GB2523200A - Control system and method - Google Patents
Control system and method Download PDFInfo
- Publication number
- GB2523200A GB2523200A GB1402881.5A GB201402881A GB2523200A GB 2523200 A GB2523200 A GB 2523200A GB 201402881 A GB201402881 A GB 201402881A GB 2523200 A GB2523200 A GB 2523200A
- Authority
- GB
- United Kingdom
- Prior art keywords
- torque
- control system
- vehicle
- controller
- mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000009467 reduction Effects 0.000 claims abstract description 68
- 238000004590 computer program Methods 0.000 claims abstract description 9
- 230000006870 function Effects 0.000 claims description 84
- 230000007704 transition Effects 0.000 claims description 29
- 230000004044 response Effects 0.000 claims description 21
- 230000005540 biological transmission Effects 0.000 description 19
- 230000003247 decreasing effect Effects 0.000 description 8
- 230000000881 depressing effect Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 239000007858 starting material Substances 0.000 description 6
- 230000000994 depressogenic effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- 244000025254 Cannabis sativa Species 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005562 fading Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 241000764238 Isis Species 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000012508 change request Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical group 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000000126 substance Chemical group 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K31/00—Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
- B60K31/02—Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
- B60W10/184—Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
- B60W30/143—Speed control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/06—Road conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0062—Adapting control system settings
- B60W2050/0075—Automatic parameter input, automatic initialising or calibrating means
- B60W2050/0095—Automatic control mode change
- B60W2050/0096—Control during transition between modes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/18—Braking system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/083—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/083—Torque
- B60W2710/085—Torque change rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/18—Braking system
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
A system comprises a first controller, e.g. a low-speed progress controller (LSP) 12, operable to assume a plurality of states. In one or more first states the first controller 12 is configured to generate a torque control signal so that a first torque control system develops drive torque which causes a vehicle 100 to operate in accordance with a target speed value. In one or more second states the first controller 12 is configured not to request the amount of positive torque applied by the first torque control system. When the first controller 12 switches from a first state to a second state the first controller causes a reduction, over time, in an amount of any torque that the torque control signal is causing the first torque control system to apply to one or more wheels. Reference is also made to a method, a carrier medium, a computer program, a processor and a computer readable medium.
Description
CONTROL SYSTEM AND METHOD
INCORPORATION BY REFERENCE
The content of UK patent applications GB2492748, GB2492655 and G02499252 is incorporated herein by reference.
TECHNICAL FIELD
The present invention relates to vehicle speed control systems. In particular but not exclusively the invention relates to monitoring of vehicle speed control systems to ensure correct operation.
BACKGROUND
In known vehicle speed control systems, typically referred to as cruise control systems, the vehicle speed is maintained on-road once set by the user without further intervention by the user so as to improve the driving experience for the user by reducing workload.
With typical cruise control systems, the user selects a speed at which the vehicle is to be maintained, referred to as a set-speed, and the vehicle is maintained at a target speed that is set equal to the set-speed for as long as the user does not apply a brake or, in the case of a vehicle having a manual transmission, depress a clutch pedal. The cruise control system takes its speed signal from a driveshaft speed sensor or wheel speed sensors. When the brake or the clutch is depressed, the cruise control system is disabled so that the user can override the cruise control system to change the vehicle speed without resistance from the system. If the user depresses the accelerator pedal by a sufficient amount the vehicle speed will increase, but once the user removes his foot from the accelerator pedal the vehicle reverts to the pre-set cruise speed (set-speed) by coasting.
Such systems are usually operable only above a certain speed, typically around 15-20kph, and are ideal in circumstances in which the vehicle is travelling in steady traffic conditions, and particularly on highways or motorways. In congested traffic conditions, however, where vehicle speed tends to vary widely, cruise control systems are ineffective, and especially where the systems are inoperable because of a minimum speed requirement. A minimum speed requirement is often imposed on cruise control systems so as to reduce the likelihood of low speed collision, for example when parking. Such systems are therefore ineffective in certain driving conditions (e.g. low speed) and are set to be automatically disabled in circumstances in which a user may not consider it to be desirable to do so.
More sophisticated cruise control systems are integrated into the engine management system and may include an adaptive functionality which takes into account the distance to the vehicle in front using a radar-based system. For example, the vehicle may be provided with a forward-looking radar detection system so that the speed and distance of the vehicle in front is detected and a safe following speed and distance is maintained automatically without the need for user input. If the lead vehicle slows down, or another object is detected by the radar detection system, the system sends a signal to the engine or the braking system to slow the vehicle down accordingly, to maintain a safe following distance.
Known cruise control systems also cancel in the event that a wheel slip event is detected requiring intervention by a traction control system (TC system or TCS) or stability control system (SOS). Accordingly, they are not well suited to maintaining vehicle progress when driving in off road conditions where such events may be relatively common.
It is an aim of embodiments of the present invention to address disadvantages associated
with the prior art.
SUMMARY OF THE INV[NTION
Embodiments of the invention may be understood with reference to the appended claims.
Aspects of the present invention provide a system, a vehicle and a method.
In one aspect of the invention for which protection is sought there is provided a system comprising: a first controller operable to assume ore of a plurality of respective states, in each of a predetermined one or more first states the first controller being configured automatically to generate a torque control signal to request an amount of positive torque applied by at least a first torque control system to one or more wheels of a vehicle and cause a vehicle to operate in accordance with a target speed value, and in each of a predetermined one or more second states the first controller being configured not to request by means of the torque control signal the amount of positive torque applied by the first torque control system to one or more wheels, wherein when the first controller switches from a first state to a second state the first controller is configured to cause a reduction, over time, in an amount of any torque that the torque control signal is causing the first torque control system to apply to one or more wheels.
Optionally the system may be configured wherein said torque reduction over time is at a rate according to a predetermined one of a plurality of respective different torque reduction functions.
This feature has the advantage that the first controller can use one predetermined torque reduction function under certain conditions, and another predetermined torque reduction function under certain other conditions, to determine a rate, optionally as a function of time, at which the amount of torque applied by the first torque control system is reduced.
By request is meant that the first controller generates the first torque control signal so as to vary or regulate the amount of positive torque applied by the first torque control system.
The torque control signal may be configured to request, above a baseline value the amount of torque applied by at least the first torque control system to one or more wheels of a vehicle. The baseline value may be dependent on one or more parameters such as vehicle speed. In the case of a powertrain the baseline value may be a function at least in part of a powertrain gear ratio.
The torque control signal may comprise a signal corresponding to a virtual accelerator pedal position. That is, the torque control signal may comprise a signal corresponding to a position of an accelerator pedal with respect to a predetermined range of travel of the accelerator pedal, in order to provide an indication of a required amount of positive drive torque. The system may be configured to cause a powertrain to deliver an amount of positive torque according to the torque control signal.
It is to be understood that the controller or controllers described herein may comprise a control unit or computational device having one or more electronic processors. The system may comprise a single control unit or electronic controller or alternatively different functions of the controller may be embodied in, or hosted in, different control units or controllers. As used herein the term "control unit" will be understood to include both a single control unit or controller and a plurality of control units or controllers collectively operating to provide the stated control functionality. A set of instructions could be provided which, when executed, cause said computational device to implement the control techniques described herein. The set of instructions could be embedded in said one or more electronic processors.
Alternatively, the set of instructions could be provided as software to be executed on said computational device. The controller may be implemented in software run on one or more processors. One or more other controllers may be implemented in software run on one or more processors, optionally the same one or more processors as the controller. Other arrangements are also useful.
Optionally the system may be configured wherein when in each said at least one predetermined one or more first states and each said at least one predetermined one or more second states the first controller is further configured to request by means of the torque control signal an amount of negative torque applied by said first torque control system to one or more wheels of a vehicle and cause a vehicle to operate in accordance with a target speed value.
The first torque control system may comprise a powertrain. The powertrain may comprise an engine such as an internal combustion engine. Alternatively or in addition the powertrain may comprise an electric machine. The powertrain may be operable to deliver positive or negative torque to one or more wheels as required. Negative torque may be delivered by engine overrun braking, or by operating an electric machine as a generator.
Optionally the system may be configured wherein when in each said at least one predetermined one or more first states and each said at least one predetermined one or more second states the first controller is further configured to request by means of the torque control signal an amount of negative torque applied by a second torque control system to one or more wheels of a vehicle and cause a vehicle to operate in accordance with a target speed value.
Thus the predetermined one or more first states may be states in which only the first torque control system is controlled by the first controller to cause a vehicle to operate in accordance with the target speed value. In contrast, the predetermined one or more second states may be states in which the amount of torque applied by the first, or both the first and the second, torque control systems to one or more wheels is requested by the first controller to cause a vehicle to operate in accordance with the target speed value.
Optionally the system may be configured wherein the first torque control system comprises a powertrain and the second torque control system comprises a braking system.
Optionally the system may be configured wherein the first torque control system comprises an electric machine.
Optionally the system may be configured wherein the first controller is further configured to assume one of a predetermined one or more third states, wherein in each said at least one predetermined third state the first controller is configured not to request by means of the torque control signal the amount of positive or negative torque applied to one or more wheels.
The at least one predetermined third state may correspond to an off state of the controller.
The controller may be a speed controller. The controller may be hosted in an electronic control unit (ECU) such as a braking system ECU such as an anti-lock braking system (ABS) ECU.
Optionally the system may be configured wherein when the first controller switches from the first state or the second state to said third state the first controller is configured to cause a reduction, over time, in an amount of any torque that the torque control signal is causing the first torque control system, or the second torque control system, to apply to one or more wheels.
Optionally the system may be configured wherein the torque reduction function is configured to cause a reduction in the amount of torque that the first or second torque control system is requested to apply according to a predetermined ramp function.
Optionally the system may be configured wherein the torque reduction function is one of a substantially linear ramp function, and a substantially non-linear ramp function.
Optionally the system may be configured wherein the torque reduction function comprises a substantially linear portion and a substantially non-linear portion.
Optionally the system may be configured wherein the torque reduction function comprises at least a portion substantially in the form of an S-curve.
Optionally the system may be configured wherein the predetermined one of the plurality of torque reduction functions is selected in dependence at least in part on whether the first controller switches from the first state to the second state in response to a state switch request signal received from a user or a state switch request signal generated automatically by the system.
By system-generated state switch signal is meant that the signal causing the switch in state is generated by the system independently of any state switch of state change request signal received from a user. The system-generated state switch signal may be generated by the first controller or by separate means, for example by means of a separate controller.
