GB2607247A - Carrier release - Google Patents

Carrier release Download PDF

Info

Publication number
GB2607247A
GB2607247A GB2211438.3A GB202211438A GB2607247A GB 2607247 A GB2607247 A GB 2607247A GB 202211438 A GB202211438 A GB 202211438A GB 2607247 A GB2607247 A GB 2607247A
Authority
GB
United Kingdom
Prior art keywords
assembly
adhesive layer
adhesive
carrier
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB2211438.3A
Other versions
GB202211438D0 (en
GB2607247B (en
Inventor
Wild Barry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FlexEnable Ltd
Original Assignee
FlexEnable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FlexEnable Ltd filed Critical FlexEnable Ltd
Priority to GB2211438.3A priority Critical patent/GB2607247B/en
Priority claimed from GB2203806.1A external-priority patent/GB2603663B/en
Publication of GB202211438D0 publication Critical patent/GB202211438D0/en
Publication of GB2607247A publication Critical patent/GB2607247A/en
Application granted granted Critical
Publication of GB2607247B publication Critical patent/GB2607247B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B43/00Operations specially adapted for layered products and not otherwise provided for, e.g. repairing; Apparatus therefor
    • B32B43/006Delaminating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133325Assembling processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • B32B2309/022Temperature vs pressure profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)

Abstract

Method comprising providing an assembly, adhered temporarily on opposite sides to carriers 16 by adhesive elements 14c, the assembly include at least one plastic support sheet, the adhesive element including at least one adhesive layer; heating said assembly to completely cure another adhesive included within said assembly, wherein an adhesion strength of said adhesive layer to the carrier and/or assembly is partially reduced during said heating; and after heating said assembly to complete cure the adhesive included within the assembly, expanding the adhesive layer, and releasing the adhesive layer from the carrier and/or assembly. Reducing the adhesion strength of the adhesive layer to the carrier and/or assembly may include generating gas within the adhesive layer and retaining pockets of the gas at an interface of the adhesive layer. Expanding the adhesive layer may include placing the carrier and the assembly on a hotplate with the adhesive layer between the hotplate and the assembly. The assembly comprises a liquid crystal display.

