HRP20010300A2 - Pharmaceutically active composition and dispensing device - Google Patents

Pharmaceutically active composition and dispensing device Download PDF

Info

Publication number
HRP20010300A2
HRP20010300A2 HR20010300A HRP20010300A HRP20010300A2 HR P20010300 A2 HRP20010300 A2 HR P20010300A2 HR 20010300 A HR20010300 A HR 20010300A HR P20010300 A HRP20010300 A HR P20010300A HR P20010300 A2 HRP20010300 A2 HR P20010300A2
Authority
HR
Croatia
Prior art keywords
vaccine
vaccine according
cuff
influenza
dosing device
Prior art date
Application number
HR20010300A
Other languages
Croatian (hr)
Inventor
R Glueck
U Glueck
Andre Collioud
Original Assignee
Schweiz Serum & Impfinst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7886959&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=HRP20010300(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schweiz Serum & Impfinst filed Critical Schweiz Serum & Impfinst
Publication of HRP20010300A2 publication Critical patent/HRP20010300A2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/025Enterobacteriales, e.g. Enterobacter
    • A61K39/0258Escherichia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/16Otologicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5258Virus-like particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • A61K2039/543Mucosal route intranasal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55544Bacterial toxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16211Influenzavirus B, i.e. influenza B virus
    • C12N2760/16234Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18711Rubulavirus, e.g. mumps virus, parainfluenza 2,4
    • C12N2760/18734Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

The present invention relates to an improved pharmaceutical substance in addition to an improved dispensing device that allows for more effective nasal administration of a substance.

Description

U ovoj prijavi citiraju se različiti tiskani radovi. Pozivom na njih, njihov sadržaj obuhvaćen je prijavom. Various printed works are cited in this application. By referring to them, their content is included in the application.

Predloženi izum odnosi se na sastav farmaceutski djelotvorni pripravak, posebice na antigene, koji su pomiješani s mukoznim adjuvansom i mogu se uređajem za doziranje, oblikovanim kao aplikator-raspršivač, nanijeti na nosnu sluznicu tako da se postiže odlična djelotvornost. The proposed invention relates to the composition of a pharmaceutically effective preparation, especially to antigens, which are mixed with a mucosal adjuvant and can be applied to the nasal mucosa with a dosing device, designed as an applicator-sprayer, so that excellent effectiveness is achieved.

Prijava posebice obuhvaća cjepivo za intranazalnu primjenu koja se sastoji iz: In particular, the application includes a vaccine for intranasal administration consisting of:

(a) površinskih proteina influence, liposomalno formuliranih (virosomi); (a) surface proteins of influenza, liposomally formulated (virosomes);

(b) mukoznog adjuvansa bakterijskog podrijetla; (b) mucosal adjuvant of bacterial origin;

(c) specifičnog aplikatora- raspršivača, konstruiranog tako da skoro 100 % obujma pripravka, uštrcanog jednim hodom raspršivača, može aplicirati na sluznicu nosa, bitnu za njegovu djelotvornost. (c) a specific applicator-sprayer, designed so that almost 100% of the volume of the preparation, injected with one stroke of the sprayer, can be applied to the mucous membrane of the nose, which is essential for its effectiveness.

Antigeni su prvenstveno površinski glikoproteini influence, liposomski formulirani (tzv. virosomi). Ovi virosomi miješaju se s mukoznim adjuvansom, bakterijskog podrijetla. U idealnom slučaju potječu iz klase aktivnih ili inaktikvnih toksina, kao Toplinski labilnog toksina (HLT), toksina kolere (CT) ili prokoleragenoida (PCG). Nazalni raspršivač-aplikator je tako konstruiran da glavnina obujma djelotvornog pripravka može biti aplicirana na sluznicu nosa. Formula, na kojoj se temelji izum, može se primijeniti kod različitih medicinskih indikacija, kao cijepljenje protiv gripe ili drugih infektivnih bolesti, isto i za terapeutsko liječenje začepljenog nosa, rekonstituciju oštećene nosne sluznice ili općenito, za mukozno lokalizirane bolesti. Antigens are primarily influenza surface glycoproteins, liposomally formulated (so-called virosomes). These virosomes are mixed with a mucosal adjuvant of bacterial origin. Ideally, they come from a class of active or inactive toxins, such as Heat Labile Toxin (HLT), Cholera Toxin (CT) or Procholeragenoid (PCG). The nasal spray-applicator is designed in such a way that most of the volume of the effective preparation can be applied to the nasal mucosa. The formula on which the invention is based can be used for various medical indications, such as vaccination against influenza or other infectious diseases, as well as for therapeutic treatment of blocked nose, reconstitution of damaged nasal mucosa or, in general, for mucosal localized diseases.

Različiti autori opisali su imunostimulirajuće djelovanje liposoma (umjetne membrane) (Gregoriadis, G.: Imunološki adjuvansi: Uloga liposoma. Immunol. Today 11 (1990) 89-97). Ovo imunostimulirajuće djelovanje postiže se vezanjem antigena na površinu liposoma (Glück R, Mischler R, Finkel B, Que JU, Scarpa B, Cryz SJ Jr: Imunogenost novog virosomnog cjepiva protiv influence u starijih ljudi. Lancet 344 (1994) 160-163), uključenjem u unutrašnjost liposoma (Gregoriadis G, Davis D, Davis A: Liposomi kao imunološki adjuvansi: Istraživanja o ugradnji antigena. Vaccine 5 (1987) 145 – 151) ili samo miješanjem s liposomima (De Haan A, Geerligs HJ, Huckshorn JP, van Scharrenburg GJM, Palache AM, Wilshut J: Mukozna imuno-adjuvansna aktivnost liposoma: Indukcija sistemskog IgG-.a i sekretornih IgA odgovora kod miševa, intranazalnom imunizacijom podjediničnim cjepivom protiv influence i istodobnim davanjem liposoma. Vaccine 13 (1995) 613-616). Opaženo je dopunsko, imunostimulirajuće djelovanje ako su ovakvi liposomi bili “nabockani” transmembranama i fuzogenim glikoproteinima, (npr. Glikoproteini influence (Glück, R., Mischler, R., Brantschen, S., Just, M., Althaus, B,. Cryz, S. J., Jr.: Sustav za proizvodnju imunopotencirajuće, rekonstituirane influenca-virosomnog (RIV) cjepiva za imunizaciju protiv hepatitisa. A. J. Clin. Invest. 90 (1992) 2491-2495) ili Sendaiglikoproteini (Gould-Fogerite, S., Mazurkiewicz, J. E., Bhisitkul, D., Mannino, R. J.: Rekonstitucija biološki aktivnih glikoproteina u velike liposome. Uporaba kao isporučitelja u životinjske stanice. Preuzeto iz C. H. Kim, J. Diwan, H. Tedeschi i J. J. Salerno (Izd.), Advances in Membrane Biochemistry and Bioenergetics, Plenum Publishing Corp., New York (1987) str. 569). Various authors have described the immunostimulating effect of liposomes (artificial membranes) (Gregoriadis, G.: Immunological adjuvants: The role of liposomes. Immunol. Today 11 (1990) 89-97). This immunostimulatory effect is achieved by antigen binding to the liposome surface (Glück R, Mischler R, Finkel B, Que JU, Scarpa B, Cryz SJ Jr: Immunogenicity of a new virosomal influenza vaccine in the elderly. Lancet 344 (1994) 160-163), by inclusion in the interior of liposomes (Gregoriadis G, Davis D, Davis A: Liposomes as immune adjuvants: Studies on antigen incorporation. Vaccine 5 (1987) 145 – 151) or only by mixing with liposomes (De Haan A, Geerligs HJ, Huckshorn JP, van Scharrenburg GJM, Palache AM, Wilshut J: Mucosal immunoadjuvant activity of liposomes: Induction of systemic IgG-.a and secretory IgA responses in mice by intranasal immunization with subunit influenza vaccine and coadministration of liposomes.Vaccine 13 (1995) 613-616). An additional, immunostimulating effect was observed if such liposomes were "spiked" with transmembrane and fusogenic glycoproteins, (e.g. Influenza glycoproteins (Glück, R., Mischler, R., Brantschen, S., Just, M., Althaus, B,. Cryz, S. J., Jr.: A System for the Production of an Immunopotentiating, Reconstituted Influenza-Virosomal (RIV) Vaccine for Hepatitis Immunization. A. J. Clin. Invest. 90 (1992) 2491-2495) or Sendaiglycoproteins (Gould-Fogerite, S., Mazurkiewicz, S. J. E., Bhisitkul, D., Mannino, R. J.: Reconstitution of Biologically Active Glycoproteins into Large Liposomes. Use as Delivery to Animal Cells.Retrieved from C. H. Kim, J. Diwan, H. Tedeschi, and J. J. Salerno (Eds.), Advances in Membrane Biochemistry and Bioenergetics, Plenum Publishing Corp., New York (1987) p. 569).

Ovo djelovanje se do sada, u većini slučajeva, opisivalo nakon parenteralne primjene (i.m., s.c. ili i.p.). Neki autori su pak otkrili da se ovakve formulacije mogu uspješno davati uobičajenim metodama (kapaljkom ili uobičajenim nosnim raspršivačem). Međutim, rezultati se najčešće odnose na pokuse s laboratorijskim životinjama, obično na miševima, koji, u usporedbi s njihovom tjelesnom težinom, posjeduje mnogo veću nosnu sluznicu nego čovjek. Pored toga, primijenjena količina antigena bila je tako visoka, da samo iz gospodarstvenih razloga, kao i zbog sigurnosti proizvoda, primjena kod ljudi ne bi došla u obzir. Također se moglo dokazati, da se pri razumnom doziranju antigena (influenca), usprkos liposomnoj formulaciji i ispravnoj nazalnoj aplikaciji, nije moglo postići zadovoljavajuće djelovanje. Until now, this effect has been described in most cases after parenteral administration (i.m., s.c. or i.p.). Some authors have found that such formulations can be successfully administered by conventional methods (a dropper or a conventional nasal spray). However, the results most often refer to experiments with laboratory animals, usually mice, which, compared to their body weight, have a much larger nasal mucosa than humans. In addition, the applied amount of antigen was so high that for economic reasons alone, as well as product safety, application in humans would not be considered. It could also be proven that with a reasonable dosage of the antigen (influenza), despite the liposomal formulation and correct nasal application, a satisfactory effect could not be achieved.

Zbog toga su drugi autori pokušali razviti djelotvorno cjepivo za nazalnu primjenu, tako da su umjesto liposomne formulacije pomiješali antigene s mukoznim adjuvansom bakterijskog podrijetla. Pri tome su posebno upotrijebljeni HLT, CT ili netoksični derivati HLT-a ili CT-a (Elson CO, Ealding W: Opći sistemski i mukozni imunitet miševa nakon mukozne stimulacije toksinom kolere. J. Immunol. 132 (1984) 2736-2741). For this reason, other authors tried to develop an effective vaccine for nasal administration, by mixing antigens with a mucosal adjuvant of bacterial origin instead of a liposomal formulation. HLT, CT or non-toxic derivatives of HLT or CT were especially used (Elson CO, Ealding W: General systemic and mucosal immunity of mice after mucosal stimulation with cholera toxin. J. Immunol. 132 (1984) 2736-2741).

Nakon nazalne aplikacije rezultati u literaturi zaista pokazuju jako ohrabrujuća djelovanja, koja su opet, prvenstveno postignuta na laboratorijskim životinjama. Međutim, neki malobrojni klinički pokusi na ljudima potvrdili su određenu djelotvornost (Tamura S-J, Ishihira K, Miyata K, Aizawa C, Kurata T: Mehanizam povećanja imunih odgovora na cjepivo protiv influence, s podjedincom toksina kolere B i holotoksina u tragovima. Vaccine 13 (1995) 339-341). Ali ponovno je količina uporabljenog antigena i adjuvansa bila jako velika, da je opet ostala neriješena rezerva glede sigurnosti proizvoda i mogućnosti njegove komercijalizacije. After nasal application, the results in the literature really show very encouraging effects, which, again, were primarily achieved on laboratory animals. However, some few human clinical trials have confirmed some efficacy (Tamura S-J, Ishihira K, Miyata K, Aizawa C, Kurata T: Mechanism of enhancing immune responses to influenza vaccine, with cholera toxin B subunit and trace holotoxin. Vaccine 13 ( 1995) 339-341). But again, the amount of antigen and adjuvant used was very large, so that again there was an unsolved reserve regarding the safety of the product and the possibility of its commercialization.

Daljnji nedostaci dosad opisanih pokusa razvijanja nazalno primjenjivog, preventivno ili terapeutski djelotvornog cjepiva su nezadovoljavajući uređaji za primjenu, koji danas stoje na raspolaganju. Further disadvantages of the so far described attempts to develop a nasally applicable, preventively or therapeutically effective vaccine are the unsatisfactory devices for administration, which are available today.

U današnje vrijeme postoje nazalni raspršivači u obliku mono, di i multi-doznog aplikatora. Opsežna istraživanja i ispitivanja dosadašnjih nazalnih raspršivača pomoću doziranja bojila (metilensko plavilo) i nazalne endoskopije, pokazala su da samo najviše 25 % raspršenog pripravka (cjepivo, farmaceutska otopina) dospijeva na sluznicu imunološkog sustava asociranog s mukoznim turbinalijama. Nowadays, there are nasal sprays in the form of mono, di and multi-dose applicators. Extensive research and testing of previous nasal sprays using dye dosing (methylene blue) and nasal endoscopy have shown that only a maximum of 25% of the sprayed preparation (vaccine, pharmaceutical solution) reaches the mucosa of the immune system associated with the mucous turbinalia.

Sluznica mukozno-asociranog imunološkog sustava nalazi se na lateralnoj nosnoj stjenci u nosnoj šupljini, u području turbinalija (nosnih školjki), kao što npr. slika 1 prikazuje turbinalije čovjeka i srne. Naša ispitivanja pokazala su da uporabom dosadašnjih nosnih raspršivača, zbog znatnih gubitaka u predvorju nosa (vestibulum nasi) (vidi sliku 2), kao i na pregradnoj nosnoj stjenci, u glavne nosne šupljine dospijeva nedovoljna količina farmaceutski aktivnog pripravka. Ove nosne strukture obložene su imunološki inaktivnim, pločastim epitelom i lojnim žlijezdama (Walter Becker, Hans Heinz Naumann, Carl Rudolf Pfaltz: Hals-Nasen-Ohren-Heilkunde, Thieme Verlag, Stuttgart, New York 1992). The mucous membrane of the mucosa-associated immune system is located on the lateral nasal wall in the nasal cavity, in the area of the turbinals (nasal turbinates), as, for example, Figure 1 shows the turbinals of humans and deer. Our tests have shown that with the use of nasal sprays to date, due to significant losses in the nasal vestibule (vestibulum nasi) (see Figure 2), as well as on the nasal septum, an insufficient amount of pharmaceutical active preparation reaches the main nasal cavities. These nasal structures are lined with immunologically inactive, squamous epithelium and sebaceous glands (Walter Becker, Hans Heinz Naumann, Carl Rudolf Pfaltz: Hals-Nasen-Ohren-Heilkunde, Thieme Verlag, Stuttgart, New York 1992).

Uzroci nemogućnosti dosadašnjih nosnih aplikatora za raspršivanje dovoljne doze na respiratornu sluznicu ( mjesto specifične i nespecifične obrane), su raznovrsni: The causes of the inability of the previous nasal applicators to disperse a sufficient dose on the respiratory mucosa (site of specific and non-specific defense) are various:

(1) Zbog manjkavog znanja anatomije glavni vektor raspršenog mlaza, pri aplikaciji raspršivačem, usmjeren je u pogrešnom smjeru. Pri tome farmaceutski aktivan pripravak jedva dospijeva u glavnu nosnu šupljinu. Raspršena tekućina djelomice istječe preko gornje usnice van. (1) Due to insufficient knowledge of anatomy, the main vector of the sprayed jet, when applied with a sprayer, is directed in the wrong direction. At the same time, the pharmaceutical active preparation barely reaches the main nasal cavity. The sprayed liquid partially flows out through the upper lip.

(2) Promjer dijela nastavka raspršivača koji ulazi u nos nije podešen anatomskim odnosima. Prirodni oblik unutrašnje nosnice je pukotina i ima funkciju mlaznice (gledajte sliku 2). Uobičajeni, široki dijelovi raspršivača koji ulaze u nos ne mogu svladati ovo anatomsko suženje. Kod raspršivanja ispred lumen nasi u glavnu nosnu šupljinu dospijeva samo onaj sektor konusa raspršene tekućine koji odgovara širini lumen nasi. (2) The diameter of the part of the nozzle that enters the nose is not adjusted by anatomical conditions. The natural shape of the inner nostril is a crack and has the function of a nozzle (see picture 2). Conventional, wide parts of nebulizers that enter the nose cannot overcome this anatomical narrowing. When spraying in front of the lumen nasi, only that sector of the cone of sprayed liquid that corresponds to the width of the lumen nasi reaches the main nasal cavity.

