GB2534912A - An insulation panel assembly - Google Patents

An insulation panel assembly Download PDF

Info

Publication number
GB2534912A
GB2534912A GB1501919.3A GB201501919A GB2534912A GB 2534912 A GB2534912 A GB 2534912A GB 201501919 A GB201501919 A GB 201501919A GB 2534912 A GB2534912 A GB 2534912A
Authority
GB
United Kingdom
Prior art keywords
panels
sheet
container
assembly
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1501919.3A
Other versions
GB201501919D0 (en
GB2534912B (en
Inventor
Knight Philip
Talbot Scott
Thomas Geraint
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laminar Medica Ltd
Original Assignee
Laminar Medica Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laminar Medica Ltd filed Critical Laminar Medica Ltd
Priority to GB1501919.3A priority Critical patent/GB2534912B/en
Publication of GB201501919D0 publication Critical patent/GB201501919D0/en
Priority to PCT/GB2016/050195 priority patent/WO2016124892A2/en
Priority to EP17184856.7A priority patent/EP3290357B1/en
Priority to EP16702780.4A priority patent/EP3253682B1/en
Priority to ES17184856T priority patent/ES2870019T3/en
Priority to ES16702780T priority patent/ES2891824T3/en
Priority to US15/548,823 priority patent/US10816256B2/en
Publication of GB2534912A publication Critical patent/GB2534912A/en
Application granted granted Critical
Publication of GB2534912B publication Critical patent/GB2534912B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3813Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3813Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container
    • B65D81/3816Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container formed of foam material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3813Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container
    • B65D81/3818Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container formed with double walls, i.e. hollow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3813Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container
    • B65D81/3823Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container formed of different materials, e.g. laminated or foam filling between walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3848Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation semi-rigid container folded up from one or more blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3848Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation semi-rigid container folded up from one or more blanks
    • B65D81/3862Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation semi-rigid container folded up from one or more blanks with a foam formed container located inside a folded box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • F25D23/063Walls defining a cabinet formed by an assembly of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/02Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
    • F25D3/06Movable containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/02Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
    • F25D3/06Movable containers
    • F25D3/08Movable containers portable, i.e. adapted to be carried personally
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J2200/00General characteristics or adaptations
    • A61J2200/40Heating or cooling means; Combinations thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J2200/00General characteristics or adaptations
    • A61J2200/40Heating or cooling means; Combinations thereof
    • A61J2200/44Cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/082Devices using cold storage material, i.e. ice or other freezable liquid disposed in a cold storage element not forming part of a container for products to be cooled, e.g. ice pack or gel accumulator
    • F25D2303/0822Details of the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/083Devices using cold storage material, i.e. ice or other freezable liquid using cold storage material disposed in closed wall forming part of a container for products to be cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/084Position of the cold storage material in relationship to a product to be cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/801Bags
    • F25D2331/8014Bags for medical use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/804Boxes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Packages (AREA)

Abstract

The present invention provides an insulation panel assembly, comprising at least two insulation panels 4a to 4e for a container 1 and a sheet 58 on which the panels are pre-assembled ready for insertion into the container 1, wherein the at least two panels are substantially planar, each having an inner face to, in use, face inwards towards contents of the container, an outer face to in use face outwards away from the contents of the container, a top edge, a bottom edge and two opposed side edges, wherein the sheet 58 is cut, stamped or formed so that the sheet 58 wraps over at least the top or bottom edges of the insulation panels and has covering sections (fig 23, 84) which respectively cover each inner face of the at least two panels, the sheet also having at least one section in the form of a continuous strip (fig 20, 82, 83) which runs along the outer faces of the at least two panels, wherein the sheet 58 permits the at least two panels to be laid out in a flat linear array and also permits the at least two panels to be folded inwardly toward each other until they are substantially at right angles to each other, with those sections of the sheet covering the inner faces of the panels remaining substantially flat against those inner faces and with the strip section of the sheet on the outer faces constraining the panels, causing adjacent side edges of the panels to abut or causing a side edge of one panel to abut the edge of the inner face of an adjacent panel. The invention provides for assisting in the assembly of insulation panels and has particular application to insulated shipping containers.