Description

CARRIER RELEASE
The processing of an assembly may comprise temporarily supporting the assembly between two carriers releasably adhered to the assembly.
The inventors for the present application have worked on techniques for improving the release of the carriers from the assembly after processing of the assembly.
There is hereby provided a method according to claim 1.
Embodiments of the invention are described hereunder, by way of example only, with reference to the accompanying drawings, in which: Figure 1 illustrates an example of a technique according to an embodiment of the invention; and Figure 2 illustrates an example of a process by which an adhesive layer is released from a carrier.
The following description is for the example of laminating two sheet components to form an assembly providing a lateral array of liquid crystal display (LCD) devices, but the same technique is equally applicable to the lamination of components to form an assembly providing a single LCD device or one or more other types of devices, such as e.g. one or more encapsulated organic light-emitting device (OLED) displays comprising pixels of organic light-emissive material whose light emission is controlled by an active matrix array.
With reference to Figure 1, a first flexible component 8 is releasably secured to a rigid carrier 4 via an adhesive element 6, whose strength of adhesion to both the rigid carrier 4 and the flexible component is sufficiently high during processing of the assembly to resist excessive thermal expansion of the flexible component 8, but which either is (i) not too high to prevent peeling of the adhesive element 6 away from at least the assembly after processing or (ii) can be reduced after processing of the assembly to facilitate release of the adhesive element 6 from at least the assembly. For example, this adhesive element 6 may be a single layer of pressure-sensitive adhesive, or a single layer of adhesive whose adhesion strength to one or more of the first flexible component 8 and rigid carrier 4 can be reduced by increasing temperature (heat release), by reducing temperature (cold release) or by exposure to UV radiation (UV release). The adhesive element 6 may also comprise two layers of adhesive on opposite sides of a support film, which two layers may, for example, comprise any combination of a pressure-sensitive adhesive, a heat release adhesive, cold release adhesive and UV release adhesive.
In this example, the first flexible component 8 comprises a plastic support film which supports an alignment film for controlling the orientation of the liquid crystal molecules in a part of the liquid crystal material immediately adjacent to the alignment film, and may also support one or more further components such as a common electrode for the array of (LCD) devices, if the LCD devices are of a type that operate by generating an electric field in the liquid crystal material by means of electrodes on opposite sides of the liquid crystal material.
A second flexible component 12 is releasably secured to another rigid carrier 16 via a dual-sided adhesive unit 14 comprising a support film 14b supporting a layer of heat-release adhesive 14c adjacent to the carrier 16 and a second layer of adhesive 14a adjacent to the flexible component 12. In this example, the second layer of adhesive 14a is one whose strength of adhesion to the second flexible component 12 is sufficiently high during processing of the assembly to resist excessive thermal expansion of the assembly, but which either (i) is not too high to prevent peeling of the adhesive element away from the assembly after processing or (ii) can be reduced after processing of the assembly to facilitate release of the adhesive element 14a from the assembly. The second layer of adhesive 14a may, for example, comprise (a) a pressure-sensitive adhesive, (b) a layer of heat-release adhesive having a higher release temperature than the first layer of adhesive 14c, (c) a layer of cold-release adhesive, or (d) a layer of UV-release adhesive. The second flexible component 12 may comprise a plastic support film supporting: (i) a stack of conductor, semiconductor and insulator/dielectric layers defining respective sets of active matrix circuitry for the array of LCD devices for controlling the electric field within the liquid crystal medium, and (ii) spacer structures 10 for creating a space between the first and second flexible components 8, 12 for receiving liquid crystal material for the array of LCD devices. The plastic support film of the second flexible component 12 may be releasably secured to the carrier 16 before formation of the above-mentioned active-matrix stack of layers and spacer structures on the plastic support film. In other words, the carrier 16 may be used to support the plastic support film during the formation of said components on the plastic support film to produce the second flexible component 12, and the adhesive element 14 then functions to resist excessive thermal distortion of the plastic support film during the heating steps used for the formation of said components on the plastic support film; and/or restore the plastic support film to its original position on the carrier 16 when the plastic support film is cooled after a heating step.
In this example, at least one of the flexible components 8, 12 is provided with a heat-curable adhesive for securing the two flexible components together. The two flexible components 8, 12 are then aligned to one another (e.g. means of alignment marks included as part of the second flexible component and observable from above via the optically transparent carrier (e.g. glass) 4, optically transparent adhesive element 6, and optically transparent first flexible component 8) and mechanically compressed together (Fig. 1B) between the carriers 4, 16. While under mechanical compression, the assembly (and carriers 4, 16) are uniformly heated in an oven (so as to establish a zero temperature gradient across the assembly) under conditions at which the adhesive between the two flexible components 8, 12 of the assembly becomes completely cured. Whether or not the adhesive between the two flexible components is completely cured can, for example, be determined by subjecting the assembly to a peel strength test and comparing the measured peel strength against a known or pre-determined maximum peel strength for the specific adhesive being used. Also, where the uncured form of the adhesive has a damaging effect on e.g. liquid crystal material to be contained within the assembly between the two flexible components, the existence of uncured adhesive (i.e. a failure to completely cure the adhesive) manifests itself as a degradation in the performance of the liquid crystal display device.
This heating may involve raising the temperature of the oven in a series of steps, and maintaining the oven at each step temperature for a respective period of time. The heating required to cure the adhesive involves raising the temperature of the assembly to a temperature where crinkling of the plastic support films within the assembly tends to occur, but as discussed below, the pressure at which the assembly is mechanically compressed between the carriers is sufficiently high to substantially prevent any significant crinkling.
