CN102564584B - Modeling method for equivalent circuit of high-sensitivity quantum effect photodetector - Google Patents

Modeling method for equivalent circuit of high-sensitivity quantum effect photodetector Download PDF

Info

Publication number
CN102564584B
CN102564584B CN 201110379701 CN201110379701A CN102564584B CN 102564584 B CN102564584 B CN 102564584B CN 201110379701 CN201110379701 CN 201110379701 CN 201110379701 A CN201110379701 A CN 201110379701A CN 102564584 B CN102564584 B CN 102564584B
Authority
CN
China
Prior art keywords
equivalent circuit
photodetector
equivalent
veriloga
language
Prior art date
Application number
CN 201110379701
Other languages
Chinese (zh)
Other versions
CN102564584A (en
Inventor
郭方敏
王明甲
宋东东
朱自强
Original Assignee
华东师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东师范大学 filed Critical 华东师范大学
Priority to CN 201110379701 priority Critical patent/CN102564584B/en
Publication of CN102564584A publication Critical patent/CN102564584A/en
Application granted granted Critical
Publication of CN102564584B publication Critical patent/CN102564584B/en

Links

Abstract

本发明公开了一种高灵敏度量子效应光电探测器等效电路的建模方法,其特点是对量子点-量子阱光电探测器采用不同的辐照功率和器件偏压下的电特性测试,应用“VerilogA”语言建立等效电路模型,然后利用电路模拟软件进行验证,为读出电路的设计提供准确反映不同结构器件特性的光电探测器模型。 The present invention discloses a high-sensitivity photodetector quantum effect equivalent circuit modeling method, which is characterized by a quantum dot - quantum well photodetectors employed in measuring electric characteristics under different irradiation power and device bias, application "VerilogA" established language equivalent circuit model and then verified using circuit simulation software, to provide a photoelectric detector device model accurately reflects the different structural characteristics of the readout circuit design. 本发明与现有技术相比具有建模程序简单、修改灵活、效率高,对应的不同的光功率和器件偏压参数的设置修改方便,不同光功率和器件偏压的实现可通过在等效电路模型属性中对应的预先设好的光功率和器件偏压参数中直接输入具体数据即可。 The present invention compared to the prior art simple modeling program, modify flexibility, high efficiency, easy to modify settings corresponding to different optical power and device bias parameter, to achieve different optical power and bias devices may be equivalent by circuit model attributes corresponding to preset the device bias power and good optical parameters can be directly input specific data.

Description

高灵敏度量子效应光电探测器等效电路的建模方法 Modeling an equivalent circuit of the photodetector with high sensitivity quantum effect

技术领域 FIELD

[0001] 本发明涉及电子、电路设计技术领域,尤其是一种高灵敏度量子效应光电探测器等效电路的建模方法。 [0001] The present invention relates to electronic circuit design, and in particular is a highly sensitive method for modeling quantum effect an equivalent circuit of the photodetector.

背景技术 Background technique

[0002] 光电探测器担当着将接受到的光信号转换为电信号的角色。 [0002] The photodetector plays the received optical signal into an electric signal role. 近年来随着量子阱、量子点物理和材料技术的进展,量子效应光电探测器也应运而生。 In recent years, with the progress of the quantum well, quantum dot materials physics and technology, quantum effects photodetectors have emerged. 量子效应光电探测器在微光照射下,具有暗电流小、灵敏度大、动态范围大、光电转换效率高等优点,它广泛应用于医疗、生物分子科学、环境监测等领域。 Quantum effects in dim light irradiation photodetectors, with small dark current, large sensitivity, large dynamic range, high efficiency of photoelectric conversion, it is widely used in the medical field, for Biomolecular Sciences, environmental monitoring and so on. 读出电路在光电探测系统中的主要功能是对探测器微弱信号进行预处理,并在信号处理级间提供一个接口,在对读出电路的设计中需要一个能准确反映量子效应光电探测器特性的等效电路。 The main function of the readout circuit of the photoelectric detection system is pretreated weak signal detector, and provides an interface between the signal processing stage, in the design of the readout circuit requires a quantum effect can accurately reflect the characteristics of the photodetector equivalent circuit.

[0003] 目前,已经对一些典型的光电探测器件建立了一些等效电路模型,这些模型大都是基于光电探测器内部物理方程的基础上得到的。 [0003] At present, some typical photodetector element to establish a number of equivalent circuit models that are based on large internal physical equations obtained based on the photodetector. 由于光电探测器器件内部的物理特性参数过多以及在求解大量的物理特性方程时基于多种假设得到的近似表达式均会在很大程度上影响等效电路模型的精度,从而为其读出电路的设计带来困难。 Since excessive number of physical as well as solving the characteristic equation of the physical characteristics of the interior of the photodetector device based on assumptions and parameters obtained approximate expression will affect the accuracy of the equivalent circuit model to a large extent, so that its readout circuit design difficult. 而且求解过程中,由于光电探测器的复杂结构及其使用的各种材料参数,也会使得建模过程中的程序编制复杂化。 And the solution process, the complex structure of the photodetector and the parameters of the various materials used, the program also makes the preparation process of modeling complicated.

