GB2535149A - A thermally insulated container - Google Patents

A thermally insulated container Download PDF

Info

Publication number
GB2535149A
GB2535149A GB1501921.9A GB201501921A GB2535149A GB 2535149 A GB2535149 A GB 2535149A GB 201501921 A GB201501921 A GB 201501921A GB 2535149 A GB2535149 A GB 2535149A
Authority
GB
United Kingdom
Prior art keywords
container
wall sections
engagement means
expanded foam
foam layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
GB1501921.9A
Other versions
GB201501921D0 (en
Inventor
Knight Philip
Talbot Scott
Thomas Geraint
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAMINAR MEDICA Ltd
Original Assignee
LAMINAR MEDICA Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAMINAR MEDICA Ltd filed Critical LAMINAR MEDICA Ltd
Priority to GB1501921.9A priority Critical patent/GB2535149A/en
Publication of GB201501921D0 publication Critical patent/GB201501921D0/en
Priority claimed from EP16702780.4A external-priority patent/EP3253682A2/en
Publication of GB2535149A publication Critical patent/GB2535149A/en
Application status is Pending legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • A61J1/14Details, e.g. provisions for hanging or shape retaining means; Accessories therefor, e.g. inlet or outlet ports, filters or caps
    • A61J1/16Holders for containers
    • A61J1/165Cooled holders, e.g. for medications, insulin, blood, plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3813Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3813Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container
    • B65D81/3816Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container formed of foam material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3813Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container
    • B65D81/3823Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container formed of different materials, e.g. laminated or foam filling between walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3825Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container with one or more containers located inside the external container
    • B65D81/3827Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container with one or more containers located inside the external container the external tray being formed of foam material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3848Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation semi-rigid container folded up from one or more blanks
    • B65D81/3858Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation semi-rigid container folded up from one or more blanks formed of different materials, e.g. laminated or foam filling between walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT COVERED BY ANY OTHER SUBCLASS
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/02Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
    • F25D3/06Movable containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT COVERED BY ANY OTHER SUBCLASS
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/02Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
    • F25D3/06Movable containers
    • F25D3/08Movable containers portable, i.e. adapted to be carried personally
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J2200/00General characteristics or adaptations
    • A61J2200/40Heating or cooling means; Combinations thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J2200/00General characteristics or adaptations
    • A61J2200/40Heating or cooling means; Combinations thereof
    • A61J2200/44Cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT COVERED BY ANY OTHER SUBCLASS
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT COVERED BY ANY OTHER SUBCLASS
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT COVERED BY ANY OTHER SUBCLASS
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/082Devices using cold storage material, i.e. ice or other freezable liquid disposed in a cold storage element not forming part of a container for products to be cooled, e.g. ice pack or gel accumulator
    • F25D2303/0822Details of the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT COVERED BY ANY OTHER SUBCLASS
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/082Devices using cold storage material, i.e. ice or other freezable liquid disposed in a cold storage element not forming part of a container for products to be cooled, e.g. ice pack or gel accumulator
    • F25D2303/0822Details of the element
    • F25D2303/08221Fasteners or fixing means for the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT COVERED BY ANY OTHER SUBCLASS
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/082Devices using cold storage material, i.e. ice or other freezable liquid disposed in a cold storage element not forming part of a container for products to be cooled, e.g. ice pack or gel accumulator
    • F25D2303/0822Details of the element
    • F25D2303/08222Shape of the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT COVERED BY ANY OTHER SUBCLASS
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/083Devices using cold storage material, i.e. ice or other freezable liquid using cold storage material disposed in closed wall forming part of a container for products to be cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT COVERED BY ANY OTHER SUBCLASS
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/084Position of the cold storage material in relationship to a product to be cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT COVERED BY ANY OTHER SUBCLASS
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT COVERED BY ANY OTHER SUBCLASS
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/801Bags
    • F25D2331/8014Bags for medical use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT COVERED BY ANY OTHER SUBCLASS
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/804Boxes

Abstract

The present invention provides a thermally insulated container 1 comprising an expanded foam layer 2 and a further layer 3, internal of the expanded foam layer 2, formed of a plurality of cool packs 29, 30, 32 to 35 or insulation panels 4a to 4f, wherein the expanded foam layer 2 includes a number of individual preformed sections 5 to 9 assembled to form a main body of the container, the main body consisting of a rectangular base 5 and four wall sections 6 to 9, wherein inner faces of opposed pairs of wall sections 6 to 9 are substantially parallel to each other. The invention permits a thermally insulated container 1 to both have parallel internal wall sections and to be easily assembled. The parallel wall sections enable standard rectangular components, such as cool packs 29, 30, 32 to 35, to be assembled and kept firmly in place by the wall sections of the expanded foam layer 1.