Description

An Insulation Panel Assembly The present invention relates to insulation panels, such as vacuum insulation panels, and particularly to such panels for use in a thermally insulated container. The invention has particular, but not exclusive, application for use in insulated containers, known as insulated shippers, which are used to transport products at stabilised temperatures.
It is important that some products, for example certain types of pharmaceuticals or biotech products, are maintained within a specified temperature range, typically 2° to 8°C, to prevent the product from being damaged, or its shelf-life being reduced relative to the shelf-life stated on the product. The product may be a very high value medicine or the like, which will be worthless if its temperature is not correctly controlled. This may be problematic during shipment and use of an insulated shipper will often be necessary to make shipment practicable.
One type of insulated shipper is known as an active shipper. These generally comprise a thermally insulated container having a cooling device and/or heating element for controlling the interior temperature of the shipper and thus the product. Energy is normally provided, from an external electrical supply, or an internal battery. The present invention may have application to such an active shipper but is particularly applicable for use in what is generally termed a passive shipper.
Passive insulated shippers comprise an insulated container comprising an insulated outer casing which is lined with, or houses, a number of cool blocks, cool trays, gel packs, cool bricks or similar, which for the purposes of the present specification are collectively referred to as cool packs. These may be cooled until a phase change occurs in the refrigerant in the cool packs from a liquid to a solid, so that the subsequent phase change back from a solid to a liquid acts to maintain the contents of the container at a constant temperature. Examples of materials which change state from a solid to a liquid to produce a cooling effect, are paraffin wax and water-based solutions.
Although reference above and below is made only to cool packs and the requirement to maintain a product at or below a certain temperature, those packs may also be used to maintain a product above a certain temperature, for example to stop a product freezing if it is being shipped in a cold climate. Thus, although for the purposes of this specification they will be referred to only as cool packs and only the case of keeping the product cool will be discussed, it will be appreciated that the invention is equally applicable to applications where it is desired to maintain the product above a desired temperature and the description and claims are to be interpreted so as not to preclude such an application.
Passive insulated shippers may comprise a container having three layers, an outer insulating layer, typically formed from expanded foam, an inner layer of cool packs and an intervening layer between the outer and inner layers made up of a number of vacuum insulation panels to provide enhanced insulation. The container may further comprise an outer casing to provide protection for the outer insulating layer during transportation and/or an inner lining.
A passive shipper of the type described above therefore has a large number of components which have to be initially assembled. Then, each time the container is used, at least the cool packs will normally have be removed, cooled, and then correctly reassembled in the container, possibly by staff not familiar with that particular container type.
According to a first aspect of the invention there is provided an insulation panel assembly comprising at least two insulation panels for a container and a sheet on which the panels are pre-assembled ready for insertion into the container, wherein the at least two panels are substantially planar, each having an inner face arranged to in use face inwards towards contents of the container, an outer face arranged to in use face outwards away from the contents of the container, a top edge, a bottom edge and two opposed side edges, wherein the sheet is cut, stamped or formed so that the sheet wraps over at least the top or bottom edges of the insulation panels and has covering sections which respectively cover each inner face of the at least two panels, the sheet also having at least one section in the form of a continuous strip which runs along the outer faces of the at least two panels, wherein the sheet permits the at least two panels to be folded from a flat linear configuration to a configuration where adjacent panels are folded inwardly toward each other until they are substantially at right angles to each other, with those sections of the sheet covering the inner faces of the panels remaining substantially flat against those inner faces and with the strip section of the sheet on the outer faces constraining the panels, causing adjacent side edges of the panels to abut or causing a side edge of one panel to abut the edge of the inner face of an adjacent panel.
Common applications for insulation panels, such as for use in insulated containers and particularly for use in passive insulated shippers of the type described above, normally require a plurality of insulation panels to be employed to either line or form the four walls of the container, with additional insulation panels sometimes lining the base or roof (which may be a lid) of such a container. Thus, a container may typically have between four and six insulation panels and may also comprise, for example in the case of a passive shipper, between four and six cools packs, which are normally cooled remote from the container and thus have to be inserted in the container immediately prior to loading the container with a product for transportation.
