GB2259992A - Checking connections - Google Patents

Checking connections Download PDF

Info

Publication number
GB2259992A
GB2259992A GB9220267A GB9220267A GB2259992A GB 2259992 A GB2259992 A GB 2259992A GB 9220267 A GB9220267 A GB 9220267A GB 9220267 A GB9220267 A GB 9220267A GB 2259992 A GB2259992 A GB 2259992A
Authority
GB
United Kingdom
Prior art keywords
conductor
dut
measuring apparatus
measuring
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9220267A
Other versions
GB9220267D0 (en
GB2259992B (en
Inventor
Hideki Wakamatsu
Nobuo Nakata
Yohichi Kuboyama
Hideshi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP Inc
Original Assignee
Hewlett Packard Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Co filed Critical Hewlett Packard Co
Publication of GB9220267D0 publication Critical patent/GB9220267D0/en
Publication of GB2259992A publication Critical patent/GB2259992A/en
Application granted granted Critical
Publication of GB2259992B publication Critical patent/GB2259992B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

The measuring apparatus of the present invention is capable of distinguishing a loose connection between a DUT 6 and the measuring apparatus 3 from a high impedance in the DUT. The measuring apparatus 3 is also capable of measuring the impedance of the DUT 6 without altering the connections between the DUT 6 and the measuring apparatus. The measuring apparatus 3 applies both DC and AC current signals to the DUT 6 so as to compensate any leakage current occurring within the three-wire cable connecting the DUT 6 and the measuring apparatus. Because of the compensation, when both DC and AC current ammeters (12, 22) indicate substantially zero values, it is assured that a loose connection exists. The measuring apparatus includes a 3-wire co-axial cable for connection to the DUT. In a modification, an AC source 23 is coupled to the coaxial cable via a ferrite core transformer and current ammeters 12, 22 are connected in parallel via isolating elements. <IMAGE>

