GB2466568A - Continuous fluid circulation valve for well drilling - Google Patents
Continuous fluid circulation valve for well drilling Download PDFInfo
- Publication number
- GB2466568A GB2466568A GB0922360A GB0922360A GB2466568A GB 2466568 A GB2466568 A GB 2466568A GB 0922360 A GB0922360 A GB 0922360A GB 0922360 A GB0922360 A GB 0922360A GB 2466568 A GB2466568 A GB 2466568A
- Authority
- GB
- United Kingdom
- Prior art keywords
- ball
- valve
- housing
- circulation valve
- side port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 55
- 238000005553 drilling Methods 0.000 title claims description 16
- 238000007789 sealing Methods 0.000 claims abstract description 22
- 238000004891 communication Methods 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/10—Valve arrangements in drilling-fluid circulation systems
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B19/00—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
- E21B19/16—Connecting or disconnecting pipe couplings or joints
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/01—Arrangements for handling drilling fluids or cuttings outside the borehole, e.g. mud boxes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/01—Arrangements for handling drilling fluids or cuttings outside the borehole, e.g. mud boxes
- E21B21/019—Arrangements for maintaining circulation of drilling fluid while connecting or disconnecting tubular joints
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/10—Valve arrangements in drilling-fluid circulation systems
- E21B21/106—Valve arrangements outside the borehole, e.g. kelly valves
-
- E21B2034/002—
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B2200/00—Special features related to earth drilling for obtaining oil, gas or water
- E21B2200/04—Ball valves
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Taps Or Cocks (AREA)
- Valve Housings (AREA)
- Branch Pipes, Bends, And The Like (AREA)
- Details Of Valves (AREA)
Abstract
A fluid circulation valve 10 comprising a valve housing 16 & 12 with a central flow path 17 and housing side port 87 for fluid communication with an external flow line 82. Housing lower threaded connector 14 engages with the drillstring and upper threaded connector 18 engages with a tubular being added to the drill string. A ball valve 24 with a through bore 41 and ball side port is rotatably positioned in the through bore 17. The ball is movable from an open position where the ball throughbore 41 is in fluid communication with the housing central flow path 17 to a closed position where the ball side port is aligned with the housing side port 87. A biasing member may be used to urge a sealing valve seat towards the ball 24. A tool 80 may be used which removably engages with the housing to seal between the housing interior and the exterior flow line 82. Stems 34 may engage with the ball to rotate it. The housing can be formed in two section 16 & 12.
Description
CONTINUOUS FLUID CIRCULATION VALVE FOR WELL DRILLING
The present invention relates to a method and equipment for drilling a well. More particularly, a circulation valve is provided for interconnection with a drill string joint, such that during conventional drilling the fluids pass through the drill string joint, the valve, and the drill string in the well. When the drill string connection is made up or broken apart, fluid is diverted through a side port in the valve, thereby maintaining substantially continuous fluid circulation.
When drilling a hydrocarbon recovery well, the drill string is conventionally rotated to drive io the drill bit. When a mud motor is used along the drill string to rotate the bit, the drill string is frequently rotated at a speed less than the bit to keep solids desirably suspended in the well fluids. Drilling mud is thus circulated through the drill string and to the bit, and up the annulus between the drill string and the wellbore. As one or more joints are added to the string, the drilling process is briefly stopped to make up the threaded interconnection of the joint to the drill string. Although the drill string is normally full of fluid1 the pressure supplied by the mud pumps is lost when the pumps are shut off as the threaded connection is made up.
Restarting circulation can be difficult, and may lead to numerous drilling problems.
The prior art includes methods designed to allow a drill joint to be added to or removed from a drill string while circulation of mud continues, This prior art process utilizes a coupler for substantially surrounding the threaded connection. Various rams, preventers, slips, and other closing devices substantially seal fluid within the coupler as the connection is made up.
Devices of this type are disclosed in U.S. Patents 6,119,772, 6,591,916, 6,739,397, 7,028,586, and 7,252,151. Publication WO98/16716 also discloses a continuous circulation drilling method.