An insulation panel assembly in accordance with the present invention permits a number of insulation panels to be simultaneously positioned within a container, such as an insulated shipper, permitting the panels to both lie flat prior to assembly in the container and then to be quickly and correctly positioned in the container. The sheet of the assembly may both provide a covering for the inner faces of the panels which, in the case of an application such as a passive shipper, will protect the panels from the cool packs, when these are inserted in to the container, whilst also providing a strip section extending around the panels, ensuring the panels are correctly positioned and that adjacent panels tightly abut each other (to avoid thermal losses through any gap between them), without the need for the panels to be taped together.
The assembly may comprise four insulation panels assembled on the sheet wherein, the sheet with the panels thereon may be folded so that the assembly forms four inner walls for insertion into a container. In this manner, a user only needs to a handle a single insulation panel assembly, which may be stored as a flat linear array of panels, permitting a number of assemblies to be stacked to conserve space. This single assembly can then simply be folded into a square shape to define four walls, prior to the assembly being placed in the container, the sheet then lining all four walls of the container, with the strip section extending completely around the four walls to lock them together.
Advantageously, the sheet may be folded over both the top and bottom edges of each panel to form two continuous strips which run along the outer faces of the insulation panels, at or towards both the top and bottom edges respectively. This may ensure that the panels are correctly positioned along both their top and bottom edges, ensuring there are no gaps between adjacent panels.
Preferably, each covering section of the sheet has a main portion arranged to cover the inner face of a respective insulation panel and an extension portion joined at one edge to the main portion, which extension portion extends around one of the side edges of the insulation panel.
If a side edge of each insulation panel abuts an adjacent edge portion of an inner face of an adjacent insulation panel and sandwiches the extension portion of the covering section of the adjacent insulation panel between the two insulation panels, then when the adjacent insulation panels are folded towards each other for insertion into a container, the extension portion, being sandwiched between those adjacent panels and abutting the edge portion of the inner face of adjacent insulation panel, also covered by one of the covering sections of the sheet, will avoid any gaps in the covering layer at a corner between two adjacent panels. In addition, the main portion of each covering section and associated extension portion will lie at right angles to each other, which right angle running down the side edge of the panel will act to maintain that edge of the main portion of the covering section straight and thus prevent the main portion of the covering section from buckling, keeping it flat against the inner face if the insulation panel. The sheet and covering section may be moulded or heat treated such that the main portion and extension portion inherently lie at right angles to each other.
Preferably, each covering section has only one extension portion that extends over only one side edge of the associated insulation panel. The "free" side edge of the main portion of the covering section will be held by being sandwiched between the insulation panel it is covering and a side edge of an adjacent insulation panel, which will act to keep that edge of the covering section flush against the insulation panel. The omission of an extension portion along one side edge permits the covering section to freely extend sideways, helping to prevent buckling of that covering section.
Preferably, the sheet is formed of a semi-rigid plastics material. This may both have sufficient rigidity to maintain the insulation panels in it without the need to weld, bond or otherwise adhere them in place, but it may also provide a lining for any container in which the assembly is used, which lining may be sufficiently strong to protect the insulation panels.
The sheet may be formed of polyvinylchloride.
According to a second aspect of the invention there is provided a thermally insulated container comprising an insulation panel assembly as described above. The container may comprise four insulated outer walls and a base formed from expanded foam, into which the insulated panel assembly is arranged to be inserted, the expanded foam providing both thermal insulation and protection from external objects for both the product to be shipped and the insulation panels.
Preferably the container further comprises a plurality of cool packs arranged to be received inside the insulation panel assembly.
The invention will now be described by way of example only, with reference to the accompanying drawings, of which: Figure 1 is a perspective exploded view of a thermally insulated shipping container with an insulation panel assembly in accordance with the present invention; Figure 2 is a cutaway side elevation of the assembled container of Figure 1; Figure 3 is a top view of the container of Figures 1 and 2 with the lid removed; Figure 4 is an exploded view of the components of the outer casing of the container of Figure 1; Figure 5 is a cutaway side elevation of the components of Figure 4 assembled; Figure 6 is a plan view of the components of the lid portion of the casing of Figures 4 and 5 with a top cover portion removed; Figure 7 is a perspective view of the cool pack arrangement of the container of Figure 1; Figure 8 is a perspective exploded view of the cool packs of Figure 7; Figure 9 is a perspective view of a top or bottom cool