Description

TWO-TERMINAL CIRCUIT ELEMENT MEASURING APPARATUS FOR PERFORMING CONTACT CHECKS Field of the Invention The present invention generally relates to a twoterminal circuit element measuring apparatus for performing a contact check function, and more specifically, to such apparatus also capable of checking the insulation resistance of a sample (i.e., an object to be measured) at the same time as a contact check, and capable of measuring the capacitance of this sample without any connection change in the cables.
Background of the Invention A typical use of an insulation resistance tester is to test the insulation resistance of a capacitor. In the insulation resistance test, a good sample has a high insulation resistance value. However, if there is a loose contact between the tester device and a sample which has insufficient insulation, the tester may indicate that the sample has sufficient insulation. In other words, a problem with conventional insulation resistance measuring apparatus is that such a contact check cannot be performed on the basis of measuring the insulation resistance value. This problem becomes apparent in an automatic inspection process.
When a capacitor is used as a sample, since the capacitor represents a low impedance to an AC signal, the insulation resistance of the capacitor is measured by using a DC signal, while the high-frequency impedance thereof is measured by using an AC signal. On the basis of these measurements, it can be determined whether the measurement of the insulation resistance is valid, namely whether the contact is valid.
In general, an insulation resistance tester, as shown in Fig. 1, comprises a measuring device main frame 1 and an extension cable 5. The main frame 1 further comprises a shielded outer sheath 11 and a DC ammeter 12 having one input terminal connected to the shielded outer sheath 11, and a DC voltage source 13 for applying a DC high voltage between the outer sheath 11 and a ground. The extension cable 5 further comprises a first conductor 31 constituting a center conductor; a second conductor 32 for covering the first conductor, and a third conductor 33 for covering the second conductor 32. At one end of the above-described cable 5, the first conductor 31 is connected to the other input terminal of the DC ammeter 12, and the second conductor 32 is connected to the outer sheath 11. The third conductor 33 is grounded.A sample 6, shown as a parallel circuit comprising a capacitor C and a resistor R=, is connected to the sample connecting terminals of the first and third conductors, 31 and 33, at the other end of the cable 5.
In an automatic inspection process, an impedance measurement is taken in conjunction with the above-described contact check in order to determine whether a sample demonstrates a predetermined characteristic. When there is a long distance between the sample 6 (namely, an object to be measured; the sample or object to be measured will be hereinafter referred to as a "DUT") and a measuring apparatus, the cable 5 from the measuring terminal is extended to, for instance, 1 to 2 meters for the impedance measurement. Also, in this setting, such a measurement must be taken while one of the input lines to the DUT is grounded.
The following conditions are required for a successful measurement in the above described setting: (1) An increase in capacitance should be detected when a DUT is connected to the measuring apparatus, even with an extended cable.
(2) A measurement of such a DUT should be taken with an AC grounded lead wire.
(3) The current path to measure a DC resistance is not adversely influenced by external electromagnetic fields and the like. Furthermore, conversely, this current path does not have any electromagnetic influence on an external device.
(4) An additional cable to measure impedance is not required.
Although the conventional impedance measuring apparatus, such as HP4192A: LF Impedance Analyzer sold by Hewlett Packard Co. in the U.S.A., can satisfy condition (1), such conventional measuring apparatus has the following problems: It is impossible to connect a DUT with one grounded lead wire in the measuring circuit with a high impedance because one of two lead wires of the DUT is driven by a measurement signal source and the other is virtually grounded through a current measuring device. Thus, the above-described condition (2) cannot be satisfied. When a ground terminal of a DUT is not grounded, an adverse influence over a measurement caused by an external electromagnetic field becomes conspicuous. This may considerably deteriorate a precision measurement so that the above-described condition (3) cannot be satisfied.In addition, while the insulation tester handles high DC voltage (1000 volts) and low DC current (less than pico amperes), the impedance meter handles AC voltage and current in a 10 Hz to 1 XHz range. These different operations make it difficult to combine the insulation tester and impedance meter.
The present invention has been proposed to solve the above-described problems. An object of the invention is to provide a two-terminal circuit element measuring apparatus for performing a contact check function for sensing a loose contact at a terminal so as to allow a high precision measurement by a single apparatus. A related object is to provide apparatus for measuring the impedance of a DUT with a high precision in connection with an automatic component feeding apparatus.
summary of the Invention A measuring apparatus according to one embodiment of the present invention comprises a three-wire cable having a first conductor, a second conductor and a third conductor, an AC voltage signal source for applying an AC signal between the first conductor and the third grounded conductor and between the second conductor and the third grounded conductor; a DC voltage signal source for applying a DC signal between the first conductor and the third grounded conductor, and between the second conductor and the third grounded conductor; and AC voltage measuring device for measuring an AC voltage value of the AC voltage applied to the object to be measured by said AC voltage signal source; a DC current measuring device for measuring a DC current value of a DC current supplied to the object to be measured by said DC voltage signal source; and an AC current measuring device for measuring an AC current supplied to the object to be measured by said AC voltage signal source.
