GB2475235A - A photon detector - Google Patents

A photon detector Download PDF

Info

Publication number
GB2475235A
GB2475235A GB0919588A GB0919588A GB2475235A GB 2475235 A GB2475235 A GB 2475235A GB 0919588 A GB0919588 A GB 0919588A GB 0919588 A GB0919588 A GB 0919588A GB 2475235 A GB2475235 A GB 2475235A
Authority
GB
United Kingdom
Prior art keywords
detection system
photon detection
voltage
apd
photon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB0919588A
Other versions
GB0919588D0 (en
GB2475235B (en
Inventor
Oliver Edward Thomas
Andrew James Shields
Zhiliang Yuan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Europe Ltd
Original Assignee
Toshiba Research Europe Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Research Europe Ltd filed Critical Toshiba Research Europe Ltd
Priority to GB0919588A priority Critical patent/GB2475235B/en
Publication of GB0919588D0 publication Critical patent/GB0919588D0/en
Priority to US12/906,624 priority patent/US8841596B2/en
Priority to PCT/GB2010/002049 priority patent/WO2011055126A2/en
Priority to JP2012537444A priority patent/JP5646640B2/en
Publication of GB2475235A publication Critical patent/GB2475235A/en
Application granted granted Critical
Publication of GB2475235B publication Critical patent/GB2475235B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode

Abstract

A photon detection system with an silicon (or its heterostructures) avalanche photodiode and a biasing voltage source. The voltage source applies a static do component and an ac component to the photodiode via a inductance and a capacitance respectively on a bias tee. An output circuit removes a time varying voltage component from the output signal. This may be through the use of a delay line and difference, phase shifter and combiner or band rejection filtering. The incidence of small numbers of photons may be detected by the cancelling of the photodiode's capacitive output through this form of gating bias.

