GB2491201A - A kite surfing harness safety release device - Google Patents

A kite surfing harness safety release device Download PDF

Info

Publication number
GB2491201A
GB2491201A GB1109067.7A GB201109067A GB2491201A GB 2491201 A GB2491201 A GB 2491201A GB 201109067 A GB201109067 A GB 201109067A GB 2491201 A GB2491201 A GB 2491201A
Authority
GB
United Kingdom
Prior art keywords
ripcord
kite
harness
belt
hook
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1109067.7A
Other versions
GB2491201B (en
GB201109067D0 (en
Inventor
Elia Casale
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LRB GLOBAL CONSULTING Ltd
Original Assignee
LRB GLOBAL CONSULTING Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LRB GLOBAL CONSULTING Ltd filed Critical LRB GLOBAL CONSULTING Ltd
Priority to GB1109067.7A priority Critical patent/GB2491201B/en
Publication of GB201109067D0 publication Critical patent/GB201109067D0/en
Priority to PCT/IT2012/000139 priority patent/WO2012172581A1/en
Publication of GB2491201A publication Critical patent/GB2491201A/en
Application granted granted Critical
Publication of GB2491201B publication Critical patent/GB2491201B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H8/00Sail or rigging arrangements specially adapted for water sports boards, e.g. for windsurfing or kitesurfing
    • B63H8/50Accessories, e.g. repair kits or kite launching aids
    • B63H8/56Devices to distribute the user's load, e.g. harnesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H8/00Sail or rigging arrangements specially adapted for water sports boards, e.g. for windsurfing or kitesurfing
    • B63H8/10Kite-sails; Kite-wings; Control thereof; Safety means therefor
    • B63H8/18Arrangements for connecting the user to a kite-sail; Kite-safety means, e.g. chicken loops, safety leashes or quick release mechanisms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Emergency Lowering Means (AREA)

Abstract

The present invention provides a kite surfing harness 100 with one or more safety release mechanisms for deployment in case of an emergency. The release mechanism comprises first 220 and second 240 ripcords. The first ripcord releases a kite from its connection to a belt of the harness and the second ripcord releases the belt from the user. In a further embodiment a first safety release mechanism 140 comprises a first ripcord which can be removed to release a hook-carrying portion 120 from a belt portion 114 of the harness. A second safety release mechanism 160 provides a second ripcord which can be removed to release a kite-connecting leash (400, Fig 4) from the user. The first and second ripcords may be attached to the same handle 200, thus enabling the first and second safety release mechanisms to be deployed in succession by continued pulling on that handle.