Another embodiment of the present invention is characterized in that the AC voltage signal source comprises an AC voltage source and a ferrite core transformer which is disposed over a first and second conductor of a three-wire coaxial cable; one end of the AC voltage source is connected to the third conductor of the three-wire coaxial cable; one terminal end of a drive winding on the ferrite core transformer is connected to the other end of said AC voltage source, and the other end of the driving winding thereof is connected to said third conductor; According to one aspect of the present invention, the DC voltage measuring device further comprises an inductor and a DC ammeter connected thereto in series, and the AC voltage measuring device further comprises a capacitor and an ammeter connected thereto in series, and both of the DC voltage measuring device and the AC voltage measuring device are connected between the first conductor and the second conductor in parallel.
Brief Description of the Drawing Fig. 1 is a schematic circuit diagram of a conventional insulation resistance meter.
Fig. 2 is a schematic circuit diagram of a oneterminal trio measuring apparatus for high impedance.
Fig. 3 is a schematic circuit diagram illustrating a preferred embodiment of the apparatus according to the present invention, illustrating the measuring principle of the invention.
Fig. 4(A) is a schematic circuit diagram of another embodiment based upon the circuit shown in Fig. 3, and Fig.
4(B) is an equivalent circuit diagram of a ferrite core transformer shown in Fig. 4(A).
Detailed DescriPtion of the Preferred Embodiments A one-terminal trio measuring apparatus of the current invention has the priority date of the Japanese application No. 03-274543 which was filed on September 26, 1991, and is used to measure a DUT with a high impedance.
Such apparatus comprises a measuring apparatus main frame 2 and a three-wire coaxial cable 5, as shown in Fig. 2. The measuring apparatus main frame 2 further comprises an AC ammeter 22 corresponding to the DC ammeter 12 shown in Fig.
1, a AC voltage source 23 corresponding to the DC voltage source 13 shown in Fig. 1 and an AC voltmeter 24. The measuring apparatus main frame 2 is analogous to its DC counterpart main frame 1 of the above-described prior art insulation resistance tester. An impedance "Zx" 6 is connected to the cable 5. If the insulation resistance meter of Fig. 1 could be combined with the one-terminal trio measuring apparatus of Fig. 2 without causing any interference, the above-described objects would be achieved.
This invention achieves such a desired combination.
Accordingly, Fig. 3 is a preferred embodiment of the above-described combination for the present invention.
One end of a three-wire coaxial cable 5 is connected to the main frame 3 of the measuring apparatus, and a DUT 6 including a capacitance C and a resistor RDC in parallel are connected between the first conductor 31 and the third conductor 33 at the other end of the cable 5. A series connection of the ammeter 12 of Fig. 1 and the ammeter 22 of Fig. 2 corresponds to these ammeters 12 and 22 in Fig. 3.
Similarly, a DC voltage source 23 and an AC voltmeter 24 of Fig. 2 are combined in parallel and have a series connection with DC voltage source 13, also as seen in Fig. 3. In Fig.
3, DC ammeter 12, AC ammeter 22, AC voltmeter 24, DC voltage source 13, and AC voltage source 23, respectively, correspond to the DC and AC current measuring devices, the AC voltage measuring device, and the DC and AC voltage signal sources, according to the present invention.
In the circuit of Fig. 3, a DC current is supplied from the DC voltage source 13 to the DUT 6, and this DC current is detected by the ammeter 12. Also, an AC current is supplied from the AC voltage source 23 to the DUT 6. AC current is measured by the ammeter 22, and the AC response voltage of the DUT 6 is measured by a voltmeter 24.
An ideal open state can be obtained. An ideal state is achieved by eliminating any leakage current from the first conductor to the second or third grounded conductor.
Since a leakage current from the first ungrounded conductor is prevented by applying the same potential as the first conductor to the second conductor, the value measured by the AC ammeter 22 is adjusted to zero in the apparatus of the present invention. Thus, when the values measured by the DC ammeter 12 and AC ammeter 22 are essentially zero, a loose connection (contact) of the DUT can be assuredly detected under the ideal open state. However, when the value measured by the DC ammeter 12 is essentially zero and the value measured by the AC ammeter 22 is not essentially zero under the ideal open state, the connection of the DUT is normal. This is because the AC ammeter 22 is not reading any leakage current, as the leakage current is compensated by the DC voltage applied from the DC voltage source 13.The impedance of this DUT 6 (essentially, the capacitance of the capacitor C) is measured based upon the values measured by AC ammeter 22 and DC ammeter 12.
It should be noted that the conventional measuring apparatus cannot obtain the above-described ideal open condition. When a loose connection of the DUT 6 happens to occur, no current flows through the DUT 6. Although the value measured by the DC ammeter 12 becomes zero, the value of the AC ammeter 22 does not always become zero. Since the leakage current is not compensated, the AC ammeter 22 may be reading the uncompensated leak current from the first conductor 31 despite the loose connection. Accordingly, discrimination cannot be made whether the connection is actually loose, or the DUT 6 has a high impedance.
