna temperatura kompresije (T2=konst.). Do potrebne temperature u tom se procesu dolazi adijabatskom kompresijom, dakle bez odvođenja topline mediju tokom “drugog stupnja” kompresije, pa se ovakva kompresija ne može izvršiti u volumenu s intenzivno hlađenim okolnim stijenkama. For a more efficient use of energy and obtaining more work, it would be advantageous to perform compression as we see in the Carnot cycle process, with intense EXTRACTION of heat from the medium during the "first stage" of compression, which would achieve high pressures after this compression, with less work. This compression should take place between the EXTERNALLY INTENSIVELY COOLED walls surrounding the compression volume. Compression should be done more slowly so that the heat has time to dissipate. Cooling the media during compression enables compression to higher compression ratios. In the theoretical Carnot circular process, the temperature of the medium at the end of the isothermal compression theoretically remains the initial compression temperature (T2=const.). The required temperature in this process is reached by adiabatic compression, i.e. without removing heat to the medium during the "second stage" of compression, so this type of compression cannot be performed in a volume with intensively cooled surrounding walls.

Dovođenje topline mediju prijelazom topline s hladnih okolnih stijenki ili kroz hladne okolne stijenke neizvedivo je. Dovođenje topline mediju izgaranjem goriva u volumenu kojeg okružuju hladne stijenke bilo bi vrlo nepovoljno radi velikih gubitaka prijelazom topline na okolne stijenke tokom izgaranja. Bringing heat to the medium by the transfer of heat from the cold surrounding walls or through the cold surrounding walls is impossible. Bringing heat to the medium by burning fuel in the volume surrounded by cold walls would be very unfavorable due to large losses due to the transfer of heat to the surrounding walls during combustion.

Iz ovoga je vidljivo da teoretski najbolji proces toplinske iskoristivosti - Carnotov kružni proces, zahtjeva odvijanje procesa u nekoliko volumena. It is evident from this that the theoretically best process of heat utilization - the Carnot circular process, requires the process to take place in several volumes.

Zbog odvijanja svih taktova u jednom volumenu mogućnosti akumuliranja topline koje pružaju materijali u današnjim se konstrukcijama motora s unutarnjim sagorijevanjem ne mogu iskoristiti. Due to the development of all strokes in one volume, the possibilities of accumulating heat provided by materials in today's internal combustion engine designs cannot be used.

Kada se svi taktovi procesa odvijaju u jednom volumenu, najpovoljnije je postići optimalnu “radnu temperaturu” okolnih stijenki. Ovo za posljedicu ima relativno nisku temperaturu okolnih stijenki, čime se prilikom svakog izgaranja vrši i veliki prijelaz topline na okolne stijenke koje se s druge strane hlade vodom čime se toplina odvodi u hladnjak i zatim u okoliš. When all the steps of the process take place in one volume, it is most advantageous to achieve the optimal "working temperature" of the surrounding walls. This results in a relatively low temperature of the surrounding walls, which means that during each combustion, there is a large transfer of heat to the surrounding walls, which on the other hand are cooled by water, which leads the heat to the refrigerator and then to the environment.

Prijelaz topline s medija na stijenke tokom izgaranja uzrokuje najveće toplinske gubitke. Heat transfer from the medium to the walls during combustion causes the greatest heat losses.

Slabim iskorištenjem energije današnjih konstrukcija motora s unutarnjim sagorijevanjem u jednom se ciklusu (najčešće 2 okretaja), postiže relativno mali rad. Zbog malo dobivenog rada u jednom okretaju snagu se postiže ili velikim brojem okretaja ili povećanjem zapremine, što u oba slučaja ima za posljedicu povećanu potrošnju goriva i zraka, prekomjerno zagađenje okoliša uz globalno zagrijavanje planete. Due to the low energy utilization of today's internal combustion engine designs, relatively little work is achieved in one cycle (most often 2 revolutions). Due to the little work obtained in one revolution, power is achieved either by a large number of revolutions or by increasing the volume, which in both cases results in increased fuel and air consumption, excessive environmental pollution and global warming of the planet.

Ovo su u najkraćim objekcijama konstrukcijski nedostaci koji onemogućuju efikasnije odvijanje procesa. To su razlozi slabom iskorištenju energije u dosadašnjim konstrukcijama. In the shortest objects, these are structural defects that prevent a more efficient process. These are the reasons for the poor use of energy in existing constructions.

Ovakve nedostatke moguće je otkloniti samo potpuno drugačijom konstrukcijom. Such defects can only be eliminated with a completely different construction.

Izlaganje suštine izuma Presentation of the essence of the invention

Bolje iskorištenje energije u motorima s unutarnjim sagorijevanjem po prijedlogu autora može se postići Better utilization of energy in internal combustion engines can be achieved according to the author's proposal

4a) Novim toplinskim procesom - (Krajnovićevim kružnim procesom) 4a) With a new thermal process - (Krajnović's circular process)

4b) Akumuliranjem topline u sistemu 4b) By accumulating heat in the system

4c) Iskorištavanjem akumulirane topline sistema - (Carnotovim kružnim procesom) 4c) Using the accumulated heat of the system - (Carnot's circular process)

4d) Mehaničkom konstrukcijom rotacionog motora s unutarnjim sagorijevanjem, koja to omogućuje, a odlikuje se slijedećim mehaničkim i termičkim prednostima: 4d) By the mechanical construction of the rotary engine with internal combustion, which enables this, and is characterized by the following mechanical and thermal advantages:

1. Nema pretvaranja pravocrtnog u kružno gibanje 1. There is no conversion of rectilinear to circular motion

2. Promjena volumena odvija se u 360° okretaja vratila 2. The change in volume takes place in 360° rotation of the shaft

3. SMJER djelovanja sile UVIJEK je IDEALAN - paralelan s osi vrtnje. (konstanta) 3. THE DIRECTION of the force is ALWAYS IDEAL - parallel to the axis of rotation. (constant)

4. KRAK SILE uvijek je maksimalan - (konstanta) 4. FORCE ARM is always maximum - (constant)

5. Mogućnost povećanjem kraka sile bez povećanja zapremine - povećanje snage motora. 5. The possibility of increasing the force arm without increasing the volume - increasing the engine power.

6. Svi taktovi odvijaju se ISTOVREMENO 6. All beats take place SIMULTANEOUSLY

7. Usis, Ispuh i Ekspanzija traju kontinuirano 7. Intake, Exhaust and Expansion continue continuously

8. Konstrukcija omogućuje bolji volumetrijski stupanj punjenja 8. The construction enables a better volumetric degree of filling

9. Konstrukcija omogućuje mnogo veće vrijeme za odvijanje svakog takta procesa 9. The construction allows a much longer time for each cycle of the process to take place

10. Konstrukcija radi bez upotrebe ventila i za to potrebnih prijenosa 10. The construction works without the use of valves and necessary transmissions

11. Motor ima izuzetno povoljan odnos između mase i dobivenog rada tj. snage 11. The engine has an extremely favorable relationship between mass and obtained work, i.e. power

12. U rotacionoj konstrukciji nema negativnih inercionih sila 12. There are no negative inertial forces in the rotary construction

13. Konstrukcija termički omogućuje velike omjere kompresije 13. The construction thermally enables high compression ratios

14. Konstrukcija smanjuje termičke gubitke zračenjem 14. The construction reduces thermal losses through radiation

15. Konstrukcija omogućuje akumulaciju topline i njeno korištenje 15. The construction enables the accumulation of heat and its use

16. Konstrukcija omogućuje bolje iskorištenje temperature i tlaka izgorjelih plinova 16. The construction enables better utilization of the temperature and pressure of the burnt gases

17. Mogućnost izrade za sva pogonska goriva 17. The possibility of production for all propellant fuels

18. Jednostavnost konstrukcije 18. Simplicity of construction

19. Miran i tih rad. 19. Peaceful and quiet work.

Rotacioni motor konstruiran je na poznatom principu rada: usis, kompresija, ekspanzija i ispuh, ali se TOPLINSKI PROCES VODI na efikasniji način, nego što se vodi u današnjim konstrukcijama. The rotary engine is constructed on the well-known principle of operation: intake, compression, expansion and exhaust, but the HEAT PROCESS is conducted in a more efficient way than in today's constructions.

Bitna razlika vođenja procesa u odnosu na dosadašnje sastoji se u tome da se svi taktovi procesa odvijaju istovremeno u većem broju međusobno i od okoline izoliranih volumena što omogućuje povoljnije termičko vođenje procesa. Usis i kompresija odvijaju se u JEDNOM cilindru, a u DRUGOM cilindru, smještenom na istom vratilu, odvija se tokom ekspanzije izgaranje goriva i akumulacija topline. The essential difference of the process control compared to the previous one consists in the fact that all process cycles take place simultaneously in a larger number of volumes isolated from each other and from the environment, which enables more favorable thermal control of the process. Intake and compression take place in ONE cylinder, and in the SECOND cylinder, located on the same shaft, fuel combustion and heat accumulation take place during expansion.

Odvijanje toplinskog procesa u sistemu od nekoliko međusobno i od okoline izoliranih cilindara omogućuje da se toplina ODVODI u vrijeme kompresije, a DOVODI u vrijeme ekspanzije, kao u Carnotovom kružnom procesu, što rezultira boljim iskorištenjem energije, a smanjuje i gubitke zračenjem. Toplinu stijenki tih cilindara, koje okružuju volumene, moguće je iskoristiti, odnosno, prilagoditi njihovu temperaturu potrebama odvijanja procesa. Velike, unutarnje, pogodno povšinski obrađene, oble površine prstena i rotora, koje se okreću zajedno s medijem, polaganija promjena volumena, u kojem su nasuprotne oble stijenke vrlo blizu, kao i mnogo veće raspoloživo vrijeme, povoljni su faktori za prijelaz topline. Najveći gubitci u današnjim motorima dešavaju se tokom izgaranja goriva, jer velik dio oslobođene topline zagrijava relativno hladne okolne stijenke. Razlika temperature stijenci koje okružuju volumen izgaranja i maksimalne temperature medija tokom procesa treba biti čim manja. Maksimalnu temperaturu procesa može se smanjiti većom masom zraka, a materijal koji okružuje volumen izgaranja mora podnositi čim je moguće veću radnu temperaturu. Time će ukupan prijelaz topline s medija na stijenke tokom izgaranja biti manji. The development of the thermal process in a system of several cylinders isolated from each other and from the environment allows the heat to be LEAVED during compression, and DELIVERED during expansion, as in the Carnot circular process, which results in better utilization of energy, and reduces radiation losses. The heat of the walls of these cylinders, which surround the volumes, can be used, that is, their temperature can be adjusted to the needs of the process. Large, internally, suitably surface-treated, round surfaces of the ring and rotor, which rotate together with the medium, a slower volume change, in which the opposite round walls are very close, as well as a much longer available time, are favorable factors for heat transfer. The biggest losses in today's engines occur during fuel combustion, because a large part of the released heat heats up the relatively cold surrounding walls. The temperature difference between the walls surrounding the combustion volume and the maximum temperature of the medium during the process should be as small as possible. The maximum temperature of the process can be reduced with a larger mass of air, and the material surrounding the combustion volume must withstand as high a working temperature as possible. This will reduce the total heat transfer from the medium to the walls during combustion.

Za bolje iskorištenje energije potrebno je i poželjno ostvariti velike omjere kompresije što znači visok tlak na kraju kompresije, a to podrazumijeva i odvijanje procesa na vrlo visokim tlakovima. For a better use of energy, it is necessary and desirable to achieve high compression ratios, which means high pressure at the end of compression, and this implies the process taking place at very high pressures.

Okrugla, cilindrična konstrukcija, u mehaničkom je smislu, najčvršća moguća konstrukcija. The round, cylindrical construction is, in the mechanical sense, the strongest possible construction.

4a) Novi kružni proces (Autor: Branko Krajnović) 4a) New circular process (Author: Branko Krajnović)

Najefikasniji praktično ostvariv toplinski proces može se postići: The most efficient practically achievable thermal process can be achieved:

ODVOĐENJEM dijela topline smanjivanjem temperature mediju tokom kompresije, čime se umanjuje unutarnja energija mediju u vrijeme kada se nad medijem vrši rad - za što je potrebno rad uložiti. By REMOVING part of the heat by reducing the temperature of the medium during compression, which reduces the internal energy of the medium at the time when work is performed on the medium - for which work needs to be invested.

DOVOĐENJEM topline s povećanjem temperature mediju tokom ekspanzije POVEĆAVA se unutarnja energija mediju ostvarena na kraju kompresije, u vrijeme kada medij vrši rad, - čime se rad dobiva. SUPPLYING heat with an increase in temperature to the medium during expansion INCREASES the internal energy of the medium realized at the end of compression, at the time when the medium does work, - thus work is obtained.

Dovođenjem topline TOKOM EKSPANZIJE rad se dobiva i u vrijeme povećanja i u vrijeme umanjenja unutarnje energije medija. U usporedbi sa toplinskim procesima koji se danas najviše koriste ovako vođen proces i teoretski i praktično u jednom okretaju ostvaruje najveći rad. Vrijednost ovog procesa osim navedenog sastoji se i u tome da omogućuje korištenje Carnotovog kružnog procesa na način i u okvirima u kojima se Carnotov proces, praktično i jednostavno može koristiti. By adding heat DURING EXPANSION, work is obtained both at the time of increase and at the time of decrease of the internal energy of the medium. In comparison with the thermal processes that are most used today, the process conducted in this way both theoretically and practically achieves the greatest work in one revolution. The value of this process, in addition to the above, also consists in the fact that it enables the use of the Carnot circular process in a way and within the framework in which the Carnot process can be used practically and simply.

Teoretsku adijabatu ili izotermu u praksi je nemoguće postići, ali je proces naznačen teoretskim okvirima, radi usporedbe praktično izvedenog s idealnim teoretskim vrednovanjem procesa, kao i radi teoretske usporedbe s drugim toplinskim procesima. A theoretical adiabat or isotherm is impossible to achieve in practice, but the process is indicated by theoretical frameworks, for the purpose of comparing the practically performed with the ideal theoretical evaluation of the process, as well as for the purpose of theoretical comparison with other thermal processes.

Na slici 1 prikazan je teoretski pV dijagram Krajnovićevog kružnog procesa. Figure 1 shows the theoretical pV diagram of Krajnović's circular process.