By a state switch request signal received from a user is meant a state switch request signal received from a user in response to user actuation of a control input such as a button, lever, rocker switch or the like. Other arrangements may also be useful.
Optionally the system may be configured wherein at least one of said torque reduction functions comprising a first one of the plurality of predetermined torque reduction functions is configured to cause a reduction in the amount of torque that the first or second torque control system is requested to deliver from a given first value to substantially zero over a first positive time period, and wherein said plurality of predetermined torque reduction functions further includes a second torque reduction function configured to cause a reduction in the amount of torque that the first or second torque control system is requested to deliver from a given first value to substantially zero over a second time period that is shorter than the first.
Thus, the second predetermined torque reduction function may be configured to cause the amount of torque that the first torque control system is caused to deliver to reduce to substantially zero over a time period that is shorter than if the first predetermined torque reduction function were employed.
Optionally the system may be configured wherein the second torque reduction function is configured to cause a substantially instant reduction in the amount of torque that the first or second torque control system is requested to apply.
U
By substantially instant is meant that the second torque reduction function reduces the amount of torque that the first or second torque control system is commanded to deliver to zero substantially instantly, i.e. substantially as quickly as the first controller is capable of reducing the amount of torque requested. In some embodiments the amount of torque requested may be reduced by setting the amount of requested torque to the desired value, such as substantially zero, substantially instantaneously, i.e. a binary switch from the prevailing torque request to substantially zero, rather than via a plurality of ntermediate, gradually decreasing torque requests from the prevailing torque request value to substantially zero. This may for example be an emergency response of the system in the case that a catastrophic system failure is detected.
Optionally the system may be configured wherein if the first controller transitions from the first state to the second state, or from either the first or the second state to the third state, in response to a state switch request signal received from a user the system is configured to cause a reduction in the amount of requested torque according to the first one of the plurality of predetermined torque reduction functions.
Optionally the system may be configured wherein if the first controller transitions from the first state to the second state, or from either the first or the second state to the third state, automatically in response to a system-generated state switch signal the system is configured to cause a reduction in the amount of requested torque according to the first one of the plurality of predetermined torque reduction functions.
Thus, in the event the transition from the first state to the second state is in response to a system-generated state switch signal the system may in some instances, for example in the event of a catastrophic system failure, cause a reduction in the amount of torque (positive or negative) that the first or second torque control system is requested to deliver over a shorter time period than in the event the transition is due to a state switch request signal received from a user. In other instances in the event the transition from the first state to the second state is in response to a system-generated state switch signal the system may cause a reduction in the amount of torque that the first or second torque control system is requested to deliver according to the first one of the plurality of predetermined torque reduction functions, i.e. the torque may be reduced over time in the same manner as if a user input state change were initiated.
The reduction may be caused by the first controller, or by another portion of the system.
The first torque control system may be a powertrain. Alternatively the first torque control system may be a braking system. Other systems may be controlled in addition of instead in some embodiments.
Alternatively or in addition the torque control signal may comprise a signal corresponding to a brake pedal position or an amount of brake torque to be developed by a braking system.
The torque control signal may comprise a signal corresponding to an amount of brake pressure to be developed by a braking system to cause application of a brake to one or more wheels.
In one aspect of the invention for which protection is sought there is provided a vehicle comprising a system according to another aspect.
In one aspect of the invention for which protection is sought there is provided a vehicle comprising a chassis, a body attached to said chassis, a plurality of wheels, a powertrain to drive said wheels, a braking system to brake said wheels, and a system according to another aspect.
In one aspect of the invention for which protection is sought there is provided a method of controlling a vehicle by means of a control system comprising causing a first controller to assume one of one or more first states or one of one or more second states, in said one or more first states the method comprising generating automatically a torque control signal to request an amount of positive torque applied by at least a first torque control system to one or more wheels of a vehicle, thereby to cause the vehicle to operate in accordance with a target speed value, in said one or more second states the method comprising not requesting by means of the torque control signal the amount of torque applied by the first torque control system to one or more wheels, whereby when the first controller switches from a first state to a second state the method comprises causing a reduction over time in an amount of any torque that the torque control signal is causing the first torque control system to apply to one or more wheels.
In one aspect of the invention for which protection is sought there is provided a carrier medium carrying computer readable code for controlling a vehicle to carry out the method of another aspect.
In one aspect of the invention for which protection is sought there is provided a computer program product executable on a processor so as to implement the method of another aspect.
In one aspect of the invention for which protection is sought there is provided a computer readable medium loaded with the computer program product of another aspect.
In one aspect of the invention for which protection is sought there is provided a processor arranged to implement the method of another aspect.
Within the scope of this application it is envisaged that the various aspects, embodiments, examples and alternatives, and in particular the individual features thereof, set out in the preceding paragraphs, in the claims and/or in the following description and drawings, may be taken independently or in any combination. For example features described in connection with one embodiment are applicable to all embodiments, unless such features are incompatible.
For the avoidance of doubt, it is to be understood that features described with respect to one aspect of the invention may be included within any other aspect of the invention, alone or in appropriate combination with one or more other features.
BRIEF DESCRIPTION OF THE DRAWINGS
One or more embodiments of the invention will now be described, by way of example only, with reference to the accompanying figures in which: FIGURE 1 is a schematic illustration of a vehicle according to an embodment of the invention in plan view; FIGURE 2 shows the vehicle of FIG. 1 in side view; FIGURE 3 is a high level schematic diagram of an embodiment of the vehicle speed control system of the present invention, including a cruise control system and a low-speed progress control system; FIGURE 4 is a schematic diagram of further features of the vehicle speed control system in FIG. 3; FIGURE 5 illustrates a steering wheel and brake and accelerator pedals of a vehicle according to an embodiment of the present invention; FIGURE 6 is a schematic illustration of a known key fob for use with the vehicle of FIG. 1; and FIGURE 7 is a plot of brake pressure P_Brk and powertrain torque PT_TO as a function of time during a transition from one LSP control system operating mode to another less functional operating mode.
DETAILED DESCRIPTION
References herein to a block such as a function block are to be understood to include reference to software code for performing the function or action specified which may be an output that is provided responsive to one or more inputs. The code may be in the form of a software routine or function called by a main computer program, or may be code forming part of a flow of code not being a separate routine or function. Reference to function block is made for ease of explanation of the manner of operation of embodiments of the present invention.
FIG. 1 shows a vehicle 100 according to an embodiment of the present invention. The vehicle 100 has a powertrain 129 that includes an engine 121 that is connected to a driveline 130 having an automatic transmission 124. It is to be understood that embodiments of the present invention are also suitable for use in vehicles with manual transmissions, continuously variable transmissions or any other suitable transmission.
In the embodiment of FIG. 1 the transmission 124 may be set to one of a plurality of transmission operating modes, being a park mode P, a reverse mode R, a neutral mode N, a drive mode D or a sport mode 5, by means of a transmission mode selector dial 1245.
The selector dial 124S provides an output signal to a powertrain controller 11 in response to which the powertrain controller 11 causes the transmission 124 to operate in accordance with the selected transmission mode.
The driveline 130 is arranged to drive a pair of front vehicle wheels 111,112 by means of a front differential 137 and a pair of front drive shafts 118. The driveline 130 also comprises an auxiliary driveline portion 131 arranged to drive a pair of rear wheels 114, 115 by means of an auxiliary driveshaft or prop-shaft 132, a rear differential 135 and a pair of rear driveshafts 139. The front wheels 111, 112 in combination with the front drive shafts 118 and front differential 137 may be referred to as a front axle 136F. The rear wheels 114, 115 in combination with rear drive shafts 139 and rear differential 135 may be referred to as a rear axle 136R.
The wheels 111, 112, 114, 115 each have a respective brake 111B, 112B, 114B, 115B.
Respective speed sensors ills, 1125, 1145, 1155 are associated with each wheel 111, 112, 114, 115 of the vehicle 100. The sensors ills, 1125, 1145, 1155 are mounted to a chassis 100C of the vehicle 100 and arranged to measure a speed of the corresponding wheel.
Embodiments of the invention are suitable for use with vehicles in which the transmission is arranged to drive only a pair of front wheels or only a pair of rear wheels (i.e. front wheel drive vehicles or rear wheel drive vehicles) or selectable two wheel drive/four wheel drive vehicles. In the embodiment of FIG. 1 the transmission 124 is releasably connectable to the auxiliary driveline portion 131 by means of a power transfer unit (PTU) 131P, allowing operation in a two wheel drive mode or a four wheel drive mode. It is to be understood that embodiments of the invention may be suitable for vehicles having more than four wheels or where only two wheels are driven, for example two wheels of a three wheeled vehicle or four wheeled vehicle or a vehicle with more than four wheels.
A control system for the vehicle engine 121 includes a central controller 10, referred to as a vehicle control unit (VCU) 10, the powertrain controller ii, a brake controller 13 and a steering controller 170C. The brake controller 13 is an anti-lock braking system (ABS) controller 13 and forms part of a braking system 22 (FIG. 3). The VCU 10 receives and outputs a plurality of signals to and from various sensors and subsystems (not shown) provided on the vehicle. The VCU 10 includes a low-speed progress (LSP) control system 12 shown in FIG. 3, a stability control system (SCS) 14S, a traction control system (TCS) 14T, a cruise control system 16 and a Hill Descent Control (HDC) system 12HD. The SOS 14S improves stability of the vehicle 100 by detecting and managing loss of traction when cornering. When a reduction in steering control is detected, the SOS 14S is configured automatically to command a brake controller 13 to apply one or more brakes 111B, 112B, 114B, 11SB of the vehicle 100 to help to steer the vehicle 100 in the direction the user wishes to travel. If excessive wheel spin is detected, the 105 14S is configured to reduce wheel spin by application of brake force in combination with a reduction in powertrain drive torque. In the embodiment shown the SOS 14S and 105 141 are implemented by the VOU 10. In some alternative embodiments the SOS 14S and/or TOS 141 may be implemented by the brake controller 13. Further alternatively, the SOS 14S and/or 105 14T may be implemented by separate controllers.
Similarly, one or more of the controllers 10, 11, 13, 1700 may be implemented in software run on a respective one or more computing devices such as one or more electronic control units (EOU5). In some embodiments two or more controllers may be implemented in software run on one or more common computing devices. Two or more controllers may be implemented in software in the form of a combined software module, or a plurality of respective modules each implementing only one controller.