Another embodiment of a measuring apparatus according to the present invention will now be explained with reference to Figs. 4(A) and 4(B). In Fig. 4(A), one end of the three-wire coaxial cable 5 is connected to a main frame 4 of the measuring apparatus. The other ends of the first conductor 31 and the third grounded conductor 33 of the cable 5 respectively are connected to DUT measuring terminals "a" and "b." In other words, a DUT (indicated by a parallel circuit of capacitor C and an insulation resistor R) is connected between these DUT measuring terminals "a" and "b. n A ferrite core transformer 41 is disposed over the first and second conductors, 31 and 32 of the three-wire coaxial cable 5.One end of a drive winding wound on this transformer 41 is connected through AC voltage source 23 to ground, and the other end thereof is connected via ground to the third conductor 33 of the cable 5. It should be understood that in this embodiment transformer 41 and the AC voltage source 23 constitute the AC voltage signal source according the present invention. By using the transformer 41, the voltage sources 13 and 23 which generate electro magnetic energy, are mutually separated and grounded. Then, there is little interference between the environment and the tester. The DC voltage source 13 usually includes a high frequency oscillator to generate a high DC voltage. In addition, the parallel connection of current measuring devices 12 and 22 is more desirable than a series connection as the former provides better mutual isolation.The best mode is that cable 32 is wound on the core 41 in three turns and a wire driven by voltage source 13 at 400 Hz is wound on the core for 10 turns.
An AC voltage measuring device (i.e., AC voltmeter 24 in Fig. 4A) is connected parallel to the above described AC voltage source 23, and measures the AC voltage applied by the AC voltage source 23 via the transformer 41 to the DUT 6.
In Fig. 4(B), an equivalent circuit of the transformer 41 comprises the first conductor, the second conductor, and the drive winding constituting a three-winding transformer.
Since the first conductor and the second conductor are driven simultaneously by the transformer 41, it is not required to employ a circuit floating separately from a ground. If the frequency of the AC voltage source 23 is set at several hundred kHz or more, a compact transformer having an energizing impedance of several tens of ohms may be constructed by merely winding the coaxial cable by 1 to 3 turns.
A DC voltage source 13 of Fig. 4A is connected between the first and second conductors 31 and 32 of the cable 5 and the above-described third conductor 33.
Similarly, a parallel circuit of a DC current measuring device and an AC current measuring device is connected between first and second conductors 31 and 32. The DC current measuring device is a series connection of an inductor 7 and a small-current DC ammeter 12, while the AC current measuring device is a series connection of a capacitor 8 and an AC ammeter 22. It is noted that the inductance of the inductor 7 is set to provide a sufficiently greater impedance than the impedance of the measuring circuit at the measuring frequency, and the capacitance of the capacitor 8 is set to provide a sufficiently smaller impedance than the impedance of the measuring circuit.
The operation of the measuring apparatus shown in Fig. 4(A) will now be explained. An AC voltage having a predetermined frequency is applied from the AC voltage source 23 via the ferrite core transformer 41 to the measuring terminals "a" and "b." A DC voltage is also applied from the DC voltage source 13 thereto. Thus, a superposition of the DC voltage and the AC voltage is applied between the terminals "a" and "b." When the value of AC current measured by the AC ammeter 22 is non-zero, it is determined that the connection between the terminals "a" and "b" and the DUT 6 is normal.
This measured value is compensated for the leakage current from the first conductor 31. Then, a determination is made whether the DUT 6 is acceptable based upon the measured value of the DC ammeter 12. Thus, the smaller this measured DC value, the better the DUT 6. The impedance of the DUT 6 is also determined from the measured values of the AC voltmeter 24 and the AC ammeter 22.
On the other hand, when both of the measured values of the DC ammeter 12 and the AC ammeter 22 are substantially 0, it is determined that a contact of the measuring terminals "a" and "b" is abnormal. Since the leakage current is compensated, a zero value reflects a loose connection in the circuit. To ascertain accuracy, the check and measurement may be repeated for the particular DUT 6.
As previously described, the followings are the advantages of the present invention: (1) In particular, the contact check can be positively performed in an automatic inspection process. The insulation resistance check and impedance check for the DUT are executed without the use of an additional cable.
(2) Since the third conductor of the three-wire coaxial cable is grounded, no adverse effect is caused by external electric fields during the insulation check and the impedance measurement. Accordingly, the precision of the impedance measurement does not deteriorate due to an extension of the cable. Even when one input line to the DUT is grounded, the insulation resistance check as well as the impedance measurement are performed with high precision.
(3) Since the ideal open condition can be realized, (i.e., no leakage current), an increase in capacitance due to the DUT is accurately determined even with an extended cable.
(4) Since low-frequency noise does not affect the DC ammeter in the embodiment having a ferrite core transformer disposed over the first and second conductors, the precision of the insulation resistance check and the contact check are improved. There is no need for an additional circuit for floating a common ground point for a DC current measuring system. Conversely, since no adverse affect over the impedance measuring system is caused by the current path for a measurement of the DC current, there is no deterioration in the precision of the impedance measurement.
It should be noted that the present invention is not limited to the circuit connections shown in Fig. 3. For instance, a series connection between a DC ammeter and an inductor may be employed as the DC current measuring device.
A series connection between a capacitor and an AC ammeter may be employed as the AC current measuring device. In the alternative, these series connection circuits may be connected in parallel to each other and between the first conductor and the second conductor, whereby DC and AC currents are measured. Also, a ferrite core transformer disposed over the first and second conductors may be employed as an AC voltage signal source, and an AC voltage may be applied via this ferrite core transformer across a combination of the first, second conductor or the third conductor.