pack of Figure 8; Figure 10 is a plan view, together with respective side elevations, of the cool pack of Figure 9; Figure 11 is a perspective view of a side wall cool pack of Figure 7; Figure 12 is plan view, together with respective side elevations, of the side wall cool pack of Figure 11; Figure 13 is a perspective view of an alternative set of cool packs for the container of Figure 1; Figure 14 is an exploded perspective view of the cool packs of Figure 13; Figure 15 is a perspective view of a side wall cool pack of Figure 13; Figure 16 is plan view, together with respective side elevations, of the side wall cool pack of Figure 15; Figure 17 is an expanded perspective view of a top insulation panel, side wall insulation panel assembly and bottom insulation panel for the container of Figure 1; Figure 18 shows the side wall insulation panel assembly of Figure 17 prior to insertion into the container of Figure 1; Figure 19 is a perspective view of the side wall insulation panel assembly of Figure 18 laid out as a linear array; Figure 20 is a plan view of the insulation panel assembly of Figure 19; Figure 21 is a side elevation of the insulation panel assembly of Figure 20; Figure 22 illustrates the components of the side wall insulation panel assembly of Figures 17 to 21, prior to assembly; and Figures 23 to 25 are top views showing two side wall insulation panels of the side wall insulation panel assembly, of Figures 17 to 21, at various stages as the side wall insulation panels are folded together.
Referring to Figure 1, a thermally insulated shipping container 1 comprises a number of components which, as most clearly seen from the partially cutaway side elevation of Figure 2 and the plan view of Figure 3 (with the lid 13 removed) comprises three layers, indicated generally as a thermally insulating outer casing 2, a cool pack layer 3 comprising a cool pack arrangement in accordance with the present invention and a vacuum insulation panel layer 4 located between the two.
The components 5 to 12 of the thermally insulating outer casing 2 are disclosed and described in greater detail in and with reference to Figures 4 to 6 and the cool packs 29 to 35 forming the cool pack layer 3 are disclosed and described in greater detail in and with reference to Figures 7 to 16. The vacuum insulation panels forming the vacuum insulation panel layer 4, are located as shown in Figures 1 to 3 and comprise six panels 4a to 4f, providing additional insulation between the respective cool packs 4a to 4f and the outer insulation casing 3.
The four insulation panels 4b to 4e are side wall insulation panels and, although not shown in Figures 1 to 3, are assembled into insulation panel assembly as shown in and described with reference to Figures 17 to 25.
Referring now to Figure 4, the thermally insulating outer casing 2, shown in exploded view, comprises eight components each formed from expanded polypropylene (EPP) foam. The eight components comprise a base 5, a first pair of identical opposed walls 6 and 7, a second pair of identical opposed walls 8 and 9, a lid, indicated generally as 13 having an inner portion 10, a locking portion 11 and an outer portion 12.
Each of the second pairs of walls 8 and 9 have a plurality of sockets 14 moulded into both side edges of their outer faces. These engage with plugs 15 which protrude from extension portions 16 on the inward facing side edges of each of the first pairs of walls 6 and 7, only one set of which can be seen in Figure 4.
To assemble the outer casing 2, the second pair of walls 8 and 9 are positioned between respective pairs of extension portions 16 on each of the walls 6 and 7 and moved outwards until the plugs 15 on the walls 6 and 7 engage in the sockets 14 on the walls 8 and 9. Base 5 is then inserted and pushed down between the assembled walls 6 to 9 to the position shown in Figure 5, where it is retained in place by lips 17 and 18. The base locks the bottoms of the walls 6 to 9 in place by preventing walls 8 and 9 moving inwardly. The lid 13, when assembled sits between the walls 6 to 9, being retained in place by a step 20 running along the top edges of the walls 6 to 9. This similarly locks the tops of the walls 6 to 9 in place.
The lid 13, shown in Figure 4, has a locking portion 11 sandwiched between the inner portion 10 of the lid 13 and the outer portion 12 of the lid 13 which inner and outer portions 10 and 12 are fixed together to form the lid 13. The locking portion 11 is rotatably retained in place by a downwardly protruding pin 21, seen in Figure 5, engaging in the aperture 22 in the inner portion of the lid 10 and with the upper protruding portion 23 of the locking portion 11 of the lid engaging in the aperture 24 in the outer portion of the lid 12.
The locking portion 11 has four protrusions 25, which when the locking portion 11 of the lid is rotated to a "locked" position extend beyond the four edges of the lid, engaging with respective slots 26 in the top of the walls 6 to 9, to lock the lid in place, as shown in Figures 5 and 6.
As can be seen most clearly from Figure 5, both the inner portion 10 of the lid 13 and the base 5 have recesses 27 and 28. The vacuum insulation panels 4a and 4f, forming the top and bottom of the vacuum insulation panel layer 4 of Figures 1 to 3, are accommodated in these recesses 27, 28, as shown in Figures 1 and 2. The remaining vacuum insulation panels 4b to 4e, of the outer vacuum, insulation panels 4 are then arranged as an assembly against the inner faces of the four walls 6 to 9 of the outer casing 2.