Description

A Thermally Insulated Container The present invention relates to thermally insulated containers and has particular, but not exclusive, application to insulated containers, known as insulated shippers, which are used to transport products at stabilised temperatures.

It is important that some products, for example certain types of pharmaceuticals or biotech products, are maintained within a specified temperature range, typically 2° to 8°C, to prevent the product from being damaged, or its shelf-life being reduced relative to the shelf-life stated on the product. The product may be a very high value medicine or the like, which will be worthless if its temperature is not correctly controlled. This may be problematic during shipment and use of an insulated shipper will often be necessary to make shipment practicable.

One type of insulated shipper is known as an active shipper. These generally comprise a thermally insulated container having a cooling device and/or heating element for controlling the interior temperature of the shipper and thus the product. Energy is normally provided, from an external electrical supply, or an internal battery. The present invention may have application to such an active shipper but is particularly applicable for use in what is generally termed a passive shipper.

Passive insulated shippers comprise an insulated container comprising an insulated outer casing which is lined with, or houses, a number of cool blocks, cool trays, gel packs, cool bricks or similar, which for the purposes of the present specification are collectively referred to as cool packs. These may be cooled until a phase change occurs in the refrigerant in the cool packs from a liquid to a solid, so that the subsequent phase change back from a solid to a liquid acts to maintain the contents of the container at a constant temperature. Examples of materials which change state from a solid to a liquid to produce a cooling effect, are paraffin wax and water-based solutions.

Although reference above and below is made only to cool packs and the requirement to maintain a product at or below a certain temperature, those packs may also be used to maintain a product above a certain temperature, for example to stop a product freezing if it is being shipped in a cold climate. Thus, although for the purposes of this specification they will be referred to only as cool packs and only the case of keeping the product cool will be discussed, it will be appreciated that the invention is equally applicable to applications where it is desired to maintain the product above a desired temperature and the description and claims are to be interpreted so as not to preclude such an application.

Passive insulated shippers may comprise a container having three layers, an outer insulating layer, typically formed from expanded foam, an inner layer of cool packs and an intervening layer between the outer and inner layers made up of a number of vacuum insulation panels to provide enhanced insulation. The container may further comprise an outer casing to provide protection for the outer insulating layer during transportation and/or an inner lining.

A passive shipper of the type described above therefore has a large number of components which have to be initially assembled. Then, each time the container is used, at least the cool packs will normally have be removed, cooled, and then correctly reassembled in the container, possibly by staff not familiar with that particular container type.

It is desirable that as many of these components as possible are standardised, to reduce the number of types of components to assist in selection. It is also desirable that each component can be positioned with one of several orientations to assist in locating them correctly and that the components need no additional means to hold them in place, other than by being positioned in an outer structure of the container.

According to a first aspect of the invention there is provided a thermally insulated container comprising an expanded foam layer and a further layer, internal of the expanded foam layer, formed of a plurality of cool packs or insulation panels, wherein the expanded foam layer includes a number of individual preformed sections assembled to form a main body of the container, the main body consisting of a rectangular base and four wall sections, wherein inner faces of opposed pairs of wall sections are substantially parallel to each other.

A container in accordance with the present invention may have opposed pairs of expanded foam wall sections with inner faces which are substantially parallel to each other, because the expanded foam layer is formed of a number of individual preformed sections. This is to be contrasted with conventional containers formed of expanded foam, which are normally moulded as a single piece (ignoring the lid) requiring that the internal walls be inwardly tapered in order to permit the container to be released from the mould.

The invention permits uniform square or rectangular cool packs and/or insulation panels to be located in the container, internally of the expanded foam layer and for these to be held firmly in place by the expanded foam layer, without the requirement for any additional fixings or padding. This is particularly advantageous where the container has a layer of cool packs which need to be removed to be cooled prior to a product being placed in the container for transportation, for the number of cool pack and/or insulation panel types may be kept to a minimum and these being square or rectangular may permit them each to be placed in the container in any of two or more orientations, significantly simplifying the assembly procedure.

Advantageously, the expanded foam layer includes an individual base section and four individual wall sections, for each of these may then be substantially planar and stacked together assisting in handling prior to assembly of the container.

Preferably, a first side edge of one wall section has a first set of engagement means and an adjacent side edge of an adjacent wall section has a second set of engagement means arranged to cooperate with the first set of engagement means, to hold the two wall sections together along their adjacent side edges. This permits the four wall sections to be attached together to form the rectangular side wall sections of the container, which can then be used to hold the other components such as inner cool packs and/or insulation panels together.

