GB2433424A - Rechargeable vacuum cleaner - Google Patents

Rechargeable vacuum cleaner Download PDF

Info

Publication number
GB2433424A
GB2433424A GB0526071A GB0526071A GB2433424A GB 2433424 A GB2433424 A GB 2433424A GB 0526071 A GB0526071 A GB 0526071A GB 0526071 A GB0526071 A GB 0526071A GB 2433424 A GB2433424 A GB 2433424A
Authority
GB
United Kingdom
Prior art keywords
rechargeable
rechargeable batteries
sets
vacuum cleaner
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB0526071A
Other versions
GB0526071D0 (en
Inventor
Chih-Kao Hsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zweita International Co Ltd
Original Assignee
Zweita International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zweita International Co Ltd filed Critical Zweita International Co Ltd
Priority to GB0526071A priority Critical patent/GB2433424A/en
Publication of GB0526071D0 publication Critical patent/GB0526071D0/en
Publication of GB2433424A publication Critical patent/GB2433424A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2868Arrangements for power supply of vacuum cleaners or the accessories thereof
    • A47L9/2884Details of arrangements of batteries or their installation
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/24Hand-supported suction cleaners
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electric Vacuum Cleaner (AREA)

Abstract

A rechargeable vacuum cleaner comprises a main body, at least two sets of rechargeable batteries for driving a motor in the main body and a power-supply control unit. The power-supply control unit is coupled with the sets of rechargeable batteries and the motor for affecting a set of rechargeable batteries of higher voltage to supply power to the motor and for preventing the set of rechargeable batteries charging another set of rechargeable batteries of lower voltage. The power-supply control unit includes a silicon assembly (being a bridge rectifier) or a diode. The rechargeable vacuum cleaner can be of two piece type (with a detachable unit) or a two piece type. Therefore, the rechargeable vacuum cleaner can lengthen the operating time and prevent damaging the batteries.

Description

<p>RECHARGEABLE VACUUM CLEANER</p>
<p>The present invention relates to rechargeable vacuum cleaners, more particularly to a rechargeable vacuum cleaner utilizing the technique of voltage dividing to lengthen the operating time and the lifespan of its batteries.</p>
<p>The majority of the rechargeable vacuum cleaner of prior art use a set of rechargeable batteries connected in parallel to supply a motor, such as four I 2V I 300mA batteries with an output voltage of 4.8V. The motor is then used to provide an effect of vacuum cleaning. As shown in Fig. I, the electric circuit of a rechargeable vacuum cleaner of the prior art comprises a charging circuit and a power supplying circuit attached with a set of rechargeable batteries for powering a motor. The power supplying circuit further includes a switch for controlling charging and power-supplying of the set of rechargeable batteries. The operating time of the vacuum cleaner is determined by the power capacity of the set of rechargeable batteries divided by the electric current to the motor. Therefore, a rechargeable vacuum cleaner with only one set of rechargeable batteries has a short operating time, and continuously charging the set of rechargeable batteries is necessary for continuously using the rechargeable vacuum cleaner. Accordingly, electric resistors are used to reduce the current supplied to the motor when the electricity storage is low in the set of rechargeable batteries, whereby the operating time of the cleaner can be lengthened. However, this design cannot solve the problem of short lifespan of a set of rechargeable batteries substantially.</p>
<p>The problem of short lifespan of sets of rechargeable batteries occurs especially in rechargeable vacuum cleaners having more than one set of rechargeable batteries. As shown in Fig. 2, a rechargeable vacuum cleaner of the prior art has two sets of rechargeable batteries 5, 6 respectively for the main body and the detachable part. When the two pieces are combined, both of the sets of rechargeable batteries are used for power supply. When the detachable part is used alone, the set of rechargeable batteries 5 is used to drive a motor therein. Therefore, after using the detachable part for a while, the set of rechargeable batteries 5 will have an electricity capacity lower than that of the set of rechargeable batteries 6. When the main body and the detachable part are recombined, the sets of rechargeable batteries will be mutually charged due to the imbalance. This effect will gradually damage the batteries and therefore shorten the lifespan of the rechargeable vacuum cleaner. As shown in Fig. 3, a rechargeable vacuum cleaner of one-piece type having two sets of rechargeable batteries that may differ in electricity capacity; the charging from the set of higher capacity to the lower capacity is also inevitable.</p>
<p>Accordingly, in some embodiments of the present invention there is provided a rechargeable vacuum cleaner utilizing the technique of voltage dividing realized by disposing a silicon assembly or diode between two sets of rechargeable batteries to prevent the sets of rechargeable batteries from mutual charging due to electricity capacity imbalance and therefore to lengthen the lifespan of the sets of rechargeable batteries.</p>
<p>Also, in some embodiments of the present invention there is provided a rechargeable vacuum cleaner that utilizes the technique of voltage dividing over at least two sets of rechargeable batteries for lengthening the operating time of the rechargeable vacuum cleaner. The technique will not change the output voltage to the motor but can properly control the processed of charging and discharging for preventing damaging the sets of rechargeable batteries.</p>
<p>According to an aspect of the present invention, there is provided a rechargeable vacuum cleaner comprising a vacuum cleaner main body, at least two sets of rechargeable batteries, a motor for driving the function of vacuum cleaning and a power-supply control unit.</p>
<p>The power-supply control unit is coupled to the sets of rechargeable batteries and the motor, whereby the charging to the set of rechargeable batteries of relatively low electricity capacity by the set of rechargeable batteries of high electricity capacity may be prohibited.</p>
<p>The above-mentioned coupling between the power-supply control unit, the sets of rechargeable batteries and the motor may be the electric connection of the positive polarity of the sets of rechargeable batteries to one terminal of the motor via the power-supply control unit, and the electric connection of the negative polarity of the sets of rechargeable batteries to the other terminal of the motor.</p>
<p>The rechargeable vacuum cleaner may further comprise a a charging unit and a switch. The charging unit may be connected to the power-supply control unit for charging the sets of rechargeable batteries. One terminal of the switch may be connected to the negative polarity of the sets of rechargeable batteries, and the other terminal to the motor, whereby the switch can either charge or discharge the sets of rechargeable batteries.</p>
<p>Further, the power-supply control unit preferably includes a silicon assembly or a diode; the silicon assembly can be a bridge rectifier.</p>
<p>The present invention has the advantages as follows. The installation of more than one set of rechargeable batteries using the technique of voltage dividing can lengthen the operating time of the rechargeable vacuum cleaner. Further, the sets of rechargeable batteries may be so managed that all of them can supply power to the motor, even their respective electricity capacities are different, and that mutual charging among the sets of rechargeable batteries due to the capacity imbalance will be avoided, therefore enhancing the durability of the batteries.</p>
<p>Fig.1 is a circuit diagram of a rechargeable vacuum cleaner of</p>
<p>the prior art.</p>
<p>Fig. 2 is a perspective view of a rechargeable vacuum cleaner</p>
<p>of two-piece type of the prior art.</p>
<p>Fig.3 is a perspective view of a rechargeable vacuum cleaner</p>
<p>of the prior art.</p>
<p>Fig. 4 illustrates the principle of the technique of voltage dividing of the present invention.</p>
<p>Fig. 5 is an exploded perspective view of a preferred embodiment of the present invention, which is a two-piece type.</p>
<p>Fig. 6 indicates the electric connection between the main body and detached piece.</p>
<p>Fig. 7 is a perspective view of a one-piece type rechargeable vacuum cleaner of the present invention.</p>
<p>Fig. 8 is a perspective view of a two-piece type rechargeable vacuum cleaner showing the location of a PCB control and a local enlarged view of the PCB control thereon.</p>
<p>Fig. 9 is a perspective view of a one-piece type rechargeable vacuum cleaner showing the location of a PCB control and a local enlarged view of the PCB control thereon.</p>
<p>Fig. 10 is a local enlarged view of the PCB control of the two-piece type rechargeable vacuum cleaner in Fig. 8.</p>
<p>Fig. 11 is a local enlarged view of the PCB control of the one-piece type rechargeable vacuum cleaner in Fig. 9 The various objects and advantages of the present invention will be more readily understood from the following detailed description when read in conjunction with the appended drawings.</p>
<p>An embodiment of' the present invention uses the technique of voltage dividing to rechargeable vacuum cleaners equipped with more than one sets of rechargeable batteries, whereby the input voltage of the motor is kept constant when: (1) one of the sets of rechargeable batteries is used alone; (2) two sets of rechargeable batteries are used together; and (3) there is an imbalance in electricity capacity over the sets of rechargeable batteries.</p>
<p>Referring to Fig. 4, the positive-polarity terminals of two sets of rechargeable batteries BTI, BT2 are connected to a terminal of a motor through a power-supply control unit, selected from a silicon assembly and a diode. The negative-polarity terminals of the sets of rechargeable batteries BTI, BT2 are connected to the other terminal of the motor. Further, the rechargeable vacuum cleaner includes a charging unit and a switch SW. The charging unit is connected to the power-supply control unit and for charging the sets of rechargeable batteries BTI, BT2 through the power-supply control. One terminal of the switch SW is connected to the negative-polarity terminals of the sets of rechargeable batteries BTI, BT2, whereas the other terminal is connected to the charging unit or the motor M. Thereby, the sets of rechargeable batteries BTI, BT2 can be switched to a charging state. When the voltage across set of rechargeable batteries BT1 is higher than that of set of rechargeable batteries BT2, the voltage across side 2 of the silicon assembly will be higher than the voltage across side 3, thereby causing a cutoff at the diode on side 3. Therefore, the set of rechargeable batteries BT2 will not charge the set of rechargeable batteries BTI. When the voltage across set of rechargeable batteries BT2 is higher than that of set of rechargeable batteries BT1, the voltage across side 2 of the silicon assembly will be higher than the voltage across side 1, thereby causing a cutoff at the diode on side I. Therefore, the set of rechargeable batteries BTI will not charge the set of rechargeable batteries BT2. When the voltage difference between the sets of rechargeable batteries BT1, BT2 vanishes, there will be a voltage drop between 0.7 and 1.IV, whereby both of the sets will supply power and not charge each other.</p>
<p>When the rechargeable vacuum cleaner is activated, the voltage dividing circuit will automatically switch between the sets of rechargeable batteries according to the current voltage across each of the sets of rechargeable batteries, whereby the load of power supply, as well as charging, is uniformly distributed by the sets.</p>
<p>Referring to Figs. 5 and 6, a preferred embodiment of the present invention as a rechargeable vacuum cleaner of two-piece type comprises a main body A and a detachable unit B, wherein sets of rechargeable batteries 5 and 6 are respectively installed and the electrically connecting terminals 9 and 10 are respectively attached. When the main body A and the detachable unit B are united, both of the sets of rechargeable batteries are supplying power. When the detachable unit B is separated from the main body A and used alone, the set of rechargeable batteries supplies power to the motor. After being used for a while, the set of rechargeable batteries 5 will have a lower electricity capacity.</p>
<p>When the detachable unit B and the main body A are reunited, the silicon assembly will select the set of rechargeable batteries 6, now with a higher voltage to supply power till its voltage falls below that of the other set of rechargeable batteries. The silicon assembly then switches to the other set of rechargeable batteries.</p>
<p>Thereby, the operating time of the rechargeable vacuum cleaner will be lengthened.</p>
<p>More specifically, the rechargeable vacuum cleaner of two-piece type is characterized by that the detachable unit B and the main body A have respective sets of rechargeable batteries 5, 6. When the detachable unit B is used for a while, the electricity capacity of the set of rechargeable batteries 6 of the main body A is still full, and it will be used first, controlled by the voltage dividing circuit, when the detachable unit B and the main body A are reunited.</p>
<p>Referring to Fig. 7, a rechargeable vacuum cleaner of one-piece type uses two sets of rechargeable batteries 7, 8, which are installed therein and connected by wire 11. A control circuit board (not shown in the figure) selects one of the sets of rechargeable batteries to supply the motor. Since it is difficult to maintain equal capacities of the sets of rechargeable batteries 7, 8 in a charging process, the power-supply control unit in the charging unit, being a silicon assembly or a diode, will select the one with a higher capacity to supply the motor and prohibit mutual charging between the sets of rechargeable batteries 7, 8.</p>
<p>Therefore, the operating time of the rechargeable vacuum cleaner is lengthened.</p>
<p>More specifically, the rechargeable vacuum cleaner of one-piece type is characterized by two sets of rechargeable batteries, one of which is used at one time to power the motor.</p>
<p>Controlled by the technique of voltage dividing, the sets of rechargeable batteries are used alternatively, whereby the duration that the sets of rechargeable batteries are operating will be doubled.</p>
<p>The above said silicon assembly is a bridge rectifier capable of charging the sets of rechargeable batteries at the same time and preventing mutual charging between the sets of rechargeable batteries, because any reverse voltage higher than 50 V will activate the preventing effect. Therefore, the silicon assembly can be placed by a diode. The charging circuit also uses common linear or on/off transformers to charge the sets of rechargeable batteries.</p>
<p>Referring to Figs. 8 to II, the control printed circuit board (PCB) for both of the one-piece type and the twp-piece type is located at a predetermined location within the rechargeable vacuum cleaner. The power-supply control unit is located above the control PCB.</p>
<p>To summarize, a rechargeable vacuum cleaner of the present invention may apply the technique of voltage dividing for lengthening its operating time. Since the conventional DC vacuum cleaners uses one set of battery to power the motor. To lengthen the operating time, some rechargeable vacuum cleaners use more than one set of batteries. The present invention uses a power-supply control unit that may alternatively switch between the sets of rechargeable batteries for power the motor. Thereby, the operating time of the rechargeable vacuum cleaner can be further lengthened.</p>
<p>The present invention is thus described, and it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the present invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.</p>

Claims (1)

  1. <p>WHAT IS CLAIMED IS: 1. A rechargeable vacuum cleaner, comprising: a
    main body; at least two sets of rechargeable batteries for driving a motor located within said main body; and a power-supply control unit coupled with said sets of rechargeable batteries and said motor for controlling said sets of rechargeable batteries powering said motor.</p>
    <p>2. The rechargeable vacuum cleaner of claim I wherein a positive terminal of said sets of rechargeable batteries is connected to one terminal of said motor through said power-supply control unit, and wherein a negative terminal of said sets of rechargeable batteries is directly connected to another terminal of said motor.</p>
    <p>3. The rechargeable vacuum cleaner of claim I further including a charging unit connected to said power-supply control unit, whereby said power-supply control unit will complete charging said sets of rechargeable batteries.</p>
    <p>4. The rechargeable vacuum cleaner of claim 3 further including a switch with one terminal connected to said negative terminal of said sets of rechargeable batteries and another terminal connected to a unit selected from said charging unit and said motor by switching between charging and discharging of said rechargeable batteries.</p>
    <p>5. The rechargeable vacuum cleaner of claim 1 wherein said power-supply control unit prohibits one of said sets of rechargeable batteries with higher electricity capacity charging another of said sets of rechargeable batteries with lower electricity capacity.</p>
    <p>6. The rechargeable vacuum cleaner of claim 1 wherein said power-supply control unit is selected from a silicon assembly and a diode.</p>
    <p>7. The rechargeable vacuum cleaner of claim 6 wherein said silicon assembly is a bridge rectifier.</p>
    <p>8. The rechargeable vacuum cleaner of claim 1 being a two piece structure having a main body and a detachable unit each equipped with a set of rechargeable batteries; said main body and said detachable unit are electrically connected by a connection port when united.</p>
    <p>9. The rechargeable vacuum cleaner of claim 1 wherein being a one piece structure having a main body equipped with said sets of rechargeable batteries.</p>
    <p>10. The rechargeable vacuum cleaner as hereinbefore described with reference to the accompanying drawings 4 to 11</p>
GB0526071A 2005-12-21 2005-12-21 Rechargeable vacuum cleaner Withdrawn GB2433424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB0526071A GB2433424A (en) 2005-12-21 2005-12-21 Rechargeable vacuum cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0526071A GB2433424A (en) 2005-12-21 2005-12-21 Rechargeable vacuum cleaner

Publications (2)

Publication Number Publication Date
GB0526071D0 GB0526071D0 (en) 2006-02-01
GB2433424A true GB2433424A (en) 2007-06-27

Family

ID=35840923

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0526071A Withdrawn GB2433424A (en) 2005-12-21 2005-12-21 Rechargeable vacuum cleaner

Country Status (1)

Country Link
GB (1) GB2433424A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2337485A1 (en) * 2008-10-16 2011-06-29 Royal Appliance Mfg. Co. Battery powered cordless cleaning system
US8607405B2 (en) 2008-03-14 2013-12-17 Techtronic Floor Care Technology Limited Battery powered cordless cleaning system
CN103532191A (en) * 2013-10-14 2014-01-22 松下家电研究开发(杭州)有限公司 Dual-group battery unit charging system for dust collector and charging method of dual-group battery unit charging system
CN103545885A (en) * 2013-10-14 2014-01-29 松下家电研究开发(杭州)有限公司 Dust collector powered by two battery packs and discharging control method of dust collector
EP3053501A1 (en) * 2015-01-28 2016-08-10 LG Electronics Inc. Vacuum cleaner
GB2583162A (en) * 2019-04-17 2020-10-21 Conta Sro Battery powered appliances
WO2023160799A1 (en) * 2022-02-24 2023-08-31 Aktiebolaget Electrolux Dual-motor stick cleaner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100134A (en) * 1985-10-23 1987-05-09 松下電器産業株式会社 Charge controller of charged type vacuum cleaner for exclusive use of vehicle
JP2001095168A (en) * 1999-09-27 2001-04-06 Matsushita Electric Ind Co Ltd Charger and electric cleaner
JP2004289973A (en) * 2003-03-24 2004-10-14 Toshiba Tec Corp Electrical device
JP2005131224A (en) * 2003-10-31 2005-05-26 Matsushita Electric Ind Co Ltd Vacuum cleaner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100134A (en) * 1985-10-23 1987-05-09 松下電器産業株式会社 Charge controller of charged type vacuum cleaner for exclusive use of vehicle
JP2001095168A (en) * 1999-09-27 2001-04-06 Matsushita Electric Ind Co Ltd Charger and electric cleaner
JP2004289973A (en) * 2003-03-24 2004-10-14 Toshiba Tec Corp Electrical device
JP2005131224A (en) * 2003-10-31 2005-05-26 Matsushita Electric Ind Co Ltd Vacuum cleaner

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8671509B2 (en) 2008-03-14 2014-03-18 Techtronic Floor Care Technology Limited Battery powered cordless cleaning system
US10568481B2 (en) 2008-03-14 2020-02-25 Techtronic Floor Care Technology Limited Battery powered cordless cleaning system
US8607405B2 (en) 2008-03-14 2013-12-17 Techtronic Floor Care Technology Limited Battery powered cordless cleaning system
US9504364B2 (en) 2008-03-14 2016-11-29 Techtronic Floor Care Technology Limited Battery powered cordless cleaning system
US8756753B2 (en) 2008-03-14 2014-06-24 Techtronic Floor Care Technology Limited Battery powered cordless cleaning system
EP2337485B1 (en) 2008-10-16 2016-09-21 Royal Appliance Mfg. Co. Battery powered cordless vacuum cleaner
EP2337485A1 (en) * 2008-10-16 2011-06-29 Royal Appliance Mfg. Co. Battery powered cordless cleaning system
EP2337485A4 (en) * 2008-10-16 2013-09-04 Royal Appliance Mfg Battery powered cordless cleaning system
CN103545885A (en) * 2013-10-14 2014-01-29 松下家电研究开发(杭州)有限公司 Dust collector powered by two battery packs and discharging control method of dust collector
CN103532191A (en) * 2013-10-14 2014-01-22 松下家电研究开发(杭州)有限公司 Dual-group battery unit charging system for dust collector and charging method of dual-group battery unit charging system
EP3053501A1 (en) * 2015-01-28 2016-08-10 LG Electronics Inc. Vacuum cleaner
CN105832247A (en) * 2015-01-28 2016-08-10 Lg电子株式会社 Vacuum cleaner
CN105832247B (en) * 2015-01-28 2019-03-12 Lg电子株式会社 Vacuum cleaner
GB2583162A (en) * 2019-04-17 2020-10-21 Conta Sro Battery powered appliances
WO2023160799A1 (en) * 2022-02-24 2023-08-31 Aktiebolaget Electrolux Dual-motor stick cleaner

Also Published As

Publication number Publication date
GB0526071D0 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
US20070136984A1 (en) Rechargeable vacuum cleaner
JP5484860B2 (en) Power supply
US6950030B2 (en) Battery charge indicating circuit
EP1124300A2 (en) Battery charging apparatus, battery pack and method for charging secondary battery
GB2433424A (en) Rechargeable vacuum cleaner
US20050130682A1 (en) Cordless device system
KR20120132336A (en) Battery pack
JP6373661B2 (en) Battery pack
JP2009519694A (en) Electronic circuits for small electronic devices
JP3931267B2 (en) battery pack
JP6017563B2 (en) Power supply circuit for an appliance having a battery and a DC-DC converter
US20240079885A1 (en) Electronic circuit for battery pack configuration management
JP7149558B2 (en) Lighting device, emergency lighting device, and emergency lighting fixture
KR200185300Y1 (en) Circuit to prevent over-charge for portable dry battery
US20040110542A1 (en) Backup power supply for portable telephone
TWM566405U (en) DC synchronous charging balance system
JP3484609B1 (en) Cordless equipment system
JP2003158299A (en) Led power source control circuit
JP3119605U (en) Rechargeable dust collector
JPH053634A (en) Battery charging and discharging circuit
JPH0799730A (en) Charging/discharging apparatus
JP3734031B2 (en) Cordless equipment system
JPH1198712A (en) Charger
JP4060103B2 (en) Electronic equipment power supply circuit
JP2004023975A (en) Power supply device

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)