GB2498622A - Effect pigments having a flake-form substrate - Google Patents

Effect pigments having a flake-form substrate Download PDF

Info

Publication number
GB2498622A
GB2498622A GB1221551.3A GB201221551A GB2498622A GB 2498622 A GB2498622 A GB 2498622A GB 201221551 A GB201221551 A GB 201221551A GB 2498622 A GB2498622 A GB 2498622A
Authority
GB
United Kingdom
Prior art keywords
substrate
flake
substrate flake
text
flakes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1221551.3A
Other versions
GB2498622B (en
Inventor
Gerhard Pfaff
Stephanie Andes
Klaus Ambrosius
Ralf Petry
Michael Roesler
Sabine Schoen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47351347&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=GB2498622(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE102011121804A external-priority patent/DE102011121804A1/en
Priority claimed from DE201210000887 external-priority patent/DE102012000887A1/en
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of GB2498622A publication Critical patent/GB2498622A/en
Application granted granted Critical
Publication of GB2498622B publication Critical patent/GB2498622B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3009Physical treatment, e.g. grinding; treatment with ultrasonic vibrations
    • C09C1/3018Grinding
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/34Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
    • A23G3/343Products for covering, coating, finishing, decorating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/34Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
    • A23G3/50Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by shape, structure or physical form, e.g. products with supported structure
    • A23G3/54Composite products, e.g. layered, coated, filled
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/40Colouring or decolouring of foods
    • A23L5/42Addition of dyes or pigments, e.g. in combination with optical brighteners
    • A23L5/47Addition of dyes or pigments, e.g. in combination with optical brighteners using synthetic organic dyes or pigments not covered by groups A23L5/43 - A23L5/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/0254Platelets; Flakes
    • A61K8/0258Layered structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/0254Platelets; Flakes
    • A61K8/0258Layered structure
    • A61K8/0266Characterized by the sequence of layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q3/00Manicure or pedicure preparations
    • A61Q3/02Nail coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0018Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings uncoated and unlayered plate-like particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0021Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a core coated with only one layer having a high or low refractive index
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0024Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0024Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
    • C09C1/003Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index comprising at least one light-absorbing layer
    • C09C1/0039Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index comprising at least one light-absorbing layer consisting of at least one coloured inorganic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0051Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0051Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index
    • C09C1/0057Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index comprising at least one light-absorbing layer
    • C09C1/0063Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index comprising at least one light-absorbing layer consisting of at least one dye
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0051Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index
    • C09C1/0057Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index comprising at least one light-absorbing layer
    • C09C1/0066Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index comprising at least one light-absorbing layer consisting of at least one coloured inorganic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/041Grinding
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/36Pearl essence, e.g. coatings containing platelet-like pigments for pearl lustre
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/42Colour properties
    • A61K2800/43Pigments; Dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/42Colour properties
    • A61K2800/43Pigments; Dyes
    • A61K2800/436Interference pigments, e.g. Iridescent, Pearlescent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/63Optical properties, e.g. expressed in CIELAB-values a* (red-green axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/64Optical properties, e.g. expressed in CIELAB-values b* (yellow-blue axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/65Chroma (C*)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/102Interference pigments characterized by the core material the core consisting of glass or silicate material like mica or clays, e.g. kaolin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/102Interference pigments characterized by the core material the core consisting of glass or silicate material like mica or clays, e.g. kaolin
    • C09C2200/1025Interference pigments characterized by the core material the core consisting of glass or silicate material like mica or clays, e.g. kaolin comprising at least one metal layer adjacent to core material, e.g. core-M or M-core-M
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/102Interference pigments characterized by the core material the core consisting of glass or silicate material like mica or clays, e.g. kaolin
    • C09C2200/1033Interference pigments characterized by the core material the core consisting of glass or silicate material like mica or clays, e.g. kaolin comprising an intermediate layer between the core and a stack of coating layers having alternating refractive indices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/24Interference pigments comprising a metallic reflector or absorber layer, which is not adjacent to the core
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/30Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
    • C09C2200/301Thickness of the core
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/30Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
    • C09C2200/302Thickness of a layer with high refractive material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/30Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
    • C09C2200/303Thickness of a layer with low refractive material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/30Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
    • C09C2200/304Thickness of intermediate layers adjacent to the core, e.g. metallic layers, protective layers, rutilisation enhancing layers or reflective layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/30Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
    • C09C2200/306Thickness of an absorbing layer

Abstract

Effect pigments, and a process for their formation, are disclosed which comprise flake-form substrates having a circular form factor of 1.2 - 2 and are coated with at least one high-refractive-index layer (n ¥1.8). The substrate may be synthetic or natural micas. The process comprises grinding the substrate material and then classification by sedimentation. The use thereof, inter alia in paints, coatings, printing inks, plastics and in cos­metic formulations is also disclosed.