[0004] 在专利号:ZL 200910047116.X的《一种光探测器读出电路的设计方法》中提出了较简便实用的等效电路建模方法,该方法是根据器件的1-V和CV等电特性直接拟合得出的,这种建模方法的局限性在于:不能反映出不同辐照光功率下光电探测器的1-V和CV特性,而光电探测器1-V,CV特性会随辐照光功率而变化。 [0004] In Patent No: ZL 200910047116.X to "a photodetector readout circuit design method" proposes a more simple and practical equivalent circuit modeling method is based on 1-V devices and CV electrical characteristics such as fitting directly obtained, limitations of this modeling approach are: 1-V and do not reflect the different characteristics of the irradiation light CV power photodetector, and the photodetector 1-V, CV characteristics It will change with irradiation optical power. 因此目前这种对光电探测器的等效电路的建模方法具有一定的局限性。 So now this has some limitations equivalent circuit modeling method photodetector.

发明内容 SUMMARY

[0005] 本发明的目的是针对现有技术的不足而提供的一种高灵敏度量子效应光电探测器的等效电路建模方法,采用“VerilogA”语言准确实现不同辐照功率和器件偏压下的光电探测器特性参数,以特性参数建立与光电探测器可精确匹配的等效电路,建模程序简单、效率高,大大减少了光电探测器内部的物理特性参数过多而影响模型精度以及复杂程序的编制,对应不同的光功率和器件偏压参数的设置、修改和输入非常方便,为读出电路设计提供准确的反映不同器件结构特性的光电探测器模型。 [0005] The object of the present invention is an equivalent circuit modeling method for a high-sensitivity photodetector quantum effect for deficiencies of the prior art and to provide, using "VerilogA" language to achieve accurate and bias power at different irradiation device photodetector characteristic parameters, characteristic parameters to establish the photodetector precisely match the equivalent circuit modeling program is simple, high efficiency, greatly reducing the physical parameters inside the photo detector excessive complexity and accuracy effect model programming, the optical power corresponding to different settings and device bias parameters, and the input is very easy to modify, to provide a photoelectric detector models accurately reflect the different structural characteristics of the device is readout circuit.

[0006] 本发明的目的是这样实现的:一种高灵敏度量子效应光电探测器等效电路的建模方法,其特点是对量子点-量子阱光电探测器采用不同的辐照功率和器件偏压下的电特性测试,应用“VerilogA”语言建立等效电路模型,然后利用电路模拟软件进行验证,为读出电路的设计提供准确反映不同结构器件特性的光电探测器模型,具体建模方法包括下列步骤: [0006] The object of the present invention is implemented: high-sensitivity photodetector quantum effect equivalent circuit modeling method, which is characterized by a quantum dot - quantum well photodetectors with different irradiation power and the biasing device reduction of electric characteristics, application "VerilogA" established language equivalent circuit model and then verified using circuit simulation software, to provide a photoelectric detector device model accurately reflects the different structural characteristics of the readout circuit design, specifically modeling method comprising the following steps:

[0007] ( I )、光电探测器的特性参数测试和拟合[0008] a、基于光电测试平台,作出光电探测器的电流一电压特性(1- V)特性曲线簇,并用“Origin”软件采用分段拟合得到不同辐照光功率下的I与V之间的函数关系:K' 由此在等效电路中可以用一个受控电流源来实现,使输出电流为电压的函数; [0007] (I), test parameters and fitting the photodetector [0008] a, based on the photoelectric test platform, making the current-voltage characteristics of the photoelectric detector (1- V) characteristic curve of the cluster, and with "Origin" Software piecewise fitting the functional relationship between I and V under different irradiation light power: K 'may result in an equivalent circuit used to achieve a controlled current source, the output current as a function of voltage;

[0009] b、基于光电测试平台,作出光电探测器的电容一电压(C 一V)特性曲线簇,以“Origin”软件采用分段拟合得到不同辐照光功率下的C与V之间的函数关系:C,..P),并采用“VerilogA”语言对等效电容进行描述,由此在等效电路中可以用一个“VerilogA”语言描述电流源形式的可变电容来实现,其电容大小为电压的函数; [0009] b, based on the photoelectric test platform, between V C and under different irradiation light power voltage to a photodetector capacitance (C a V) characteristics of curves, in "Origin" to give sub-fitting software using the function: C, .. P), and using "VerilogA" language equivalent capacitance will be described, which can use a "VerilogA" described in language current source in the form of a variable capacitance achieved in the equivalent circuit, which as a function of the magnitude of the capacitance voltage;

[0010] (2 )、对等效电路中的电阻进行“ VerilogA ”语言描述 [0010] (2), the equivalent circuit of the resistor "VerilogA" Description Language

[0011] 以电容反馈互阻放大器(CTIA)型读出结构的参考电压I二值为等效电路模型的输 [0011] The capacitive feedback transimpedance amplifiers the reference voltage I (CTIA) type sense circuit configuration of a two input model is equivalent

出电压,由此得到等效电路模型的输出阻抗R = ΠΛν,ρ),采用“VerilogA”语言对等效输出电阻进行描述,由此在等效电路中可以用一个“VerilogA”语言描述的电流源形式的输出阻抗来实现; Voltage, whereby the output impedance of the equivalent circuit model R = ΠΛν, ρ), using "VerilogA" language equivalent output resistance is described, whereby in an equivalent circuit may be a current "VerilogA" language description in the form of the output impedance of the source is achieved;

[0012] (3)、等效电路的建模 [0012] (3), the equivalent circuit model

[0013] 将上述采用“VerilogA”语言描述的电流源形式的可变电容与电流源形式的输出阻抗并联,构成能与光电探测器准确匹配的等效电路模型。 [0013] The output impedance of the parallel use of the above-described "VerilogA" variable capacitor and the current source form a current source in the form of language described, constituting the equivalent circuit model can be accurately matched with the photodetector.