Preferably, the first and second sets of engagement means are arranged such that in order to assemble two adjacent wall sections together one wall section is placed approximately in the desired position relative to the other, but slightly inside of its final position and then pushed outwards to its final position to engage the two sets of engagement means. This permits the wall sections to be assembled without the use of tools.

In one embodiment, all four sections may be identical whereby a first side of each section will have a first set of engagement means with the other side having a second set of engagement means with the first and second sets of engagement means of adjacent panels arranged to cooperate with each other, thus minimising the number of component parts of the container.

Alternatively, the container may comprise a first pair of opposed wall sections which each have a first set of engagement means and a second pair of opposed wall sections which each have a second set of engagement means arranged to cooperate with the first set of engagement means in order to hold the four wall sections together in a rectangle wherein, to assemble the four wall sections, the first pair of opposed wall sections are set slightly inward of the engagement means which extend from the second pair of opposed wall sections, with the first set of opposed wall sections being arranged to engage the second set of opposed wall sections by being pushed outwards so that the first and second sets of engagement means engage each other. This arrangement may be advantageous where a container has end wall sections which are different to the side wall sections, for example the end wall sections may have handholds therein. This also permits the container to be a rectangular shape other than a square.

Preferably, the base section and wall sections are arranged such that insertion of the base section through a mouth of the container, defined by the four wall sections, to a lower position where it forms the base of the expanded foam layer of the container, locks the wall sections into position by preventing their lower edges from moving inwards. This permits the base section to lock the walls in place preventing the wall sections coming apart should the container receive any external knocks during transportation or handling.

Preferably, the container further comprises a lid section formed of expanded foam, wherein the upper edge of the wall sections define a mouth of the container and are profiled to form a step around an inner edge of the mouth, wherein the lid is dimensioned to sit within the mouth on the step and to lock the wall sections in place by preventing them from moving inwards. In this manner, the base section and lid section lock both the top and bottom edges of the wall sections in place.

Preferably, the lid sits flush within the top edges of the wall sections and has a locking mechanism which engages with slots on the inner surface of at least some wall sections. In this manner, a lid can be provided which is shielded by the walls, is flush to enable a number of containers to be stacked together and which can close the container without requiring the lid to be taped on the container, which is advantageous for it will likely increase the life expectancy of the container in comparison to a container which is taped closed every time it is used.

The container may further comprise a film wrap dimensioned to fit around the four walls of the container, wherein the container is arranged such that the film wrap can be placed around three assembled walls prior to the fourth wall being put in place which will act to tension the film wrap. This provides a convenient way for graphics to be applied to the container, which may be customised for a particular customer or permit for a customer to subsequently apply their own graphics to the container. The film wrap also assists in maintaining the integrity of the container should the expanded foam panels be damaged by inappropriate handling. It also permits any graphics applied to the container to be easily changed by substituting the film wrap with a different film wrap with alternative graphics.

The invention will now be described by way of example only, with reference to the accompanying drawings, of which: Figure 1 is a perspective exploded view of a thermally insulated shipping container in accordance with the present invention; Figure 2 is a cutaway side elevation of the assembled container of Figure 1; Figure 3 is a top view of the container of Figures 1 and 2 with the lid removed; Figure 4 is an exploded view of the components of the outer casing of the container of Figure 1; Figure 5 is a cutaway side elevation of the components of Figure 4 assembled; Figure 6 is a plan view of the components of the lid portion of the casing of Figures 4 and 5 with a top cover portion removed; Figure 7 is a perspective view of the cool pack arrangement of the container of Figure 1; Figure 8 is a perspective exploded view of the cool packs of Figure 7; Figure 9 is a perspective view of a top or bottom cool pack of Figure 8; Figure 10 is a plan view, together with respective side elevations, of the cool pack of Figure 9; Figure 11 is a perspective view of a side wall cool pack of Figure 7; Figure 12 is plan view, together with respective side elevations, of the side wall cool pack of Figure 11; Figure 13 is a perspective view of an alternative set of cool packs for the container of Figure 1; Figure 14 is an exploded perspective view of the cool packs of Figure 13; Figure 15 is a perspective view of a side wall cool pack of Figure 13; Figure 16 is plan view, together with respective side elevations, of the side wall cool pack of Figure 15; Figure 17 is an expanded perspective view of a top insulation panel, side wall insulation panel assembly and bottom insulation panel for the container of Figure 1; Figure 18 shows the side wall insulation panel assembly of Figure 17 prior to insertion into the container of Figure 1; Figure 19 is a perspective view of the side wall insulation panel assembly of Figure 18 laid out as a linear array; Figure 20 is a plan view of the insulation panel assembly of Figure 19; Figure 21 is a side elevation of the insulation panel assembly of Figure 20; Figure 22 illustrates the components of the side wall insulation panel assembly of Figures 17 to 21, prior to assembly; and Figures 23 to 25 are top views showing two side wall insulation panels of the side wall insulation panel assembly, of Figures 17 to 21, at various stages as the side wall insulation panels are folded together.

Referring to Figure 1, a thermally insulated shipping container 1 in accordance with the present invention comprises a number of components which, as most clearly seen from the partially cutaway side elevation of Figure 2 and the plan view of Figure 3 (with the lid 13 removed) comprises three layers, indicated generally as a thermally insulating outer casing 2, a cool pack layer 3 and a vacuum insulation panel layer 4 located between the two.

The components 5 to 12 of the thermally insulating outer casing 2 are disclosed and described in greater detail in and with reference to Figures 4 to 6 and the cool packs 29 to 35 forming the cool pack layer 3 are disclosed and described in greater detail in and with reference to Figures 7 to 16. The vacuum insulation panels forming the vacuum insulation panel layer 4, are located as shown in Figures 1 to 3 and comprise six panels 4a to 4f, providing additional insulation between the respective cool packs 4a to 4f and the outer insulation casing 3.

The four insulation panels 4b to 4e are side wall insulation panels and, although not shown in Figures 1 to 3, are assembled into insulation panel assembly as shown in and described with reference to Figures 17 to 25.

Referring now to Figure 4, the thermally insulating outer casing 2, shown in exploded view, comprises eight components each formed from expanded polypropylene (EPP) foam. The eight components comprise a base 5, a first pair of identical opposed walls 6 and 7, a second pair of identical opposed walls 8 and 9, a lid, indicated generally as 13 having an inner portion 10, a locking portion 11 and an outer portion 12.

Each of the second pairs of walls 8 and 9 have a plurality of sockets 14 moulded into both side edges of their outer faces. These engage with plugs 15 which protrude from extension portions 16 on the inward facing side edges of each of the first pairs of walls 6 and 7, only one set of which can be seen in Figure 4.

To assemble the outer casing 2, the second pair of walls 8 and 9 are positioned between respective pairs of extension portions 16 on each of the walls 6 and 7 and moved outwards until the plugs 15 on the walls 6 and 7 engage in the sockets 14 on the walls 8 and 9. Base 5 is then inserted and pushed down between the assembled walls 6 to 9 to the position shown in Figure 5, where it is retained in place by lips 17 and 18. The base locks the bottoms of the walls 6 to 9 in place by preventing walls 8 and 9 moving inwardly.

The lid 13, when assembled sits between the walls 6 to 9, being retained in place by a step running along the top edges of the walls 6 to 9. This similarly locks the tops of the walls 6 to 9 in place.

The lid 13, shown in Figure 4, has a locking portion 11 sandwiched between the inner portion 10 of the lid 13 and the outer portion 12 of the lid 13 which inner and outer portions 10 and 12 are fixed together to form the lid 13. The locking portion 11 is rotatably retained in place by a downwardly protruding pin 21, seen in Figure 5, engaging in the aperture 22 in the inner portion of the lid 10 and with the upper protruding portion 23 of the locking portion 11 of the lid engaging in the aperture 24 in the outer portion of the lid 12.

The locking portion 11 has four protrusions 25, which when the locking portion 11 of the lid is rotated to a "locked" position extend beyond the four edges of the lid, engaging with respective slots 26 in the top of the walls 6 to 9, to lock the lid in place, as shown in Figures S and 6.

As can be seen most clearly from Figure 5, both the inner portion 10 of the lid 13 and the base 5 have recesses 27 and 28. The vacuum insulation panels 4a and 4f, forming the top and bottom of the vacuum insulation panel layer 4 of Figures 1 to 3, are accommodated in these recesses 27, 28, as shown in Figures 1 and 2. The remaining vacuum insulation panels 4b to 4e, of the outer vacuum, insulation panels 4 are then arranged as an assembly against the inner faces of the four walls 6 to 9 of the outer casing 2.

The thermally insulating outer casing 2, being formed from individually moulded walls 6 to 9 defines an inner space between the walls 6 to 9, which space has parallel vertical sides, which would not normally be possible if the four walls 6 to 9 and base 5 had been moulded as a single piece (for it would normally necessary to have tapered inner walls to permit the casing to be released from a mould tool). The advantage of having parallel inner walls is that they can correctly accommodate both standard rectangular or square vacuum insulation panels 4b to 4e of the vacuum insulation panel assembly discussed below with reference to Figures 7 to 16, keeping both the vacuum panels and cool packs tightly confined in order to minimise convection between adjacent panels or cool packs and to retain a correctly packed product in place.

If desired a stretch film wrap may be provided around three of the assembled walls and 6 to 9 of the outer casing 2, prior to the fourth wall being locked in place and tensioning the film wrap. This may not only assist in keeping the walls of the outer container locked together, especially in the event of the container being dropped or otherwise suffering a major impact, but the wrap may also be pre-printed and thus provides an easy way of customising graphics on the container 1 for a particular customer, or enables the customer to easily apply their own graphics.

Once the outer casing 2 has been assembled, as shown in Figure 5, and the vacuum insulation panels 4b to 4e inserted, the cool packs (once cooled) of Figures 7 to 16 may be inserted therein to form the cool pack layer 3.

The cool pack layer is shown in Figure 7 as it would be arranged in the container 1 of Figure 1. As shown in Figure 8, the cool pack layer 3 comprises only two components types, comprising identical top and bottom cool packs 29 and 30, shown in greater detail in Figures 9 and 10, and four identical side wall cool packs 32 to 35, shown in greater detail in Figures 11 and 12. Each of the cool packs may be formed by standard moulding technique and filled with a water-based material or other phase change material such as paraffin wax, which can subsequently be cooled.

The top and bottom cool packs 29 and 30 will now be described in more detail with reference to Figures 9 and 10. In the following discussion the illustrated cool pack is taken to be the bottom cool pack 30, but the same features are found on the identical top cool pack 29 of Figure 8.

The bottom cool pack 30 of Figure 9 is provided with a step 36 around all four edges, with a fill point cap 37 on one of the edges. Because the cool pack 30 is relatively thin in the region below the step 36, the fill point cap 37 extends above the level of the tread portion of the step 36 and partly protrudes out of the riser portion of the step above the tread portion. In corresponding positions on each of the other three sides of the cool pack 30 there are provided blanking protrusions 38 to 40, the purpose of which is described below.

Referring now to Figures 11 and 12, there is illustrated one side wall cool pack 35, identical to each of the other side wall cool packs 32 to 34. This has flat top and bottom edges 41, 42 perpendicular to the front and rear faces of the cool pack 35 and side edges 43, 44 chamfered at 45° to abut adjacent chamfered side edges 44, 43 of adjacent cool packs, when assembled as shown in Figure 7 inside the container 1 of Figure 1.

Referring again to Figures 11 and 12, each side wall cool pack 32 to 35 has vertical notches 45 formed along the top and bottom edges of its inner face and a small recess 46 in the top or bottom edge 42 and a larger recess 47 formed in the opposite edge 41, in which the fill point cap 48 is accommodated, off-set to one side of the layer recess 47. The notches 45 assist when lifting the side wall cool packs 32 to 34 out of the container.

The fill point cap 48 being off-set leaves the recess 47 clear in a midpoint, opposite to the smaller recess 46 in the opposite edge. The side wall cool packs 32 to 35 are readily distinguishable from the top and bottom cool packs 29 and 30 by their chamfered side edges 43, 44 and absence of a step 36. Therefore, when inserting a cool pack layer 3 within the assembled outer casing 2 it is to identify the top and bottom cool packs 29, 30 from the side wall cool packs 32 to 35 and first place one into the base of the outer casing 2 of the container 1 of Figure 1.

Each side wall cool pack 32 to 35, in use, may be located in any of the four side wall positions of Figure 7 and may be mounted with either of its flat edges downwards, as each side wall cool pack 32 to 35, either way up, will accommodate the fill point cap 37 of the bottom cool pack 30. This will either be accommodated in a smaller recess 46 or a larger recess 47 of the respective side wall cool pack 32 to 35.

The riser portion of the step 36 on the bottom cool pack 30, abutting the horizontal flat bottom edge of the side wall cool packs 32 to 35, resists convection of air by providing a double step for any convection currents to negotiate. This double step feature is also present along the top edges of the side wall cool packs 32 to 35, where they engage the step 36 of the top cool pack 29 of Figure S. When the cool packs 29 to 34 are assembled, as shown in Figure 7, the protrusions 38 to 40 on the top and bottom cool packs 29 and 30 fit and fill the notches 46 or 47 of the side wall cool packs 32 to 35, (necessary to accommodate fill point cap 37) and restrict the convection through these notches to further prevent convection.

The step 36 on the bottom cool pack 30, being square, as opposed to chamfered, additionally assists in assembly of the side wall cool packs 32 to 35, for the step 36 acts to stop the first side wall cool pack inserted falling inwards before adjacent side wall cool pack 32 to 35 are inserted.

Referring now to Figures 13 to 16, there is shown a slightly modified set of cool packs 49, 50 for use, as the wall portion of the cool pack layer 3 of the container 1 of Figure 1. The top and bottom cool packs 29 and 30 are identical to those disclosed in Figures 7 to 9, but in this embodiment instead of there being four side wall cool packs there are instead only the two identical "double" side wall cool packs 49 and 50. Each of the two side wall cool packs 49 and 50 effectively comprises two side wall cool packs as previously described with reference to Figures 7 to 8 and 11 to 12, but which are joined by a living hinge 31. These can be formed by blow moulding in a conventional manner but with the sides of the moulds being brought together to form a living hinge 31, or the living hinge 31 can be formed by a separate subsequent step in the manufacturing process.

Referring now to Figure 17, this illustrates the components of the vacuum insulation panel layer 4.

The vacuum insulation panel layer 4 comprises a top vacuum insulation panel 4a, a bottom vacuum insulation panel 4f and a vacuum insulation panel assembly 54.

As will be described below with reference to Figures 23 to 25, with this assembly 54, the side wall vacuum insulation panels 4b to 4e may be tightly bound together when in use, as illustrated in Figure 17 and 18, without the need to tape them together. This also provides a vacuum insulation panel assembly 54 that is capable of being easily and quickly inserted into the thermally insulating outer layer 2, once this has been assembled.

The components of the vacuum insulation panel assembly 54 are shown in Figure 22, prior to assembly. These comprise the four side wall insulation panels 4b to 4e and a thin PVC sheet 58. The PVC sheet 58 is shown laid flat with the four side wall vacuum insulation panels 4b to 4e laid thereon with their outer faces uppermost. The PVC sheet is formed with four creases 59 to 62 extending parallel to the top and bottom edges of the sheet 58 and four creases 63 to 66 extending perpendicular to the top and bottom edges of the sheet 58. Each crease is formed so that it acts to fold the sheet to either side of the crease, out of the page as shown in Figure 23.

The sheet 58 has four cut out sections (although they could be formed other than by being cut) 67 to 70, formed between the parallel creases 61 and 62 and four corresponding cut out sections 71 to 74 formed between parallel creases 59 and 60. In addition, cuts 75 to 77 extend between respective pairs of cut out sections 68, 72; 69, 73; and 70, 74 to form four flaps 78 to 81 defined by the respective cuts 75 to 77 or edge of the sheet 58 and respective perpendicular creases 63 to 66. The width of each flap 78 to 81 is the same as the depth of the side wall vacuum insulation panels 4b to 4e, with the perpendicular creases 63 to 66 urging the flaps 78 to 81 vertically, out of the page as shown in Figure 22, so that they lie adjacent to a side edge of a respective vacuum insulation panel 4b to 4e.

The two parallel creases 59 and 60 are also separated by a distance equal to the width of the vacuum insulation panels 4b to 4e, with the two creases together urging the top edge portion of sheet 58 to fold through 180° and wrap over the top edge of the vacuum insulation panels, sandwiching the vacuum insulation panels therebetween. Creases 61, 62 likewise cause the bottom edge of the sheet 58 to wrap over the bottom edges of the vacuum insulation panels 4b to 4e. Thus, the top and bottom edges of the sheet 58, as shown in Figures 17 to 20, thus now respectively form a top strip 82 and a bottom strip 83, which strips 82, 83 both extend across the outer faces of vacuum insulation panels 4b to 4e. The vacuum insulation panels can optionally then be adhered in place.

Referring now to Figure 23, this shows an edge view of a section of the vacuum insulation panel assembly 54, showing the sheet 58 and two of the vacuum insulation panels 4b and 4c. From Figure 23 it can be seen that in addition to forming top and bottom strips 82 and 83 (only 82 of which is shown) on the outward facing surfaces of vacuum insulation panels 4b to 4e, the sheet 58 also provides covering sections 84 for the inner faces of the vacuum insulation panels 4b to 4e. Respective flaps 78 to 81 form extension portions to the covering sections 84, which wrap around one edge only of the respective vacuum insulation panels 4b to 4e.