(3) Optimalni kut raspršivanja dosad nije znanstveno istražen. Kod uobičajenih aplikatora-raspršivača on proizvoljno varira između 30° do 80° prema horizontali, pri normalnom držanju glave, odnosno prema okomici na uzdužnu os ljudskog tijela. Time su također objašnjivi znatni gubici, do 90 %, apliciranog obujma. Naša sistematska ispitivanja pokazala su da je optimalni kut raspršivanja između 50° i 80°. (3) The optimum scattering angle has not been scientifically investigated so far. With common applicators-sprayers, it arbitrarily varies between 30° and 80° to the horizontal, with a normal head posture, that is, to the perpendicular to the longitudinal axis of the human body. This also explains considerable losses, up to 90%, of the applied volume. Our systematic tests have shown that the optimum scattering angle is between 50° and 80°.

(4) Uobičajeni nazalni raspršivači imaju suviše kratki dio koji ulazi u nos. Udaljenost između manšete za prste do otvora raspršivača je suviše kratka. S dosadašnjim raspršivačima ne dospijeva se ni do unutrašnje nosnice. Dio koji ulazi u nos trebao bi biti najmanje za 0,7 cm dulji, dok se posebna prednost postiže pri duljini 1 do 1,5 cm. (4) Conventional nasal sprays have too short a part that enters the nose. The distance between the finger cuff and the spray opening is too short. With the current nebulizers, it doesn't even reach the inner nostril. The part that enters the nose should be at least 0.7 cm longer, while a special advantage is achieved at a length of 1 to 1.5 cm.

Stoga je zadaća predloženog izuma priređivanje poboljšanog sastava farmaceutski aktivnog pripravka kao i poboljšanje uređaja za doziranje, posebice za prevenciju i liječenje infektivnih bolesti. Ova zadaća riješena je značajkama patentnih zahtijeva. Therefore, the task of the proposed invention is to prepare an improved composition of a pharmaceutically active preparation as well as to improve a dosing device, especially for the prevention and treatment of infectious diseases. This task is solved by the features of the patent claims.

Najdjelotvorniji sastav za preventivno i terapeutsko djelovanje sastoji se iz formulacije (formule), iznenađujućeg ko-stimulirajućeg učinka liposoma, pomiješanog s mukoznim adjuvansom i apliciranog novim uređajem za doziranje, odnosno novim nazalnim raspršivačem. The most effective composition for preventive and therapeutic action consists of a formulation (formula), a surprising co-stimulating effect of liposomes, mixed with a mucosal adjuvant and applied with a new dosing device, i.e. a new nasal sprayer.

Prema tome, izumljeni kompleks sastoji se iz slijedećih komponenti: Therefore, the invented complex consists of the following components:

(a) aktivne tvari (antigen); (a) active substances (antigen);

(b) uravnotežene smjese liposoma i mukoznog adjuvansa; i (b) balanced mixtures of liposomes and mucosal adjuvant; and

(c) novog, medicinskog uređaja, naime, specifične uređaja za doziranje odnosno nazalnog raspršivača. (c) a new, medical device, namely, a specific dosing device or nasal spray.

Izum se posebno odnosi na cjepivo za intranazalnu aplikaciju, koja se sastoji iz: The invention specifically relates to a vaccine for intranasal application, which consists of:

(a) liposomno formuliranih, površinskih proteina influence (virosomi); (a) liposomally formulated surface proteins of influenza (virosomes);

(b) mukoznog adjuvansa bakterijskog podrijetla; i (b) mucosal adjuvant of bacterial origin; and

(c) specifičnog aplikatora- raspršivača, konstruiranog tako da se skoro 100 % raspršenog obujma, nastalog jednim hodom raspršivača, može aplicirati na sluznicu nosa, važnu za djelotvornost cjepiva. (c) a specific applicator-sprayer, designed so that almost 100% of the sprayed volume, created by one stroke of the sprayer, can be applied to the nasal mucosa, which is important for the effectiveness of the vaccine.

Stoga se aktivni pripravak odnosi na antigene, posebice na glikoproteine influence, koji se, zbog svojih transmemebranskih domena, mogu lagano ugraditi u umjetne membrane (liposome). Međutim, na površinu liposoma mogu se još vezati i drugi antigeni, sami ili u kombinaciji s antigenima influence. Vezanje se odvija ovisno o kemijskom sastavu antigena, spontano ili preko molekule za kemijsko umrežavanje, kako je već prije opisano (Martin F J, Papahadiopoulos D: Ireverzibilno vezanje fragmenata imunoglobulina na prethodno stvorene vezikule. J. Biol. Chem. 257 (1982) 286-288). Therefore, the active preparation refers to antigens, especially influenza glycoproteins, which, due to their transmembrane domains, can be easily incorporated into artificial membranes (liposomes). However, other antigens can also bind to the liposome surface, alone or in combination with influenza antigens. Binding takes place depending on the chemical composition of the antigen, spontaneously or via a chemical cross-linking molecule, as previously described (Martin F J, Papahadiopoulos D: Irreversible binding of immunoglobulin fragments to previously formed vesicles. J. Biol. Chem. 257 (1982) 286- 288).

Može se također raditi o DNS-plazmidu, ili RNS-plazmidu, koji se može kodirati za antigen i uključiti u liposome. It can also be a DNS-plasmid, or an RNS-plasmid, which can code for an antigen and be included in liposomes.

Pojam “antigen”, u smislu ovog izuma, obuhvaća kako potpune molekule tako i njihove fragmente koji imaju antigenska svojstva i/ili se mogu upotrijebiti za imunizaciju. Nadalje, pojam “antigen”obuhvaća molekule i/ili fragmente molekula koji djeluju imunostimulirajuće. The term "antigen", in the sense of this invention, includes both complete molecules and their fragments that have antigenic properties and/or can be used for immunization. Furthermore, the term "antigen" includes molecules and/or fragments of molecules that have an immunostimulating effect.

Površinski protein influence, ubačen u cjepivo, prema predloženom izumu, sadrži prvenstveno hemaglutinin (HA). Nadalje, površinski protein influence hemaglutinin (HA) može sadržavati spoj/kombinaciju s neuroaminidazom (NA). The surface protein of influenza, inserted into the vaccine, according to the proposed invention, contains primarily hemagglutinin (HA). Furthermore, the surface protein influenza hemagglutinin (HA) may contain a compound/combination with neuroaminidase (NA).

U posebnom izvedbenom obliku izum se odnosi na cjepivo koje sadrži i druge antigene. Posebno ti antigeni mogu biti vezani na površinu virosoma. In a special embodiment, the invention relates to a vaccine that also contains other antigens. In particular, these antigens can be attached to the surface of virosomes.

U daljnjem, poželjnom izvedbenom obliku Prijava se odnosi na cjepivo sukladno ovom izumu, koja pored antigena, koji se sastoje iz površinskog/ih proteina influence, sadrži daljnje antigene, dobivene prvenstveno iz patogenih organizama. Pri tome patogeni organizam može biti virus, bakterija, gljivica ili parazit. Ovi organizmi obuhvaćaju različite uzročnike bolesti, kao npr. virus hepatitisa A, virus hepatitisa B, respiratorni sincitialni virus (pneumovirus), virus para-influence, virus mumsa, Mobili virus, HIV, bakteriju difterije (Corynebacterium diphtheriae), bacil tetanusa (Clostridium tetani), pneumokoke, haemophilus influenzae, E. coli, Candida albicans, Candida tropicalis, Candida pseudotropicalis, Candida parapsilosis, Candida krusei, vrste Aspergillus-a, vrste Trichomonas-a, vrste Trypanosoma, vrste Leishmania, Toxoplasma gondii, Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, vrste Trematoda i Nematoda. Vrste Trematoda posebice obuhvaćaju Schistoma haematobium, S. mansoni, S. japoniaum i vrste Nematoda Tricharis trichiura, Ascaris lumbricoides i Trichinella spiralis. In a further, preferred embodiment, the Application relates to a vaccine according to this invention, which, in addition to antigens consisting of surface protein(s) of influenza, contains further antigens obtained primarily from pathogenic organisms. The pathogenic organism can be a virus, bacteria, fungus or parasite. These organisms include various pathogens, such as hepatitis A virus, hepatitis B virus, respiratory syncytial virus (pneumovirus), para-influenza virus, mumps virus, Mobili virus, HIV, diphtheria bacterium (Corynebacterium diphtheriae), tetanus bacillus (Clostridium tetani ), pneumococci, haemophilus influenzae, E. coli, Candida albicans, Candida tropicalis, Candida pseudotropicalis, Candida parapsilosis, Candida krusei, Aspergillus species, Trichomonas species, Trypanosoma species, Leishmania species, Toxoplasma gondii, Plasmodium falciparum, Plasmodium vivax , Plasmodium ovale, Plasmodium malariae, species of Trematodes and Nematodes. Trematode species in particular include Schistoma haematobium, S. mansoni, S. japoniaum and Nematode species Tricharis trichiura, Ascaris lumbricoides and Trichinella spiralis.

Nadalje, izum obuhvaća jedno cjepivo protiv influence. Posebice izum obuhvaća cjepivo koja se može primijeniti za prevenciju i/ili liječenje općih infekcija/infektivnih bolesti. Nadalje, cjepivo služi za prevenciju i/ili liječenje bolesti influence, za prevenciju i/ili liječenje začepljenog nosa, liječenje ozljeda sluznica nosa. Izum dalje poželjno obuhvaća cjepivo u kojem je sadržaj hemaglutinina u dozi (100 μl) između 1-30 μg, s time da je poželjnija koncentracija 3-10 μg, a najpoželjnija koncentracija 3,75 μg. Furthermore, the invention includes an influenza vaccine. In particular, the invention includes a vaccine that can be used for the prevention and/or treatment of general infections/infectious diseases. Furthermore, the vaccine is used for the prevention and/or treatment of influenza, for the prevention and/or treatment of nasal congestion, and the treatment of injuries to the nasal mucosa. The invention further preferably includes a vaccine in which the hemagglutinin content in a dose (100 μl) is between 1-30 μg, with the preferred concentration being 3-10 μg, and the most preferred concentration being 3.75 μg.

U izvedbenom obliku koji je poželjan, izum se odnosi na cjepivo u kojem je odnos liposomi-fosfolipid prema HA između 1:10 i 20:1, poželjnije odnos 1:1 do 10:1, a najpoželjnije odnos 3:1. In a preferred embodiment, the invention relates to a vaccine in which the ratio of liposomes-phospholipid to HA is between 1:10 and 20:1, more preferably a ratio of 1:1 to 10:1, and most preferably a ratio of 3:1.

Nadalje, izum se odnosi prvenstveno na cjepivo u kojem je fosfolipid liposoma izabran iz grupe neutralnih, kationskih i/ili anionskih fosfolipida. Furthermore, the invention relates primarily to a vaccine in which the phospholipid of the liposome is selected from the group of neutral, cationic and/or anionic phospholipids.

U poželjnom izvedbenom obliku izum se odnosi na cjepivo za koje je mukozni adjuvans aktivni toksin, inaktivni toksin i/ili netoksični toksin. Osobito mukozni adjuvans obuhvaća Toplinski labilni toksin (HTL), toksin kolere (CT) i/ili prokoleragenoid (PCG). U jednom drugom izvedbenom obliku, kojem se daje prednost, mukozni adjuvans je Toplinski labilni toksin (HLT) iz Escerichia coli. U daljnjem poželjnom, izvedbenom obliku, toksini mogu biti inaktivirani. Ovo deaktiviranje može se postići tehnologijom rekombinacije. In a preferred embodiment, the invention relates to a vaccine for which the mucosal adjuvant is an active toxin, an inactive toxin and/or a non-toxic toxin. In particular, the mucosal adjuvant comprises Heat Labile Toxin (HTL), Cholera Toxin (CT) and/or Procholeragenoid (PCG). In another preferred embodiment, the mucosal adjuvant is Heat Labile Toxin (HLT) from Escerichia coli. In a further preferred embodiment, the toxins may be inactivated. This deactivation can be achieved by recombination technology.

U daljnjem izvedbenom obliku izum obuhvaća cjepivo koje sadrži Toplinski labilan toksin (HLT) i/ili toksin kolere (CT) u odnosu između 1:2 do 20:1, bolje između 1:1 i 1:10 i najbolje 7,5 : 1. In a further embodiment, the invention includes a vaccine containing Heat Labile Toxin (HLT) and/or Cholera Toxin (CT) in a ratio between 1:2 and 20:1, better between 1:1 and 1:10 and best 7.5:1 .

Prije spomenuti pojam “uravnotežena smjesa liposoma i mukoznog adjuvansa” odnosi se s jedne strane na ispravan odnos antigena i fosfolipida kao i na mukozni adjuvans, koji je potreban za zadovoljavajuće djelovanje. Klinička ispitivanja pokazala su slijedeće: idealan odnos fosfolipida (npr. fosfatidilholin, fosfatidiletanolamin, neutralni, anionski ili kationski fosfolipidi) spram antigena influence leži između 1:1 do 20:1. Idealan odnos je 3:1. Odnos antigena influence i aktivnog mukoznog adjuvansa (toksin) HLT ili CT leži između 1:2 do 20:1. Optimalan odnos je 7,5 :1. The previously mentioned term "balanced mixture of liposomes and mucosal adjuvant" refers, on the one hand, to the correct ratio of antigens and phospholipids, as well as to the mucosal adjuvant, which is required for a satisfactory effect. Clinical tests have shown the following: the ideal ratio of phospholipids (eg phosphatidylcholine, phosphatidylethanolamine, neutral, anionic or cationic phospholipids) to influenza antigen lies between 1:1 and 20:1. The ideal ratio is 3:1. The ratio of influenza antigen and active mucosal adjuvant (toxin) HLT or CT lies between 1:2 and 20:1. The optimal ratio is 7.5:1.

Kako je prije napomenuto, odnos antigena influence i inaktivnog, mukoznog adjuvansa (inaktivni toksin) PCG-a ili netoksičnog derivata HLT-a i CZ-a leži između 3:1 i 1:20, u idealnom slučaju 1:2. As mentioned before, the ratio of influenza antigen and inactive, mucosal adjuvant (inactive toxin) PCG or non-toxic derivative of HLT and CZ lies between 3:1 and 1:20, ideally 1:2.

Mjerenja imunostimulirajućeg mukoznog djelovanja u pokusima in-vitro neočekivano su pokazala da smjesa adjuvansnih liposoma i mukoznog adjuvansa ne prouzrokuje zbroj djelovanja već povećanje zbroja za faktor najmanje pet. Measurements of the immunostimulating mucosal effect in in-vitro experiments unexpectedly showed that the mixture of adjuvant liposomes and mucosal adjuvant does not cause the sum of the effects but an increase of the sum by a factor of at least five.

Pojam “novi medicinski uređaj” odnosi se na aplikator-raspršivač koji je posebno podešen za intranazalnu imunizaciju (cijepljenje). Nije dovoljno sastaviti mukozno djelotvorni pripravak ako je aplikacija loša ili nezadovoljavajuća. The term "new medical device" refers to an applicator-nebulizer that is specially adjusted for intranasal immunization (vaccination). It is not enough to put together a mucosally effective preparation if the application is poor or unsatisfactory.

Novi uređaj odlikuje se time što potpuno poštuje anatomske datosti nosa: The new device is distinguished by the fact that it fully respects the anatomical features of the nose:

(1) Razmak između manšete za prste i glave za raspršivanje ponajprije iznosi najmanje 4,0 cm. (1) The distance between the finger cuff and the spray head is preferably at least 4.0 cm.

(2) prednji dio nastavka, koji ulazi u nos, sastoji se u biti iz cilindričnog nastavka, koji je primjerice dug najmanje 5 mm, a u promjeru najviše 5 mm. (2) the front part of the attachment, which enters the nose, consists essentially of a cylindrical attachment, which is, for example, at least 5 mm long and at most 5 mm in diameter.

(3) kut štrcanja opisanog uređaja za doziranje prvenstveno iznosi 50° do 70° prema horizontali. (3) the injection angle of the described dosing device is primarily 50° to 70° to the horizontal.

(4) os glavnog smjera uređaja za doziranje, odnosno aplikatora –raspršivača, prvenstveno određuje posebna manšeta: ona se prvenstveno može nataknuti na prednji dio uređaja za doziranje, koji se stavlja u nos, konstruirana je tako da se pri nazalnoj aplikaciji raspršivanjem može osloniti na gornju usnicu, pa smjer štrcanja u bitnome pogađa lateralnu stjenku nosne šupljine. (4) the axis of the main direction of the dosing device, i.e. the applicator-sprayer, is primarily determined by a special cuff: it can primarily be put on the front part of the dosing device, which is placed in the nose, it is designed so that during nasal spray application it can be relied on the upper lip, so the direction of injection essentially hits the lateral wall of the nasal cavity.