There are significant disadvantages to the above approach. First, the mechanism for accomplishing continuous circulation involves an expensive coupler, and numerous sealing devices are provided to minimize leakage of mud from the encircling coupler. The device is also expensive, and at least in some applications slows down the makeup or breakout process, thereby contributing to higher drilling costs. U.S. Patent 4,478,244 discloses a mud saver valve which may be threaded to a drill string to reduce mud spills. U.S. Application 11/786,495 discloses a safety valve with a ball rotatable engaging an actuator sleeve.
The disadvantages of the prior art are overcome by the present invention, in an improved technique for continuously circulating drilling mud in a drill string is hereinafter disclosed.
According to the present invention, there is provided a fluid circulation valve for use in well drilling with a drill joint and a drill string extending into the well, comprising: a valve housing having a central flow path therein, an upper threaded connector for threaded engagement with a lower end of a drill joint, a lower threaded connector for threaded engagement with the upper end of a drill string, and a housing side port for fluid communication a flow line radially exterior of the valve housing; a ball rotatably positioned within the flow path and having a throughbore, the ball throughbore being in fluid communication with the housing central flow path when the ball is open, and the ball including a ball side port in fluid communication with the housing side port when the ball is closed.
Preferably, the circulation valve further comprises: an upper valve seat for sealing between the ball and the housing.
Advantageously, a biasing member biases the upper valve seat toward the ball.
Conveniently, the circulation valve further comprises: a tool removably engagable with the valve housing to seal between an interior of the valve housing and the flow line radially exterior of the valve housing.
Preferably, the tool engages the housing side port for sealing with the exterior flow line.
Advantageously, the circulation valve further comprises: an operating stem positioned within the valve body for engaging the ball and rotating the ball to move between open and closed positions.
Conveniently, the operating stem is rotatable.
Preferably, the operating stem comprises a pair of circumferentially opposing operating stems.
Advantageously, a minimum cross sectional flow area of the valve housing central flow path is substantially the minimum cross section flow area of the ball throughbore.
Conveniently, the valve housing comprises an upper valve body and an interconnected lower valve body.
Preferably, the circulation valve further comprises: a ball rotator spaced axially from the ball, the ball rotator rotatable with respect to the housing to rotate the ball between open and closed positions.
Advantageously, the circulation valve further comprises: an upper valve seat for sealing between the ball and the housing; and a biasing member biases the upper valve seat toward the ball.
In one embodiment, a fluid circulation valve is provided for use with a well drilling operation, wherein a drill joint may be added to or removed from a drill string which extends into a well.
The fluid circulation valve includes a valve housing having a central flow path therein, a housing side port, an upper threaded connector for threaded engagement with the lower end of the drill joint, and a lower threaded connector for threaded engagement with an upper end of the drill string. A rotatable ball is positioned within the flow path in the valve housing has a throughbore. The ball throughbore is in fluid communication with the housing central flow path when the ball is open, and a ball side port is in fluid communication with the housing is side port when the ball is closed. The valve housing side port is in fluid communication with a line radially exterior of the valve housing, and typically extending to a mud pump. The fluid circulation valve includes an upper valve seat for sealing between the ball and the housing, and a lower valve seat for sealing between the ball and the housing. Fluid may be continuously circulated through the drill string even when adding or deleting a drill joint, since fluid may flow either through the ball throughbore or though the ball side port. The valve remains connected to the drill string as joints are added and the string is run in the well. The housing side port is closed when the ball throughbore is in fluid communication with the valve housing central flow path. The upper side of valve throughbore is closed when the ball is positioned to open the side port into the interior of the housing.