One or more computing devices may be configured to permit a plurality of software modules to be run on the same computing device without interference between the modules. For example the computing devices may be configured to allow the modules to run such that if execution of software code embodying one module terminates erroneously, or the computing device enters an unintended endless loop in respect of one of the modules, it does not affect execution by one or more computing devices of software code comprised by a software module embodying the second controller.
It is to be understood that one or more of the controllers 10, 11, 13, 1700 may be configured to have substantially no single point failure modes, i.e. one or more of the controllers may have dual or multiple redundancy. It is to be understood that robust partitioning technologies are known for enabling redundancy to be introduced, such as technologies enabling isolation of software modules being executed on a common computing device. It is to be understood that the common computing device will typically comprise at least one microprocessor, optionally a plurality of processors, which may operate in parallel with one another. In some embodiments a monitor may be provided, the monitor being optionally implemented in software code and configured to raise an alert in the event a software module is determined to have malfunctioned.
The SOS 14S, TCS 141, ABS controller 220 and HDC system 12HD provide outputs indicative of, for example, SOS activity, 105 activity and ABS activity including brake interventions on individual wheels and engine torque requests from the VCU 10 to the engine 121, for example in the event a wheel slip event occurs. Each of the aforementioned events indicate that a wheel slip event has occurred. Other vehicle sub-systems such as a roll stability control system or the like may also be present.
As noted above the vehicle 100 includes a cruise control system 16 which is operable to automatically maintain vehicle speed at a selected speed when the vehicle is travelling at speeds in excess of 25 kph. The cruise control system 16 is provided with a cruise control HMI (human machine interface) 18 by which means the user can input a target vehicle speed to the cruise control system 16 in a known manner. In one embodiment of the invention, cruise control system input controls are mounted to a steering wheel 171 (FIG. 5).
The cruise control system 16 may be switched on by pressing a cruise control system selector button 176. When the cruise control system iSis switched on, depression of a set-speed' control 173 sets the current value of a cruise control set-speed parameter, cruise_set-speed to the current vehicle speed. Depression of a -i-' button 174 allows the value of cruise_set-speed to be increased whilst depression of a -button 175 allows the value of cruse_set-speed to be decreased. A resume button 173R is provided that is operable to control the cruise control system 16 to resume speed control at the instant value of cruise_set-speed following driver over-ride. It is to be understood that known on-highway cruise control systems including the present system 16 are configured so that, in the event that the user depresses the brake or, in the case of vehicles with a manual transmission, a clutch pedal, the cruise control function is cancelled and the vehicle 100 reverts to a manual mode of operation which requires accelerator pedal input by a user in order to maintain vehicle speed. In addition, detection of a wheel slip event, as may be initiated by a loss of traction, also has the effect of cancelling the cruise control function. speed control by the system 16 is resumed if the driver subsequently depresses the resume button 173R.
The cruise control system 16 monitors vehicle speed and any deviation from the target vehicle speed is adjusted automatically so that the vehicle speed is maintained at a substantially constant value, typically in excess of 25 kph. In other words, the cruise control system is ineffective at speeds lower than 25 kph. The cruise control HMI 18 may also be configured to provide an alert to the user about the status of the cruise control system 16 via a visual display of the HMI 18. In the present embodiment the cruise control system 16 is configured to allow the value of cruise_set-speed to be set to any value in the range 25-1 5Okph.
The LSP control system 12 also provides a speed-based control system for the user which enables the user to select a very low target speed at which the vehicle can progress without any pedal inputs being required by the user. Low-speed speed control (or progress control) functionality is not provided by the on-highway cruise control system 16 which operates only at speeds above 25 kph.
The LSP control system 12 is activated by means of a LSP control system selector button 172 mounted on the steering wheel 171. The system 12 is operable to apply selective powertrain, traction control and braking actions to one or more wheels of the vehicle 100, collectively or individually, to maintain the vehicle 100 at the desired speed.
The LSP control system 12 is configured to allow a user to input a desired value of set-speed parameter, LSP_set-speed to the LSP control system 12 via a low-speed progress control HMI (LSP HMI) 20 (FIG. 1, FIG. 3) which shares certain input buttons 173-175 with the cruise control system 16 and HDC control system 12HD. Provided the vehicle speed is within the allowable range of operation of the LSP control system (which is the range from 2 to 3Okph in the present embodiment although other ranges are also useful) the LSP control system 12 controls vehicle speed in accordance with the value of LSP_set-speed. Unlike the cruise control system 16, the LSP control system 12 is configured to operate independently of the occurrence of a traction event. That is, the LSP control system 12 does not cancel speed control upon detection of wheel slip. Rather, the LSP control system 12 actively manages vehicle behaviour when slip is detected.
The LSP control HMI 20 is provided in the vehicle cabin so as to be readily accessible to the user. The user of the vehicle 100 is able to input to the LSP control system 12! via the LSP HMI 20, an indication of the speed at which the user desires the vehicle to travel (referred to as "the target speed") by means of the set-speed' button 173 and the +7 -buttons 174, in a similar manner to the cruise control system 16. The LSP HMI 20 also includes a visual display upon which information and gudance can be provided to the user about the status of the LSP control system 12.
The LSP control system 12 receives an input from the braking system 22 of the vehicle indicative of the extent to which the user has applied braking by means of the brake pedal 163. The LSP control system 12 also receives an input from an accelerator pedal 161 indicative of the extent to which the user has depressed the accelerator pedal 161. An input is also provided to the LSP control system 12 from the transmission or gearbox 124. This input may include signals representative of, for example, the speed of an output shaft of the gearbox 124, torque converter slip and a gear ratio request. Other inputs to the LSP control system 12 include an input from the cruise control HMI 18 which is representative of the status (ON/OFF) of the cruise control system 16, and an input from the LSP control HMI 20.
The HDC system 12HD is configured to limit vehicle speed when descending a gradient.
When the HDC system 12HD is active, the system 12HD controls the braking system 22 (via brake controller 13) in order to limit vehice speed to a value corresponding to that of a HDC set-speed parameter HDC_set-speed which may be set by a user. The HDC set-speed may also be referred to as an HDC target speed. Provided the user does not override the HDC system by depressing the accelerator pedal when the HDC system 12HD is active, the HDC system 12HD controls the braking system 22 to prevent vehicle speed from exceeding the value of HDC_set-speed. In the present embodiment the HDC system 12HD is not operable to apply positive drive torque. Rather, the HDC system 12HD is only operable to apply negative brake torque by means of the braking system 22.
A HDC system HMI 2OHD is provided by means of which a user may control the HDC system 12HD, including setting the value of HDC_set-speed. An HDC system selector buff on 177 is provided on the steering wheel 171 by means of which a user may activate the HDC system 12HD to control vehicle speed.
As noted above, the HDC system 12HD is operable to allow a user to set a value of HDC set-speed parameter HDC_set-speed and to adjust the value of HDC_set-speed using the same controls as the cruise control system 16 and LSP control system 12. Thus, in the present embodiment, when the HDC system 12HD is controlling vehicle speed, the HDC system set-speed may be increased, decreased or set to an instant speed of the vehicle in a similar manner to the set-speed of the cruise control system 16 and LSP control system 12, using the same control buttons 173, 173R, 174, 175. The HDC system 12HD is operable to allow the value of HDC_set-speed to be set to any value in the range from 2-3Okph.
If the HDC system 12HD is selected when the vehicle 100 is travelling at a speed of 5Okph or less and no other speed control system is in operation, the HDC system 12HD sets the value of HDC_set-speed to a value selected from a look-up table. The value output by the look-up table is determined in dependence on the identity of the currently selected transmission gear, the currently selected PTU gear ratio (HLILO) and the currently selected driving mode. The HDC system 12HD then applies the powertrain 129 and/or braking system 22 to slow the vehicle 100 to the HDC system set-speed provided the driver does not override the HDC system 12HD by depressing the accelerator pedal 161. The HDC system 12HD is configured to slow the vehicle 100 to the set-speed value at a deceleration rate not exceeding a maximum allowable rate although as noted elsewhere the HDC system 12HD is not able to cause positive drive torque to be applied by the powertrain 129 in order to reduce a rate of deceleration of the vehicle 100. The rate is set at 1.25ms-2 in the present embodiment, however other values are also useful. If the user subsequently presses the set-speed' button 173 the HDC system 12HD sets the value of HDC_set-speed to the instant vehicle speed provided the instant speed is 3Okph or less. If the HDC system 12HD is selected when the vehicle 100 is travelling at a speed exceeding 5Okph, the HDC system 12HD ignores the request and provides an indication to the user that the request has been ignored.
In the present embodiment the vehicle 100 is configured to assume one of a plurality of power modes PM at a given moment in time. In each power mode the vehicle 100 may be operable to allow a predetermined set of one or more operations to be performed. For example, the vehicle 100 may allow a predetermined one or more vehicle subsystems such as an infotainment system, a windscreen demist subsystem and a windscreen wiper control system to be activated only in a respective one or more predetermined power modes. In one or more of the power modes the vehicle 100 may be configured to inhibit one or more operations, such as turning on of the infotainment system.
The identity of the power mode in which the vehicle 100 is to operate at a given moment in time is transmitted to each controller 10, 11, 12, 13, 14, 16, 12HD, of the vehice 100 by the central controller 10. The controllers respond by assuming a predetermined state associated with that power mode and that controller. In the present embodiment each controller may assume an ON state in which the controller is configured to execute computer program code associated with that controller, and an OFF state in which supply of power to the controller is terminated. In the present embodiment, the central controller 10 is also operable to assume a quiescent state. The quiescent state is assumed by the central controller 10 when the vehicle is in power mode PMO and the controller 10 has confirmed that the other controllers 11, 12, 13, 14, 16, 12HD have successfully assumed the OFF state following receipt of the command to assume power mode PMO.
In the present embodiment the vehicle 100 is provided with a known key fob 190 (FIG. 6) that has a radio frequency identification device (RFID) 190R embedded therein. The key fob has first and second control buttons 191, 192. The key fob 100 is configured to generate a respective electromagnetic signal in response to depression of the first or second control buttons 191, 192. The central controller 10 detects the electromagnetic signal by means of a receiver module forming part of the controller 10 and triggers locking or unlocking of door locks 182L of the vehicle 100. Each door 1000 of the vehicle 100 is provided with a respective door lock 182L as shown in FIG. 2.
Pressing of the first control button 191 generates a door unlock signal, which triggers unlocking of the door locks 182L, whilst pressing of the second control button 192 triggers a door lock signal, which triggers locking of the door locks 182L.