After sufficient heating has been performed to completely cure the adhesive between the two flexible components 8, 12, the temperature of the oven is reduced and the assembly and carriers inside the oven are allowed to cool, while continuing to mechanically compress the assembly between the two carriers to prevent crinkling of the plastic films during the cooling process. In this example, the adhesives used for the adhesive element 6 (between the first flexible component and the rigid carrier 4) and the adhesive used for adhesive layer 14a all retain their strength of adhesion to the assembly/carrier during the heating process to completely cure the adhesive between the two flexible components 8, 12. On the other hand, the heat-release adhesive for adhesive layer 14c is a material at which gas is generated during the process of heating the assembly to cure the adhesive between the two flexible components 8, 12. As described below, the generated gas forms pockets of gas at the interface of the adhesive layer 14c with the rigid carrier 16, and the formation of these gas pockets serves to partially reduce the strength of adhesion between the adhesive layer 14c and the carrier 16. The pressure at which the assembly is compressed between the two carriers 4, 16 is both (i) sufficiently low to retain the gas generated in the adhesive layer 14c as pockets of gas at the interface between the adhesive layer 14c and the carrier 16 (i.e. to prevent gas generated within the adhesive layer 14c from being expelled laterally out from between the adhesive layer 14c and the carrier 16, but (ii) sufficiently high to prevent crinkling (distortion out of the plane) of the plastic support films within the assembly during the process of heating the assembly to cure the adhesive between the two flexible components.
The generation of gas within the adhesive layer 14c and the retention of generated gas at the interface of the adhesive layer 14c with the carrier 16 can be detected by: performing the heating in a vacuum and monitoring changes in pressure within the vacuum chamber; and/or remotely analysing, by e.g. spectroscopy, the interface between the adhesive layer 14c and the carrier 16.
After cooling the assembly to a temperature at which the plastic support films within the assembly no longer tend to crinkle (during which cooling) the gas pockets continue to be retained at the interface of the adhesive layer 14c with the rigid carrier 16), mechanical compression of the assembly between the carriers is ended, and the combination of assembly and carriers 4, 16 is placed on a hotplate with the carrier 16 adjacent to adhesive layer 14c closest to the surface of the hotplate, such that a temperature gradient is established across the combination of adhesive element 14 and assembly. Without mechanically compressing the assembly between the carriers 4, 16, the hotplate is used to raise the temperature of the adhesive layer 14c to a temperature at which, in the absence of mechanical compression, the adhesive layer 14c thermally expands to an extent sufficient to further reduce the strength of adhesion between the adhesive layer 14c and the rigid carrier 16. This further heating of the adhesive layer 14c is done without increasing the temperature of the assembly to a temperature at which significant crinkling of the plastic support films within the assembly tends to occur. In one example, the temperature to which the adhesive layer 14c is raised may be above the maximum temperature that it reached during the heating process for curing the adhesive between the two flexible components 8, 12. However, release of the carrier 16 during this second heating stage can also be achieved at lower temperatures. The thermal expansion of the adhesive layer 14 during this second heating stage reduces the strength of adhesion between the adhesive material and the carrier 16 in the areas of contact around the gas pockets at the interface between the carrier 16 and the adhesive layer 14c; and this further reduction in the strength of adhesion between the carrier and the adhesive layer 14c allows the carrier to be released from the assembly without the application of mechanical force or with the application of only minimal mechanical force (FIG. 1C).
The release of one rigid carrier 16 facilitates the peeling of the whole adhesive unit 14 from the assembly (FIG. 1D) and the subsequent peeling of the assembly away from adhesive unit 6 (FIG. 1D).
The liquid crystal material for the lateral array of liquid crystal devices may be dispensed onto the lower flexible component 12 before lamination of the two flexible components 8, 12, or it may be injected into the space created by the spacer structures after lamination and curing of the adhesive between the two flexible components 8, 12.
By way of example: an adhesive product acquired from Nitto Denko Corporation and identified by product name RAU-5HD1.55 was used for one of the adhesive units 14 in the technique described above; and an adhesive product acquired from Nitta Corporation and identified by product name CX2325CA3 was used for the other adhesive unit 6 in the technique described above. The adhesive product identified by product name RAU-SHDLSS comprises a heat-release adhesive and a UV-release adhesive on opposite sides of a flexible support film, and the adhesive product identified by product name CX2325CA3 comprises a cold-release adhesive and a pressure sensitive adhesive supported on opposite sides of a flexible support film.
In the above-described example, the adhesive layer 14c adjacent to the carrier is the layer whose strength of adhesion to an adjacent element is partially reduced under mechanical compression during the heating process to cure the adhesive between the two carriers, and further reduced (without mechanical compression) after completion of the heating process to cure the adhesive between the two carriers. However, in an alternative example, this layer may be the adhesive layer 14a adjacent to the assembly in the adhesive unit 14 (whereby the adhesive unit 14 is first released from the assembly), or this layer may be a single layer of adhesive in contact with both the assembly and the carrier.
In the example described above, a heat-curable adhesive is used to secure the two flexible components together, but (a) an adhesive curable by exposure to e.g. UV radiation (UV-curable adhesive), (b) pressure-sensitive adhesive, or (c) an adhesive curable by laser, are other examples of adhesives that may be used to secure the two flexible components together. Even when the application of heat is not required to secure the two flexible components together, heating the assembly to a temperature at which crinkling of the plastic support films within the assembly tends to occur may be used for other purposes; and the above-described technique is equally useful in such situations.
In the example described above, the technique is used in the production of an array of liquid crystal display devices, but the same technique can be used in the production of other devices, such as e.g. the production of active matrix OLED displays for which the organic light-emissive elements require encapsulation between moisture and oxygen barrier elements.
The above-described technique can be used to produce an assembly without significant crinkling of the plastic support films of either of the flexible components, even when the flexible components have a relatively large area.
In addition to any modifications explicitly mentioned above, it will be evident to a person skilled in the art that various other modifications of the described embodiment may be made within the scope of the invention.