Description

A Photon Detector The present invention relates to the field of photon detectors and methods for detecting weak light signals.
There is a pressing need in a number of applications for optical light detectors which can register a response at the level of individual photons. Single photon detectors are threshold devices which detect the presence of I or more photons on the device, but cannot determine the number of photons. They are used for general low light level detection, as well as for various applications based around determining the arrival time of the photon at the detector.
The applications of single photon detectors include industrial inspection, environmental monitoring, testing of fibre optic cables and components, medical imaging, chemical analysis and scientific research. Many of these applications use the ability of a single photon detector to measure the arrival time of a single photon. In industrial inspection systems a bright laser pulse is directed at the object under inspection and the time for single photons from the pulse to be reflected are recorded. From the time of flight data it is possible to build a 3D image of the object. Similar techniques involving single photon detectors are used to determine the location of faults in optical fibres and components, and to measure particles in the atmosphere.
Single photon detection is also used in various forms of x-ray and radioisotrope imaging in medical imaging, as well as in laser optical imaging at infra-red wavelengths. Lifetime fluorescence measurements using single photon detection can be used in the diagnosis of some medical conditions. It is employed in analytical chemistry for determining the chemical recipe of a sample. Single photon detection is also used in scientific research in the field of particle physics, astrophysics and materials science.
The photon detector of the present invention allows low noise light detection at visiblefnear infra-red wavelengths (300-1 1 OOnm).
Photon number resolving detectors, not only detect the presence of photons, but are able also to count the number of photons in an incident light pulse. Like single photon detectors they are able to determine the arrival time of the photons at the detector.
Photon number resolving detectors are required for low noise light detection based on photon counting. Here they have the advantage over single photon detectors that they can operate with higher light intensities.
The ability to resolve the number of photons in the incident pulse is also very important for many applications in quantum information technology. In a quantum relay, for example, it is necessary to distinguish between 0-, 1-and 2-photon detection events in each detector. A similar detector capability is needed for many of the gates used in linear optics quantum computing.
The present invention further provides a photon number resolving detector at visible/near infra-red wavelengths (300-1 lOOnm). This has applications for linear optics quantum computing, quantum relays and repeaters, quantum cryptography, photon number state generation and conditioning, and characterisation of photon emission statistics of light sources.
Currently Geiger Mode Silicon Avalanche Photodiodes (APDs) are used for low noise light detection at visible/near infra-red wavelengths (300-11 OOnm).
In Geiger mode, an APD is biased with a DC bias which is above the breakdown bias of the diode. Geiger Mode Silicon APDs can be used as threshold single photon detectors, ie they can detect when I or more photons in a light pulse is incident on a device. However, they do not work as photon number resolving detectors, i.e. they do not distinguish between 1, 2, 3 or more photons incident on the device. As a result Geiger Mode Silicon APDs can be used to detect very weak optical signals (ie much less than 1 photon per incident pulse), but they cannot be used for stronger signals.
In addition Geiger Mode Silicon APDs have the disadvantages of low maximum counting rates, requiring complicated quenching circuits, high dark count levels and poor timing jitter.
Current photon number resolving detectors at visible/near infra-red wavelengths include Transition Edge Sensors (TES); Parallel Nanowire Detectors (PND); Visible Light Photon Counter (VLPC); Time-multiplexed Detectors (TMD); and Multi-pixel Silicon Avalanche Photodiodes (MPPC). However, these are unsuitable for practical applications. Some of their disadvantages are: 1. TES detectors have very low maximum count rate (0.05 MHz), large timing jitter, long integrationtime, can only operate at milli-Kelvin temperatures 2. PND detectors have very low efficiency, low maximum count rate (80 MHz), can only operate at Liquid Helium temperature 3. VLPC detectors have very low maximum count rate (0.015 MHz), large timing jitter, high dark count rate, can only operate at liquid Helium temperatures 4. For TMD detectors the probability of successful measurement is strongly limited by the detection efficiency and decreases exponentially with measured photon number 5. MPPC detectors allow only low-speed operation and low efficiency due to geometrical fill-factor of the pixels.
The present invention addresses all of the above problems and in a first aspect provides a photon detection system comprising an avalanche photodiode and a voltage source for said avalanche photodiode, wherein said avalanche photodiode comprises Silicon or its heterostructures and wherein said voltage source is configured to bias said avalanche photodiode with a voltage component which is static with respect to time and a voltage component which varies with time.
In the present invention, the APD is operated in a mode which is different to Geiger mode, where a time varying bias as well as a steady state bias is applied. This introduces periodic or quasi-periodic artefacts into the output signal which in normal operation would swamp the desired signal due to photon-induced avalanches, This would usually prevent the detection of the desired photon-induced signal. As a consequence it has previously been regarded as undesirable. In the current invention the artefacts which arise from the operation of the device are removed from the output signal. For example, by comparing or combining the output signal from different periods or by removal of the time varying signals by filtering, or "lock-in" style techniques.
In the present invention noise is limited only by shot noise (quantum noise) due to statistical fluctuations in the number of photons in the signal. All other noise sources, such as amplifier noise, are eliminated.
The present invention offers other considerable advantages over other detectors which provide low noise light detection at visible/near infra-red wavelengths such as photomultiplier tubes, Si photodiodes, Si APDs and Geiger mode Si APDs. For example, it provides higher photon detection efficiency, lower dark count noise rate, lower afterpulse rate; lower timing jitter; the ability to synchronize to external clock; a relatively high dynamic range (i.e. can detect stronger light intensities than Geiger Mode Si APD); operation at room temperature or under thermoelectric cooling (ie does not need cryogens), and uses standard fabrication technology so is relatively cheap.