So that the invention may be more readily understood, and so that further features thereof may be appreciated, embodiments of the invention will now be described by way of example with reference to the accompanying drawings in which: Figure 1 is a cross-sectional view of one embodiment of a fluid circulation valve; Figure 2 is a cross-sectional view through the valve shown in Figure 1; Figure 3 is a top view illustrating a suitable tool for sealing between the valve body and a radially external flow line; Figure 4 is a cross-sectional view of another embodiment of a fluid circulation valve, with two circumferentially opposing operating stems for rotatably guiding rotation of the ball; Figure 5 is a cross-sectional view of yet another embodiment of a fluid circulation valve; Figure 6 illustrates the fluid circulation valve shown in Figure 5 in another ball position; Figure 7 illustrates a tool for sealing between the valve body and a radially external flow line; Figure 8 is a cross-sectional view of yet another embodiment of a fluid circulation valve, wherein the ball actuator is axially spaced from the ball; Figure 9 illustrates the fluid circulation valve in Figure 8 in the closed position; and Figure 10 illustrates a tool for sealing between the valve body and a radially external flow line.
Figure 1 illustrates one embodiment of a fluid circulation valve according to the present invention. Circulation valve 10 includes a valve body, which as shown consists of an upper valve body 16 having upper threads 18 for threaded interconnection with the lower end of a pipe joint, and a lower valve body 12 having lower threads 14 for threaded connection with an upper end of a tubular string which extends into a wall. The bodies 12 and 16 are joined by threads 20, with shoulder 22 acting between the bodies 12 and 16 to obtain a rigid connection, and to pass torque from above the valve to below the valve while positioned along a drill string, thereby allowing torque to be transferred to the bit to rotate the bit, or to actuate components along the drill string. A seal 30 may be provided for sealing between the housings 12 and 16. Those skilled in the art will appreciate that fluid may be pumped through the valve from the upper end of a pipe joint to the lower end of the pipe joint, then through the bodies 16 and 12, then through a tubular pipe string which extends into a well.
Figure 1 illustrates a ball 24 rotatably positioned within the valve housing, with the ball having a throughbore 41 defined by side walls 42, such that the throughbore 41 is in fluid communication with the bore 17 in the housing when the ball is in the open position, as shown in Figure 1 Mud or other drilling fluid may thus be pumped from above the fluid circulation valve, through the fluid circulation valve, and into the drill string when the valve 10 is open.
The circulation valve preferably includes an upper valve seat 28 which has a seal 32 for sealing engagement with the housing 12, and another seal 32 for sealing engagement with the ball 24. The assembly further includes a lower ball seat 26 similarly having a seal 32 for sealing engagement with the housing 16, and another seal 32 for sealing with the ball 24.
One or more biasing members, such as a wave spring or a BelIville spring 27, may be included to bias upper seat 28 axially downward for sealing engagement with the ball, or to bias the lower seat 26 upward into sealing engagement with the ball. Each seat thus may io include a Beliville spring or a wave spring to exert a desired biasing force to press the seat into engagement with the ball. Figure 1 also illustrates an operating stem or guide block 34 with seal 36 for sealing engagement with the housing 16, a noncylindrical external access pocket 38 for receiving a ball rotating tool, and a noncylindrical actuating tab 40 for fitting within a similarly shaped recess within the ball to rotate the ball when the operating stem or is guide block 34 is rotated, as explained hereafter.
Figure 2 is a horizontal cross sectional view through the valve and the ball in Figure 1, with the ball 24 in the open position. The operating stem 34 is shown with a radially inward key (see Figure 1) for inserting into a key into a receiving pocket in the ball 24, so that the ball rotates in response to rotation of the operating stem 34. The flange 33 retains the operating stem in position with respect to the valve housing, thereby monitoring the ball centered in spite of high pressure acting on the operating stem. Figure 2 also discloses an inlet ring 44 which is threaded at 46 into engagement with the housing 16, and is configured for fluidly receiving an external flow line, as disclosed subsequently.