[0014] (4)、等效电路模型的仿真模拟 [0014] (4), the equivalent circuit model simulation

[0015] 将上述建立的等效电路模型,利用电路模拟软件“ Cadence ”的“ Spectre ”仿真器对等效电路模型进行仿真模拟,将仿真结果与实际测试的1-V和CV特性曲线簇进行比对,以此验证等效电路模型的正确性,为读出电路的设计提供准确的光电探测器模型。 [0015] The equivalent circuit model established above, using circuit simulation software "Cadence" a "Spectre" simulator equivalent circuit model simulation, and the 1-V characteristic of curves CV simulation results and the actual test conducted comparison, in order to verify the correctness of the equivalent circuit model, provide an accurate model photodetector readout circuit design.

[0016] 本发明与现有技术相比具有以下优点: [0016] The present invention and the prior art has the following advantages:

[0017] 1、电路建模程序简单、效率高,大大减少了光电探测器内部的物理特性参数过多而影响模型精度以及复杂程序的编制; [0017] 1, circuit modeling program is simple, high efficiency, greatly reducing the physical parameters inside the photo detector excessive effect model accuracy and complicated preparation procedures;

[0018] 2、等效电路可以直接和读出电路进行连接,方便光电探测器设计相匹配的读出电路; [0018] 2, the equivalent circuit can be directly read out circuit connected to the photodetector readout circuit designed to facilitate match;

[0019] 3、使用“VerilogA”语言建模,对应不同的光功率和器件偏压参数的设置修改非常方便,不同光功率和器件偏压的实现可通过在等效电路模型属性中对应的预先设好的光功率和器件偏压参数中直接输入具体数据即可,修改灵活。 [0019] 3, using the "VerilogA" language modeling, corresponding to different optical power and the bias parameter setting device very easy to modify, to achieve different optical power and bias means by a corresponding equivalent circuit model attribute in advance power and provided good optical device bias parameters can be directly input specific data, modify flexibility.

附图说明 BRIEF DESCRIPTION

[0020] 图1为光电探测器的微光1-V特性曲线簇图; [0020] Figure 1 is a photodetector shimmer 1-V characteristic of curves in FIG;

[0021] 图2为光电探测器的微光CV特性曲线簇图; [0021] FIG. 2 is a photodetector shimmer FIG CV characteristic of curves;

[0022] 图3为“VerilogA”单元文件页面图; [0022] FIG. 3 is a "VerilogA" FIG page unit files;

[0023] 图4为电流源形式的电阻示意图; [0023] FIG. 4 is a schematic diagram of a current source in the form of a resistor;

[0024] 图5为电流源形式的电阻属性页面图; [0024] FIG. 5 is a current source in the form of FIG resistance properties page;

[0025] 图6为等效电路中的可变电容示意图; [0025] FIG. 6 is a schematic diagram of an equivalent variable capacitance circuit;

[0026] 图7为简化的光电探测器等效电路图; [0026] FIG. 7 is a simplified equivalent circuit diagram of a photodetector;

[0027] 图8为等效电路模型的1-V特性仿真波形图;[0028] 图9为等效电路模型的CV特性仿真波形图。 [0027] FIG. 8 is a 1-V characteristic simulation waveform diagram of an equivalent circuit model; [0028] FIG. 9 is a simulation waveform of the CV characteristic of the equivalent circuit model of FIG.

具体实施方式 Detailed ways

[0029] 下面以一种灵敏度较高的量子效应光电探测器在5nW以下的光功率辐照下等效电路建模的实施例,对本发明作进一步说明,其具体建模步骤如下: [0029] In the following a high sensitivity photodetector quantum effects in the optical power irradiated 5nW embodiment of a circuit equivalent model of the present invention will be further described, and specific modeling steps as follows:

[0030] ( I )、光电探测器的特性参数测试 Test parameters [0030] (I), the photodetector

[0031] 基于光电测试平台,采用Kelthley 4200-SCS半导体特性分析仪和波长为633nm的氦氖激光器,测试量子点-量子阱光电探测器在无光照(暗电流)和辐照光功率分别是0.2nW、0.5 nff、1 nW、2 nW和5 nW的1-V和CV电特性参数,并作出光电探测器电特性曲线簇。 [0031] Optical based test platform using Kelthley 4200-SCS semiconductor characteristic analyzer and a wavelength of 633nm He-Ne laser, a quantum dot test - a quantum well photodetector in the absence of light (dark current) and the irradiation light power is respectively 0.2 nW, 0.5 nff, 1 nW, 2 nW 5 nW, and a 1-V and CV electrical parameters, and a photodetector to electrical characteristics of curves.