Further, the present invention allows the number of photons in an incident pulse to be determined and provides considerable advantages over current photon number resolution detectors such as: high photon detection efficiency; low dark count noise rate; low afterpulse rate; low timing jitter; synchronized to external clock; high dynamic range; operates at room temperature or under thermoelectric cooling (ie does not need cryogens); and uses standard fabrication technology so is relatively cheap.
In a Geiger Mode Si APD a continuous dc voltage from a dc voltage source is provided to bias the APD above its breakdown voltage. Absorption of an incident photon creates an electron hole pair which can stimulate an avalanche of charge carriers through the device. The avalanche can be detected as a current pulse from the device. The avalanche pulse is typically sufficiently large that it saturates the device. Thus there is no discernable difference in the signal generated by absorption of 1, 2, 3 or more photons.
In contrast in the present invention both a static voltage source and a time varying voltage source are used to provide an alternating bias that periodically biases the APD above and below its breakdown voltage.
In a preferred embodiment (Silicon Seif-Differencing Avalanche Photodiode (Si SD-APD)), a self-differencing circuit is used which compares the APD output voltage with that delayed by an integer number of gating bias periods. The result is that much weaker avalanches can be detected with the Si SD-APD, which do not saturate the device, and so the signal generated depends upon the number of absorbed photons.
Such a circuit is described in W02008/1 04799.
The present invention improves upon W02008/104799 and uses a Silicon based system with a Silicon APD or an APD comprising a Silicon heterostructure.
Using a Si APD in the above arrangement provides significant advantages over using an lnGaAs based APD in a self-differencing arrangement. The Si APD has a much higher detection efficiency. A single photon detection efficiency up to 80% has been measured and higher values are possible using APDs with higher quantum efficiency.
A high detection efficiency is important for single shot photon number detection, i.e. determining the number of photons in each individual pulse. This is desirable for many quantum information applications such as linear optics quantum computing or in a quantum relay or repeater.
In an embodiment, the photon absorbing layer within the APD has a bandgap larger than I eV. The APD may comprise Si or a Si heterostructure such as Si-Ge.
In a preferred embodiment the bias to the APD comprises a DC bias and an AC modulation bias which varies periodically iii time.
The AC modulation period is preferably lOOns or less and an amplitude of I Volt or more. The DC bias is preferably larger than the breakdown voltage of the APD.
As the present invention can be used at high frequencies, it can achieve quasi-continuous operation. In quasi-continuous operation, there is no synchronization required between the source of photons and the detector. Quasi continuous operation is possible because for very high gating frequencies, the period at which the detector is incapable of detecting photons is not prohibitive to the overall detection efficiency.
To enhance quasi continuous operation, it is possible to vary the period of the gating signal to broaden the detection window. The period may be varied randomly or as noise. Thus, in an embodiment the period of the modulation varies as a function of time. In this situation, the time varying bias is quasi-periodic. For example, such a bias may vary the gating frequency by a small amount, preferably less than 50 Hz.
In an embodiment, the APD bias voltage is above the APD breakdown voltage at its highest value and below the APD breakdown voltage at its lowest value during each period of modulating bias. This period may be referred to as the gating period or clocking period.
In a preferred embodiment, the detector further comprises an output circuit configured to receive an output signal from said avalanche photodiode and process said output signal to remove a time varying component.
Therefore, in a second aspect said present invention provides a photon detection system comprising an avalanche photodiode and an output circuit for said avalanche photodiode, wherein said avalanche photodiode comprises Silicon or its heterostructures and wherein said output circuit is configured to receive an output signal from said avalanche photodiode and process said output signal to remove a time varying component from said output signal.
In an embodiment, the output circuit compares the output voltage of the APD with than in a preceding period. In a further embodiment, the circuit combines the output voltage of the APD in the first and second half of the gating bias period.
In a further embodiment, a self differencing circuit is provided comprising a signal divider to split the signal into two parts, an electrical line to delay one of parts relative to the other and a signal differencer to output the difference between the two parts.
The delay is preferably an integer number of gate periods.
In a yet further embodiment, a self differencing circuit is provided comprising a signal divider to split the signal into two parts, a phase shifter to shift the phase of one of the two parts by 180 degrees, or a signal inverter, and a signal combiner to output the sum of the two parts.
If a self differencing circuit is provided, it may further comprise a control unit configured to balance the strength of the two parts and/or vary the length of the delay.
An amplifier may be provided to amplify the output of the self-differencing circuit.
The output circuit may also comprise a filter to remove a periodic background or use lock-in' techniques to identify the avalanche signal.
As previously mentioned, the present invention may be used for photon counting.
Therefore, in a further embodiment an output circuit is provided to discriminate the output voltage between multiple predetermined levels. For example, such a circuit may be configured to measure the height of the avalanche peak, as the height of the peak is dependent on the number of photons detected. In a further example, the output circuit is provided with a discriminator, said discriminator being configured to set multiple discrimination levels, each discriminator level corresponding to a value of the output signal for 1, 2, 3, 4 photons etc. In a further embodiment the photon detection system further comprises a cooler to lower the temperature of the avalanche photodiode.
In a further embodiment the photon detection system comprises beamsplitters to subdivide the incident pulse into several pulses which are detected using multiple avalanche photodiodes. In a further embodiment the detection system comprises an array of APD elements.
Light may be coupled to the avalanche photodiode through an optical fibre.
In a third aspect, the present invention provides a method of detecting photons, the method comprising: providing an avalanche photodiode comprising silicon or its heterostructures; applying a bias said avalanche photodiode with a voltage component which is static with respect to time and a voltage component which varies with time.
