GB2471737A - A hydraulic cylinder device with at least two rollers disposed in each blade unit - Google Patents

A hydraulic cylinder device with at least two rollers disposed in each blade unit Download PDF

Info

Publication number
GB2471737A
GB2471737A GB1000784A GB201000784A GB2471737A GB 2471737 A GB2471737 A GB 2471737A GB 1000784 A GB1000784 A GB 1000784A GB 201000784 A GB201000784 A GB 201000784A GB 2471737 A GB2471737 A GB 2471737A
Authority
GB
United Kingdom
Prior art keywords
hydraulic cylinder
cylinder device
groove
blade
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1000784A
Other versions
GB201000784D0 (en
GB2471737B (en
Inventor
Yu-Hui Liao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of GB201000784D0 publication Critical patent/GB201000784D0/en
Publication of GB2471737A publication Critical patent/GB2471737A/en
Application granted granted Critical
Publication of GB2471737B publication Critical patent/GB2471737B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B13/00Spanners; Wrenches
    • B25B13/46Spanners; Wrenches of the ratchet type, for providing a free return stroke of the handle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/02Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)
  • Actuator (AREA)

Abstract

A hydraulic cylinder device comprises a cylinder 10 and an axle 20 inserted through the cylinder 10. The axle 10 comprises two opposite grooves (21, Fig 2), and blade units 30 disposed in each groove (21). At least one secondary roller 36 and one primary roller 37 are disposed in a groove 35 in each of the blades (31) so that the primary roller 37 is between the secondary roller 36 and the cylinder 10. There may be two secondary rollers 36, and the groove 35 in the blade (31) may be a dovetail groove. The device may comprise two springs (33, 34) that are inserted through the axle 20 so that each of the springs (33, 34) are connected to both blade units 30.