The thermally insulating outer casing 2, being formed from individually moulded walls 6 to 9 defines an inner space between the walls 6 to 9, which space has parallel vertical sides, which would not normally be possible if the four walls 6 to 9 and base 5 had been moulded as a single piece (for it would normally necessary to have tapered inner walls to permit the casing to be released from a mould tool). The advantage of having parallel inner walls is that they can correctly accommodate both standard rectangular or square vacuum insulation panels 4b to 4e of the vacuum insulation panel assembly discussed below with reference to Figures 7 to 16, keeping both the vacuum panels and cool packs tightly confined in order to minimise convection between adjacent panels or cool packs and to retain a correctly packed product in place.
If desired a stretch film wrap may be provided around three of the assembled walls and 6 to 9 of the outer casing 2, prior to the fourth wall being locked in place and tensioning the film wrap. This may not only assist in keeping the walls of the outer container locked together, especially in the event of the container being dropped or otherwise suffering a major impact, but the wrap may also be pre-printed and thus provides an easy way of customising graphics on the container 1 for a particular customer, or enables the customer to easily apply their own graphics.
Once the outer casing 2 has been assembled, as shown in Figure 5, and the vacuum insulation panels 4b to 4e inserted, the cool packs (once cooled) of Figures 7 to 16 may be inserted therein to form the cool pack layer 3.
The cool pack layer is shown in Figure 7 as it would be arranged in the container 1 of Figure 1. As shown in Figure 8, the cool pack layer 3 comprises only two components types, comprising identical top and bottom cool packs 29 and 30, shown in greater detail in Figures 9 and 10, and four identical side wall cool packs 32 to 35, shown in greater detail in Figures 11 and 12. Each of the cool packs may be formed by standard moulding technique and filled with a water-based material or other phase change material such as paraffin wax, which can subsequently be cooled.
The top and bottom cool packs 29 and 30 will now be described in more detail with reference to Figures 9 and 10. In the following discussion the illustrated cool pack is taken to be the bottom cool pack 30, but the same features are found on the identical top cool pack 29 of Figure 8.
The bottom cool pack 30 of Figure 9 is provided with a step 36 around all four edges, with a fill point cap 37 on one of the edges. Because the cool pack 30 is relatively thin in the region below the step 36, the fill point cap 37 extends above the level of the tread portion of the step 36 and partly protrudes out of the riser portion of the step above the tread portion. In corresponding positions on each of the other three sides of the cool pack 30 there are provided blanking protrusions 38 to 40, the purpose of which is described below.
Referring now to Figures 11 and 12, there is illustrated one side wall cool pack 35, identical to each of the other side wall cool packs 32 to 34. This has flat top and bottom edges 41, 42 perpendicular to the front and rear faces of the cool pack 35 and side edges 43, 44 chamfered at 45° to abut adjacent chamfered side edges 44, 43 of adjacent cool packs, when assembled as shown in Figure 7 inside the container 1 of Figure 1.
Referring again to Figures 11 and 12, each side wall cool pack 32 to 35 has vertical notches 45 formed along the top and bottom edges of its inner face and a small recess 46 in the top or bottom edge 42 and a larger recess 47 formed in the opposite edge 41, in which the fill point cap 48 is accommodated, off-set to one side of the layer recess 47. The notches 45 assist when lifting the side wall cool packs 32 to 34 out of the container. The fill point cap 48 being off-set leaves the recess 47 clear in a midpoint, opposite to the smaller recess 46 in the opposite edge. The side wall cool packs 32 to 35 are readily distinguishable from the top and bottom cool packs 29 and 30 by their chamfered side edges 43, 44 and absence of a step 36. Therefore, when inserting a cool pack layer 3 within the assembled outer casing 2 it is to identify the top and bottom cool packs 29, 30 from the side wall cool packs 32 to 35 and first place one into the base of the outer casing 2 of the container 1 of Figure 1.
Each side wall cool pack 32 to 35, in use, may be located in any of the four side wall positions of Figure 7 and may be mounted with either of its flat edges downwards, as each side wall cool pack 32 to 35, either way up, will accommodate the fill point cap 37 of the bottom cool pack 30. This will either be accommodated in a smaller recess 46 or a larger recess 47 of the respective side wall cool pack 32 to 35.
The riser portion of the step 36 on the bottom cool pack 30, abutting the horizontal flat bottom edge of the side wall cool packs 32 to 35, resists convection of air by providing a double step for any convection currents to negotiate. This double step feature is also present along the top edges of the side wall cool packs 32 to 35, where they engage the step 36 of the top cool pack 29 of Figure 5.
When the cool packs 29 to 34 are assembled, as shown in Figure 7, the protrusions 38 to 40 on the top and bottom cool packs 29 and 30 fit and fill the notches 46 or 47 of the side wall cool packs 32 to 35, (necessary to accommodate fill point cap 37) and restrict the convection through these notches to further prevent convection.
The step 36 on the bottom cool pack 30, being square, as opposed to chamfered, additionally assists in assembly of the side wall cool packs 32 to 35, for the step 36 acts to stop the first side wall cool pack inserted falling inwards before adjacent side wall cool pack 32 to 35 are inserted.