Figure 3 shows a suitable tool 80 for engaging an outer surface of the housing 16, and for temporarily sealing between the interior of valve 10 and a flow line 82 radially external of the valve, with line 82 typically extending to a mud pump 83. The exemplary tool has an arcuate portion 81 which substantially surrounds the valve body 16, with curved interior surface 84 engaging the exterior surface of valve body. The tool 80 includes a latch-type locking lugs and 54, locking handle 52, and at least one hollow pin 86 which fits within a respective cavity or recess in the ring 85 when the handle is locked. Hinge 83 allows the ring shaped tool to be easily put on and removed from the valve. Figure 3 also illustrates seal 87 for acting between the tool and the ring 85, which defines the cavity or recess for receiving the external fluid. The baIl 24 is shown in Figure 3 in the closed position, i.e., fluid is blocked from flowing from above to below the valve, although fluid can flow from exterior flow line 82 to the ball and then downward into the drill string. Other types of tools may be used for sealingly engaging the valve body and the external flow line.
Figure 4 is similar to the Figure 2 embodiment, except that a pair of circumferentially opposing guide blocks or operating stems 34, 35 are provided, each with a tool recess pocket 38. One or both operating stems may thus be rotated to rotate the ball between open and closed positions. In one embodiment, one stem may be connected to the ball 24 for rotating the ball to the open position and the opposing stem rotated to move the ball to the io closed position, as shown in Figure 3. Two radially opposing operating stems allow fluid pressure to act on both operating stems, so that the opposing forces cancel and the ball remains centered in the valve body without using the flange 33 shown in Figure 3. Also, Figure 4 depicts spring biased pins 56, 58 for exerting a biasing force from the housing to the ball, and similar spring biased pins 57, 59 for exerting a biasing force from ring 44 to the ball.
Referring now to Figure 5, this version of a continuous fluid circulation valve 10 is depicted with a ball valve 24 shown in the open position for transmitting fluid from above to below the ball valve. By rotating the operating stem 34, the ball may thus be rotated between the open and closed positions. Figure 6 illustrates another cross sectional view of the valve shown in Figure 5, and illustrates another ring 62 threadably positioned within the side body access port in the valve body, and a flapper member 66 pivotably connected to the ring member 62 and closing off the side port of the valve body when the valve is in the open position, as shown in Figure 6. Figure 7 depicts in greater detail a suitable tool 80 as previously disclosed for fluidly connecting flow line 82 to the interior of the valve. The tool 80 thus seals to the ring 62, as previously discussed. With the ball rotated to the closed position, fluid may be pumped into the valve body, and fluid pressure will be sufficient to swing the flapper 66 to the open position, as shown in Figure 7, thereby allowing fluid to enter the interior of the ball and pass downward through the valve and into the drill string.
Figure 8 depicts another version of a continuous circulation valve 10 according to the present invention, with a ball 24 as previously discussed. In this embodiment, the ball is rotated between an open and closed position and by rotating sleeve 72, which includes threads 74 for mating with sleeve 76 extending axially from connector 78, which interconnects the sleeve 76 with the ball. By rotating the sleeve 72, the sleeve 76 moves axially relative to the housings 16, 12, thereby rotating the ball. A large pipe wrench or other suitable tool may be used for gripping the external surface of sleeve 72 to rotate the sleeve and thereby the ball between open and closed positions. Figure 10 illustrates a suitable tool 80 for sealingly engaging external flow line 82 to the interior of the ball when the valve is in the closed position. As with the prior embodiments, the tool is sealed to threaded ring 85 for passing fluid from a line radially exterior of the ball valve into the well when the flow line from above to below the ball valve is blocked.
In other embodiments, one of the rotating sleeve 72 and the ball rotating member may include one or more projections which each fit within a corresponding helical slot in the other io of the rotating sleeve and the ball rotating member, so that rotation of the sleeve moves the ball rotating member axially in the same manner as the threads discussed above. Threads are preferred for most applications since they provide a large surface area for transmitting axial forces to the ball to open or close the ball.
The term "ball" as used herein is intended in its broad sense to refer to a rotatable closing member in a valve, with at least a portion of the outer surface of the ball being similar in configuration to a portion of a sphere. While the ball as disclosed herein obviously need not be a sphere, the ball does rotate about a ball center.