Claims (5)

CLAIMS What is claimed:
1. A two-terminal circuit element measuring apparatus for performing a contact check function, having a measuring apparatus with a body and a three-wire coaxial cable comprising of a first conductor as a center conductor thereof, a second conductor for covering said first conductor, and a third grounded conductor for further covering said second conductor, one end of said cable being connected to said body and the other end of said first and third conductors of said cable being connected to an object to be measured, said measuring apparatus comprising:: an AC voltage signal source connected for applying an AC signal between said first conductor and said third grounded conductor, and between said second conductor and said third grounded conductor; a DC voltage signal source connected for applying a DC signal between said first conductor and said third grounded conductor, and between said second conductor and said third grounded conductor; an AC voltage measuring device for measuring the AC voltage applied to the object to be measured by said AC voltage signal source; a DC current measuring device for measuring the DC current supplied to the object to be measured by said DC voltage signal source; and, an AC current measuring device for measuring the AC current supplied to the object to be measured by said AC voltage signal source.
2. A two-terminal circuit element measuring apparatus according to claim 1, wherein said AC voltage signal source further comprises an AC voltage source, and a ferrite core transformer disposed over the first and second conductors of the three-wire coaxial cable, one end of said AC voltage source being connected to the third grounded conductor of the three-wire coaxial cable, one terminal end of a drive winding on said ferrite core transformer being connected to the other end of said AC voltage source, the other end of said driving winding being connected to said third conductor.
3. A two-terminal circuit element measuring apparatus according the claim 1, wherein said DC voltage measuring device further comprises an inductor and a DC ammeter connected in series.
4. A two-terminal circuit element measuring apparatus according to claim 1, wherein said AC voltage measuring device further comprises a capacitor and an AC ammeter connected thereto in series.
5. A method of distinguishing a loose connection between a DUT and a measuring apparatus from a high impedance in the DUT, comprising the steps of: a. applying an AC signal to the DUT through a three-wire coaxial cable; b. applying a DC signal so as to compensate for a leakage current occurring within the three-wire coaxial; c. measuring the AC current flowing through said DUT; d. measuring the DC current flowing through said DUT; and e. determining whether a loose connection between the DUT and the measuring apparatus exists based upon the measurement values taken in Steps c) and d).
GB9220267A 1991-09-26 1992-09-25 Circuit element measuring apparatus for performing contact checks Expired - Fee Related GB2259992B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27481791A JP3155310B2 (en) 1991-09-26 1991-09-26 Two-terminal circuit element measuring device with contact check function and contact check method for measured object

Publications (3)