Claims (12)

  1. CLAIMS1. A method, comprising: providing an assembly temporarily adhered on at least one side to a carrier by at least one adhesive element, the assembly including at least one plastic support sheet, and the adhesive element including at least one adhesive layer; heating said assembly to completely cure another adhesive included within said assembly, wherein an adhesion strength of said adhesive layer to the carrier and/or assembly is partially reduced during said heating; and after heating said assembly to complete cure said another adhesive included within the assembly, expanding the adhesive layer, and releasing the adhesive layer from the carrier and/or assembly.
  2. 2. The method according to claim 1, wherein partially reducing the adhesion strength of the adhesive layer to the carrier and/or assembly comprises generating gas within the adhesive layer, and retaining pockets of the gas at an interface of the adhesive layer.
  3. 3. The method according to claim 2, wherein retaining pockets of the gas at an interface of the adhesive layer comprises retaining the pockets of the gas at an interface of the adhesive layer with the carrier.
  4. 4. The method according to claim 1, wherein expanding the adhesive layer further reduces the adhesion strength of the adhesive layer to the carrier and/or assembly.
  5. 5. The method according to claim 1, wherein expanding the adhesive layer comprises placing the carrier and the assembly on a hotplate with the adhesive layer between the hotplate and the assembly.
  6. 6. The method according to claim 1, wherein expanding the adhesive layer comprises establishing a temperature gradient across the adhesive layer and the assembly; wherein the temperature gradient comprises the adhesive layer having a higher temperature than the assembly.
  7. 7. The method according to claim 1, wherein expanding the adhesive layer comprises: heating the adhesive layer to a temperature above a maximum temperature reached during heating the assembly to completely cure said another adhesive included within the assembly.
  8. 8. The method according to claim 1, wherein expanding the adhesive layer comprises: heating the adhesive layer to a temperature below a maximum temperature reached during the heating to completely cure said another adhesive included within the assembly.
  9. 9. The method according to any of claims 1 to 8, wherein releasing the adhesive layer from the carrier and/or assembly comprises releasing the adhesive layer from one of the carrier and the assembly, and thereafter peeling the other of the carrier and the assembly away from the adhesive element.
  10. 10. The method according to any of claims 1 to 8, wherein releasing the adhesive layer from the carrier and/or assembly comprises releasing the adhesive layer from one of the carrier and the assembly, without releasing the adhesive layer from the other of the carrier and assembly.
  11. 11. The method according to any of claims 1 to 8, wherein the assembly comprises a liquid crystal display component including two plastic support sheets and spacers for creating a space for receiving liquid crystal material between the two plastic support sheets.
  12. 12. The method according to any of claims 1 to 8, wherein the assembly comprises two plastic support sheets, and respective carriers are used to support respective ones of the plastic support sheets during a process of laminating the two support sheets together to form the assembly.
GB2211438.3A 2016-05-11 2016-05-11 Carrier release Active GB2607247B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2211438.3A GB2607247B (en) 2016-05-11 2016-05-11 Carrier release