The fluid circulation valve as disclosed herein may be used in well drilling operations wherein fluid passes through a drill joint, through the valve, and into the drill string while the valve is in the open position, and fluid passes from an external flow line, downward through a lower end of the valve body, and into the drill string when the valve is closed. During the valve closed cycle, the drill joint may be fluidly connected with the top of the valve, and once this connection is complete, the valve may be opened so that the external flow line is blocked and fluid can be pumped into the well through the drill joint, which is now part of the drill string.
Although specific embodiments of the invention have been described herein in some detail, this has been done solely for the purposes of explaining the various aspects of the invention, and is not intended to limit the scope of the invention as defined in the claims which follow.
Those skilled in the art will understand that the embodiment shown and described is exemplary, and various other substitutions, alterations and modifications, including but not limited to those design alternatives specifically discussed herein, may be made in the practice of the invention without departing from its scope.
When used in this specification and claims, the terms "comprises" and "comprising" and variations thereof mean that the specified features, steps or integers are included. The terms are not to be interpreted to exclude the presence of other features, steps or integers.
The features disclosed in the foregoing description, or in the following claims, or in the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for obtaining the disclosed results, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.
While the invention has been described in conjunction with the exemplary embodiments io described above, many equivalent modifications and variations will be apparent to those skilled in the art when given this disclosure. Accordingly, the exemplary embodiments of the invention set forth above are considered to be illustrative and not limiting. Various changes to the described embodiments may be made without departing from the spirit and scope of the invention.
Claims (13)
- CLAIMS1. A fluid circulation valve for use in well drilling with a drill joint and a drill string extending into the well, comprising: a valve housing having a central flow path therein, an upper threaded connector for threaded engagement with a lower end of a drill joint, a lower threaded connector for threaded engagement with the upper end of a drill string, and a housing side port for fluid communication a flow line radially exterior of the valve housing; a ball rotatably positioned within the flow path and having a throughbore, the ball throughbore being in fluid communication with the housing central flow path when the ball is open, and the ball including a ball side port in fluid communication with the housing side port when the ball is closed.
- 2. A circulation valve as defined in Claim 1, further comprising: an upper valve seat for sealing between the ball and the housing.
- 3. A circulation valve as defined in Claim 2, wherein a biasing member biases the upper valve seat toward the ball.
- 4. A circulation valve as defined in any preceding claim, further comprising: a tool removably engagable with the valve housing to seal between an interior of the valve housing and the flow line radially exterior of the valve housing.
- 5. A circulation valve as defined in Claim 4, wherein the tool engages the housing side port for sealing with the exterior flow line.
- 6. A circulation valve as defined in any preceding claim, further comprising: an operating stem positioned within the valve body for engaging the ball and rotating the ball to move between open and closed positions.
- 7. A circulation valve as defined in Claim 6, wherein the operating stem is rotatable.
- 8. A circulation valve as defined in Claim 6 or Claim 7, wherein the operating stem comprises a pair of circumferentially opposing operating stems.
- 9. A circulation valve as defined in any preceding claim, wherein a minimum cross sectional flow area of the valve housing central flow path is substantially the minimum cross section flow area of the ball throughbore.
- 10. A circulation valve as defined in any preceding claim, wherein the valve housing comprises an upper valve body and an interconnected tower valve body.
- 11 A circulation valve as defined in any preceding claim, further comprising: a ball rotator spaced axially from the ball, the ball rotator rotatable with respect to the housing to rotate the ball between open and closed positions.
- 12. A fluid circulation valve as defined in any preceding claim, further comprising: an upper valve seat for sealing between the ball and the housing; and a biasing member biases the upper valve seat toward the ball.