Description

Hydraulic Cylinder Device
BACKGROUND OF INVENTION
1. FIELD OF INVENTION
The present invention relates to a hydraulic cylinder device and, more particularly, to a low-friction, efficient and durable hydraulic cylinder device.
2. RELATED PRIOR ART
Hydraulic cylinder devices are common for transmitting power such as torque for fastening or slacking nuts or screws. Liquid is circulated into arid from a hydraulic cylinder device for transmitting power. The efficiency of a hydraulic cylinder device is critical for the efficiency of a user of the hydraulic cylinder device.
A hydraulic cylinder device generally includes a cylinder, an axle inserted through the cylinder, blades non-rotational but movable relative to the axle and springs for achieving the movement of the blades relative to the axle. To achieve a high efficiency, suppress vibration and reduce noise, the cylinder includes a chamber with a cross-sectional shape that looks like a circle overlapping another circle. Thus, the chamber includes a waist portion. Friction between each of the blades and the wall of the chamber reaches a maximum when the blade moves past the waist portion of the chamber. The maximum of friction reduces the speed of rotation of the axle, thus reducing the power of the hydraulic cylinder device.
Moreover, the maximum of friction between the blades and the cylinder would wear out the blades or cylinder soon so that the blades or the cylinder would have to be replaced soon.
The present invention is therefore intended to obviate or at least
alleviate the problems encountered in prior art.
SUMMARY OF INVENTION
It is the primary objective of the present invention to provide a low-friction, efficient and durable hydraulic cylinder device.
To achieve the foregoing objective, the hydraulic cylinder device includes a cylinder, an axle and two blade units. The cylinder includes a chamber with a cross-sectional shape like a circle overlapping another circle. The axle is inserted through the cylinder. The axle includes two opposite grooves defined therein. Each of blade units includes a blade, a primary roller and a secondary roller. The blade is movably disposed in a related one of the grooves and made with a groove defined in a side close to an internal side of the cylinder. The secondary roller is disposed in the groove. The primary roller is disposed in the groove so that the primary roller is in contact with the secondary roller on one hand and in contact with the cylinder on the other hand.
Other objectives, advantages and features of the present invention will be apparent from the following description referring to the drawings.
BRIEF DESCRIPTION OF DRAWINGS
The present invention will be described via detailed illustration of two embodiments referring to the drawings.
Fig. 1 is a cross-sectional view of a hydraulic cylinder device according to the first embodiment of the present invention.
Fig. 2 is an exploded view of the hydraulic cylinder device shown in Fig. 1.
Fig. 3 is another cross-sectional view of the hydraulic cylinder device shown in Fig. 1.
Fig. 4 is a cross-sectional view of the hydraulic cylinder device in another position than shown in Fig. 3.
Fig. 5 is a cross-sectional view of a hydraulic cylinder device according to the second embodiment of the present invention.
Fig. 6 is a cross-sectional view of the hydraulic cylinder device in another position than shown in Fig. 5.
Fig. 7 is a free-body diagram for illustrating physical basics related to the hydraulic cylinder device shown in Fig. 1 or 5.
DETAILED DESCRIPTION OF EMBODIMENTS
Referring to Figs. 1 and 2, there is shown a hydraulic cylinder device according to a first embodiment of the present invention. The hydraulic cylinder device includes a cylinder 10, an axle 20 inserted through the cylinder 10, two blade units 30 non-rotational but movable relative to the axle 20 and two springs 33 and 34 for achieving the movement of the blade units 30 relative to the axle 20.
The axle 20 includes two opposite longitudinal grooves 21 defined therein and two transverse tunnels 22 and 23 for communicating the grooves 21 with each other. A shorter groove 24 is defined in the floor of each of the grooves 21.
Each of the blade units 30 includes a blade 31 and two rollers 36 and 37. The blade 31 includes a rib 32 formed on a side thereof, two recesses 311 and 321 defined in the side and a groove 35 defined in an opposite side.
The groove 35 includes two plain walls parallel to each other and a hemi-cylindrical floor between the plain walls. The rib 32 is located between the recesses 311 and 321. The rib 32 is movably inserted in a related one of the grooves 24 when the blade 31 is movably inserted in a related one of the groove 21. The rollers 36 and 37 are rotationally disposed in the groove 35. Thus, the roller 36 is located between the floor of the groove 35 and the roller 37, and the roller 37 is located between the roller 36 and the wall of the chamber 11.
The springs 33 and 34 are inserted through the tunnels 22 and 23.
The spring 33 includes two ends each inserted in the recess 311 of the blade 31 of a related one of the blade units 30. The spring 34 includes two ends each inserted in the recess 321 of the blade 31 of a related one of the blade units 30.
Referring to Figs. 3 and 4, to achieve a high efficiency, suppress vibration and reduce noise, the cylinder 10 includes a chamber 11 with a cross-sectional shape that looks like a circle overlapping another circle.
Thus, the chamber 11 includes a waist portion. Friction between each of the blade units 30 and the wall of the chamber 11 reaches a maximum when the blade unit 30 moves past the waist portion of the chamber 11.
Advantageously, the maximum of friction between the blade units 30 and the wall of the chamber 11 is small because the rollers 37 roll on the wall of the chamber 11.
Referring to Figs. 5 and 6, there is shown a hydraulic cylinder device according to a second embodiment of the present invention. The second embodiment is like the first embodiment except two things. Firstly, each * of the blade units 30 includes two rollers 36 and a roller 37. Secondly, the groove 35 is a dovetail groove. Each of the rollers 36 is located between the floor of the groove 35 and the roller 37 while the roller 37 is located between each of the rollers 36 and the wall of the chamber 11. The second embodiment supports the roller 37 better than the first embodiment does, without considerably increasing the friction although there are seven lines of contact in the second embodiment while there are only five lines of contact in the first embodiment.
Referring to Fig. 7, when a ball or cylinder rolls on a plain surface, the ball or cylinder dents the originally plain surface, thus producing rolling friction. The rolling friction is larger as the dent is deeper. The relation between the weight W of the ball or cylinder, the friction f and a force P for rolling the ball or cylinder on the originally plain surface is governed with an equation as follows: P=fWxalr; wherein a is the rolling frictional coefficient while r is the radius of the ball or cylinder because MA = 0 and OB r.
The rollers 36 and 37 are light in weight and can hardly dent the wall of the chamber 11. Hence, the friction between the wall of the chamber 11 and each of the blade units 30 is small, almost none. Therefore, the hydraulic cylinder device is efficient and durable.
The present invention has been described via the detailed illustration of the embodiments. Those skilled in the art can derive variations from the embodiments without departing from the scope of the present invention.
Therefore, the embodiments shall not limit the scope of the present * invention defined in the claims.

Claims (6)

  1. * CLAIMS 1. A hydraulic cylinder device comprising: a cylinder comprising a chamber with a cross-sectional shape like a circle overlapping another circle; an axle inserted through the cylinder, wherein the axle comprises two opposite grooves defined therein; two blade units each comprising: a blade movably disposed in a related one of the grooves and made with a groove defined in a side close to an internal side of the cylinder; at least one secondary roller disposed in the groove; and a primary roller disposed in the groove so that the primary roller is in contact with the secondary roller on one hand and in contact with the cylinder on the other hand.
  2. 2. The hydraulic cylinder device according to claim 1, wherein the groove comprises two plain walls parallel to each other and a hemi-cylindrical floor between the plain walls, and the primary roller is in contact with both of the plain walls.
  3. 3. The hydraulic cylinder device according to claim 1, wherein each of the blade units comprises two secondary rollers, and the groove is a dovetail groove for receiving both of the secondary rollers and a portion of the primary roller.
  4. 4. The hydraulic cylinder device according to claim 1 comprising two springs, wherein the axle comprises two tunnels defined therein for communicating the grooves with each other, and each of the springs is inserted through a related one of the tunnels and formed with two ends each connected to the blade of a related one of the blade units.
  5. 5. The hydraulic cylinder device according to claim 4, wherein the blade of each of the blade units comprises two recesses each for receiving an end of a related one of the springs.
  6. 6. A hydraulic cylinder device substantially as hereinbefore described with reference to and as shown in the accompanying drawings.AMENDMENTS TO THE CLAIMS HAVE BEEN FILED AS FOLLOWS1. A hydraulic cylinder device comprising: a cylinder comprising a chamber with a cross-sectional shape like a circle overlapping another circle; an axle inserted through the cylinder, wherein the axle comprises two opposite grooves defined therein; two blade units each comprising: a blade movably disposed in a related one of the grooves and made with a groove defined in a side close to an internal side of the cylinder; at least one secondary roller disposed in the groove; and a primary roller disposed in the groove so that the primary roller is in contact with the secondary roller on one hand and in contact with the cylinder on the other hand.2. The hydraulic cylinder device according to claim 1, wherein the groove comprises two plain walls parallel to each other and a hemi-cylindrical floor between the plain walls, and the primary roller is in contact with both of the plain walls.3. The hydraulic cylinder device according to claim 1, wherein each of the blade units comprises two secondary rollers, and the groove is a dovetail groove for receiving both of the secondary rollers and a portion of the primary roller.4. The hydraulic cylinder device according to claim 1 comprising two S...* * springs, wherein the axle comprises two tunnels defined therein for *..* *S * communicating the grooves with each other, and each of the springs is * 25 inserted through a related one of the tunnels and formed with two ends each connected to the blade of a related one of the blade units.5. The hydraulic cylinder device according to claim 4, wherein the blade of each of the blade units comprises two recesses each for receiving an end of a related one of the springs.6. A hydraulic cylinder device substantially as hereinbefore described with reference to and as shown in the accompanying drawings. * * **** ** * *** * U *.*S 0. * 0S*0 **SI * I * . S S* S S.S OS.S
GB1000784A 2009-07-07 2010-01-19 Hydraulic cylinder device Expired - Fee Related GB2471737B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098212353U TWM370476U (en) 2009-07-07 2009-07-07 Hydraulic tank structure of power tool

Publications (3)

Publication Number Publication Date
GB201000784D0 GB201000784D0 (en) 2010-03-03
GB2471737A true GB2471737A (en) 2011-01-12
GB2471737B GB2471737B (en) 2011-06-08

Family

ID=42028512

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1000784A Expired - Fee Related GB2471737B (en) 2009-07-07 2010-01-19 Hydraulic cylinder device

Country Status (2)

Country Link
GB (1) GB2471737B (en)
TW (1) TWM370476U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111843898B (en) * 2020-07-29 2021-08-06 安阳市途鑫机动车鉴定评估有限公司 Self-locking mute needle roller wrench

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0721823A1 (en) * 1994-12-30 1996-07-17 Atlas Copco Tools Ab Hydraulic torque impulse mechanism
JP2002254338A (en) * 2001-03-01 2002-09-10 Uryu Seisaku Ltd Hydraulic impact torque generator for wrench
CN2924116Y (en) * 2006-04-25 2007-07-18 国营东方仪器厂 Hydraulic torque pulse generator for torque spanner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0721823A1 (en) * 1994-12-30 1996-07-17 Atlas Copco Tools Ab Hydraulic torque impulse mechanism
JP2002254338A (en) * 2001-03-01 2002-09-10 Uryu Seisaku Ltd Hydraulic impact torque generator for wrench
CN2924116Y (en) * 2006-04-25 2007-07-18 国营东方仪器厂 Hydraulic torque pulse generator for torque spanner

Also Published As

Publication number Publication date
GB201000784D0 (en) 2010-03-03
GB2471737B (en) 2011-06-08
TWM370476U (en) 2009-12-11

Similar Documents

Publication Publication Date Title
KR970027863A (en) Fluid power cylinder
WO2006113941A3 (en) Tool with protective sheath
BR112012014484A2 (en) low rolling friction tire
MXPA03000680A (en) Bushing for oil film bearing.
GB2471737A (en) A hydraulic cylinder device with at least two rollers disposed in each blade unit
WO2020062647A1 (en) Oldham ring, an oldham coupling, and a harmonic reducer
US8333143B2 (en) Hydraulic cylinder device
CN108730416B (en) Chain
US4921359A (en) Slide rail assembly
CN209856323U (en) Lead screw dust keeper
ATE292254T1 (en) SINTERED PLAIN BEARINGS FOR ENGINES AND TRANSMISSIONS
BR0007619A (en) Semi-spherical shoe
IN2014CN04198A (en)
BRPI0813873A2 (en) BEARING BEARING FOR A ROCKER HUG
Niskanen et al. Reducing wear with superfinish technology.
CN204320820U (en) A kind of lifting skirt plate structure with edger roll
PT1689567E (en) Knife fixing method
CN206958091U (en) Harmonic speed reducer flexible bearing
CN104343850B (en) Roller type contactless non-return device
CN110873132A (en) Double-insurance overrunning clutch
CN1994797A (en) Long-stroke rubber elastic side bearing for railway vehicle
CN204493582U (en) Chain unit
CN101968099A (en) Chain
CN203865463U (en) Anti-skid rubber covered roller
CN203811447U (en) Big-friction and low-wear driving wheel

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20210119