Konstrukciji manšete za naslanjanje na gornju usnicu je povoljnija jer je usnica relativno blizu nosa, ali je razmak dosta velik da može biti učinkovita poluga za tvorbu korisnog poravnanja. Osim toga, osjetljivi senzori opipa na usnici korisnika omogućavaju ispravno (centrirano odnosno paralelno) naslanjanje manšete, bez provjere pogledom u ogledalo. Povrh toga, manšeta se može konstruirati i za naslanjanje na druge dijelove tijela, odnosno glave. The construction of the cuff for resting on the upper lip is more favorable because the lip is relatively close to the nose, but the distance is large enough to be an effective lever for creating a useful alignment. In addition, sensitive touch sensors on the user's lips enable correct (centered or parallel) resting of the cuff, without checking by looking in the mirror. In addition, the cuff can be designed to rest on other parts of the body, i.e. the head.

Uski dio, koji se umeće u nos, ima prvenstveno najmanju duljinu 0,5 cm, bolje 1 cm, dok slijedeći, široki dio, koji se umeće u nos, je prvenstveno najmanje 1 cm dug, dok se prednost daje duljini 2 cm. Razdaljina između dorzalne površine za prste i vrha raspršivača trebala bi biti najmanje 2 cm, bolje 2,5 do 3 cm, odnosno razmak između naslona za prst (manšeta) do vrška raspršivača trebala bi biti najmanje 3 cm, poželjno 4 do 5 cm. Kut štrcanja raspršivača trebao bi ponajprije biti 50o do 70 o prema horizontali, ako se glava drži u normalnom, okomitom položaju. The narrow part, which is inserted into the nose, preferably has a minimum length of 0.5 cm, preferably 1 cm, while the next, wide part, which is inserted into the nose, is preferably at least 1 cm long, while a length of 2 cm is preferred. The distance between the dorsal surface for the fingers and the tip of the sprayer should be at least 2 cm, preferably 2.5 to 3 cm, that is, the distance between the finger rest (cuff) and the tip of the sprayer should be at least 3 cm, preferably 4 to 5 cm. The spray angle of the atomizer should preferably be 50o to 70o to the horizontal, if the head is held in a normal, vertical position.

Nadalje, glavni vektor hoda raspršivača trebao bi biti usmjeren između srednje i donje nosne školjke. To znači, da mora biti usmjeren na srednji, nosni prolaz. To u pravilu pretpostavlja skoro horizontalni smjer aplikatora. Furthermore, the main stroke vector of the nebulizer should be directed between the middle and lower nasal concha. This means that it must be aimed at the middle, nasal passage. As a rule, this assumes an almost horizontal direction of the applicator.

Takav smjer, kakav je opisan u predloženom izumu, može se fiksirati pričvršćivanjem specijalne manšete na aplikator. Manšetu i aplikator također je moguće izvesti kao zasebni dio ili integralno. U tom slučaju je uređaj za pričvršćivanje/povezivanje čvrsto spojen s aplikatorom ili je izveden u jednom komadu s njime. Such a direction, as described in the proposed invention, can be fixed by attaching a special cuff to the applicator. The cuff and the applicator can also be made as a separate part or integrally. In this case, the attachment/connection device is firmly connected to the applicator or is made in one piece with it.

U osobitom izvedbenom obliku aplikatora-raspršivača radi se o uređaju čiji dio koji ulazi u nos zajedno s glavom za raspršivanje ima prvenstveno najveću širinu 5 mm i duljinu najmanje 5 mm, bolje 7 mm, razmak između manšete za prste i vrška raspršivača najmanje 3 cm i montažnoj manšeti, koja dopušta uvođenje u nosnicu tako da glavni sektor nazalnog raspršivača s horizontalom čini kut od oko 15 do 20o. In a particular embodiment of the applicator-sprayer, it is a device whose part that enters the nose together with the spray head has primarily a maximum width of 5 mm and a length of at least 5 mm, preferably 7 mm, a distance between the finger cuff and the tip of the sprayer of at least 3 cm and mounting cuff, which allows introduction into the nostril so that the main sector of the nasal spray makes an angle of about 15 to 20o with the horizontal.

U daljnjem, izvedbenom obliku, kojemu se daje prednost, antigen je smjesa površinskih antigena influence koja se nalazi na površini liposoma. Ovo sredstvo može se kombinirati s antigenima drugih patogenih mikroorganizama. Kako je već gore napomenuto, cjepivo koje je predmet ovog izuma, može sadržavati daljnje antigene, prvenstveno antigene drugih patogenih organizama. In a further, preferred embodiment, the antigen is a mixture of influenza surface antigens that is present on the surface of liposomes. This agent can be combined with antigens of other pathogenic microorganisms. As already mentioned above, the vaccine that is the subject of this invention may contain further antigens, primarily antigens of other pathogenic organisms.

U daljnjem izvedbenom obliku, prije navedeni postupak služi za profilaksu infektivnih bolesti, za liječenje začepljenog nosa i različitih smetnji na sluznici nosa. In a further embodiment, the aforementioned procedure is used for the prophylaxis of infectious diseases, for the treatment of blocked nose and various disorders of the nasal mucosa.

Dalje će se, uz poziv na slike, primjerima opisati izvedbeni oblici izuma, koji su poželjni. Prikazano na: Next, preferred embodiments of the invention will be described with reference to the images. Shown on:

Slici 1 usporedbeni prikaz turbinalija čovjeka i srne; Figure 1: a comparison of human and doe turbinals;

Slici 2 shematski prikaz anatomske unutrašnje građe nosnice; Figure 2 is a schematic view of the anatomical internal structure of the nostril;

Slika 3 shematski prikaz principa konstrukcije izvedbenog oblika uređaja za doziranje prema ovom izumu, koji je poželjan; Figure 3 is a schematic representation of the principle of construction of an embodiment of the dosing device according to this invention, which is preferred;

Slika 4 prikaz ispravnog kuta štrcanja pri djelotvornoj aplikaciji; Figure 4 shows the correct angle of spraying during effective application;

Slika 5 prikaz citologije nosa: kvantifikacija različitih populacije stanica koje su dobivene tehnikom uzimanja nosnog brisa od individua (po 20 iz svake grupe) do 29 dana nakon tri različite vrste intranazalnog cijepljenja. Obratite pozornost na jasan porast centroblasta, kao znaka lokalnog, imunog odgovora u grupi a, nasuprot signifikantno slabijem porastu u grupama B i C (p< 0,005); Fig. 5 presentation of nasal cytology: quantification of different populations of cells obtained by nasal swab technique from individuals (20 from each group) up to 29 days after three different types of intranasal vaccination. Pay attention to the clear increase in centroblasts, as a sign of a local, immune response in group a, against a significantly weaker increase in groups B and C (p< 0.005);

Slika 6 izvedbeni oblik uređaja za doziranje bez manšete, prema ovom izumu, koji je poželjan i Fig. 6 is an embodiment of a cuffless dispensing device according to the present invention, which is preferred i

Slika 7a i 7b su dvije projekcije poželjnog izvedbenog oblika manšete, na uređaju za doziranje, na slici 6, koji je predmet predloženog izuma Figure 7a and 7b are two projections of the preferred embodiment of the cuff, on the dosing device, in Figure 6, which is the subject of the proposed invention

Primjer 1 Example 1

Priprava mukoznog, virosomnog cjepiva protiv influence s HLT-om, kao dodatnim, mukoznim adjuvansom Preparation of a mucosal virosomal vaccine against influenza with HLT as an additional mucosal adjuvant

Pripravu virosomnog cjepiva protiv influence opisali su Glück R, Wegmann A: Liposomna izvedba antigena influence. U izd. Nicholson KG, Webster RG, Hay AJ, priručnik o influenci (1998) str. 400-409. London, Blackwell. Ukratko, obuhvaća pripremu: sojeve H1N1 A/Singapur/6/86, H3N2 A/Wuhan/359/95 i B/Beijing/184/93 virusa influence koji su kultivirani u kokošjim jajima, na kojima su ležale kokoši, a koje je isporučio National Institute of Biological Standards and Control, London, Great Britain. Intaktni virioni izolirani su iz tekućine Chorioallantois-a zonskim centrifugiranjem i inaktivirani β-propiolaktonom. Očišćeni virioni stavljeni su u pufer koji je sadržavao 0,1 m oktaetilenglikol mono(N-dodecil) etera (OEG) (nikko chenmicals, japan) u PBS-NaCl i inkubirani 20 min na 21°C, kako bi se omogućila potpuna razgradnja komponenata virusa. The preparation of a virosomal vaccine against influenza is described by Glück R, Wegmann A: Liposomal production of influenza antigen. In eds Nicholson KG, Webster RG, Hay AJ, handbook of influenza (1998) p. 400-409. London, Blackwell. Briefly, it covers the preparation of: H1N1 A/Singapore/6/86, H3N2 A/Wuhan/359/95 and B/Beijing/184/93 strains of influenza virus cultured in hen's eggs, laid by hens, and supplied by National Institute of Biological Standards and Control, London, Great Britain. Intact virions were isolated from chorioallantois fluid by zone centrifugation and inactivated with β-propiolactone. Cleaned virions were placed in a buffer containing 0.1 m octaethyleneglycol mono(N-dodecyl) ether (OEG) (nikko chenmicals, Japan) in PBS-NaCl and incubated for 20 min at 21°C, to allow complete degradation of the components viruses.

Smjesa je centrifugirana 60 min. Kod 100000 x g zbog ekstrakcije hemaglutinina (HA) i neuraminidaze (NA). Ostatak, koji je sadržavao HA, NA i virusne fosfolipide (PL), upotrijebljen je za pripremu različitih intranazalnih formulacija cjepiva. Dodani su dopunski fosfolipidi (fosfatidilholin [Lipoid, Njemačka]) i prevedeni u topljivi oblik. Virosomi su stvarani spontano, tijekom uklanjanja OEG-deterdženta kromatografijom. U jednu mukoznu dozu cjepiva (100 μl), koja sadrži po 3,75 μg HA od svakog, od tri soja virusa influence, kako je preporučila WHO i 35 μg lecitina, dodano je, kao mukozni adjuvans, 0,5 μg toplinski labilnog toksina (HLT) od E. coli, dobivenog iz proizvodnog soja E. coli HE22VK (Vogel FR, Powell MF: kompendij adjuvansa cjepiva i pomoćnih tvari. U Vaccine Design: podjedinica i pristup s adjuvansima (izd. M. F. Powell, M. J. Newmann) Plenum Press, New York (1995) str. 141). The mixture was centrifuged for 60 min. At 100000 x g due to hemagglutinin (HA) and neuraminidase (NA) extraction. The residue, which contained HA, NA and viral phospholipids (PL), was used to prepare various intranasal vaccine formulations. Supplemental phospholipids (phosphatidylcholine [Lipoid, Germany]) were added and converted to a soluble form. Virosomes were created spontaneously, during the removal of OEG-detergent by chromatography. In one mucosal dose of the vaccine (100 μl), which contains 3.75 μg of HA from each of the three influenza virus strains, as recommended by the WHO and 35 μg of lecithin, 0.5 μg of heat-labile toxin was added as a mucosal adjuvant. (HLT) from E. coli, obtained from the production strain E. coli HE22VK (Vogel FR, Powell MF: compendium of vaccine adjuvants and adjuvants. In Vaccine Design: the subunit and adjuvant approach (ed. M.F. Powell, M.J. Newmann) Plenum Press , New York (1995) p. 141).

Primjer 2 Example 2

Stanice E. coli sedimentirane su u protočnoj centrifugi (Westfalia AG) i suspendirane u “fiziološkoj otopini”, puferiranoj fosfatnim puferom (PBS, 6,06 g/l Na2HPO4 1,46 g/l KH2PO4, 2,4 g/l NaCl, pH 7.4) E. coli cells were sedimented in a flow centrifuge (Westfalia AG) and suspended in "saline" buffered with phosphate buffer (PBS, 6.06 g/l Na2HPO4 1.46 g/l KH2PO4, 2.4 g/l NaCl, pH 7.4)

Oslobađanje intracelularnog toplinski nestabilnog toksina (HLT) događa se razaranjem stanica u kugličnom mlinu (npr. Dyna-Mill, W. Bachofen AG) ili u francuskoj preši. Na primjer: 10 l suspenzije stanica crpi se kroz kuglični mlin brzinom protoka 33 ml/min. On je napunjen s 500 ml staklenih kuglica, okreće se brzinom 3000 o/min-1 i veličina otvora, u obliku procjepa, iznosi 0,05 mm. Release of intracellular heat labile toxin (HLT) occurs by cell disruption in a ball mill (eg Dyna-Mill, W. Bachofen AG) or in a French press. For example: 10 l of cell suspension is pumped through a ball mill at a flow rate of 33 ml/min. It is filled with 500 ml of glass beads, rotates at a speed of 3000 rpm and the size of the opening, in the form of a slit, is 0.05 mm.

Čvrsti sastavni dijelovi stanice u otopini razorenih stanica odjeljuju se tangencijalnim mikrofiltriranjem. Na primjer: 10 l staničnog lizata upari se na oko 4 l u prostak-sustavu (Millipore AG), uz uporabu filtra , veličine pora 0,2 μ. Iza toga se ispire s 24 l pbs-a. Permeat se filtrira kroz sterilni filter, veličine pora 0,2 μ (npr. Gelman Supor DCF, Pall). The solid components of the cell in the solution of the destroyed cells are separated by tangential microfiltration. For example: 10 l of cell lysate is evaporated to about 4 l in a simple system (Millipore AG), using a filter with a pore size of 0.2 μ. After that, it is washed with 24 l of PBS. The permeate is filtered through a sterile filter, pore size 0.2 μ (eg Gelman Supor DCF, Pall).

HLT se izolira iz permeata pomoću afinitetne kromatografije. Kao stacionarna faza upotrebljava se imobilizirana galaktoza (Galactose-Gel npr. od Pierce-a) ili imobilizirana laktoza (Lactosyl-Gel, npr. od Pharmacia-e). Mobilna faza sastoji se iz pbs-a (pufer a) i 5 %.-tne (g/v) laktoze u polukoncentriranom pbs-u (pufer b). Na primjer: sterilno filtrirani stanični lizat nanese se na kolonu, predkondicioniranu puferom a. Nakon toga kolona se ispire puferom a sve dok iznos UV apsorpcije kod 280 nm dospije na baznu crtu. Nakon toga se HLT eluira s kolone pomoću pufera b. HLT is isolated from the permeate using affinity chromatography. Immobilized galactose (Galactose-Gel, e.g. from Pierce) or immobilized lactose (Lactosyl-Gel, e.g. from Pharmacia) is used as a stationary phase. The mobile phase consists of PBS (buffer a) and 5% (w/v) lactose in semi-concentrated PBS (buffer b). For example: a sterile filtered cell lysate is applied to a column, preconditioned with buffer a. The column is then washed with buffer a until the amount of UV absorbance at 280 nm reaches the baseline. After that, HLT is eluted from the column using buffer b.

Primjer 3 Example 3

Priprema mukoznog, virosomnog cjepiva protiv influence s pcg-om kao dopunskim, mukoznim adjuvansom Preparation of a mucosal, virosomal vaccine against influenza with pcg as an additional, mucosal adjuvant

Priprema virosomnog cjepiva protiv influence opisana je u primjeru 1. Svakoj mukoznoj dozi cjepiva (100 μl), koja sadržava 3,75 μg ha od svakog od tri soja virusa influence, kako je preporučila WHO i 35 μg lecitina, dodano je 6 μg prokoleragenoida, pripravljenog zagrijavanjem očišćenog CT-a, koji je potjecao od V. cholerae (Inaba 569b), kao mukoznog adjuvansa (Pierce NF, Cray WC, Sacci JB, Craig JP, Germanier R, Fürer E: Prokoleragenoid, siguran i učinkovit antigen za oralnu imunizaciju protiv eksperimentalne kolere. Inf. Immunity 40, 3 (1983) 1112 – 1118). The preparation of the virosomal influenza vaccine is described in Example 1. To each mucosal dose of the vaccine (100 μl), containing 3.75 μg ha of each of the three strains of the influenza virus, as recommended by the WHO and 35 μg lecithin, 6 μg procholeragenoid was added, prepared by heating purified CT, which originated from V. cholerae (Inaba 569b), as a mucosal adjuvant (Pierce NF, Cray WC, Sacci JB, Craig JP, Germanier R, Fürer E: Procholeragenoid, a safe and effective antigen for oral immunization against experimental cholera. Inf. Immunity 40, 3 (1983) 1112 – 1118).

