GB2519407A - Bendable heat exchanger - Google Patents

Bendable heat exchanger Download PDF

Info

Publication number
GB2519407A
GB2519407A GB1414243.4A GB201414243A GB2519407A GB 2519407 A GB2519407 A GB 2519407A GB 201414243 A GB201414243 A GB 201414243A GB 2519407 A GB2519407 A GB 2519407A
Authority
GB
United Kingdom
Prior art keywords
axis
fin
heat exchanger
sheet
slots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB1414243.4A
Other versions
GB201414243D0 (en
Inventor
William E Rhoden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamilton Sundstrand Corp
Original Assignee
Hamilton Sundstrand Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/197,946 external-priority patent/US20150047820A1/en
Application filed by Hamilton Sundstrand Corp filed Critical Hamilton Sundstrand Corp
Publication of GB201414243D0 publication Critical patent/GB201414243D0/en
Publication of GB2519407A publication Critical patent/GB2519407A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/105Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being corrugated elements extending around the tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0021Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for aircrafts or cosmonautics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0026Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for combustion engines, e.g. for gas turbines or for Stirling engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/08Fins with openings, e.g. louvers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2280/00Mounting arrangements; Arrangements for facilitating assembling or disassembling of heat exchanger parts
    • F28F2280/08Tolerance compensating means

Abstract

A heat exchanger fin 30 comprises a sheet of fin material having a first axis x and a second axis y transverse to the first axis. The sheet is formed to define slots 33 along the second axis, and includes corrugations 32 along the second axis. The fin sheet is bendable and able to follow curved contours (110, fig 2), and may be made from metal or metallic alloy. The first axis may be perpendicular to the second axis. The fin may be housed in a frame (20, fig 1), which may be disposed within a duct (11) of an aircraft intake engine having a curved surface (110). The frame has an inlet (21), an outlet (22) and an interior (23) in fluid communication.