The present invention will now be described with reference to the following non-limiting embodiments in which: Figure 1 is a schematic of a Silicon Self-Differencing Avalanche photodiode in accordance with an embodiment of the present invention; Figure 2 is a plot of the APD bias voltage used to bias a photodiode in accordance with an embodiment of the present invention; Figure 3 is a plot of the output signal V0 from a the device of figure 1, biased using the scheme of figure 2; Figure 4 is a plot of the output of the device of figure 1 captured on an oscilloscope; Figure 5 is a plot of the dark count probability, PD, (circles) and the afterpulse probability, PA (squares) as a function of the single photon detection efficiency of the device of figure 1; Figure 6 is a plot of the probability distribution reflecting the statistics of the avalanche peak height of the output, VSd, for a fixed average photon flux for the device of figure 1; Figure 7 is a plot of the measured avalanche probability distribution (circles) with a fit (black solid line) corresponding to the Poissonian distribution of an attenuated laser source for the same photon flux; Figure 8 is a grey scale plot of the derivative of the avalanche probability distribution, ö(Probability)/ö VSd, coming out of the page, as a function of the photon flux, ,i, and the self-differencer output, V for the device of figure 1 Figure 9a) is a plot of the single photon avalanche probability distribution of the device of figure 1 as a function of the applied DC bias, VdC and figure 9b) shows plots of the measured 1-photon peak width, W1, and the 0-1-photon peak separation, as a function of the applied DC bias, VdC for the device of figure 1; Figure 10 is a schematic of a photon detector in accordance with a further embodiment of the present invention; Figure 11 a is a schematic of a photon detector in accordance with an embodiment of the present invention in which the detector is mounted on a thermo-electric cooler viewed from a side and figure 11 b is a schematic of the same photon detector of figure 11 a viewed from the front; and Figure 12 is a schematic of detector in accordance with a further embodiment of the present invention using sine-wave gating modulation.
Figure 1 depicts a photon detector in accordance with an embodiment of the present invention. The photon detector is a Silicon Avalanche Photodiode which is arranged in a configuration which allows self-differencing of the output signal. Self differencing will be described in more detail later in the description. The detector is referred to as a Silicon SeIf-Differencing Avalanche Photodiode (Si SD-APD).
APDs are well known in the art and the internal layer structure of the APD will not be described here.
Silicon based avalanche photodiode (APD) 117 is connected such that it is reverse biased. The bias voltage comprises both a DC component VDC 111 from DC bias source 113 and an AC component VAC 107 from AC bias source 109. The AC corn ponent.
The AC 107 and DC 111 components are combined using bias-tee 105. Bias tee 105 comprises, on a first arm of the tee, a capacitor 101 connected to the AC source 109 and, on the second arm of the tee, an inductor 103 connected to the DC source 113.
The output of the APD 117 is divided between a resistor 119 (which leads to ground) and self differencing circuit 123.
When a photon is incident on APD 117, an avalanche photocurrent is induced by an avalanche arising from photon detection which leads to a voltage across a series resistor 119, which corresponds to the output voltage, 121.
To isolate the periodic capacitive response of the APD 117 to a gating modulation, which masks small avalanches resulting from high-speed operation, a self-differencing circuit is used 123, comprising a signal divider 125, two electrical lines 127 and 129 and a signal differencer 131.
The Si-APD output voltage, 121 is input into signal divider 125, which divides the signal into two close to equal components. A potentiometer 135 is used to balance the dividing ratio and further equate the two components. Since one of the electrical lines 127 is longer than the other 129, one of these components is delayed.
The delay is chosen to be an integer number of gating periods T supplied by the AC voltage source 111, and the delay line 127 is chosen to be adjustable in order to tune the delay independently of T. When these two signals are input into the signal differencer 131, they are subtracted one from the other and the strong periodic capacitive background is largely cancelled in the self-differencer output voltage, Vd, 133. It is common to use a 780 MHz low-pass filter 137 and amplifier 139 to further improve the retardation of the capacitive
background.
This allows small avalanches to be revealed in the self-differencer output, VSd, 133.
The amplitude of these small avalanches is dependent upon the incident photon number.
As an alternative to the set-up in Figure 1, the electrical delay between the electrical lines 127 and 129 may be chosen to be an odd integer number of half the gating period T. In this case the signal differencer 131 is replaced by a signal combiner, which adds the two signals. This also has the effect of cancelling the capacitive response of the APD 117 leaving only the weak photon induced avalanche.
The APD 117 comprises Silicon and may be of the deep junction or shallow junction variety. It may also be a Silicon -Germanium heterostructure. Preferably photon absorption takes place within the APD in a layer with an energy bandgap larger than 1 eV. Preferably the APD has a diameter of its active area of 10 to 200 microns.
Preferably it has a junction capacitance less than 10 pF.
Figure 2 shows the particular bias conditions required to obtain high single photon detection efficiency and photon number resolution from the Silicon SeIf-Differencing Avalanche Photodiode.
The APD has a reverse breakdown voltage Vbr 201 above which a macroscopic avalanche gain of photoexcited carriers can occur.
The APD bias voltage Vapd 115, comprises a DC voltage VdC 111 superimposed on a AC voltage with peak-to-peak amplitude Vac 107 and a period T 203. The period of the AC bias is sometimes referred to as the gating period or the clock period and is the inverse of the gating frequency or clock frequency.
The gating period or clock period may be synchronised with that of a photon source.
In one embodiment the gating frequency of the detector is varied by a small amount e.g. 50 kHz, which is used to essentially broaden the time window over which the detector is capable of detecting photons.
This results in the APD bias voltage 115, lying above the breakdown voltage 201 at its highest values Vhjgh 209 and below the breakdown voltage 201 at its lowest values Viow 205. Vd0 can also be set below the breakdown voltage.
It has been found experimentally that it is preferable if the DC bias, VdC, 111 is larger in magnitude than the reverse breakdown voltage, Vbr2Ol.
The Si SD-APD may be operated with an AC gating period of Ins, corresponding to a gating frequency of 1 GHz.
Depending on the operation temperature and the actual device structures, the breakdown voltage for APDs can vary from 20 to 300 V. (Note this is written as a positive number, although it is actually a reverse bias applied to the p-n junction of the APD).
The Si-APD may be operated with a DC bias VdC of 48.5 Volts and an AC voltage peak to peak amplitude of Vac = 12.0 V. Figure 3 shows the measured electrical response of a Silicon APD, 121 to the circuit and bias conditions Vapd 115 described above.
The strong oscillatory signal observed in V0 121 is due to the capacitive response of the APD 117 to the applied AC voltage Vac 107.
These strong oscillations conceal any contribution to the signal from avalanches stimulated by photons absorbed in the APD 117.
A positive peak 301 is due to the charging of the Si-APD capacitance when reacting to the leading edge of the AC bias 107, followed by a negative peak 303 corresponding to the capacitive discharging arising from the falling edge of the AC bias 107.
Clearly these very strong oscillations due to the capacitive response of the APD, mean that it is usually not desirable to operate Si-APDs in gated Geiger Mode for single photon detection.
Figure 4 shows the measured self-differencer output, V, 133 for one photon 403, two photons 405 and no detected photons 401, sampled using a fast digital oscilloscope.
Note that the 0-photon signal 401 has finite amplitude due to the imperfect cancellation of the self-differencing circuit.
The 2-photon peak 405 has approximately double the amplitude of the 1-photon peak 403, indicating that there is approximately linear dependence of the output voltage, VSd, 133 on the detected photon number.
This proves that the detector works as a photon number resolving detector. Further, a circuit may be provided which allows the number of photons detected in a single period to be calculated.
Figure 5 presents a plot showing the Si-APD single photon detection performance.
The dark count probability, PD (circles), and afterpulse probability, PA (squares), were measured as a function of the applied DC bias, VdC, and are shown in terms of the photon detection efficiency, q.
The afterpulse probability is negligible for rj < 60 %, above which it begins to rise increasingly sharply and a critical point occurs around rj = 73 % for which PA = 7.5 %.
The value of PD for this detection efficiency is 106 (measured per AC bias gate), corresponding to a dark count rate around 1 kHz at T= -35°C.
Figure 6 shows the avalanche statistics, arising from the avalanche probability plotted as a function of the self-differencer output, VSd.
The probability distribution is obtained from around 6 million samples, and accumulated in real-time using a fast digital oscilloscope.
Peak 601 at 0 mV corresponds to the 0photon contribution from gates in which no photon was detected.
The width of this feature (-15 mV) is attributed to a residual component of the capacitive response of the diode, due to the imperfect cancellation of the self-differencer circuit.
The feature around 26.1 mV, peak 603, is due to avalanches arising from the absorption of one photon and peaks 605, 607 and 609 at 45.7 mV, 66.0 mV and 84.0 mV respectively correspond to the detection of two, three and four photons.
The periodic spacing of these features is evidence that the dependence of the unsaturated self-differencer output of Si-APDs on the incident photon number is approximately linear.
The detector may comprise a circuit which is configured to measure the output signal against discrimination levels. Said discrimination levels being set to distinguish between the number of photons received.
Figure 7 shows a measured avalanche probability distribution (circles) for which the 1-and 2-photons peaks, 703 and 705, are almost entirely separated from the 0-photon peak 701.
This is achieved by tuning the arrival time of the photon with respect to the Si-APD gate, and the biases VdC and Vac. The black solid curve corresponds to the Poissonian statistics of the attenuated laser source and is obtained by fitting Gaussians to model the 0-, 1-and 2-photon contributions (dashed lines).
The widths of these Gaussian fits are scaled according to the statistical broadening SIN, where N is the incident photon number. The photon number resolution is quantified in terms of the numerical overlap between the adjacent Gaussian curves 707, and corresponds to the error in determining the incident photon number from the avalanche voltage, VSd.
Figure 8 confirms the dependence of the output from a self-differencing Si-APD photon number detector on the incident photon flux, p. Here, the derivative of the avalanche probability, ö(Probability)/öVSd, is plotted coming out of the page as a function of the photon flux, p, and the self-differencer output, VSd.
White corresponds to high intensity and black corresponds to low intensity. The mean voltage position of the 0-photon peak 801 is fixed whilst the mean positions of the 1-, 2-, 3-and 4-photon peaks (803, 805, 807 and 809 respectively) shift to slightly lower voltage with increasing photon flux due to sample heating caused by the increased photocurrent.
The relative intensities of the peaks vary in accordance with the Poissonian statistics of the source.
Figure 9a shows the dependence of the single photon avalanche probability distribution on the applied DC bias, VdC. The curved arrow, corresponding to the centre of the 1-photon peak, serves as a guide to the eye. The top curve corresponds to a factor-i 0 magnification of the highest voltage curve.
As Vdc is increased, so to do the width of the 1-photon peak 901, Wi, and the separation of this feature from the 0-photon peak 903, . These parameters were obtained from fits using Gaussians obeying Poissonian statistics and are plotted as a function of VdC in Figure 9b, which reveals a linear dependence of each.
The rate of change of L (squares) is greater than that of W1 (circles) and there is an intersection point corresponding to a critical voltage, V 905.
Above this point, the separation of the peaks increases more than the statistical broadening of the peaks, corresponding to an increase in the photon number resolution. It is noted that the maximum DC voltage that can be applied is limited by the maximum obtainable AC modulation, which is used to quench the avalanche current.
Figure 10 shows a variant of the Silicon Seif-Differencing Avalanche Photodiode (Si SD-APD).
Here the electrical lines 127 and 129 of Figure 1 are replaced with a phase shifter 1001, so as to create a phase shift of 180 degrees in one (1005) of the two outputs (1005, 1007) of the power splitter 125. The 180° phase shifter act as a signal inverter.
The signal differencer 131 of Figure 1 is replaced with a signal combiner 1003, whose function is to add the two signals.
Since they have a relative phase shift of 180° this has the effect of cancelling the capacitive response of the APD.
This allows the detection of weak avalanches in a similar fashion to that described in
the preceding description.
Figures 11 a and b show a side view and a front view (the front being the side where a fibre is coupled to said detector) respectively of a Silicon Seif-Differencing Avalanche Photodiode 117 mounted on a thermo-electric cooler 1107.
Thermal contact is provided to the case of the packaged device 117 through a copper heat-sink 1103 and conductive screws 1105. A temperature of T= -35 °C is commonly used.
Optical access to the sample is provided by an optical fibre pigtail 1101. Electrical access to the Si-APD, Vapd 115 and V0 121 is provided by metallic pins.
Figure 12 depicts an alternative embodiment of a gated Geiger Mode Silicon Avalanche Photodiode.
Here the AC voltage source 109 outputting Vac 107, is replaced by a sine-wave signal generator 1201 operating at frequency f. The sine wave modulation voltage, Vsjne 1202, is combined with the fixed DC voltage, VdC 111, as before to form the APD bias voltage Vapd 117.
The self-differencing-circuit 123 is replaced by a band rejection filter 1203, with a stop-band corresponding to the sine-wave frequency, f, which retards the periodic capacitive response of the APD in the filtered voltage output Vf 1204.