Primjer 4 Example 4

Priprema mukoznog cjepiva protiv hepatitisa –B-(HB) Preparation of mucosal vaccine against hepatitis B-(HB)

Fosfatidiletanolamin (R. Berchtold, Biochemisches Labor, Bern, Švicarska) otopljen je u metanolu i dodano mu je 0,1 % (vol/vol) trietilamina. Nakon toga, otopina je pomiješana s N-hidroksisukcinimid esterom γ-maleimidomaslačne kiseline (gmbs) (Pierce Chemical Company, Rockford, IL) (odnos fosfatidiletanolamin : gmbs = 2:1) koji je prethodno bio otopljen u dimetilsulfoksidu (dmso). Nakon 15-minuta inkubacije na sobnoj temperaturi otapala su odparavana 1 sat u vakuumu, u Speedvac centrifugi. Phosphatidylethanolamine (R. Berchtold, Biochemisches Labor, Bern, Switzerland) was dissolved in methanol and 0.1% (vol/vol) triethylamine was added. Subsequently, the solution was mixed with γ-maleimidobutyric acid N-hydroxysuccinimide ester (gmbs) (Pierce Chemical Company, Rockford, IL) (phosphatidylethanolamine : gmbs = 2:1 ratio) previously dissolved in dimethylsulfoxide (dmso). After a 15-minute incubation at room temperature, the solvents were evaporated for 1 hour in a vacuum, in a Speedvac centrifuge.

Rekombinirani HB čestice bile su prema poznatim postupcima pripravljene u CHO staničnim linijama i očišćene. Recombined HB particles were prepared in CHO cell lines and purified according to known procedures.

Kako bi se dobila reducirana čestica HB-a sa slobodnim ostacima cisteina, čestice su obrađene 5 minuta na sobnoj temperaturi sa 40 mmol/l dl-ditiotreitola (dtt). Dtt je uklonjen na koloni Sephadex-g10 (Pharmacia LKB Biotechnology, Uppsala, Švedska) i dodan je oktaetilenglikol (Fluka Chemicals, Švicarska) (OEG) u konačnoj koncentraciji 100 mmol/l. Tad se otpareni fosfatidiletanolamin-gmbs miješao 1 sat s otopinom HB-a (odnos HB-a : gmbs = 1:2). Slobodni gmbs je vezan cisteinom. Reakcija je praćena tankoslojnom kromatografijom. In order to obtain a reduced HB particle with free cysteine residues, the particles were treated for 5 minutes at room temperature with 40 mmol/l dl-dithiothreitol (dtt). Dtt was removed on a Sephadex-g10 column (Pharmacia LKB Biotechnology, Uppsala, Sweden) and octaethylene glycol (Fluka Chemicals, Switzerland) (OEG) was added at a final concentration of 100 mmol/l. Then the evaporated phosphatidylethanolamine-gmbs was mixed for 1 hour with the HB solution (ratio of HB : gmbs = 1:2). Free gmbs is bound by cysteine. The reaction was monitored by thin layer chromatography.

32 mg fosfatidilholina (Lipoid BmbH, Ludwigshafen, Njemačka) i 6 mg fosfatidiletanolamina dodaju se prije umreženom fosfatidiletanolamin-gmbs-HB-u i ova smjesa se otapa u ukupnom obujmu 2,66 ml pbs-a koji je sadržavao 100 mm otopljenoga oeg (pbs-oeg). 32 mg of phosphatidylcholine (Lipoid BmbH, Ludwigshafen, Germany) and 6 mg of phosphatidylethanolamine were added to the previously cross-linked phosphatidylethanolamine-gmbs-HB and this mixture was dissolved in a total volume of 2.66 ml of PBS containing 100 mm of dissolved oeg (pbs -oeg).

Hemaglutinin influence A/Singapur- je pročišćen kako je prije opisano u primjeru (1). Otopina, koja je sadržavala 4 mg hemaglutinina, centrifugirana je 30 minuta kod 100000 g i sediment je otopljen u 1,33 ml pbs-oeg. Influenza A/Singapore hemagglutinin was purified as previously described in example (1). The solution, which contained 4 mg of hemagglutinin, was centrifuged for 30 minutes at 100,000 g and the sediment was dissolved in 1.33 ml of PBS-oeg.

Fosfolipidi i otopina hemaglutinina su pomiješani i obrađeni ultrazvukom 1 minutu. Smjesa je nakon toga 1 sat centrifugirana kod 100000 g i gornji sloj je sterilno filtriran (0,22 μm). Phospholipids and hemagglutinin solution were mixed and sonicated for 1 minute. The mixture was then centrifuged for 1 hour at 100,000 g and the upper layer was sterile filtered (0.22 μm).

Virosomi s apsorbiranim HB-om odstranjeni su uklanjanjem deterdženta pomoću BioRad-SM-Bio kuglica, kao u primjeru 1. Matičnoj otopini, koja je sadržavala 50 μg HB-antigena/ml dodano je 10 μl/ml HLT-a iz primjera 2 i napunjeno u aplikatore-raspršivače prema primjeru 6. Virosomes with absorbed HB were removed by detergent removal using BioRad-SM-Bio beads, as in example 1. To the stock solution, which contained 50 μg of HB-antigen/ml, 10 μl/ml of HLT from example 2 was added and filled into applicators-sprayers according to example 6.

Primjer 5 Example 5

In vitro test za ispitivanje aktiviteta mukoznog adjuvansa In vitro test for testing mucosal adjuvant activity

Biološke aktivnosti mukoznih adjuvansa mjerene su virosomima influence, HLT-om, pcg-om, smjesom virosoma i HLT-a, prema primjeru (1) i smjesom virosoma i pcg-a, prema primjeru (2). Slijedeće otopine dodane su u Y-1 stanice nadbubrežne žlijezde ATCC: CCL 79 Y –1- adrenalni tumor, steroidni sekret miša) u minikulturi prema Sack-u, da i Sack-u, RB (Sack DA i Sack RB: test za enterotoksigenu Escerichia coli uz uporabu Y-1 adrenalnih stanica u minikulturi. Infect. Immun. 11 (1974) 334-336): The biological activities of mucosal adjuvants were measured with influenza virosomes, HLT, pcg, a mixture of virosomes and HLT, according to example (1) and a mixture of virosomes and pcg, according to example (2). The following solutions were added to Y-1 adrenal cells ATCC: CCL 79 Y -1- Adrenal tumor, mouse steroid secretion) in miniculture according to Sack, da and Sack, RB (Sack DA and Sack RB: enterotoxigenic assay Escerichia coli using Y-1 adrenal cells in miniculture. Infect. Immun. 11 (1974) 334-336):

(a) HLT (5 μg/ml), (b) pcg (60 μg/ml), (c) virosomi influence i HLT: 37 Μg/ml hemaglutinina influence od svakog od 3 soja (H1N1, H3N2, b), 100 μg/ml fosfatidilholina i 5 μg/ml kao (d) virosoma influence i pcg: 37 μg/ml hemaglutinina influence od svakog od 3 soja, 100 μg/ml fosfatidilholina i 60 mg/ml pcg-a. (a) HLT (5 μg/ml), (b) pcg (60 μg/ml), (c) influenza virosomes and HLT: 37 μg/ml influenza hemagglutinin from each of the 3 strains (H1N1, H3N2, b), 100 μg/ml phosphatidylcholine and 5 μg/ml as (d) influenza virosomes and pcg: 37 μg/ml influenza hemagglutinin from each of the 3 strains, 100 μg/ml phosphatidylcholine and 60 mg/ml pcg.

Određeni su slijedeći aktiviteti adjuvansa (izraženi jedinicama): The following adjuvant activities were determined (expressed in units):

(a) 15 jedinica, (b) 6 jedinica, (c) 80 jedinica, (d) 36 jedinica. Najviši biološki aktivitet adjuvansa ostvaren je sa smjesom virosoma i HLT-a ili virosoma i pcg-a. Djelovanje adjuvansa određeno je parametrima toksiciteta stanica. (a) 15 units, (b) 6 units, (c) 80 units, (d) 36 units. The highest biological activity of the adjuvant was achieved with a mixture of virosomes and HLT or virosomes and pcg. The effect of the adjuvant is determined by the parameters of cell toxicity.

Primjer 6 Example 6

Kliničko ocjenjivanje različitih aplikatora- raspršivača Clinical evaluation of different applicators-nebulizers

Osnovna izvedba uređaja za doziranje, prema ovom izumu, je u biti usporediva s uobičajenim aplikatorima-raspršivačima, ali je osobito dobro prilagođen anatomskim datostima za nazalnu aplikaciju bilo koje, ali posebice ovdje opisanih farmaceutski djelotvornih pripravaka. The basic performance of the dosing device, according to this invention, is essentially comparable to conventional applicators-sprayers, but is particularly well adapted to the anatomical data for nasal application of any, but especially the pharmaceutically effective preparations described here.

Osobiti izvedbeni oblik predloženog uređaja za doziranje 2, prikazan je na slikama 3 i 6. Na bokocrtu dozatora prema ovom izumu, prikazanom na slici 3, prepoznatljivi su bitni sastavni dijelovi tog uređaja (aplikatora-raspršivača) 2. Uređaj za doziranje 2 u bitnome sadrži spremnik 4 s (ovdje nije prikazana) farmaceutski djelotvornom tvari i raspršivač, odnosno mehanizam za crpljenje 6. Mehanizam za crpljenje 6 povezan je, nepropusno za tekućine, spojnim elementom 8 sa spremnikom 4. Crpljenje i raspršivanje uređajem za doziranje 2, prema ovom izumu, odvija se prema uobičajenom načinu, pritiskanjem prstom manšete 10. Farmaceutski djelotvoran pripravak iz spremniku 4 prolazi kroz kanal 12, koji se proteže kroz mehanizam crpke, i ištrcava se na izlaznom otvoru 14. The particular embodiment of the proposed dosing device 2 is shown in Figures 3 and 6. On the side view of the dispenser according to this invention, shown in Figure 3, the essential component parts of that device (applicator-sprayer) 2 are recognizable. The dosing device 2 essentially contains a container 4 with (not shown here) a pharmaceutical active substance and a sprayer, i.e. a pumping mechanism 6. The pumping mechanism 6 is connected, impervious to liquids, to the container 4 by a connecting element 8. Pumping and spraying by the dosing device 2, according to this invention, takes place according to the usual way, by pressing the cuff 10 with a finger. The pharmaceutical preparation from the container 4 passes through the channel 12, which extends through the pump mechanism, and is dispensed at the outlet 14.

Uređaj za doziranje 2 razlikuje se od poznatih aplikatora-raspršivača posebno izvedbom oblika nosnog elementa 16, koji igra bitnu ulogu kod učinkovite aplikacije farmaceutski djelotvornog pripravka. Nosni element 16 je prvenstveno konstruiran kao sastavni dio crpnog mehanizam 6 i manšete za prste 10. Taj element 16 je osobito podijeljen u dva odsječka 18 i 20, pri čemu odsječak 18, koji leži u smjeru manšete 10, ima veći promjer od odsječka 20, koji se nalazi uz izlazni otvor 14. Prijelazni dio između oba odsječka, 18 i 20, tvori graničnik 22 za manšetu 24, koja se može pričvrstiti u jednom poželjnom izvedbenom obliku predloženog izuma - na odsječak 20 nosnog elementa, zbog oslanjanja na gornju usnicu korisnika. The dosing device 2 differs from known applicators-sprayers in particular by the design of the shape of the nose element 16, which plays an essential role in the effective application of the pharmaceutical preparation. The nose element 16 is primarily constructed as an integral part of the pumping mechanism 6 and the finger cuff 10. This element 16 is particularly divided into two sections 18 and 20, whereby the section 18, which lies in the direction of the cuff 10, has a larger diameter than the section 20, which is located next to the outlet opening 14. The transitional part between both sections, 18 and 20, forms a stop 22 for the cuff 24, which can be attached in one preferred embodiment of the proposed invention - to the section 20 of the nasal element, due to its reliance on the user's upper lip.

Odsječak 20, nosnog elementa 16, koji leži do izlaznog otvora 14, ponajprije se u bitnome izvodi cilindrično, promjera d20 maks. 5 mm, a poželjno s promjerom između 2 i 4 mm. The section 20 of the nose element 16, which lies up to the exit opening 14, is primarily made essentially cylindrical, with a diameter of d20 max. 5 mm, and preferably with a diameter between 2 and 4 mm.

Duljina I20 prednjeg odsječka 20 nosnog elementa 16 primjerice iznosi najmanje 5 mm, osobito ima duljinu najmanje 10 mm, a posebno poželjna ima duljinu 10 do 20 mm. Manšeta 24 može se, preko odsječka 20, nosnog elementa 16, prvenstveno od izlaznog otvora 14, pomicati gore i ima dobru stranu što je pomoću blokade odvrtanja čvrsto spojena na uređaj za doziranje 2. Blokada odvrtanja može biti primjerice, ostvarena u obliku poligonalnog profila, npr. Eliptičnog presjeka, na prednjem odsječku 20 nosnog elementa 16 i odgovarajućeg izdanka 26 na manšeti 24. The length I20 of the front section 20 of the nose element 16 is, for example, at least 5 mm, in particular it has a length of at least 10 mm, and it is particularly preferred that it has a length of 10 to 20 mm. The cuff 24 can be moved up via the section 20 of the nose element 16, primarily from the outlet opening 14, and has the advantage that it is firmly connected to the dosing device 2 by means of the unscrewing block. The unscrewing block can be, for example, realized in the form of a polygonal profile, e.g. Elliptical section, on the front section 20 of the nose element 16 and the corresponding protrusion 26 on the cuff 24.

Prema drugom izvedbenom obliku uređaja za doziranje 2, prema ovom izumu, odsječak aplikatora-raspršivača, koji ulazi u nos pacijenta, može biti također izveden na manšeti 24. Takav izvedbeni oblik prikazan je primjerice na slici 7b. Kako ta slika prikazuje, na manšeti 24 konstruiran je, u biti, cjevasti nastavak 28, koji se može nataknuti na odsječak 20, uz izlazni otvor 14, nosnog elementa 16. Dimenzije cjevastog nastavka 28 odgovaraju prvenstveno, u ovom slučaju, u bitnome dimenzijama prije opisanog izvedbenog oblika (d20 i I20). According to another embodiment of the dosing device 2, according to this invention, the section of the applicator-sprayer, which enters the patient's nose, can also be performed on the cuff 24. Such an embodiment is shown, for example, in Figure 7b. As this picture shows, a tubular extension 28 is essentially constructed on the cuff 24, which can be pushed onto the section 20, next to the exit opening 14, of the nose element 16. The dimensions of the tubular extension 28 correspond primarily, in this case, in essential dimensions before of the described embodiment (d20 and I20).

Odsječak 18 nosnog elementa 16 ima prvenstveno duljinu I18 najmanje 10 mm, poželjna je duljina oko 20 mm. Dimenzije oba odsječka 18 i 20 prvenstveno se odabiru tako da razmak dorzalne površine za prste korisnika i šiljka raspršivača, odnosno izlaznog otvora 14, bude najmanje 2 cm, poželjno 2,5 do 3 cm. To je posebno zajamčeno kad razmak između manšete 24 do vrška raspršivača 14 iznosi najmanje 3 cm, a osobito 4 do 5 cm. The section 18 of the nose element 16 primarily has a length I18 of at least 10 mm, a length of about 20 mm is preferred. The dimensions of both sections 18 and 20 are primarily chosen so that the distance between the dorsal surface for the user's fingers and the nozzle of the sprayer, i.e. the exit opening 14, is at least 2 cm, preferably 2.5 to 3 cm. This is especially guaranteed when the distance between the cuff 24 and the tip of the sprayer 14 is at least 3 cm, and especially 4 to 5 cm.

Prema ovom izumu, pomoću uređaja za doziranje 2 ovih dimenzija, može se farmaceutski aktivan pripravak bitno točnije uštrcati u glavnu nosnu šupljinu, odnosno u unutrašnju nosnicu, tako da se postiže znatno viša djelotvornost nego s poznatim sustavima. According to this invention, using a dosing device 2 of these dimensions, the pharmaceutical active preparation can be injected more precisely into the main nasal cavity, i.e. into the inner nostril, so that a significantly higher effectiveness is achieved than with known systems.

Uređaj za doziranje 2, prema ovom izumu, ima dobru stranu što je opskrbljen manšetom 24, tako da se, pored povoljnijih dimenzija, može namjestiti optimalni kut štrcanja α. Ali, manšeta 24 može se, neovisno o prije opisanom aplikatoru-raspršivaču 2, primijeniti i s uobičajenim uređajima za doziranje, tako da se i s takvim aplikatorima-raspršivačima može postići znatno bolja djelotvornost temeljem točno podesivog kuta štrcanja α. The dosing device 2, according to this invention, has the good side that it is provided with a cuff 24, so that, in addition to more favorable dimensions, the optimal injection angle α can be set. However, the cuff 24 can, independently of the previously described applicator-sprayer 2, be applied with conventional dosing devices, so that even with such applicators-sprayers, significantly better effectiveness can be achieved on the basis of the precisely adjustable spraying angle α.