- 13. A fluid circulation valve substantially as hereinbefore described, with reference to and io as shown in the accompanying drawings.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/343,530 US20100155143A1 (en) | 2008-12-24 | 2008-12-24 | Continuous fluid circulation valve for well drilling |
Publications (2)
Publication Number | Publication Date |
---|---|
GB0922360D0 GB0922360D0 (en) | 2010-02-03 |
GB2466568A true GB2466568A (en) | 2010-06-30 |
Family
ID=41717352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB0922360A Withdrawn GB2466568A (en) | 2008-12-24 | 2009-12-21 | Continuous fluid circulation valve for well drilling |
Country Status (4)
Country | Link |
---|---|
US (1) | US20100155143A1 (en) |
CA (1) | CA2688765A1 (en) |
GB (1) | GB2466568A (en) |
NO (1) | NO20093586L (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012176182A2 (en) | 2011-06-23 | 2012-12-27 | Laurence John Ayling | Drilling apparatus with continuous rotation while tubular is being added |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8016033B2 (en) | 2007-07-27 | 2011-09-13 | Weatherford/Lamb, Inc. | Continuous flow drilling systems and methods |
NO328945B1 (en) * | 2007-08-15 | 2010-06-21 | I Tec As | Valve section and method for maintaining constant drilling fluid circulation during a drilling process |
GB0819340D0 (en) * | 2008-10-22 | 2008-11-26 | Managed Pressure Operations Ll | Drill pipe |
GB2469119B (en) | 2009-04-03 | 2013-07-03 | Managed Pressure Operations | Drill pipe connector |
US8844653B2 (en) * | 2010-06-18 | 2014-09-30 | Dual Gradient Systems, Llc | Continuous circulating sub for drill strings |
US9458696B2 (en) | 2010-12-24 | 2016-10-04 | Managed Pressure Operations Pte. Ltd. | Valve assembly |
US9353587B2 (en) | 2011-09-21 | 2016-05-31 | Weatherford Technology Holdings, Llc | Three-way flow sub for continuous circulation |
ITMI20121434A1 (en) * | 2012-08-17 | 2014-02-18 | Eni Spa | "CONNECTION DEVICE BETWEEN A DEVIATION LINE OF A LIQUID CIRCULATION FLOW AND A RADIAL VALVE OF A PITCH STRING, A INTERCEPT SYSTEM AND DEVIATION OF A LIQUID CIRCULATION FLOW IN A STRING |
GB2507083A (en) | 2012-10-18 | 2014-04-23 | Managed Pressure Operations | Apparatus for continuous circulation drilling. |
US9664003B2 (en) | 2013-08-14 | 2017-05-30 | Canrig Drilling Technology Ltd. | Non-stop driller manifold and methods |
CN103615206B (en) * | 2013-11-21 | 2017-02-01 | 深圳市远东石油钻采工程有限公司 | Floating ball type continuous loop connection pup joint for drilling |
CN103615200B (en) * | 2013-11-21 | 2016-06-15 | 深圳市远东石油钻采工程有限公司 | Drilling well guide colume type circulates connecting short section continuously |
CN103670307A (en) * | 2013-12-09 | 2014-03-26 | 中国石油集团长城钻探工程有限公司 | Short circuit guaranteeing drilling fluid continuous circulation and drilling fluid continuous circulation process thereof |
US10006262B2 (en) * | 2014-02-21 | 2018-06-26 | Weatherford Technology Holdings, Llc | Continuous flow system for drilling oil and gas wells |
US10295071B2 (en) | 2017-06-16 | 2019-05-21 | Cantex International, Inc. | Flapper valve |
US11306835B1 (en) | 2019-06-17 | 2022-04-19 | KHOLLE Magnolia 2015, LLC | Flapper valves with hydrofoil and valve systems |
US11098821B1 (en) | 2019-10-10 | 2021-08-24 | Cantex International, Inc. | Flapper valve |
CN113482560B (en) * | 2021-09-08 | 2021-12-14 | 西南石油大学 | Novel double-valve type continuous circulating valve with clamping device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005019596A1 (en) * | 2003-08-16 | 2005-03-03 | Coupler Developments | Method and apparatus for adding a tubular to drill string with diverter |
WO2005080745A1 (en) * | 2004-02-20 | 2005-09-01 | Statoil Asa | Drill pipe header |
GB2448420A (en) * | 2007-04-12 | 2008-10-15 | Tiw Corp | Improved safety valve & method of actuation |