Claims (20)

  1. CLAIMS: 1. A photon detection system comprising an avalanche photodiode and a voltage source for said avalanche photodiode, wherein said avalanche photodiode comprises Silicon or its heterostructures and wherein said voltage source is configured to bias said avalanche photodiode with a voltage component which is static with respect to time and a voltage component which varies with time.
  2. 2. A photon detection system according to claim 1, where the bias to the APD comprises a DC bias and an AC modulation bias which varies periodically in time.
  3. 3. A photon detection system according to claim 2, where the AC modulation has a period less than lOOns.
  4. 4. A photon detection system according to claim 1, where the voltage which varies with respect to time has an amplitude larger than I Volt.
  5. 5. A photon detection system according to claim 1, where the DC bias has a value larger than the breakdown voltage of the APD.
  6. 6. A photon detection system according to any preceding claim, where the APD bias voltage is above the APD breakdown voltage at its highest value and below the APD breakdown voltage at its lowest value during each gate period.
  7. 7. A photon detector according to any preceding claim, further comprising an output circuit configured to receive an output signal from said avalanche photodiode and process said output signal to remove a time varying component from said output signal.
  8. 8. A photon detection system comprising an avalanche photodiode and an output circuit for said avalanche photodiode, wherein said avalanche photodiode comprises Silicon or its heterostructures and wherein said output circuit is configured to receive an output signal from said avalanche photodiode and process said output signal to remove a time varying component from said output signal.
  9. 9. A photon detection system according to either of claims 7 or 8, wherein said output circuit is configured to compare the output voltage of the APD with than in a preceding period.
  10. 10. A photon detection system according to either of claims 7 or 8, wherein said output circuit is configured to combine the output voltage of the APD in the first and second half of the gating bias period.
  11. 11. A photon detection system according to either of claims 7 or 8, where the output circuit comprises a signal divider to split the signal into two parts, an electrical line to delay one of parts relative to the other and a signal differencer to output the difference between the two parts.
  12. 12. A photon detection system according to claim 11, where the delay is an integer number of gate periods.
  13. 13. A photon detection system according to either of claims 7 or 8, where the output circuit comprises a signal divider to split the signal into two parts, a phase shifter to shift the phase of one of the two parts by 180 degrees, or a signal inverter, and a signal combiner to output the sum of the two parts.
  14. 14. A photon detection system according to claim 2, where the period of the modulation varies as a function of time.
  15. 15. A photon detection system according to either of claims 11 or 13, fuçther comprising a controller to balance the strength of the two parts.
  16. 16. A photon detection system according to either of claims 11 or 13, further comprising a controller figured to vary the length of the delay.
  17. 17. A photon detection system according to any preceding claim which further comprises a circuit to discriminate the output voltage between multiple predetermined levels.
  18. 18. A photon detection system according to any preceding claim which further comprises a cooler to lower the temperature of the avalanche photodiode.
  19. 19. A photon detection system according to any preceding claim which further comprises multiple avalanche photodiodes elements.
  20. 20. A method of detecting photons, the method comprising: providing an avalanche photodiode comprising silicon or its heterostructures; applying a bias said avalanche photodiode with a voltage component which is static with respect to time and a voltage component which varies with time.
GB0919588A 2009-11-09 2009-11-09 A photon detector Active GB2475235B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB0919588A GB2475235B (en) 2009-11-09 2009-11-09 A photon detector
US12/906,624 US8841596B2 (en) 2009-11-09 2010-10-18 Quasi continuous photon detection system
PCT/GB2010/002049 WO2011055126A2 (en) 2009-11-09 2010-11-08 A photon detector
JP2012537444A JP5646640B2 (en) 2009-11-09 2010-11-08 Photon detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0919588A GB2475235B (en) 2009-11-09 2009-11-09 A photon detector

