GB2507662A - Axial gas-liquid cyclone separator - Google Patents
Axial gas-liquid cyclone separator Download PDFInfo
- Publication number
- GB2507662A GB2507662A GB201319074A GB201319074A GB2507662A GB 2507662 A GB2507662 A GB 2507662A GB 201319074 A GB201319074 A GB 201319074A GB 201319074 A GB201319074 A GB 201319074A GB 2507662 A GB2507662 A GB 2507662A
- Authority
- GB
- United Kingdom
- Prior art keywords
- tube
- separator
- gas
- liquid
- swirl generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 53
- 238000000926 separation method Methods 0.000 claims abstract description 28
- 230000003068 static effect Effects 0.000 claims abstract description 18
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000005201 scrubbing Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D45/00—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
- B01D45/12—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
- B01D45/16—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04C—APPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
- B04C3/00—Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Cyclones (AREA)
Abstract
An axial gas-liquid cyclone separator 10, comprises a housing 12 having a wet gas inlet 18 and a dry gas outlet 20 aligned along an axis of the housing10, an internal wall section 26 defining within the housing 12, a pre-separation chamber 14 and a main liquid separation chamber 16, an assembly including a static mixer 30 and a swirl generator 34 mounted in a tube 32 extending through the internal wall section 26 with liquid outlets 24 in the main chamber 16 for outlet of liquids separated from the wet gas and a vortex finder 40 mounted between the tube 32 and the dry gas outlet 20. The tube 32 may include drainage slits 36 for the passage of liquid from within the tube 32 to the main chamber 16.
Description
AXIAL GAS-LIQUID CYCLONE SEPARATOR
CROSS REFERENCE TO RELATED APPLICATION
This application claims the benefit of provisional application Serial No 61/720,577, filed October 31, 2012.
BACKGROUND OF THE INVENTION
The invention relates to separation of gas and liquid and, more particularly, to a cyclone separator for gas-liquid separation.
The oil and gas industry faces challenges such as new offshore fields located in harsher environments, at greater distances from shore, in deeper waters, demanding more compact, efficient process facilities, to optimize investment costs and guarantee the economic feasibility of these new projects.
Separation of gas from liquid is an important aspect of these challenges. Brown fields with decaying production experience significant changing process conditions which usually impose constraints in existing facilities. Debottlenecking of these facilities requires process improvements to increase capacity and efficiency, at the same time minimizing any production deferment which could translate into unwanted higher operational costs. Usually there are severe space limitations for solutions to be deployed, demanding such solutions to become more and more compact. The need exists for a compact, high efficiency and high capacity separation technology to address potential gas scrubbing problems in both green and brown fields, and the present invention is an answer to these needs.
SUWARY OF THE INVENTION
According to the invention, an axial gas-liquid cyclone separator has been provided which comprises a housing having a wet gas inlet and a dry gas outlet aligned along an axis of the housing; an internal wall section in the housing and defining, within the housing, a pre-separation chamber and a main liquid separation chamber; an assembly comprising a static mixer and a swirl generator mounted in a tube and extended through the internal wall section; liquid outlets in at least the main chamber for outlet of liquids separated from the wet gas; and a vortex finder mounted between the tube and the dry gas outlet.
The assembly of static mixer and swirl generator is preferably arranged so that the static mixer is positioned to receive flow of wet gas in the pre-separation chamber, and the swirl generator is downstream of the static mixer to induce a swirling flow of the mixed wet gas as desired. The tube in which the static mixer and swirl generator are mounted can advantageously be mounted coaxially with the wet gas inlet and dry gas outlet.
The separator has a flow conditioning or pre-separation section or chamber, a swirl generator section and a segregating or main liquid separation section or chamber with a discharge for gas and liquid phases.
Additional features and advantages of this device are disclosed herein.
The disclosed axial cyclone separator meets the needs identified above.
BRIEF DESCRIPTION OF THE DRAWING
A detailed description of preferred embodiments of the present invention follows, with reference to the attached drawings, wherein: FIG. 1 is a cross sectional view of an axial gas-liquid cyclone separator in accordance with the present invention.
FIG. 2 is a separate illustration of a static mixing element for use in an apparatus according to the invention.
FIG. 3 is an illustration of a swirl generator in accordance with the present invention; FIG. 4 shows a flow conditioning apparatus suitable for use in a separator according to the invention; and FIG. 5 is a further cross sectional view of the separator according to the invention showing wet gas, liquid and dry gas flow there through.