[0032] 参阅附图1,可以看出本微光测试系统的量子效应光电探测器低温下(120K)噪声很小(PA),具有高的灵敏度和微光特性。 [0032] Referring to the drawings 1, the quantum effect can be seen that the present test system photodetectors LLL low temperature (120K) noise is small (PA), having characteristics of high sensitivity and shimmer.

[0033] 参阅附图2,可以看出光电探测器电容在反偏下变化较小。 [0033] Referring to the drawings 2, it can be seen at the photodetector reverse bias capacitance change is small.

[0034] ( 2 )、光电探测器特性曲线的拟合 [0034] (2), characteristic curves of the photodetector

[0035] 根据测试做出光电探测器的1-V和CV特性曲线簇,为了实现这种光电探测器高灵敏度的特点,实际器件应该工作在反偏情况下,利用“Origin”软件拟合得到不同辐照光功率下的1-V和CV之间的函数关系:K ^ /,,(I++'.忾和(:,'Ujl/%其中:V代表器件偏压, [0035] The test photodetectors made and CV 1-V characteristic of curves, in order to achieve such a high sensitivity characteristic of the photodetector, the actual device should work under reverse bias case, the "Origin" curve fitting software the functional relationship between the 1-V under different irradiation light power and CV: K ^ / ,, (I ++ 'anger and (:.,' Ujl /% where: V bias denote device,

P代表辐照光功率,特性曲线的拟合具体步骤如下: P fit specific steps represent irradiation light power characteristic curve is as follows:

[0036] a、1-V特性曲线簇拟`合 [0036] a, 1-V characteristic of curves fit `Quasi

[0037] 为了使拟合后的特性曲线能较好的和测试得到的1-V特性曲线相重合,采用 [0037] In order to make the characteristic curve can be better fitted and 1-V characteristic curves obtained coincides test using

“Origin”软件分段拟合得到不同辐照光功率下的I与V之间的函数关系:= ,由 "Origin" software piecewise fitting the functional relationship between I and V under different irradiation light power: = a

此可以在等效电路中可以用一个受控电流源来实现,使输出电流为电压的函数,1-V特性曲线簇拟合时将器件偏压-3V至O之间分为两段,分别是[-1.5,O]和[-3,-1.5]。 This can be used in an equivalent circuit to achieve a controlled current source, the output current as a function of voltage, when the 1-V characteristic of curves fitting the device is divided into two bias between -3V and O, respectively, is [-1.5, O] and [-3, -1.5].

[0038] 当器件偏压Γ€〖 ?% 1.时,光电探测器在无光照(暗电流)和辐照光功率分别是0.2 nW、0.5 nff、1 nff,2 nW和5 nW的(=/: (Γ.Ρ)函数关系如下式(I)表示: [0038] When the device bias 〖€ Gamma]? 1% when, in the absence of light the photodetector (dark current) and the irradiation light power is respectively 0.2 nW, 0.5 nff, 1 nff, 2 nW and 5 nW of (= /: expressed (Γ.Ρ) as a function of the following formula (the I):

Figure CN102564584BD00061

[0039] 当器件偏压「€丨-1人叫时,光电探测器在无光照(暗电流)和辐照光功率分 [0039] When the device bias "€ Shu -1 person called, in the absence of light the photodetector (dark current) and the irradiation light power points

别是0.2 nW、0.5 nff、 1 nff, 2 nW和5 nW的/,: = /.WP)函数关系如下式(2)表示: Do is 0.2 nW, represents 0.5 nff, 1 nff, 2 nW, and a function of 5 nW / ,: = /.WP) the following formula (2):

Figure CN102564584BD00062

[0040] b、CV特性曲线簇拟合 [0040] b, CV curve fitting clusters

[0041]为了使拟合后的特性曲线能较好的和测试得到的CV特性曲线相重合,采用“Origin”软件分段拟合得到不同辐照光功率下的C与V之间的函数关系:C:= P),并用“VerilogA”语言对等效电容进行描述,由此可以在等效电路中可以用一个“VerilogA”语言描述电流源形式的可变电容来实现,其电容大小为电压的函数,CV特性曲线簇拟合在器件偏压[-3,0]范围内米用一次拟合。 [0041] In order to make the characteristic curve can be better fitted and CV characteristic test result coincides using "Origin" software piecewise fitting the functional relationship between V C and under different irradiation light power : C: = P), and by a description of the equivalent capacitance "VerilogA" language, which can be implemented with a "VerilogA" current source described in language form of the variable capacitance in the equivalent circuit, the capacitance magnitude of the voltage function, CV characteristic of curves fitting device bias [-3,0] m and once fitted within range.