Publications (3)

Publication Number Publication Date
GB0919588D0 GB0919588D0 (en) 2009-12-23
GB2475235A true GB2475235A (en) 2011-05-18
GB2475235B GB2475235B (en) 2014-01-08

Family

ID=41502093

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0919588A Active GB2475235B (en) 2009-11-09 2009-11-09 A photon detector

Country Status (4)

Country Link
US (1) US8841596B2 (en)
JP (1) JP5646640B2 (en)
GB (1) GB2475235B (en)
WO (1) WO2011055126A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2447254B (en) 2007-03-01 2009-10-14 Toshiba Res Europ Ltd A photon detector
WO2010052674A2 (en) * 2008-11-07 2010-05-14 Nxp B.V. Analog silicon photomultiplier using phase detection
CN102564584B (en) * 2011-11-25 2013-10-30 华东师范大学 Modeling method for equivalent circuit of high-sensitivity quantum effect photodetector
CN102980670A (en) * 2012-11-28 2013-03-20 广东汉唐量子光电科技有限公司 Cascaded noise suppression device for single-photon detection
US20190036617A1 (en) * 2013-05-07 2019-01-31 Minoru Kaminao Receiving Unit For Optical Communication, Optical Communication Apparatus And Optical Communication Method
JP6223881B2 (en) * 2014-03-18 2017-11-01 株式会社東芝 Photodetector
WO2016154594A1 (en) * 2015-03-25 2016-09-29 Dynamic Photonics, Inc. Control circuits for dynamically biased avalanche photodiodes
JP7152209B2 (en) * 2017-07-20 2022-10-12 キヤノンメディカルシステムズ株式会社 X-ray CT device
US10616512B2 (en) 2018-07-27 2020-04-07 Wisconsin Alumni Research Foundation Systems, methods, and media for high dynamic range imaging using dead-time-limited single photon detectors
DE102018124123B4 (en) * 2018-09-28 2021-02-18 Leica Microsystems Cms Gmbh Process for evaluating a single photon detector signal as well as a microscope system, confocal microscope system or scanning confocal microscope system
CN112393810B (en) * 2019-08-16 2022-02-18 华为技术有限公司 Single photon detection device and method
US20220308188A1 (en) * 2021-03-29 2022-09-29 Beijing Voyager Technology Co., Ltd. Feed-forward equalization for enhanced distance resolution