Referring now to Figures 13 to 16, there is shown a slightly modified set of cool packs 49, 50 for use, as the wall portion of the cool pack layer 3 of the container 1 of Figure 1. The top and bottom cool packs 29 and 30 are identical to those disclosed in Figures 7 to 9, but in this embodiment instead of there being four side wall cool packs there are instead only the two identical "double" side wall cool packs 49 and 50. Each of the two side wall cool packs 49 and 50 effectively comprises two side wall cool packs as previously described with reference to Figures 7 to 8 and 11 to 12, but which are joined by a living hinge 31. These can be formed by blow moulding in a conventional manner but with the sides of the moulds being brought together to form a living hinge 31, or the living hinge 31 can be formed by a separate subsequent step in the manufacturing process.
Referring now to Figure 17, this illustrates the components of the vacuum insulation panel layer 4.
The vacuum insulation panel layer 4 comprises a top vacuum insulation panel 4a, a bottom vacuum insulation panel 4f and a vacuum insulation panel assembly 54.
As will be described below with reference to Figures 23 to 25, with this assembly 54, the side wall vacuum insulation panels 4b to 4e may be tightly bound together when in use, as illustrated in Figure 17 and 18, without the need to tape them together. This also provides a vacuum insulation panel assembly 54 that is capable of being easily and quickly inserted into the thermally insulating outer layer 2, once this has been assembled.
The components of the vacuum insulation panel assembly 54 are shown in Figure 22, prior to assembly. These comprise the four side wall insulation panels 4b to 4e and a thin PVC sheet 58. The PVC sheet 58 is shown laid flat with the four side wall vacuum insulation panels 4b to 4e laid thereon with their outer faces uppermost. The PVC sheet is formed with four creases 59 to 62 extending parallel to the top and bottom edges of the sheet 58 and four creases 63 to 66 extending perpendicular to the top and bottom edges of the sheet 58. Each crease is formed so that it acts to fold the sheet to either side of the crease, out of the page as shown in Figure 23.
The sheet 58 has four cut out sections (although they could be formed other than by being cut) 67 to 70, formed between the parallel creases 61 and 62 and four corresponding cut out sections 71 to 74 formed between parallel creases 59 and 60. In addition, cuts 75 to 77 extend between respective pairs of cut out sections 68, 72; 69, 73; and 70, 74 to form four flaps 78 to 81 defined by the respective cuts 75 to 77 or edge of the sheet 58 and respective perpendicular creases 63 to 66. The width of each flap 78 to 81 is the same as the depth of the side wall vacuum insulation panels 4b to 4e, with the perpendicular creases 63 to 66 urging the flaps 78 to 81 vertically, out of the page as shown in Figure 22, so that they lie adjacent to a side edge of a respective vacuum insulation panel 4b to 4e.
The two parallel creases 59 and 60 are also separated by a distance equal to the width of the vacuum insulation panels 4b to 4e, with the two creases together urging the top edge portion of sheet 58 to fold through 180° and wrap over the top edge of the vacuum insulation panels, sandwiching the vacuum insulation panels therebetween.
Creases 61, 62 likewise cause the bottom edge of the sheet 58 to wrap over the bottom edges of the vacuum insulation panels 4b to 4e. Thus, the top and bottom edges of the sheet 58, as shown in Figures 17 to 20, thus now respectively form a top strip 82 and a bottom strip 83, which strips 82, 83 both extend across the outer faces of vacuum insulation panels 4b to 4e. The vacuum insulation panels can optionally then be adhered in place.
Referring now to Figure 23, this shows an edge view of a section of the vacuum insulation panel assembly 54, showing the sheet 58 and two of the vacuum insulation panels 4b and 4c. From Figure 23 it can be seen that in addition to forming top and bottom strips 82 and 83 (only 82 of which is shown) on the outward facing surfaces of vacuum insulation panels 4b to 4e, the sheet 58 also provides covering sections 84 for the inner faces of the vacuum insulation panels 4b to 4e. Respective flaps 78 to 81 form extension portions to the covering sections 84, which wrap around one edge only of the respective vacuum insulation panels 4b to 4e.
As shown in Figures 24 and 25, as adjacent vacuum insulation panels 4b, 4c are folded together, the flap 81 is sandwiched between a side edge of vacuum insulation panel 4b and the side edge of a front face of adjacent vacuum insulation panel 4c, with the top and bottom strips 82 and 83 urging the side edge of vacuum insulation panel 4c against the edge of an inner face of adjacent vacuum insulation panel 4b and maintaining them there, avoiding the need for the vacuum insulation panels 4b, 4c to be subsequently taped together. Once the vacuum insulation panel assembly 54 has been folded together, as shown in Figure 17, the PVC sheet 58 then forms a lining for the inner surfaces of the side wall vacuum insulation panels 4b to 4e. These surfaces are maintained substantially flat by one side edge of the covering section 84 and extension portion, or flaps 78 to 81 forming a right angle and with the opposite edge of each covering section 84 overlapping with and being sandwiched against the respective flap 78 to 81, as shown in Figure 23. Thus each covering section 84 effectively not only covers the inner face of each side wall vacuum insulation panel 4b to 4e, but also extends over the top and bottom edges to form top and bottom strips 82 and 83. Thus the sheet 58 covers all exposed surfaces of the vacuum insulation panels 4b to 4e when they are assembled in the thermal insulating outer casing 2 of container 1 and protects the vacuum insulation panels 4b to 4e when the cool packs are inserted in the container 1.
One embodiment of the present invention has been described by way of example only with reference to the accompanying drawings and it will be apparent that many modifications may be made which fall within the scope of the invention as defined by the appended claims.