[0042] 当器件偏压re卜—33I时,光电探测器在无光照(暗电流)和辐照光功率分别是0.2 nW、0.5 nff、1 nff,2 nW和5 nW的函数关系如下式(3)表示: [0042] When the biasing device re Bu -33I, in the absence of light the photodetector (dark current) and the irradiation light power is respectively 0.2 nW, 0.5 nff, 1 nff, 2 nW 5 nW, and a function of the following formula ( 3) says:

Figure CN102564584BD00071

[0043] (3 )、对等效电路中的电阻进行“ VerilogA ”语言描述 [0043] (3), in the equivalent circuit resistor "VerilogA" Description Language

[0044] 光电探测器等效电路的电流源实现是将1-V之间的函数关系:L = /(FP),光电 [0044] The photodetector equivalent current source circuit is implemented a functional relationship between the 1-V: L = / (FP), the photoelectric

探测器的等效电阻如下式(4)表示: Represents the equivalent resistance of the probe by the following formula (4):

Figure CN102564584BD00072

[0046] 由于本光电探测器的读出采用电容反馈互阻放大器(CTIA)结构,使得光电探测器等效电路模型的输出电压大小为CTIA型读出电路的参考电压值,而输出电流为,由 [0046] Since the read-out using the photodetector of this capacitive feedback transimpedance amplifier (CTIA) architecture, such that the photodetector output voltage magnitude equivalent circuit model of the reference voltage circuit is CTIA type sense, and the output current, by

此可以得到等效电路模型的输出阻抗如下式(5)表示: This can obtain the output impedance of the equivalent circuit model expressed by the following formula (5):

Figure CN102564584BD00073

[0048] 以CTIA型读出结构的参考电压值为等效电路模型的输出电压,由此得到等效电路模型的输出阻抗Λ = K.', / tjv,pl,并采用“VerilogA”语言对等效输出电阻进行描述, [0048] In the reference voltage CTIA readout configuration type equivalent circuit model of the value of the output voltage, whereby the output impedance of the equivalent circuit model Λ = K. ', / tjv, pl, and the use of "VerilogA" language the equivalent output resistance is described,

由此在等效电路中可以用一个“VerilogA”语言描述的电流源形式的输出阻抗来实现。 You can use a "VerilogA" the output impedance of the current source described in language form be implemented in an equivalent circuit.

[0049] 参阅附图3,创建一个电流源形式的等效输出电阻“VerilogA”文件和“symbol”符号,在“Cadence”软件下新建“VerilogA”的单元文件“Cell ”,并制做一个电流源形式的等效输出电阻符号。 [0049] Referring to the drawings 3, to create a current source in the form of the equivalent output resistance "VerilogA" file and the "symbol" symbol, the new "VerilogA" under the "Cadence" software unit files "Cell", and making a current the equivalent output resistance of the source in the form of symbols.

[0050] 参阅附图4,将器件偏压和福照光功率分别设为“biasvoltage”和“photopower”两个参数,并在电流源形式的等效输出电阻的属性中进行设置。 [0050] Refer to Figure 4, the optical device bias power and fu as two parameters are set to "biasvoltage" and "photopower", and the equivalent output resistance properties disposed in the form of a current source. 因为光电探测器的电流受器件偏压和辐照光功率的影响,而等效输出电阻和输出电流有关,所以光电探测器等效电路模型中的电流源形式的电阻应该具有一个受控电流源的特点,受器件偏压和辐照光功率控制。 Since the current is affected by the photodetector device and bias power irradiation light, and the equivalent output resistance and an output current dependent, so the equivalent circuit model photodetector current source resistor should have the form of a controlled current source characteristics, and the irradiation light receiving device bias power control.

[0051] 参阅附图5,由于上述步骤中已对光电探测器在无光照(暗电流)和辐照光功率分别是0.2 nW、0.5 nff、1 nW、2 nW和5 nW的:函数关系进行了描述,所以只要在电流源的属性中将器件偏压和光功率对应的参数“biasvoltage”和“photopower”直接输入数据即可,参数设置和修改都非常方便。 [0051] 5 Referring to the drawings, the above steps have been in the absence of light on the photodetector (dark current) and the irradiation light power is respectively 0.2 nW, 0.5 nff, 1 nW, 2 nW nW and 5: Function relationship has been described, the optical power in the device and the bias current source as long as the property parameter corresponding to "biasvoltage" and "photopower" directly enter data, parameter settings and modifications are very convenient.

[0052] 如当器件偏压为-2V和光功率为InW时,只要在“biasvoltage”选项中输入“_2”,在“photopower”选项中输入“I”即可,采用“VerilogA”语言描述的电流源式的等效电阻表达如下式(6)表示: [0052] The bias voltage is -2V when the device and the optical power INW, as long as the input "biasvoltage" option "_2", the input "I" in "PhotoPower" option can, using the current "of VerilogA" language description It represents the source of the equivalent resistance of formula expressed by the following formula (6):

[0053] [0053]

Figure CN102564584BD00081

[0054] 由于CTIA型读出电路的参考电压> =2.5V,所以电流源式的等效电阻 [0054] Since the reference voltage type sense CTIA circuit> = 2.5V, so that the current source equivalent resistance of formula

Figure CN102564584BD00082

,.外,在电流源形式的等效输出电阻的“VerilogA”语言描述时定义 , Outer, defined at "VerilogA" described in language equivalent output resistance of a current source in the form of

电流源的两个端口为“ns”和“ps”,并设定器件的偏压和光功率两个参数“biasvoltage”和“photopower”的初值,实际使用时可在器件属性中进行修改,因为1-V特性是分段拟合的,不同的光功率对应不同的1-V曲线,所以在用“VeriolgA”语言描述时分别使用了“ if-el se ”和“ case ”语句来实现。 Two ports for the current source "ns" and "ps", and set the bias power of the two optical parameters of the device and the initial value "biasvoltage" and "photopower", the device can be modified in actual use properties, because 1-V characteristic is piecewise fitting, different optical power corresponding to a different 1-V curves, respectively, so the use of "if-el se" and "case" statements describing a "VeriolgA" language.