US20090242817A1 (en) * | 2008-03-28 | 2009-10-01 | Strazhgorodskiy Semen J | Apparatus for uninterrupted flushing a well bore |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1491986A (en) * | 1922-02-01 | 1924-04-29 | Lorenzo H Greene | Coupling for drill pipes |
US3036590A (en) * | 1958-07-07 | 1962-05-29 | Hydril Co | Valve sub |
US3298385A (en) * | 1965-09-22 | 1967-01-17 | Well Completions Inc | Constant circulating coupling device |
US4478244A (en) * | 1983-01-05 | 1984-10-23 | Garrett William R | Mud saver valve |
US4871019A (en) * | 1988-09-07 | 1989-10-03 | Atlantic Richfield Company | Wellbore fluid sampling apparatus |
WO1998016716A1 (en) * | 1996-10-15 | 1998-04-23 | Maris Internatinal Limited | Continuous circulation drilling method |
US6119772A (en) * | 1997-07-14 | 2000-09-19 | Pruet; Glen | Continuous flow cylinder for maintaining drilling fluid circulation while connecting drill string joints |
US6591916B1 (en) * | 1998-10-14 | 2003-07-15 | Coupler Developments Limited | Drilling method |
GB0004354D0 (en) * | 2000-02-25 | 2000-04-12 | Wellserv Plc | Apparatus and method |
US6840493B2 (en) * | 2002-04-03 | 2005-01-11 | Lemuel T. York | Valve actuator |
US6866100B2 (en) * | 2002-08-23 | 2005-03-15 | Weatherford/Lamb, Inc. | Mechanically opened ball seat and expandable ball seat |
US7308952B2 (en) * | 2004-06-04 | 2007-12-18 | Strazhgorodskiy Semen Iosiphov | Underbalanced drilling method and apparatus |
-
2008
- 2008-12-24 US US12/343,530 patent/US20100155143A1/en not_active Abandoned
-
2009
- 2009-12-16 CA CA2688765A patent/CA2688765A1/en not_active Abandoned
- 2009-12-21 GB GB0922360A patent/GB2466568A/en not_active Withdrawn
- 2009-12-23 NO NO20093586A patent/NO20093586L/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005019596A1 (en) * | 2003-08-16 | 2005-03-03 | Coupler Developments | Method and apparatus for adding a tubular to drill string with diverter |
WO2005080745A1 (en) * | 2004-02-20 | 2005-09-01 | Statoil Asa | Drill pipe header |
GB2448420A (en) * | 2007-04-12 | 2008-10-15 | Tiw Corp | Improved safety valve & method of actuation |
US20090242817A1 (en) * | 2008-03-28 | 2009-10-01 | Strazhgorodskiy Semen J | Apparatus for uninterrupted flushing a well bore |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012176182A2 (en) | 2011-06-23 | 2012-12-27 | Laurence John Ayling | Drilling apparatus with continuous rotation while tubular is being added |
US9637995B2 (en) | 2011-06-23 | 2017-05-02 | Laurence John Ayling | Drilling apparatus with continuous rotation while tubular is being added |
Also Published As
Publication number | Publication date |
---|---|
NO20093586L (en) | 2010-06-25 |
GB0922360D0 (en) | 2010-02-03 |
CA2688765A1 (en) | 2010-06-24 |
US20100155143A1 (en) | 2010-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100155143A1 (en) | Continuous fluid circulation valve for well drilling | |
US8100199B2 (en) | Continuous fluid circulation valve for well drilling | |
US8672042B2 (en) | Continuous fluid circulation valve for well drilling | |
US7726418B2 (en) | Method and apparatus for adding a tubular to drill string with diverter | |
AU2016201244B2 (en) | Fill up and circulation tool and mudsaver valve | |
CA2865568C (en) | Actuator for dual drill string valve and rotary drill string valve configuration therefor | |
CA3033949C (en) | Combined casing and drill-pipe fill-up, flow-back and circulation tool | |
US10344562B2 (en) | Riser annular isolation device | |
US10344547B2 (en) | Apparatus for continuous circulation drilling of a wellbore | |
NO20211150A1 (en) | Disinfection device for disinfecting at least a part of a trolley |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WAP | Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1) |