Description

Effect pigments The present invention relates to effect pigments which are based on flake-form substrates having a circular form factor of 1.2 -2 and are coated with at least one high-refractive-index layer, and to the use thereof, inter alia in paints, coatings, printing inks, plastics, and in cos-metic formulations.
Effect pigments, such as, for example1 pearlescent pigments or metal-effect pigments, are employed in many areas of industry, in particular in the area of automotive paints, industrial coatings, decorative coatings, in plastics, in paints, printing inks and in cosmetic formulations. Pig- ments of this type are based on flake-form oblong substrates with a sin-gle or multiple coating.
The size of the base substrates is generally not crucial per se in the case of effect pigments and can be matched to the particular applica-tion. In general, the flake-form and oblong substrates have a thickness between 0.1 and 5 pm, in particular between 0.2 and 4.5 pm. The size in the two other dimensions is usually between 1 and 250 pm, prefera-bly between 2 and 200 pm and in particular between 5 and 60 pm. The effect pigments offered on the market are generally. distinguished by a broad particle-size and thickness distribution.
The optical properties of the effect pigments, such as, for example, col-our and colour flop (i.e. also the angle-dependent change in hue angle, saturation and brightness), are determined to a crucial extent by the refractive indices of the interference layers on the substrate flakes and the geometrical thickness thereof. However, effect pigments generally have the disadvantage that they have an inadequate hiding power and inadequate colour saturation.
The object of the present invention is to find effect pigments which have high colour saturation and at the same time exhibit a high hiding power without losing their optical properties, in particular the lustre and colour purity, and are distinguished by advantageous applicational properties.
Surprisingly, it has now been found that effect pigments based on flake-form substrates which have a roundish shape have increased colour saturation and an increased hiding power compared with effect pig-ments from the prior art based on substrates having an oblong shape with greater edge roughness.
The present invention therefore relates to effect pigments which are based on flake-form substrates, where the substrates have a circular form factor (circumference2 I area standardised to a circle) of 1.2 -2, and are coated with at least one high-refractive-index layer having a refractive index of n 1.8.
Circular form factor in this application is defined as the ratio of the circumference squared to the area of the individual particle imaged in transmitted light in a light microscope with 30x magnification. For sim-plification, the result is divided by 4,t, which then gives I for the circular form factor of the ideal circle. The evaluated particles lie substantially flat in the imaging plane, and the number of evaluated particles is suffi- ciently statistically relevant (N = 2000) for the circular form factor aver-age.
The invention furthermore relates to the use of the pigments according to the invention in paints, automotive paints, industrial coatings, coat-ings, printing inks, plastics, button pastes, beramic materials, glasses, for colouring seed, as absorber in the laser marking of plastics, glasses, cardboard and paper, as absorber in the laser welding of plastics, as additive for the colouring of food and pharmaceutical products, as addi-tive for the colouring of coatings of food and pharmaceutical products, in cosmetic formulations, for the preparation of pigment compositions and dry preparations and in counterfeiting-proof documents of value.
Suitable base substrates for the effect pigments according to the Jnven-tion are transparent flake-form substrates, Preferred substrates are phyllosilicates, such as, for example, natural or synthetic mica, talc, kaolin, graphite, flake-form iron oxides, glass flakes, Si02 flakes, A1203 flakes, Ti02 flakes or synthetic ceramic flakes, synthetic support-free flakes, LCPS (liquid crystal polymers) or other comparable materials.
Very particularly preferred substrate flakes are natural or synthetic mica flakes, glass flakes, A1203 flakes and Si02 flakes.
For the effect pigments according to the invention, substrate flakes having a circular form factor of 12-2, preferably 1.2-1.8, and very particularly preferably 1.2-1.7, are employed.
Preferred substrate flakes have a particle size of 560 pm, in particular 5-40 pm. The thickness of the preferred substrate flakes is preferably 0.2-0.6 pm.
In the present patent application, the particle sizes are determined with the aid of the Malvern UK Mastersizer 2000.
The substrate flakes can be produced, for example, as follows: Using known mechanical comrninution methods, substrate lumps are comminuted and delaminated, for example by grinding, and classified in accordance with the requirements in relation to equivalence diameters and thicknesses of the flakes by means of sedimentation, decantation, air separation and/or sieving.
All mills and stirrers known to the person skilled in the art are used for the grinding process, in particular all high-speed stirrers, dispersers or rotor-stator mills, The substrate flakes, far example mica or glass flakes, are produced by grinding relatively large lumps or coarse flakes. The substrate flakes formed, generally having a diameter of 50-200 pm, are subsequently introduced into a comminution machine, for example a rotor-stator mill, and water ancHor an organic solvent, preferably water, is added. The suspension formed in this way is treated mechanically for several hours in the comminution machine, during which the surface of the flakes is polished smooth. The mechanical loading of the particles during this step is selected so that a permanent shear results in further gentle delamination of particles and in smoothing of the edges and surfaces. A narrow particle-size distribution is achieved by a subsequent classifica- tion step in the form of a plurality of, at least »= 2, preferably »= 3, sedi-mentation steps. The thin and roundish flakes produced in this way have a particle-size distribution of 5-60 pm, a thickness distribution of 0.2 -0.6 pm and smooth-polished surfaces having only few sharp edges. The circular form factor is 1.2-2.
During the grinding and classification, relatively small, relatively thick particleS and relatively large, relatively thin particles are removed, i.e. large particles tend to be only comminuted, while relatively small partic-les are delarninated and/or removed by classification.
The additional mechanical treatment and the associated polishing effect produce smoothing of the surface of the substrate particles, with, in addition, the oblong flake shape being converted into a roundish flake shape. The decrease in the circular form factor and the oblong nature is associated with the edges of the substrates becoming smoother and the substrates adopting a rounder shape.
Synthetically produced substrates which are intended to serve as base substrate for effect pigments and are not in the form of coarse lumps or flakes, such as, for example, Al203, 8i02, Fe203, T102, glass, are fed directly to the comminution machine, for example a rotor-stator mill, for comniinutiori and polishing of the surface. The circular form factor here is also 1.2-2.
The photomicrographs (Figs. 1 and 2: image detail measuring 43 x pm) show that the roundish substrate flakes (Figure 1) have signifi-cantly lower edge roughness compared with the oblong substrate flakes (Figure 2), as shown diagrammatically in Figure 3.
The lower edge roughness and the reduction in the steps on the flake surfaces in general result in very uniform coatings being obtained on coating of the substrate flakes. This relates on the one hand to the local homogeneity of the interference colour and also the reduction of scat- tered-light influences, producing overall higher colour saturation, com-
pared with the effect pigments from the prior art.
The roundish substrate flakes can serve as filler, in particular as cos-metic filler, or as base substrate for the production of effect pigments. In this case, the roundish substrate flakes are provided with one or more coatings, preferably metal oxide layers.
The roundish substrate flakes are preferably coated with at least one high-refractive-index layer (n »= 1.8).
In the case of substrate flakes which are sensitive to acids andfor bases, such as, for example, glass flakes, it is frequently advisable firstly to coat them with a thin protective layer before the actual coating in order, for example, to prevent leaching-out and!or swelling of the substrates during the coating. However, the protective layer can also serve to achieve an even smoother substrate surface. This protective layer is generally very thin, preferably c 20 nm, and thus only has an extremely small influence on the optical properties of the final effect pigment, or none at all. The protective layer is preferably an Sb2 layer.
In this patent application, high-refractive-index is taken to mean a refractive index of ii »= 1.8, preferably n »= 2.0. In this patent application, low-refractive-index is taken to mean a refractive index of n < 1.8.
Suitable layer materials are aH high-refractive-index materials known to the person skilled in the art which can be applied in a film-like manner and durably to the substrate particles, such as, for example, metal oxides, metal oxide mixtures, metal oxyhydrates, metal sulfides, iron titanates, iron oxide hydrates, titanium suboxides, metals, and mixtures or mixed phases of the said compounds. Particularly suitable are metal oxides or metal oxide mixtures, such as, for example, Ti02, BIOCI, Ce203, Cr203, CoO, Co304, Fe203, Fe304, FeOOH, MO, Sn02, V02, V203, Zr02, ZnO, CoAI2O4, BIVO4, iron titanates, iron oxide hydrates, titanium suboxides (partially reduced hO2 with oxidation numbers from <4 to 2, such as Ti305, Ti203 to TiO), and metal sulfides, such as, for example, Ce2S3, MoS2 and mixtures or mixed phases of the said com-pounds with one another or with other metal oxides and metals, such as, for example, aluminium, chromium, nickel, silver, gold, titanium, copper or alloys thereof.
lithe substrate flakes are coated with one, two or more high-refractive- index layers directly on the surface of the substrate, the coating is pref- erably a layer of TiO2, Fe203 or a mixture of Ti02/Fe203 or a Ti02 coat-ing followed by an Fe203 layer.
Multilayered pigments having at least three layers preferably have an alternating coating of high-and low-refractive-index layers. Particular preference is given to a three-layer system on the substrate flake with a high-refractive-index -low-refractive-index -high-refractive-index coat-ing, such as, for example, a Ti02 -3i02 -TiO2 coating.
The thickness of the high-refractive-index layer is generally 20 -500 nm, preferably 30-400 nm and in particular 40 -350 nm.
Colourless, low-refractive-index materials which are suitable for the coating are preferably metal oxides or the corresponding oxide hydrates, such as, for example, Si02, Al203, AlO(OH), 8203, further- more MgF2, MgSiO3 or a mixture of the said compounds. The low- refractive-index layer preferably consists of Si02, A1203 or MgF2, in par-ticular of Si02.
The thickness of the low-refractive-index layer is preferably 10 -nm, in particular 10-80 nm and very particularly preferably 20-80 nm.
Besides the said high-and low-refractive-index layers, the effect pig-ments may additionally be coated with an absorbent layer as the final layer. The effect pigments are then preferably coated with Berlin Blue, Carmine Red, thioindigo or chromium oxide.
The absorbent layer preferably has layer thicknesses of 3-300 nm.
For the preparation of silver-white effect pigments, as described, for example1 in EP 1865032 A2, it is advisable to coat the substrate flakes with a high-refractive-index layer which, besides titanium dioxide, com-prises at least one low-solubility alkaline-earth metal compound. The refractive index of this layer is 1.9, preferably »= 2.0 and in particular »= 2.1. This high-refractive-index coating may consist of a mixture of T102 and a low-solubility alkaline-earth metal compound and/or zinc oxide or of two separate layers. In this case, a thin layer of a low-solu-bility alkaline-earth metal compound or zinc oxide is applied to the TiC2 layer.
The titanium dioxide in the high-refractive-index coating can be in the rutile oranatase modification, preferably in the form of rutile. Processes for the preparation of rutile are described in the prior art, for example in U.S. 5,433,779, U.S. 4,038,099, U.S. 6,626,989, DE 25 22 572 C2, EP 0271 767 31. A thin tin dioxide layer (c 10 nm), which serves as additive for obtaining the TiC2 as rutile phase, is preferably applied to the substrate flake, preferably a natural or synthetic mica flake, before the Ti02 precipitation.
Preferred effect pigments according to the invention have the following coating directly on the surface of the substrate flake: substrate flake + Ti02 (anatase) substrate flake + Sn02 + Ti02 (rutile) substrate flake + hO2 + alkaline-earth metal titanate substrate flake + Sn02 + Tb2 + alkaline-earth metal titanate substrate flake + hO2 + Fe203 substrate flake ÷ Sn02 + Ti02 + Fe203 substrate flake + 1102 + Fe304 substrate flake + Sn02 + Ti02 + Fe304 substrate flake + Ti02 + Cr203 substrate flake + 5n02 + TIC2 + Cr203 substrate flake + Ti02 + Carmine Red substrate flake + Sn02 + Ti02 + Carmine Red substrate flake ÷ 1102 ÷ Berlin Blue substrate flake + Sn02 + TIC2 ÷ Berlin Blue substrate flake + Ti02 I Fe203 substrate flake + 8n02 + 1102 / Fe203 substrate Ilake + Ti02 + 8102 + Ti02 substrate flake + Sn02 + Tb2 + 8102 + Sn02 + 1102 substrate flake + Fe203 substrate flake + Fe304 substrate flake + Ti02 + 8102 + Ti02/Fe203 substrate flake + Sn02 + hO2 Si02 + Ti02/Fe2C3 substrate flake + Tb2 + Si02 + 1102 + T1021Fe203 substrate flake + Sn02 ÷ 1102 + 8102 + TiC2 + TiO2iFe2O3 substrate flake + Sn02 + Jj02 + 8102 + 8n02 + 1102 + Ti02/Fe203 substrate flake + T102/Fe203 + Si02 + Ti02 + 1i02/Fe203 substrate flake + Ti02/Fe203 + Si02 + Sn02 + 1102 + T102/Fe203 substrate flake ÷ Ti02/Fe203 + 8102 + 1102 substrate flake + bi02/Fe203 + 8102 + Sn02 + T102 substrate flake + Ti02/Fe203 + Si02 + Ti02/Fe203 substrate flake + hO2 ÷ Si02 + Fe304 substrate flake + 1102 + 8102 + Cr203 substrate flake + Cr203 substrate flake + Ag substrate flake + Au substrate flake ÷ Fe203 + 8102 ÷ 1i02/Fe203 substrate flake + S102 + Ti02 (anatase) substrate flake + SIC2 + Sn02 + Ti02 (rutile) substrate flake + SIC2 ÷ TIC2 + alkaline-earth metal titanate substrate flake + 8102 + 8n02 + 1102 + alkaline-earth metal titanate substrate flake + Sic2 + Ti02 + Fe203 substrate flake + Si02 + 8n02 + 1102 + Fe203 substrate flake + 8102 + Ti02 + Fe304 substrate flake + 5102 + Sn02 + 1102 ÷ Fe304 substrate flake + 8102 + Ti02 + Cr203 substrate flake + SiC2 + Sn02 + TiC2 + Cr203 substrate flake + 8102 + TIC2 + Carmine Red substrate flake + 8102 + Sn02 + TIC2 + Carmine Red substrate flake + Si02 + Ti0 + Berlin Blue substrate flake + SiC2 + 5n02 + TiC2 + Berlin Blue substrate flake + SIC2 + TiC2 / Fe203 substrate flake + SIC2 + 5n02 + TiC2 I Fe203 substrate flake + Sb2 + Ti0 + Si02 + Ti02 substrate flake + 5102 + Sn02 + 1102 + SIC2 + Sn02 + 1102 substrate flake + SIC2 + Fe203 substrate flake + 5102 ÷ Fe304 substrate flake + 8102 + T102 + SiC2 + Ti02/Fe203 substrate flake + 8102 + Sn02 + 1102 + SiC2 + Ti02/Fe203 substrate flake ÷ 6102 ÷ hO2 ÷ Sb2 ÷ TIC2 ÷ TIC2IFe2O3 substrate flake + 5102 ÷ Sn02 + 1902 + 6i02 + T102 + T102/Fe203 substrate flake + SIC2 + Sn02 + TIC2 + 5102 + Sn02 + TIC2 + Ti02/Fe203 substrate flake + 8102 ÷ Ti02/Fe203 + 8102 + 1102 + Ti02/Fe203 substrate flake + 5102 ÷ Ti02/Fe2C3 + Si02 ÷ 8n02 + Tb2 + Ti02/Fe203 substrate flake + 5102 + 1i02/Fe203 + Sj02 + T102 substrate flake + 5102 + T102/Fe203 + SIC2 + Sn02 + Ti02 substrate flake + 8102 ÷ TiO2IFe2O3 + SIC2 ÷ 1i02IFe203 substrate flake + SiC2 + 1102 + S102 + Ti02/Fe203 substrate flake + SIC2 + 1102 + Si02 + Fe304 substrate flake + 8102 + 1102 + 8102 + Cr2Oa substrate flake + 8102 + Cr203 substrate flake + SIC2 + Ag substrate flake + Sb2 + Au substrate flake + 8102 + Fe203 + 5102 + IiC2IFe2O3 substrate flake + Ti02 (anatase) + Si02 substrate flake + Sn02 ÷ Ti02 (rutile) + Si02.
The coating of the roundish substrate flakes having a circular form fac-tor of 1.2-2 is preferably carried out by wet-chemical methods. To this end, the wet-chemical coating methods developed for the preparation of pearlescent pigments are preferably used. Methods of this type are described, for example, in DE 14 67 468, DE 19 59 988, DE 20 09 566, DE2214545,DE2215191,DE2244298,DE2313331, DE 25 22 572, DE 31 37 808, DE 31 37 809, DE 31 51 343, DE 31 51 354, DE 31 51 355, DE 32 11 602, DE 32 35 017 or also in further patent documents and other publications known to the person skilled in the art.
The effect pigments according to the invention are generally prepared by suspending the roundish substrate flakes in water and adding one or more hydrolysable metal salts at a pH which is suitable for precipitation and which is selected in such a way that the metal oxide or metal oxide hydrate is deposited directly onto the flakes without significant secon- dary precipitations occurring. The pH is usually kept constant by simul-taneous metered addition of a base or acid. After filtration and washing, the coated substrates are firstly dried for 20 -60 mm at temperatures of -150°C, preferably 80-120°C, and subsequently calcined at 600 to 1200°C, preferably at 700-1000°C, in particular at 700-900°C, for 0.3 -1 h, preferably 0.5 -0.8 h. The coating, for example with a Ti02 layer, can furthermore also be car- ried out in a fluidised-bed reactor by gas-phase coating, it being possi-ble to use correspondingly, for example, the methods proposed in EP 0045851 Al and EP 0106 235 Al forthe preparation of pearles-cent pigments.
The coating of the substrate flakes with titanium dioxide is preferably carried out by a wet-chemical method by the chloride or sulfate process.
In order additionally to increase the light, water and weather stability, it is frequently advisable to subject the finished effect pigment to post- coating or post-treatment, depending on the area of application. Suit-able post-coatings or post-treatments are, for example, the processes described in German Patent 22 15 191, DE-A 31 51 354, DE-A 3235017 or DE-A 3334598. This post-coating further increases the chemical stability or simplifies handling of the pigment, in particular incorporation into various media. In order to improve the wettability, dis-persibility and/or compatibility with the user media, it is possible to apply functional coatings comprising Al203 or Zr02 or mixtures or mixed phases thereof to the pigment surface. Furthermore, organic or com-bined organic/inorganic post-coatings are possible, for example with silanes, as described, for example, in EP 0090259, EP 0 634 459, wa 99/57204, WO 96132446, WO 99/57204, U.S. 5,759,255, U.S. 5,571851, wa 01/92425, wa 2006/021386 Al or in J.J. Ponjee, Philips Technical Review, Vol. 44, No. 3, 81 if. and PH. Harding. J.C.
Berg, J. Adhesion Sci. Technol. Vol. 11, No.4, pp. 471-493.
The outer, optional protective layer preferably consists of one or two metal-oxide layers of the elements Si, Al or Ce. Particular preference is given here to a layer sequence in which firstly a cerium oxide layer has been applied, which is then followed by an Sia2 layer, as described, for example, in WO 2006/021386 Al.
The outer protective layer may furthermore be organochemically modi-fied on the surface. For example, one or more silanes may be applied to this outer protective layer. The silanes may be alkylsilanes having branched or unbranched alkyl radicals having 1 to 24 C atoms, prefera-Ny 6 to 18 C atoms.
However, the silanes may also be organofunctional silanes which facilitate chemical bonding to a plastic, a binder of a surface coating or an ink, etc. The organofunctional silanes containing suitable functional groups which are preferably used as surface modifiers are commercially avail- -12- able and are produced, for example, by Degussa, Rheinfelden, Ger- many, and marketed under the trade name llDynasylan@fl Further prod-ucts can be purchased from OSi Specialties (Silquest® silanes) or from Wacker, for example standard and a-silanes from the GENJIOSIL' prod-uct group.
Examples thereof are 3-methacryloxypropyltrimethoxysilane (Dynasylan MEMO, Silquest A-174NT), vinyltri(m)ethoxysilane (Dynasylan VTMO or VTEO, Sliquest A-I 51 or A-i 71), 3-mercaptopropyltri(m)ethoxysilane (Dynasylan MTMO cr3201; SilquestA-189), 3-glycidoxypropyl- trimethoxysilane (Dynasylan GLYMO, Silquest A-i 87), tris-(3- trimethoxysilylpropyl) isocyanurate (Sliquest Y-1 1597), gamma- mercaptopropyltrimethoxysilane (Silquest A-i 89), bis-(3-triethoxysilyl-propyl) polysulfide (Silquest A-I 289), bis-(3-triethoxysilyl) disulfide (Silquest A-i 589), beta-(3,4-epoxycyclohexyl)ethyltrimethoxysilane (Silquest A-i 86), bis(triethoxysilyl)ethane (Sllquest Y-9805), gamma-isocyanatopropyltrimethoxysilane (Silquest A-Link 35, GENIOSIL GF4O), (methacryloxymethyl)tri(m)ethoxysilane (GENIOSIL XL 33, XL 36), (methacryloxymethyl)(m)ethyldimethoxysilane (GENIOSIL XL 32, XL 34), (isocyanatomethyl)trimethoxysilane (GENIOSIL XL 43), (isocyanatomethyl)methyldinietboxysilane (GENIOSIL XL 42), (isocyanatomethyl)trimethoxysilane (GENIOSIL XL 43), 3-(triethoxy- silyl)propylsuccinic anhydride (CENIOSIL CF 20), (methacryloxy- methyl)methyldiethoxysilane, 2-acryloxyethylmethyldimethoxysilane, 2- methacryloxyethyltrimethoxysilane, 3-acryloxypropylmethyldimethoxy- silane, 2-acryloxyethyltrimethoxysilane, 2-methacryloxyethyltriethoxy- silane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltripropoxy- silane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyl- triacetoxysilane, 3-methacryloxypropylmethyldimethoxysilane, vinyl- trichlorosilane, vinyltrimethoxysilane (GENIOSIL XL 10), vinyltris(2-methoxyethoxy)silane (GENIOSIL CF 58), vinyltriacetoxysilane.
However, it is also possible to use other organofunctional silanes on the effect pigments according to the invention.
Furthermore, it is possible to employ aqueous pre-hydrolysates, corn-mercially available, for example, from Degussa. These include, inter alia, aqueous, alcohol-free aminosuane hydrolysate (Dynasylan Hydrosil 1151), aqueous, alcohol-free amino/alkyl-functional siloxane co-oligomer (Dynasylan Hydrosil 2627), aqueous, alcohol-free diamino/ alkyl-functional siloxane co-oligomer (Dynasylan Hydrosil 2776), aque- ous1 alcohol-free amino/vinyl-functional siloxane co-oligomer (Dyna-sylan Hydrosil 2907), aqueous, alcohol-free amino/ alkyl-functional siloxane co-oligomer (Dynasylan Hydrosil 2909), aqueous, alcohol-free epoxy-functional siloxane oligomer (Dynasylan Hydrosil 2926) or aque-ous, alcohol-free amino/methacrylate-functional siloxane co-oligomer (Dynasylan Hydrosil 2929), oligomeric diarninosilane system (Dyna-sylan 1146), vinyllalkyl-functional siloxane co-oligomer (Dynasylan 6593), vinyl-and methoxy group-containing vinylsilane concentrate (oligomeric siloxane) (Dynasylan 6490) or oligomeric short-chain alkyl-functional silane (Dynasylan 9896).
In a preferred embodiment, the organofunctional silane mixture corn-prises at least one amino-functional silane besides at least one silane containing no functional bonding group. The amino function is a func-tional group which is able to undergo one or more chemical interactions with the groups usually present in binders. This may include a covalent bond, such as, for example, with isocyanate or carboxylate functions of the binder, or hydrogen bonds, such as with OH or COOR functions, or also ionic interactions. An amino function is therefore very highly suit- able for the purpose of chemical bonding of the effect pigment to bind-ers of different types.
The following compounds are preferably used for this purpose: aminopropyltrimethoxysilane (Dynasylan AMMO; Silquest A-i 110), aminopropyltriethoxysilane (Dynasylan AMEO) or N-(2-aminoethyl)-3- aminopropyltrimethoxysilane (Dynasylan DAMO, Silquest A-i 120) or N- (2-aminoethyl)-3-aminopropyltriethoxysilane, triamino-functional trimethoxysilane (SilquestA-1130), bis(gamma-trimethoxysilylpropyl)-amine (Silquest A-I 170), N-ethyl-gamrna-aminoisobutyltrimethoxysilane -14- (Silquest A-Link 15), N-phenyl-gamma-aminopropyltrimethoxysilane (Silq uest (-9669), 4-amino-3,3-dimethylbutyltrimethoxysilane (Silquest V-Il 637), NJ-cyclohexylaminornethylmethyldiethoxysilane (GENIOSIL XL 924), (N-cyclohexylaminomethyl)triethoxysilane (GENIOSIL XL 926), (N-phenylaminomethyl)trimethoxysilane (GENIOSIL XL 973) and mix-tures thereof.
In a furthermore preferred embodiment, the silane containing no func-tional bonding group is an alkyisilane. The alkylsilane preferably has the formula R(4Z)Si(X)z.
z here is an integer from ito 3, R is a substituted or unsubstituted, un-branched or branched alkyl chain having 10 to 22 C atoms, and X stands for a halogen and/or alkoxy group. Preference is given to alkyl-silanes having alkyl chains having at least 12 C atoms. R may also be cyclically bonded to Si, where in this case z is usually 2.
A silane of this type effects stronger hydrophobicisation of the pigment surface. This in turn results in the effect pigment coated in this way tending to float upwards in the surface coating. In the case of flake-form effect pigments, this type of behaviour is known as "leafing" behaviour.
A silane mixture consisting of at least one silane which contains at least one functional group which facilitates bonding to the binder, and an alkylsilane containing no amino group which is insoluble or sparingly soluble in water facilitates optimum applicational properties of the effect pigments. An organochernical surface modification of this type results in the effect pigments aligning extremely well in a surface-coating or paint layer, i.e. essentially plane-parallel to the coated or painted substrate, and at the same time reacting chemically with the binder system of the surface coating or paint and consequently being covalently bonded in the surface-coating, or paint layer. Surface-coating or paint layers of this type have increased mechanical and chemical resistance to environ-mental influences, such as, for example, weather, etc. -15-Besides the high colour saturation and a very bright and high lustre, the effect pigments according to the invention are distinguished by a very high hiding power and low edge roughness. The pigments are therefore also very highly suitable, owing to their good skin feeling, for cosmetic formulations.
Since the effect pigments according to the invention, besides high hid-ing power, have a bright and strong lustre with high colour saturation, particularly effective effects in the various application media can be achieved with them.
It goes without saying that, for the various applications, the effect pig-ments according to the invention may also advantageously be used as a mixture.with organic dyes, organic pigments or inorganic pigments, such as, for example, transparent and opaque white, coloured and black pigments, and also with flake-form iron oxides, holographic pig-ments, LCPs (liquid crystal polymers) or with pearlescent pigments, etc. No limits are set for the mixing ratios and concentrations.
The effect pigments according to the invention can be mixed with com-mercially available pigments and fillers in any ratio by weight. The ratio can be I: Ito 9: 1 is preferred. If the effect pigments according to the invention are mixed with fillers, the mixing ratio can also be 99: 1 to 1: 99.
The effect pigments according to the invention are compatible with a multiplicity of colour systems, preferably from the area of paints, coat- ings and printing inks. For the preparation of printing inks for, for exam- ple, gravure printing, flexographic printing, offset printing, offset over-print varnishing, a multiplicity of binders, in particular water-soluble grades, is suitable, as marketed, for example, by the BASF, Marabu, PrOll, Sericol, Hartmann, Gebr. Schmidt, Sicpa, Aarberg, Siegberg, GSB-Wahl, Follmann, Ruco or Coates Screen INKS GmbH companies.
The printing inks can be water-based or solvent-based. Furthermore, the effect pigments according to the invention are also suitable for the laser marking of paper and plastics, and for applications in the agricul-tural sector, for example.for greenhouse sheeting, and, for example, for colouring tarpaulins.
The effect pigments according to the invention can be used for pig-menting surface coatings, printing inks, plastics, agricultural sheeting, seed coatings, food colourings, button pastes, medicament coatings or cosmetic formulations, such as lipsticks, nail varnishes, compact pow-ders, shampoos, soaps, loose powders and gels. The concentration of the pigment in the application system to be pigmented is generally between 0.1 and 70% by weight, preferably between 0.1 and 50% by weight and in particular between 0.5 and 10% by weight, based on the total solids content of the system. It is generally dependent on the spe-cific application.
In plastics comprising the effect pigments according to the invention, preferably in amounts of 0.01 to 50% by weight, in particular 0.1 to 7% by weight, particularly pronounced colour effects can be achieved, In the surface coatings sector, in particular in automobile paints, the effect pigments are employed in amounts of 0.1-20% by weight, pref-erably ito 10% by weight, including for 3-coat systems.
In surface coatings, the effect pigments according to the invention have the advantage that the target gloss is achieved by a single-layer finish (one-coat system or base coat in a two-coat system). Compared with finishes which comprise, for example, a multilayered pigment based on mica or a conventional pearlescent pigment based on a substrate hay- ing a broad thickness distribution instead of the effect pigments accord-ing to the invention, finishes comprising the pigments according to the invention exhibit a clearer depth effect and a more pronounced colour and gloss effect.
The effect pigments according to the invention can also advantageously be employed in decorative and care cosmetics. The use concentration extends from 0.01% by weight in shampoo to 100% by weight in the case of loose powders. In the case of a mixture of the pigments accord-ing to the invention with fillers, preferably with spherical fillers, such as, for example, 3i02, the concentration in the formulation can be 0.01-70% by weight. The cosmetic products, such as, for example, nail varnishes, compact powders, shampoos, loose powders and gels, are distin-guished by particularly interesting colour effects and high lustre.
Furthermore, the effect pigments according to the invention can be employed in bath additives, toothpastes and for the finishing of foods, for example mass colouring andlor coatings of boiled sweets, wine gums, such as, for example, jelly babies, pralines, liquorice, confection- ery, sticks of rock, blancmange, fizzy drinks, sodas, etc., or as a coat-ing, for example, in dragees and tablets in the pharmaceuticals sector.
The effect pigments according to the invention can furthermore be mixed with commercially available fillers. Fillers which may be men-tioned are, for example, natural and synthetic mica, nylon powder, pure or filled melamine resins, talc, glasses, kaolin; oxides or hydroxides of aluminium, magnesium, calcium, zinc, BIOCI, barium sulfate, calcium sulfate, calcium carbonate, magnesium carbonate, carbon, and physical or chemical combinations of these substances. There are no restrictions regarding the particle shape of the filler. It can be, fOr example, flake-form, spherical or needle-shaped as required.
It is of course also possible for the effect pigments according to the invention to be combined in the formulations with cosmetic raw materi-als and assistants of any type. These include, inter alia, oils, fats, waxes, film formers, preservatives and assistants which generally deter-mine the applicational properties, such as, for example, thickeners and rheological additives, such as, for example, bentonites, hectorites, sili- con dioxides, Ca silicates, gelatines, high-molecular-weight carbo-hydrates and/or surface-active assistants, etc. The formulations comprising the effect pigments according to the inven-tion can belong to the lipophilic, hydrophilic or hydrophobic type. In the case of heterogeneous formulations having discrete aqueous and non-aqueous phases, the effect pigments according to the invention may in each case be present in only one of the two phases or alternatively dis-tributed over both phases.
The pH values of the formulations can be between 1 and 14, preferably between 2 and 11 and particularly preferably between 5 and 8.
No limits are set for the concentrations of the effect pigments according to the invention in the formulation, They can be -depending on the application -between 0.001 (rinse-off products, for example shower gels) and 100% (for example lustre-effect articles for particular applica-tions).
The effect pigments according to the invention may furthermore also be combined with cosmetic active ingredients. Suitable active ingredients are, for example, insect repellents, UV NBC protection filters (for example OMC, B3 and MBC), anti-ageing active ingredients, vitamins and derivatives thereof (for example vitamin A, C, E, etc.), self4anning agents (for example DHA, erythrulose, inter alia), and further cosmetic active ingredients, such as, for example, bisabolol, LPO, ectoin, emblica, allantoin, bioflavonoids and derivatives thereof.
In the pigmenting of binder systems, for example for surface coatings and printing inkè for gravure printing, offset printing or screen printing, or as precursors for printing inks, the use of the effect pigments accord-ing to the invention in the form of highly pigmented pastes, granules, pellets, etc., has proven particularly suitable. The effect pigments are generally incorporated into the printing ink in amounts of 2-35% by weight, preferably 5-25% by weight and in particular 8-20% by weight.
Offset printing inks can comprise the pigments in amounts of up to 40% by weight or more. The precursors for printing inks, for example in the form of granules, as pellets, briquettes, etc., comprise up to 98% by weight of the pigments according to the invention in addition to the binder and additives. Printing inks comprising the pigments according to the invention exhibit purer hues than with conventional effect pigments.
The particle thicknesses of the effect pigments according to the inven- tion are relatively small and therefore cause particularly good printabil-ity.
The effect pigments according to the invention are furthermore suitable for the preparation of flowable pigment compositions and dry prepara-tions, in particular for printing inks, comprising one or more pigments according to the invention, binders and optionally one or more additives.
The present invention furthermore relates to the use of the effect pig-ments according to the invention in paints, coatings, powder coatings, automotive paints and industrial coatings, printing inks, plastics, button pastes, ceramic materials, glasses, for coating seed, as absorber in the laser marking of plastics, glasses, cardboard and paper, as absorber in the laser welding of plastics, for colouring food and pharmaceutical products, for colouring coatings of food and pharmaceutical products, in cosmetic formulations and in counterfeiting-proof documents of value, such as, for example, banknotes, credit cards, identity documents, etc. Furthermore, the pigments according to the invention are also suitable for the preparation of pigment compositions and for the preparation of dry preparations, such as, for example, granules, chips, pellets, briqu-ettes, etc. The dry preparations are particularly suitable for printing inks and for cosmetic formulations.
The invention thus also relates to formulations comprising the effect pigments according to the invention.
The invention relates, in particular, to formulations which, besides the effect pigments according to the invention, comprise at least one con- stituent selected from the group of the absorbents, astringents, anti-microbia! substances, antioxidants, antiperspirants, antifoaming agents, antidandruff active ingredients, antistatics, binders, biological additives, bleaching agents, chelating agents, deodorants, emollients, emulsifiers, emulsion stabilisers, dyes, humectants, film formers, fillers, odour sub- stances, flavour substances, insect repellents, preservatives, anticorro-sion agents, cosmetic oils, solvents, oxidants, vegetable constituents, buffer substances, reducing agents, surfactants, propellant gases, opacifiers, UV filters and UV absorbers, denaturing agents, viscosity regulators, perfume and vitamins.
The following examples are intended to explain the invention, but with-out limiting it.
Examples
I. Production of the substrates
Examplela
1 kg of Muscovite mica, which is in the form of coarse flakes, is ground to a particle size of less than 200 pm by a Koller process. The fine mica flakes formed in this way are introduced into a rotor-stator mill, and 1 I of deionised water is added. The resultant suspension is ground in the mill for 5 hours, during which the surface of the flakes is polished smooth at the same time.
The mechanical loading of the particles during the grinding step is selected so that a permanent shear results in further gentle delamination of particles and in smoothing of the edges and surfaces. A narrow particle-size distribution is achieved by a subsequent classification step in the form of a plurality of (at least 3 steps) sedimentation steps. The mica flakes produced in this way have a particle-size distribution of 10 -40 pm, a thickness distribution of 0.2 to 0.6 pm (in each case 90% of all particles) and a smooth-polished surface having only few sharp edges. The circular form factor is 1.6.
Example lb
1 kg of synthetic mica flakes is treated analogously to Example I a.
Synthetic mica flakes having a circular form factor of 1.6 are obtained.
II. Coating of the substrate flakes Example 21: Natural mica + 8n02 + Ti02 1009 of natural mica flakes from Example la are warmed to 75°C in 2 I of delonised water with stirring. The coating pH of 1.8 is established by dropwise addition of an SnCl4 solution (22 gIl). The remainder of 100 ml of SnCl4 solution (22 gIl) is subsequently metered in. During this addi- tiori, the pH is kept constant at 1.8 using 32% sodium hydroxide solu-tion. When the addition is complete, the mixture is stirred for a further minutes.
At constant pH, 490 ml of a TiOCI2 solution (4009 of TiCI4/l) are then metered in until the colour end point (yellow) has been reached, during which the pH being is constant at 1.8 by simultaneous dropwise addi-tion of 32% sodium hydroxide solution.
When the addition is complete, the mixture is stirred for a further 10 minutes, the suspension is filtered off with suction and washed with deionised water until salt-free. After drying at 120°C (24 h), the pigment is qalcined at 800°C for 45 minutes.
A high-lustre, intensely coloured pigment having a yellow interference colour is obtained.
Example 2.2: Synthetic mica +Sn02 + hO2 + Si02 + Sn02 + TIC2 g of synthetic mica flakes from Example lb are warmed to 75°C with 1500 ml of deionised water with stirring. The pH of the suspension is then adjusted to 1.8 using hydrochloric acid (15% HCI). 75 ml of SnCl4 solution (22 gIl) are subsequently metered in. During this addition, the pH is kept constant at 1.8 using 32% sodium hydroxide solution. When the addition is complete, the mixture is stirred for a further 10 minutes.
-22 -A TiOCI2 solution (400 g of TiCk/I) is subsequently metered in to the colour end point (yellow), during which the pH is kept constant at 1.8 by simultaneous dropwise addition of 32% sodium hydroxide solution.
By colour measurement during the coating process, the colouristic properties during preparation of the pigment are monitored and the pie-cipitation process is controlled in accordance with the hue (hue angle arc tan b*Ia*).
The coating is stopped, and stirring is subsequently continued for 15 minutes.
The pH is subsequently adjusted to pH=9.0 using dilute sodium hydroxide solution. 100 ml of a sodium water-glass solution having a content of 2% are then added, during which the pH is kept constant by means of hydrochloric acid (10% HCI). The mixture is subsequently stirred for a further 30 minutes.
The pH is reduced to 1.8 by dropwise addition of hydrochloric acid (w = 20%). 75 ml of SnCl4 solution (22 gIl) are metered in. During this addi- tion1 the pH is kept constant at 1.8 using 32% sodium hydroxide solu-tion. When the addition is complete, the mixture is stirred for a further minutes. At constant pH, 300 ml of TiOCl2 solution (400 g of TiCk/I) are then metered in until the colour end point (green) has been reached, during which the pH is kept constant at 1.8 by simultaneous dropwise addition of 32% sodium hydroxide solution.
After a post-stirring time of 15 minutes, the pigment is separated off from the supernatant reaction solution by filtration and washed until salt-free. After drying at 120°C (24 h), the pigment is calcined at 800°C for minutes.
A high-lustre, intensely coloured pigment having a green interference colour is obtained.
-23 -ill. Comparison of the Lab values of Iriodin® 205 with the pigment from
Example 2.1
The Lab values (measured using an Eta measuring instrument, measurement angle 75°195°) are determined with reference to blacklwhite coating cards (NC lacquer) for lriodin® 205 (yellow interference pigment on mica flakes) from Merck KGaA and for the pigment from Example 2.1: lriodin® 205 Pigment from Exam-
Prior art pIe 2.1
Invention Lvalue 119.8 126.6 a value 8.7 10.3 b value 63.0 74.6 Chroma J÷b2) 63.6 75.3 The significantly increased a and b values of the pigment according to the invention mean that a significantly improved chroma is achieved, while the high L value indicates increased lustre.
-24 -
Use examples
Example A: Shower gel Phase A Raw material Source of INCI (%J ______________________ supply Pigment from Example 2.1 Merck KGaA ________________________ 0.10 Keltrol T Kelco Xanthan Gum 0.75 Water, demineralised ____________ Aqua (Water) 64.95 Phase B
_________________________ ______
Raw material Source of INCI r/oJ _____________________ supply Plantacare 2000 UP Cognis GmbH Decyl Glucoside 20.00 Texapon ASV 50 Cognis GmbH Sodium Laureth Sulfate, 3.60 Sodium Laureth-B Sulfate.
Magnesium Laureth Sulfate, Magnesium Laureth-8 Sulfate, Sodium Oleth Sulfate, Magnesium Oleth _____________ Sulfate ______ Bronidox L Cognis GmbH Propylene Glycol, 5-Bromo-5-0.20 ______________ Nitro-1,3-Dioxane Everest 79658 SB Haarmann & Perfume 0.05 perfume oil Reimer GmbH ________________________ 1% FD&C Blue No. 1 in BASF AG Aqua (Water), Cl 42090 0.20 water ______________ (FD&C Blue No. 1) ______ -25.-Phase C Iiw material Source of INCI sápply Citric acid monohydrate Merck Citric Acid 0.15 KGaNRona® Water, demineralised Aqua (Water) 10.00 Preparation: For phase A, stir the interference pigment into the water. Slowly scatter in the Keltrol I with stirring and stir until it has dissolved. Add phases B and C suc-cessively while stirring slowly until everything is homogeneously distributed.
Adjust the pH to 6.0 to 6.4.
Example B: Nail varnish Raw material Source of INCI supply Pigment from Example 2.2 Merck KGaA 2.00 Thixotropic nail varnish International Toluerie, Ethyl Acetate, Butyl 98.00 base 1348 Lacquers Acetate, Nitrocellulose, S.A. Tosylamide/Formaldehyde Resin, Dibutyl Phthalate, Isopropyl Alcohol.
Stearalkonium Hectorite, Camphor, Acrylates Copolymer, Benzophenone-1 Preparation: The interference pigment is weighed out together with the varnish base, mixed well by hand using a spatula and subsequently stirred at 1000 rpm for mm. /
-26 -Example C: Coating system 90% by weight of Hydroglasur BGIS colourless (water-based coating from.
Ernst Diegel GmbH) 10% by weight of pigment from Example 2.2 Coating by spraying-on at 80°C mm pie-drying at 80°C 20 mm baking at 180°C
Example D: Plastic
1 kg of polystyrene granules is wetted uniformly with 5 g of coupling agent in a tumble mixer. 42 g of green interference pigment from Example 2.2! are then added, and the mixture is mixed for 2 mm. These granules are converted into stepped plates measuring 4 x 3 x 0.5 cm in an injection-moulding machine under conventional conditions. The stepped plates are distinguished by their pronounced sparkle effect.
Example E: Colouring of confectionery Raw materials: fizzy boiled sweets white Spray solution: 94% of alcoholic shellac solution from Kaul 6% of effect pigment from Example 2.1 The fizzy boiled sweets are sprayed with an interference pigment/shellac solution until the desired colour application has been achieved. Subsequent drying using cold air is possible. /
-27 -Example F: Automotive paint The pigment from Example 2.2 can easily be incorporated into automotive paints. To this end, the pigment from Example 2.2 is added to the paint base with stirring. The stirring operation is continued until the pigment has uni-formly distributed in the paint. The coloured paint is sprayed onto aluminium test sheets coated black and white.
Production of the painted sheets: Paint: 1-lerberts base coat 419982 Pigmentation: 5% Dry layer thickness; 15 pm Spray gun: Sprimag S 233; nozzle diameter: 1.5mm Spray pressure: 4 bar Nozzlelsubstrate separation: 27 cm Example G: Flexographic printing Preparation of the printing ink: The pigment from Example 2.1 is pre-wetted with prewetting Byk 348 (0.6%) and incorporated into the binder in a concentration of 22.9%.
Binder: Koustom Kote 9000! USA, water-based The paste is diluted with water until a viscosity of 40 sec with the 4 mm Erich-sen cup at 25°C has been reached.
The pigments are printed onto matt-black art paper from an anilox ceramic cylinder (24 ccm!m2) via a rubber printing plate.
The pigments according to the invention exhibit high colour intensity.
The products from Use Examples A -G are distinguished by their high lustre, high colour intensity and high colour purity.

Claims (1)

  1. <claim-text>-28 -Patent Claims 1. Effect pigment based on a flake-form substrate, characterised in that the substrate having a circular form factor (circumference2! area standardised to a circle) of 1.2-2 is coated with at least one high-refractive-index layer having a refractive index of n »= 1.8.</claim-text> <claim-text>2. Effect pigment according to Claim 1, character!sed in that the substrate has a circular form factor of 1.2 -1.8.</claim-text> <claim-text>3. Effect pigment according to Claim I or 2, characterised in that the substrate has a particle size of 5-60 pm.</claim-text> <claim-text>4. Effect pigment according to one or more of Claims ito 3, char-acterised in that the substrate has a thickness of 0.2-0.6 pm.</claim-text> <claim-text>5. Effect pigment according to one or more of Claims i to 4, char-acterised in that the flake-form substrate is selected from the group synthetic mica flakes, natural mica flakes, Si02 flakes, Al2Oa flakes, glass flakes, iron oxide flakes, graphite flakes, Ti02 flakes or mixtures thereof.</claim-text> <claim-text>6. Effect pigment according to one or more of Claims ito 5, char-acterised in that the flake-form substrate is a mica or glass flake.</claim-text> <claim-text>7. Effect pigment according to one or more of Claims I to 6, char-acterised in that the flake-form substrate is a natural mica flake.</claim-text> <claim-text>8. Effect pigment according to one or more of Claims Ito 7, char-acterised in that the substrate flake is coated with at least one high-refractive-index layer having a refractive index of »= 1.8.</claim-text> <claim-text>9. Effect pigment according to one or more of Claims ito 8, char-acterised in that the high-refractive-index layer is selected from the group of the metal oxides, metal sulfides, iron titanates, iron oxide hydrates, titanium suboxides, metals, and mixtures or mixed phases of the said compounds.</claim-text> <claim-text>10. Effect pigment according to one or more of Claims ito 9 char-acterised in that the high-refractive-index layer consists of Tb2, BlOC!, Ce203, Cr203, CoO, Co304, Fe203, Fe304, FeOOH, NiO, Sn02, 102, I203, Zr02.ZnO, CoAI2O4, BiVO4, iron titanates, iron oxide hydrates, 14305, T1203, TiO, Ce2S3, MoS2, aluminium, chromium, nickel, silver, gold, titanium, copper or alloys thereof and mixtures or mixed phases of the said compounds with one another.ii. Effect pigment according to one or more of Claims ito 10, char-acterised in that the high-refractive-index layer consists of one or more metal oxides.12. Effect pigment according to one or more of Claims ito 11, char- acterised in that the substrate is coated with at least one high- refractive-index layer (n »= 1.8) and at least one low-refractive-index layer (n C 1.8).13. Effect pigment according to one or more of Claims ito 12, char-acterised in that the low-refractive-index layer is selected from the group Si02, A1203, Al0(Ol-l), MgF2.14. Effect pigment according to one or more of Claims ito 13, char-acterised in that the effect pigment has the following layer sequences on the substrate flake: substrate flake + 1102 (anatase) substrate flake + Sn02 ÷ hO2 (rutile) substrate flake + Ti02 + alkaline-earth metal titanate substrate flake + Sn02 ÷ 1102 + alkaline-earth metal titanate substrate flake + 1102 + Fe203 substrate flake + 6n02 + hO2 + Fe203 substrate flake + Ti02 + Fe304 -30 -substrate flake + Sn02 + Tb2 + Fe304 substrate flake + Tb2 + Cr203 substrate flake + 8n02 + Ti02 + Cr203 substrate flake + Tb2 + Carmine Red substrate flake + 8fl02 ÷ 1102 + Carmine Red substrate flake + 1102 + Berlin Blue substrate flake + Sn02 + Tb2 + Berlin Blue substrate flake + Ti02 / Fe203 substrate flake + Sn02 + 1102 / Fe203 substrate flake + Ti02 + 8102 + hO2 substrate flake + Sn02 ÷ 1102 + Si02 + Sn02 + Tb2 substrate flake + Fe203 substrate flake + Fe304 substrate flake + Ti02 + 8102 ÷ Ti02IFe203 substrate flake + Sn02 + 1102 + 8I02 + TiO2fFe2O3 substrate flake + T102 + Sj02 + 1102 + T102/Fe203 substrate flake + 8n02 + 1102 + 5i02 + 1102 + T102/Fe203 substrate flake + Sn02 + Tb2 + 8102 + Sn02 + T102 + 1i02/Fe203 substrate flake + Ti02/Fe203 + S102 + 1102 + Tb02/Fe203 substrate flake + TiO2JFe2O3 + 8102 + 5rQ2 + 1102 + 1102/Fe203 substrate flake + T102/Fe203 + 8102 + 1102 substrate flake + Ti02/Fe203 + 8102 + 3fl02 + 1102 substrate flake + Ti02/Fe203 + Si02 ÷ Ti02/Fe203 substrate flake + Tb2 + Si02 + Fe304 substrate flake + Tb2 + Si02 + Cr203 substrate flake + Cr203 substrate flake + Ag substrate flake + Au substrate flake + Fe203 + 8102 + T102/Fe203 substrate flake + Sl°2 + Tb2 (anatase) substrate flake + Si02 + Sn02 + 1102 (rutile) substrate flake + 8i02 + hO2 + alkaline-earth metal titanate substrate flake + 8102 + Sn02 + Ti02 + alkaline-earth metal titan-ate substrate flake + Si02 + T102 + Fe203 substrate flake + Si02 + 8n02 + Ti02 + Fe203 -31 -substrate flake + Si02 + hO2 + Fe304 substrate flake + 3j02 + Sn02 + Ti02 ÷ Fe304 substrate flake + S102 + 1102 + Cr203 substrate flake ÷ Sb2 + Sn02 + T102 + Cr203 substrate flake + 6102 + 1102 + Carmine Red substrate flake + 3102 + 5n02 + 1102 + Carmine Red substrate flake + Si02 + 1102 + Berlin Blue substrate flake ÷ 5102 + Sn02 + Tb2 ÷ Berlin Blue substrate flake + 5102 + 1102 / Fe203 substrate flake + 5102 + Sn02 + 1102 I Fe203 substrate flake + Si02 + 1102 + 5102 + Ti02 substrate flake + Si02 + Sn02 + TIC2 5102 + Sn02 + Ti02 substrate flake + Si02 + Fe203 substrate flake + 3102 + Fe304 substrate flake + SIC? + 1102 + Sb2 + T102IFe203 substrate flake + 5102 + SriO2 + TIC2 + 5102 + T102IFe203.substrate flake + 3102 + 1102 + 5102 + T102 + T102/Fe203 substrate flake ÷ Si02 + Sn02 + Tb2 + 3102 + 1102 + Ti02/Fe203 substrate flake + 5102 + 6fl02 + T102 + 6102 + Sn02 + 1102 + T102/Fe203 substrate flake + Si02 + Ti02/Fe203 + 8102 + Ti02 + 1102/Fe203 substrate flake ÷ 5102 ÷ T102/Fe203 + 5102 + Sn02 + 1102 + Ti02/Fe203 substrate flake ÷ 6i0 + 1ib2/Fe203 + 5102 + Tb2 substrate flake + SIC2 + h102/Fe203 + Sj02 + Sn02 + Tb2 substrate flake + SiC2 + Ti02/Fe203 + 5102 + T102/Fe203 substrate flake + 5102 + TIC2 + 3102 + T102/Fe203 substrate flake + 6102 ÷ 1102 + Si02 + Fe304 substrate flake + 6102 ÷ 1102 + 3102 + Cr203 substrate flake + 6102 + Cr203 substrate flake + 5102 + Ag substrate flake + SIC2 + Au substrate flake ÷ SIC2 + Fe203 + 5102 + 1b02/Fe203 substrate flake + T102 (anatase) + 5102 substrate flake + Sn02 + Ti02 (ruffle) + 5102.-32 - 15. Effect pigment according to one or more of Claims ito 14, character- ised in that it is additionally aftertreated with an organic and/or inor-ganic layer in order to increase the light, water and weather stability.16. Process for the preparation of the effect pigment according to one or more of Claims ito 15, characterised in that substrates in the form of relatively large lumps or coarse flakes are firstly ground, the substrate flakes formed having a diameter of 50-200 pm are subsequently intro- duced into a comminution machine, and water and/or an organic sol-vent are added; and the suspension formed in this way is treated mechanically for a number of hours in the comminution machine, dur-ing which the surface of the flakes is polished smooth at the same time and the mechanical loading of the substrate particles during this step is selected so that a permanent shear results in further gentle delamina- tion of particles and in smoothing of the edges and surfaces and a nar-row particle-size distribution is achieved by a subsequent classification step in the form of a plurality of sedimentation steps.17. Process according to Claim 16, characterised in that the particle-size distribution is 5-60 pm.18. Use of the effect pigment according to one or more of Claims Ito 15 in paints, automotive paints1 industrial coatings, coatings, powder coat-ings, printing inks, plastics, button pastes, ceramic materials, glasses, for colouring seed, as absorber in the laser marking of plastics, glasses, cardboard and paper, as absorber in the laser welding of plastics,, for colouring food and pharmaceutical products, for colouring coatings of food and pharmaceutical products, in cosmetic formula-tions, for the preparation of pigment compositions and dry preparations and in counterfeiting-proof documents of value.19. Formulations comprising one or more effect pigments according to one or more of Claims Ito 15.20. Formulations according to Claim 19, characterised in that; besides the effect pigments, they comprise at l!ast one constituent selected from the group of the absorbents, astririgents, antimicrobial substances, antioxidants, antiperspirants, antifoaniing agents, antidandruff active ingredients, antistatics, binders, biological additives, bleaching agents, chelating agents, deodorants, emollients, emulsifiers, emulsion stabi-lisers, dyes, humectants, film farmers, fillers, odour substances, flavour substances, insect repellents, preservatives, ariticorrosion agents, cosmetic oils, solvents, oxidants, vegetable constituents, buffer sub-stances, reducin9 agents, surfactants, propellant gases, opacifiers, IJV filters and UV absorbers, denaturing agents, viscosity regulators, per fume and vitamins.21. Pigment compositions comprising one or more binders, optionally one or more additives and effect pigments according to one or more of Claims ito 15.22. Dry preparations comprising effect pigments according to one or more of Claims ito 15.-</claim-text>
GB1221551.3A 2011-12-21 2012-11-29 Effect pigments Expired - Fee Related GB2498622B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011121804A DE102011121804A1 (en) 2011-12-21 2011-12-21 Effect pigment useful e.g. in paints, automobile lacquers, printing inks and plastic, comprises platelet-shaped substrate having specific circular shape factor, which is coated with a high refractive index layer having high refractive index
DE201210000887 DE102012000887A1 (en) 2012-01-19 2012-01-19 Effect pigment useful e.g. in paints, automobile lacquers, printing inks and plastic, comprises platelet-shaped substrate having specific circular shape factor, which is coated with a high refractive index layer having high refractive index

Publications (2)

Publication Number Publication Date
GB2498622A true GB2498622A (en) 2013-07-24
GB2498622B GB2498622B (en) 2016-07-20

Family

ID=47351347

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1221551.3A Expired - Fee Related GB2498622B (en) 2011-12-21 2012-11-29 Effect pigments

Country Status (7)

Country Link
US (3) US20130164356A1 (en)
EP (1) EP2607432A1 (en)
JP (1) JP6027431B2 (en)
KR (1) KR102127779B1 (en)
CN (2) CN108467608A (en)
GB (1) GB2498622B (en)
TW (1) TWI604020B (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2607432A1 (en) 2011-12-21 2013-06-26 Merck Patent GmbH Effect pigments based on substrates with a circular-form factor of 1.2-2
DE102012020392A1 (en) * 2012-10-18 2014-04-24 Merck Patent Gmbh pigments
DE102012024901A1 (en) * 2012-12-20 2014-07-10 Merck Patent Gmbh pigments
EP2970680B1 (en) * 2013-03-14 2017-11-08 Basf Se Coated perlite flakes
CN103421344A (en) * 2013-07-10 2013-12-04 杭州弗沃德精细化工有限公司 Preparation technology of cochineal pigment with colorful effect
KR101541009B1 (en) * 2013-10-28 2015-08-03 씨큐브 주식회사 Colored glazed pigments using natural dye and method of manufacturing the same
CN103602102A (en) * 2013-11-15 2014-02-26 浙江凯色丽科技发展有限公司 3D (Three-Dimensional) color-changing shimmer pigment
KR20150108437A (en) * 2014-03-17 2015-09-30 씨큐브 주식회사 Flaky aluminum oxide and method of producing thereof
JP6626609B2 (en) * 2014-03-20 2019-12-25 アイカ工業株式会社 Coating surface finishing method
DE102014003975A1 (en) * 2014-03-20 2015-10-08 Merck Patent Gmbh effect pigments
US9668956B2 (en) * 2014-05-21 2017-06-06 Galaxy Surfactants, Ltd. Low viscous, sulfate-free cold-dispersible pearlescent concentrate
CN106536640B (en) * 2014-05-28 2019-05-21 巴斯夫欧洲公司 Effect pigment
CN104151876B (en) * 2014-07-23 2015-11-25 瑞彩科技股份有限公司 A kind of preparation method of glittering golden pearly pigment of synthetic
WO2016012074A1 (en) * 2014-07-25 2016-01-28 Merck Patent Gmbh Colored effect pigments
CN104263016B (en) * 2014-09-11 2016-04-27 福建坤彩材料科技股份有限公司 Extract method prepares pearly pigment method from ilmenite hydrochloric acidolysis liquid altogether
JP2016108656A (en) * 2014-10-13 2016-06-20 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー Copper color coating material, its preparation process and its application
SI3034563T1 (en) 2014-12-19 2019-06-28 Eckart Gmbh Gold-coloured effect pigments with high chroma and a high brilliance, method for their preparation and their use
TR201816042T4 (en) * 2014-12-19 2018-11-21 Eckart Gmbh Absorbing effect pigments with high color darkness and high brightness, methods and uses for their production.
ES2733082T3 (en) * 2014-12-19 2019-11-27 Eckart Gmbh Red effect pigments with high chroma and high brightness, procedure for their preparation and use
PL3034566T3 (en) 2014-12-19 2019-08-30 Eckart Gmbh Metal effect pigments comprising a high chroma and a high brilliancy, method for their preparation and their use
PL3034564T3 (en) 2014-12-19 2018-07-31 Eckart Gmbh Effect pigments with high transparency, high chroma and a high brilliance, method for their preparation and their use
CN104804475B (en) * 2015-03-16 2016-06-29 广西七色珠光材料股份有限公司 Bluish-green series pearlescent effect pigment and preparation method thereof
CN107922783A (en) * 2015-08-31 2018-04-17 住友化学株式会社 For preventing the coating of metal erosion and the manufacture method of the film for preventing metal erosion
CN106009786B (en) * 2016-05-25 2018-04-03 南京理工大学 A kind of doping type high infrared reflection rare earth sesquifide γ Ce2S3Coat nacreous mica pigment and preparation method thereof
CN105838114B (en) * 2016-05-25 2018-05-01 南京理工大学 A kind of high infrared reflection rare earth sesquifide γ-Ce2S3Coat nacreous mica pigment and preparation method thereof
CN106189372A (en) * 2016-07-21 2016-12-07 四川省川宏精细化工有限公司 A kind of glittering pearlescent pigment of cosmetics black and preparation method thereof
DE102017001107A1 (en) * 2017-02-07 2018-08-09 Merck Patent Gmbh Coloring of surfaces
JP7432364B2 (en) * 2017-03-17 2024-02-16 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング interference pigment
TWI804491B (en) * 2017-03-20 2023-06-11 德商麥克專利有限公司 Pigment powders and process for producing the same
CN107022215B (en) * 2017-03-31 2019-07-12 福建惠安霞飞石雕工艺有限公司 A kind of processing technology and its coloured drawing pigment of giant clam
CN110603296B (en) * 2017-04-27 2021-10-26 日本板硝子株式会社 Bright pigment having electromagnetic wave transmission characteristics, and composition and coated body containing same
CN107325589A (en) * 2017-07-05 2017-11-07 江苏贝丽得新材料有限公司 A kind of glittering Gold production effect pearlescent pigment of high-purity titanium ferroalloy and preparation method thereof
CN107383939B (en) * 2017-07-10 2019-04-30 林一中 A kind of preparation method coating Prussian blue or Prussian blue analogue pigment
JP7049459B2 (en) * 2017-12-22 2022-04-06 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング Methods for Producing Conductive Particles, Compositions, Articles, and Conductive Particles
CN112334016A (en) * 2018-06-15 2021-02-05 Wm.雷格利 Jr.公司 Edible confectionery coatings comprising calcium carbonate
CN108752978B (en) * 2018-07-10 2020-05-08 福建坤彩材料科技股份有限公司 Green-phase golden pearlescent pigment based on synthetic mica and preparation method and application thereof
US11779525B2 (en) 2018-12-28 2023-10-10 Conopco, Inc. Process and cosmetic composition for gloss and blur
KR102149688B1 (en) * 2019-12-11 2020-09-01 코씨엠(주) Pearlescent pigment particle and Manufacturing method thereof
CN111171602B (en) * 2019-12-30 2022-05-10 河北欧克新型材料股份有限公司 Preparation method of pearlescent pigment
CN111995884B (en) * 2020-08-27 2022-05-10 河北欧克新型材料股份有限公司 Production process of color-changing pearlescent pigment
CN112795208A (en) * 2020-12-01 2021-05-14 正太新材料科技有限责任公司 Preparation method of organic high-catalytic pearlescent pigment
KR102553132B1 (en) * 2021-06-08 2023-07-10 (주)스파코 Pearlescent pigment particle, Apparatus and method for manufacturing thereof
WO2024017885A1 (en) 2022-07-19 2024-01-25 Sun Chemical Corporation Effect pigments with sparkle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080047470A1 (en) * 2006-06-08 2008-02-28 Gerhard Pfaff Effect pigments

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE619447A (en) 1961-06-28
DE2009566C2 (en) 1970-02-28 1972-06-15 Merck Patent Gmbh Process for the production of titanium dioxide or titanium dioxide aquate coatings
CA964403A (en) 1971-03-26 1975-03-18 Howard R. Linton Nacreous pigments of improved luster and process for their manufacture
CA957108A (en) 1971-03-30 1974-11-05 E. I. Du Pont De Nemours And Company Pigments treated with methacrylatochromic chloride for improved humidity resistance
US4038099A (en) 1971-08-30 1977-07-26 The Mearl Corporation Rutile-coated mica nacreous pigments and process for the preparation thereof
DE2244298C3 (en) 1972-09-09 1975-06-19 Merck Patent Gmbh, 6100 Darmstadt Pearlescent pigments and processes for their manufacture
DE2313331C2 (en) 1973-03-17 1986-11-13 Merck Patent Gmbh, 6100 Darmstadt Mica flake pigments containing iron oxide
DE2522572C2 (en) 1975-05-22 1982-06-03 Merck Patent Gmbh, 6100 Darmstadt Pearlescent pigments containing rutile
DE3030056A1 (en) 1980-08-08 1982-03-25 Basf Ag, 6700 Ludwigshafen METHOD FOR THE PRODUCTION OF SCALE-SHAPED Mica Pigments Coated With Metal Oxides
DE3137809A1 (en) 1981-09-23 1983-03-31 Merck Patent Gmbh, 6100 Darmstadt "PEARL SHINE PIGMENTS, THEIR PRODUCTION AND THEIR USE"
DE3137808A1 (en) 1981-09-23 1983-03-31 Merck Patent Gmbh, 6100 Darmstadt PEARL SHINE PIGMENTS WITH IMPROVED LIGHT FASTNESS, METHOD FOR THE PRODUCTION AND USE
DE3151355A1 (en) 1981-12-24 1983-07-07 Merck Patent Gmbh, 6100 Darmstadt "PEARL SHINE PIGMENTS WITH IMPROVED LIGHT RESISTANCE, THEIR PRODUCTION AND USE"
DE3151343A1 (en) 1981-12-24 1983-07-07 Merck Patent Gmbh, 6100 Darmstadt PEARL SHINE PIGMENTS WITH IMPROVED LIGHT RESISTANCE, THEIR PRODUCTION AND THEIR USE
DE3151354A1 (en) 1981-12-24 1983-07-07 Merck Patent Gmbh, 6100 Darmstadt PEARL SHINE PIGMENTS, METHOD FOR THEIR PRODUCTION AND THEIR USE
DE3211166A1 (en) 1982-03-26 1983-09-29 Merck Patent Gmbh, 6100 Darmstadt METHOD FOR HYDROPHOBIZING PEARL GLOSS PIGMENTS
DE3211602A1 (en) 1982-03-30 1983-10-13 Merck Patent Gmbh, 6100 Darmstadt METHOD FOR THE PRODUCTION OF PEARL SHINE PIGMENTS WITH IMPROVED SHINE PROPERTIES
DE3235017A1 (en) 1982-09-22 1984-03-22 Merck Patent Gmbh, 6100 Darmstadt PEARL PIGMENT
DE3237264A1 (en) 1982-10-08 1984-04-12 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING EFFECT PIGMENTS COATED WITH METAL OXIDE
DE3334598A1 (en) 1983-09-24 1985-04-18 Merck Patent Gmbh WEATHER-RESISTANT PEARL PIGMENT
IN169017B (en) 1986-12-13 1991-08-17 Marck Patent Gmbh
DE4323914A1 (en) 1993-07-16 1995-01-19 Merck Patent Gmbh Pearlescent pigment preparation
US5433779A (en) 1993-12-06 1995-07-18 The Mearl Corporation Rutile titanium dioxide coated micaceous pigments formed without tin
US5571851A (en) 1994-01-28 1996-11-05 J.M. Huber Corporation Reinforcing fillers for plastics systems
JP3577576B2 (en) 1995-04-10 2004-10-13 メルク株式会社 Surface treatment agent, surface-treated flaky pigment and method for producing the same
US5759255A (en) 1996-02-07 1998-06-02 Engelhard Corporation Pearlescent pigment for exterior use
DE19820112A1 (en) 1998-05-06 1999-11-11 Eckart Standard Bronzepulver Effect pigments coated with reactive orientation aids
US6245323B1 (en) 2000-05-26 2001-06-12 Engelhard Corporation Bonded metal hydroxide-organic composite polymer films on particulate substrates
DE10120179A1 (en) 2001-04-24 2002-10-31 Merck Patent Gmbh Colored pigment, used in paint, lacquer, printing ink, plastics, ceramic material, glaze, cosmetic, laser marking or pigment preparation, comprises multi-coated flaky substrate covered with absorbent pigment particles
MXPA04000119A (en) 2001-07-12 2004-05-21 Merck Patent Gmbh Multilayer pigments based on glass flakes.
WO2003033909A1 (en) * 2001-10-17 2003-04-24 Chuogiken Kogyou Co., Ltd Piston type gas compressor, and piston type gas pressure drive rotation device
DE10204336A1 (en) 2002-02-01 2003-08-14 Merck Patent Gmbh Use of multi-layer pigments in the food and pharmaceutical sectors
US6626989B1 (en) 2002-05-16 2003-09-30 Engelhard Corporation Rutile titanium dioxide effect pigments and production thereof
US7258915B2 (en) * 2003-08-14 2007-08-21 Jds Uniphase Corporation Flake for covert security applications
WO2004055119A1 (en) 2002-12-17 2004-07-01 Merck Patent Gmbh Silvery white interference pigments having a high luster and based on transparent substrate laminae
US7045007B2 (en) 2002-12-31 2006-05-16 Engelhard Corporation Effect pigment
US6875264B2 (en) 2003-01-17 2005-04-05 Engelhard Corporation Multi-layer effect pigment
JP4276448B2 (en) * 2003-01-24 2009-06-10 トヨタ自動車株式会社 Brilliant pigment and method for producing the same
DE10313663A1 (en) * 2003-03-26 2004-10-07 Merck Patent Gmbh High-gloss non-toxic pearlescent pigment preparation
EP1469042A3 (en) 2003-03-27 2010-07-07 MERCK PATENT GmbH Pigment composition and use in cosmetic, food and pharmaceutical preparations
DE10329780A1 (en) * 2003-03-27 2004-10-07 Merck Patent Gmbh Pigment mixture and its use in cosmetics and in the food and pharmaceutical sectors
DE102004032799A1 (en) * 2003-07-21 2005-02-17 Merck Patent Gmbh Effect pigments for e.g. paints, coatings or tracers, comprises inorganic flake-form substrates that are uniform in shape and size and that have circular or elliptical shape or polygon shape
DE102004035769A1 (en) * 2004-07-27 2006-03-23 Merck Patent Gmbh Multilayer interference pigments
DE102004041586A1 (en) 2004-08-26 2006-03-02 Eckart Gmbh & Co. Kg Coated pearlescent pigments with SiO 2 and cerium oxide
GB0502166D0 (en) * 2005-02-02 2005-03-09 Effectology Ltd Ink-jet printing process
DE502006001300D1 (en) 2005-05-03 2008-09-25 Merck Patent Gmbh Use of laser-engraved printing forms
WO2007020364A1 (en) 2005-08-12 2007-02-22 Dunwilco (1198) Limited Process for producing metal flakes
DE102005055576A1 (en) * 2005-11-18 2007-05-24 Merck Patent Gmbh Red effect pigment and its use in cosmetics, food and pharmaceuticals
AU2008201211B2 (en) * 2007-03-21 2013-09-26 Viavi Solutions Inc. A surface treated flake
DE102007034928A1 (en) * 2007-07-24 2009-01-29 Eckart Gmbh Multilayer metallic effect pigments, process for their preparation and use
DE102007036369A1 (en) * 2007-07-31 2009-02-05 Eckart Gmbh Metallic lacquer, process for its preparation and uses thereof
DE102007041027A1 (en) * 2007-08-29 2009-03-05 Eckart Gmbh Effect pigments based on substrates formed from inorganic-organic mixed phases, their preparation and use
DE102008025277A1 (en) * 2008-05-27 2009-12-03 Merck Patent Gmbh glass composition
EP2607432A1 (en) 2011-12-21 2013-06-26 Merck Patent GmbH Effect pigments based on substrates with a circular-form factor of 1.2-2

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080047470A1 (en) * 2006-06-08 2008-02-28 Gerhard Pfaff Effect pigments

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.F. Santos et al. Method for grinding and delaminating muscovite. Mining Science and Technology (China) 21, 7-10, 2011 *

Also Published As

Publication number Publication date
US20160068683A1 (en) 2016-03-10
EP2607432A1 (en) 2013-06-26
KR102127779B1 (en) 2020-06-29
GB2498622B (en) 2016-07-20
JP6027431B2 (en) 2016-11-16
KR20130072158A (en) 2013-07-01
TW201339253A (en) 2013-10-01
CN108467608A (en) 2018-08-31
JP2013129831A (en) 2013-07-04
CN103183972A (en) 2013-07-03
US11773270B2 (en) 2023-10-03
US20130164356A1 (en) 2013-06-27
US20200339820A1 (en) 2020-10-29
TWI604020B (en) 2017-11-01

Similar Documents

Publication Publication Date Title
US11773270B2 (en) Effect pigments
US10822497B2 (en) Interference pigments
US10597544B2 (en) Pigments
US7691196B2 (en) Effect pigments
US7303622B2 (en) Lustrous black interference pigments
US9909010B2 (en) Pigments
US6866710B2 (en) Inorganic spherical absorption pigments
US8500901B2 (en) Interference pigments
KR101719849B1 (en) High-gloss multilayer effect pigments having a narrow size distribution, and method for the production thereof
US10280308B2 (en) Effect pigments
EP2917285B1 (en) Pigments
DE102012000887A1 (en) Effect pigment useful e.g. in paints, automobile lacquers, printing inks and plastic, comprises platelet-shaped substrate having specific circular shape factor, which is coated with a high refractive index layer having high refractive index
DE102011121804A1 (en) Effect pigment useful e.g. in paints, automobile lacquers, printing inks and plastic, comprises platelet-shaped substrate having specific circular shape factor, which is coated with a high refractive index layer having high refractive index
JP7473297B2 (en) Pigment Mixture

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20211129