When the controller 10 is in the quiescent state, consumption of power by the central controller 10 is reduced and the controller 10 monitors receipt of a door unlock signal from the key fob 190. It is to be understood that in some embodiments one or more vehicle controllers may be configured to remain in the ON or quiescent state, to allow one or more essential functions to be performed, when the vehicle is in power mode PMO. For example in vehicles fitted with an intruder alarm system an intruder alarm controller may be permitted to remain in the ON or a quiescent state pending detection of an intrusion. Upon detection of an intrusion the intruder alarm controller may cause the central controller 10 to assume the ON state if it is not already in that state.
The central controller 10 is also configured to transmit a radio frequency (RF) nterrogation' signal that causes the RFID device 190R of the key fob 190 to generate an RF acknowledgement' signal in response to receipt of the interrogation signal. In the present embodiment the RFID device 190R is a passive device, not requiring battery power in order to generate the acknowledgement signal. The controller 10 is configured to detect the acknowledgment signal transmitted by the RFID device 190R provided the RFID device 190R is within range. By the term within range' is meant that the RFID device 190F1 or fob 190 is sufficiently close to the controller 10 to receive the interrogation signal and generate an acknowledgement signal that is detectable by the controller 10.
The vehicle 100 is also provided with a start/stop button 181. The start/stop button 181 is configured to transmit a signal to the central controller 10 when pressed in order to trigger an engine start operation, provided certain predetermined conditions are met. In response to pressing of the start/stop button 181 the central controller 10 causes the vehicle 100 to be placed in a condition in which if the transmission 124 is subsequently placed in the forward driving mode D or reverse driving mode ft the vehicle 100 may be driven by depressing accelerator pedal 161. In the present embodiment, the central controller 10 is configured to perform a pre-start verification operation before commanding the powertrain controller 11 to trigger an engine start operation. In performing the pre-start verification operation the controller 10 verifies (a) that the vehicle 100 is in a predetermined power mode as described in more detail below, (b) that the controller 10 is receiving an acknowledgement signal from the key fob 190 in response to transmission of the interrogation signal by the controller 10, and (c) that the transmission 124 is in either the park P or neutral N modes. Thus, the controller 10 requires that the RFID device 190R is within range of the controler 10 before permitting an engine start. If any of conditions (a) to (c) are not met the controller causes the vehicle 100 to remain in its current power mode.
It is to be understood that the central controller 10 is configured to cause the vehicle 100 to assume a predetermined one of a plurality of power modes in dependence at least in part on actuation of a control button 191, 192 of the key fob 190 and actuation of the start/stop button 181. In some embodiments the vehicle 100 may be configured such that the central controller 10 responds to voice commands from a user in addition to or instead of signals received from the key fob 190.
The various power modes in which the vehicle 100 of the embodiment of FIG. 1 may be operated will now be described. As noted above, the key fob 190 is operable to cause the door locks 182L of the vehicle 100 to be locked and unlocked. When the doors lOUD of the vehicle 100 (FIG. 2) are closed and the locks 182L are in the locked condition, the vehicle 100 assumes power mode PMO.
If the first button 191 of the key fob 190 is subsequently actuated, the controller 10 causes the door locks 182L to assume the unlocked condition. Once the door locks 182L are in the unlocked condition and the controller 10 detects the acknowledgement signal from the key fob 190, the controller 10 causes the vehicle 100 to assume power mode PM4. In power mode PM4 the controller 10 permits a predetermined number of electrical systems to become active, including an infotainment system. Power mode PM4 may also be referred to as a convenience mode or accessory mode. If a user subsequently presses the second button 192 of the key fob 190, the controller 10 causes the vehicle 100 to revert to power mode PMO.
If, whilst the vehicle is in power mode PM4 a user presses the starter button 181 and maintains the button 181 in a depressed condition, the controller 10 performs the pre-start verification operation described above. Provided conditions (a) to (c) of the pre-start verification operation are met, the controller 10 places the vehicle 100 in power mode PMS.
When the vehicle 100 is in power mode PMB the powertrain controller 11 is permitted to activate a starter device. In the present embodiment the starter device is a starter motor 121M. The powertrain controller 11 is then commanded to perform an engine start operation in which the engine 121 is cranked by means of the starter motor 121M to cause the engine 121 to start. Once the controller 10 determines that the engine 121 is running, the controller 10 places the vehicle 100 in power mode PM7.
In power mode PM6 the controller 10 disables certain non-critical electrical systems including the infotainment system. This is at least in part so as to reduce the magnitude of the electrical load on a battery bOB of the vehicle during cranking in order to permit an increase in the amount of electrical current available for engine starting. Isolation of non-critical electrical systems also reduces a risk of damage to the systems when a relatively large current drain is placed on the battery 1000 by the starter motor 121 M. If whilst the vehicle is in power mode PM7, with the engine 121 running, a user again actuates the start/stop button 181, the controller 10 causes the powertrain controller 11 to switch off the engine 121 and the controller 10 causes the vehicle 100 to transition to power mode PM4. A user may then cause the vehicle to assume power mode PMO by pressing the first button 191 of the key fob 190 provided each of the doors 100D is closed. It is to be understood that in some embodiments the user may trigger assumption of power mode PMO whilst remaining in the vehicle 100 and locking the doors 181 by means of the key fob 190.
In some embodiments the vehicle 100 may be configured to assume power mode PMO regardless of whether the controller is receiving the acknowledgement signal from the key fob 190. Other arrangements are also useful.
It is to be understood that assumption of power mode PMO by the vehicle 100 may be referred to as key off', whilst assumption of power mode PM4 from power mode PMO may be referred to as key on'. A sequence of transitions of the vehicle from power mode PMO to PM4, and back to power mode PMO, optionally including one or more transitions to power mode PMS and power mode PM7 prior to assumption of power mode PMO, may be referred to as a key cycle'. Thus a key cycle begins and ends with the vehicle 100 in power mode PMO. In some embodiments, assumption of power mode PM6 or PM7 from power mode PMO may be required in order to complete a key cycle, starting with power mode PMO.
It is to be understood that the VCU 10 is configured to implement a known Terrain Response (TR) (RTM) System of the kind described above in which the VCU 10 controls settings of one or more vehicle systems or sub-systems such as the powertrain controller 11 in dependence on a selected driving mode. The driving mode may be selected by a user by means of a driving mode selector 141S (FIG. 1). The driving modes may also be referred to as terrain modes, terrain response modes, or control modes. In the embodiment of FIG. 1 four driving modes are provided: an on-highway' driving mode suitable for driving on a relatively hard, smooth driving surface where a relatively high surface coefficient of friction exists between the driving surface and wheels of the vehicle; a sand' driving mode suitable for driving over sandy terrain; a grass, gravel or snow' driving mode suitable for driving over grass, gravel or snow, a rock crawl' driving mode suitable for driving slowly over a rocky surface; and a mud and ruts' driving mode suitable for driving in muddy, rutted terrain.
Other driving modes may be provided in addition or instead.
In the present embodiment, at any given moment in time the LSP control system 12 is in one of a plurality of allowable on' modes (also referred to as conditions or states) selected from amongst an active or full function (FF) mode, a descent control (DC) mode, also referred to as an intermediate mode and a standby mode. The LSP control system may also assume an off' mode or condition. The active mode, DC mode and standby mode may be considered to be different on' modes or conditions of the vehicle, i.e. different modes in which the LSP control system is in an on' mode or condition as opposed to an off' mode or condition. In the off condition the LSP control system 12 only responds to pressing of the LSP selector button 172, which causes the LSP control system 12 to assume the on condition and the DC mode. When the LSP control system 12 assumes the on mode from the off mode in response to pressing of the LSP selector button, the value of LSP_set-speed is set to the instant speed of the vehicle 100 provided it is in the allowable range of speeds for operation of the LSP control system 12. If the vehicle speed 100 is above this range the value of LSP_set-speed is set to the highest allowable speed for operation of the LSP control system 12, i.e. 3okph.
In the active or full function mode, the LSP control system 12 actively manages vehicle speed in accordance with the value of LSP set-speed, LSP_set-speed, by causing the application of positive powertrain drive torque to one or more driving wheels or negative braking system torque to one or more braked wheels.
In the DC mode the LSP control system 12 operates in a similar manner to that in which it operates when in the active mode except that the LSP control system 12 is prevented from commanding the application of positive drive torque by means of the powertrain 129.
Rather, only braking torque may be applied, by means of the braking system 22 and/or powertrain 129. The LSP control system 12 is configured to increase or decrease the amount of brake torque applied to one or more wheels in order to cause the vehicle to maintain the LSP set-speed to the extent possible without application of positive drive torque. It is to be understood that, in the present embodiment, operation of the LSP control system 12 in the DC mode is very similar to operation of the HDC system 12HD, except that the LSP control system 12 continues to employ the LSP control system 12 set-speed value LSP_set-speed rather than the HDC control system set-speed value HDC_set-speed.
In the standby mode, the LSP control system 12 is unable to cause application of positive drive torque or negative brake torque to a wheel.
As noted above, in the off' mode the LSP control system 12 is not responsive to any LSP input controls except the LSP control system selector button 172. Pressing of the LSP control system selector button 172 when the system 12 is in the off mode causes the system 12 to assume the on' condition and the DC mode.
When the LSP control system 12 is initially switched on by means of the LSP selector button 172, the LSP control system 12 assumes the DC mode.
If whilst in DC mode the set + button 174 is pressed, the LSP control system 12 sets the value of LSP_set-speed to the instant value of vehicle speed according to vehicle speed signal 36 (FIG. 4, discussed in more detail below) and assumes the active mode. If the vehicle speed is above 3Okph, being the maximum allowable value of LSP_set-speed, the LSP control system 12 remains in the DC mode and ignores the request to assume the active mode. A signal may be provided to the driver indicating that the LSP control system 12 cannot be activated due to the vehicle speed exceeding the maximum allowable value of LSP_set-speed. The signal may be provided by means of a text message provided on the LSP control HMI 18, by means of an indicator lamp, an audible alert or any other suitable means.
If the resume button 173R is depressed whilst in the DC mode, the LSP control system assumes the active mode and causes the vehicle to operate in accordance with the stored value of LSP_set-speed provided the vehicle speed does not exceed Sokph.