Uređajem za doziranje 2, prema ovom izumu, može se postići poboljšana djelotvornost, bilo izborom dimenzija nosnog elementa 16 ili putem prikladne manšete 24 za namještanje optimalnog kuta štrcanja α. Kako bi se postigli najbolji rezultati liječenja, prednost se daje kombinaciji nove vrste uređaja za doziranje 2, prije navedenih dimenzija, i manšete 24 za namještanje optimalnog kuta raspršivanja α. With the dosing device 2, according to the present invention, an improved efficiency can be achieved, either by choosing the dimensions of the nose element 16 or by means of a suitable cuff 24 to adjust the optimal spraying angle α. In order to achieve the best results of the treatment, preference is given to the combination of a new type of dosing device 2, with the previously mentioned dimensions, and a cuff 24 for setting the optimal spray angle α.

Manšeta 24 biti će, kako je već prije kratko rastumačeno, cjevastim nastavkom 28 nataknuta na odsječak 20, nosnog elementa 16 . Kad je montirana, manšeta 24 ima dobru osobinu da je spojena, sigurno od odvrtanja, s uređajem za doziranje 2. Primjerice, blokada odvrtanja može biti, barem na jednoj strani, spljošteni kružni profil na nosnom elementu 16, s kojim se manšeta 24 može, putem na odgovarajući način oblikovanog otvora, spojiti sigurno od odvrtanja. Manšeta 24 ima odsječak za naslanjanje 30, koji se može nasloniti na gornju usnicu korisnika, kako bi, zajedno s odsječkom 20 dijela nosnog elementa 16, i koji je usmjeren u nosni otvor pacijenta, definirao kut raspršivanja α. Optimalni kut raspršivanja leži prvenstveno između 50° i 70°. The cuff 24 will be, as already briefly explained, put on the section 20 of the nose element 16 with a tubular extension 28. When mounted, the cuff 24 has the good feature of being connected, securely against unscrewing, to the dispensing device 2. For example, the unscrewing block can be, at least on one side, a flattened circular profile on the nose element 16, with which the cuff 24 can, through a suitably shaped opening, connect securely against unscrewing. The cuff 24 has a resting section 30, which can rest against the user's upper lip, in order to define, together with the section 20 of the part of the nasal element 16, and which is directed into the nasal opening of the patient, the dispersion angle α. The optimal scattering angle lies primarily between 50° and 70°.

Odsječak za naslanjanje 30 manšete 24 prvenstveno je lagano savinut, odgovarajuće obliku gornje usnice, kako bi imao optimalnu površinu za naslanjanje i podupiranje. Manšeta 24 može se izraditi iz svakog prikladnog materijala, ali ponajprije od plastičnih materijala, koji se mogu oblikovati štrcanim lijevanjem. The resting section 30 of the cuff 24 is primarily slightly bent, corresponding to the shape of the upper lip, in order to have an optimal resting and supporting surface. The cuff 24 can be made from any suitable material, but preferably from plastic materials, which can be molded by injection molding.

Za prosudbu učinkovitosti ispitani su različiti uređaji za doziranje. U tu svrhu napunjena je 1 %-tna otopina metilenskog plavila u pet različitih tipova nazalnih aplikatora: Different dosing devices were tested to evaluate the effectiveness. For this purpose, a 1% solution of methylene blue was filled in five different types of nasal applicators:

(a) Aplikator-raspršivač prema ovom izumu s usmjeravajućom manšetom koja fiksira smjer hoda raspršivača; (a) Applicator-sprayer according to the present invention with a directional cuff that fixes the direction of travel of the sprayer;

(b) Aplikator-raspršivač prema ovom izumu, bez usmjeravajuće manšete; (b) An applicator-dispenser according to the present invention, without a guiding cuff;

(c) Uobičajeni, komercijalni aplikator-raspršivač bez uskog dijela, koji se uvodi u nos, 2 cm duljine, 4 mm u promjeru i kutom raspršivanja 50°; (c) A conventional commercial spray applicator without a narrow part, inserted into the nose, 2 cm in length, 4 mm in diameter and a spray angle of 50°;

(d) Aplikator-raspršivač prema ovom izumu ali s kutom raspršivanja 50°; (d) Applicator-sprayer according to this invention but with a spray angle of 50°;

(e) Aplikator-raspršivač prema ovom izumu ali s manšetama za prste, koje su samo 3 cm udaljene od glave za raspršivanje. (e) Applicator-spray according to the present invention but with finger cuffs, which are only 3 cm away from the spray head.

Svi aplikatori-raspršivači bili su takozvani dvodozni aplikatori. Svaki aplikator-raspršivač iskušan je na 5 ispitanika pod liječničkom kontrolom. Ispitanici su štrcali po jednu dozu otopine metilenskog plavila u svoju desnu i lijevu nosnicu. Pomoću nosne endoskopije mukozne turbinalije (sluzne školjke) su osvjetlane i fotografirane. Intenzitet plavog obojenja, kao i plavo obojena površina turbinalija, vrjednovana je skalom od 1 do 4. Dobiven je slijedeći rezultat (geometrijska sredina): All applicator-sprayers were so-called double-dose applicators. Each applicator-sprayer was tested on 5 subjects under medical supervision. Subjects injected one dose of methylene blue solution into their right and left nostrils. Using nasal endoscopy, the mucous turbinalia (mucous shells) were illuminated and photographed. The intensity of the blue coloration, as well as the blue-colored surface of the turbinalia, was evaluated on a scale from 1 to 4. The following result was obtained (geometric mean):

Grupa (a): 19 bodova; grupa (b): 16 bodova; grupa (c): 7 bodova; grupa (d): 9 bodova; grupa (e): 12 bodova. Group (a): 19 points; group (b): 16 points; group (c): 7 points; group (d): 9 points; group (e): 12 points.

Raspršena tekućina je skoro potpuno aplicirana na sluznicu nosa samo u grupi (a). I u grupi (b) je veći dio raspršenog sadržaja dospio na sluznicu. U ostalim grupama je jedan veliki udio raspršenog sadržaja dospio u predvorje nosa. Tamo raspršena tekućina, koju treba aplicirati, ne može biti djelotvorna. The sprayed liquid was almost completely applied to the nasal mucosa only in group (a). In group (b) too, most of the sprayed content reached the mucous membrane. In the other groups, a large proportion of the sprayed content reached the vestibule of the nose. The liquid sprayed there, which needs to be applied, cannot be effective.

Primjer 7 Example 7

Usporedba kliničke djelotvornosti intranazalnog, virosomnog cjepiva protiv influence, sa i bez HLT-a, primijenjene novim uređajem za raspršivanje, koji je opisan u predloženom izumu, s parenteralnom, komercijalnim cjepivom protiv influence na dragovoljcima Comparison of the clinical efficacy of an intranasal, virosomal influenza vaccine, with and without HLT, administered by the novel nebulizer device described in the proposed invention, with a parenteral, commercial influenza vaccine in volunteers

Otvoreno, randomizirano kliničko istraživanje provedeno je u potpunom suglasju s principima Deklaracije iz Helsinkija i s lokalnim zakonima i smjernicama, koji se odnose na takvu vrstu istraživanja. Nakon što je protokol dobio dopuštenje od Komiteta za etiku kantona Luzern i obavijesti Švicarskoj saveznoj zdravstvenoj ustanovi (Schweizer Bundesgesundheitsbehörde), 80 dragovoljaca (18-64 godine starosti) dalo je svoj pisani, svjesni pristanak za sudjelovanje. Isključeni su dragovoljci s akutnom ili kroničnom bolesti u vrijeme imunizacije, ako su istodobno liječeni imunosupresivnim lijekovima ili su imali poznatu imunološku slabost . An open, randomized clinical trial was conducted in full compliance with the principles of the Declaration of Helsinki and with local laws and guidelines that apply to this type of trial. After the protocol was approved by the Ethics Committee of the Canton of Lucerne and notified to the Swiss Federal Health Authority (Schweizer Bundesgesundheitsbehörde), 80 volunteers (18–64 years of age) gave their written, informed consent to participate. Volunteers with an acute or chronic disease at the time of immunization were excluded, if they were simultaneously treated with immunosuppressive drugs or had a known immune weakness.

Intranazalne formulacije cjepiva dane su svakoj od triju grupa s po 20 dragovoljaca (tablica 1). Grupe A i B primile su 2 doze formulacije A, odnosno B, u svaku nosnicu na dan 1, i 2 doze jedan tjedan kasnije. Grupa C primila je dvije doze s dvostrukom koncentracijom formulacije A na dan 1. Grupa D cijepljena je intramuskularno, u području deltoidnog mišića parenteralnom formulacijom. Uzorci krvi i pljuvačke (Omnisal®, V. Britanija) uzeti su neposredno prije prvog cijepljenja i jedan mjesec nakon prve imunizacije (29 ±2 dana). Temeljem nastalog tehničkog problema mogli su se ocijeniti samo uzorci pljuvačke prvih 47 osoba. Citologija četkicom nosne šupljine provedena je prije imunizacije te 4.-tog i 8.-od dana te jedan mjeseca nakon prve imunizacije. Intranasal vaccine formulations were administered to each of three groups of 20 volunteers (Table 1). Groups A and B received 2 doses of formulation A and B, respectively, in each nostril on day 1, and 2 doses one week later. Group C received two doses with twice the concentration of formulation A on day 1. Group D was vaccinated intramuscularly, in the area of the deltoid muscle, with a parenteral formulation. Blood and saliva samples (Omnisal®, UK) were taken immediately before the first vaccination and one month after the first immunization (29 ± 2 days). Due to the technical problem, only the saliva samples of the first 47 people could be evaluated. Cytology with a brush of the nasal cavity was performed before immunization and on the 4th and 8th day and one month after the first immunization.

Uzorci krvi i pljuvačke su za analizu kodirani. Blood and saliva samples were coded for analysis.

Serumski imunološki odgovor na HA komponentu cjepiva određen je standardnim testom, uz uporabu četiri jedinice hemaglutinina odgovarajućih antigena. Serumi su prije testa grijani 30 minuta na 56°C. Titri su izraženi kao recipročna vrijednost najvišeg razrijeđena seruma, koje je potpuno spriječilo hemaglutinaciju. Titar ≥ 1:40 smatrao se zaštitnim. The serum immune response to the HA component of the vaccine was determined by a standard test, with the use of four hemagglutinin units of the corresponding antigens. Before the test, the sera were heated for 30 minutes at 56°C. Titers are expressed as the reciprocal of the highest diluted serum, which completely prevented hemagglutination. A titer ≥ 1:40 was considered protective.

Ukupna i za influencu specifična IgA antitijela određena su poznatim ELISA postupkom (Tamura SI, Ito Y, Asanuma H i drugi, Unakrsna zaštita protiv virusa influence, postignute intranazalnim cijepljenim s trivalentnim, inaktiviranim cjepivima, inokuliranim podjedinicom toksina B kolere . J. Immunol. 149 (1992) 981-987). Vrijednosti IgA, specifične za virus, izražene su kao ELISA jedinice specifičnog IgA po μg ukupne koncentracije IgA. Total and influenza-specific IgA antibodies were determined by the known ELISA method (Tamura SI, Ito Y, Asanuma H et al., Cross-protection against influenza viruses achieved by intranasal vaccination with trivalent, inactivated vaccines, inoculated with cholera toxin B subunit. J. Immunol. 149 (1992) 981-987). Virus-specific IgA values are expressed as ELISA units of specific IgA per μg of total IgA concentration.

Epitelne stanice iz nosa sakupljane su isključivo iz maksilarnih turbinalija nosnih školjki svake osobe istim tipom male, najlonske četkice, koja se upotrebljava za citopatološke pretrage kod bronhoskopije (Glück U, Gebbers J-O, Nazalna citopatologija pušača; mogući biološki obilježivah zagađenja zraka? Am. J. Rhinol. 10 (1996) 55-57). Uzorke je uzimao isti ispitivač (U.G.), uz rinoskopsku kontrolu, kružnim i translatornim pokretom uzduž donjeg hvatišta turbinata. Stanice su prenesene na objektno stakalce i odmah fiksirane otopinom koja je sadržavala 200 ml etanola + 100 ml acetona + 6 kapi trikloroctene kiseline. Epithelial cells from the nose were collected exclusively from the maxillary turbinates of the nasal shells of each person with the same type of small, nylon brush, which is used for cytopathological examinations during bronchoscopy (Glück U, Gebbers J-O, Nasal cytopathology of smokers; possible biological markers of air pollution? Am. J. Rhinol. 10 (1996) 55-57). The samples were taken by the same examiner (U.G.), under rhinoscopic control, with a circular and translational movement along the lower turbinate socket. The cells were transferred to a glass slide and immediately fixed with a solution containing 200 ml of ethanol + 100 ml of acetone + 6 drops of trichloroacetic acid.

Patolozi, na usavršavaju u Institutu za patologiju i citopatologiju Kantonalne bolnice u Luzern-u, koji nisu bili obaviješteni o stanju cijepljenja, ispitali su objektna stakalca, obojena prema Papanicolau. Pathologists in training at the Institute of Pathology and Cytopathology of the Cantonal Hospital in Lucerne, who were not informed about the vaccination status, examined the object slides, stained according to Papanicolaou.

Prosječni broj trepetljikavih i vrčastih stanica, limfocita, centroblasta, neutrofila, eozinofila i ljuskastih epitelnih stanica određen je na 25 reprezentativnih područja, po jednom objektnom stakalcu, kod povećanja The average number of ciliated and goblet cells, lymphocytes, centroblasts, neutrophils, eosinophils and squamous epithelial cells was determined on 25 representative areas, per one slide, at magnification

100 x. 100 times.

Signifikantnost između titara temeljne crte i titra nakon imunizacije određena je dvojnim T-testom. Razlike 4 cijepljenja u sposobnosti izazivanja stvaranja anti-HA-zaštitnih antitijela u proučavanim grupama određivala se χ2 testom. Significance between baseline and post-immunization titers was determined by paired T-test. The differences between the 4 vaccinations in the ability to induce the formation of anti-HA protective antibodies in the studied groups was determined by the χ2 test.

Valjalo je zapisivati sve nepoželjne događaje koji su zapažani tijekom kliničkog istraživanja. Nepoželjni događaj definiran je kao štetna promjena temeljnih crta stanja osoba (prije cijepljenja), bez obzira smatrao li se događaj povezan s cijepljenjem ili ne. Štetne događaje (lokalna ili sistemska reakcija), koji su nastupili nakon cijepljenja, kliničari su bilježili u specijalni, za to izrađen, izvještajni obrazac. Osnovna stopa nepoželjnih učinaka određena je prije imunizacije. It was necessary to write down all the adverse events that were observed during the clinical research. An adverse event was defined as an adverse change in the basic features of the person's condition (before vaccination), regardless of whether the event was considered related to vaccination or not. Adverse events (local or systemic reaction) that occurred after vaccination were recorded by clinicians in a special report form created for this purpose. The base rate of adverse effects was determined before immunization.

Za istraživanje uzeto je 80 osoba, prosječne starosti 40 godina, usporedivog socijalnog statusa. 27,5 % učesnika bile su žene. Sva 3 nazalna pripravka za cijepljenje, kao i parenteralno cjepivo, dobro su se podnosili. S obzirom na anamnezu nije bilo signifikantnih razlika između 3 cijepljene skupine nazalnim cjepivima i sve 3 formulacije su dobro podnesene. U pojedinim slučajevima izvješteno je o slijedećim, mogućim, popratnim rekcijama: vrućica, umor, mučnina, rinitis, začepljeni nos i rinofaringitis. Parenteralno, virosomno cjepivo također je izvanredno dobro podneseno. 80 people, average age 40, of comparable social status were taken for the research. 27.5% of the participants were women. All 3 nasal preparations for vaccination, as well as the parenteral vaccine, were well tolerated. Considering the anamnesis, there were no significant differences between the 3 vaccinated groups with nasal vaccines and all 3 formulations were well tolerated. In some cases, the following possible side effects have been reported: fever, fatigue, nausea, rhinitis, nasal congestion and nasopharyngitis. The parenteral, virosomal vaccine is also remarkably well tolerated.

Serološki imunološki odgovor prikazan je u tablici 2. Signifikantni porasti titra mjereni su u grupi A (2 nazalna cijepljenja u razmaku od 7 dana), grupi C (1 nazalno cijepljenje dvostrukom dozom) kao i u grupi D (parenteralno cijepljenje protiv sva 3 soja virusa). Naviše geometrijske sredine titra antitijela (GMT) nađene su u grupama A i D. Grupa D imala je signifikantno najviše GMT vrijednosti prema H1N1 soju (p ≤ 0,05). U slučaju soja H3N2 nije bilo signifikantnih razlika između grupa A i D. The serological immune response is shown in Table 2. Significant titer increases were measured in group A (2 nasal vaccinations 7 days apart), group C (1 nasal vaccination with a double dose) as well as in group D (parenteral vaccination against all 3 virus strains) . Higher geometric means of antibody titers (GMT) were found in groups A and D. Group D had significantly the highest GMT values according to the H1N1 strain (p ≤ 0.05). In the case of the H3N2 strain, there were no significant differences between groups A and D.