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218657B1 (en) * 1998-10-15 2001-04-17 International Business Machines Corporation System for gated detection of optical pulses containing a small number of photons using an avalanche photodiode
WO2005029017A1 (en) * 2003-09-17 2005-03-31 National Institute Of Advanced Industrial Science And Technology Photon detecting apparatus and photon detecting method
WO2008104799A1 (en) * 2007-03-01 2008-09-04 Kabushiki Kaisha Toshiba A photon detector
EP1993146A1 (en) * 2006-03-06 2008-11-19 Nihon University Optical communication wavelength band high speed single photon detector
GB2456149A (en) * 2008-01-03 2009-07-08 Toshiba Res Europ Ltd A photon detection system and a method of photon detection

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721424A (en) * 1996-06-10 1998-02-24 Alcatel Network Systems, Inc. Avalanche photodiode apparatus biased with a modulating power signal
GB2457238B (en) * 2008-02-05 2011-01-19 Toshiba Res Europ Ltd A random number generator and random number generating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218657B1 (en) * 1998-10-15 2001-04-17 International Business Machines Corporation System for gated detection of optical pulses containing a small number of photons using an avalanche photodiode
WO2005029017A1 (en) * 2003-09-17 2005-03-31 National Institute Of Advanced Industrial Science And Technology Photon detecting apparatus and photon detecting method
EP1993146A1 (en) * 2006-03-06 2008-11-19 Nihon University Optical communication wavelength band high speed single photon detector
WO2008104799A1 (en) * 2007-03-01 2008-09-04 Kabushiki Kaisha Toshiba A photon detector
GB2456149A (en) * 2008-01-03 2009-07-08 Toshiba Res Europ Ltd A photon detection system and a method of photon detection

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Applied Physics Letters (2007), vol. 91, Namekata et al., "Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiode", pp 11112/1-3 *
Chinese Phyics Letters (2007), vol. 24, Sun Zhi-Bin et al., "Single-Photon Detection at Telecom Wavelengths", pp574-576 *
International Microwave Symposium (2007), Kang & Choi, "CMOS-compatible 60 GHz harmonic optoelectronic mixer", pp233-236 *
Optics Express (2006), vol. 14, Mamekata et al., "800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating", à73371 *

Also Published As

Publication number Publication date
JP2013510305A (en) 2013-03-21
US20110108712A1 (en) 2011-05-12
WO2011055126A2 (en) 2011-05-12
GB0919588D0 (en) 2009-12-23
GB2475235B (en) 2014-01-08
US8841596B2 (en) 2014-09-23
WO2011055126A3 (en) 2011-06-30
JP5646640B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
US8841596B2 (en) Quasi continuous photon detection system
JP5624524B2 (en) Photon detection photon detection system and method
US9234934B2 (en) Inspecting device and inspecting method
KR20140018402A (en) Single photon detector in the near infrared using an ingaas/inp avalanche photodiode operated with a bipolar rectangular gating signal.
Nagai et al. Characterization of a large area silicon photomultiplier
Louis et al. Photoluminescence lifetime microscope spectrometer based on time‐correlated single‐photon counting with an avalanche diode detector
Bonanno et al. Characterization measurements methodology and instrumental set-up optimization for new SiPM detectors—Part II: Optical tests
WO2012063027A2 (en) Photon detector
Tamborini et al. Compact, Low-Power and Fully Reconfigurable 10 ps Resolution, 160$\mu\text {s} $ Range, Time-Resolved Single-Photon Counting System
Carnesecchi et al. Direct detection of charged particles with SiPMs
Lo et al. Next-generation optical probing tools for design debug of high speed integrated circuits
Ripamonti et al. No dead-space optical time-domain reflectometer
JP5438327B2 (en) Measuring device using terahertz waves
GB2477961A (en) Measuring photon correlations in photons emitted by a source
GB2479002A (en) A Photon Detector
Smith et al. A picosecond time-resolved photoluminescence microscope with detection at wavelengths greater than 1500 nm
Montaruli et al. Properties of large SiPM at room temperature
Wilson et al. Superconducting tunnel junction detectors for extreme ultraviolet applications
Lu et al. Silicon Photomultiplier selection for Large Array of Imaging Atmospheric Cherenkov Telescopes
Gebremicael et al. Analysis of avalanche signal recovery in sinewave gated high speed single photon detectors
Mazzillo et al. Silicon photomultiplier technology for low-light intensity detection
Finazzi et al. Silicon Photomultipliers for Detection of Photon Bunching Signatures
Fishburn et al. Distortions from multi-photon triggering in a single CMOS SPAD
Hubeny et al. Data Analysis and Calibration
Si Si APD, MPPC