If vehicle speed is above Sokph but less than or substantially equal to Sokph when the resume button 173R is pressed the LSP control system 12 remains in the DC mode until vehicle speed falls below 3okph. In the DC mode, provided the driver does not depress the accelerator pedal 161 the LSP control system 12 deploys the braking system 22 to slow the vehicle 100 to a value of set-speed corresponding to the value of parameter LSP_set-speed.
Once the vehicle speed falls to 3okph or below, the LSP control system 12 assumes the active mode in which it is operable to cause a required amount of positive powertrain drive torque to be applied to one or more wheels via the powertrain 129, as well as negative torque via the powertrain 129 (via engine braking) and brake torque via the braking system 22 in order to control the vehicle in accordance with the LSP_set-speed value. The LSP control system 12 may generate a virtual accelerator pedal signal in order to cause the powertrainl29 to develop a required amount of powertrain torque in some embodiments.
The virtual accelerator pedal signal may correspond to that which would be generated by an accelerator pedal controller in response to depression of the accelerator pedal 161 by an amount corresponding to the amount of powertrain torque required at a given moment in time. The accelerator pedal controller may form part of a powertrain controller 11 although other arrangements are also useful.
With the LSP control system 12 in the active mode, the user may increase or decrease the value of LSP_set-speed by means of the + and -buttons 174, 175. In addition, the user may optionally also increase or decrease the value of LSP_ set-speed by lightly pressing the accelerator or brake pedals 161, 163 respectively. In some embodiments, with the LSP control system 12 in the active mode the + and -buttons 174, 175 may be disabled such that adjustment of the value of LSP_set-speed can only be made by means of the accelerator and brake pedals 161, 163. This latter feature may prevent unintentional changes in set-speed from occurring, for example due to accidental pressing of one of the -i-' or -buttons 174, 175. Accidental pressing may occur for example when negotiating difficult terrain where relatively large and frequent changes in steering angle may be required. Other arrangements are also useful.
It is to be understood that in the present embodiment the LSP control system 12 is operable to cause the vehicle to travel in accordance with a value of set-speed in the range from 2- 3okph whilst the cruise control system is operable to cause the vehicle to travel in accordance with a value of set-speed in the range from 25-l5Okph although other values are also useful, such as 30-l2Okph or any other suitable range of values.
It is to be understood that if the LSP control system 12 is in the active mode, operation of the cruise control system 16 is inhibited. The two speed control systems 12, 16 therefore operate independently of one another, so that only one can be operable at any one time.
In some embodiments, the cruise control HMI 18 and the LSP control HMI 20 may be configured within the same hardware so that, for example, the speed selection is input via the same hardware, with one or more separate switches being provided to switch between the LSP control HMI 20 and the cruise control HMI 18.
When in the active mode, the LSP control system 12 is configured to command application of positive powertrain torque and negative brake torque, as required, by transmitting a request for (positive) drive torque in the form of a powertrain torque signal and/or a request for (negative) brake torque in the form of a brake torque signal to the brake controller 13.
The brake controller 13 arbitrates any demand for positive powertrain torque, determining whether the request for positive powertrain torque is allowable. If a request for positive powertrain torque is allowable the brake controller 13 issues the request to the powertrain controller 11. In some embodiments, the request for brake torque may correspond to an amount of brake torque (or brake fluid pressure) to be developed by the braking system 22.
In some alternative embodiments the request for brake torque may be for an amount of negative torque to be applied to one or more wheels. The brake controller 13 may in some embodiments determined whether the requested negative torque is to be supplied by means of powertrain braking alone, for example engine overrun braking, by means of powertrain braking and brake torque developed by the braking system 22, or by means of the braking system 22 alone. In some embodiments the brake controller 13 or LSP control system 12 may be configured to cause a required amount of net negative torque to be applied to one or more wheels by applying negative torque by means of the braking system 22 against positive drive torque generated by the powertrain 129. Application of positive drive torque generated by means of the powertrain 129 against negative brake torque generated by means of the braking system 22 may be made in order to reduce wheel flare when driving on surfaces of relatively low surface coefficient of friction such as during off-road driving. By wheel flare is meant excessive wheel slip as a result of the application of excess positive net torque to a wheel.
In the present embodiment the brake controller 13 also receives from the LSP control system 12 a signal S_mode indicative of the mode in which the LSP control system 12 is operating, i.e. whether the LSP control system 12 is operating in the active mode, DC mode, standby mode or off mode.
If the brake controller 13 receives a signal S_mode indicating that the LSP control system 12 is operating in the DC mode, standby mode or off mode, the brake controller 13 sets a powertrain torque request inhibit flag in a memory thereof. The powertrain torque request inhibit flag indicates that positive torque requests to the powertrain controller 11 from the brake controNer 13 in response to positive torque requests from the LSP control system 12 are forbidden. Accordingly, if a request for positive powertrain torque is received by the brake controller 13 from the LSP control system 12 whilst the LSP control system 12 is operating in the DC mode, standby mode or off mode, the positive torque request is ignored by the brake controller 13.
In some embodiments, the powertrain controller 11 is also provided with signal S_mode indicating the mode in which the LSP control system 12 is operating. If the LSP control system 12 is operating in a mode other than the active mode, such as the DC mode, standby mode or off mode, positive powertrain torque requests received as a consequence of a command from the LSP control system 12 are ignored by the powertrain controller 11.
In some embodiments, if the powertrain controller 11 receives a request for positive powertrain torque from the brake controller 13 as a consequence of a command from the LSP control system 12 and the request is received more than a predetermined period after the LSP control system 12 has transitioned to a mode other than the active mode, the powertrain controller 11 causes the LSP control system 12 to assume a disabled off mode.
In the disabled off mode the LSP control system 12 is effectively locked into the off condition or mode for the remainder of the current key cycle and the LSP control system 12 does not assume the DC mode in response to pressing of the LSP selector button 172. The predetermined period may be any suitable period such as 5Oms, lOOms, 500ms, bOOms or any other suitable period. The period may be set to a value such that any delay in receipt of a positive torque request issued by the LSP control system 12 immediately prior to a transition from the active mode to a mode other than the active mode (and in which positive torque requests are not permitted) that is consistent with normal system operation will not trigger a transition to the disabled off mode. However, the powertrain controller 11 is configured such that any request for positive powertrain torque received by the powertrain controller 11 as a consequence of a request issued by the LSP control system 12 after assuming a mode other than the active mode (and in which positive torque requests are not permitted) will trigger a transition to the disabled off mode.
It is to be understood that other arrangements may also be useful. For example, in some embodiments, in the disabled off mode the LSP control system 12 may be configured not to respond to the LSP selector button 172 by assuming the DC mode until after the vehicle has transitioned from power mode PM7 to power mode PM4. As described above, a transition from power mode PM7 to power mode PM4 may be accomplished by depressing the start/stop button 124S. When the vehicle 100 is subsequently restarted and assumes power mode PM7, the LSP control system 12 may be permitted to assume operation in the active mode as required.
It is to be understood that some vehicles may be provided with known automatic engine stop/start functionality. In vehicles with this functionality, the powertrain controller 11 is configured to command stopping and starting of the engine 121 according to a stop/start control methodology when the vehicle 100 is being held stationary by means of brake pedal 163 with the transmission in the drive mode D. The process of automatically commanding stopping and restarting of the engine 121 may be referred to as an automatic stop/start cycle. In vehicles having automatic engine stop/start functionality, the controller 10 may be configured to cause the vehicle 100 to assume a power mode PM6A when the engine 121 is stopped during a stop/start cycle. Power mode PM6A is similar to power mode 6, except that disabling of certain vehicle systems such as the infotainment system is not performed when in power mode PM6A. In power mode PM6A, the powertrain controller 11 is configured to restart the engine 121 upon receipt of a signal indicating a user has released the brake pedal 163. It is to be understood that in some embodiments, a vehicle 100 may be configured to require an engine restart before the LSP control system 12 may exit the DC fault mode but an engine restart as part of an automatic stop/start cycle may be configured not to qualify as an engine restart permitting the system 12 to exit the DC fault mode. In some embodiments therefore, a transition from power mode PM7 to power mode PM6A and back to power mode PM7 does not permit the LSP control system 12 to exit the disabled off mode.
In some embodiments the LSP control system 12 may be configured such that it can assume one of a number of different further modes such as: (i) DC fault mode (H) DC fault mode fade-out mode (Hi) DC mode fade-out mode (iv) Active standby mode (v) DC standby mode The DC fault mode corresponds to the DC mode except that if the DC fault mode is assumed by the LSP control system 12, the LSP control system 12 is unable subsequently to assume the active mode for the remainder of the current key cycle. Thus, when the next key-on procedure is performed, following the next key-oft procedure, the LSP control system 12 is permitted to assume the active mode when required. The vehicle 100 may be configured wherein the LSP control system 12 may assume the DC fault mode if a fault is detected indicating that the LSP control system 12 should not be permitted to request positive powertrain drive torque but where it is determined that it may be desrable for the benefits of DC mode to be enjoyed. Thus a transition from active mode to DC fault mode may be preferable to a transition to the off mode, particularly when negotiating off road conditions, in the event of a relatively minor fault in respect of the LSP control system 12.
In some embodiments, if a transition to DC fault mode occurs with more than a predetermined frequency, the LSP control system 12 may become latched in the DC fault mode until a reset procedure is performed requiring action other than a key-off and subsequent key-on procedure in order to permit the active mode to be assumed again. In some embodiments, the LSP control system 12 may require a predetermined code to be provided to t. In some embodiments, the LSP control system 12 may be configured to receive the code via a computing device external to the vehicle 100 that temporarily communicates with the LSP control system 12 in order to provide the code. The computing device may be a device maintained by a vehicle servicing organisation such as a dealer certified by a manufacturer of the vehicle 100. The computing device may be in the form of a laptop or other computing device, and be configured to communicate wirelessly with the LSP control system 12 or via a wired connection.
The predetermined frequency may be defined in terms of a predetermined number of occurrences in a predetermined number of key cycles, or a predetermined distance driven, or be time based such as a predetermined number of occurrences in a predetermined period in which the vehicle is in power mode 7 (or power mode GA in addition to power mode 7, in the case of a vehicle with stop/start functionality) over one or more key cycles, or a predetermined number of occurrences in a given calendar period, such as a day, a week, a month or any other suitable frequency.
The DC fault mode fade-out mode is a mode assumed by the LSP control system 12 when transitioning from the DC fault mode to an off mode such as disabled off, unless an immediate (binary') transition to an off mode is required in which case the DC fault mode fade-out mode is not assumed. Thus, under certain conditions, rather than abruptly terminate commanding application of brake torque by means of the braking system 22 when ceasing operation in the DC fault mode and transitioning to an off mode such as off' or disabled off', the LSP control system 12 gradually fades out the application ot any brake torque applied by the braking system 22 as a consequence of being in the DC fault mode, before assuming the off or disabled off mode. This is at least in part so as to allow a driver time to adapt to driving without the system 12 applying brake torque automatically.
FIG. 7 illustrates two different torque reduction functions employed in the present embodiment to cause a reduction in the pressure P_Brk of brake fluid in the braking system 22 causing application of a brake to one or more wheels.
A first function, function Fl, is referred to herein as a binary' or relative abrupt torque reduction function. This function reduces the amount of brake pressure P_Brk substantially instantly, the amount of brake pressure decreasing to substantially zero over a relative short time period tl. The length of ti may be determined in some embodiments by a speed of one or more electronic control units implementing the LSP control system 12 including any delays associated with signal transmissions from one controller or device to another. The value of tl may be a few ms, a few tens of ms, a few hundreds of ms, of the order of is, or any other suitable value. The value of ti may depend on the value of PBrk in some embodiments as discussed below.
A second function, function F2, is referred to herein as a fade-out torque reduction function.
This function reduces the amount of brake pressure P_Brk in a more gradual manner, the amount of brake pressure or torque requested decreasing to substantially zero over a longer time period t2, where t2>tl. In the present embodiment, ti is approximately is and t2 is approximately 4s in the case of a brake pressure value P_Brk of 4obar although other values of tl and t2 are also useful. In some embodiments t2 may be 5 to 10 times longer than tl, or at least 100 times longer than tl. Other values may also be useful.
In the present embodiment, when a gradual fade-out of brake pressure (and hence of brake torque applied by the braking system 22) is required, for example during operation in DC fault mode fade out mode, the LSP control system 12 causes the amount of brake torque or iO brake pressure requested by the LSP contro system 12 to reduce over time according to function F2 of FIG. 7. It is to be understood that in the present embodiment the value of t2 is a function of the amount of brake pressure P_Brk being applied by the braking system 22 when it is required to fade out the amount of brake torque the LSP control system 12 is causing to be applied. The value of t2 may be longer for larger values of P_Brk. iS
Similarly, if the LSP control system 12 transtions from the DC mode to a less functional mode in which the LSP control system 12 is unable to command application of brake torque such as the standby mode, off mode or disabled off mode, the LSP control system 12 may assume the DC fade-out mode as an intermediate mode. In the DC fade-out mode, like the DC fault mode fade-out mode, the LSP control system 12 gradually reduces the amount of any brake torque commanded by the LSP control system 12 according to function F2 of FIG. 7, before assuming the target mode such as standby mode, off mode or disabled off mode.
The active standby mode is a mode assumed by the LSP control system 12 from the active mode if the driver over-rides the LSP control system 12 by depressing the accelerator pedal 161 to increase vehicle speed. lithe driver subsequently releases the accelerator pedal with vehicle speed within the allowable range for the LSP control system 12 to operate in the active mode (i.e. a speed in the range 2-3okph), the LSP control system 12 resumes operation in the active mode.
The DC standby mode is a mode assumed by the LSP control system i2 if whilst operating in the DC mode the driver over-rides the LSP control system 12 by depressing the accelerator pedal 161. If the driver subsequently releases the accelerator pedal, then when vehicle speed is within the allowable range for the LSP control system 12 to operate in the DC mode (i.e. a speed in the range 2-3okph), the LSP control system 12 resumes operation in the DC mode. Other arrangements are also useful. In some embodiments the LSP control system 12 may be configured to assume DC mode from the DC standby mode and cause application of brake torque to slow the vehicle 100 when a driver releases the accelerator pedal 161 even at speeds above 3Okph. In some embodiments the LSP control system 12 may be configured to cause application of brake torque at speeds of up to 5okph, Bokph or any other suitable speed in order to cause vehicle speed to reduce to the LSP target speed LSP_set-speed. The LSP control system 12 may be configured to take into account negative torque applied by a powertrain due for example to engine over-run braking in determining an amount of brake torque required in order to cause a vehicle to slow at a desired rate. The LSP control system 12 may be configured to cause a vehicle to slow at a desired rate according to a predetermined deceleration profile.
In some embodiments, if the powertrain controller 11 receives a request for positive powertrain torque from the brake controller 13 as a consequence of a command from the LSP control system 12 and the LSP control system 12 is in the DC mode, the powertrain controller 11 causes the LSP control system 12 to assume the DC fault mode if the positive torque request is received more than a predetermined period after the LSP control system 12 has transitioned to the DC mode. As noted above, in the DC fault mode the LSP control system 12 is permitted to cause application of brake torque by the braking system 22 to control vehicle speed but is prevented from assuming the active or FF mode for the remainder of the current key cycle. In these circumstances, the LSP control system 12 assumes the DC fault mode substantially immediately with no requirement to blend the transition between the DC mode and DC fault mode.
As noted above, the predetermined period may be any suitable period such as SUms, lOOms, SOOms, bOOms or any other suitable period. The period may be set to a value such that any inherent system delay in receipt by the powertrain controller 11 of a torque request from the brake controller 13 as a consequence of a request issued by the LSP control system 12 prior to a transition from the actve mode to the DC mode will not trigger a transition to the DC fault mode. It is to be understood that by inherent system delay is meant a delay in signal receipt that occurs during normal operation, for example due to a requirement to synchronise timing signals, or to transmit commands from the LSP control system 12 to the powertrain controller 11 at predetermined intervals as part of an inter-controller communications protocol.
In some embodiments, if the powertrain controller 11 receives a request for positive powertrain torque from the brake controller 13 as a consequence of a command from the LSP control system 12 and the LSP control system 12 is in the DC fault mode or DC fault mode fade out mode only, the powertrain controller 11 causes the LSP control system 12 to assume the disabled off mode if the positive torque request is received more than a predetermined period after the LSP control system 12 has transitioned to the DC fault mode or DC fault mode fade out mode. In the present embodiment the predetermined period is a period of 500ms. However the predetermined period may be any suitable period such as 5Oms, lOOms, boOms or any other suitable period. The LSP control system 12 may be configured substantially abruptly to terminate application of any negative (brake) torque requested by the LSP control system 12 when the transition to the disabled off mode is commanded even if the system 12 is in the processes of fading out any negative brake torque that is being applied as a result of a request issued by the LSP control system 12.
Thus, the LSP control system 12 may cause a reduction in the amount of any brake pressure P_Brk according to function Fl of FIG. 7 rather than function F2. If the LSP control system 12 is already reducing the amount of torque according to function F2, the system 12 may switch to function Fl for the remainder of the reduction in P_Brk.
In some embodiments, in addition or instead, if the powertrain controller 11 receives a request for positive powertrain torque from the brake controller 13 as a consequence of a command from the LSP control system 12 and the signal S_mode indicates that the LSP control system 12 is in the DC mode, DC standby mode, DC mode fade-out mode or active standby mode, the powertrain controller 11 causes the LSP control system 12 to assume the disabled off mode if the positive torque request is received over a sustained period of more than a predetermined period. In the present embodiment the predetermined period is substantially SOOms. However the predetermined period may be any suitable period such as lOOms, bOOms or any other suitable period. The LSP control system 12 is configured gradually to cause fade-out of any negative (brake) torque being applied as a consequence of a command from the LSP control system 12 when the transition to the disabled off mode is commanded, i.e. to employ function F2 of FIG. 7 to define the requested brake pressure or brake torque as a function of time. The fade-out of brake torque may be accomplished by assuming the DC mode fade-out mode or DC fault mode fade-out mode if they have not already been assumed.
In some embodiments, the LSP control system 12 is caused to assume the disabled off mode if the powertrain controller 11 receives a request for positive powertrain torque from the brake controller 13 as a consequence of a command from the LSP control system 12 and signal S_mode indicates that the LSP control system 12 is in the DC fault mode or DC fault mode fade-out mode, as well as when the signal indicates the LSP control system 12 is in the DC mode, DC standby mode, DC mode fade-out mode or active standby mode.
It is to be understood that in some embodiments, as described above, instead of gradually fading out negative brake torque, the LSP control system 12 may be configured to abruptly terminate application of any negative brake torque as a consequence of a command by the LSP control system 12, for example according to function Fl of FIG. 7. Thus, if a request for positive powertrain torque is received over a sustained period of more than the predetermined period when the LSP control system 12 is in the DC mode, DC standby mode, DC fault mode, DC mode fade-out mode, DC fault mode fade-out mode or active standby mode the system may abruptly terminate application of brake torque caused by the LSP control system 12. It is to be understood that the braking system 12 continues to respond to driver brake commands via the brake pedal 163.
It is to be understood that in the present embodiment if a driver switches off the LSP control system 12 manually, the LSP control system 12 is configured gradually to cause fade-out of any negative (brake) torque being applied as a consequence of a command from the LSP control system 12 according to function F2 of FIG. 7. This feature has the advantage that vehicle composure may be enhanced.
It is to be further understood that the LSP control system 12 may be configured to control the rate at which a request for positive powertrain torque is reduced in the event of a transition of the LSP control system 12 from the active mode to a less functional state, i.e. a state in which positive powertrain torque requests are not permitted by the LSP control system 12, in dependence on the reason for the transition.
As shown in FIG. 7, the two functions Fl and F2 may also represent powertrain torque request PT_TO as a function of time. However it is to be understood that the functions used to determine the rate of powertrain torque reduction PT_TO may be different from the functions used to determine the rate of brake pressure or brake torque reduction in some embodiments.
The amount of powertrain torque PT_TO may be reduced according to function Fl under certain circumstances in which the LSP control system 12 determines automatically that a transition from the active mode to another mode such as DC mode or an off mode is required. For example, in the event the LSP control system 12 is in the active mode and the LSP control system 12 determines that a rate of acceleration of the vehicle 100 exceeds a maximum rate allowable whilst the LSP control system 12 is in the active mode, the system 12 may cause the system 12 to assume the DC fault mode. The system may reduce the amount of any positive powertrain drive torque that the system 12 is requesting when the transition to the DC fault mode is caused in a substantially abrupt, binary manner. Thus in some embodiments the LSP control system 12 may employ function Fl to reduce the amount of positive powertrain torque requested.
It is to be understood that in implementing function Fl the system 12 may simply set the amount of any powertrain torque requested by the system 12 to zero substantially immediately.
Similarly, if the system 12 is in the active mode and the system 12 detects that a driver has depressed the brake pedal 163, the system 12 may implement function Fl by setting the amount of any powertrain torque requested by the system 12 to zero substantially immediately.
In contrast, in the event that a user switches the LSP control system 12 to an off condition by means of LSP selector button 172, the system 12 is configured to reduce the amount of any positive powertrain torque requested by the LSP control system 12 at the moment the selector button 172 is pressed, according to function F2. That is, a gradual reduction in requested powertrain torque is made as a function of time.
FIG. 4 illustrates the means by which vehicle speed is controlled in the LSP control system 12. As described above, a speed selected by a user (set-speed) is input to the LSP control system 12 via the LSP control HMI 20. A vehicle speed calculator 34 provides a vehicle speed signal 36 indicative of vehicle speed to the LSP control system 12. The speed calculator 34 determines vehicle speed based on wheel speed signals provided by wheel speed sensors ills, 112S, 114S, 115S. The LSP control system 12 includes a comparator 28 which compares the LSP control system set-speed LSP_set-speed 38 (also referred to as a target speed' 38) selected by the user with the measured speed 36 and provides an output signal 30 indicative of the comparison. The output signal 30 is provided to an evaluator unit 40 of the VCU 10 which interprets the output signal 30 as either a demand for additional torque to be applied to the vehicle wheels 111-115, or for a reduction in torque applied to the vehicle wheels 111-115, depending on whether the vehicle speed needs to be increased or decreased to maintain the speed LSP_set-speed. An increase in torque is generally accomplished by increasing the amount of powertrain torque delivered to a given position of the powertrain, for example an engine output shaft, a wheel or any other suitable location. A decrease in torque at a given wheel to a value that is less positive or more negative may be accomplished by decreasing the amount of any positive powertrain torque delivered to a wheel, by increasing the amount of any negative powertrain torque delivered to a wheel, for example by reducing an amount of air and/or fuel supplied to an engine 121, and/or by increasing a braking force on a wheel. It is to be understood that in some embodiments in which a powertrain 129 has one or more electric machines operable as a generator, negative torque may be applied by the powertrain 129 to one or more wheels by means of the electric machine. As noted above negative torque may also be applied by means of engine braking in some circumstances, depending at least in part on the speed at which the vehicle 100 is moving. If one or more electric machines are provided that are operable as propulsion motors, positive drive torque may be applied by means of the one or more electric machines.
An output 42 from the evaluator unit 40 is provided to the brake controller 13. The brake controller 13 in turn controls a net torque applied to the vehicle wheels 111-115 by commanding application of brake torque via the brakes 1119, 1129, 1149, 1153 and/or positive drive torque by commanding powertrain controller 11 to deliver a required amount of powertrain torque. The net torque may be increased or decreased depending on whether the evaluator unit 40 demands positive or negative torque. In order to cause application of the necessary positive or negative torque to the wheels, the brake controller 13 may command that positive or negative torque is applied to the vehicle wheels by the powertrain 129 and/or that a braking force is applied to the vehicle wheels by the braking system 22, either or both of which may be used to implement the change in torque that is necessary to attain and maintain a required vehicle speed. In the illustrated embodiment the torque is applied to the vehicle wheels individually so as to maintain the vehicle 100 at the required speed, but in another embodiment torque nay be applied to the wheels collectively to maintain the required speed. In some embodiments, the powertrain controller 11 may be operable to control an amount of torque applied to one or more wheels at least in part by controlling a driveline component such as a rear drive unit, front drive unit, differential or any other suitable component. For example, one or more components of the driveUne 130 may include one or more clutches operable to allow an amount of torque applied to wheels of a given axle to be controlled independently of the torque applied to wheels of another axle, and/or the amount of torque applied to one or more individual wheels to be controlled independently of other wheels. Other arrangements are also useful.
Where a powertrain 129 includes one or more electric machines, for example one or more propulsion motors and/or generators, the powertrain controller 11 may be operable to modulate or control the amount of torque applied to one or more wheels at least in part by means of the one or more electric machines.
The LSP control system 12 also receives a signal 48 indicative of a wheel slip event having occurred. This may be the same signal 48 that is supplied to the on-highway cruise control system 18 of the vehicle, and which in the case of the latter triggers an override or inhibit mode of operation of the on-highway cruise control system 16 so that automatic control of vehicle speed by the on-highway cruise control system 16 is suspended or cancelled.
However, the LSP control system 12 is not arranged to cancel or suspend operation in dependence on receipt of a wheel slip signal 48 indicative of wheel slip. Rather, the system 12 is arranged to monitor and subsequently manage wheel slip so as to reduce driver workload. During a slip event, the LSP control system 12 continues to compare the measured vehicle speed with the value of LSP_set-speed, and continues to control automatically the torque applied to the vehicle wheels so as to maintain vehicle speed at the selected value. It is to be understood therefore that the LSP control system 12 is configured differently to the cruise control system 16, for which a wheel slip event has the effect of overriding the cruise control function so that manual operation of the vehicle 100 must be resumed, or speed control by the cruise control system 12 resumed by pressing the resume buff on 173R or set-speed button 173.
In a further embodiment of the present invention (not shown) a wheel slip signal 48 is derived not just from a comparison of wheel speeds, but further refined using sensor data indicative of the vehicle's speed over ground. Such a speed over ground determination may be made via global positioning (GPS) data, or via a vehicle mounted radar or laser based system arranged to determine the relative movement of the vehicle 100 and the ground over which it is travelling. A camera system may be employed for determining speed over ground in some embodiments.
At any stage of the LSP control process the user can override the LSP function by depressing the accelerator pedal 161 and/or brake pedal 163 to adjust the vehicle speed in a positive or negative sense. However, absent any override by a user, in the event that a wheel slip event is detected via signal 48, the LSP control system 12 remains active and control of vehicle speed by the LSP control system 12 is not terminated. As shown in FIG. 4, this may be implemented by providing a wheel slip event signal 48 to the LSP control system 12 which is then managed by the LSP control system 12 and/or brake controller 13.
In the embodiment shown in FIG. 1 the SCS 145 generates the wheel slip event signal 48 and supplies it to the LSP control system 12 and cruise control system 16.
A wheel slip event is triggered when a loss of traction occurs at any one of the vehicle wheels. Wheels and tyres may be more prone to losing traction when travelling for example on snow, ice, mud or sand and/or on steep gradients or cross-slopes. A vehicle 100 may also be more prone to losing traction in environments where the terrain is more uneven or slippery compared with driving on a highway in normal on-road conditions. Embodiments of the present invention therefore find particular benefit when the vehicle 100 is being driven in an off-road environment, or in conditions in which wheel slip may commonly occur. Manual operation in such conditions can be a difficult and often stressful experience for the driver and may result in an uncomfortable ride.
The vehicle 100 is also provided with additional sensors (not shown) which are representative of a variety of different parameters associated with vehicle motion and status.
The signals from the sensors provide, or are used to calculate, a plurality of driving condition indicators (also referred to as terrain indicators) which are indicative of the nature of the terrain conditions over which the vehicle is travelling. Suitable sensor data may be provided by inertial systems unique to the LSP or HDC control system 12, 12HD or systems that form part of another vehicle sub-system such as an occupant restraint system or any other sub-system which may provide data from sensors such as gyros and/or accelerometers that may be indicative of vehicle body movement and may provide a useful input to the LSP and/or HDC control systems 12, 12HD.
The sensors on the vehicle 100 include sensors which provide continuous sensor outputs to the VCU 10, including wheel speed sensors, as mentioned previously and as shown in FIG. 1, and other sensors (not shown) such as an ambient temperature sensor, an atmospheric pressure sensor, tyre pressure sensors, wheel articulation sensors, gyroscopic sensors to detect vehicular yaw, roll and pitch angle and rate, a vehicle speed sensor, a longitudinal acceleration sensor, an engine torque sensor (or engine torque estimator), a steering angle sensor, a steering wheel speed sensor, a gradient sensor (or gradient estimator), a lateral acceleration sensor which may be part of the SOS 14S, a brake pedal position sensor, a brake pressure sensor, an accelerator pedal position sensor, longitudinal, lateral and vertical motion sensors, and water detection sensors forming part of a vehicle wading assistance system (not shown). In other embodiments, only a selection of the aforementioned sensors may be used. Other sensors may be useful in addition or instead in some embodiments.
The VGU 10 also receives a signal from the steering controller 170G. The steering controller 170C is in the form of an electronic power assisted steering unit (ePAS unit). The steering controller 170C provides a signal to the VCU 10 indicative of the steering force being applied to steerable road wheels 111, 112 of the vehicle 100. This force corresponds to that applied by a user to the steering wheel 171 in combination with steering force generated by the ePAS unit 170C.
The VCU 10 evaluates the various sensor inputs to determine the probability that each of a plurality of different control modes (driving modes) for the vehicle subsystems is appropriate, with each control mode corresponding to a particular terrain type over which the vehicle is travelling (for example, mud and ruts, sand, grass/gravel/snow).
If the user has selected operation of the vehicle in an automatic driving mode selection condition, the VCU 10 then selects the most appropriate one of the control modes and is configured automatically to control the subsystems according to the selected mode. This aspect of the invention is described in further detail in our co-pending patent application nos.
GB2492748, GB2492655 and GB2499252, the contents of each of which is incorporated herein by reference.
The nature of the terrain over which the vehicle is travelling (as determined by reference to the selected control mode) may also be utilised in the LSP control system 12 to determine an appropriate increase or decrease in vehicle speed. For example, it the user selects a value of LSP_set-speed that is not suitable for the nature of the terrain over which the vehicle is travelling, the system 12 is operable to automatically adjust the vehicle speed downwards by reducing the speed of the vehicle wheels. In some cases, for example, the user selected speed may not be achievable or appropriate over certain terrain types, particularly in the case of uneven or rough surfaces. If the system 12 selects a set-speed that differs from the user-selected set-speed, a visual indication of the speed constraint is provided to the user via the LSP HMI 20 to indicate that an alternative speed has been adopted.
Throughout the description and claims of this specification, the words "comprise" and "contain" and variations of the words, for example "comprising" and "comprises", means including but not limited to", and is not intended to (and does not) exclude other moieties, additives, components, integers or steps.
Throughout the description and claims of this specification, the singular encompasses the plural unless the context otherwise requires. In particular, where the indefinite article is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.
Features, integers, characteristics, compounds, chemical moieties or groups described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith.