Publication Number Publication Date
GB9220267D0 GB9220267D0 (en) 1992-11-11
GB2259992A true GB2259992A (en) 1993-03-31
GB2259992B GB2259992B (en) 1995-06-21

Family

ID=17546983

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9220267A Expired - Fee Related GB2259992B (en) 1991-09-26 1992-09-25 Circuit element measuring apparatus for performing contact checks

Country Status (2)

Country Link
JP (1) JP3155310B2 (en)
GB (1) GB2259992B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG125977A1 (en) * 2005-03-11 2006-10-30 Rohde & Schwarz Systems & Comm Solid state absorbing clamp
US7271597B2 (en) * 2005-10-26 2007-09-18 Sony Corporation Electronic device, transmission system, and method for determining connection condition
RU2503020C1 (en) * 2012-06-13 2013-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Ижевский государственный технический университет имени М.Т. Калашникова Meter of parameters of rc-dipoles
RU2536333C1 (en) * 2013-07-11 2014-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ижевский государственный технический университет имени М.Т. Калашникова" Tester with storage of dissipative cg two-terminal networks

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6646705B2 (en) * 2018-04-26 2020-02-14 株式会社アドバンテスト measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG125977A1 (en) * 2005-03-11 2006-10-30 Rohde & Schwarz Systems & Comm Solid state absorbing clamp
US7271597B2 (en) * 2005-10-26 2007-09-18 Sony Corporation Electronic device, transmission system, and method for determining connection condition
RU2503020C1 (en) * 2012-06-13 2013-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Ижевский государственный технический университет имени М.Т. Калашникова Meter of parameters of rc-dipoles
RU2503020C9 (en) * 2012-06-13 2015-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Ижевский государственный технический университет имени М.Т. Калашникова Meter of parameters of rc-dipoles
RU2536333C1 (en) * 2013-07-11 2014-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ижевский государственный технический университет имени М.Т. Калашникова" Tester with storage of dissipative cg two-terminal networks

Also Published As

Publication number Publication date
JPH0587857A (en) 1993-04-06
GB9220267D0 (en) 1992-11-11
JP3155310B2 (en) 2001-04-09
GB2259992B (en) 1995-06-21

Similar Documents

Publication Publication Date Title
US5345182A (en) Impedance meter capable of performing measurements at high precision over wide impedance and frequency ranges
JP3442822B2 (en) Measurement cable and measurement system
Hu et al. Transfer function characterization for HFCTs used in partial discharge detection
US5189375A (en) Inductive cable resistance tester
US5321363A (en) Two-terminal circuit element measuring apparatus for performing contact checks
US5532590A (en) Apparatus for measuring circuit parameters wherein errors due to transmission lines are prevented
US5463323A (en) Impedance meter
GB2259992A (en) Checking connections
US3283242A (en) Impedance meter having signal leveling apparatus
US5216373A (en) Circuit element measuring apparatus and method for measuring a parameter of a DUT including a compensation network having an admittance characteristic
JP3499315B2 (en) Compensation method of electromagnetic induction type probe
Pommerenke et al. A new test setup and method for the calibration of current clamps
Kusters et al. A direct current comparator bridge for high resistance measurements
Narbut Transformer corona measurement using condenser bushing tap and resonant measuring circuits
US6348802B1 (en) Device for enhancing contact checking
EP0443835B1 (en) Circuit element measuring apparatus and method
US5055828A (en) Parasitic-ground current indicator for electrical system
Moorthy et al. Practical on-line partial discharge measuring system for high voltage apparatus
PL237056B1 (en) System for measuring the frequency response of transformer windings
Tumbrägel et al. Application of a Calibration Procedure for EMC Analysis with an Open Directional Coupler
JPH02222845A (en) Detection of discharge point for test cable
JP3469160B2 (en) Contact inspection sensitivity improvement device
Ovsyannikov et al. Inverted diagram of calibration for partial discharge measuring
JPS6349727Y2 (en)
Cronin Leads and connectors used in conjunction with measuring equipment to justify accreditation requirements of uncertainty statements [dc to 1 MHz]

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20080925