[0055] (4 )、对等效电路中的可变电容进行“ Ver i logA”语言描述 [0055] (4), an equivalent circuit of the variable capacitance is "Ver i logA" Description Language

[0056] 参阅附图6,创建一个可变电容的“VerilogA”文件和“Symbol”符号,建立一个可变电容的单元“cell”和“Symbol”符号,因为光电探测器的电容受器件偏压和辐照光功率的影响,所以光电探测器等效电路模型中的电容应该是一个受器件偏压和辐照光功率控制的可变电容。 [0056] Refer to Figure 6, create a variable capacitor "VerilogA" file and the "Symbol" symbol, a variable capacitance establishing means "cell" and "Symbol" sign, because the capacitance of the device by the biasing photodetector Effect of irradiation light and the power of the photoelectric detector in the equivalent circuit model of a variable capacitance capacitor device should be biased and controlled by the irradiation light power. 将器件偏压和福照光功率分别设为“biasvoltage”和“photopower”两个参数,设置和修改方法同电流源形式的等效输出电阻相同,采用“VerilogA”语言描述的电流源式的可变电容表达如下式(7)表示: The illumination device bias power and fu are set to "biasvoltage" and "photopower" two parameters, the method of setting and modifying the same as the current source in the form of an equivalent output resistance, the use of variable current source type described in language "VerilogA" capacitive expressed by the following formula (7):

[0057] [0057]

Figure CN102564584BD00083

[0058]即 [0058] That is

Figure CN102564584BD00084

,这里的电容C本身也是随器件偏压和光功率变化的,所以电容c必须放在括号里面,电容c和器件偏压和光功率的关系为:ς, - ^β\Ρ)。 , Where the capacitance C of the device itself with the bias power and the light changes, the capacitance must be placed in brackets c, c of the capacitance and the bias device and the optical power is: ς, - ^ β \ Ρ). 在电流源 In the current source

形式的可变电容“VerilogA”语言描述时,定义了电流源的两个端口为“ns”和“ps”,并设定器件的偏压和光功率两个参数“biasvoltage”和“photopower”的初值,实际使用时可在器件属性中进行修改,因为在器件偏压「e [ -3JI1范围内的CV特性曲线是一次拟合的,不同的光功率对应不同的CV特性曲线,所以在用“VeriolgA”语言描述时使用了“case”语句来实现。 Form variable capacitance "VerilogA" when language description, the current source defines two ports "ns" and "ps", and the bias setting means and the optical power of the two parameters "biasvoltage" and "photopower" early value, the device can be modified in actual use properties, since the biasing device "E [CV characteristic curve within a range -3JI1 is fitted, the different optical power corresponding to different CV characteristic curve, with it" VeriolgA "language used when describing" case "statement to achieve.

[0059] (5)、等效电路的建模 [0059] (5), the equivalent circuit model

[0060] 参阅附图7,采用“VerilogA”语言将受控电流源和等效输出电阻用一个程序来描述,并生成一个“Symbol ”符号,使得到的等效电路模型只包含两部分,一部分是电流源形式的电阻,另一部分是个可变电容,即光电探测器可等效为一个电流源形式的电阻与可变电容并联的电路模型。 [0060] Referring to the drawings 7, using "VerilogA" and the controlled current source language equivalent output resistance with a program to be described, and generates a "Symbol" symbols, so that the equivalent circuit model obtained comprises only two parts, a current source in the form of resistance, the other is a variable capacitance, i.e., the photodetector can be equivalent to the current source in the form of a circuit model of a variable resistor and capacitor in parallel.

[0061 ] ( 6 )、对等效电路模型进行仿真模拟验证 [0061] (6), of the equivalent circuit model and simulation results show

[0062] 参阅附图8,将上述建好的光电探测器的等效电路模型,利用电路模拟软件“Cadence”的“Spectre”仿真器分别对等效电路模型在器件偏压[_3,0]内进行直流分析和器件偏压“biasvoltage”和光功率“photopower”两个参数进行参数扫描,对上述建立的等效电路模型进行仿真模拟,将仿真得到的等效电路模型1-V特性结果与实际测试的1-V特性曲线簇进行对比验证。 [0062] 8 Referring to the drawings, an equivalent circuit model built above the photodetector, the circuit simulation using the software "Cadence" a "Spectre" respectively simulator device bias in the equivalent circuit model [_3,0] analysis of the DC bias voltage and device "biasvoltage" and the optical power "photopower" two parameters scan parameters, equivalent circuit model is established above simulation, the equivalent circuit model obtained by the simulation results of 1-V characteristics of the actual test 1-V characteristic curves were comparatively cluster.