Claims (16)

  1. Claims 1. An insulation panel assembly comprising at least two insulation panels for a container and a sheet on which the panels are pre-assembled ready for insertion into the container, wherein the at least two panels are substantially planar, each having: an inner face arranged to in use face inwards towards contents of the container; an outer face arranged to in use face outwards away from the contents of the container; a top edge; a bottom edge and two opposed side edges, wherein the sheet is cut, stamped or formed so that the sheet wraps over at least one of the the top or bottom edges of the panels and has covering sections which respectively cover each inner face of the at least two panels, the sheet also having at least one section in the form of a continuous strip which runs along the outer faces of the at least two panels, wherein the sheet permits the at least two panels to be folded from a flat linear configuration to a configuration where adjacent panels are folded inwardly toward each other until they are substantially at right angles to each other, with the sections of the sheet remaining substantially flat against the inner faces of the panels and with the strip section of the sheet on the outer faces constraining the panels, causing adjacent side edges of the panels to abut or causing a side edge of one panel to abut the edge of the inner face of an adjacent panel.
  2. 2. An assembly as claimed in Claim 1, comprising four insulation panels assembled on the sheet wherein, the sheet with the panels thereon may be folded so that the assembly forms four inner walls for insertion into the container.
  3. 3. An assembly as claimed in Claim 2, wherein the sheet has four covering sections which each covering a respective inner face of the four insulation panels, so that when the assembly is inserted in to a container the four covering sections of the sheet line the four inner walls of the container.
  4. 4. An assembly as claimed in any preceding claim, wherein the sheet is folded over the top and bottom edges of each panel to form two continuous strips which run along the outer faces of the insulation panels at or towards the top and bottom edges of the panels respectively.
  5. 5. An assembly as claimed in any preceding claim, wherein each covering section of the sheet has a main portion arranged to cover the inner face of a respective insulation panel and an extension portion joined at one edge to the main portion, which extension portion extends around one of the side edges of the insulation panel.
  6. 6. An assembly as claimed in any preceding claim, wherein a side edge of each insulation panel abuts an adjacent edge portion of an inner face of an adjacent insulation panel.
  7. 7. An assembly as claimed in Claim 5, wherein a side edge of each insulation panel abuts an adjacent edge portion of an inner face of an adjacent insulation panel and sandwiches the extension portion of the covering section of the adjacent insulation panel between the two insulation panels when the adjacent insulation panels are folded towards each other for insertion into a container.
  8. 8. An assembly as claimed in Claim 5 or 7, wherein each covering section has only one extension portion that extends over only one side edge of the association insulation panel.
  9. 9. An assembly as claimed in any preceding claim, wherein the sheet is formed of a semi-rigid plastics material.
  10. 10. An assembly as claimed in any preceding claim, wherein the sheet is formed from polyvinylchloride.
  11. 11. An assembly as claimed in any preceding claim, wherein the insulation panels are vacuum insulation panels.
  12. 12. A thermally insulated container comprising an insulation panel assembly as claimed in any preceding claim.
  13. 13. A container as claimed in Claim 12, comprising four outer walls and a base formed of expanded foam into which the insulation panel assembly is arranged to be inserted.
  14. 14. A container as claimed in Claim 12 or 13, further comprising a plurality of cool packs arranged to be received inside the insulation panels of the insulation panel assembly.
  15. 15. An insulation panel assembly substantially as hereinbefore described, with reference to, and/or as illustrated in, one or more of the accompanying figures.
  16. 16. An insulated container substantially as hereinbefore described, with reference to, and/or as illustrated in, one or more of the accompanying figures.
GB1501919.3A 2015-02-05 2015-02-05 An insulation panel assembly Active GB2534912B (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
GB1501919.3A GB2534912B (en) 2015-02-05 2015-02-05 An insulation panel assembly
PCT/GB2016/050195 WO2016124892A2 (en) 2015-02-05 2016-01-29 Thermally insulated container assembly
EP17184856.7A EP3290357B1 (en) 2015-02-05 2016-01-29 Cool pack arrangement for thermally insulated container assembly
EP16702780.4A EP3253682B1 (en) 2015-02-05 2016-01-29 Thermally insulated container assembly
ES17184856T ES2870019T3 (en) 2015-02-05 2016-01-29 Cooling pack arrangement for a thermally insulated canister assembly
ES16702780T ES2891824T3 (en) 2015-02-05 2016-01-29 Thermal Insulated Vessel Assembly
US15/548,823 US10816256B2 (en) 2015-02-05 2016-01-29 Thermally insulated container assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1501919.3A GB2534912B (en) 2015-02-05 2015-02-05 An insulation panel assembly