Description

A SAFETY RELEASE DEVICE
Field
The present invention relates to safety release devices, generally for sports equipment and more particularly for a kite surfing harness.
Background
Kite surfing has relatively recently become a popular sport and leisure time activity.
The sport is generally recognised as a mix of windsurfing, surfing and kiting. The kite surfer is supported on a shortened surf board and wears a harness attached to a kite, which is similar in many respects as a sail or canopy of a paraglider. The kite provides the propulsion which propels the kite surfer.
Typically, a horizontal control bar is connected between the harness and the kite.
and enables the kite surfer to orient and steer the kite so that he can control his direction and speed. The control bar is attached to the harness via a loop which hooks onto a downwardly oriented hook on the front of the harness, thus enabling the surfer to use his bodyweight to control the kite.
Kite surfing is becoming increasingly popular and kite surfers are often seen in shallow waters, surfing at speeds In excess of 20 km/h, sometimes even faster than SOkmdh.
I
As with many sports there s an inherent risk of danger. The kite surfer may be inadvertently carried substantial distances by a sudden gust of wind, and may find themselves being propelled towards a hazard such as another kite surfer, boat, swimmer, sea wall or even dragged into deep water as a result of freak conditions.
Similarly, guide ropes may become entangled as a result of a collision, e.g. with another kite surfer or a stationary object such as a tree, mast, post or the like.
Previous kite surfing equipment incorporates various types of quick release mechanism that a user can pull in such an emergency. Such quick release.
mechanisms include arrangements in which th..e kite is either fully or partially de- powered, i.e. deflated so that the lift forces applied to it by the air are reduced. De-powering may be achieved by rapidly extending one of the control lines tethering the kite by a length approximately equal to the span of the kite, so that the kite collapses.
In the process of de-powering, the control bar is released from the harness hook, the de-powered kite remaining attached to the harness via a tethering cable, or leash, in order that the kite surfer is able to easily regain the kite after de-powering.
Despite the above known safety mechanisms, there is still a risk of injury or death to kite surfers who de-power their kites but remain attached via the tethering cable.
Some previous harnesses have pro.vided quick release mechanisms for removing the tethering cable, but these are entirely separate from the de-powering safety release mechanisms and thus must be located and activated separately.
Alternatively, the surfer may fry to remove the harness in such a situation.
Both such life preserving actions may not always be practicable or even possible, especially in cases where the surfer s being dragged underwater (possibly even face down); has sustained an injury; has limited mobility or little time to get free before an imminent collision. In other words, when the user is placed in an extreme situation which may be life threatening to themselves or others.
The present invention has been devised in view of the above considerations, and seeks to provide an improved safety mechanism for kite surfers.
YPP
According to a first aspect of the present invention there is provided a safety release device for a kite surfing harness, the harness has a belt portion arranged to extend around the waist of a user, the release device comprising: first and second ripcords, which first ripcord, when deployed, releases a kite from its connection to the belt and which second ripcord releases the belt from the user.
ideally the first and second rip cords are located on a single grip or handle.
Advantageously the first ripcord is arranged to deploy before each second ripcord.
One way in which this is achieved by dimensioning the first rip cord to be shorter than the second, so that in the event of an emergency, when a user pulls the handle the first ripcord deploys the release of the kite from where it is normally located on the front of the belt; and by continual pulling of the ripcord, the user is able to completely release himself form the belt.
One way in which the first deployment of the first ripcord releases the kite from its connection to the belt, is to detach the kite from a hook portion located on the belt.
Thus, the user is able to easily and quickly release the kite from the belt, and thus effectively "de-power9 the kite, with one simple pull on the first ripcord. The ripcord provides a failsafe, straightforward and foolproof way of releasing the kite from the hook.
The first rlpcord ideally secures the kite to the hook or the hook portion to the belt, In the first pre-deployment configuration. This Is achieved by way of first safety release loop affixed to either the belt portion or the hook portion and threaded through an opening of the other (belt portion or the hoc.k portion), so that the first ripcord passing through the first safety release loop secures the first safety release loop within an opening.
The opening may comprise a rigid ring, loop, or series of rings or loops, connected to the belt portion or hook portion. Preferably there is provided a rigid ring affixed to an end of a strap, the other end of which is affixed to the hook portion. in the fi.rst deployment configuration the first ripcord is removed from the first safety release loop whilst maintainIng the belt tight around the user.
The downward orientation of the hook is such that It is oriented in a manner in which a first limb of the hook projects outwardly from the belt portion, and a second limb of the hook projects from the first limb downwardly towards a lower edge of the belt portion.
The harness according to the first aspect may further comprise a leash havIng a first end arranged to connect to a kite, and a second safety release mechanism comprising a second ripcord, the second safety release mechanism having a second pre-deployment configuration in which the second ripcord secures a second end of the leash to the belt portion, and a second deployment configuration In which the second ripcord is removed to release the leash from the belt portion.
In this way, if the user has removed the first ripcord to achieve the first deployment configuration but he remains in danger because of the leash connection between kite and harness, he can simply remove the second ripcord to achieve complete separation of the kite and harness. The ripcord provides a failsafe, straightforward and foolproof way of releasing the kite.
The first and second ripcords may comprise a length of rope, cable, string, wire, cord, drawstring, pull cord, or any other suItable elongate member.
Advantageously the first and second ripcords are enclosed within a sleeve, casing or enclosed channel defined within the belt in such a way that there is minimum friction provided by an interior of the sleeve, casing or enclosed channel, to the ripcords.
This can be achieved by providing surfaces coated with low friction material such as synthetic oil and/or poly-tetra-fluoro-ethene (PTFE) or similar materials, so as to ensure that seizing of the ripcords in the sleeve, casing or enclosed channel does not occur.
AccordIng to a second aspect of the invention a kite surfing harness has a belt portion arranged to extend around the waist of a user, a hook portion comprising a hook arranged to secure a kite, and a first safety release riechanisni comprising a first ripcord, the first safety release mechanism having a first pre-deployment configuration in which the first ripcord is arranged to secure the hook portion to the belt portion such that the hook is restrained in a downward orIentation, and a first deployment configuration in which the first ripcord is removed to release the hook portion from the belt portion.
The harness preferably includes a handle to which each of the first and second ripcords is attached, pulling of the handle causing deployment of the first and second ripcords in a sequential manner.
Preferably, the relative lengths of the first and second ripcords are selected such that, in use, continued pulling of the handle causes the first deployment configuration to be achieved before the second deployment configuration; the second deployment being used in cases of extreme danger or urgency as is herein described.
As both ripcords are located on the same handle, the user does not need to search in an emergency situation for two separate safety activation mechanisms, but needs only to locate a single handle, which may be done even when a user is disoriented or has only limited mobility. This arrangement ensures that minimum time is lost between separation of the hook and harness (ie de-powering" of the kite), and subsequent complete un-tethering of the user from the belt and the kite, with the associated risk that the kite, harness and equipment might be blown away in a high wind.
In some embodiments, the second ripcord is of a different colour and/or material to the first ripcord.
Ideally a flap or cover is provided to envelope the handle so as to prevent inadvertent deployment.
A lower portion of the hook portion may be connected to the belt portion in the first pre-deployment configuration via a first ripcord connector through which the first ripcord passes, and an upper portion of the hook portion may be connected to the belt portion in the first pre-deployrnent configuration via a second rpcord connector through which the first ripcord passes, the first and second ripcord connectors being arranged to permit removal of the first ripcord from the first rpcord connector before the second ripcord connector.
The invention will flow be described, by way of example only, and with reference to the Figures in which:
Brief Description of the 9gures
Figure us a side view of a kite surfing harness having safety mechanisms according to an embodiment of the present invention, in a pre-deptoyment configuration; Figure 2 is an alternative side view of the kite surfing harness of Figure 1, in a first stage deployment configuration, with some parts shown out of position for clarity; Figure 3 is another alternative side view of the kite surfing harness of Figure 1, in a second stage deployment configuration, with the harness shown hooked n to a kite; Figure 4 is another alternative side view of the kite surfing harness of Figure 1, in a third stage deployment configuration; and Figure 5 is another alternative side vIew of the kite surfing harness of Figure 1, in a fourth stage deployment configuration.
Petaile Description of Preferred Embodiments of the Invention Figs. 1-5 show a kite surfing harness 100 with safety mechanisms according to a preferred embodiment of the present invention. In Fig. I the safety mechanisms are shown stowed and un-deployed, while Figs. 2-5 show successive steps in the deployment of the safety mechanisms.
The harness 100 comprises a waist belt 110 which is arranged to be fitted securely around the waist of a user (not shown). The waist belt 110 comprises a padded back panel I 12 which, in use, is seated against the user's back so as to spread the loads transmitted from the kIte across the back, and a narrower front panel 114.
A hook panel 120 is arranged overlying the front panel 114 so as to be directly in front of and central to the user when the harness 100 is worn. The hook panel 120 supports at its midline a kite hook 122, which comprises a rigid hook shaped member projecting outwardly from the hook panel 120. The kite hook 122 is oriented downwardly, so that when a fully tensIoned connecting loop 300 (shown in Fig. 3) of a kite control bar (not shown) is hooked onto the kite hook 122 there is a secure connection between the control bar (and thus the kite, not shown) and the harness 100.
In the p re-deployment configuration shown in Fig. I the hook panel 120 is secured to the back panel 112 of the harness 100 via upper 130 and lower 150 de-powering straps. The upper de-powering strap 130 is fixed at a first end to the hook panel 120 via a slotted opening 124 therein proximal to a side edge of the hook panel 120. A second end of the upper de-powering strap 130 comprises a circular upper connection ring 132 which is connected to the back panel 112 via a first releasable fastening mechanism 140.
The first releasable fastening mechanism 140 includes two circular rings which are each attached to the back panel 112 via a short fabric loop: a first upper release ring 142 with an outer diameter smaller than the inner diameter of the upper connection ring 132; and a second upper release ring 144 with an outer diameter smaller than the inner diameter of the first upper release ring 142. The first upper release ring 142 is mounted more forwardly (i.e. nearer to the front panel 114) than the second upper release ring 144. To connect the upper de-powering strap 130 to the harness 100, the first upper release ring 142 is passed through the upper connection ring 132, and the second upper release ring 144 is passed through the first upper release ring 142.
As best shown in Fig. 2, in which the upper 130 and lower 150 de-powering straps are shown lifted up away from the front panel 114 for clarity, the second upper release ring 144 is then secured via an upper release loop 146 comprIsing a closed loop of cord or fabric secured to the back panel 112; the upper release loop 146 is passed through the second upper release ring 144 and a first ripcord 220 passed through the closed loop of the upper release loop 146, in this way, the first and second upper release rings 142. 144 and upper connection ring 13.2 are securely interconnected only while the first ripcord 220 remains within the upper release loop 146.
The lower de-powering strap 150 is arranged below (i.e. vertically lower than) the upper de-powering strap 130, and is connected to the back panel 112 of the harness via a lower connection ring 152 which connects with a second releasable fastening mechanism 160, similar to the first releasable fastening mechanIsm 140 described above. In contrast to the upper de-powering strap 130, however, the lower de-powering strap 150 is not fixed to the hook panel 120, but instead passes over it so as to apply a bearing force across its full width, Unlike the first releasable fastening mechanism 140, the second releasable fastening mechanism 160 comprises only a single circular ring: lower release ring 162. The lower release ring 182 is attached to the back panel 112 via a fabric loop, and has an outer diameter which is smaller than the inner diameter of the tower connection ring 152. To secure the lower de-powering strap** * 50 to the harness 100, the lower release ring 162 is first threaded through the lower connection ring 152. The lower release ring 162 is then secured via a lower release loop 164 which comprises a closed loop of fabric or cord which is secured to the back panel 112. The tower release loop 164 is passed through the lower release ring 162 and the first ripcord 220 threaded through the closed loop so that the lower release ring 162 and lower connection ring 152 are securely fastened together only while the first ripcord 220 remains threaded through the lower release loop 164.
Although not shown in the figures, the side of the hook panel 120 not connected to the upper de-powering strap 130 is securely fixed to the harness 100. Thus1 when the upper 130 and lower 150 de-powering straps are released from the harness 100 via the first 140 and second 160 releasable fastening mechanisms, there remains a connection between the hook panel 120 and the harness 100.
The first ripcord 220 comprises an elongate cable or rope which is free at one end and secured at the other end to a handle 200. As shown in Fig. 1, the handle 200 is stowed pre-deployment at a position to the side of the harness 100 and slightly above its upper edge, so that it is easy to locate by the user. Although not shown in the figures, it is intended that the handle 200 be secured to the harness 100 via a velcro strap, or similar, so that it is normally safely stowed, but can be detached by a forceful tug on the handle 200. It is also intended that the handle 200 be concealed by a removable cover (not shown) to further prevent accidental deployment.
When the handle 200 is pulled upwardly away from the harness 100 (as illustrated in the deployment sequences shown in the figures), the first rlpcord 220 is first withdrawn from the lower release loop I 64, and subsequently from the upper release loop 146. Thus, the lower de-powering strap 150 Is unfastened (i.e. de4ensioned) before the upper de-powering strap 130. Since the kite (not shown) applies an upwards force on the hook 122 via the control loop 300 (shown in Fig. 3), the result of the sequential unfastening of the upper and lower de-powering straps 130, 150 is that the hook panel 120 is firstly tilted upwardly so that its lower edge 126 moves away from the front panel 114 of the harness, and secondly swIngs away from the front panel 144 as it is no longer attached at one side to the harness 100. In the first stage the control loop aoo (and thus the kite) Is unhooked from the kite hook 122, in the second stage the kite becomes de-powered (La deflated).
After unhooking and depowering of the kite, the kite remains connected to the harness via a leash cable 400. The leash cable 400 extends laterally along the width of the. back panel 112 of the harness 100, and is connected at one end (not shown) to the kite (not shown), and at the other end to the back panel 112 via a removable pin 410. The removable pin 410 has an eyelet 412 at its free end, the eyelet 412 being. secured to one end of a second ripcord:40.
The second ripcord 240 is similar to the first ripcord 220, being an elongate cord formed from cable or rope, and being secured at its other end to the handle 200.
When the handle 200 is pulled upwardly and away from the harness 100, the second ripcord 240 eventually becomes sufficiently tensioned so that the removable pin 410 is pulled free from the leash cable 400. Once the pin 410 is removed, the leash cable 400 is no longer attached to the harness 100, and thus the kite (not shown) is completely free from the harness 100.
Importantly, the relative lengths of the first 22.0 and second 240 ripcords are selected so that when the handle is pulled upwardly and away from the harness the first ripcord 22.0 is released from the lower 164 and upper 146 release loops before the second ripcord 240 is sufficiently tensIoned for the removable pin 410 to be pulled free from the leash cable 400. Thus, an initial pull on the handle 200 causes unhooking and de-po.wering of the kite, while continued pull on the handle 200 causes complete detachment of the kite from the harness 100. This two-stage process ensures that the user can first unhook and de-power the kite, and can subsequently easily detach the kite by continuation of the same handle pulling mechanism if the situation requires it.
It is appreciated that the invention may be retrofitted to existing harnesses, by modifying them, for example by introducing a sleeve or conduit for receiving the, or each, ripcord..
It is likewise within the scope of the present invention to include a method of manufacturing a kite surfing harness with a belt portion arranged to extend around the waist of a user, wherein the release device comprises first and second ripcords, the first ripcord, when deployed, releases a kite from its connection to the belt and which second ripcord releases the belt from the user.
The skilled reader will understand that the above description of the preferred embodiment represents only one way in which the claimed invention may be embodied, In particular, the skilled reader will understand that there are many possible ways of embodying the first 140 and second 160 releasable fastening mechanisms, of arranging the two stage release of the hook panel 120, and of securing the leash cable 400 to the harness 100. All such embodiments and modifications are intended to fail within the scope of the present invention as defined in the accompanying claims, Although reference has been made to loops being made from fabric, other materials, such as synthetic plastics, metal, rope or cord may be used.

Claims (12)

  1. Claims 1. A safety release device for a kite surfing harness, the harness has a belt portion arranged to extend around the waist of a user, the release device comprising: first and second ripcords, which first ripcord, when deployed, releases a kite from its connection to the belt and which second ripcord releases the belt from the user.
  2. 2. A device according to claim 1, wherein the first and second ripcords are located on a single handle.
  3. 3. A device according to claim 2, wherein a cover or flap is provided to cover the handle so as to prevent inadvertent deployment.
  4. 4. A device according to any preceding claim wherein the relative lengths of the tirst and second ripcords are selected such that, in use, continued pulling of the handle causes the first deployment configuration to be achieved before the second deployment configuration.
  5. 5. A device according to claim 4, wherein the second ripcord is longer than the first ripcord.
  6. 6. A device according to claim 4 or 5, wherein the second ripcord is formed from a different material to that of the first ripcord.
  7. 7. A device according to any preceding claim wherein the kite, in use, is connected to the belt, the belt has a lower portion and is fitted with a hook in the first pre-deptoyment configuration by way of a first ripcord connector through which the first ripcord passes, an upper portion of the hook portion is connected to the belt portion in the first pre-deployment configuration via a second ripcord connector through which the first ripcord passes, the first and second ripcord connectors being arranged to permit removal of the first ripcord from the first ripcord connector before the second ripcord connector.
  8. 8. A kite surfing harness includes the device according to any of claims I to 7.
  9. 9. A method of manufacturing a kite surfing hamess according to claim 8,
  10. 10. A method of retro-fitting the device according to any of claims 1 to 7 in a kite surfing harness.
  11. ii. A kite surfing harness substantially as herein described with reference to the Figures.
  12. 12. A kite surfing harness having a belt portion arranged to extend around the waist of a user, a hook portion comprising a hook arranged to secure a kite, and a first safety release mechanism comprising a first ripcord, the first safety release mechanism having a first pre-deployment configuration in which the first ripcord is arranged to secure the hook portion to the belt portion such that the hook is restrained in a downward orientation, and a first deployment configuration in which the first ripcord is removed to release the hook portion from the belt portion.
GB1109067.7A 2011-05-27 2011-05-27 A kite surfing harness safety release device Expired - Fee Related GB2491201B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1109067.7A GB2491201B (en) 2011-05-27 2011-05-27 A kite surfing harness safety release device
PCT/IT2012/000139 WO2012172581A1 (en) 2011-05-27 2012-05-14 A safety release device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1109067.7A GB2491201B (en) 2011-05-27 2011-05-27 A kite surfing harness safety release device

Publications (3)

Publication Number Publication Date
GB201109067D0 GB201109067D0 (en) 2011-07-13
GB2491201A true GB2491201A (en) 2012-11-28
GB2491201B GB2491201B (en) 2014-08-06

Family

ID=44310603

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1109067.7A Expired - Fee Related GB2491201B (en) 2011-05-27 2011-05-27 A kite surfing harness safety release device

Country Status (2)

Country Link
GB (1) GB2491201B (en)
WO (1) WO2012172581A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2774398A1 (en) * 2019-01-18 2020-07-20 Korshunova Sergey Kazakov SUPPORT AND HOLDING DEVICE FOR SKATEBOARDS AND DERIVATIVE VEHICLES (Machine-translation by Google Translate, not legally binding)
FR3096024A1 (en) * 2019-05-16 2020-11-20 luc pivardiere Kitesurfing harness for carrying passengers and performing tandems

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015031977A1 (en) * 2013-09-03 2015-03-12 Ocean Rodeo Sports Inc. Sport harness
US11819094B2 (en) 2020-10-27 2023-11-21 Kite Global Llc Swivel lock quick release device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2392200A (en) * 2002-07-16 2004-02-25 Boost Sports Ltd Kite flying harness releasable clip
US20040159747A1 (en) * 2003-02-19 2004-08-19 Runyan Max Robert Kite control bar with ninety-degree handles and fail-safe release system
US7036771B1 (en) * 2002-07-03 2006-05-02 Pouchkarev Alexander S Kite safety, control, and rapid depowering apparatus
US20080223989A1 (en) * 2007-03-15 2008-09-18 Frank Walter Mutzenberg Force Balancing Kite Control System

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2619951C2 (en) * 1976-05-06 1985-09-12 Dieter Dipl.-Chem. Dr. 7858 Weil Strasilla Device for propelling the human body forward
FR2812054A1 (en) * 2000-07-21 2002-01-25 Arnaud Ballu Safety device for kite pilot's harness end comprises ring fixed to end by removable spindle fixed to pilot by cord and safety bracelet
DE20202347U1 (en) * 2002-01-18 2002-07-18 Ritter, Michael, 85221 Dachau Safety release device for kite sports
DE202004006143U1 (en) * 2004-04-19 2004-08-26 Boards & More Ag, Clarens Trapeze harness for windsurfer has quick release catch with carabiner hook and release loop
DE202005007521U1 (en) * 2005-05-03 2005-08-18 Wickboldt, Torsten Kite safety line release mechanism for kitesurfing, comprises hose cable connection secured to side of trapeze via plastic ball and release device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7036771B1 (en) * 2002-07-03 2006-05-02 Pouchkarev Alexander S Kite safety, control, and rapid depowering apparatus
GB2392200A (en) * 2002-07-16 2004-02-25 Boost Sports Ltd Kite flying harness releasable clip
US20040159747A1 (en) * 2003-02-19 2004-08-19 Runyan Max Robert Kite control bar with ninety-degree handles and fail-safe release system
US20080223989A1 (en) * 2007-03-15 2008-09-18 Frank Walter Mutzenberg Force Balancing Kite Control System

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2774398A1 (en) * 2019-01-18 2020-07-20 Korshunova Sergey Kazakov SUPPORT AND HOLDING DEVICE FOR SKATEBOARDS AND DERIVATIVE VEHICLES (Machine-translation by Google Translate, not legally binding)
WO2020148478A1 (en) * 2019-01-18 2020-07-23 Kazakov Korshunova Sergey Device for supporting and securing scooters and derived vehicles
US12036946B2 (en) 2019-01-18 2024-07-16 Sergey Kazakov Korshunova Device for supporting and securing scooters and derived vehicles
FR3096024A1 (en) * 2019-05-16 2020-11-20 luc pivardiere Kitesurfing harness for carrying passengers and performing tandems

Also Published As

Publication number Publication date
GB2491201B (en) 2014-08-06
WO2012172581A1 (en) 2012-12-20
GB201109067D0 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
US9758221B2 (en) Sport harness
US6581879B2 (en) Kite control systems
US7585197B1 (en) Crew overboard self rescue device and method for unassisted crew overboard watercraft reentry
US20040140393A1 (en) Push release loop
US9511836B2 (en) In-flight kite deflation and control systems
US7581701B2 (en) Kite control device
US6830220B2 (en) Kite control bar with ninety-degree handles and fail-safe release system
US20140259551A1 (en) Equipment strap system
US7025644B2 (en) High-performance riverboard system
US7971829B2 (en) Center-routed kite safety device
GB2150085A (en) Man overboard retrieval device
WO2012172581A1 (en) A safety release device
US11396353B2 (en) Horseshoe life buoy for water rescue and associated rescue rope assembly
CN109311524A (en) Urgent ship-dragging system and method
WO2008022297A2 (en) Water safety flag
US8459595B2 (en) Kite control device with free rotation
US5904324A (en) Non-motorized aircraft flight control system
US7036771B1 (en) Kite safety, control, and rapid depowering apparatus
US20150108279A1 (en) Safety system for a traction kite with releasable adjustable bar stopper
US7114457B1 (en) Wakeboard jump enhancement system
ITVR20100169A1 (en) TOWING EQUIPMENT FOR ONE PERSON, IN PARTICULAR FOR A NAUTICAL SKIER.
JP6589068B1 (en) Flying water ski equipment
US20040237867A1 (en) Boat docking system and method
GB2396654A (en) Quick release connector for use in a sailboard / windsurfer safety harness
US20130252494A1 (en) Kiteboard handle

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20160527