Description

BENDABLE HEAT EXChANGER
BACKGROUND OF TIlE INVENTION
The subject matter disclosed herein relates to heat exchangers and, more particularly, to bendable heat exchangers including a slotted fin.
Turbine engines utilize heat exchangers to manage thermal loads for the engine and aircraft. Heat exchangers are lypically rectangular in shape and are fitted as best they can he into an arc sector in a fan duct. The resultant square peg in the round hole configuration leaves the package with unused volume that cannot be utilized by the heat exchanger.
Plate fin air/air heat exchangers present particular issues as at least one or more of the layers cannot be curved because of the orientation of the fins in parallel with the bend curvature. Fins arc made by colTugating a piece of flat sheet metal. And curvature is easily achieved by bending the fins along the corrugation axis. Bending is difficult if not impossible to achieve, however, along the fin backbone. Heating the material to achieve bending is possible but control of the bend is difficult to maintain at tcmpcratures near the melting point of the material.
BRIEF DESCRIPTION OF THE INVENTION
According to one aspect of' the invention, a heat exchanger for disposition within a duct having a curved surface is provided and includes a frame formed to define an inlet, an outlet and an interior by which the inlet and outlet are fluidly communicative, the frame including first and second surfaces having curvatures similar to that of the curved surface on either side of the interior and a heat exchanger fin disposed in the interior, the fin having corrugations and being formed to define slots transverse to the corrugations such that the fin is bendable along the curvatures of the first and second surfaces.
According to another aspect of the invention, a heat exchanger fin is provided and includes a sheet of fin material having a first axis defined along a planned fin backbone and a second axis deFined transversely to the planned fin backbonc. The sheet is formed to deflne slots along the second axis such that the slots are transverse to the first axis and the planned fin backbone and includes corrugations along the second axis and the slots, According to yet another aspect of the invention, a method of assembling a heat exchanger is provided and includes forming fin material into a sheet having a first axis defined along a planned fin backbone and a second axis defined transversely to the planned fin backbone, machining slots in the sheet along the second axis such that the slots arc transverse to the first axis and the planned fin backbone and corrugating the sheet along the second axis to form a colTugated sheet with corrugations provided along the slots.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
BRIEF DESCRIPTION OF' TI-IE DRAWiNGS
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which: FIG. 1 is an axial view of a heat exchanger in a duct in accordance with embodiments; FIG. 2 is a cross-sectional view of the heat exchanger of FIG. 1 taken along line 2-2 of FIG. i; FIG. 3 is a plan view of a sheet of fin material with slots in accordance with embodiments; FIG. 4 is a cross-sectional view of the sheet of FIG. 3 with corrugations; and FIG. 5 is an axial view of the sheet with corrugations and a bend.
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
DETAILED DFSCRIPTION OF TUE INVENTION
A heat exchanger with a potential for fin curvature in either the X or Y direction is provided and may be employed to realize a curved heat exchanger using platefin manufacturing methods. As will be discussed below, a flat piece of sheet metal is machined to enable curvature along the fin backbone axis. Prior to corrugation, cuts are machined perpendicular to the planned fin backbone such that the fin backbone bisects the machined cut. Once the array of cuts are made, the sheet is corrugated using normal processes. The result is a fin that is segmented and capable of being curved into an arc that effectively stretches the fin backbone. Wider cuts can be made into the prc-formed sheet metal to enable curvature toward the fin backbone if desired. The ability to curve fins in both the X and Y axes at the same time enables more efficient utilization of arc sector volumes that exist in engine core and fan ducts today where packaging concerns are a major concern for engine designers.
With reference to FIG, 2, a heat exchanger 1 0 is provided. l'he heat exchanger may be disposed within, for example, a duct 11, such as a duct of an aircraft intake engine. As shown in 11G. 1, the duct 11 has a curved, inward facing surface 110. The curved, inward facing surface 110 may be hut is not required to be cylindrical or at least elongate in an axial direction where the curvature is defined transversely to the axial dimension. In any case, the duct II includes an upstreani section 12, a downstream section 13 and an intermediate section 14, which is fluidly interposed between the upstream section 12 and the downstream section 13, such that the curved, inward facing surface 110 defines a fluid pathway 15. The heat exchanger 10 is disposed within the intermediate section such that fluid flow along the fluid pathway from the upstream section 12 to the downstream section 13 flows through the heat exchanger 10. This flow of fluid through the heat exchanger 10 results in heat transfer between the fluid and another fluid and/or a heat exchanger fin 30 to be described below.
The heat exchanger 1 0 includes a frame 20 and the above-noted heat exchanger fin 30 (see FIGS. 3-5). Ihe frame 20 is formed to deFine an inlet 21, an outlet 22 and an interior 23 by which the inlet 21 and the outlet 22 are fluidly communicative. The frame 20 includes a first surface 24 and a second surface 25 on either side of the interior 23. At least one of the first and second surfaces 24, 25 (i.e., first surface 24) abuts and lies against the curved, inward facing surface 110 of the duct 11 such that the heat exchanger 10 is disposed to extend across at least a portion of a span of the fluid pathway 15. In this position, the heat exchanger 10 is disposed to be receptive of at least a. portion of the fluid flow proceeding through the fluid pathway 15 via the inlet 21 and is further disposed to exhaust the portion of the fluid flow via the outlet 22. Thus, the portion of the fluid flow 15 proceeds through the interior 23 and, in so doing, passes over and thermally communicates with the heat exchanger fin 30.
In order to save space within the duct 11. to increase an aerodynamic performance of the duct 11 and to permit the heat exchanger 10 to Ut tightly within the duct 11 with little to no space between the curved, inward facing surface 110 and the heat exchanger 10, the first surface 24 and, in some cases, the second surface 25 may have a curvature Cjjp that is similar to a curvature CD of the curved, inward facing surface 110 on either side of the interior 23. Thus, the heat exchanger 10 is configured to be inserted and disposed in the duct 11 with little to no space between the heat exchanger 10 and the curved, inward facing surface 110.
With reference to FIGS. 3-5. the heat exchanger fin 30 is disposed in the interior 23. The heat exchanger fin 30 may be formed of a metal, a metaLlic alloy or another thermally conductive material and includes flanges 31 at either longitudinal end thereof and further includes corrugations 32 between the flanges 31. The heat exchanger fin 30 is further formed to define slots 33 that extend along the corrugations 32. As shown in FIG. 4, the flanges 31 may be substantially co-planar and cooperatively establish a baseline z-axis plane of the heat exchanger fin 30. Of course, it is understood that the flanges 31 need not be co-planar with one another and may in such eases establish two different baseline z-axis planes.
The corrugations 32 are folds in the heal exchanger fin 32 that extend in the z-axis from the baseline z-axis plane. As fluid flow proceeds through the interior 23 of the heat exchanger 10, the corrugations 32 aerodynamically interact with the fluid flow to cause turhulation that increases a degree of heat transfer or heat removal front the fluid. Thus, each corrugation 32 includes a first seam 320, a first leg 321, a second seam 322, a second leg 323 and third seam 324. The first, second and third seams 320, 322 and 324 extend in a first or x-axis (see FIG. 3) and are substantially straight. The second seam 322, in particular, may form a fin backbone 40 that extends along the x-axis and is transverse or, in some cases, perpendicular to a second or y-axis and to a third or the z-axis.
The slots 33 are oriented transversely or, in some cases, perpendicularly with respect to the corrugations. The slots 33 extend along the y-axis and are respectively associated with a single corrugation 32. That is, as shown in FIG.3. the left-side corrugation 32 is associated with 18 slots and the right-side corrugation 32 is similarly associated with 18 slots 33. The "left-side slots" do not extend into or otherwise reach or communicate with the "right-side slots" and vice versa. Although the corrugations 32 illustrated in FIG. 3 are each associated with equal numbers of slots 33, it is to he understood that this is not necessary and that each corrugation 32 may be associated with a unique number of slots 33. Ihe unique number of slots 33 may be based on, for example, an amount of curvature required to be accounted Ibr as discussed below.
In a conventional heat exchanger fin that has corrugations but not slots, the corrugations prevent the heat exchanger fin from being bent in the x-axis (or an equivalent axis). In accordance with embodiments, however, and, as shown in FIG. 5, the slots 33 permit the heat exchanger fin 30 to be bendable along the x-axis. As a result of such bending, the tips 34 of the corrugations 32 between adjacent slots 33 separate from one another by a degree that is directly related to an amount the heat
D
exchanger fin 30 is bent. That is, the greater the bending, the greater the separation of the tips 34.
With reference hack to FIG. 2, the heat exchanger fin 30 may be disposable withm the interior 23 of the heat exchanger 10 such that the slots 33 extend longitudinally along the axial dimension of the duct 11 (i.e., in and out of tEe image in FIG. 2) and the corrugations 32 extend radially (i.e., vertically within the plane of the image in FIG. 2).
In accordance with further aspects, a method of assembling the heat exchanger is provided. The method includes forming fin material into a sheet having the first or x-axis defined along the planned fin backbone 40 and the second or y-axis defined transversely to the planned fin backbone 40, machining the slots 33 in the sheet along the second axis such that the slots 33 are transverse to the first axis and the planned fin backbone and forming the corrugations 32. The forming of thc corrugations 32 includes corrugating or folding the sheet along the second axis. Thc method may further include bending the sheet along the first axis such that the sheet can he easily fit into the heat exchanger 10 and the duct 11.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modi fled to incorporate any number of variations, alterations, substitutions or eqi.uvalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspeel.s of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope or the appended claims.
GB1414243.4A 2013-08-14 2014-08-12 Bendable heat exchanger Withdrawn GB2519407A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361865765P 2013-08-14 2013-08-14
US14/197,946 US20150047820A1 (en) 2013-08-14 2014-03-05 Bendable heat exchanger