Publications (3)

Publication Number Publication Date
GB201501919D0 GB201501919D0 (en) 2015-03-25
GB2534912A true GB2534912A (en) 2016-08-10
GB2534912B GB2534912B (en) 2021-05-26

Family

ID=52746178

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1501919.3A Active GB2534912B (en) 2015-02-05 2015-02-05 An insulation panel assembly

Country Status (1)

Country Link
GB (1) GB2534912B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114026375A (en) * 2019-06-17 2022-02-08 松下知识产权经营株式会社 Constant temperature container
US20230322466A1 (en) * 2020-05-05 2023-10-12 Pratt Retail Specialties, Llc Hinged wrap insulated container

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210664A (en) * 2006-02-13 2007-08-23 Sekisui Plastics Co Ltd Developable container
GB2445414A (en) * 2007-01-04 2008-07-09 Softbox Systems Ltd Flat pack container
WO2010032726A1 (en) * 2008-09-17 2010-03-25 日本電気株式会社 Sample-and-hold circuit and method for controlling same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210664A (en) * 2006-02-13 2007-08-23 Sekisui Plastics Co Ltd Developable container
GB2445414A (en) * 2007-01-04 2008-07-09 Softbox Systems Ltd Flat pack container
WO2010032726A1 (en) * 2008-09-17 2010-03-25 日本電気株式会社 Sample-and-hold circuit and method for controlling same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114026375A (en) * 2019-06-17 2022-02-08 松下知识产权经营株式会社 Constant temperature container
CN114026375B (en) * 2019-06-17 2023-07-18 松下知识产权经营株式会社 Constant temperature container
US20230322466A1 (en) * 2020-05-05 2023-10-12 Pratt Retail Specialties, Llc Hinged wrap insulated container
US11975910B2 (en) * 2020-05-05 2024-05-07 Pratt Retail Specialties, Llc Hinged wrap insulated container
US11999553B2 (en) * 2020-05-05 2024-06-04 Pratt Retail Specialties, Llc Hinged wrap insulated container

Also Published As

Publication number Publication date
GB201501919D0 (en) 2015-03-25
GB2534912B (en) 2021-05-26

Similar Documents

Publication Publication Date Title
EP3253682B1 (en) Thermally insulated container assembly
US20210292078A1 (en) Thermally insulated container
US9429350B2 (en) Shipping box system with multiple insulation layers
US9045278B2 (en) Insulated shipping container and method of making the same
AU2020203763B2 (en) Method for making a thermally insulated container
US9366469B2 (en) Temperature controlled box system
US5924302A (en) Insulated shipping container
KR101917643B1 (en) Packing box that can keep warm and cold and its manufacturing method
US20090095798A1 (en) Container for transporting cooled goods
US9272811B1 (en) Temperature controlled pallet shipper
KR20200015422A (en) Pallet container for transport of temparature-sensitive products
GB2534912A (en) An insulation panel assembly
GB2534909A (en) A cool pack arrangement
WO2017211257A1 (en) Temperature maintaining packaging system, temperature maintaining packaging device, and packaging method
GB2534911A (en) A cool pack arrangement
GB2534908A (en) A cool pack
US10168090B1 (en) Temperature controlled box system
GB2535149A (en) A thermally insulated container
GB2536407A (en) A lid for a thermally insulated container
WO2017033731A1 (en) Cool box
US20160236847A1 (en) Container With Ventilation Chamber