Ove grupe su signifikantno bolje reagirale od grupa B i C. Kod soja B nije bilo signifikantnih razlika između grupa A, C i D. Ali one su pokazivale signifikantno više titre od grupe B. Stope su serumske konverzije bile najviše u grupama A i D. Obično su bile signifikantno više nego stope u grupama B i C i ispunjavale su za sva tri soja serološke zahtjeve za parenteralno cjepivo protiv influence, prema zahtjevima Europske zajednice (Komisija Europske zajednice, Smjernice za medicinske proizvode u Europskoj zajednici. Harmonizacija zahtjeva za cjepivo protiv influence. (1992) str. 93-98. Luxemburg: Ured za publikacije Evropske zajednice). These groups responded significantly better than groups B and C. With strain B, there were no significant differences between groups A, C and D. But they showed significantly higher titers than group B. Serum conversion rates were highest in groups A and D. They were usually significantly higher than the rates in groups B and C and met for all three strains the serological requirements for parenteral influenza vaccine, according to the requirements of the European Community (Commission of the European Community, Guidelines for Medicinal Products in the European Community. Harmonization of Requirements for Influenza Vaccine (1992) pp. 93-98 Luxemburg: Publications Office of the European Community).

Humoralni, mukozni, imunološki odgovor (pljuvačka) prikazan je u tablici 3. Najveći porasti I-gA titra izmjereni su u grupi A. Oni su bili signifikantno veći nego u drugim grupama. Uzimanjem u obzir ukupnog I-gA, GMT-i su u grupi A bili također najviši. Mukokonverzijska stopa (mnogostruki porast IgA titra) opet je bio izrazito najviša u A grupi. U slučaju intramuskularnog cijepljenja mukokonverzijske stope bile su jako slabe. Humoral, mucosal, immune response (saliva) is shown in table 3. The highest increases in I-gA titer were measured in group A. They were significantly higher than in other groups. Taking into account the total I-gA, GMTs in group A were also the highest. The mucoconversion rate (multiple increase in IgA titer) was again extremely highest in the A group. In the case of intramuscular vaccination, mucoconversion rates were very low.

U grupama A, B i C citologija je provedena četkicom. Rezultati su sažeti u slici 5. Odredili smo broj stanica u epitelu sluznice nosa (cilindrične stanice sa i bez trepetljika, vrčaste stanice i ljuskaste epitelne stanice ) i broj stanica mijelo/mono i limfopoeze (limfociti, eozinofili, neutrofili i centroblasti). U grupi A moglo se jasno dokazati hiperplazija vrčastih stanica 4.-tog i 8.- og dana nakon prvog cijepljenja. Osim toga, istih dana zapazili smo jaki porast limfocita i centroblasta. Porast eozinofila i neutrofila nađen je 8.-og dana nakon početnog cijepljenja. Broj cilindričnih stanica ostao je nepromijenjen. In groups A, B and C, cytology was performed with a brush. The results are summarized in Figure 5. We determined the number of cells in the epithelium of the nasal mucosa (cylindrical cells with and without cilia, goblet cells and squamous epithelial cells) and the number of myelo/mono and lymphopoietic cells (lymphocytes, eosinophils, neutrophils and centroblasts). In group A, goblet cell hyperplasia could be clearly demonstrated on the 4th and 8th day after the first vaccination. In addition, on the same days, we observed a strong increase in lymphocytes and centroblasts. An increase in eosinophils and neutrophils was found on the 8th day after the initial vaccination. The number of cylindrical cells remained unchanged.

U grupi B bio je samo mali porast broja limfocita i neutrofilnih i eozinofilnih granulocita. U ovoj grupi nije bilo znaka prisustva aktiviranih limfocita . In group B, there was only a small increase in the number of lymphocytes and neutrophil and eosinophilic granulocytes. In this group there was no sign of the presence of activated lymphocytes.

U grupi C ustanovljena je čak jača hiperplazija vrčastih stanica nego u grupi A. Pored toga, eozinofilni i neutralni granulociti su u ovoj grupi najjače porasli 4.-tog i 8.- dana. Porast limfoblasta u ovoj grupi bio je slabiji nego u grupi A. p = ≤ 0,05. Mjesec dana nakon cijepljenja ponovno je uspostavljen prethodni sastav stanica u svim grupama. In group C, goblet cell hyperplasia was even stronger than in group A. In addition, eosinophilic and neutral granulocytes increased the most in this group on the 4th and 8th days. The increase of lymphoblasts in this group was weaker than in group A. p = ≤ 0.05. One month after vaccination, the previous composition of cells was restored in all groups.

Slika 5. odnosi se na citologiju nosa: kvantifikacija različitih populacija stanica, koje su dobivene uzimanjem brisa nosa od pojedinaca (20 u svakoj grupi) do 29 dana nakon tri različite vrste intranazalnog cijepljenja. Valja obratiti pažnju na izrazit porast centroblasta , kao naznake lokalnog imunološkog odgovora grupe A, nasuprot signifikantno slabijem porastu u grupama B i C (p = ≤ 0,005). Figure 5 refers to nasal cytology: quantification of different populations of cells, which were obtained by taking nasal swabs from individuals (20 in each group) up to 29 days after three different types of intranasal vaccination. It is worth paying attention to the marked increase in centroblasts, as an indication of the local immune response of group A, in contrast to the significantly weaker increase in groups B and C (p = ≤ 0.005).

Primjer 8 Example 8

Usporedba kliničke djelotvornosti intranazalnih virosomnih cjepiva protiv influence s HLT-om ili PCG-om na dragovoljcima, davanih novim uređajem za raspršivanje, koji je opisan u predloženom izumu Comparison of the clinical efficacy of intranasal virosomal influenza vaccines with HLT or PCG in volunteers, administered by the novel nebulizer device described in the proposed invention

Imunološki odgovor i tolerantnost prema dvjema raspršenim, antiinfluencijskim cjepivima istražen je u dvostrukoj, slijepom istraživanju provedenom na ukupno 158 dragovoljaca, zdravih Švicaraca, u dobi od 18 do 67 godina. The immune response and tolerance to two dispersed, anti-influenza vaccines was investigated in a double-blind study conducted on a total of 158 healthy Swiss volunteers, aged 18 to 67 years.

Trivalentno virosomno cjepivo protiv influence (pročišćeni HA, formuliran s fosfatidilholinom) kombinirana je s Toplinski labilnim toksinom (HLT) od E. coli u formatu koji je prikladan za internazalno uzimanje. Humana doza sadržavala je 7,5 μg HA od svakog soja influence i 2 μg HLT-a. Po jedna doza uštrcavana je u svaku nosnicu 1.-og i 8.- og dana grupama pojedinaca, starosti od 18 –59 godina ili ≥60 godina. Uzorci seruma uzimani su nakon otprilike 4 tjedna nakon imunizacije. Reakcije su bile rijetke i slabe. Stope postotka osoba (odrasli odnosno stariji) koje su dosegle zaštitni titar serum-anti-HA-antitijela (≥40) bile su slijedeće: A/Bayern (92 %, 91 %), A/Wuhan (92 %, 78 %) i B/ Beijing) 59 %, 50 %). GMT nakon imunizacije i višestruki porast GMT-a bili su usporedivi kod dvije starosne grupe. Stopa postotka osoba (odrasli odnosno stariji), koje nisu imale zaštitni titar osnovne razine, ali su nakon imunizacije dostigli zaštitnu razinu, bila je kako slijedi: A/Bayern (79 %, 85 %), A/Wuhan (86 %, 56 %) i B/ Beijing (48 %, 41 %). Trivalent virosomal influenza vaccine (purified HA, formulated with phosphatidylcholine) is combined with Heat Labile Toxin (HLT) from E. coli in a format suitable for intranasal administration. The human dose contained 7.5 μg of HA from each influenza strain and 2 μg of HLT. One dose was injected into each nostril on the 1st and 8th day to groups of individuals aged 18-59 years or ≥60 years. Serum samples were taken approximately 4 weeks after immunization. Reactions were rare and weak. The rates of the percentage of persons (adults and elderly) who reached the protective titer of serum-anti-HA-antibodies (≥40) were as follows: A/Bayern (92 %, 91 %), A/Wuhan (92 %, 78 %) and B/ Beijing) 59 %, 50 %). Post-immunization GMT and multiple-fold increase in GMT were comparable in the two age groups. The percentage rate of persons (adults and elderly respectively), who did not have a protective titer at the baseline level, but reached a protective level after immunization, was as follows: A/Bayern (79 %, 85 %), A/Wuhan (86 %, 56 % ) and B/ Beijing (48%, 41%).

Drugi, mukozni pripravak cjepiva sadržavao je 7,5 μg HA i 12 μg prokoleragenoida (PCG). Ovaj pripravak se također dobro podnosio i pokazao se kao nešto manje imunogen od HLT pripravka. Stopa postotka osoba koje su postigle zaštitni titar serum-anti-HA- antitijela bila je kako slijedi: A/Bayern 94,2 %, A/Wuhan 80,8 % i B/ Beijing 36,5 %. Stope konverzije seruma u svim grupama prikazane su u tablici 4. The second, mucosal preparation of the vaccine contained 7.5 μg of HA and 12 μg of procholeragenoid (PCG). This preparation was also well tolerated and proved to be slightly less immunogenic than the HLT preparation. The percentage rate of individuals achieving a protective serum anti-HA antibody titer was as follows: A/Bayern 94.2%, A/Wuhan 80.8% and B/Beijing 36.5%. Serum conversion rates in all groups are shown in Table 4.

Ovi rezultati pokazuju da virosomno cjepivo protiv influence, uzeto intranazalno, djeluje sigurno i jako imunogeno na odrasle osobe, uključujući starije. These results show that virosomal influenza vaccine, taken intranasally, is safe and highly immunogenic in adults, including the elderly.

Primjer 9 Example 9

Mukozni imunološki odgovor miševa nakon intranazalne primjene virosomnog cjepiva protiv influence s HLT-om, PCG-om ili bez dodatnog mukoznog adjuvansa Mucosal immune response of mice after intranasal administration of virosomal influenza vaccine with HLT, PCG or without additional mucosal adjuvant

Grupe po 10 odraslih ženki Balb/c miševa cijepljene su intranazalno s 30 μl cjepiva protiv influence, opisanog u primjeru (1) ili u primjeru (2). Kontrolna grupa od 10 miševa primila je virosomni pripravak cjepiva bez dodatnog adjuvansa, ali s istim sastavom virosoma. Polovina svake grupe primila je intranazalno drugu dozu, jedan tjedan kasnije. Ispiranje nosa (NW) i ispiranje bronhijalnih alveola (BAL) provedeni su nakon 3 tjedna. Rezultati primjera 9 prikazani su u tablici 5. Određivanje specifičnog IgA provedeno je poznatim ELISA postupkom. Rezultati (GMT) sažeti su u tablici 6. Groups of 10 adult female Balb/c mice were vaccinated intranasally with 30 μl of the influenza vaccine described in example (1) or in example (2). A control group of 10 mice received the virosome preparation of the vaccine without additional adjuvant, but with the same composition of virosomes. Half of each group received a second intranasal dose one week later. Nasal lavage (NW) and bronchial alveolar lavage (BAL) were performed after 3 weeks. The results of example 9 are shown in table 5. Determination of specific IgA was carried out by the known ELISA procedure. The results (GMT) are summarized in Table 6.

U grupi, koja je dva puta cijepljena cjepivom prema primjera u (1), mogle su se dokazati najviši GMT za sva tri soja cjepiva (A/Johannesburg, A/Nanching, G/Harbin). Ova grupa reagirala je čak s najvišim razinama IgA u BAL-u, nakon što je samo jedanput cijepljena. In the group, which was vaccinated twice with the vaccine according to the example in (1), the highest GMTs could be demonstrated for all three vaccine strains (A/Johannesburg, A/Nanching, G/Harbin). This group responded with even the highest levels of IgA in BAL, after being vaccinated only once.

Zadovoljavajući IgA odgovor također je dobiven u grupi miševa koja je dva puta intranazalno cijepljena pripravkom prema primjeru (2). Kontrolna grupa, u kojoj je primijenjen virosomni pripravak bez dodanog mukoznog adjuvansa, pokazala je jako slabi mukozni, imunološki odgovor . A satisfactory IgA response was also obtained in a group of mice that was vaccinated twice intranasally with the preparation according to example (2). The control group, in which the virosome preparation was administered without added mucosal adjuvant, showed a very weak mucosal immune response.

Rezultati pokazuju da kod miševa intranazalno davanje virusomnog cjepiva protiv influence, koje sadrži mukozni adjuvans, može inducirati visoki mukozni odgovor antitijela. The results show that in mice, intranasal administration of a viral influenza vaccine containing a mucosal adjuvant can induce a high mucosal antibody response.

Predkliničko ispitivanje virosomnog cjepiva protiv influence na miševima: intranazalna primjena Preclinical testing of a virosomal influenza vaccine in mice: intranasal administration

(Tablica 5 za primjer 9) (Table 5 for example 9)

[image] [image]

IgA antitijela influence u miševima Influenza IgA antibodies in mice

GMT recipročnog titra (ELISA) Reciprocal titer GMT (ELISA)

(Tablica 6 uz primjer 9) (Table 6 with example 9)

[image] [image]

Primjer 10 Example 10

Klinička prosudba mukoznog cjepiva protiv hepatitisa B-(HB) Clinical evaluation of mucosal vaccine against hepatitis B-(HB)

Cjepivo je pripravljeno prema primjeru 4 i napunjeno u uređaj za nazalnu aplikaciju, prema primjeru 5. Proizvod je ispitan na 10 dragovoljaca: po 100 μl aplicirano je u svaku nosnicu 1.-vog dana i ponovljeno jedan tjedan kasnije. Uzorci krvi uzeti su 1.-vog dana (prije cijepljenja) kao i 29.-tog dana. Anti-HB-antitijela određena su pomoću RIA (Abott). Geometrijska sredina titra prije cijepljenja bila je 7 I. J./ml , a 29.-tog dana 159 I. J./ml. The vaccine was prepared according to example 4 and filled into a device for nasal application, according to example 5. The product was tested on 10 volunteers: 100 μl was applied in each nostril on the 1st day and repeated one week later. Blood samples were taken on the 1st day (before vaccination) and on the 29th day. Anti-HB-antibodies were determined by RIA (Abott). The geometric mean of the titer before vaccination was 7 IU/ml, and on the 29th day it was 159 IU/ml.

Primjer 11 Example 11

Mukozni imunološki odgovor miševa nakon intranazalne primjene DNA plazmida, koji je kodiran za HN antigen virusa mumsa, unesen u virosome influence, koji sadrže 10 % kationskih fosfolipida, i pomiješan s HLT-om (5μg/ml) Mucosal immune response of mice after intranasal administration of a DNA plasmid, which codes for the HN antigen of the mumps virus, introduced into influenza virosomes, containing 10% cationic phospholipids, and mixed with HLT (5μg/ml)

Intranazalno smo imunizirali grupe miševa s a) nativnom DNA, koja je kodirana za HN antigen virusa mumsa (grupa C) ili b) DNA, uključene u virosome nakon predimunizacije virosomima (grupa A) ili c) bez predimunizacije (grupa B). Kontrolna grupa (H) bila je imunizirana i. n. sa živim virusom Urabe – mumsa (Priorix, SKB-Rix). Kako je prikazano u tablici 7, geometrijska sredina titra (GMT) IgG-a u grupi predimuniziranih miševa (A), bila je viša nego što je opisana u grupama miševa B i C (Lovell GH: Proteosomi, hidrofobna sidra, iskomi i liposomi za poboljšani učinak peptidnih i proteinskih cjepiva. U “Nove generacije cjepiva (1990) (G.C. Woodrow i M.M. Levine, izd. Dekker, New York, str. 141-168; Cusi MG i Glück R: Intranazalna imunizacija miševa s DNA mumsa, ugrađene u virosome influence. IBC-ova 4.-ta godišnja konferencija o genetičkim cjepivima, 25. –27. 10. 1998, Washington D.C.). Grupa miševa, koja je imunizirana i. n. nativnom DNA, razvila je jako nisku razinu IgG-a, dok, nasuprot tome, miševi imunizirani virusom mumsa (grupa H), pokazali su dobar IgG odgovor. Kod analize mukoznog imuniteta našli smo da su sve grupe miševa, osim imuniziranih nativnom DNA, razvile IgA. Povišeni titar IgA mogli smo dokazati (grupa H) samo u nazalnim eluatima (NW) miševa, imuniziranih i. n. virusom mumsa. We intranasally immunized groups of mice with a) native DNA, which is coded for the HN antigen of mumps virus (group C) or b) DNA included in virosomes after preimmunization with virosomes (group A) or c) without preimmunization (group B). The control group (H) was immunized i.n. with live Urabe - mumsa virus (Priorix, SKB-Rix). As shown in Table 7, the geometric mean titer (GMT) of IgG in the group of preimmunized mice (A) was higher than that described in the groups of mice B and C (Lovell GH: Proteosomes, hydrophobic anchors, iscomes and liposomes for improved efficacy of peptide and protein vaccines In "New Generation Vaccines (1990) (G.C. Woodrow and M.M. Levine, eds. Dekker, New York, pp. 141-168; Cusi MG and Glück R: Intranasal immunization of mice with DNA mums, embedded in influenza virosome. IBC 4th Annual Conference on Genetic Vaccines, 25-27 October 1998, Washington D.C.).A group of mice immunized i.n. with native DNA developed very low levels of IgG, whereas, in contrast, mice immunized with mumps virus (group H) showed a good IgG response. When analyzing mucosal immunity, we found that all groups of mice, except those immunized with native DNA, developed IgA. We could demonstrate an elevated IgA titer (group H) only in with nasal eluates (NW) of mice immunized i.n. with mumps virus.

Mjerenja citokina provedena su uz uporabu primarnih stanica slezene iz slezene miševa, uzetih dvanaest dana nakon imunizacije. U tablici 8 skupljeno je 8 reprezentativnih rezultata mjerenja koji su dobiveni u dva zasebna pokusa. Stanice miševa, stimulirane antigenom virusa mumsa, koji su prethodno (i.n.) cijepljeni DNA-virosomima, inducirale su proizvodnju IL-2 i IFN-γ. Osim toga, miševi, inficirani gripom, inducirali su proizvodnju IL-4. Stanice, uzete od životinja, imuniziranih virusom mumsa, proizvodile su IFN-γ, IL-2, IL-4 i IL-10 nakon in-vitro stimulacije antigenom mumsa. Imunizacija s DNA-virosomima kao i kontrolna imunizacija s očišćenim antigenom mumsa, korelirale su s fenotipom Th1. Osim toga, ako se uzme u obzir odnos ukupne razine IgG i IgG1 ili IgG2a, specifične za virus, dominirala je količina IgG2a—izotipa u grupi A, što naznačuje Th2 odgovor. Cytokine measurements were performed using primary spleen cells from the spleen of mice, taken twelve days after immunization. Table 8 summarizes 8 representative measurement results obtained in two separate experiments. The cells of mice, stimulated with mumps virus antigen, which were previously (i.n.) vaccinated with DNA-virosomes, induced the production of IL-2 and IFN-γ. In addition, mice infected with influenza induced the production of IL-4. Cells taken from animals immunized with mumps virus produced IFN-γ, IL-2, IL-4 and IL-10 after in-vitro stimulation with mumps antigen. Immunization with DNA-virosomes, as well as control immunization with purified mumps antigen, correlated with the Th1 phenotype. In addition, when considering the ratio of total IgG and virus-specific IgG1 or IgG2a levels, the amount of IgG2a—isotype in group A predominated, indicating a Th2 response.

Tablica 7. Geometrijska sredina titra (GMT) humoralnog IgG, IgA u eluatu bronhijalnih alveola (BAL) i IgA u eluatu nosa miševa Table 7. Geometric mean titer (GMT) of humoral IgG, IgA in the eluate of bronchial alveoli (BAL) and IgA in the eluate of the nose of mice

[image] [image]

Tablica 8. Reprezentativna mjerenja proizvodnje citokina u miševima, dobivena u dva odvojena pokusa Table 8. Representative measurements of cytokine production in mice, obtained in two separate experiments

[image] [image]

Primjer 12 Example 12

Liječenje začepljenja nosa dragovoljaca pomoću virosoma influence, sa i bez HLT-a, u novom aplikatoru-raspršivaču Treatment of nasal congestion in volunteers using influenza virosomes, with and without HLT, in a new applicator-nebulizer

U klinici je odabrano 30 dragovoljaca sa simptomima prehlade i akutno začepljenim nosom. Kod svih dragovoljaca rinometrijski je izmjeren intenzitet disanja (u Pascal-ima) kroz svaku nosnicu. Iza toga su slučajnim izborom podijeljeni u 3 grupe po 10. Grupa A primila je jednu dozu cjepiva (po 100 μl u svaku nosnicu) prema primjeru (1). Grupa B primila je istu dozu, ali bez mukoznog adjuvansa HLT. Grupa C primila je u svaku nosnicu po 100 μl 0,9 %-ne otopine NaCl (fiziološka otopina kuhinjske soli). Protoci zraka mjereni su nakon 15 min, 30 min, 1 sat i 2 sata. In the clinic, 30 volunteers with cold symptoms and acute nasal congestion were selected. In all volunteers, breathing intensity (in Pascals) through each nostril was measured rhinometrically. After that, they were randomly divided into 3 groups of 10. Group A received one dose of vaccine (100 μl in each nostril) according to example (1). Group B received the same dose, but without mucosal adjuvant HLT. Group C received 100 μl of 0.9% NaCl solution (physiological table salt solution) in each nostril. Air flows were measured after 15 min, 30 min, 1 hour and 2 hours.

Mjerni podaci skupljeni su u tablici 9. U grupama A i B vrijednosti su bile signifikantno bolje nego u grupi C. U objema grupama ustanovljena je izrazito poboljšana funkcija disanja. The measured data are collected in table 9. In groups A and B, the values were significantly better than in group C. In both groups, a markedly improved breathing function was established.

Tablica 9. Geometrijske sredine rinometrijski mjerenja na dragovoljcima prije i nakon liječenja raspršivačem Table 9. Geometric means of rhinometric measurements on volunteers before and after nebulizer treatment

[image] [image]

Primjer 13 Example 13

Liječenje mukoznih lezija kod dragovoljaca pomoću virosoma influence i HLT-a Treatment of mucosal lesions in volunteers using influenza virosomes and HLT

Dragovoljci si cijepljeni intranazalno, kako je opisano u primjeru (7). Kako je tamo navedeno određene su prosječne vrčaste stanice 3.-ći, 7.-mi i 28.-mi dan nakon intranazalnog cijepljenja. Promjene epitela mogli smo odrediti pomoću hiperplazije vrčastih stanica u citološkim brisevima (Glück U, Gebber J-O: Nazalna citopatologija pušača: mogući biološki obilježivač zagađenja zraka? Am. J. Rhinol. 10 (1996) 55-57). Vrčaste stanice imaju zaštitnu funkciju za mukozni sloj. Mjesec dana nakon prvog nazalnog cijepljenja citološko stanje mukoze, u usporedbi s prethodnim stanjem, bilo je signifikantno bolje. Volunteers were vaccinated intranasally, as described in example (7). As stated there, the average goblet cells were determined on the 3rd, 7th and 28th day after intranasal vaccination. Epithelial changes could be determined using hyperplasia of goblet cells in cytological smears (Glück U, Gebber J-O: Nasal cytopathology of smokers: a possible biological marker of air pollution? Am. J. Rhinol. 10 (1996) 55-57). Goblet cells have a protective function for the mucous layer. One month after the first nasal vaccination, the cytological condition of the mucosa, compared to the previous condition, was significantly better.

Dakle, novo cjepivo može biti primijenjeno kao terapeutik za liječenje oštećene nosne sluznice. Thus, the new vaccine can be used as a therapeutic for the treatment of damaged nasal mucosa.

Primjer 14 Example 14

Prevencija enterotoksične dijareje, prouzročene E. coli, pomoću nazalne aplikacije HLT-a sa i bez virosoma influence Prevention of enterotoxic diarrhea caused by E. coli by nasal application of HLT with and without influenza virosomes

Grupa putnika, koja je posjetila Tunis, sastojala se od 38 osoba. Nakon svjesnog dopuštenja svi su pristali sudjelovati u istraživanju. Slučajnim odabirom 19 dragovoljaca cijepljeno je dva puta, u razmaku od 1 tjedan, pripravkom, prema primjeru (1), dok 19 osoba nije cijepljeno. 28 dana nakon prvog intranazalnog cijepljenja uzeti su uzorci krvi od svih dragovoljaca. 19 cijepljenih osoba pokazala je visoku razinu IgG-a u serumu prema mukoznom adjuvansu (HLT). Kontrolna grupa ostala je anti-HLT negativna. Jedan mjesec kasnije, prije nego što su napustili Tunis, svim sudionicima podijeljen je posebni obrazac za unos zdravstvenih događanja. 20 dana kasnije, grupa se vratila iz Tunisa i ispunjeni obrasci ocijenjeni su u odnosu na dijareične bolesti. U grupi cijepljenih samo su dvije osobe izvijestile o problemima, vezanim uz dijareju, dok je u grupi necijepljenih 9 osoba imalo simptome dijareje za vrijeme boravka u Tunisu. Ovi podaci pokazuju da je cjepivo također djelotvorno u sprječavanju enterotoksične dijareje, uzrokovane E.-coli. The group of travelers who visited Tunis consisted of 38 people. After informed consent, all agreed to participate in the study. By random selection, 19 volunteers were vaccinated twice, 1 week apart, with the preparation according to example (1), while 19 people were not vaccinated. 28 days after the first intranasal vaccination, blood samples were taken from all volunteers. 19 vaccinated persons showed a high level of IgG in serum according to the mucosal adjuvant (HLT). The control group remained anti-HLT negative. One month later, before leaving Tunisia, a special form for entering health events was distributed to all participants. 20 days later, the group returned from Tunisia and the completed forms were evaluated in relation to diarrheal diseases. In the vaccinated group, only two people reported problems related to diarrhea, while in the unvaccinated group, 9 people had symptoms of diarrhea during their stay in Tunisia. These data show that the vaccine is also effective in preventing enterotoxic diarrhea caused by E. coli.

Primjer 7. Tablica 1. Klinički protokol Example 7. Table 1. Clinical protocol

[image] [image]

Claims (42)

1. Cjepivo za intranazalnu aplikaciju, naznačeno time, što se sastoji iz: (a) liposomno formuliranih, površinskih proteina influence (virosomi); (b) mukoznog adjuvansa bakterijskog podrijetla; (c) specifičnog aplikatora- raspršivača, konstruiranog tako da se skoro 100 % raspršenog obujma, nastalog jednim hodom raspršivača, može aplicirati na sluznicu nosa, važnu za djelotvornost cjepiva.1. Vaccine for intranasal application, characterized by the fact that it consists of: (a) liposomally formulated surface proteins of influenza (virosomes); (b) mucosal adjuvant of bacterial origin; (c) a specific applicator-sprayer, designed so that almost 100% of the sprayed volume, created by one stroke of the sprayer, can be applied to the nasal mucosa, which is important for the effectiveness of the vaccine. 2. Cjepivo prema zahtjevu 1, naznačeno time, što je površinski protein influence hemaglutinin HA.2. Vaccine according to claim 1, characterized in that the surface protein is influenza hemagglutinin HA. 3. Cjepivo prema zahtjevu 1 ili 2, naznačeno time, što su površinski proteini influence hemaglutinin HA i neuraminidase NA.3. Vaccine according to claim 1 or 2, characterized in that the surface proteins are influenza hemagglutinin HA and neuraminidase NA. 4. Cjepivo prema jednom od zahtjeva između 1 i 3, naznačeno time, što sadrži daljnje antigene.4. The vaccine according to one of the claims between 1 and 3, characterized in that it contains further antigens. 5. Cjepivo prema zahtjevu 4, naznačeno time, što su daljnji antigeni vezani na površini virosoma.5. Vaccine according to claim 4, characterized in that further antigens are bound on the surface of virosomes. 6. Cjepivo prema zahtjevu 4 ili 5, naznačeno time, da su antigeni, antigeni patogenih organizama.6. Vaccine according to claim 4 or 5, characterized in that the antigens are antigens of pathogenic organisms. 7. Cjepivo prema zahtjevu 6, naznačeno time, što je patogeni organizam jedan virus, jedna bakterija, jedna gljivica ili jedan parazit.7. Vaccine according to claim 6, characterized in that the pathogenic organism is a virus, a bacterium, a fungus or a parasite. 8. Cjepivo prema zahtjevu 7, naznačeno time, što je virus, bakterija ili parazit izabran iz grupe koja se sastoji iz: virusa hepatitisa A, virusa hepatitisa B, respiratornog Syncytial virusa (/Pneumovirus), virusa parainfluence, virusa mumsa, Morbilivirusa, HIV-a, bakterije difterije (Corynebacterium diphtheriae), bacila tetanusa (Clostridium tetani), pneumokoka, Haemophilus influenzae, E. coli, Candida albicans, Candida tropicalis, Candida pseudotropicalis, Candida parapsilosis, Candida krusei, vrste Aspergillus-a, vrste Trichomonas-a, vrste Trypanosoma, vrste Leishmania, Toxoplasma gondii, Plasmodium falciparum, Plasmodium vavax, Plasmodium ovale, Plasmodium malariae, vrste Trematoda i vrste Nematoda.8. Vaccine according to claim 7, characterized in that the virus, bacterium or parasite is selected from the group consisting of: hepatitis A virus, hepatitis B virus, respiratory syncytial virus (/Pneumovirus), parainfluenza virus, mumps virus, Morbilivirus, HIV -a, diphtheria bacteria (Corynebacterium diphtheriae), tetanus bacillus (Clostridium tetani), pneumococcus, Haemophilus influenzae, E. coli, Candida albicans, Candida tropicalis, Candida pseudotropicalis, Candida parapsilosis, Candida krusei, Aspergillus species, Trichomonas species , Trypanosoma species, Leishmania species, Toxoplasma gondii, Plasmodium falciparum, Plasmodium vavax, Plasmodium ovale, Plasmodium malariae, Trematoda species and Nematoda species. 9. Cjepivo prema jednom od zahtjeva između 1 i 8, naznačeno time, što je cjepivo protiv influence.9. Vaccine according to one of the claims between 1 and 8, characterized in that it is a vaccine against influenza. 10. Cjepivo prema jednom od zahtjeva između 1 i 9, naznačeno time, što se može primijeniti za prevenciju i/ili liječenje općih infekcija/infektivnih bolesti.10. The vaccine according to one of the claims between 1 and 9, characterized in that it can be applied for the prevention and/or treatment of general infections/infectious diseases. 11. Cjepivo prema jednom od zahtjeva između 1 i 10, naznačeno time, što služi za prevenciju i /ili liječenje bolesti influence.11. Vaccine according to one of the claims between 1 and 10, characterized in that it serves for the prevention and/or treatment of influenza. 12. Cjepivo prema zahtjevu 10 ili 11, naznačeno time, što služi za prevenciju /ili liječenje začepljenog nosa.12. Vaccine according to claim 10 or 11, characterized by the fact that it serves for the prevention and/or treatment of blocked nose. 13. Cjepivo prema jednom od zahtjeva 10, 11 ili 12, naznačeno time, što služi za liječenje ozljeda sluznica nosa.13. Vaccine according to one of claims 10, 11 or 12, characterized in that it serves for the treatment of injuries of the nasal mucosa. 14. Cjepivo prema jednom od zahtjeva između 1 i 13, naznačeno time, što sadržaj hemaglutinina po dozi (100 μl) iznosi 1-30μl, poželjno između 3-10 μl i najpoželjnije 3.75 μl.14. Vaccine according to one of the claims between 1 and 13, characterized in that the hemagglutinin content per dose (100 μl) is 1-30 μl, preferably between 3-10 μl and most preferably 3.75 μl. 15. Cjepivo prema jednom od zahtjeva između 2 i 14, naznačeno time, što se odnos fosfolipida liposoma i HA kreče između 1:10 i 20:1.15. Vaccine according to one of the claims between 2 and 14, characterized in that the ratio of liposome phospholipids and HA is between 1:10 and 20:1. 16. Cjepivo prema zahtjevu 15, naznačeno time, što je odnos fosfolipida liposoma prema HA kreče između 1:1 do 1:1.16. The vaccine according to claim 15, characterized in that the ratio of liposomal phospholipids to HA is between 1:1 and 1:1. 17. Cjepivo prema jednom od zahtjeva 15 i/ili 16, naznačeno time, što je odnos 3:1.17. Vaccine according to one of claims 15 and/or 16, characterized in that the ratio is 3:1. 18. Cjepivo prema jednom od zahtjeva 15 i 17, naznačeno time, što je fosfolipid liposoma izabran iz grupe neutralnih, kationskih i anionskih fosfolipida.18. Vaccine according to one of claims 15 and 17, characterized in that the phospholipid of the liposome is selected from the group of neutral, cationic and anionic phospholipids. 19. Cjepivo prema jednom od zahtjeva između 1 i 18, naznačeno time, što je mukozni adjuvans aktivni toksin, inaktivni toksin i/ili njegov netoksični derivat19. Vaccine according to one of the claims between 1 and 18, characterized in that the mucosal adjuvant is an active toxin, an inactive toxin and/or its non-toxic derivative 20. Cjepivo prema zahtjevu 19, naznačeno time, što je toksin i/ili njegov netoksični derivat Toplinski labilni toksin (HLT), koleratoksin (CT) i/ili prokoleragenoid (PCG). 20. Vaccine according to claim 19, characterized in that the toxin and/or its non-toxic derivative is Heat Labile Toxin (HLT), cholera toxin (CT) and/or procholeragenoid (PCG). 21. Cjepivo prema jednom od zahtjeva između 1 i 20 , naznačeno time, što sadrži Toplinski labilni toksin (HLT) i/ili koleratoksina (CT) u odnosima između 1:2 do 20:1, poželjnije između 1:1 i 1:10 i najpoželjnije 7,5 : 1.21. Vaccine according to one of the claims between 1 and 20, characterized in that it contains Heat Labile Toxin (HLT) and/or cholera toxin (CT) in ratios between 1:2 and 20:1, preferably between 1:1 and 1:10 and preferably 7.5:1. 22. Cjepivo prema jednom od zahtjeva 19 i 20 naznačeno time, što kao mukozni adjuvans sadrži toplinski inaktiviran prokoleragenoid (PCG), putem tehnologije rekombinacije neaktivni HLT i/ili toksin kolere (CT), čiji odnos HA:PCG (i/ili rHLT i/ili rCT) je između 3:1 do 1:20. 22. Vaccine according to one of claims 19 and 20 characterized by the fact that as a mucosal adjuvant it contains heat-inactivated procholeragenoid (PCG), through recombination technology inactive HLT and/or cholera toxin (CT), whose ratio is HA:PCG (and/or rHLT and /or rCT) is between 3:1 to 1:20. 23. Cjepivo prema zahtjevu 22, naznačeno time, što odnos HA:PCG (i/ili rHLT i/ili rCT) iznosi od 1:1 do 1:10.23. The vaccine according to claim 22, characterized in that the HA:PCG (and/or rHLT and/or rCT) ratio is from 1:1 to 1:10. 24. Cjepivo prema zahtjevu 23, naznačeno time što je odnos HA:PCG (i/ili rHLT, i/ili rCT) 1:2.24. Vaccine according to claim 23, characterized in that the HA:PCG (and/or rHLT, and/or rCT) ratio is 1:2. 25. Cjepivo prema jednom od zahtjeva između 1 i 24, naznačeno time, što nadalje sadrži DNS i/ili RNS plazmide, vezane na i/ili u virosomima.25. The vaccine according to one of the claims between 1 and 24, characterized in that it further contains DNS and/or RNS plasmids, attached to and/or in virosomes. 26. Cjepivo prema jednom od zahtjeva između 1 i 25, naznačeno time, što je cjepivo protiv influence.26. The vaccine according to one of the claims between 1 and 25, characterized in that it is a vaccine against influenza. 27. Mukozni adjuvans prema jednom od zahtjeva između 1 i 26, naznačen time, što toplinski labilni toksin (HLT) koji je, prema primjeru 2, eluiran laktoznim puferom i očišćen na kromatografskoj koloni Lactosyl-gela (Pharmacia).27. Mucosal adjuvant according to one of the claims between 1 and 26, characterized in that the heat-labile toxin (HLT) which, according to example 2, is eluted with lactose buffer and purified on a Lactosyl-gel chromatographic column (Pharmacia). 28. Manšeta (24), naznačena time, što ima spojni element (28) za naticanje na uređaj za doziranje (2), osobito za doziranje raspršivanjem farmaceutski aktivnog pripravka, prema jednom od zahtjeva između 1 i 27, i odsječak za naslanjanje (30), pri čemu su spojni element (28) i odsječak za naslanjanje (30) tako poredani da zajedno definiraju optimalni kut štrcanja (α) za unos pripravka uređajem za doziranje.28. A cuff (24), characterized in that it has a connecting element (28) for putting on a dosing device (2), in particular for dosing by spraying a pharmaceutically active preparation, according to one of the claims between 1 and 27, and a resting section (30 ). 29. Manšeta (24) prema zahtjevu 28, naznačena time, što kut štrcanja (α) leži između 50o i 80o prema horizontali.29. Cuff (24) according to claim 28, characterized in that the spraying angle (α) lies between 50o and 80o to the horizontal. 30. Manšeta (24) prema zahtjevu 28 ili 29, naznačena time, što je spojni element (28) u bitnome cilindrični odsječak cijevi.30. Cuff (24) according to claim 28 or 29, characterized in that the connecting element (28) is essentially a cylindrical section of pipe. 31. Manšeta (24) prema zahtjevu 30, naznačena time, da se cjevasti odsječak (28) može pomicati barem preko jednog dijela nosnog elementa (20) uređaja za doziranje (2). 31. Cuff (24) according to claim 30, characterized in that the tubular section (28) can be moved over at least one part of the nose element (20) of the dosing device (2). 32. Manšeta (24) prema jednom od zahtjeva između 28 i 31, naznačena time, što je kraj odsječka za naslanjanje (30), na strani korisnika, tako savijen da u bitnome odgovara obliku vanjskog dijela gornje usnice. 32. A cuff (24) according to one of the claims between 28 and 31, characterized in that the end of the section for resting (30), on the user's side, is bent in such a way that it essentially corresponds to the shape of the outer part of the upper lip. 33. Manšeta (24) prema jednom od zahtjeva između 28 i 32, naznačena time, što se manšeta (24) može namjestiti na uređaj za doziranje (2) sigurno od odvrtanja.33. Cuff (24) according to one of the claims between 28 and 32, characterized in that the cuff (24) can be fitted to the dosing device (2) securely against unscrewing. 34. Manšeta (24) prema zahtjevu 33, naznačena time, što su cjevasti odsječak (28) i dio nosnog elementa (20), preko kojeg se može pomicati cjevasti odsječak (28), barem djelomice poligonalno konstruirani kako bi tvorili osiguranje od odvrtanja. 34. Cuff (24) according to claim 33, characterized in that the tubular section (28) and the part of the nose element (20), over which the tubular section (28) can be moved, are at least partially polygonal constructed to form a security against unscrewing. 35. Uređaj za doziranje (2), naznačen time, što služi osobito za doziranje farmaceutski aktivnog pripravka u mlazu, prema jednom od zahtjeva između 1 i 27, i sastoji se od crpnog mehanizma (6), manšete za prste (10) za pokretanje crpnog mehanizma (6), spojnog elementa (8), za nepropusno spajanje sa spremnikom (4) i nosnim elementom (16), koji ima prvi odsječak (18) i drugi odsječak (20), pri čemu su oba odsječka (18, 20) nosnog elementa (16) tako dimenzionirani da izlazni otvor (14) nosnog elementa (16) u bitnome dopire sve do glavne nosne šupljine pacijenta.35. Dosing device (2), characterized in that it serves in particular for dosing a pharmaceutically active preparation in a jet, according to one of the claims between 1 and 27, and consists of a pumping mechanism (6), a finger cuff (10) for starting pumping mechanism (6), connecting element (8), for tight connection with the container (4) and the nose element (16), which has a first section (18) and a second section (20), where both sections (18, 20 ) of the nasal element (16) so dimensioned that the outlet opening (14) of the nasal element (16) essentially reaches all the way to the main nasal cavity of the patient. 36. Uređaj za doziranje (2) prema zahtjevu 35, naznačen time, što je barem drugi odsječak (20) nosnog elementa (16) u bitnome izveden cilindrično. 36. Dosing device (2) according to claim 35, characterized in that at least the second section (20) of the nose element (16) is substantially cylindrical. 37. Uređaj za doziranje (2) prema zahtjevu 38, naznačen time, što je promjer drugog odsječka (20) iznosi između 3 mm i 10 mm, poželjno oko 7 mm.37. Dosing device (2) according to claim 38, characterized in that the diameter of the second section (20) is between 3 mm and 10 mm, preferably around 7 mm. 38. Uređaj za doziranje (2) prema jednom od zahtjeva između 35 i 37, naznačen time, što je drugi odsječak (20) nosnog elementa (16) dug između 5 i 50 mm, poželjno oko 20 mm.38. Dosing device (2) according to one of the claims between 35 and 37, characterized in that the second section (20) of the nose element (16) is between 5 and 50 mm long, preferably around 20 mm. 39. Uređaj za doziranje (2) prema jednom od zahtjeva između 35 i 38, naznačen time, što je prvi odsječak (18) nosnog elementa (16) dug između 10 i 40 mm, poželjno oko 30 mm. 39. Dosing device (2) according to one of the claims between 35 and 38, characterized in that the first section (18) of the nose element (16) is between 10 and 40 mm long, preferably around 30 mm. 40. Uređaj za doziranje (2) prema jednom od zahtjeva između 35 i 39, naznačen time, što udaljenost između manšete za prste (10) i otvora za ištrcavanje (14), predviđenog na vršku, iznosi najmanje 30 mm, poželjno 45 mm.40. The dosing device (2) according to one of the claims between 35 and 39, characterized in that the distance between the finger cuff (10) and the dispensing opening (14), provided on the tip, is at least 30 mm, preferably 45 mm. 41. Uređaj za doziranje (2) prema jednom od zahtjeva između 35 i 40, naznačen time, što ima manšetu (24) prema jednom od zahtjeva između 28 i 34.41. Dosing device (2) according to one of the claims between 35 and 40, characterized in that it has a cuff (24) according to one of the claims between 28 and 34. 42. Uređaj za doziranje (2) prema zahtjevu 41, naznačen time, što je izveden u jednom dijelu odnosno u jednom komadu s manšetom (24). 42. Dosing device (2) according to claim 41, characterized in that it is made in one part, i.e. in one piece with a cuff (24).
HR20010300A 1998-11-06 2001-04-26 Pharmaceutically active composition and dispensing device HRP20010300A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19851282A DE19851282A1 (en) 1998-11-06 1998-11-06 Composition of a pharmaceutically active substance, applied in a specific delivery system for the prevention and treatment of infectious diseases
PCT/EP1999/008557 WO2000027430A2 (en) 1998-11-06 1999-11-08 Composition consisting of influenza virus surface proteins and dispensing device

Publications (1)

Publication Number Publication Date
HRP20010300A2 true HRP20010300A2 (en) 2002-06-30

Family

ID=7886959

Family Applications (1)

Application Number Title Priority Date Filing Date
HR20010300A HRP20010300A2 (en) 1998-11-06 2001-04-26 Pharmaceutically active composition and dispensing device

Country Status (17)

Country Link
EP (1) EP1126875B1 (en)
JP (1) JP2002529427A (en)
KR (1) KR20010080955A (en)
CN (1) CN1331604A (en)
AT (1) ATE353224T1 (en)
AU (1) AU776669B2 (en)
BR (1) BR9915123A (en)
CA (1) CA2348474C (en)
CZ (1) CZ20011567A3 (en)
DE (2) DE19851282A1 (en)
ES (1) ES2279650T3 (en)
HR (1) HRP20010300A2 (en)
HU (1) HUP0202931A2 (en)
PL (1) PL348202A1 (en)
SK (1) SK6092001A3 (en)
WO (1) WO2000027430A2 (en)
ZA (1) ZA200103607B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226786B2 (en) 1999-05-18 2007-06-05 Dnavec Research Inc. Envelope gene-deficient Paramyxovirus vector
DE10125731A1 (en) * 2001-05-17 2003-03-06 A I D Autoimmun Diagnostika Gm Dosage form of immunological agents
JPWO2003092738A1 (en) * 2002-04-30 2005-09-08 株式会社ディナベック研究所 Drug or gene delivery composition with reduced hemagglutinin activity
CN100425288C (en) * 2005-01-28 2008-10-15 北京金迪克生物技术研究所 Nasal cavity spraying inactivated influenza virus vaccine and its prepn process
EP1891028A1 (en) 2005-05-18 2008-02-27 Forschungsverbund Berlin e.V. Non-peptidic inhibitors of akap/pka interaction
EP2993235B1 (en) 2005-10-28 2019-02-13 ID Pharma Co., Ltd. Gene transfer into airway epithelial stem cell by using simian lentiviral vector pseudotyped with sendai rna virus spike protein
JPWO2007132790A1 (en) * 2006-05-12 2009-09-24 国立大学法人 北海道大学 Liposomes with lipid membranes containing bacterial cell components
EP2175881B1 (en) * 2007-06-14 2012-07-18 Crucell Switzerland AG Intradermal influenza vaccine
JP2014140588A (en) * 2013-01-25 2014-08-07 Shinko Chemical Co Ltd Spray container
BR112020022784A2 (en) * 2018-06-05 2021-02-02 Toko Yakuhin Kogyo Co., Ltd. hepatitis b vaccine transnasal administration system
FR3119772A1 (en) 2021-02-15 2022-08-19 Aptar France Sas Dispensing head for nasal dispensing device for a fluid or powdery product

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2434875A (en) * 1945-08-11 1948-01-20 Turnbull Jetting device
FR1257220A (en) * 1960-02-19 1961-03-31 Electro-thermal nasal inhalation device
DE8422872U1 (en) * 1984-08-01 1984-10-25 Anasco GmbH, 6200 Wiesbaden DISPENSER FOR INTRANASAL APPLICATION OF LIQUIDS IN THE FORM OF SPRAYS OR DROPS
JP2849632B2 (en) * 1988-04-08 1999-01-20 社団法人北里研究所 Vaccine preparation
JP2922935B2 (en) * 1989-08-11 1999-07-26 東興薬品工業株式会社 Disposable adapter for nasal spray container for viscous liquid
IT1253009B (en) * 1991-12-31 1995-07-10 Sclavo Ricerca S R L DETOXIFIED IMMUNOGENIC MUTANTS OF COLERIC TOXIN AND TOXIN LT, THEIR PREPARATION AND USE FOR THE PREPARATION OF VACCINES
FR2739294B1 (en) * 1995-09-29 1998-01-16 Lhd Lab Hygiene Dietetique NASAL SAFETY TIP
US5797390A (en) * 1996-03-06 1998-08-25 Mcsoley; Thomas E. Nasal inhaler having a directed spray pattern
FR2764807B1 (en) * 1997-06-18 1999-08-20 Valois Sa NASAL DISPENSING DEVICE FOR A FLUID OR POWDERY PRODUCT

Also Published As

Publication number Publication date
AU1161200A (en) 2000-05-29
KR20010080955A (en) 2001-08-25
WO2000027430A2 (en) 2000-05-18
HUP0202931A2 (en) 2002-12-28
DE19851282A1 (en) 2000-05-11
ATE353224T1 (en) 2007-02-15
EP1126875A2 (en) 2001-08-29
EP1126875B1 (en) 2007-02-07
ZA200103607B (en) 2003-09-30
AU776669B2 (en) 2004-09-16
CN1331604A (en) 2002-01-16
CA2348474A1 (en) 2000-05-18
SK6092001A3 (en) 2001-12-03
PL348202A1 (en) 2002-05-06
ES2279650T3 (en) 2007-08-16
DE59914183D1 (en) 2007-03-22
WO2000027430A3 (en) 2000-11-23
BR9915123A (en) 2001-07-31
CA2348474C (en) 2008-01-08
CZ20011567A3 (en) 2001-08-15
JP2002529427A (en) 2002-09-10

Similar Documents

Publication Publication Date Title
CA2201598C (en) Vaccine compositions
KR100555687B1 (en) Influenza vaccine composition
CZ20021044A3 (en) Use of influenza virus antigen for preparing a vaccine
CZ20021045A3 (en) Auxiliary preparation
JP2003509473A (en) vaccine
MXPA97002336A (en) Vac compositions
Nagai et al. Onjisaponins, from the root of Polygala tenuifolia Willdenow, as effective adjuvants for nasal influenza and diphtheria–pertussis–tetanus vaccines
Tamura et al. Enhancement of protective antibody responses by cholera toxin B subunit inoculated intranasally with influenza vaccine
SK7762000A3 (en) Vaccines with an ltb adjuvant
US7491395B2 (en) Compositions comprising antigen-complexes, method of making same as well as methods of using the antigen-complexes for vaccination
HRP20010300A2 (en) Pharmaceutically active composition and dispensing device
US20030180351A1 (en) Pharmaceutically active composition and dispensing device
Ewasyshyn et al. Comparative analysis of the immunostimulatory properties of different adjuvants on the immunogenicity of a prototype parainfluenza virus type 3 subunit vaccine
WO2004016281A1 (en) Intradermal influenza vaccine compositions containing an adp-ribosylating factor
MXPA01004520A (en) Pharmaceutically active composition and dispensing device
TWI397419B (en) Intranasal or inhalational administration of virosomes
AU754675B2 (en) Influenza vaccine compositions
Easeman Induction of mucosal immune responses in the horse

Legal Events

Date Code Title Description
A1OB Publication of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 20021106

Year of fee payment: 4

AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODBI Application refused