[0063] 参阅附图9,将上述建好的光电探测器的等效电路模型,在器件偏压[-3,O]内对等效电路模型做交流分析并做器件偏压“biasvoltage”和光功率“photopower”两个参数进行参数扫描,将仿真得到的等效电路模型CV特性结果与实际测试的CV特性曲线簇进行对比验证。 [0063] Referring to the drawings 9, the equivalent circuit model of the photodetector built in the device bias [-3, O] AC analysis made within the equivalent circuit model and make the device bias "biasvoltage" Wako power "photopower" two parameters scan parameters, the CV characteristic of curves obtained by simulation of the equivalent circuit model and the actual test results of CV characteristics were compared verified.

[0064] 通过上述等效电路模型的1-V和CV仿真曲线与实际测试的1-V和CV曲线簇的比对,可以看出两者能很好地吻合,验证仿真曲线与实际测试的1-V和CV曲线簇相重合,由此能够验证等效电路模型的正确性,可以为读出电路的设计提供准确反映不同结构器件特性的光电探测器模型。 [0064] By the above-mentioned equivalent circuit model and the 1-V ratio of the CV of the simulation curve and the actual test and CV 1-V family of curves can be seen both good agreement, the simulation curve and the actual verification test 1-V and a CV of curves coincide, it is possible to verify the correctness of the equivalent circuit model may be designed to provide readout circuit photodetector accurately reflect the different structural models of device characteristics.

[0065] 以上实施例只是对本发明做进一步说明,并非用以限制本发明专利,凡为本发明等效实施,均应包含于本发明专利的权利要求范围之内。 [0065] The above embodiments are merely to illustrate the present invention further, the present invention is not intended to limit the patent, where an equivalent embodiment of the invention, insofar as claimed in the patent claim scope of the present invention.

Claims (1)

1.一种高灵敏度量子效应光电探测器等效电路的建模方法,其特征在于对量子点-量子阱光电探测器采用不同的辐照功率和器件偏压下的电特性测试,应用“VerilogA”语言建立等效电路模型,然后利用电路模拟软件进行验证,为读出电路的设计提供准确的反映不同器件结构特性的光电探测器模型,具体方法包括下列步骤: (1)、光电探测器的特性参数测试和拟合a、基于光电测试平台,作出光电探测器的电流一电压特性(I 一V)特性曲线簇,并用“Origin”软件采用分段拟合得到不同辐照光功率下的I与V之间的函数关系:L 由此在等效电路中可以用一个受控电流源来实现,使输出电流为电压的函数; b、基于光电测试平台,作出光电探测器的电容一电压(C 一V)特性曲线簇,以“Origin”软件采用分段拟合得到不同辐照光功率下的C与V之间的函数关系:CP、,并采用“Veri 1. A high-sensitivity photodetector quantum effect equivalent circuit modeling method, wherein the quantum dot - quantum well photodetectors employed in measuring electric characteristics under different irradiation power and device bias application "VerilogA "language to build an equivalent circuit model and then verified using circuit simulation software, to provide a photoelectric detector models accurately reflect the different characteristics of the device structure of the readout circuit design, specifically the method comprising the steps of: (1), the photodetector testing and fitting parameters a, based on the photoelectric test platform, making the current-voltage characteristics of the photodetector (a I V) characteristics of curves, and by "Origin" piecewise fitting software I obtained under different irradiation light power and the functional relationship between V: L in the equivalent circuit can thus be implemented with a controlled current source, the output current as a function of voltage; B, based on the photoelectric test platform, a capacitor voltage to a photodetector ( C-V) characteristics of curves, in "Origin" software piecewise fitting the functional relationship between V C and under different irradiation light power: CP ,, and use "Veri logA ”语言对等效电容进行描述,由此在等效电路中可以用一个“VerilogA”语言描述电流源形式的可变电容来实现,其电容大小为电压的函数; (2)、对等效电路中的电阻进行“VerilogA”语言描述以电容反馈互阻放大器(CTIA)型读出结构的参考电压<二值为等效电路模型的输出电压,由此得到等效电路模型的输出阻抗Λ = ί 二/ fjv, p),并采用“VerilogA”语言对等效输出电阻进行描述,由此在等效电路中可以用一个“VerilogA”语言描述的电流源形式的输出阻抗来实现; (3 )、等效电路的建丰旲将上述采用“VerilogA”语言描述的电流源形式的可变电容与电流源形式的输出阻抗并联,构成能与光电探测器准确匹配的等效电路模型; (4 )、等效电路模型的仿真模拟将上述建立的等效电路模型,利用电路模拟软件“Cadence”的“Spectre”仿真器对等效电路模型进行仿真模拟 logA "language equivalent capacitance will be described, whereby in an equivalent circuit can be a" VerilogA "described in language form of the current source to achieve a variable capacitance, which capacitance is a function of voltage magnitude; (2), the equivalent of resistor "VerilogA" circuit description language to capacitive feedback transimpedance amplifiers (the CTIA) type sense a configuration of a reference voltage <output voltage of the equivalent circuit is two models, whereby the output impedance of the equivalent circuit model Λ = ί two / fjv, p), and uses "VerilogA" language equivalent output resistance is described, whereby in an equivalent circuit may be implemented with a "VerilogA" the output impedance of the current source in the form of language description; (3) , an equivalent circuit of the above-described use jianfeng Dae "VerilogA" the output impedance of the parallel capacitance of the variable current source form a current source in the form of language description, the equivalent circuit model can accurately match constituting the photodetector; (4) emulation of the equivalent circuit model of the equivalent circuit model established above, using circuit simulation software "Cadence" a "Spectre" simulator equivalent circuit model simulation 将仿真结果与实际测试的1-V和CV特性曲线簇进行比对,以此验证等效电路模型的正确性,为读出电路的设计提供准确的光电探测器模型。 The 1-V characteristic of curves and CV simulation results and the actual test for comparison, in order to verify the correctness of the equivalent circuit model, provide an accurate model photodetector readout circuit design.
CN 201110379701 2011-11-25 2011-11-25 Modeling method for equivalent circuit of high-sensitivity quantum effect photodetector CN102564584B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110379701 CN102564584B (en) 2011-11-25 2011-11-25 Modeling method for equivalent circuit of high-sensitivity quantum effect photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110379701 CN102564584B (en) 2011-11-25 2011-11-25 Modeling method for equivalent circuit of high-sensitivity quantum effect photodetector