Claims (25)
- CLAIMS: 1. A system comprising: a first controller operable to assume ore of a plurality of respective states, in each of a predetermined one or more first states the first controller being configured automatically to generate a torque control signal to request an amount of positive torque applied by at least a first torque control system to one or more wheels of a vehicle and cause a vehicle to operate in accordance with a target speed value, and in each of a predetermined one or more second states the first controller being configured not to request by means of the torque control signal the amount of positive torque applied by the first torque control system to one or more wheels, wherein when the first controller switches from a first state to a second state the first controller is configured to cause a reduction, over time, in an amount of any torque that the torque control signal is causing the first torque control system to apply to one or more wheels.
- 2. A system according to any preceding claim wherein said torque reduction over time is at a rate according to a predetermined one of a plurality of respective different torque reduction functions.
- 3. A system according to claim 1 or claim 2 wherein when in each said at least one predetermined one or more first states and each said at least one predetermined one or more second states the first controller is further configured to request by means of the torque control signal an amount of negative torque applied by said first torque control system to one or more wheels of a vehicle and cause a vehicle to operate in accordance with a target speed value.
- 4. A system according to any preceding claim wherein when in each said at least one predetermined one or more first states and each said at least one predetermined one or more second states the first controller is further configured to request by means of the torque control signal an amount of negative torque applied by a second torque control system to one or more wheels of a vehicle and cause a vehicle to operate in accordance with a target speed value.
- 5. A system according to claim 4 wherein the first torque control system comprises a powertrain and the second torque control system comprises a braking system.
- 6. A system according to claim 3 wherein the first torque control system comprises an electric machine.
- 7. A system according to any one of claims 3 to 6 wherein the first controller is further configured to assume one of a predetermined one or mare third states, wherein in each said at least one predetermined third state the first controller is configured not to request by means of the torque control signal the amount of positive or negative torque applied to one or more wheels.
- 8. A system according to claim 7 wherein when the first controller switches from the first state or the second state to said third state the first controller is configured to cause a reduction, over time, in an amount of any torque that the torque control signal is causing the first torque control system, or the second torque control system, to apply to one or more wheels.
- 9. A system according to claim any one of claims 2 to 8 wherein the torque reduction function is configured to cause a reduction in the amount of torque that the first or second torque control system is requested to apply according to a predetermined ramp function.
- 10. A system according to claim 9 wherein the torque reduction function is one of a substantially linear ramp function, and a substantially non-linear ramp function.
- 11. A system according to claim 9 wherein the torque reduction function comprises a substantially linear portion and a substantially non-linear portion.
- 12. A system according to claim 2 or any one of claims 3 to 11 depending through claim 2 wherein the torque reduction function comprses at least a portion substantially in the form of an S-curve.
- 13. A system according to claim 2, or any claim dependant thereon, wherein the predetermined one of the plurality of torque reduction functions is selected in dependence at least in part on whether the first controller switches from the first state to the second state in response to a state switch request signal received from a user or a state switch request signal generated automatically by the system.
- 14. A system according to claim 2, or any claim dependant thereon, wherein at least one of said torque reduction functions comprising a first one of the plurality of predetermined torque reduction functions is configured to cause a reduction in the amount of torque that the first or second torque control system is requested to deliver from a given first value to substantially zero over a first positive time period, and wherein said plurality of predetermined torque reduction functions further includes a second torque reduction function configured to cause a reduction in the amount of torque that the first or second torque control system is requested to deliver from a given first value to substantially zero over a second time period that is shorter than the first.
- 15. A system according to claim 14 wherein the second torque reduction function is configured to cause a substantially instant reduction in the amount of torque that the first or second torque control system is requested to apply.
- 16. A system according to claim 14 or 15 wherein if the first controller transitions from the first state to the second state, or from either the first or the second state to the third state, in response to a state switch request signal received from a user the system is configured to cause a reduction in the amount of requested torque according to the first one of the plurality of predetermined torque reduction functions.
- 17. A system according to claim 16, wheren if the first controller transitions from the first state to the second state, or from either the first or the second state to the third state, automatically in response to a system-generated state switch signal the system is configured to cause a reduction in the amount of requested torque according to the second one of the plurality of predetermined torque reduction functions.
- 18. A vehicle comprising a system according to any preceding claim.
- 19. A vehicle comprising a chassis, a body attached to said chassis, a plurality of wheels, a powertrain to drive said wheels, a braking system to brake said wheels, and a system according to any one of claims 1 to 17.
- 20. A method of controlling a vehicle by means of a control system comprising causing a first controller to assume one of one or more first states or one of one or more second states, in said one or more first states the method comprising generating automatically a torque control signal to request an amount of positive torque applied by at least a first torque control system to one or more wheels of a vehicle, thereby to cause the vehicle to operate in accordance with a target speed value, in said one or more second states the method comprising not requesting by means of the torque control signal the amount of torque applied by the first torque control system to one or more wheels, whereby when the first controller switches from a first state to a second state the method comprises causing a reduction over time in an amount of any torque that the torque control signal is causing the first torque control system to apply to one or more wheels.
- 21. A carrier medium carrying computer readable code for controlling a vehicle to carry out the method of claim 20.
- 22. A computer program product executabe on a processor so as to implement the method of claim 20.
- 23. A computer readable medium loaded with the computer program product of claim 22.
- 24. A processor arranged to implement the method of claim 20, or the computer program product of claim 22.
- 25. A system, vehicle, method, computer program or carrier medium substantially as hereinbefore described with reference to FIG's 1 to 5 and 7 of the accompanying drawings.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1402881.5A GB2523200B (en) | 2014-02-18 | 2014-02-18 | Vehicle speed control system and method |
EP15701027.3A EP3107784B1 (en) | 2014-02-18 | 2015-01-23 | Control system and method |
US15/120,049 US9969262B2 (en) | 2014-02-18 | 2015-01-23 | Control system and method |
PCT/EP2015/051403 WO2015124382A1 (en) | 2014-02-18 | 2015-01-23 | Control system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1402881.5A GB2523200B (en) | 2014-02-18 | 2014-02-18 | Vehicle speed control system and method |
Publications (3)
Publication Number | Publication Date |
---|---|
GB201402881D0 GB201402881D0 (en) | 2014-04-02 |
GB2523200A true GB2523200A (en) | 2015-08-19 |
GB2523200B GB2523200B (en) | 2016-08-31 |
Family
ID=50440367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB1402881.5A Active GB2523200B (en) | 2014-02-18 | 2014-02-18 | Vehicle speed control system and method |
Country Status (4)
Country | Link |
---|---|
US (1) | US9969262B2 (en) |
EP (1) | EP3107784B1 (en) |
GB (1) | GB2523200B (en) |
WO (1) | WO2015124382A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2523203B (en) * | 2014-02-18 | 2017-01-11 | Jaguar Land Rover Ltd | Control System and method |
US10102085B2 (en) * | 2016-08-25 | 2018-10-16 | GM Global Technology Operations LLC | Coordinated multi-mode allocation and runtime switching for systems with dynamic fault-tolerance requirements |
JP2021165048A (en) * | 2018-06-29 | 2021-10-14 | ソニーグループ株式会社 | Information processing device and information processing method |
CN110293971B (en) * | 2019-06-24 | 2021-06-15 | 浙江吉利控股集团有限公司 | Ramp slow descending control method, ramp slow descending control system and vehicle |
CN112208348B (en) * | 2019-07-10 | 2022-05-24 | 北汽福田汽车股份有限公司 | Torque control method and device, storage medium and vehicle-mounted terminal |
CN114056108B (en) * | 2020-07-29 | 2024-02-13 | 上海汽车集团股份有限公司 | Torque control method and related device |
CN113325828A (en) * | 2021-06-09 | 2021-08-31 | 中国第一汽车股份有限公司 | Parking lock controller test method, device and system and storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070061059A1 (en) * | 2005-09-14 | 2007-03-15 | Toyota Jidosha Kabushiki Kaisha | Vehicle controller |
US20100049414A1 (en) * | 2008-08-22 | 2010-02-25 | Fuji Jukogyo Kabushiki Kaisha | Control apparatus for electric vehicle |
US20130197731A1 (en) * | 2012-01-27 | 2013-08-01 | Coda Automotive, Inc. | Hill holding control in an electric vehicle |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6152546A (en) * | 1997-02-12 | 2000-11-28 | General Electric Company | Traction vehicle/wheel slip and slide control |
US8932179B2 (en) * | 2012-05-04 | 2015-01-13 | Ford Global Technologies, Llc | Methods and systems for transitioning between braking modes |
GB2504820B (en) * | 2012-06-07 | 2016-12-28 | Jaguar Land Rover Ltd | Improvements in vehicle steering |
-
2014
- 2014-02-18 GB GB1402881.5A patent/GB2523200B/en active Active
-
2015
- 2015-01-23 EP EP15701027.3A patent/EP3107784B1/en active Active
- 2015-01-23 WO PCT/EP2015/051403 patent/WO2015124382A1/en active Application Filing
- 2015-01-23 US US15/120,049 patent/US9969262B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070061059A1 (en) * | 2005-09-14 | 2007-03-15 | Toyota Jidosha Kabushiki Kaisha | Vehicle controller |
US20100049414A1 (en) * | 2008-08-22 | 2010-02-25 | Fuji Jukogyo Kabushiki Kaisha | Control apparatus for electric vehicle |
US20130197731A1 (en) * | 2012-01-27 | 2013-08-01 | Coda Automotive, Inc. | Hill holding control in an electric vehicle |
Also Published As
Publication number | Publication date |
---|---|
WO2015124382A1 (en) | 2015-08-27 |
US20170066326A1 (en) | 2017-03-09 |
EP3107784B1 (en) | 2020-09-30 |
EP3107784A1 (en) | 2016-12-28 |
US9969262B2 (en) | 2018-05-15 |
GB2523200B (en) | 2016-08-31 |
GB201402881D0 (en) | 2014-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3142911B1 (en) | Vehicle speed control system and method for limiting the rate of acceleration when changing from a first target speed to a second one due to a request from the accelerator pedal | |
US9932034B2 (en) | Control system and method | |
US10173678B2 (en) | Control system and method | |
US10144422B2 (en) | Control system and method | |
US10293827B2 (en) | Control system and method | |
EP3107782B1 (en) | Control system and method | |
EP3107785B1 (en) | Control system and method | |
EP3107784B1 (en) | Control system and method | |
EP3107786B1 (en) | Control system and method |