1 Početak procesa T1 i p1 stanje okoline 1 Start of process T1 and p1 state of the environment

1-2 Izotermna kompresija kod T1 = cons. 1-2 Isothermal compression at T1 = cons.

2-3 Adijabatska kompresija 2-3 Adiabatic compression

3-4 Izobarno potiskivanje medija iz kompr. cilindra u akumulacionu komoru kod p = cons. 3-4 Isobaric suppression of media from compr. of the cylinder into the accumulation chamber at p = cons.

4-5 Izobarni prijelaz medija iz komore u ekspanzioni cilindar kod p = cons. 4-5 Isobaric transition of the medium from the chamber to the expansion cylinder at p = cons.

5-6 Izohorno dovođenje topline kod V = cons. 5-6 Isochoric heat supply at V = cons.

6-7 Izobarno dovođenje topline kod p = cons. 6-7 Isobaric heat supply at p = cons.

7-8 Izotermno dovođenje topline kod T = cons. 7-8 Isothermal heat supply at T = cons.

8-1 Adijabatska ekspanzija 8-1 Adiabatic expansion

Na slici 2 prikazan je pV dijagram praktično izvedivog Krajnovićevog kružnog procesa Figure 2 shows the pV diagram of a practically feasible Krajnović circular process

Proces počinje u točci 1 stanjem okoline. Proces se vodi komprimiranjem medija u usisno-kompresionom cilindru, uz ODVOĐENJE DIJELA topline mediju tokom kompresije. Kod odabrane temperature i tlaka uspostavlja se veza između kompresionog cilindra i akumulacione komore. U trenutku spajanja tlak u kompresionom cilindru malo je veći od tlaka u akumulacionoj komori. U narednih par stupnjeva okretaja vratila tlak se izjednačava, a medij se utiskuje u akumulacionu komoru. U određenom momentu uspostavljanjem veze, predviđena masa medija pod visokim tlakom, iz komore ekspandira u odgovarajući volumen provrta u rotoru u ekspanzionom cilindru izgaranja-akumulacije. Brz prijelaz medija traje svega nekoliko stupnjeva okretaja vratila (10-15° uz T=cons. i vrlo mali pad tlaka), nakon čega se veza s komorom prekida, a mediju se toplina DOVODI prijelazom dijela topline s vrućih okolnih stijenci, te mu se izohorno povećava tlak i temperatura, PRIJE početka izgaranja. Ubrizgavanjem i paljenjem goriva toplina se dovodi mediju uz - DELTU TEMPERATURE IZGARANJA. Izgaranje goriva - dovođenje topline, odvija se tokom ekspanzije, uz postepeno povećanje volumena. Po završenom izgaranju toplina se mediju dovodi POVRATOM dijela topline s površina koje su preuzele dio topline u vrijeme izgaranja i okreću se zajedno s medijem. Dio topline oslobođene izgaranjem u tim se stijenkama AKUMULIRA. The process starts at point 1 with the state of the environment. The process is conducted by compressing the medium in the suction-compression cylinder, with PART of the heat being removed to the medium during compression. At the selected temperature and pressure, a connection is established between the compression cylinder and the storage chamber. At the moment of connection, the pressure in the compression cylinder is slightly higher than the pressure in the storage chamber. In the next few degrees of rotation of the shaft, the pressure is equalized, and the medium is pressed into the accumulation chamber. At a certain moment, by establishing a connection, the intended mass of medium under high pressure expands from the chamber into the corresponding volume of the bore in the rotor in the combustion-accumulation expansion cylinder. The rapid transition of the medium takes only a few degrees of rotation of the shaft (10-15° with T=cons. and a very small pressure drop), after which the connection with the chamber is broken, and heat is SUPPLIED to the medium by the transition of part of the heat from the hot surrounding walls, and increases pressure and temperature isochorically, BEFORE combustion begins. By injecting and igniting fuel, heat is supplied to the medium along - COMBUSTION TEMPERATURE DELTA. Fuel combustion - bringing in heat, takes place during expansion, with a gradual increase in volume. After the combustion is complete, the heat is supplied to the medium by the RETURN of part of the heat from the surfaces that took part of the heat during the combustion and turn together with the medium. Part of the heat released by combustion is ACCUMULATED in these walls.

Ekspanzija se odvija uz dodatno povećanje volumena ekspanzije. Dodatno povećanje volumena ekspanzije može se ostvariti većim gabaritima ekspanzionog cilindra, a može se postići i pogodnim dodavanjem još jednog ekspanziono-ispušnog volumena, čime se može iskoristiti svaka vrijednost tlaka. The expansion takes place with an additional increase in the expansion volume. An additional increase in the expansion volume can be achieved with larger dimensions of the expansion cylinder, and it can also be achieved by conveniently adding another expansion-exhaust volume, which can use any pressure value.

1 Početak procesa T1 i p1 stanje okoline 1 Start of process T1 and p1 state of the environment

1-2 Kompresija s odvođenjem topline mediju 1-2 Compression with heat removal to the medium

2-3 Potiskivanje medija iz kompresionog cilindra u akumulacionu komoru 2-3 Pressing the medium from the compression cylinder into the storage chamber

3-4 Ekspanzija medija iz komore u ekspanzioni cilindar 3-4 Expansion of the medium from the chamber into the expansion cylinder

4-5 Dovođenje topline mediju s okolnih stijenci - prijelazom topline 4-5 Bringing heat to the medium from the surrounding walls - by heat transfer

5-6 Politropa dovođenja topline mediju izgaranjem goriva 5-6 Polytropy of heat supply to the medium by fuel combustion

6-7 Dovođenje topline mediju s okolnih stijenci - povratom topline 6-7 Bringing heat to the medium from the surrounding walls - by heat recovery

7-1 Ekspanzija medija 7-1 Media expansion

4b) Akumuliranje topline u SISTEMU 4b) Accumulation of heat in the SYSTEM

U svim toplinskim procesima toplinu treba DOVODITI i ODVODITI. In all thermal processes, heat must be SUPPLYED and DRAINED.

Po prijedlogu autora toplinu je u SISTEMU potrebno AKUMULIRATI i akumulaciju ISKORISTITI. According to the author's proposal, it is necessary to ACCUMULATE the heat in the SYSTEM and USE the accumulation.

U nekom broju okretaja dovođenjem i izgaranjem goriva toplina se DOVODI i MEDIJU i SISTEMU u kojem se proces odvija. Dio topline oslobođene izgaranjem goriva, koja u motorima s unutarnjim sagorijevanjem neminovno prelazi na stijenke sistema koje okružuju volumen izgaranja, potrebno je AKUMULIRATI u tim STIJENKAMA. Kada se temperatura akumulirane topline u stijenkama SISTEMA koje neposredno okružuju medij u vrijeme izgaranja, približi granici izdržljivosti materijala (u pV dijagramima - hipotetski označena 1000°K), potrebno je tu toplinu početi odvoditi i pri tom ISKORISTITI. In a certain number of revolutions, by supplying and burning fuel, heat is SUPPLIED to both the MEDIA and the SYSTEM in which the process takes place. Part of the heat released by fuel combustion, which in internal combustion engines inevitably passes to the walls of the system surrounding the combustion volume, must be ACCUMULATED in these WALLS. When the temperature of the accumulated heat in the walls of the SYSTEM that immediately surrounds the medium at the time of combustion approaches the endurance limit of the material (hypothetically marked 1000°K in pV diagrams), it is necessary to start removing that heat and USE it.

Toplina se najvećim djelom akumulira u stijenkama koje okružuju provrt rotora u kojem se odvija izgaranje, obodnom dijelu mase rotora i unutarnjem djelu obodnog prstena koji su u neposrednom dodiru s medijem, te dijelu bočnih stijenci koje okružuju medij u vrijeme izgaranja. The heat is mostly accumulated in the walls surrounding the rotor bore where combustion takes place, the peripheral part of the rotor mass and the inner part of the peripheral ring that are in direct contact with the medium, and the part of the side walls that surround the medium during combustion.

Iskorištavanje manjeg dijela akumulirane topline sistema Using a smaller part of the accumulated heat of the system

Dio akumulirane topline sistema može se koristiti i u okretajima procesa s izgaranjem goriva prijelazom topline na medij PRIJE početka izgaranja goriva, jer je temperatura medija na kraju kompresije niža od temperature okolnih stijenci u cilindru izgaranja-akumulacije. Part of the accumulated heat of the system can also be used in the revolutions of the fuel combustion process by transferring heat to the medium BEFORE the fuel combustion begins, because the temperature of the medium at the end of compression is lower than the temperature of the surrounding walls in the combustion-accumulation cylinder.

4c) Iskorištavanje akumulirane topline u sistemu postiže se Carnotovim kružnim procesom 4c) Utilization of the accumulated heat in the system is achieved by the Carnot circular process

Najveći dio akumulirane topline iskorištava se kada se temperatura sistema približi granici radne izdržljivosti materijala, tako da se, u nekom broju okretaja prekida dovođenje i izgaranje goriva. Most of the accumulated heat is used when the temperature of the system approaches the limit of the working endurance of the material, so that, in a certain number of revolutions, the supply and combustion of fuel is interrupted.

Ovime se zaustavlja daljnji porast temperature sistema. Hlađenje sistema odvija se protokom zraka kroz sistem. ODVOĐENJEM AKUMULIRANE topline iz SISTEMA (materijala) toplina se DOVODI MEDIJU, čime se tokom ekspanzije održava unutarnja energija medija postignuta na kraju kompresije. This stops the further rise of the system temperature. Cooling of the system takes place by the flow of air through the system. BY REMOVING THE ACCUMULATED HEAT FROM THE SYSTEM (material), the heat is DELIVERED TO THE MEDIA, which during expansion maintains the internal energy of the medium reached at the end of compression.

Umjesto da se sistem hladi vodom, odvođenje topline iz sistema vrši se zrakom, čime se u okretajima hlađenja sistema NE TROŠI GORIVO, a iskorištavanjem AKUMULIRANE topline SISTEMA - dobiva određeni rad. Instead of cooling the system with water, the heat is removed from the system with air, which means NO FUEL IS CONSUMED in the cooling cycles of the system, and by using the ACCUMULATED heat of the SYSTEM - it gets a certain amount of work.

Na slici 3 prikazan je teoretski pV dijagram moguće primjene Carnotovog kružnog procesa Figure 3 shows a theoretical pV diagram of a possible application of the Carnot circular process

1 Početak procesa T1 i p1 = T5 i p5 na slici 1. 1 Start of process T1 and p1 = T5 and p5 in Figure 1.

Stanje medija u ovoj točci u termodinamičkim proračunima precizno je definirano vrijednostima: The state of the medium at this point in thermodynamic calculations is precisely defined by the values:

“tlak i temperatura medija na kraju kompresije”. "pressure and temperature of the medium at the end of compression".

1-2 Izobarno dovođenje akumulirane topline uz p = cons. 1-2 Isobaric supply of accumulated heat with p = cons.

2-3 Izotermna ekspanzija uz T = cons. 2-3 Isothermal expansion with T = cons.

3-4 Adijabatska ekspanzija 3-4 Adiabatic expansion

4-5 Identično procesu s izgaranjem 1-2 slika 1 4-5 Identical to combustion process 1-2 Figure 1

5-6 Identično procesu s izgaranjem 2-3 slika 1 5-6 Identical to combustion process 2-3 Figure 1

6-7 Identično procesu s izgaranjem 3-4 slika 1 6-7 Identical to the combustion process 3-4 Figure 1

7-1 Identično procesu s izgaranjem 4-5 slika 1 7-1 Identical to combustion process 4-5 Figure 1

Na slici 4 prikazan je praktični pV dijagram u okretajima iskorištavanja akumulirane topline sistema Carnotovim kružnim procesom. Figure 4 shows a practical pV diagram in revolutions of utilizing the accumulated heat of the system by the Carnot cycle process.

Dobivanje rada u ovim okretajima neostvarivo je bez odvijanja procesa s dovođenjem i izgaranjem goriva (slika 2), pri čemu se dio topline akumulirao u sistemu, pa proces odvođenja topline iz sistema, počinje u točci promjene načina vođenja procesa nedovođenjem i neizgaranjem goriva (slika 4, točka 1). Obtaining work at these revolutions is unachievable without the process of supplying and burning fuel (Figure 2), whereby part of the heat has accumulated in the system, so the process of removing heat from the system begins at the point of changing the way the process is conducted by not supplying and burning fuel (Figure 4 , point 1).

1 Početak procesa T1 i p1 = T4 i p4 na slici 2 1 Start of the process T1 and p1 = T4 and p4 in Figure 2

1-2 Dovođenje topline - prijelazom topline uz deltu V 1-2 Bringing heat - by heat transfer along the delta V

2-3 Dovođenje topline - prijelazom topline uz deltu T 2-3 Bringing heat - by heat transfer along the delta T

3-4 Ekspanzija medija 3-4 Media expansion

4-5 Identično procesu s izgaranjem 1-2 na slici 2 4-5 Identical to combustion process 1-2 in Figure 2

5-6 Identično procesu s izgaranjem 2-3 na slici 2 5-6 Identical to combustion process 2-3 in Figure 2

6-1 Identično procesu s izgaranjem 3-4 na slici 2 6-1 Identical to combustion process 3-4 in Figure 2

Veće dobivanje rada u ovim okretajima, osim o masi zraka, ovisi o čim većoj temperaturi akumulirane topline, čim većem tlaku i temperaturi zraka na kraju kompresije, koju je tokom ekspanzije - prijelazom topline sa okolnih stijenci na medij, potrebno čim duže održati. Greater work gain in these revolutions, apart from the mass of air, depends on the highest possible temperature of the accumulated heat, the highest possible pressure and temperature of the air at the end of compression, which during expansion - due to the transfer of heat from the surrounding walls to the medium - needs to be maintained as long as possible.

U teoretskom Ottovom procesu dovođenje topline mediju odvija se kod konstantnog volumena. U Dieselovom teoretskom procesu kod konstantnog tlaka. U Sabhateovom teoretskom procesu toplina se dijelom dovodi kod konstantnog volumena, a dijelom kod konstantnog tlaka. In the theoretical Otto process, heat is supplied to the medium at constant volume. In Diesel's theoretical process at constant pressure. In Sabhate's theoretical process, heat is supplied partly at constant volume and partly at constant pressure.

Poznato je da u realnim procesima to nije tako. It is known that this is not the case in real processes.

Na ovaj način praktično iskorišten Carnotov proces (kao realan proces) također se neće odvijati uz konstantne temperature, ali će iskorištenje energije ipak biti najveće. In this way, the practically used Carnot process (as a real process) will also not take place at constant temperatures, but the energy utilization will still be the highest.

Kada se sistem u području izgaranja ohladi na predviđenu temperaturu, ponovo se dovodi toplina i mediju i sistemu - dovođenjem i izgaranjem goriva, i tako se naizmjence u ISTOM SISTEMU TOPLINA MEDIJU u nekom broju okretaja (1 ili više) DOVODI izgaranjem goriva, a u nekom broju okretaja prijelazom topline tj. iskorištavanjem akumulirane topline sistema. When the system in the area of combustion cools down to the intended temperature, heat is supplied again to both the medium and the system - by supplying and burning fuel, and so alternately in the SAME SYSTEM, HEAT IS SUPPLIED TO THE MEDIUM in a certain number of revolutions (1 or more) by burning fuel, and in a certain number revolutions by heat transfer, i.e. using the accumulated heat of the system.

Naizmjeničnim odvijanjem Krajnovićevog procesa (koji u jednom okretaju ostvaruje najveći rad) i Carnotovog procesa (koji u narednom okretaju ostvaruje rad iskorištavanjem akumuliranog dijela topline uvedene u prethodnom okretaju), postiže se najefikasniji toplinski proces. By alternating the Krajnović process (which achieves the greatest work in one revolution) and the Carnot process (which in the next revolution achieves work by utilizing the accumulated part of the heat introduced in the previous revolution), the most efficient thermal process is achieved.

U okretajima u kojima se dovodi i izgara gorivo ostvaruje se veći rad, veće sile pa njima i veći okretni moment, nego u okretajima hlađenja sistema. Za bolje ujednačavanje okretnog momenta na istom vratilu mogu raditi DVA ili VIŠE SISTEMA. Ovdje je najvažnije naglasiti da se time oba načina dovođenja topline mogu odvijati ISTOVREMENO. Dok se u PRVOM sistemu DOVODI toplina, (u nekom broju okretaja ubrizgava i izgara gorivo) za dobivanje “velikog rada”, istovremeno se u DRUGOM sistemu na istom vratilu ODVODI toplina (ne dovođenjem goriva), uz dobivanje “malog rada” i tako naizmjence. Ovakvim načinom mogu se voditi procesi kod višesistemskih motora većih gabarita, kod kojih postoje zahtjevi za izuzetno velikom snagom i okretnim momentom, (brodski motori itd.). In the revolutions in which the fuel is supplied and burned, more work is achieved, greater forces, and with them, a greater torque, than in the revolutions of cooling the system. For better torque equalization, TWO or MORE SYSTEMS can work on the same shaft. Here, the most important thing to emphasize is that both ways of bringing heat can take place SIMULTANEOUSLY. While in the FIRST system, heat is SUPPLYED, (in a certain number of revolutions, fuel is injected and burned) to obtain "high work", at the same time, in the SECOND system, on the same shaft, heat is REMOVED (not by supplying fuel), while obtaining "low work" and so alternately . In this way, processes can be conducted with multi-system engines of larger dimensions, where there are requirements for extremely high power and torque (ship engines, etc.).

Proces se u JEDNOM sistemu vodi UČESTALIM naizmjeničnim dovođenjem i odvođenjem topline u manjem rasponu temperature okolnih stijenci, (1 okretaj dovođenja topline sistemu i 1 okretaj odvođenja topline iz sistema), a ujednačavanje okretnog momenta obavit će zamašnjak. The process is carried out in ONE system by FREQUENT alternating supply and removal of heat in a smaller temperature range of the surrounding walls, (1 rotation of heat supply to the system and 1 rotation of heat removal from the system), and the torque equalization will be done by the flywheel.

Ovakvim vođenjem procesa moguće je bolje iskorištenje onog dijela topline (energije) koji se u današnjim konstrukcijama odvodi vodom. (oko 30%) By conducting the process in this way, it is possible to make better use of that part of the heat (energy) that is drained away by water in today's constructions. (about 30%)

Izoliranjem sistema od okoline bolje će se iskoristiti dio topline koji se danas gubi zračenjem (oko 5%). By isolating the system from the environment, part of the heat that is currently lost through radiation (about 5%) will be better used.

Sistem može biti izveden s jednim ekspanzionim cilindrom pri čemu se u njemu treba predvidjeti ispušni otvor. Volumen ekspanzionog cilindra konstrukcijski (gabaritima) može biti veći od volumena usisno-kompresionog cilindra. Zbog ugradnje ispušnog otvora, (u jedan ili oba bočna zida), smanjuje se volumen i vrijeme ekspanzije, pa bi izgaranje trebalo započeti čim ranije u vrijeme male početne promjene volumena. Primjenom veće mase medija u procesu, kao i dužeg vremena izgaranja, unatoč povećanom ekspanzionom volumenu, odvijanje procesa, moglo bi završiti određenim gubitkom temperature i tlaka na početku ispuha. The system can be made with one expansion cylinder, where an exhaust opening should be provided in it. The volume of the expansion cylinder can be larger than the volume of the suction-compression cylinder due to its construction (dimensions). Due to the installation of the exhaust opening (in one or both side walls), the volume and expansion time are reduced, so combustion should start as early as possible at the time of the small initial volume change. By using a larger mass of media in the process, as well as a longer combustion time, despite the increased expansion volume, the process could end with a certain loss of temperature and pressure at the beginning of the exhaust.

Ovaj gubitak tlaka može se izbjeći pogodnim dodavanjem DODATNOG ekspanziono-ispušnog cilindra čime početak izgaranja može početi kasnije kod većeg prirasta volumena, a izgaranje može trajati duže. Zbog dodatnog prebacivanja medija u taj dodatni ekspanzioni cilindar ova varijanta je složenija, pa će u daljnjem tekstu proces biti opisan u izvedbi s dva ekspanziona cilindra. This loss of pressure can be avoided by conveniently adding an ADDITIONAL expansion-exhaust cylinder, so that the start of combustion can start later with a larger increase in volume, and the combustion can last longer. Due to the additional transfer of the medium to that additional expansion cylinder, this variant is more complex, so in the following text the process will be described in the version with two expansion cylinders.

Na slici 5 (strana 8/11) vizualno je prikazana izolacija jednog sistema. Na slici su prikazana od okoline izolirana dva volumenom identična ekspanziona cilindra. Prvi ekspanzioni cilindar u kojem se odvija izgaranje nazvan je cilindar izgaranja-akumulacije, a drugi ekspanziono-ispušni cilindar. Figure 5 (page 8/11) visually shows the isolation of one system. The picture shows two expansion cylinders of identical volume isolated from the environment. The first expansion cylinder in which combustion takes place is called the combustion-accumulation cylinder, and the second expansion-exhaust cylinder.

1. Usisno-kompresioni cilindar 1. Suction-compression cylinder

AK. Akumulaciona komora AK. Accumulation chamber

2. Ekspanzioni cilindar izgaranja-akumulacije 2. Combustion-accumulation expansion cylinder

3. Ekspanziono-ispušni cilindar 3. Expansion-exhaust cylinder

4. Toplinska i zvučna izolacija ekspanzionih cilindara od okoline 4. Heat and sound insulation of expansion cylinders from the environment

5. Vratilo 5. Shaft

Toplinski uvjeti za odvijanje procesa Thermal conditions for the process

Usisno-kompresioni cilindar zbog prolaza topline konstrukcijski je odvojen i izoliran od ostalog dijela konstrukcije. Ovaj cilindar izložen je izmjeni topline s okolinom. Stijenke cilindra mogu se zračno hladiti ventilatorom, a u slučaju potrebe intenzivnijeg hlađenja, toplina iz stijenci ovog cilindra može se odvoditi vodenim hlađenjem. Toplina u stijenkama ovog cilindra nastaje prijelazom dijela topline s medija kojem uslijed kompresije temperatura raste i ta toplina nije dovedena gorivom. Ovu toplinu potrebno je odvoditi. The suction-compression cylinder is structurally separated and isolated from the rest of the structure due to the passage of heat. This cylinder is exposed to heat exchange with the environment. The walls of the cylinder can be air-cooled by a fan, and in case of need for more intense cooling, the heat from the walls of this cylinder can be removed by water cooling. The heat in the walls of this cylinder is generated by the transfer of a part of the heat from the medium, whose temperature rises due to compression, and this heat is not supplied by the fuel. This heat needs to be removed.

Za vršenje kompresije treba uložiti rad koji se dobiva korištenjem topline (energije) goriva. In order to perform compression, work must be invested, which is obtained by using the heat (energy) of the fuel.

Niskom temperaturom okolnih stijenci ovog cilindra, polaganijom promjenom volumena tokom usisa, te manjom brzinom medija prilikom usisa, temperatura medija na kraju usisa tj. na početku kompresije, neće bitno porasti u odnosu na temperaturu okoline, čime će i usisana masa medija biti veća. Due to the low temperature of the surrounding walls of this cylinder, the slower volume change during suction, and the lower speed of the medium during suction, the temperature of the medium at the end of suction, i.e. at the beginning of compression, will not significantly increase compared to the ambient temperature, which will also increase the mass of the medium sucked in.

Uslijed polaganije promjene volumena tokom kompresije, u uskom volumenu, koji okružuju velike površine odvođenja topline, te mnogo većeg vremena trajanja kompresije, koja se odvija na dužem putu, okretanjem vratila većim od 180°, prosječni eksponent politrope kompresije bit će manji, pa se kompresiju može i mora vršiti duže, čime se do potrebne temperature dolazi velikim omjerom kompresije. Time se postiže mnogo veći tlak na kraju kompresije, odnosno na početku izgaranja. Postizanje najpovoljnijeg prosječnog eksponenta tokom kompresije, glavni je zadatak za ostvarenje odličnih rezultata u ovoj konstrukciji. Takav eksponent treba postići adekvatnim odvođenjem topline iz medija tokom kompresije. Due to a slower volume change during compression, in a narrow volume, which surrounds large heat removal surfaces, and a much longer duration of compression, which takes place on a longer path, by turning the shaft more than 180°, the average exponent of polytropic compression will be smaller, so the compression it can and must be done longer, thus reaching the required temperature with a high compression ratio. This results in a much higher pressure at the end of compression, i.e. at the beginning of combustion. Achieving the most favorable average exponent during compression is the main task for achieving excellent results in this construction. Such an exponent should be achieved by adequate removal of heat from the medium during compression.

Obzirom da konstrukcija nije ispitana, ne postoje mjerene temperaturne vrijednosti akumuliranja i prijelaza topline. Zbog ušteda koje je moguće ostvariti, potrebno je utvrditi optimalnu temperaturu medija na kraju kompresije. Ukoliko bi, prijelaz topline sa stijenki na medij u ekspanzionom cilindru u početnim stupnjevima ekspanzije izostao (?), kompresiju je i uz hlađenje moguće, velikim omjerom kompresije, vršiti do uobičajeno visokih temperatura na kraju kompresije. (U tom bi slučaju i pV dijagrame trebalo malo korigirati.) Ukoliko prijelaz topline u provrtu rotora u ekspanzionom cilindru bude očekivano dovoljno intenzivan, kompresiju se može završiti tako da temperatura medija na kraju kompresije u kompresionom cilindru bude nešto niža od uobičajene. Since the structure has not been tested, there are no measured temperature values of heat accumulation and transfer. Due to the savings that can be achieved, it is necessary to determine the optimal temperature of the medium at the end of compression. If the transfer of heat from the walls to the medium in the expansion cylinder in the initial stages of expansion is absent (?), compression can be carried out even with cooling, with a large compression ratio, up to the usual high temperatures at the end of compression. (In that case, the pV diagrams should also be slightly corrected.) If the heat transfer in the rotor bore in the expansion cylinder is expected to be intense enough, the compression can be ended so that the temperature of the medium at the end of the compression in the compression cylinder is slightly lower than usual.

Ekspanzioni cilindar izgaranja-akumulacije konstrukcijski je IZOLIRAN od OKOLINE, čime je spriječeno odvođenje topline zračenjem, a odvojen je i izoliran i od usisno-kompresionog cilindra. Time je smanjen prolaz topline i na usisno-kompresioni cilindar kojeg je potrebno hladiti. Tokom rada motora stijenke koje okružuju volumen provrta u rotoru kao i velike oble površine rotora i prstena u cilindru izgaranja-akumulacije akumulirat će dio oslobođene topline prilikom izgaranja i postajati sve toplije. Temperatura ove akumulirane topline u materijalu trebala bi biti nekoliko stotina stupnjeva veća od temperature medija na kraju kompresije. The combustion-accumulation expansion cylinder is structurally ISOLATED from the ENVIRONMENT, which prevents the removal of heat by radiation, and it is also separated and isolated from the intake-compression cylinder. This reduces the heat transfer to the suction-compression cylinder, which needs to be cooled. During the operation of the engine, the walls surrounding the volume of the bore in the rotor as well as the large round surfaces of the rotor and ring in the combustion-accumulation cylinder will accumulate part of the heat released during combustion and become increasingly hot. The temperature of this accumulated heat in the material should be several hundred degrees higher than the temperature of the medium at the end of compression.

U praktičnoj izvedbi ovog cilindra poželjno je primjeniti višeslojne materijale razne provodivosti topline kako bi se u sloju koji je u dodiru s medijem akumulirala najveća toplina i usporio prolaz topline prema ostalim dijelovima konstrukcije. Stijenke volumena provrta u kojem se vrši izgaranje mogle bi biti napravljene od materijala koji podnosi i stotinjak stupnjeva veću temperaturu akumulacije (keramika). In the practical design of this cylinder, it is desirable to use multi-layer materials of various heat conductivity in order to accumulate the greatest heat in the layer that is in contact with the medium and slow down the passage of heat to other parts of the structure. The walls of the bore volume where the combustion takes place could be made of a material that can withstand a hundred degrees higher accumulation temperature (ceramics).

DODATNO dovođenje topline mediju PRIJE početka izgaranja i na samom početku ekspanzije postizat će se čim se sistem zagrije. Tim dovođenjem topline dodatno se povećava unutarnja energija mediju, ali u vrijeme kada medij počinje vršiti rad. Promjena volumena u ekspanzionom cilindru u tim stupnjevima je vrlo mala. Toplina se dovodi mediju u vrućem volumenu provrta u rotoru, u ekspanzionom cilindru izgaranja-akumulacije. Stijenke volumena provrta izuzetno su vruče jer se izgaranje goriva odvija u tom volumenu, pa se prijelazom topline dodatno podiže temperatura i tlak, a okolne stijenke kao i stijenke volumena provrta u nekoj se mjeri hlade. Ovaj dio sistema termički je najtopliji dio sistema, a veći prijelaz topline u provrtu može se pospješiti i turbulencijom medija. ADDITIONAL heating to the medium BEFORE the start of combustion and at the very beginning of expansion will be achieved as soon as the system heats up. By bringing heat, the internal energy of the medium is additionally increased, but at the time when the medium begins to do work. The volume change in the expansion cylinder in these stages is very small. Heat is supplied to the medium in the hot volume of the bore in the rotor, in the combustion-accumulation expansion cylinder. The walls of the bore volume are extremely hot because fuel combustion takes place in that volume, so the heat transfer increases the temperature and pressure, and the surrounding walls as well as the walls of the bore volume cool down to some extent. This part of the system is the thermally the hottest part of the system, and greater heat transfer in the borehole can be accelerated by the turbulence of the medium.

Ovime se dio akumulirane topline u stijenkama sistema može iskoristiti za manje uloženog rada. With this, part of the accumulated heat in the walls of the system can be used for less work.

Na slici 6 (lijevo) iscrtkanom kružnicom naznačen je prijelaz topline s medija na stijenke u vrijeme izgaranja u cilindru izgaranja-akumulacije. Ovaj dio topline akumulira se u okolnim stijenkama i koristi na više načina. Sivim strelicama na obje sheme naznačeni su prijelazi topline sa stijenki na medij. Na slici 6 (desno) prikazan je prijelaz topline s medija na stijenke i obratno u današnjim klipnim konstrukcijama. Odvedena toplina u današnjim konstrukcijama ne akumulira se i ne koristi. In Figure 6 (left), the drawn circle indicates the transfer of heat from the medium to the walls during combustion in the combustion-accumulation cylinder. This part of the heat accumulates in the surrounding walls and is used in several ways. The gray arrows on both schemes indicate heat transitions from the walls to the medium. Figure 6 (right) shows the transfer of heat from the medium to the walls and vice versa in today's piston constructions. The removed heat in today's constructions is not accumulated or used.

Akumuliranu toplinu u cilindru izgaranja-akumulacije moguće je višestruko koristiti. Odvođenje topline akumulirane u stijenkama ovog cilindra vrši se prijelazom - povratom topline sa stijenki na medij čime se: The accumulated heat in the combustion-accumulation cylinder can be used multiple times. The removal of the heat accumulated in the walls of this cylinder is carried out by transition - the return of heat from the walls to the medium, which:

1. dovodi toplinu mediju prije početka izgaranja, 1. brings heat to the medium before the start of combustion,

2. ne odvodi toplinu mediju u samom početku izgaranja, 2. does not remove heat to the medium at the very beginning of combustion,

3. smanjuje ukupan prijelaz topline s medija na stijenke u vrijeme izgaranja, 3. reduces the total transfer of heat from the medium to the walls during combustion,

4. ubrzava proces izgaranja, 4. accelerates the combustion process,

5. vraća dio topline mediju po završenom izgaranju. 5. returns part of the heat to the medium after the combustion is complete.

6. dovodi toplinu mediju u okretajima hlađenja sistema, kada nema izgaranja goriva. 6. brings heat to the medium in the system's cooling revolutions, when there is no fuel combustion.

Akumulirana toplina može se koristiti djelom za manje uloženog, a djelom za više dobivenog rada. Accumulated heat can be used partly for less input and partly for more obtained work.

Veće iskorištenje energije može se postići boljim iskorištenjem topline izgorjelih plinova. Greater utilization of energy can be achieved by better utilization of the heat of the burnt gases.

U klipnim konstrukcijama ovaj gubitak također odnosi više od 30% uvedene energije. In piston constructions, this loss also accounts for more than 30% of the introduced energy.

Temperatura izgorjelih plinova u trenutku IO (ispuh otvoren) u klipnim konstrukcijama kreće se oko 1000°K. Visoku temperaturu izgorjelih plinova moguće je iskoristiti drugačijom ekspanzijom no što to omogućuje klipna konstrukcija. U klipnoj konstrukciji smjer sile i krak sile pri kraju ekspanzije previše su nepovoljni da bi mogli iskoristiti relativno nizak tlak. The temperature of the burnt gases at the moment IO (exhaust open) in piston structures is around 1000°K. The high temperature of the burnt gases can be used with a different expansion than what is possible with the piston construction. In the piston construction, the force direction and the force arm at the end of the expansion are too unfavorable to be able to take advantage of the relatively low pressure.

U rotacionoj konstrukciji, zbog konstantnog idealnog smjera i kraka sile, povećanjem ekspanzionog volumena pogodnim dodavanjem dodatnog ekspanziono-ispušnog volumena može se postići “proširena” i “produžena” ekspanzija, čime se može koristiti temperatura izgorjelih plinova i maksimalno iskoristiti relativno nizak tlak, za dobivanje rada. In the rotary construction, due to the constant ideal direction and force arm, by increasing the expansion volume by conveniently adding an additional expansion-exhaust volume, an "extended" and "extended" expansion can be achieved, which can use the temperature of the burnt gases and make maximum use of the relatively low pressure, to obtain of work.

Ekspanziono-ispušni cilindar smješten je uz cilindar izgaranja-akumulacije i zajedno s njim izoliran je od okoline. The expansion-exhaust cylinder is located next to the combustion-accumulation cylinder and together with it is isolated from the environment.

Svrha mu je povećati ekspanzioni volumen tokom ekspanzije i spriječiti direktno odvođenje topline izgorjelim plinovima iz cilindra izgaranja-akumulacije u okolinu. Ovakvo proširenje i produženje ekspanzionog volumena omogućuje da se mediju toplina dovodi kasnijim početkom izgaranja kod većeg prirasta volumena. Dodatni ekspanziono-ispušni volumen potreban je i kako bi se omogućila čim veća akumulacija topline u stijenkama cilindra izgaranja-akumulacije, a toplina duže zadržala u sistemu. Ovime se visoka temperatura akumulirane topline koncentrira na manje područje čime je moguće postići bržu akumulaciju. Its purpose is to increase the expansion volume during expansion and prevent the direct removal of heat by burnt gases from the combustion-accumulation cylinder to the environment. This expansion and extension of the expansion volume enables heat to be supplied to the medium with a later start of combustion with a larger increase in volume. An additional expansion-exhaust volume is also needed to enable the greatest possible accumulation of heat in the walls of the combustion-accumulation cylinder, and to keep the heat longer in the system. This concentrates the high temperature of the accumulated heat on a smaller area, which makes it possible to achieve faster accumulation.

Kako bi konstrukciju tek trebalo termički ispitati, mjereni podaci mogli bi ukazati i na druge mogućnosti. As the construction still needs to be thermally tested, the measured data could indicate other possibilities.

Dodatni ekspanziono-ispušni cilindar daje teoretsku mogućnost podešavanja gabaritima i volumena cilindra izgaranja-akumulacije. An additional expansion-exhaust cylinder gives the theoretical possibility of adjusting the dimensions and volume of the combustion-accumulation cylinder.

Spajanje dodatnog ekspanziono-ispušnog volumena moguće je izvesti u najpogodnijem trenutku. It is possible to connect the additional expansion-exhaust volume at the most convenient moment.

U ovoj konstrukciji gabariti pa time i volumeni svih cilindara mogu biti uzajamno različiti. In this construction, the dimensions and thus the volumes of all cylinders can be mutually different.

Na prikazanim slikama dimenzije svih cilindara su identične pa je i zapremina u svim cilindrima gotovo identična. Razlikuju se samo u volumenima provrta. In the pictures shown, the dimensions of all cylinders are identical, so the volume in all cylinders is almost identical. They differ only in the bore volumes.

Zakretanjem kućišta oni se mogu spojiti u najpogodnijim momentima, a kako bi se postiglo postepeno povećanje volumena, potiskivač (5/3) mora biti na svom početnom stupnju. By rotating the housing, they can be connected at the most convenient moments, and in order to achieve a gradual increase in volume, the pusher (5/3) must be at its initial stage.

Na slici 7 prikazan je način spajanja: Figure 7 shows the connection method:

ekspanzionog cilindra izgaranja-akumulacije (potiskivač 5/2 na svom 180°) s combustion-accumulation expansion cylinder (5/2 pusher at its 180°) with

ekspanzionim cilindrom ekspanzije - ispuha (potiskivač 5/3 na svom 0°). by the expansion cylinder of the expansion - exhaust (thruster 5/3 at its 0°).

Potiskivači se uzajamno poklapaju, a kućišta su zakrenuta i fiksirana za 180° The pushers match each other, and the housings are rotated and fixed by 180°

U početnom razmatranju spajanje volumena izvršeno je na navedenim stupnjevima. In the initial consideration, the joining of volumes was performed at the indicated degrees.

Na slici 8 stiliziranim površinama vizualno su prikazani ti isti volumeni po PRIRASTU (delta volumena - ovisna o kutu alfa - prikazana površinom). In Figure 8, stylized surfaces visually show the same volumes by INCREASE (volume delta - dependent on the alpha angle - shown by the surface).

Ovakvim prikazom volumena lakše je predočiti spajanje dvaju ekspanzionih volumena. With this volume display, it is easier to visualize the joining of two expansion volumes.

Na putu označenom s = 180° istovremeno se odvija ekspanzija u dva cilindra uz konstantan idealan smjer sile, konstantan krak sile, konstantan prirast volumena ili konstantnu površinu (a) dvaju potiskivača (5/2 i 5/3), visoka temperatura plinova izgaranja usporavati će pad tlaka i svaka će vrijednost tlaka biti iskorištena za dobivanje rada. On the path marked with = 180°, expansion takes place simultaneously in two cylinders with constant ideal force direction, constant force arm, constant volume increase or constant area (a) of two pushers (5/2 and 5/3), high temperature of combustion gases slow down will be the pressure drop and each pressure value will be used to obtain work.

4d) Mehanička konstrukcija rotacionog motora s unutarnjim sagorijevanjem 4d) Mechanical construction of a rotary engine with internal combustion

Predmet izuma je konstrukcija rotacionog motora s unutarnjim sagorijevanjem koja na istom vratilu ima usisno-kompresioni cilindar i najmanje jedan, a može imati (u daljnjem tekstu opisana) i dva ekspanziona cilindra. U usisno-kompresionom cilindru odvijaju se usis i kompresija. Između usisno-kompresionog cilindra i cilindra izgaranja-akumulacije stacionarno je smještena akumulaciona komora. U prvom ekspanzionom cilindru tokom ekspanzije odvija se izgaranje goriva i akumulacija dijela oslobođene topline. Drugi ekspanzioni cilindar je dodatni cilindar ekspanzije-ispuha. Taktovi koji se odvijaju u volumenima svih cilindara odvijaju se istovremeno. The subject of the invention is the construction of a rotary engine with internal combustion, which on the same shaft has a suction-compression cylinder and at least one, and may have (described below) two expansion cylinders. Suction and compression take place in the suction-compression cylinder. Between the suction-compression cylinder and the combustion-accumulation cylinder is a stationary accumulation chamber. In the first expansion cylinder, fuel combustion and accumulation of part of the released heat takes place during expansion. The second expansion cylinder is an additional expansion-exhaust cylinder. The strokes that occur in the volumes of all cylinders occur simultaneously.

U statore sva tri cilindra smješteni su rotirajući kongruentni i koaksijalni: prsteni, rotori i potiskivači. Svaki cilindar ima obodni dio kućišta (1) (slike 9 i 10) u čijem je geometrijskom središtu svojim geometrijskim središtem smješten obodni prsten (2). Svaki cilindar ima rotor (3) koji je ekscentrično smješten u odnosu na geometrijsko središte kućišta i prstena, a u svom geometrijskom središtu fiksno je vezan na vratilo (4). Rotor i prsten tako su postavljeni da se u jednoj točci (0) stalno dodiruju, a povezani su radijalno pokretnim potiskivačem (5), koji je s jedne strane umetnut u raspor rotora, a s druge strane zglobno postavljen u kružno oblikovani otvor u prstenu. Na taj način potiskivač u svakom cilindru tvori dva promjenjiva volumena. Obzirom na smjer vrtnje volumen ispred sebe (A) i volumen iza sebe (B). Svaki cilindar sadrži i bočne stijenke (9) centrirane s obodnim kućištem pa zajedno formiraju zatvoreni volumen u statoru. U bočnim stijenkama ugrađeni su ležajevi (10) u koje je uležajeno vratilo (4), a u te stijenke smješteni su i otvori za usis (6), ispuh (12) ili prestrujavanje medija (11). Dodirna točka rotora i prstena (0) označena je i 0° kao početnim stupnjem okretanja potiskivača, kao i 0° kućišta u odnosu na rotirajuće dijelove, odnosno uzajaman položaj u odnosu na druga dva kućišta. 0° prvog kućišta usisno-kompresionog cilindra i 0° drugog kućišta izgaranja-akumulacije uzajamno se poklapaju (slika 18). In the stators of all three cylinders are placed rotating congruent and coaxial: rings, rotors and pushers. Each cylinder has a circumferential part of the casing (1) (Figures 9 and 10) in the geometric center of which the circumferential ring (2) is located. Each cylinder has a rotor (3) which is located eccentrically in relation to the geometric center of the housing and ring, and is fixedly connected to the shaft (4) in its geometric center. The rotor and the ring are placed in such a way that they constantly touch at one point (0), and they are connected by a radially movable pusher (5), which is inserted into the rotor gap on one side, and on the other side is hingedly placed in a circular opening in the ring. In this way, the pusher in each cylinder forms two variable volumes. Considering the direction of rotation, the volume in front of it (A) and the volume behind it (B). Each cylinder also contains side walls (9) centered with the peripheral casing, so together they form a closed volume in the stator. Bearings (10) in which the shaft (4) is mounted are installed in the side walls, and openings for intake (6), exhaust (12) or medium flow (11) are located in these walls. The contact point of the rotor and the ring (0) is marked with 0° as the initial degree of rotation of the pusher, as well as 0° of the housing in relation to the rotating parts, i.e. the mutual position in relation to the other two housings. 0° of the first intake-compression cylinder housing and 0° of the second combustion-accumulation housing coincide with each other (Figure 18).

Treće kućište ekspanziono-ispušnog cilindra zakrenuto je i fiksirano za kut od 180° u odnosu na kućišta prethodna dva cilindra. Ako se u prvom cilindru potiskivač nalazi na svom početnom 0°, potiskivač u drugom kućištu zakrenut je za 180° i nalazi se na svom 180°. Treći potiskivač usporedan je s potiskivačem u drugom cilindru jer je u odnosu na potiskivač u prvom cilindru također zakrenut za 180°, ali se treći potiskivač u tom momentu, obzirom da mu je zakrenuto i kućište, nalazi na svom početnom 0° (slike 17 i 18). The third housing of the expansion-exhaust cylinder is rotated and fixed by an angle of 180° in relation to the housings of the previous two cylinders. If in the first cylinder the pusher is at its initial 0°, the pusher in the second housing is rotated 180° and is at its 180°. The third pusher is comparable to the pusher in the second cylinder, because compared to the pusher in the first cylinder, it is also rotated by 180°, but the third pusher at that moment, since its housing is also rotated, is at its initial 0° (Figures 17 and 18).

Rotirajući dijelovi tokom okretanja naliježu nepropusno na unutarnje stijenke cilindričnog kućišta kao i na bočne stijenke kućišta. Radi smanjenja obodnog trenja prstena i obodnog djela kućišta ugrađeni su cilindrični valjci (8) uležajeni u bočnim stijenkama u uglovima obodnog kućišta. During rotation, the rotating parts rest tightly on the inner walls of the cylindrical housing as well as on the side walls of the housing. In order to reduce the circumferential friction of the ring and the circumferential part of the casing, cylindrical rollers (8) are installed in the side walls in the corners of the circumferential casing.

To su glavni dijelovi svakog cilindra. These are the main parts of each cylinder.

Oni su identični u svim cilindrima, a razlikuju se u provrtima i kanalima za protok medija. They are identical in all cylinders, but differ in the holes and channels for the medium flow.

Ove će razlike biti posebno opisane te vizualno prikazane i u 3D. These differences will be specially described and visually presented in 3D.

Na slici 9 potiskivač se nalazi na 180° radi prikaza volumena A i B. In Figure 9, the pusher is at 180° to show volumes A and B.

Na slici 10 prikazano je spajanje provrta u rotoru (7) i segmentnog provrta u bočnoj stjenci (11), pa se potiskivač nalazi u drugom položaju. Figure 10 shows the connection of the hole in the rotor (7) and the segmental hole in the side wall (11), so the pusher is in a different position.

Na slici 11 pojednostavljeno su trodimenzionalno prikazani rotirajući dijelovi svakog cilindra: prsten (2), rotor (3) fiksno vezan na vratilo (4), potiskivač (5) i obodni valjci (8). Figure 11 shows a simplified three-dimensional representation of the rotating parts of each cylinder: ring (2), rotor (3) fixed to the shaft (4), pusher (5) and peripheral rollers (8).

Protok medija i brtvenje konstrukcije Media flow and construction sealing

U ovoj rotacionoj konstrukciji nema ventila pa protok medija kroz sistem osiguravaju provrti u rotorima, segmentni žljebovi u rotorima i segmentni provrti u bočnim stijenkama. There are no valves in this rotary construction, so the medium flow through the system is ensured by holes in the rotors, segmental grooves in the rotors and segmental holes in the side walls.

Samobrtvenje “dodirne točke”, zbog zakrivljenog volumena i pogodno obrađenih oblih ploha rotora i prstena, može se postići turbulencijom medija. Brtvenje obodnog prstena (osim klasičnog načina brtvenja karikama), može se postići lavirintnom-bezdodirnom izvedbom bočnih površina, te također turbulencijom medija postići samobrtvenje. Brtvenje provrta u rotorima i provrta u bočnim stijenkama vrši se samim površinama i karikama smještenim u bočnim stijenkama. Self-sealing of the "touch point", due to the curved volume and the suitably processed round surfaces of the rotor and ring, can be achieved by the turbulence of the medium. The sealing of the peripheral ring (except for the classic method of sealing with links) can be achieved with a labyrinth-non-contact design of the side surfaces, and self-sealing can also be achieved with the turbulence of the medium. The sealing of the holes in the rotors and the holes in the side walls is done by the surfaces themselves and the links located in the side walls.

Rotori Rotors

U rotorima su pod određenim kutem probušeni provrti (7) s bočne u obodnu stranu rotora (slika 12). Provrti u rotorima imaju zadatak prebacivanja medija s čeone strane rotora u bočnu stranu ili obratno. Rotiranjem rotora u točno određenim momentima uspostavlja se ili prekida veza provrta (ili segmentnih žljebova) u rotoru sa segmentnim provrtima u bočnim stijenkama (slika 15), te se tako uspostavlja ili prekida veza među volumenima kroz koje se vrši protok medija. Svi provrti i žljebovi moraju biti adekvatno dimenzionirani i glatki kako bi pružali čim manji otpor protoku medija. In the rotors, holes (7) are drilled at a certain angle from the side to the peripheral side of the rotor (picture 12). The holes in the rotors have the task of transferring the medium from the front side of the rotor to the side or vice versa. By rotating the rotor at precisely defined moments, the connection between the holes (or segmental grooves) in the rotor is established or broken with the segmental holes in the side walls (Figure 15), thus establishing or breaking the connection between the volumes through which the medium flows. All holes and grooves must be adequately dimensioned and smooth in order to provide as little resistance as possible to the flow of the medium.

Razlike među provrtima u rotorima prema njihovim zadacima, izvedbi i smještaju Differences between the holes in the rotors according to their tasks, performance and location

U rotoru usisno-kompresionog cilindra smješten je jedan provrt (na crtežima označen 1R - prvi rotor) neposredno ispred potiskivača u smjeru vrtnje (slike 12). U tom provrtu po završenom potiskivanju medija u komoru, ostat će određena količina medija pod visokim tlakom koja će u daljnjem okretanju, kad obodni otvor provrta prijeđe na usisnu stranu, preko dodirne točke 0 (slike 9 i 10) ekspandirati u usisni volumen ispred potiskivača i pospješiti “punjenje” usisnog volumena većom masom medija i u predvidivoj mjeri podići početni tlak (slika 16 f). Ovaj rotor smješten je između bočnih stijenki I i II. In the rotor of the suction-compression cylinder, there is one hole (marked 1R in the drawings - the first rotor) immediately in front of the pusher in the direction of rotation (pictures 12). In that bore, after the medium has been pushed into the chamber, a certain amount of medium under high pressure will remain, which in further rotation, when the peripheral opening of the bore moves to the suction side, will expand through contact point 0 (pictures 9 and 10) into the suction volume in front of the pusher and accelerate the "filling" of the suction volume with a larger mass of medium and predictably raise the initial pressure (Figure 16 f). This rotor is located between side walls I and II.

U rotoru cilindra izgaranja-akumulacije smještena su dva provrta (slika 13). Obzirom na smjer vrtnje smješteni su jedan ispred, a drugi iza potiskivača. Provrt iza potiskivača u rotoru u cilindru izgaranja-akumulacije (na crtežima označen 2R/B - drugi rotor, volumen iza potiskivača - B), ima cilindričan oblik i probušen je paralelno s obodnom plohom rotora. Ovaj paralelan provrt ima zadatak periodičnog spajanja segmentnih volumena u objim bočnim stijenkama (III i IV). Volumen cilindričnog provrta spojen je dodatnim obodnim provrtom pa zajedno imaju oblik slova T (slika 13/2). Rotor je smješten između bočnih stijenci III i IV (slika 15). U određenom momentu provrt 2R/B uspostavlja vezu sa segmentnim provrtom u bočnoj stijenci III pa medij iz komore ekspandira u provrt 2R/B u početnim stupnjevima ekspanzije. U provrtu 2R/B odvija se izgaranje goriva kao u glavnom volumenu izgaranja. Stijenke koje okružuju ovaj provrt moraju biti napravljene od materijala koji mogu podnijeti visoku temperaturu akumulacije. There are two holes in the rotor of the combustion-accumulation cylinder (Figure 13). Due to the direction of rotation, one is located in front and the other behind the pusher. The hole behind the pusher in the rotor in the combustion-accumulation cylinder (in the drawings marked 2R/B - second rotor, volume behind the pusher - B), has a cylindrical shape and is drilled parallel to the peripheral surface of the rotor. This parallel bore has the task of periodically joining the segmental volumes in both side walls (III and IV). The volume of the cylindrical bore is connected by an additional peripheral bore, so together they have the shape of the letter T (Figure 13/2). The rotor is located between the side walls III and IV (Figure 15). At a certain moment, the hole 2R/B establishes a connection with the segmental hole in the side wall III, so the medium from the chamber expands into the hole 2R/B in the initial stages of expansion. In bore 2R/B, fuel combustion takes place as in the main combustion volume. The walls surrounding this bore must be made of materials that can withstand the high temperature of the reservoir.

Po završenom izgaranju, tokom ekspanzije, u predviđenom momentu provrt 2R/B spaja se na segmentni provrt IV/B na bočnom zidu IV i uspostavlja vezu sa provrtom 3R/B pa medij ekspandira i u cilindar ekspanzije-ispuha (slika 17e). Provrt iza potiskivača u rotoru cilindra izgaranja-akumulacije 2R/B spaja volumene višeg tlaka uspostavom veze s provrtom iza potiskivača u rotoru cilindra ekspanzije-ispuha u trajanju 180° okretaja vratila. Provrt ispred potiskivača u rotoru cilindra izgaranja-akumulacije (na crtežima označen 2R/A) ima zadatak uspostave veze volumena niskog tlaka uspostavom veze s provrtom ispred potiskivača u cilindru ekspanzije-ispuha. Provrt je spojen s čeone strane u bočnu stijenku rotora u kojoj je izveden segmentni žlijeb (slika 13). Segmentni provrti izvedeni su na predviđenim mjestima u pregradnoj stijenci IV za spajanje volumena između ova dva cilindra. Pregradna stijenka (IV) između ova dva cilindra je zajednička (slike 15 i 18). Ovakvom izvedbom kanala volumeni niskog tlaka u cilindrima spojeni su 360° okretaja vratila čime je osiguran kontinuiran ispuh. After the combustion is complete, during expansion, at the predicted moment, the hole 2R/B connects to the segmental hole IV/B on the side wall IV and establishes a connection with the hole 3R/B, so the medium expands into the expansion-exhaust cylinder (Figure 17e). The bore behind the pusher in the rotor of the combustion-accumulation cylinder 2R/B connects the higher pressure volumes by establishing a connection with the bore behind the pusher in the rotor of the expansion-exhaust cylinder for the duration of 180° of shaft rotation. The bore in front of the pusher in the rotor of the combustion-accumulation cylinder (marked 2R/A in the drawings) has the task of establishing a low-pressure volume connection by establishing a connection with the bore in front of the pusher in the expansion-exhaust cylinder. The bore is connected from the front side to the side wall of the rotor, where the segmental groove is made (Figure 13). Segmental bores were made in the intended places in the partition wall IV to connect the volume between these two cylinders. The partition wall (IV) between these two cylinders is shared (Figures 15 and 18). With this design of the channel, the volumes of low pressure in the cylinders are connected by 360° rotation of the shaft, which ensures a continuous exhaust.

U rotoru cilindra ekspanzije-ispuha smještena su također dva provrta. There are also two holes in the rotor of the expansion-exhaust cylinder.

Provrt iza potiskivača (3R/B) u rotoru u cilindru ekspanzije-ispuha izveden je kao i provrt 1R i prikazan je na slici 14. Zadatak ovog provrta je spajanje volumena za protok medija višeg tlaka s cilindrom izgaranja-akumulacije. Obodni provrt ispred potiskivača (3R/A) u rotoru ekspanzije-ispuha smješten je 180° unaprijed povezan segmentnim žlijebom u bočnoj stijenci rotora kako je prikazano na slici 14. i zadatak mu je spajanje volumena niskog tlaka ispušnih plinova. Ova veza putem segmentnog provrta u bočnoj stijenci također je uspostavljena u svih 360° okretaja vratila. The hole behind the pusher (3R/B) in the rotor in the expansion-exhaust cylinder is designed like the hole 1R and is shown in Figure 14. The task of this hole is to connect the volume for the flow of higher pressure media with the combustion-accumulation cylinder. The circumferential bore in front of the pusher (3R/A) in the expansion-exhaust rotor is located 180° in advance connected by a segmental groove in the side wall of the rotor as shown in Figure 14 and its task is to connect the volume of low pressure exhaust gases. This connection via a segmental bore in the side wall is also established in all 360° revolutions of the shaft.

Bočne stijenke Side walls

Na slici 15 prikazane su bočne stijenke označene I - V redoslijedom protoka medija. Iscrtkanim linijama prikazani su volumeni koje rotori i prsteni formiraju uz te stijenke. Stijenke I i II okružuju kompresioni volumen. U njima su izrađeni usisni otvori (6). U stijenci II izveden je segmentni provrt kroz koji se potiskuje medij na kraju kompresije u akumulacionu komoru. Ovaj provrt u daljnjem tekstu bit će označen ( II ). Između stijenci II i III vizualno je prikazan smještaj cilindrične akumulacione komore. Stijenke III i IV okružuju ekspanzioni volumen izgaranja-akumulacije. U stijenci III izveden je segmentni provrt ( III ) kroz koji medij ekspandira iz komore u volumen provrta u rotoru 2R/B. Između stijenci IV i V formiran je volumen ekspanzije-ispuha pa je stijenka IV zajednička i veća od ostalih. Iscrtkane linije na stijenci IV prikazuju volumene koji se formiraju s obje strane stijenke. U stijenci IV izvedena su dva segmentna provrta. Segmentni provrt za uspostavu veze volumena iza potiskivača označen IV/B i segmentni provrt za uspostavu veze volumena ispred potiskivača označen IV/A. Stijenka V zajedno sa svojim obodnim kućištem zakrenuta je za 180° i u njoj je izveden ispušni otvor (12). Figure 15 shows the side walls labeled I - V in order of media flow. The dashed lines show the volumes that the rotors and rings form next to these walls. Walls I and II surround the compression volume. Suction openings (6) are made in them. A segmental bore is made in wall II, through which the medium is pushed at the end of compression into the accumulation chamber. This hole will be marked (II) in the following text. Between walls II and III, the location of the cylindrical storage chamber is visually shown. Walls III and IV surround the combustion-accumulation expansion volume. In wall III, a segmental hole (III) is made, through which the medium expands from the chamber into the volume of the hole in the rotor 2R/B. An expansion-exhaust volume was formed between walls IV and V, so wall IV is common and larger than the others. Dashed lines on wall IV show the volumes that form on both sides of the wall. Two segmental boreholes were made in wall IV. The segmental hole for the establishment of the volume connection behind the pusher marked IV/B and the segmental hole for establishing the volume connection in front of the pusher marked IV/A. Wall V together with its peripheral casing is rotated by 180° and has an exhaust opening (12).

Odvijanje procesa Process development

Radi preglednosti, maksimalno su pojednostavljeni crteži koji prikazuju geometrijsku promjenu volumena i tok medija kroz provrte u karakterističnim položajima potiskivača u svim radnim volumenima. Termički dio vođenja procesa ranije je uglavnom već opisan. For the sake of clarity, the drawings that show the geometric change in volume and the flow of media through the holes in the characteristic positions of the pusher in all working volumes have been maximally simplified. The thermal part of the process management was mostly already described earlier.

Odvijanje procesa u usisno-kompresionom cilindru. Development of the process in the suction-compression cylinder.

Na slikama 16 prikazana je promjena volumena samo u usisno-kompresionom cilindru. Kako se kompresija vrši u akumulacionu komoru ostali volumeni ovdje nisu prikazani. Na slikama 16 prikazani su jedan preko drugog usisni otvori (6), kao i segmentni provrt II u bočnoj stijenci II (slika 15), kroz koji se vrši potiskivanje medija u akumulacionu komoru. Potiskivač u usisno-kompresionom cilindru (5/1) pomaknut je u odnosu na potiskivače u ekspanzionim cilindrima (5/2 i 5/3) za 180°. (slika 18) Figures 16 show the change in volume only in the suction-compression cylinder. As the compression takes place in the storage chamber, the other volumes are not shown here. Figure 16 shows the suction openings (6) one above the other, as well as the segmental hole II in the side wall II (Figure 15), through which the medium is pushed into the accumulation chamber. The pusher in the suction-compression cylinder (5/1) is moved in relation to the pushers in the expansion cylinders (5/2 and 5/3) by 180°. (picture 18)

Na slici 16a prikazan je potiskivač (5/1) u usisno-kompresionom cilindru na svom 90° na početku kompresije u momentu USIS ZATVOREN. Potiskivač počinje komprimirati medij u volumenu (A) ispred sebe, a istovremeno u volumen iza sebe (B) kroz usisne otvore (6) u bočnim stijenkama I i II pottlakom se usisava medij za novi ciklus tokom svih 360° okretaja vratila (slika16 a, b, c, d, e, f). Figure 16a shows the pusher (5/1) in the intake-compression cylinder at its 90° at the beginning of compression at the moment INTAKE CLOSED. The pusher begins to compress the medium in the volume (A) in front of it, and at the same time in the volume behind it (B) through the suction openings (6) in the side walls I and II. The vacuum suctions the medium for a new cycle during all 360° revolutions of the shaft (Fig. 16 a, b, c, d, e, f).

Koristeći inerciju medija usis traje 360° okretaja vratila (rotacijom potiskivača (5/1) od 90°- 90°). Using the inertia of the medium, the suction lasts 360° rotation of the shaft (by rotating the pusher (5/1) from 90° - 90°).

Kompresija medija traje do određene temperature i tlaka kada se uspostavlja veza provrta 1R u kompresionom rotoru sa segmentnim provrtom u bočnoj stijenci II. S druge strane bočne stijenke II (slika 15) uz usisno-kompresioni cilindar stacionarno je smještena akumulaciona komora. Početak segmentnog provrta u bočnoj stijenci II može se izraditi na željenom stupnju okretanja, što znači da se dužina segmentnog provrta može prilagoditi potrebama. Početak potiskivanja komprimiranog medija u akumulacionu komoru prikazan je na slici 16d. U volumenu segmentnog provrta u bočnoj stijenci II koji je u stalnoj vezi s volumenom komore, u trenutku spajanja s provrtom u rotoru 1R, tlak je isti kao i tlak u komori, ali malo niži - no u provrtu 1R usisno-kompresionog rotora. Tlak se u narednih par stupnjeva izjednačuje, a potom se nastavlja potiskivanje medija u komoru uz konstantan tlak i temperaturu. The compression of the medium lasts up to a certain temperature and pressure when the connection of the hole 1R in the compression rotor with the segmental hole in the side wall II is established. On the other side of the side wall II (picture 15) next to the suction-compression cylinder, there is a stationary accumulation chamber. The beginning of the segmental bore in the sidewall II can be made at the desired degree of rotation, which means that the length of the segmental bore can be adjusted to the needs. The beginning of pushing the compressed medium into the storage chamber is shown in Figure 16d. In the volume of the segmental bore in the side wall II, which is in constant connection with the volume of the chamber, at the moment of connection with the bore in the rotor 1R, the pressure is the same as the pressure in the chamber, but a little lower - in the bore 1R of the suction-compression rotor. The pressure is equalized in the next few degrees, and then the pushing of the medium into the chamber continues with constant pressure and temperature.

Na slici 16e završeno je potiskivanje medija u komoru i prekinuta je veza između provrta. Ova veza mora biti prekinuta prije no što obodni izlaz provrta 1R prijeđe preko dodirne točke 0 kako se ne bi obodno uspostavila veza volumena visokog tlaka s usisnim volumenom niskog tlaka. Količina medija koja je ostala u provrtu 1R pod tlakom kompresije, ekspandirat će u usisnu stranu ispred potiskivača čim obodni izlaz provrta prijeđe dodirnu točku 0 i u predvidivoj mjeri povećati početnu masu i početni tlak medija (slika 16f). Kada potiskivač na svom 90° ponovo prijeđe usisni otvor i zatvori medij ispred sebe započinje novi okretaj kompresije ispred potiskivača i usisa iza potiskivača. In Figure 16e, the pushing of the medium into the chamber is completed and the connection between the bores is broken. This connection must be broken before the circumferential outlet of the bore 1R passes over the contact point 0 so as not to establish a circumferential connection of the high pressure volume with the low pressure intake volume. The amount of medium that remained in the bore 1R under compression pressure will expand into the suction side in front of the pusher as soon as the circumferential outlet of the bore crosses the contact point 0 and predictably increase the initial mass and initial pressure of the medium (Figure 16f). When the pusher at its 90° again crosses the suction opening and closes the medium in front of it, a new cycle of compression starts in front of the pusher and suction behind the pusher.

Akumulaciona komora je neophodna iz više razloga. Punjenje volumena provrta 2R/B u rotoru cilindra izgaranja-akumulacije vrši se po uspostavi veze s komorom gotovo trenutno, ekspanzijom medija u taj volumen, jer se medij u komori nalazi pod visokim tlakom. Adekvatnim volumenom ove komore postiže se vrlo mali pad tlaka tokom “punjenja”. Kako bi se čim više smanjio prolaz topline kroz stijenke, sa dijela sistema koji akumulira toplinu na usisno-kompresioni cilindar, kojeg je potrebno izvana hladiti, najjednostavnije i najefikasnije je da usisno-kompresioni cilindar bude odmaknut, pa je akumulaciona komora neophodna. Zadatak ove akumulacione komore je akumulirati određenu količinu medija pod visokim tlakom i temperaturom. Akumulaciona komora u stalnoj je vezi sa segmentnim otvorima u bočnim stijenkama II i III, tj. volumeni ovih segmentnih provrta ulaze u proračun volumena komore. Veza se uspostavlja i prekida u pogodnim (predviđenim) momentima uspostavom veze segmentnih otvora s provrtima u rotorima kako cilindra kompresije tako i cilindra ekspanzije. Akumulaciona komora također je termički izolirana od okoline. The storage chamber is necessary for several reasons. The filling of the volume of the bore 2R/B in the rotor of the combustion-accumulation cylinder is done after the connection with the chamber is established almost instantly, by the expansion of the medium into that volume, because the medium in the chamber is under high pressure. Adequate volume of this chamber achieves a very small pressure drop during "filling". In order to reduce as much as possible the passage of heat through the walls, from the part of the system that accumulates heat to the intake-compression cylinder, which needs to be cooled from the outside, it is the simplest and most efficient for the intake-compression cylinder to be moved away, so an accumulation chamber is necessary. The task of this accumulation chamber is to accumulate a certain amount of medium under high pressure and temperature. The storage chamber is in constant connection with the segmental openings in the side walls II and III, i.e. the volumes of these segmental holes are included in the calculation of the volume of the chamber. The connection is established and broken at convenient (predicted) moments by establishing the connection of the segment openings with the holes in the rotors of both the compression cylinder and the expansion cylinder. The storage chamber is also thermally insulated from the environment.

Odvijanje procesa u cilindru izgaranja-akumulacije Development of the process in the combustion-accumulation cylinder

Na slikama 17 istovremeno su prikazani segmentni provrti u stijenkama III i IV (slika 15). Figure 17 shows the segmental holes in walls III and IV (Figure 15).

Istovremeno su (nivoima) prikazani i provrti u oba ekspanziona rotora i momenti njihovog uzajamnog spajanja. Kućište ekspanziono-ispušnog cilindra zakrenuto je za 180° u odnosu na kućišta druga dva cilindra. Tamnijom nijansom označeni su volumeni većeg tlaka, a svjetlijom manjeg. At the same time, the holes in both expansion rotors and the moments of their mutual connection are shown (in levels). The housing of the expansion-exhaust cylinder is rotated by 180° in relation to the housings of the other two cylinders. Volumes of higher pressure are marked with a darker shade, and volumes of lower pressure are marked with a lighter shade.

Na slici 17a potiskivač u cilindru izgaranja-akumulacije (5/2) nalazi se na svom početnom stupnju. Istovremeno se u kućištu ekspanzije-ispuha potiskivač (5/3) nalazi na svom 180° jer se potiskivači stalno uzajamno poklapaju. Provrti u rotorima iza potiskivača ( 2R/B i 3R/B ) također se stalno poklapaju, a veza među njima uspostavlja se segmentnim provrtom IV/B u bočnoj stijenci IV. In Figure 17a, the pusher in the combustion-accumulation cylinder (5/2) is at its initial stage. At the same time, in the expansion-exhaust housing, the pusher (5/3) is at its 180°, because the pushers are constantly matching each other. The holes in the rotors behind the pushers (2R/B and 3R/B) also always coincide, and the connection between them is established by the segmental hole IV/B in the side wall IV.

Na slici 17b prikazan je moment uspostave veze provrta izgaranja 2R/B sa segmentnim provrtom III u bočnoj stijenci III. Komprimirani medij visokog tlaka iz komore, u pogodnom momentu, kroz segmentni provrt u bočnoj stijenci III u trenutku uspostave veze s provrtom 2R/B u rotoru ekspanzionog cilindra izgaranja-akumulacije, naglo ekspandira u vrući volumen provrta 2R/B. Najpogodniji moment uspostavljanja veze komore i volumena provrta 2R/B u cilindru izgaranja-akumulacije je dok se obodni otvor provrta 2R/B u rotoru nalazi još nekoliko stupnjeva na ispušnoj strani, dakle prije no što je obodni otvor prešao dodirnu točku (0). Time se vrši ispiranje provrta od izgorjelih ispušnih plinova iz prethodnog okretaja, pa će ti plinovi biti istisnuti u ispušnu stranu (slika 17b). Tako se postiže odličan volumetrijski stupanj punjenja. Punjenje provrta 2R/B u rotoru cilindra izgaranja-akumulacije završeno je već nakon nekoliko stupnjeva okretaja rotora, prekida se veza sa segmentnim provrtom u bočnoj stijenci III pa time i sa komorom (slika 17c). Prekidom veze omogućuje se prijelaz topline s vrućih okolnih površina i porast temperature i tlaka medija u početku ekspanzije u vrijeme vrlo male promjene volumena, a bez da to povećanje tlaka ima utjecaj na tlak u komori. U provrt rotora 2R/B, koji je i glavni volumen izgaranja, kroz bočnu stijenku ili komoru ubrizgava se gorivo u prvim stupnjevima ekspanzije. Ovo ubrizgavanje može se izvršiti istovremeno s punjenjem provrta medijem ili neposredno nakon toga. Samopaljenjem ili svjećicom započinje njegovo izgaranje. Po završenom izgaranju goriva dio topline s velikih okolnih površina, koje su preuzele dio topline u vrijeme izgaranja, okrećući se zajedno s medijem, vračaju dio te topline mediju, a zatim se u pogodnom momentu uspostavlja veza s ekspanziono-ispušnim cilindrom te počinje proširena ekspanzija. Figure 17b shows the moment of establishing the connection of the combustion bore 2R/B with the segmental bore III in the side wall III. The compressed high-pressure medium from the chamber, at a convenient moment, through the segmental hole in the side wall III at the moment of establishing a connection with the hole 2R/B in the rotor of the combustion-accumulation expansion cylinder, suddenly expands into the hot volume of the hole 2R/B. The most suitable moment to establish the connection between the chamber and the volume of the bore 2R/B in the combustion-accumulation cylinder is while the circumferential opening of the 2R/B bore in the rotor is still a few degrees on the exhaust side, that is, before the circumferential opening has crossed the contact point (0). This washes the bore of burnt exhaust gases from the previous revolution, so these gases will be forced into the exhaust side (Figure 17b). Thus, an excellent volumetric degree of filling is achieved. The filling of the hole 2R/B in the rotor of the combustion-accumulation cylinder is completed already after a few degrees of rotation of the rotor, the connection with the segmental hole in the side wall III and thus with the chamber is broken (Fig. 17c). By breaking the connection, the transfer of heat from the hot surrounding surfaces and the increase in temperature and pressure of the medium at the beginning of the expansion at the time of a very small change in volume are enabled, without this increase in pressure affecting the pressure in the chamber. Fuel is injected into the 2R/B rotor bore, which is also the main combustion volume, through the side wall or chamber in the first stages of expansion. This injection can be carried out simultaneously with the filling of the borehole with the medium or immediately after. Self-ignition or a spark plug starts its combustion. After the combustion of the fuel is complete, part of the heat from the large surrounding surfaces, which took part of the heat during the combustion, turning together with the medium, returns part of that heat to the medium, and then, at the appropriate moment, a connection is established with the expansion-exhaust cylinder and the extended expansion begins.

Slika 17d prikazuje ekspanzioni cilindar izgaranja-akumulacije u vrijeme izgaranja - dovođenja topline. Figure 17d shows the combustion-accumulation expansion cylinder at the time of combustion - heat supply.

Odvijanje procesa u cilindru ekspanzije-ispuha Development of the process in the expansion-exhaust cylinder

Pregradna stijenka IV između dvaju ekspanzionih cilindara je zajednička (slika 15). U određenom momentu provrtima i kanalima uspostavlja se veza volumena višeg tlaka - iza potiskivača. Crtežima je prikazano spajanje ovih volumena u momentu kada se potiskivač u cilindru izgaranja-akumulacije (5/2) nalazi na svom 180° (slika 17e). U tom momentu potiskivač u cilindru ekspanzije-ispuha (5/3) nalazi se na svom početnom stupnju jer su kućišta uzajamno zakrenuta za 180°. Zakretanjem kućišta ekspanziono-ispušnog cilindra spajanje volumena može se izvršiti i u nekom drugom momentu, a potiskivač u ekspanziono-ispušnom cilindru (5/3) mora u trenutku spajanja biti na svom početnom stupnju kako bi povećanje volumena bilo postepeno. U ovim opisima i shematskim prikazima nije uzeta u obzir debljina potiskivača, pa će kućište ekspanziono-ispušnog cilindra u realnoj izvedbi biti zakrenuto oko 170°. Partition wall IV between the two expansion cylinders is shared (Figure 15). At a certain moment, the connection of the higher pressure volume is established through the holes and channels - behind the pusher. The drawings show the joining of these volumes at the moment when the pusher in the combustion-accumulation cylinder (5/2) is at its 180° (Figure 17e). At that moment, the pusher in the expansion-exhaust cylinder (5/3) is at its initial stage because the housings are mutually rotated by 180°. By rotating the housing of the expansion-exhaust cylinder, the connection of the volume can be performed at another moment, and the pusher in the expansion-exhaust cylinder (5/3) must be at its initial stage at the time of connection so that the increase in volume is gradual. In these descriptions and schematic representations, the thickness of the pusher is not taken into account, so the housing of the expansion-exhaust cylinder will be rotated about 170° in the real version.

Na slici 17e prikazan je momenat spajanja provrta 2R/B sa segmentnim provrtom u bočnoj stijenci IV/B kroz koji medij prestrujava u provrt rotora 3R/B iza potiskivača (5/3) u ekspanziono-ispušnom cilindru, koji se u tom času nalazi na svom početnom stupnju, pa se ekspanzija nastavlja istovremeno u oba ekspanziona cilindra kako je tamnijom nijansom prikazano na slici 17f. U tom času u cilindru izgaranja-akumulacije započinje novi ciklus dovođenja medija u volumen izgaranja 2R/B, a u ekspanziono-ispušnom cilindru iza potiskivača ekspanzija traje do momenta IO. Volumeni ispred obaju potiskivača s niskim tlakom spojeni su stalno s ispušnim otvorom tokom svih 360° okretaja vratila. Ispušni otvor (12) u bočnoj stijenci V (slika 15), naznačen je iscrtkanim linijama samo na slikama 17a i 17f, ali se taj otvor stalno nalazi na istoj poziciji i radi preglednosti nije nacrtan na svim slikama. Figure 17e shows the moment of connection of the hole 2R/B with the segmental hole in the side wall IV/B through which the medium flows into the hole of the rotor 3R/B behind the pusher (5/3) in the expansion-exhaust cylinder, which at that time is located on to its initial stage, so expansion continues simultaneously in both expansion cylinders as shown in darker shade in Figure 17f. At that time, in the combustion-accumulation cylinder, a new cycle of bringing the medium into the combustion volume 2R/B begins, and in the expansion-exhaust cylinder behind the pusher, the expansion continues until the moment IO. The volumes in front of both thrusters with low pressure are connected continuously to the exhaust port during all 360° revolutions of the shaft. The exhaust opening (12) in the side wall V (picture 15) is indicated by dashed lines only in pictures 17a and 17f, but this opening is always in the same position and for the sake of clarity it is not drawn in all pictures.

Na slici 18 prikazani su volumeni tri radna cilindra, akumulaciona komora, bočne stijenke i potiskivači: 1. Usisno-kompresioni cilindar, AK. Akumulaciona komora 2. Ekspanzioni cilindar izgaranja-akumulacije 3. Ekspanziono-ispušni cilindar. Volumeni segmentnih provrta II i III u stalnoj su uzajamnoj vezi s akumulacionom komorom AK i zajedno čine volumen akumulacione komore. Segmentni provrti u bočnim stijenkama IV/A i IV/B uspostavljaju vezu s volumenima provrta u rotorima u određenim momentima. Iscrtkanim linijama prikazani su potiskivači (5/1, 5/2 i 5/3) u uzajamnim položajima. Figure 18 shows the volumes of three working cylinders, accumulation chamber, side walls and pushers: 1. Suction-compression cylinder, AK. Accumulation chamber 2. Combustion-accumulation expansion cylinder 3. Expansion-exhaust cylinder. The volumes of segmental bores II and III are in constant mutual connection with the accumulation chamber AK and together make up the volume of the accumulation chamber. Segmental bores in the side walls IV/A and IV/B establish a connection with the bore volumes in the rotors at certain moments. Dashed lines show pushers (5/1, 5/2 and 5/3) in mutual positions.

Svi crteži bitno su pojednostavljeni u namjeri da se najjednostavnije prikaže osnovna ideja rada motora. Nedostaju mnogi detalji koji shematske prikaze kompliciraju i čine nejasnim. Širine rotora razlikuju se na slikama 10 i 18. Radi jednostavnije strojne obrade utora u rotorima kao i ovih prikaza i opisa rada motora, rotori su prikazani u nedovršenom obliku. U realnoj izvedbi oni su širi od potiskivača jer im se s bočne strane prije izrade provrta dodaje ploča koja brtvi utor rotora kako bi se onemogučila veza sa segmentnim provrtima u bočnim stijenkama. Na slici 19 prikazana je bočna stijenka rotora s jednostrano dodanom pločom i naznačenom pozicijom karika. All drawings are significantly simplified in order to show the basic idea of the engine in the simplest way possible. Many details are missing that make schematic representations complicated and unclear. The widths of the rotors differ in Figures 10 and 18. For the sake of easier machining of the slots in the rotors as well as these illustrations and descriptions of the operation of the engine, the rotors are shown in unfinished form. In the real version, they are wider than the pushers because a plate is added on the side before the holes are made, which seals the rotor groove in order to prevent the connection with the segmental holes in the side walls. Figure 19 shows the side wall of the rotor with a plate added on one side and the position of the links indicated.

Termodinamički proračuni Thermodynamic calculations

Vrijednosti tlaka i temperature koje se postižu na kraju kompresije u Ottovom procesu u današnjim klipnim konstrukcijama prikazane su na slikama 20 i 21. The pressure and temperature values that are reached at the end of compression in the Otto process in today's piston designs are shown in Figures 20 and 21.

Na slici 20 gore prikazana je delta temperature kompresije uz prosječni eksponent 1,35 do temperature 700°K. Na slici 20 dolje prikazana je pripadajuća politropa kompresije koja je u trenutku paljenja goriva (700°K) dostigla vrijednost tlaka od 16,27 bara. Figure 20 above shows the compression temperature delta with an average exponent of 1.35 up to a temperature of 700°K. Figure 20 below shows the corresponding compression polytrope, which at the moment of fuel ignition (700°K) reached a pressure value of 16.27 bar.

Na slici 21 prikazana je ista politropa kompresije koja je uz isti prosječni eksponent (1,35) do kraja kompresije postigla temperaturu 800°K i dostigla vrijednost tlaka od 28,4 bara. Radi bolje preglednosti politropa kompresije prikazana je uz niže brojčane vrijednosti na skali lijevo, pa temperatura na ovoj skali nije mogla biti prikazana. Kompresija je vršena 180° okrataja vratila. Figure 21 shows the same compression polytrope which, with the same average exponent (1.35), reached a temperature of 800°K by the end of compression and reached a pressure value of 28.4 bar. For better visibility, the compression polytrope is shown with lower numerical values on the scale on the left, so the temperature could not be shown on this scale. Compression was performed by 180° rotation of the shaft.

Ove vrijednosti na kraju kompresije postignute su uz omjer kompresije od 11,8 : 1. These end-of-compression values were achieved with a compression ratio of 11.8:1.

Vrijednosti tlaka i temperature na kraju kompresije koje se mogu postići u rotacionoj konstrukciji odvođenjem dijela topline mediju tokom kompresije. Values of pressure and temperature at the end of compression that can be achieved in a rotary construction by removing part of the heat to the medium during compression.

Na slici 22 gore prikazana je delta temperature kompresije uz prosječni eksponent 1,18 do temperature 700°K. Na slici 22 dolje prikazana je politropa kompresije koja je kod te temperature dostigla vrijednost od 112,6 bara. Kompresija je trajala 220° okretaja vratila do omjera kompresije od 54,8 : 1. Figure 22 above shows the compression temperature delta with an average exponent of 1.18 up to a temperature of 700°K. Figure 22 below shows the compression polytrope, which reached a value of 112.6 bar at that temperature. The compression lasted 220° of shaft rotation to a compression ratio of 54.8:1.

Na slici 23 prikazana je ista politropa radi bolje preglednosti uz iste brojčane vrijednosti na lijevoj skali kao na slici 21. Ova vrijednost prosječnog eksponenta (1,18) izabrana je hipotetski. Ispitivanje i mjerenje konstrukcije pokazati će kojim se intenzitetom hlađenja okolnih stijenci tokom kompresije, postiže odgovarajući eksponent, koji će omogućiti da se većim omjerom kompresije postignu visoki tlakovi na kraju kompresije uz odgovarajuću temperaturu na kraju kompresije. Figure 23 shows the same polytrope for better clarity with the same numerical values on the left scale as in Figure 21. This value of the average exponent (1.18) was chosen hypothetically. Testing and measurement of the structure will show with what intensity of cooling the surrounding walls during compression, the corresponding exponent is achieved, which will enable high pressures at the end of compression to be achieved with a higher compression ratio with an appropriate temperature at the end of compression.

Na slici 24 prikazan je realan pV dijagram iz termodinamičkog proračuna. U tom proračunu kompresija je prekinuta na manjem omjeru kompresije, na nižim tlakovima i nižoj temperaturi. Figure 24 shows a realistic pV diagram from a thermodynamic calculation. In this calculation, compression is terminated at a lower compression ratio, at lower pressures and at a lower temperature.

Ovime proračun nije izvršen na maksimalnim mogućnostima, što dopušta mogućnost odstupanja i u postizanju vrijednosti prosječnog eksponenta. With this, the calculation was not performed on the maximum possible, which allows for the possibility of deviation in reaching the value of the average exponent.

Akumulirani tlak u akumulacionoj komori ostvaruje se u većem broju okretaja, pa iscrtana površina prikazuje akumulirani rad kompresije. U ovom pV dijagramu volumeni oba ekspanziona cilindra su isti, ali veći od kompresionog. Ovaj pV dijagram izabran je radi preglednosti tih volumena. The accumulated pressure in the accumulation chamber is realized in a higher number of revolutions, so the plotted surface shows the accumulated compression work. In this pV diagram, the volumes of both expansion cylinders are the same, but larger than the compression one. This pV diagram was chosen for clarity of those volumes.

Površinama ispod tanjim linijama ispisanih krivulja (zavisno o kutu alfa) prikazani su kompresioni volumen, kao i dva spojena ekspanziona volumena. Spajanje ovih volumena izvršeno je na 180° okretaja potiskivača 5/2. The areas under the curves written with thinner lines (depending on the angle alpha) show the compression volume, as well as the two connected expansion volumes. The joining of these volumes was performed at 180° rotation of the pusher 5/2.

Termodinamički proračuni pokazuju da se iz zapremine od 400 cm3 u jednom okretaju s izgaranjem goriva može ostvariti rad oko 900 J, maksimalni okretni moment oko 500 Nm, prosječni okretni moment u jednom okretaju oko 150 Nm. Ovi su rezultazi postignuti punjenjem cilindra masom od 0,000472 kg medija u jednom okretaju. Proračun izgaranja vršen je postupkom VIBE-a, po Ottovom principu, uz stehiometrijski omjer zraka i goriva 15 : 1, lambda 1. Trajanje izgaranja 60° okretaja vratila. Thermodynamic calculations show that from a volume of 400 cm3, in one revolution with fuel combustion, about 900 J of work can be achieved, a maximum torque of about 500 Nm, an average torque in one revolution of about 150 Nm. These results were achieved by filling the cylinder with a mass of 0.000472 kg of medium in one revolution. Combustion calculations were made using the VIBE method, according to Otto's principle, with a stoichiometric ratio of air and fuel of 15:1, lambda 1. Duration of combustion is 60° of shaft rotation.

Uz navedene vrijednosti kod 2400 o/min motor daje snagu oko 50 KS. With the specified values at 2400 rpm, the engine produces about 50 hp.

Kako se izgaranje odvija u uvjetima veće temperature okolnih stijenci (no što je imaju današnje konstrukcije) ukupan prijelaz topline tokom izgaranja bit će manji, pa se mogu očekivati i veće vršne temperature procesa. U ovoj konstrukciji komprimira se zrak, pa se na temperature u procesu, može utjecati većom masom zraka. As the combustion takes place in conditions of higher temperature of the surrounding walls (than today's constructions have), the total transfer of heat during combustion will be lower, so higher peak temperatures of the process can be expected. In this construction, air is compressed, so temperatures in the process can be influenced by a larger mass of air.

Ovdje nije zbrojen dobiveni rad u okretajima hlađenja sistema u kojima se ne dovodi gorivo. Dobiveni rad u ovim okretajima ovisi o maksimalnim mogućnostima akumulacije topline u materijalu, odnosno maksimalne “radne temperature” materijala (uključujući i maziva), visini tlaka i temperature medija na kraju kompresije, masi medija u procesu, kao i o intenzitetu prijelaza topline. Here, the work obtained in cooling revolutions of the system in which no fuel is supplied is not added up. The work obtained in these revolutions depends on the maximum possibilities of heat accumulation in the material, i.e. the maximum "working temperature" of the material (including lubricants), the pressure and temperature of the medium at the end of compression, the mass of the medium in the process, as well as the intensity of heat transfer.

Ovi proračuni potvrđuju da se boljom mehaničkom konstrukcijom i boljim vođenjem procesa može ostvariti mnogo veći mehanički rad u okretaju s dovođenjem i izgaranjem goriva. These calculations confirm that with better mechanical construction and better process management, much greater mechanical work can be achieved in the rotation with fuel supply and combustion.

Neiskorišteni dio uvedene topline u ovom okretaju, akumulira se i iskorištava za dobivanje određenog rada u narednom okretaju, čime se ukupno ostvaruje mnogo veće iskorištenje energije goriva. The unused part of the introduced heat in this revolution is accumulated and used to obtain certain work in the next revolution, which results in a much greater utilization of fuel energy.

Claims (4)

1. Dvoprocesni rotacioni motor s unutarnjim sagorijevanjem kod kojeg se toplinska energija pretvara u mehanički rad, naznačen time, što se: - na istom vratilu nalaze usisno-kompresioni cilindar te jedan ili dva ekspanziona cilindra, pri čemu je između usisno-kompresionog cilindra i cilindra izgaranja-akumulacije stacionarno smještena akumulaciona komora; - u prvom ekspanzionom cilindru tokom ekspanzije odvija izgaranje goriva i akumulacija dijela oslobođene topline, a u drugom ekspanzionom cilindru ekspanzija-ispuh; - svaki cilindar sastoji od obodnog dijela kućišta (1) i obodnog prstena (2) čije je geometrijsko središte smješteno u geometrijsko središte obodnog dijela kućišta (1); - u svakom cilindru nalazi rotor (3) ekscentrično smješten u odnosu na geometrijsko središte kućišta i prstena, pri čemu je u svom geometrijskom središtu vezan na vratilo (4); - u svakom cilindru nalazi radijalno pokretni potiskivač (5), koji je s jedne strane umetnut u raspor rotora, a s druge strane zglobno postavljen u kružno oblikovani otvor u prstenu, pri čemu potiskivač u svakom cilindru tvori dva promjenjiva volumena, obzirom na smjer vrtnje, volumen ispred sebe (A) i volumen iza sebe (B); - rotor (3) i obodni prsten (2) stalno dodiruju u jednoj točci (0); - svaki cilindar zatvara bočnim stijenkama (9) u kojima su ugrađeni ležajevi (10) za uležištenje vratila (4); - u bočnim stijenkama (9) nalaze otvori za usis (6), ispuh (12) ili prestrujavanje medija (11); - svi dijelovi koji se nalaze unutar cilindra međusobno razlikuju po provrtima i kanalima za protok medija; - ovakvom konstrukcijom izbjegava pretvaranje pravocrtnog u kružno gibanje; - promjena volumena odvija u 360 stupnjeva okretaja vratila; - konstrukcijom smanjuju termički gubici zračenja; - konstrukcijom omogućuje akumulacija topline i njeno iskorištavanje; - rotirajući dijelovi nepropusno naslanjaju na unutarnje stijenke cilindričnog kućišta i bočne stijenke kućišta; - u bočnim stijenkama uležišteni, a smješteni u uglovima obodnog dijela kućišta (1) nalaze cilindrični valjci (8) za smanjenje obodnog trenja prstena i obodnog dijela kućišta - kućišta usisno-kompresionog cilindra i cilindra izgaranja-akumulacije uzajamno poklapaju, a kućište ekspanziono-ispušnog cilindra zaokrenuto je i fiksirano za najpovoljniji kut u odnosu na kućišta prethodna dva cilindra; - svi taktovi procesa odvijaju istovremeno u većem broju međusobno i od okoline izoliranih volumena što omogućuje povoljnije termičko vođenje procesa tj. odvođenje topline u vrijeme kompresije, a dovođenje u vrijeme ekspanzije, pri čemu se dovođenjem topline mediju tokom ekspanzije dobiva rad i u vrijeme povećanja i u vrijeme smanjenja unutarnje energije medija; - protok medija kroz sistem osigurava provrtima (7) u rotorima (3), segmentnim žljebovima u rotorima (3) i segmentnim provrtima u bočnim stijenkama (9).1. A two-process rotary engine with internal combustion in which thermal energy is converted into mechanical work, indicated by the fact that: - on the same shaft there is an intake-compression cylinder and one or two expansion cylinders, with an accumulation chamber stationarily located between the intake-compression cylinder and the combustion-accumulation cylinder; - in the first expansion cylinder, fuel combustion and accumulation of part of the released heat takes place during expansion, and in the second expansion cylinder, expansion-exhaust; - each cylinder consists of a peripheral part of the housing (1) and a peripheral ring (2) whose geometric center is located in the geometric center of the peripheral part of the housing (1); - in each cylinder there is a rotor (3) located eccentrically in relation to the geometric center of the casing and the ring, where it is attached to the shaft (4) in its geometric center; - in each cylinder there is a radially movable pusher (5), which is inserted into the rotor gap on one side, and on the other side is hingedly placed in a circular opening in the ring, whereby the pusher in each cylinder forms two variable volumes, depending on the direction of rotation, volume in front (A) and volume behind (B); - the rotor (3) and the circumferential ring (2) constantly touch at one point (0); - each cylinder closes with side walls (9) in which bearings (10) are installed for housing the shaft (4); - in the side walls (9) there are openings for intake (6), exhaust (12) or medium flow (11); - all parts inside the cylinder differ from each other in the holes and channels for media flow; - with this construction, it avoids turning rectilinear into circular motion; - the change in volume takes place in 360 degrees of rotation of the shaft; - thermal radiation losses are reduced by construction; - the construction enables the accumulation of heat and its utilization; - the rotating parts rest tightly on the inner walls of the cylindrical housing and the side walls of the housing; - embedded in the side walls, and located in the corners of the peripheral part of the housing (1), there are cylindrical rollers (8) to reduce the peripheral friction of the ring and the peripheral part of the housing - the housings of the intake-compression cylinder and the combustion-accumulation cylinder coincide with each other, and the housing of the expansion-exhaust cylinder is turned and fixed for the most favorable angle in relation to the housings of the previous two cylinders; - all process cycles take place simultaneously in a larger number of volumes isolated from each other and from the environment, which enables more favorable thermal management of the process, i.e. heat removal during compression, and supply during expansion, whereby by supplying heat to the medium during expansion, work is obtained both during the increase and during reduction of the internal energy of the medium; - media flow through the system is ensured by holes (7) in the rotors (3), segmental grooves in the rotors (3) and segmental holes in the side walls (9). 2. Rotacioni motor prema 1. zahtjevu, naznačen time, da se svi taktovi procesa odvijaju istovremeno u većem broju volumena međusobno i od okoline izoliranih, pri čemu se usis i kompresija odvijaju u jednom cilindru, a ekspanzija u drugom koji je smješten na istom vratilu.2. Rotary engine according to claim 1, characterized by the fact that all process cycles take place simultaneously in a large number of volumes isolated from each other and from the environment, whereby intake and compression take place in one cylinder, and expansion in another, which is located on the same shaft . 3. Rotacioni motor prema 1. i 2. zahtjevu, naznačen time, što konstrukcija motora omogućuje odvijanje toplinskog procesa kod kojeg se toplina ODVODI u vrijeme kompresije, a DOVODI u vrijeme ekspanzije, pri čemu se toplina akumulira u stijenkama koje okružuju provrt rotora u kojem se odvija izgaranje, obodnom dijelu mase rotora i unutarnjem dijelu obodnog prstena koji su u neposrednom dodiru s medijem, te dijelu bočnih stijenki koje okružuju medij u vrijeme izgaranja.3. A rotary engine according to claims 1 and 2, characterized by the fact that the engine construction enables a thermal process to take place in which heat is LEFT during compression and INDURED during expansion, whereby heat accumulates in the walls surrounding the rotor bore in which combustion takes place, the peripheral part of the rotor mass and the inner part of the peripheral ring that are in direct contact with the medium, and the part of the side walls that surround the medium at the time of combustion. 4. Rotacioni motor prema 1., 2. i 3. zahtjevu, naznačen time, što konstrukcija motora omogućuje primjenu naizmjeničnog odvijanja dvaju toplinskih procesa u istom sistemu, pri čemu se neiskorišteni dio uvedene topline u jednom okretaju akumulira i iskorištava za dobivanje određenog rada u drugom okretaju, čime se ostvaruje veće iskorištenje energije goriva, tako da se; - u nekom broju okretaja (1 ili više) toplina mediju dovodi izgaranjem goriva uz povećanje unutarnje energije mediju tokom ekspanzije u vrijeme kada medij vrši rad, odvijanjem Krajnovićevog kružnog procesa; - kada se temperatura sistema približi granici radne izdržljivosti materijala, u nekom broju okretaja (1 ili više) toplina mediju dovodi prijelazom topline akumulirane u stijenkama sistema čime se održava unutarnja energija mediju u vrijeme kada medij vrši rad, odvijanjem Carnotovog kružnog procesa.4. Rotary engine according to claims 1, 2 and 3, characterized by the fact that the engine construction enables the use of two thermal processes alternating in the same system, whereby the unused part of the introduced heat in one revolution is accumulated and used to obtain certain work in the second revolution, which achieves a greater use of fuel energy, so that; - in a certain number of revolutions (1 or more), heat is brought to the medium by the combustion of fuel with an increase in the internal energy of the medium during the expansion at the time when the medium performs work, by the development of the Krajnović circular process; - when the temperature of the system approaches the limit of the working endurance of the material, in a certain number of revolutions (1 or more), heat is brought to the medium through the transfer of heat accumulated in the walls of the system, which maintains the internal energy of the medium during the time when the medium performs work, by the Carnot circular process.
HR20020009A 2002-01-07 2002-01-07 Two-process rotary internal combustion engine HRP20020009B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
HR20020009A HRP20020009B1 (en) 2002-01-07 2002-01-07 Two-process rotary internal combustion engine
AU2002230009A AU2002230009A1 (en) 2002-01-07 2002-02-11 Two-process rotary internal combustion engine
EP02711119A EP1461518A1 (en) 2002-01-07 2002-02-11 Two-process rotary internal combustion engine
PCT/HR2002/000007 WO2003058045A1 (en) 2002-01-07 2002-02-11 Two-process rotary internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HR20020009A HRP20020009B1 (en) 2002-01-07 2002-01-07 Two-process rotary internal combustion engine

Publications (2)

Publication Number Publication Date
HRP20020009A2 true HRP20020009A2 (en) 2003-10-31
HRP20020009B1 HRP20020009B1 (en) 2007-08-31

Family

ID=10947393

Family Applications (1)

Application Number Title Priority Date Filing Date
HR20020009A HRP20020009B1 (en) 2002-01-07 2002-01-07 Two-process rotary internal combustion engine

Country Status (4)

Country Link
EP (1) EP1461518A1 (en)
AU (1) AU2002230009A1 (en)
HR (1) HRP20020009B1 (en)
WO (1) WO2003058045A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE527959C2 (en) * 2004-06-15 2006-07-18 Aake Olofsson Piston rotor machine and internal combustion engine
US8613269B2 (en) * 2010-09-11 2013-12-24 Pavel Shehter Internal combustion engine with direct air injection
SE541426C2 (en) * 2017-05-26 2019-10-01 Olofsson Aake Machine for converting a pressurized flow into kinetic energy
IT201800010684A1 (en) 2018-11-29 2020-05-29 Mario Genco INTERNAL COMBUSTION ROTARY ENGINE

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR710884A (en) * 1931-01-29 1931-08-31 Radial vane rotary motor
FR1346509A (en) * 1962-11-27 1963-12-20 Mechanical device intended for the suction and delivery or compression of fluids
DE2313059B2 (en) * 1973-03-16 1980-01-10 Roland 7910 Neu-Ulm Bitzer Rotary piston machine
DE3426854A1 (en) * 1984-07-20 1986-01-23 Karl Ing.(grad.) 8000 München Speidel Rotary piston machine
US5388557A (en) * 1990-11-12 1995-02-14 Berg; Tore G. O. Combustion engine having a substantially constant temperature and pressure
US6161392A (en) * 1997-09-05 2000-12-19 Jirnov; Olga Combined thermodynamic power and cryogenic refrigeration system using binary working fluid

Also Published As

Publication number Publication date
WO2003058045A1 (en) 2003-07-17
EP1461518A1 (en) 2004-09-29
HRP20020009B1 (en) 2007-08-31
AU2002230009A1 (en) 2003-07-24

Similar Documents

Publication Publication Date Title
US5540199A (en) Radial vane rotary engine
JP2011102591A (en) Toroidal internal combustion engine
US8365698B2 (en) Hybrid cycle combustion engine and methods
WO2009066178A2 (en) Heat engines
EA006116B1 (en) Rotary machine and thermal cycle
JP2014522938A (en) Quasi-isothermal compression engine with separate combustor and expander and corresponding system and method
JP4275534B2 (en) Static regenerator, reciprocating reciprocating engine
JPH05503334A (en) rotary internal combustion engine
RU2407899C1 (en) Rotary piston ice
US4064841A (en) Rotary engine
US9677464B2 (en) Single-shaft dual expansion internal combustion engine
HRP20020009A2 (en) Two-process rotary internal combustion engine
US8353159B2 (en) Combustion engine with heat recovery system
EP0192761A1 (en) Rotary engine
EP0734486B1 (en) Rotary engine
WO2016114683A1 (en) Internal combustion engine and operating method therefor
US10527007B2 (en) Internal combustion engine/generator with pressure boost
US20070280844A1 (en) Rotary Machine and Internal Combustion Engine
RU2214525C2 (en) Method of operation of power plant with piston internal combustion engine (versions) and power plant for implementing the method
Nabours et al. High efficiency hybrid cycle engine
US20070137609A1 (en) True rotary internal combustion engine
US20120160209A1 (en) Turbine having cooperating and counter-rotating rotors in a same plane
KR890003427B1 (en) Combine gas turbine engine system
EP2674570A1 (en) Turbine having cooperating and counter-rotating rotors in a same plane
JP3159132U (en) Multi-vane expander

Legal Events

Date Code Title Description
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
A1OB Publication of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 20070724

Year of fee payment: 6

B1PR Patent granted
PBON Lapse due to non-payment of renewal fee

Effective date: 20080107