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB2211438.3A GB2607247B (en) 2016-05-11 2016-05-11 Carrier release
GB2203806.1A GB2603663B (en) 2016-05-11 2016-05-11 Carrier release

Publications (3)

Publication Number Publication Date
GB202211438D0 GB202211438D0 (en) 2022-09-21
GB2607247A true GB2607247A (en) 2022-11-30
GB2607247B GB2607247B (en) 2023-03-22

Family

ID=83899322

Family Applications (1)

Application Number Title Priority Date Filing Date
GB2211438.3A Active GB2607247B (en) 2016-05-11 2016-05-11 Carrier release

Country Status (1)

Country Link
GB (1) GB2607247B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307677A (en) * 2003-04-08 2004-11-04 Sekisui Chem Co Ltd Resin sheet with adhesive
WO2005087888A1 (en) * 2004-03-11 2005-09-22 Nitto Denko Corporation Heat-peelable pressure-sensitive adhesive sheet and method of processing adherend with the heat-peelable pressure-sensitive adhesive sheet
JP2009040930A (en) * 2007-08-10 2009-02-26 Nitto Denko Corp Method for peeling adherend, and heat-peeling-type adhesive sheet to be used in the method
EP2495779A2 (en) * 2011-03-04 2012-09-05 Nitto Denko Corporation Method for manufacturing thin-film substrate
US20170140974A1 (en) * 2015-11-13 2017-05-18 Nitto Denko Corporation Laminated body and composite body; assembly retrieval method; and semiconductor device manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307677A (en) * 2003-04-08 2004-11-04 Sekisui Chem Co Ltd Resin sheet with adhesive
WO2005087888A1 (en) * 2004-03-11 2005-09-22 Nitto Denko Corporation Heat-peelable pressure-sensitive adhesive sheet and method of processing adherend with the heat-peelable pressure-sensitive adhesive sheet
JP2009040930A (en) * 2007-08-10 2009-02-26 Nitto Denko Corp Method for peeling adherend, and heat-peeling-type adhesive sheet to be used in the method
EP2495779A2 (en) * 2011-03-04 2012-09-05 Nitto Denko Corporation Method for manufacturing thin-film substrate
US20170140974A1 (en) * 2015-11-13 2017-05-18 Nitto Denko Corporation Laminated body and composite body; assembly retrieval method; and semiconductor device manufacturing method

Also Published As

Publication number Publication date
GB202211438D0 (en) 2022-09-21
GB2607247B (en) 2023-03-22

Similar Documents

Publication Publication Date Title
US11362120B2 (en) Carrier release
US9161485B2 (en) System and method for microelectronics lamination press
JP2019517936A5 (en)
US20230140871A1 (en) Liquid crystal devices
US20140374017A1 (en) Bonding method and bonding apparatus
GB2607247A (en) Carrier release
JP3926231B2 (en) Manufacturing method of liquid crystal display device
GB2603663A (en) Carrier release
US20200333651A1 (en) Processing plastics films
TW201432008A (en) Method for bonding two substrates
US11037790B2 (en) Pressurizing device and pressurizing method
JP2002355835A (en) Method for producing heat conductive substrate
JP2004178985A (en) Manufacturing method and equipment of organic electroluminescent device
JP2016125605A (en) Drawing-in prevention jig of diaphragm for laminate device

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)

Free format text: REGISTERED BETWEEN 20230316 AND 20230322