DETAILED DESCRIPTION
FIG. 1 illustrates a cyclone separator 10 in accordance with the present invention. Cyclone separator 10 includes a housing 12 which defines a pre-separation chamber 14 and a main liquid separation chamber 16. A wet gas inlet 18 is defined on cyclone separator 10 for introduction of a gas with entrained liquid which is to be separated. A dry gas outlet 20 is defined, preferably at the opposite end of cyclone separator 10 as shown in the drawings, for discharge of a dried gas as desired. One or more drains or outlets for liquid can also be defined on housing 12 of cyclone separator 10 in accordance with the invention. In the embodiment illustrated, two liquid outlets 22, 24 are shown.
As shown, separator 10 is an axial separator wherein flow passes through the separator as shown in FIG. 5, from left to right and along the axis of the device. The pre-separation chamber 14 advantageously has a conical wall section expanding the flow area from wet gas inlet 18, and having liquid outlet 22 defined in a wall of housing 12 as shown such that liquid separated in pre-separation chamber 14 drains from cyclone separator 10 as desired. An internal wall section 26 separates pre-separation chamber 14 from main liquid separation chamber 16, and has a central opening 28 at which is mounted a static mixer 30 as shown. Static mixer 30 leads to a tube 32 which passes through central opening 28, and which next leads to a swirl generator 34 which advantageously may have a rounded conical shape facing upstream toward incoming gas flow, and may also have a rounded conical shape facing downstream away from the incoming gas flow, and which has a series of fins which are positioned to generate a swirl of the incoming gas flow. At this portion of the device, tube 32 has longitudinal slits 36 and axial liquid drainage areas 38 through which separated liquid can pass. Swirling gas flowing through tube 32 reaches vortex finder 40 from the outlet tube of tube 32, and passes through flow gas conditioner 42 to dry gas outlet 20. A recycle gas pipe 44 can be provided and flows from the vicinity of vortex finder 40 back to an upstream area of the main liquid separation chamber 16.
Referring to FIG. 2, elements from static mixer 30 are illustrated in the form of several curved elements 46 which are positioned along the interior of tube 32 to thoroughly mix gas and entrained liquid which enters tube 32. In accordance with the invention, it has been found that obtaining a good mix of these elements prior to the swirl generator helps to produce a more complete separation of phases as desired. In the meantime, it should be appreciated that the curved elements 46 illustrated in FIG. 2 are only one acceptable embodiment of any number of shapes of structures for a static mixer to be used in accordance with he present invention, and that many other shapes of elements of a static mixer could be used, as would be known to a person having ordinary skill in the art, within the broad scope of the present invention.
FIG. 3 further illustrates the configuration of swirl generator 34 in accordance with the present invention. As shown, swirl generator 34 can have a substantially cylindrical central body portion 48 with rounded conical portions 50, 52 facing up and downstream. The elongate or central body portion 48 has curved flow vanes 54 extending radially outwardly from portion 48. These vanes begin substantially parallel to the axis of body portion 48, and then curve partially around the circumference of body portion 48 as shown in FIG. 3. These vanes preferably curve in a substantially parallel or uniform manner, such that flow of gas encountering these vanes will be substantially uniformly guided into a swirling flow.
As shown, swirl generator 34 is preferably positioned within tube 32 such that vanes 54 contact the inner wall of tube 32 such that gas flowing through tube 32 completely encounters vanes 54 for inducing of a swirl flow as desired.
Tube 32 in accordance with the present invention preferably extends upstream from internal wall section 26 to receive an initial flow of wet gas, and extends downstream from wall 26 toward dry gas outlet 20. The swirling flow generated within tube 32 and downstream of swirl generator 34 is such that liquid is separated against the inner wall of tube 32. To help in separation of this liquid once separated, longitudinal slits 36 extend along tube 32 downstream of swirl generator 34 and are positioned to allow separated liquid to drop, by gravity, into the portion of main liquid chamber 16 outside of tube 32.
As shown in FIGS. 1 and 5, vortex finder 40 is positioned in dry gas outlet 20 and axially aligned with tube 32 such that dry gas flowing along the central portion of tube 32 enters vortex finder 40 and at this point, the flow of gas is substantially dry. As shown, an annular gap or space is defined between vortex finder 40 and an open downstream end of tube 32 to define axially liquid drainage areas 38 where additional liquid, separated from the dried gas, can flow into the portion of chamber 16 outside of tube 32 and eventually exit from liquid outlet 24.
Figure 4 shows a preferred embodiment of flow gas conditioner 42 and may be a series of parallel tubes or other flow area having straight internal structures to define a plurality of substantially parallel flow passages. Flow conditioner 42 advantageously serves to straighten the flow of gas through dry gas outlet 20 before this gas passes to further gas transportation facilities such as a gas pipeline or conduit or the like. Cf course, such dry gas may be passed to other treatment facilities for other types of scrubbing or the like, or transported to any other end use which would be known to a person of ordinary skill in the art.
Recycled gas pipe 44 is advantageously connected from dry gas outlet 20 back to an upstream location of chamber 16, for example an inlet through a wall of housing 12 such that any over pressure of gas from outlet 20 can be recycled back through chamber 16 for another pass through chamber 16 prior to again flowing to dry gas outlet 20.
FIG. 5 shows the flow path of gas and liquid through separator 10 according to the invention, with gas flow being illustrated in dashed lines and liquid flow being illustrated in solid lines. As shown, the phases enter wet gas inlet 18 together, where some of the mixture enters static mixer 30 while some of the liquid drops to the bottom of pre-separation chamber 14 due to the flow expansion of the conically expanding inner wall of chamber 14. This separated liquid exits from liquid outlet 22.
The flow arrows also illustrate swirling flow generated by swirl generator 34, with swirling gas flow passing substantially centrally along the axis of tube 32 and liquid moving radially outwardly from the gas. This serves to separate the liquid which flows through longitudinal slots in tube 32 and exists from liquid outlet 24 while the drive gas passes through vortex finder 40 to flow gas conditioner 42 and out of dry gas outlet 20.
It should be readily appreciated that the structure of the separator in accordance with the present invention advantageously serves to provide a highly effective and efficient separation of liquid from gas, and that the structure provides this separation in a very compact and space-saving device.
It should readily be appreciated that a wet gas fed to wet gas inlet 18 of cyclone separator 10 in accordance with present invention first encounters pre-separatior-i chamber 14 where an initial separated liquid can be generated, and where the remaining wet gas flow is subjected to static mixer 30 and swirl generator 34 to generate dry gas as desired.
It is to be understood that the invention is not limited to the illustrations described and shown herein, which are deemed to be merely illustrative of the best modes of carrying out the invention, and which are susceptible of modification of form, size, arrangement of parts and details of operation. The invention rather is intended to encompass all such modifications which are within its scope as defined by the claims.
Claims (17)
- CLAIMS: 1. An axial gas-liquid cyclone separator, comprising: a housing having a wet gas inlet and a dry gas outlet aligned along an axis of the housing; an internal wall section in the housing and defining, within the housing, a pre-separation chamber and a main liquid separation chamber; an assembly comprising a static mixer and a swirl generator mounted in a tube extending through the internal wall section; liquid outlets in at least the main chamber for outlet of liquids separated from the wet gas; and a vortex finder mounted between the tube and the dry gas outlet.
- 2. The separator of claim 1, wherein the tube has longitudinal drainage slits for passage of liquid from within the tube to the main chamber.
- 3. The separator of claim 2, wherein the longitudinal drainage slits extend along a portion of the tube that is downstream from the swirl generator and inside the main chamber.
- 4. The separator of any of claims 1 to 3, wherein the tube is substantially coaxial with the wet gas inlet and the dry gas outlet.
- 5. The separator of any preceding claim, wherein the static mixer is upstream of the swirl generator in the tube.
- 6. The separator of any preceding claim, wherein the static mixer comprises at least one mixing vane at a gas inlet end of a the tube for mixing gas and liquid entering the tube.
- 7. The separator of any preceding claim, wherein the swirl generator comprises an elongate body in the tube and having curved flow vanes extending radially outwardly from the elongate body, the curved flow vanes having an upstream portion which is substantially parallel to an axis of the tube, and a downstream portion which is angled relative to the axis of the tube.
- 8. The separator of claim 7, wherein the elongate body has a rounded conical upstream facing end.
- 9. The separator of claim 7, wherein the elongate body has a rounded conical downstream facing end.
- 10. The separator of claim 7, wherein the elongate body has a rounded conical upstream facing end and a rounded conical downstream facing end.
- 11. The separator of any preceding claim, wherein the vortex finder is a second tube mounted in the housing and extending upstream from the dry gas outlet to a downstream end of the tube, the vortex finder being substantially coaxial with the swirl generator.
- 12. The separator of any preceding claim, further comprising a gas flow conditioner positioned between the vortex finder and the dry gas outlet.
- 13. The separator of claim 12, wherein the gas flow conditioner comprises a plurality of substantially parallel straight flow pipes extending from the vortex finder to the dry gas outlet.
- 14. The separator of any preceding claim, further comprising a recycle gas pipe communicated from the dry gas outlet to the main liquid separation chamber.
- 15. The separator of any preceding claim, wherein the static mixer extends from the internal wall section against the direction of flow into the pre-separation chamber.
- 16. The separator of any preceding claim, wherein the swirl generator is within the tube in the proximity of the internal wall section, within the main liquid separation chamber.
