GB2372150A - Method of forming an alignment feature in or on a multi-layered semiconductor structure - Google Patents

Method of forming an alignment feature in or on a multi-layered semiconductor structure Download PDF

Info

Publication number
GB2372150A
GB2372150A GB0211288A GB0211288A GB2372150A GB 2372150 A GB2372150 A GB 2372150A GB 0211288 A GB0211288 A GB 0211288A GB 0211288 A GB0211288 A GB 0211288A GB 2372150 A GB2372150 A GB 2372150A
Authority
GB
United Kingdom
Prior art keywords
alignment feature
semiconductor structure
silicon dioxide
forming
atomic number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB0211288A
Other versions
GB0211288D0 (en
GB2372150B (en
Inventor
David M Boulin
Reginald C Farrow
Isik C Kizilyalli
Masis Mkrtchyan
Nace Layadi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia of America Corp
Original Assignee
Lucent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/456,224 external-priority patent/US6576529B1/en
Application filed by Lucent Technologies Inc filed Critical Lucent Technologies Inc
Publication of GB0211288D0 publication Critical patent/GB0211288D0/en
Publication of GB2372150A publication Critical patent/GB2372150A/en
Application granted granted Critical
Publication of GB2372150B publication Critical patent/GB2372150B/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

A method of forming a multi-layered semiconductor structure having substrate (20) comprises the steps of forming an alignment feature (60) in or on substrate (20), and aligning lithography mask (140) using alignment feature (60) with a Scattering with Angular Limitation in Projection Electron-beam Lithography (SCALPEL) tool (100) having an electron beam source (110) for directing an electron beam toward semiconductor structure (10). The alignment feature (60) is detected as it backscatters a greater amount of electrons than the surrounding substrate (20). This information may then be used to align lithography mask (140). The alignment feature (60) may include shallow trench (22, Fig. 1) containing silicon dioxide (30) and a high atomic number material (50) selected from tungsten, tantalum, cobalt, titanium, or the silicides and nitrides of these metals. The alignment feature (60) may be formed in a polysilicon layer on a silicon dioxide layer.