As shown in Figures 24 and 25, as adjacent vacuum insulation panels 4b, 4c are folded together, the flap 81 is sandwiched between a side edge of vacuum insulation panel 4b and the side edge of a front face of adjacent vacuum insulation panel 4c, with the top and bottom strips 82 and 83 urging the side edge of vacuum insulation panel 4c against the edge of an inner face of adjacent vacuum insulation panel 4b and maintaining them there, avoiding the need for the vacuum insulation panels 4b, 4c to be subsequently taped together. Once the vacuum insulation panel assembly 54 has been folded together, as shown in Figure 17, the PVC sheet 58 then forms a lining for the inner surfaces of the side wall vacuum insulation panels 4b to 4e. These surfaces are maintained substantially flat by one side edge of the covering section 84 and extension portion, or flaps 78 to 81 forming a right angle and with the opposite edge of each covering section 84 overlapping with and being sandwiched against the respective flap 78 to 81, as shown in Figure 23.

Thus each covering section 84 effectively not only covers the inner face of each side wall vacuum insulation panel 4b to 4e, but also extends over the top and bottom edges to form top and bottom strips 82 and 83. Thus the sheet 58 covers all exposed surfaces of the vacuum insulation panels 4b to 4e when they are assembled in the thermal insulating outer casing 2 of container 1 and protects the vacuum insulation panels 4b to 4e when the cool packs are inserted in the container 1.

One embodiment of the present invention has been described by way of example only with reference to the accompanying drawings and it will be apparent that many modifications may be made which fall within the scope of the invention as defined by the appended claims.

Claims (17)

  1. Claims 1. A thermally insulated container comprising an expanded foam layer and a further layer, internal of the expanded foam layer, formed of a plurality of cool packs or insulation panels, wherein the expanded foam layer includes a number of individual preformed sections assembled to form a main body of the container, the main body consisting of a rectangular base and four wall sections, wherein inner faces of opposed pairs of wall sections are substantially parallel to each other.
  2. 2. A container as claimed in Claim 1, wherein the expanded foam layer includes an individual base section and four individual wall sections.
  3. 3. A container as claimed in Claim 2, wherein a first side edge of one wall section has a first set of engagement means and an adjacent side edge of an adjacent wall section has a second set of engagement means arranged to cooperate with the first set of engagement means to hold the two wall sections together along their adjacent side edges.
  4. 4. A container as claimed in Claim 3, wherein the first and second sets of engagement means are arranged such that in order to assemble two adjacent wall sections together one wall section is placed approximately in the desired position relative to the other, but slightly inside of its final position and then pushed outwards to its final position to engage the two sets of engagement means.
  5. S. A container as claimed in Claim 3, wherein appropriate sets of engagement means are located at the side edges of each of the four wall sections to hold all four wall sections together.
  6. 6. A contained as claimed in Claim 5, wherein all four wall sections are identical.
  7. 7. A container as claimed in any one of Claims 3 to 5, wherein a first pair of opposed wall sections each have first sets of engagement means and the second pair of opposed wall sections each have a second sets of engagement means arranged to cooperate with the first sets of engagement means in order to hold the four wall sections together in a rectangle wherein, to assemble the four wall sections, the first pair of opposed wall sections are set slightly inward of the engagement means which extend from the second pair of opposed wall sections, with the first set of opposed wall sections being arranged to engage the second set of opposed wall sections by being pushed outwards so that the first and second sets of engagement means engage each other.
  8. 8. A container as claimed in any one of Claims 3 to 7, wherein the engagement means are integrally formed with a respective wall section.
  9. 9. A container as claimed in any one of Claims 3 to 8, wherein the base section and wall sections are arranged such that insertion of the base section through a mouth of the container, defined by the four wall sections, to a lower position where it forms the base of the expanded foam layer of the container, locks the wall sections into position by preventing their lower edges from moving inwards.
  10. 10. A container as claimed in any one of Claims 2 to 9, further comprising a lid section formed of expanded foam, wherein the upper edge of the wall sections define a mouth of the container and are profiled to form a step around an inner edge of the mouth, wherein the lid is dimensioned to sit within the mouth on the step and to lock the wall sections in place by preventing them from moving inwards.
  11. 11. A container as claimed in Claim 10, wherein the lid sits flush within the top edges of the wall sections and has a locking mechanism which engages with slots on the inner surface of at least some wall sections.
  12. 12. A container as claimed in any preceding claim, comprising a plurality of rectangular cool packs forming a cool pack layer to be inserted into the main body, wherein the cool packs are arranged to fit closely together and to be held in position directly or indirectly by the proximity of the wall sections of the outer expanded foam layer.
  13. 13. A container as claimed in Claim 12, further comprising a layer of rectangular vacuum insulation panels between the cool pack layer and the expanded foam layer.
  14. 14. A container as claimed in any preceding claim, wherein the expanded foam layer is expanded polypropylene.
  15. 15. A container as claimed in any preceding claim, further comprising a film wrap dimensioned to fit around the four wall sections of the container.
  16. 16. A container as claimed in Claim 15, wherein the container is arranged such that the film wrap can be placed around three assembled wall sections of the container prior to the fourth wall section being put in place and tensioning the film wrap.
  17. 17. A container substantially as hereinbefore described with reference to, and/or as illustrated in, one or more of the accompanying drawings.
GB1501921.9A 2015-02-05 2015-02-05 A thermally insulated container Pending GB2535149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1501921.9A GB2535149A (en) 2015-02-05 2015-02-05 A thermally insulated container

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB1501921.9A GB2535149A (en) 2015-02-05 2015-02-05 A thermally insulated container
EP16702780.4A EP3253682A2 (en) 2015-02-05 2016-01-29 Thermally insulated container assembly
PCT/GB2016/050195 WO2016124892A2 (en) 2015-02-05 2016-01-29 Thermally insulated container assembly
EP17184856.7A EP3290357A1 (en) 2015-02-05 2016-01-29 Cool pack arrangement for thermally insulated container assembly
US15/548,823 US20180017311A1 (en) 2015-02-05 2016-01-29 Thermally Insulated Container Assembly

Publications (2)

Publication Number Publication Date
GB201501921D0 GB201501921D0 (en) 2015-03-25
GB2535149A true GB2535149A (en) 2016-08-17

Family

ID=52746180

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1501921.9A Pending GB2535149A (en) 2015-02-05 2015-02-05 A thermally insulated container

Country Status (1)

Country Link
GB (1) GB2535149A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035661A1 (en) * 2007-09-11 2009-03-19 Cold Chain Technologies, Inc. Insulated pallet shipper and methods of making and using the same
US20090078708A1 (en) * 2007-09-20 2009-03-26 Preston Noel Williams Temperature Maintaining Package Having Corner Discontinuities
EP2374443A1 (en) * 2010-04-09 2011-10-12 Minnesota Thermal Science, LLC Passive thermally controlled bulk shipping container
GB2500657A (en) * 2012-03-28 2013-10-02 Ds Smith Corrugated Packaging Ltd Thermally Insulated Container with Channels for Coolant Packs
EP2883812A1 (en) * 2013-12-13 2015-06-17 Peli Biothermal Limited Thermally insulated package

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035661A1 (en) * 2007-09-11 2009-03-19 Cold Chain Technologies, Inc. Insulated pallet shipper and methods of making and using the same
US20090078708A1 (en) * 2007-09-20 2009-03-26 Preston Noel Williams Temperature Maintaining Package Having Corner Discontinuities
EP2374443A1 (en) * 2010-04-09 2011-10-12 Minnesota Thermal Science, LLC Passive thermally controlled bulk shipping container
GB2500657A (en) * 2012-03-28 2013-10-02 Ds Smith Corrugated Packaging Ltd Thermally Insulated Container with Channels for Coolant Packs
EP2883812A1 (en) * 2013-12-13 2015-06-17 Peli Biothermal Limited Thermally insulated package

Also Published As

Publication number Publication date
GB201501921D0 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
US20080164265A1 (en) Thermally-controlled package
JP5726149B2 (en) Thermal management system and method
US6220473B1 (en) Collapsible vacuum panel container
RU2347157C2 (en) Insulated transportation containers
US5535888A (en) Thermal insulating and cushioning package and method of making the same
EP2435339B9 (en) A temperature control system
US6007467A (en) Method for forming an insulating inner container
CN1139772C (en) Improved insulated shipping container
US8474686B2 (en) Corrugated container
US3311231A (en) Protective packing apparatus, and fastener means, for easily damaged objects
US20040151851A1 (en) Novel package system and method
US20050126953A1 (en) Shock absorbing insulated shipping container
EP2374443A1 (en) Passive thermally controlled bulk shipping container
US6325281B1 (en) Thermally insulating shipping system
US20160075498A1 (en) Modular cuboidal passive temperature controlled shipping container
WO1996018557A1 (en) Insulated storage/transport container for perishables
US20060174648A1 (en) Insulated shipping container and method
US7255231B2 (en) Egg carton
US9290313B2 (en) Insulated shipping bags
US20060213958A1 (en) Container with hold-open flaps for ventilation
US7556152B2 (en) Tray for packaging of an article
US7114618B2 (en) Foldable foam packing element
US8613202B2 (en) Insulated shipping container systems and methods thereof
ES2649993T3 (en) Modular system for packaging devices thermally controlled
WO2005023662A1 (en) Dismantlable, returnable box