Publications (2)

Publication Number Publication Date
GB201414243D0 GB201414243D0 (en) 2014-09-24
GB2519407A true GB2519407A (en) 2015-04-22

Family

ID=51629627

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1414243.4A Withdrawn GB2519407A (en) 2013-08-14 2014-08-12 Bendable heat exchanger

Country Status (1)

Country Link
GB (1) GB2519407A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778004A (en) * 1986-12-10 1988-10-18 Peerless Of America Incorporated Heat exchanger assembly with integral fin unit
JPH10160375A (en) * 1996-11-25 1998-06-19 Denso Corp Heat exchanger
US6397931B1 (en) * 2001-02-27 2002-06-04 The United States Of America As Represented By The Secretary Of The Air Force Finned heat exchanger
US20060237173A1 (en) * 2005-04-14 2006-10-26 Calsonic Kansei Corporation Corrugated fin for integrally assembled heat exhangers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778004A (en) * 1986-12-10 1988-10-18 Peerless Of America Incorporated Heat exchanger assembly with integral fin unit
JPH10160375A (en) * 1996-11-25 1998-06-19 Denso Corp Heat exchanger
US6397931B1 (en) * 2001-02-27 2002-06-04 The United States Of America As Represented By The Secretary Of The Air Force Finned heat exchanger
US20060237173A1 (en) * 2005-04-14 2006-10-26 Calsonic Kansei Corporation Corrugated fin for integrally assembled heat exhangers

Also Published As

Publication number Publication date
GB201414243D0 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
US20150047820A1 (en) Bendable heat exchanger
EP3244153B1 (en) Heat exchanger
EP3396294B1 (en) Heat exchanger and method of forming such a heat exchanger
CA2734455C (en) Heat exchanger
JP5821795B2 (en) Heat exchanger
JP6399531B2 (en) Combustor cooling panel, transition piece and combustor including the same, and gas turbine including the combustor
WO2016063312A1 (en) Heat exchanger for aircraft engine
US9714794B2 (en) Heat exchanger tube having fins with varying louver inclination angle
US9915481B2 (en) Fin for heat exchanger
EP2607831A1 (en) A heat exchanger
US20210254896A1 (en) Heat exchanger with undulating plates
WO2014125825A1 (en) Heat exchanger and production method therefor
EP2853851B1 (en) Heat exchanger thermal fatigue stress reduction
US9260191B2 (en) Heat exhanger apparatus including heat transfer surfaces
JP6577282B2 (en) Heat exchanger
GB2519407A (en) Bendable heat exchanger
JP2009139085A (en) Louver type corrugated insert for heat exchanger
JP6028612B2 (en) Heat exchanger and manufacturing method thereof
US20230175791A1 (en) Additively manufactured heat exchanger layer
US9777970B2 (en) Reduced thermal expansion closure bars for a heat exchanger
CN111795216B (en) Mixed flow conduit for an exhaust system
WO2020214902A1 (en) Perturbing air cooled condenser fin

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)