Description

A METHOD OF FORMING AN ALIGNMENT FEATURE IN OR ON A MULTI-LAYERED SEMICONDUCTOR STRUCTURE The present invention relates to integrated circuits and, more particularly, to a method of forming an alignment feature in or on a multi-layered semiconductor structure for aligning a lithography mask and that may be used in connection with a SCALPEL tool.
Optical lithography tools use a single light source (e. g. , a laser) to align and expose a lithography mask on a semiconductor wafer. In a typical semiconductor wafer process that uses photolithography, alignment marks do not generate a high backscattered electron contrast when probed with the electron beam in an electron beam lithography exposure tool. Therefore, detection of typical photolithography alignment marks using an electron beam with SCALPEL (Scattering with Angular Limitation In Projection Electron Beam Lithography) is not possible. Only after alignment marks are defined on or in the wafer, that can be detected with electrons, can a SCALPEL tool be used to expose the mask features on the wafer. Thus the SCALPEL tool uses an electron beam source to align the lithography mask, and an electron beam source to expose the mask on the wafer.
There, thus, exists a need in the art for a method and structure that permits the use of an electron-beam source for both alignment and exposure of a lithography mask on a semiconductor wafer.
The present invention is directed to a method of forming an alignment feature
in or on a multi-layered semiconductor structure for aligning a lithography mask and that may 0 be used in connection with a Scattering with Angular Limitation In Projection Electron-Beam Lithography (SCALPEL) tool and process. The present invention is particularly well-suited for sub-micron CMOS technology devices and circuits, but is not limited thereto. The present invention advantageously permits use of an electron beam source for both alignment and exposure of a lithography mask on a semiconductor wafer. The present invention also advantageously enables the formation of an alignment feature early (i. e. , zero-level) in the semiconductor device fabrication process.
A SCALPEL tool uses alignment features for, inter alia, lithography mask alignment and registration. Residual errors introduced during fabrication of a multi-layered semiconductor structure may be minimized by using the same electron optical configuration (i. e. , electron optical energy source) for alignment of a lithography mask and for exposure of the mask features on the semiconductor structure, i. e. , in an electron beam sensitive resist on the structure, for example.
Alignment features or marks are fabricated on a semiconductor structure (i. e., wafer) for aligning a lithography mask to the structure; the lithography mask defining a plurality of features to be exposed and etched in the semiconductor structure. In accordance with the present invention, a 100 kV electron beam source may be used by a SCALPEL tool for both the alignment of a lithography mask and exposure of the features defined by the mask. Forming an alignment feature in the semiconductor structure of a relatively high atomic number material provides a material that will back-scatter electrons which may be detected by the SCALPEL tool to determine the location of the alignment feature. Moreover, the present invention further provides for use of a single energy source in a SCALPEL tool where the alignment feature is formed of silicon dioxide and defined in a layer of the semiconductor structure. In that case, the detection sensitivity of the SCALPEL tool must be greater than for high atomic number materials or the mark topography must contribute sufficient backscattered electron contrast so that the subtle differences in the amount of the electrons reflected by the silicon dioxide alignment feature and by other semiconductor layers may be detected.
The present invention also generally applies to a method of aligning a lithography mask on a semiconductor structure using an alignment feature formed in or on the structure and of a material that back-scatters a greater amount of electrons than any of the other materials from which the semiconductor structure is constructed. An electron beam is directed at the structure and the electrons back-scattered by the alignment feature may be detected to determine the location of the alignment feature. A lithography mask may then be aligned for exposure using the alignment feature previously detected.
The present invention is directed to a method of forming a multi-layered semiconductor structure having a silicon substrate, and comprises forming an alignment feature of a material that is not silicon in the silicon substrate and aligning a lithography mask using the alignment feature and using a SCALPEL tool having an electron beam source for directing an electron beam toward the silicon substrate. The alignment feature back-scatters a greater amount of electrons toward the electron beam source than the silicon substrate.
The present invention is also directed to a method of forming a multi-layered semiconductor structure consisting of layers of silicon, silicon dioxide, and polysilicon, and comprises forming an alignment feature on the polysilicon layer of the semiconductor structure, and aligning a lithography mask using the alignment feature and using a SCALPEL tool having an electron beam source for directing an electron beam toward the polysilicon layer. The alignment feature back-scatters a greater amount of electrons toward the electron beam source (toward an electron beam sensitive detector) than the polysilicon layer.
The present invention is further directed to a method of forming a multilayered semiconductor structure consisting of layers of silicon and silicon dioxide, and comprises forming an alignment feature in the silicon dioxide, and aligning a lithography mask using the alignment feature and using a SCALPEL tool having an electron beam source for directing an electron beam toward the silicon substrate. The alignment feature back scatters a greater amount of electrons toward the electron beam source than the polysilicon layer.
The present invention is also directed to a semiconductor structure constructed in accordance with the various method embodiments of the present invention.
Other objects and features of the present invention will become apparent from the following detailed description, considered in conjunction with the accompanying drawing figures. It is to be understood, however, that the drawings, which are not to scale, are designed solely for the purpose of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims.
In the drawing figures, which are not to scale, and which are merely illustrative, and wherein like reference characters denote similar elements throughout the several views: FIGS. 1-3 are cross-sectional side views of a silicon substrate of a semiconductor structure having an alignment feature formed therein and constructed in accordance with the present invention; FIGS. 4-5 are cross-sectional side views of the silicon and silicon dioxide layers of a semiconductor structure having an alignment feature formed in the silicon dioxide layer from a relatively high atomic number material and constructed in accordance with the present invention; FIGS. 6-7 are cross-sectional side views of the silicon, silicon dioxide, and polysilicon layers of a semiconductor structure having an alignment feature formed on the polysilicon layer from a relatively high atomic number material and constructed in accordance with the present invention; FIG. 8 is a schematic diagram of a SCALPEL exposure tool that includes a SCALPEL aperture; and FIG. 9 is a top view of a semiconductor structure having a plurality of alignment features defined thereon or therein in accordance with the present invention.
Referring now to the drawings in detail, and with reference first to FIG. 8, a SCALPEL proof-of-concept (SPOC) or a SCALPEL proof-of-lithography (SPOL) exposure tool 100 is there depicted. Such an exposure tool 100 is generally known to persons skilled in the art and a detailed discussion of its configuration and operation is deemed unnecessary for the present invention. The following description is thus provided as an illustrative, nonlimiting example of part of an exemplary exposure tool 100. The exposure tool 100 depicted in FIG. 8 includes an electron beam source 110 for generating an electron beam 112, preferably, approximately a 100 kV beam, and for directing that beam through various components (e. g. , mask, lenses, apertures, etc.) etc. )andand toward the semiconductor structure 10. The electron beam 112 is first directed through a mask 140 that includes a membrane 142 that is supported by a plurality of struts 144. The mask 140 is illuminated by the electron beam 112 within a segment 146 that may contain a pattern such as, for example, an alignment feature 60, to be etched in a semiconductor structure or wafer 10, and that is etched in a scatterer layer 148. The electron beam 150 that has passed through the mask 140 has been scattered by the membrane 142 and scatterer layer 148 (which contains the pattern). The rays of the scattered electron beam 150 are focused by a first lens 160 into focused rays 152 and then directed through an aperture 154 defining sufficient acceptance 156 to filter the focused rays 152 such that filtered rays 158 only contain rays that did not pass through the scatterer layer 148. A second lens 170 focuses the filtered rays 158 into image rays 162, which contain contrast representative of the pattern defined by the scatterer layer 148 (e. g. , an alignment feature 60), and directs the focused rays 170 onto the surface of the wafer 10.
Deflectors 164,166 are provided to scan the pattern carried by the focused rays 152 onto the wafer 10 while an electron beam sensitive detector 168 is provided to detect backscattered electrons. A signal derived from the detector 168 may be analyzed using known detection circuits and systems to determine a relationship between the image of the mask mark and the wafer mark for alignment purposes. The backscattered electrons are detected by the detector 168 to identify and locate the alignment feature 60 and to facilitate alignment of the lithography mask 140.
As used herein, the terms semiconductor structure and wafer are used interchangeably and refer to a device comprised of a single layer of semiconductor material (e. g. , a silicon substrate, GaAs, InP and other group III and group V compounds, and silicon on insulator substrates (e. g., SiGex)) and also to a device comprised of more than a single layer of semiconductor material.
In accordance with the various embodiments of the present invention, an alignment feature 60, depicted in FIG. 9, is defined in or in a multi-layered semiconductor structure 10 (i. e. , wafer) and may be formed of a material different than the material from which the semiconductor substrate is formed (e. g. , silicon), and preferably, of a material having a relatively high atomic number, as compared with the atomic number of the semiconductor material (e. g. , silicon). The alignment feature 60 will thus back-scatter more electrons than the semiconductor substrate 20. A contrast of approximately 5% or more between the alignment feature 60 and the semiconductor substrate 20 is sufficient to distinguish between the two. In this manner, the electron beam source 110 may be used to locate an alignment feature 60, align the lithography mask 140, and expose the features defined by the mask 140 in the resist (i. e. , e-beam resist) on the semiconductor structure 10 during fabrication of an integrated circuit 14. Exemplary alignment feature materials include,
but are not limited to, Si02, W, WSi, Ta, TaSi, Ti, WSiN, TaN, WN, TiN, Co, CoSix, and TiSix.
Referring next to FIGS. 1-3, a part of a semiconductor substrate 20 is there depicted in cross-section and having a shallow trench 22 defined therein. Exemplary semiconductor materials for the substrate include, but are not limited to, silicon (Si), galium
arsenide (GaAs), Indium Phosphide (InP), other group in and group V compounds, and silicon on insulator substrate (e. g., SiGex). The trench 22 may be formed or etched to a depth of approximately 0.1-1. 0 micrometers using known semiconductor processing techniques. Silicon dioxide 30 is deposited in the trench 22 using chemical vapor deposition (CVD) techniques or thermally grown, or other art-recognized material deposition methods and techniques, until the trench 22 is substantially full. Subsequent processing such as, for example, chemical mechanical polishing, may be performed on the substrate 20 and silicon dioxide material 30 to form a substantially smooth and planar top surface 24. In one embodiment, the silicon dioxide 30 forms the alignment feature 60. The SCALPEL exposure tool 100 for use in connection with the present invention must be capable of distinguishing between the amount of electron back-scatter from the substrate 20 and the amount from the silicon dioxide 30. Operations performed on the semiconductor substrate or wafer 10 at this stage of the fabrication process are typically referred to as zero-level operations. Forming an alignment feature 60 as a zero-level operation thus permits the use of the SCALPEL process and tools earlier on the wafer 10 fabrication process, which results in a higher degree of precision for the features and structures subsequently formed in the semiconductor structure or wafer 10 using that process, and in the integrated circuit 14 formed thereby.
In an alternative embodiment depicted in FIG. 3, part of the silicon dioxide 30, between approximately 25 A and 8000 A, is removed by etching, for example, thereby defining another trench that is subsequently filled with a material 50 having an atomic number higher than the atomic number of silicon, thus forming an alignment feature 60 in the substrate 20 (in the silicon dioxide 30).
Referring next to FIGS. 4-5, a semiconductor structure 10 comprised of a semiconductor substrate 20 and a silicon dioxide layer 30 adjacently disposed thereabove is depicted. A field-oxide region 34 and a gate-oxide region 36 are defined in the silicon dioxide layer 30. Using art-recognized techniques, a shallow trench 32 is formed in the silicon dioxide layer 30 above the field-oxide region 34 to a depth of between approximately
100 A, 10, 000 A, depending, at least in part, on the sensitivity of the detector 168 of the exposure tool 100. A material 50 having an atomic number higher than the atomic number of the semiconductor material from which the substrate is formed is then deposited in the shallow trench 32, thus forming an alignment feature 60 in a region above the field-oxide region 34 of the silicon dioxide layer 30.
In another embodiment of the present invention, depicted in FIGS. 6 and 7, a multi-layered semiconductor structure 10 includes a semiconductor substrate 20, a silicon dioxide layer 30 disposed adjacent to and above the semiconductor substrate 20, and a polysilicon layer 40 disposed adjacent to and above the dioxide layer 30. A field-oxide region 34 and a gate-oxide region 36 are separately defined in the silicon dioxide layer 30. A layer of a material 50 having an atomic number greater than the atomic number of the substrate material is deposited in blanket fashion over the polysilicon layer 40. Using art recognized techniques and methods, some of the relatively high atomic number material 50 is removed to change the thickness of that material 50, thereby defining an alignment feature 60. The amount of material removed depends, in part, on the sensitivity of the SCALPEL tool 100 (in particular, of the detector provided in the SCALPEL tool 100) and on the ability of the tool 100 to detect the differing amounts of electrons back-scattered by the different thickness relatively high atomic number material 50. As depicted in FIG. 7, enough material 50 may be removed to expose the polysilicon layer 40 beneath the material 50, although less material 50 may also be removed in accordance with the present invention, i. e. a detent (not shown) may be formed in the material 50 by removal only of a small portion thereof.
Removal of some of the material 50 defines an alignment feature 60 in portions of the remaining relatively high atomic number material 50. The SCALPEL tool 100 will detect differences in back-scattering as the electron beam 112 is caused to pass alternatively over the relatively high atomic number material 50 and the polysilicon layer 40 (or over the parts of the material 50 having different thicknesses). The alignment feature 60 may be defined
over the field-oxide region 34, over the gate-oxide region 36, or over both, as a routine matter t. tl of design choice.
Thus, while there have been shown and described and pointed out fundamental novel features of the invention as applied to preferred embodiments thereof, it will be understood that various omissions and substitutions and changes in the form and details of the disclosed invention may be made by those skilled in the art without departing from the spirit of the invention. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.

Claims (15)

1. A method of forming a multi-layered semiconductor structure consisting of a layer of a semiconductor material, a layer of silicon dioxide, and a layer of polysilicon, said method comprising the steps of : (a) forming an alignment feature on the polysilicon layer of the semiconductor structure; and (b) aligning a lithography mask using the alignment feature formed in said step (a) using a SCALPEL tool having an electron beam source for directing an electron beam toward the polysilicon layer, the alignment feature backscattering a greater amount of electrons toward the electron beam source than the polysilicon layer.
2. A method as recited by claim 1, wherein said step (a) comprises: depositing a material having a relatively high atomic number on the polysilicon layer of the semiconductor structure; and selectively removing some of the relatively high atomic number material to change its thickness thereby defining an alignment feature in the relatively high atomic number material.
3. A method as recited by claim 2, wherein said removing step comprises selectively removing portions of the relatively high atomic number material to expose the polysilicon layer, thereby defining an alignment feature in at least part of the
relatively high atomic number material not removed.
0
4. A method as recited by claim 2, wherein said depositing step comprises depositing a material selected from a group of materials consisting of W, WSi, Ta, TaSi, Ti, WSiN, TaN, WN, TiN, Co, CoSix, and TiSix.
5. A method as recited by claim 2, wherein the semiconductor structure has defined therein a field-oxide region and wherein said removing step comprises selectively removing some of the relatively high atomic number material above the field-oxide region.
6. A method as recited by claim 2, wherein the semiconductor structure has defined therein a gate-oxide region and wherein said removing step comprises selectively removing some of the relatively high atomic number material above the gate-oxide region.
7. A method of forming a multi-layered semiconductor structure consisting of layers of semiconductor material and silicon dioxide, said method comprising the steps of : (a) forming an alignment feature in the silicon dioxide; and (b) aligning a lithography mask using the alignment feature formed in said step (a) using a SCALPEL tool having an electron beam source for directing an electron beam toward the silicon dioxide layer, the alignment feature back-scattering a greater amount of electrons toward the electron beam source than the silicon dioxide layer.
8. A method as recited by claim 7, wherein said step (a) comprises: forming a shallow trench in the silicon dioxide; and depositing a material having a relatively high atomic number in the shallow trench.
9. A method as recited by claim 8, wherein said forming step comprises forming a trench having a depth of between approximately 100 A and 10,000 A in the silicone dioxide.
10. A method as recited by claim 8, wherein said depositing step comprises depositing a material selected from a group of materials consisting of W, WSi, Ta, TaSi, Ti, WSiN, TaN, WN, TiN, Co, CoSi-. ;, and Tis,.
11. A method of aligning a lithography mask comprising the steps of : (a) forming an alignment feature in or on a semiconductor structure, the alignment feature having an electron back-scatter characteristic such that the alignment feature back-scatters a greater amount of electrons than the semiconductor structure in the presence of an electron beam; (b) directing an electron beam at the semiconductor structure; (c) determining the location of the alignment feature by detecting electrons back-scattered from the alignment feature; and (d) aligning a lithography mask using the alignment feature based on the location determined in said step (c).
12. A method as recited by claim 11, wherein the semiconductor structure includes a semiconductor substrate and wherein said step (a) comprises: forming a shallow trench in the semiconductor substrate; and depositing silicon dioxide in the shallow trench.
13. A method as recited by claim 11, wherein the semiconductor structure includes a semiconductor substrate, and wherein said step (a) comprises: forming a shallow trench in the semiconductor substrate;
depositing silicon dioxide in the shallow trench ; im forming a shallow trench in the silicon dioxide by removing part of the silicon dioxide deposited in the shallow trench; and depositing a material having a relatively high atomic number in the shallow trench formed in the silicon dioxide.
14. A method as recited by claim 11, wherein the semiconductor structure includes a layer of semiconductor material, a layer of silicon dioxide, and a layer of polysilicon, and wherein said step (a) comprises: depositing a material having a relatively high atomic number on the polysilicon layer of the semiconductor structure; and selectively removing some of the relatively high atomic number material to change its thickness thereby defining an alignment feature in the relatively high atomic number material.
15. A method as recited by claim 11, wherein the semiconductor structure includes a layer of semiconductor material and a layer of silicon dioxide, and wherein said step (a) comprises: forming a shallow trench in the silicon dioxide; and depositing a material having a relatively high atomic number in the shallow trench.
GB0211288A 1999-12-07 2000-11-27 A method of forming an alignment feature in or on a multi-layered semiconductor structure Expired - Lifetime GB2372150B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/456,224 US6576529B1 (en) 1999-12-07 1999-12-07 Method of forming an alignment feature in or on a multilayered semiconductor structure
GB0028872A GB2363677B (en) 1999-12-07 2000-11-27 A method of forming an alignment feature in or on a multi-layered semiconductor structure

Publications (3)

Publication Number Publication Date
GB0211288D0 GB0211288D0 (en) 2002-06-26
GB2372150A true GB2372150A (en) 2002-08-14
GB2372150B GB2372150B (en) 2003-09-10

Family

ID=26245338

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0211288A Expired - Lifetime GB2372150B (en) 1999-12-07 2000-11-27 A method of forming an alignment feature in or on a multi-layered semiconductor structure

Country Status (1)

Country Link
GB (1) GB2372150B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0669636A1 (en) * 1994-02-25 1995-08-30 AT&T Corp. Manufacturing system error detection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2109538A (en) * 1981-11-02 1983-06-02 Philips Electronic Associated Electron beam alignment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0669636A1 (en) * 1994-02-25 1995-08-30 AT&T Corp. Manufacturing system error detection

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. Vac. Sci. Technol. B Vol. 10 Nov/Dec 1992 R C Farrow et al. page 2780-2783 *
Proc. SPIE - Int. Soc. Opt. Eng. Vol. 3676 pt.1-2 March 1999 R C Farrow et al. pages 217-226 *

Also Published As

Publication number Publication date
GB0211288D0 (en) 2002-06-26
GB2372150B (en) 2003-09-10

Similar Documents

Publication Publication Date Title
US6706609B2 (en) Method of forming an alignment feature in or on a multi-layered semiconductor structure
US5692070A (en) Calibration of semiconductor pattern inspection device and a fabrication process of a semiconductor device using such an inspection device
JP2010204117A (en) Overlay metrology using scatterometry identification method
US7090948B2 (en) Reflection mask and method for fabricating the reflection mask
EP1046192A1 (en) Method of manufacturing a semiconductor device in a silicon body, a surface of said silicon body being provided with an alignment grating and an at least partially recessed oxide pattern
EP0720216B1 (en) Linewidth metrology of integrated circuit structures
US6420702B1 (en) Non-charging critical dimension SEM metrology standard
US6624897B1 (en) Apparatus and method for feature edge detection in semiconductor processing
GB2372150A (en) Method of forming an alignment feature in or on a multi-layered semiconductor structure
US5824441A (en) Lithographic process for device fabrication utilizing back-scattered electron beam signal intensity for alignment
KR100503765B1 (en) Line Width Insensitive Wafer Target Detection
JP4023262B2 (en) Alignment method, exposure method, exposure apparatus, and mask manufacturing method
US6864590B2 (en) Alignment mark for aligning wafer of semiconductor device
US7989228B2 (en) Method and structure for sample preparation for scanning electron microscopes in integrated circuit manufacturing
US6724479B2 (en) Method for overlay metrology of low contrast features
US11385187B1 (en) Method of fabricating particle size standards on substrates
Zhao et al. Technology of alignment mark in electron beam lithography
JP2000150358A (en) Pattern formation method and semiconductor device using the same
JPH11340131A (en) Manufacture of semiconductor integrated circuit
Farrow et al. SCALPEL mark detection using Si/SiO 2 and 100 keV backscattered electrons
JP3004240B2 (en) Method of forming through hole and buried pattern, beam adjusting method, and charged beam exposure method
JPH09246155A (en) Semiconductor integrated circuit device and its manufacture
US20030003676A1 (en) Ultra-fine alignment system and method using acoustic-AFM interaction
Yamamoto et al. Novel alignment method for planarized substrates in electron beam lithography
Colgan et al. Optimizing 0.25-um lithography using confocal microscopy

Legal Events

Date Code Title Description
PE20 Patent expired after termination of 20 years

Expiry date: 20201126