- 17. A separator substantially as herein described, and/or with reference to any one of the accompanying drawings.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261720577P | 2012-10-31 | 2012-10-31 | |
US14/064,288 US20140116255A1 (en) | 2012-10-31 | 2013-10-28 | Axial gas-liquid cyclone separator |
Publications (4)
Publication Number | Publication Date |
---|---|
GB201319074D0 GB201319074D0 (en) | 2013-12-11 |
GB2507662A true GB2507662A (en) | 2014-05-07 |
GB2507662B GB2507662B (en) | 2014-12-24 |
GB2507662B8 GB2507662B8 (en) | 2015-01-07 |
Family
ID=49767308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB201319074A Expired - Fee Related GB2507662B8 (en) | 2012-10-31 | 2013-10-29 | Axial Gas-Liquid Cyclone Separator |
Country Status (1)
Country | Link |
---|---|
GB (1) | GB2507662B8 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10828590B2 (en) | 2015-12-17 | 2020-11-10 | Usui Co., Ltd. | Gas-liquid separator |
US10881996B2 (en) | 2015-12-17 | 2021-01-05 | Usui Co., Ltd. | Swirling flow generator for gas-liquid separation |
CN114570118A (en) * | 2022-05-06 | 2022-06-03 | 北京石油化工学院 | Multistage separation effect is integrated tubular vapour and liquid separator in coordination |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109550318B (en) * | 2018-12-03 | 2023-11-17 | 中国石油大学(北京) | Gas-liquid separator and separation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3793812A (en) * | 1972-05-12 | 1974-02-26 | R Willis | In-line multitube centrifugal separator |
GB2409990A (en) * | 2002-06-13 | 2005-07-20 | Tank Company National | A system for separating an entrained immiscible liquid from a wet gas stream |
-
2013
- 2013-10-29 GB GB201319074A patent/GB2507662B8/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3793812A (en) * | 1972-05-12 | 1974-02-26 | R Willis | In-line multitube centrifugal separator |
GB2409990A (en) * | 2002-06-13 | 2005-07-20 | Tank Company National | A system for separating an entrained immiscible liquid from a wet gas stream |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10828590B2 (en) | 2015-12-17 | 2020-11-10 | Usui Co., Ltd. | Gas-liquid separator |
US10881996B2 (en) | 2015-12-17 | 2021-01-05 | Usui Co., Ltd. | Swirling flow generator for gas-liquid separation |
CN114570118A (en) * | 2022-05-06 | 2022-06-03 | 北京石油化工学院 | Multistage separation effect is integrated tubular vapour and liquid separator in coordination |
CN114570118B (en) * | 2022-05-06 | 2022-07-26 | 北京石油化工学院 | Multistage separation effect is integrated tubular vapour and liquid separator in coordination |
Also Published As
Publication number | Publication date |
---|---|
GB2507662B8 (en) | 2015-01-07 |
GB2507662B (en) | 2014-12-24 |
GB201319074D0 (en) | 2013-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140116255A1 (en) | Axial gas-liquid cyclone separator | |
US9427689B2 (en) | Uniflow centrifugal gas-liquid separator | |
CN101296738B (en) | Separator for separating a solid, liquid and/or gas mixture | |
RU2441710C2 (en) | Double spray nozzle | |
RU2627375C2 (en) | Device for cyclone separation of gas-liquid mixture flow into gas-phase fraction and liquid fraction, additionally equipped with special tank | |
GB2507662A (en) | Axial gas-liquid cyclone separator | |
GB2392115A (en) | A system for separating an entrained immiscible liquid component from a wet gas stream | |
US4062663A (en) | Contact apparatus for multiphase processing | |
CN104826402A (en) | Compact type in-line liquid separator | |
US10080986B2 (en) | Multistage separation system | |
JPS6330055B2 (en) | ||
US4255410A (en) | Contact method for multiphase processing | |
WO1987007185A1 (en) | Gas-liquid separator | |
UA123487C2 (en) | Cyclone with guide vanes | |
JP2005147482A (en) | Gas-liquid separator | |
RU2407582C2 (en) | Installation for gas dynamic drying of gas | |
RU2477646C1 (en) | Centrifugal separator | |
RU2371642C1 (en) | Method and device for vortex energy division of working fluid flow | |
RU2282115C1 (en) | Hydraulic heat-generator | |
RU2359737C2 (en) | Separator for fluid separation from gas flow | |
RU2021117407A (en) | DEVICE AND METHOD FOR FLUID MEDIUM CLEANING | |
RU2633671C1 (en) | Mixer-turbulator | |
JP2003004208A5 (en) | ||
RU2624655C1 (en) | Bubble-vortex device of wet dust control | |
US9597615B2 (en) | Flow development chamber and separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PCNP | Patent ceased through non-payment of renewal fee |
Effective date: 20171029 |