Publications (2)

Publication Number Publication Date
CN102564584A CN102564584A (en) 2012-07-11
CN102564584B true CN102564584B (en) 2013-10-30

Family

ID=46410610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110379701 CN102564584B (en) 2011-11-25 2011-11-25 Modeling method for equivalent circuit of high-sensitivity quantum effect photodetector

Country Status (1)

Country Link
CN (1) CN102564584B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832176B (en) * 2012-08-29 2014-07-30 华东师范大学 Packaging method of quantum effect photoelectric detector and readout integrated circuit
CN104598680B (en) * 2015-01-14 2017-07-04 华东师范大学 The method of modeling and simulation of the equivalent circuit of the photodetector quantum neural network algorithm
CN106503285B (en) * 2016-09-14 2019-04-30 西安电子科技大学 A kind of circuit irradiation effect modeling method based on VHDL-AMS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101504313A (en) 2009-03-06 2009-08-12 华东师范大学 Design method for photoelectric detector reading circuit
CN101540197A (en) 2009-04-22 2009-09-23 华东师范大学 Design method of emptying CTIA reading circuit of photo memory unit
CN102081680A (en) 2009-11-30 2011-06-01 上海华虹Nec电子有限公司 Method for modeling P-channel metal oxide semiconductor (PMOS) one-time programmable memory (OTP) device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024111A1 (en) * 1999-09-30 2001-04-05 Routech, Inc. Automatic routing system for pc board design
US8108815B2 (en) * 2009-05-26 2012-01-31 International Business Machines Corporation Order independent method of performing statistical N-way maximum/minimum operation for non-Gaussian and non-linear distributions
GB2475235B (en) * 2009-11-09 2014-01-08 Toshiba Res Europ Ltd A photon detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101504313A (en) 2009-03-06 2009-08-12 华东师范大学 Design method for photoelectric detector reading circuit
CN101540197A (en) 2009-04-22 2009-09-23 华东师范大学 Design method of emptying CTIA reading circuit of photo memory unit
CN102081680A (en) 2009-11-30 2011-06-01 上海华虹Nec电子有限公司 Method for modeling P-channel metal oxide semiconductor (PMOS) one-time programmable memory (OTP) device

Also Published As

Publication number Publication date
CN102564584A (en) 2012-07-11

Similar Documents

Publication Publication Date Title
Carrero et al. Simple estimation of PV modules loss resistances for low error modelling
CN1300597C (en) Integrated assayer for photoelectric performance
WO2012177477A3 (en) Method of optimizing an optical parametric model for structural analysis using optical critical dimension (ocd) metrology
CN101299062B (en) Device for checking zinc oxide lightning arrester block property current tester
CN104198829B (en) Electromagnetic radiation measurement apparatus and measurement method of self-correcting arm with temperature and humidity based on
CN102610996B (en) Method and device for rapidly calibrating luminous power
CN102004097B (en) Coal quality on-line detecting method based on dominating factor and combined with partial least squares method
CN101271152B (en) Capacitance type equipment insulation on-line monitoring system calibration method and device
CN201844917U (en) Irradiation evenness test device of solar simulator
CN102073060B (en) Simulation method for random properties of nuclear signals
CN103604982B (en) Pxi micro current detecting device
CN103542877B (en) An aircraft integrated starter tank calibration method Tester
Johnson et al. Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc fault modeling
CN102523394B (en) Photoelectric conversion front-end detection-type readout circuit with automatically adjustable gain
CN103630748B (en) An apparatus and method for measuring the harmonic impedance for microgrids
CN102707051A (en) Performance correction method for gold mark immunochromatographic test strip detection system
CN104062618B (en) Capacitive Equipment Online Monitoring method of a dual check signal source
CN104101790B (en) One kind of protection AC sampling test system
CN203012023U (en) A LCR tester
CN101858940B (en) Output impedance measuring method and device
CN102206996A (en) Weak signal detector
CN203658433U (en) High-sensitivity wide-range current amplification conversion circuit
CN203117411U (en) BMS current error test system
CN103048585B (en) Infrared photoelectricity geminate transistor open-circuit fault on-line detection method
CN102998502B (en) High-isolation voltage-resisting bidirectional signal sensor

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted