GB2230114A - A switch-mode power supply - Google Patents

A switch-mode power supply Download PDF

Info

Publication number
GB2230114A
GB2230114A GB9004975A GB9004975A GB2230114A GB 2230114 A GB2230114 A GB 2230114A GB 9004975 A GB9004975 A GB 9004975A GB 9004975 A GB9004975 A GB 9004975A GB 2230114 A GB2230114 A GB 2230114A
Authority
GB
United Kingdom
Prior art keywords
voltage
winding
power supply
transformer
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9004975A
Other versions
GB9004975D0 (en
GB2230114B (en
Inventor
Giovanni Michele Leonardi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Licensing Corp
Original Assignee
RCA Licensing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB898905173A external-priority patent/GB8905173D0/en
Priority claimed from GB898905172A external-priority patent/GB8905172D0/en
Priority claimed from US07/424,354 external-priority patent/US4937727A/en
Application filed by RCA Licensing Corp filed Critical RCA Licensing Corp
Publication of GB9004975D0 publication Critical patent/GB9004975D0/en
Publication of GB2230114A publication Critical patent/GB2230114A/en
Application granted granted Critical
Publication of GB2230114B publication Critical patent/GB2230114B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Television Receiver Circuits (AREA)

Abstract

A first switching transistor Q2 is coupled to a primary winding W1 of an isolation transformer T2. A secondary winding W2 of the transformer T2, is coupled via a switching diode D3 to a capacitor C4 of a control circuit 120 for developing a DC control voltage V4 in the capacitor C4. The DC level of the control voltage V4 varies in accordance with a B+ supply voltage. A change in B+ voltage produces a corresponding greater change in the control voltage V4. The control voltage V4 is applied to the transformer T2 when the diode D3 is conducting, for producing a pulse-width modulated control signal V5. The control signal V5 is applied to a mains coupled chopper transistor Q1 for generating and regulating the B+ supply voltage in accordance with the pulse width modulation of the control signal V5. In standby operation low power operation is provided by burst mode switching operation of oscillator 110 which occurs during an interval (t10-t12, Fig 5), the oscillator being periodically triggered by half wave rectified voltage of signal V7 at mains frequency. A soft start up is provided whereby the power supply operates initially in the burst mode until started. <IMAGE>

Description

A SYNCHRONIZED SWITCH-MODE POWER SUPPLY The invention relates to switch-mode power supplies.
Some television receivers have input signal terminals for receiving, for example, external video input signals such as R, G and B input signals, that are to be developed relative to the common conductor of the receiver.
Such signal terminals and the receiver common conductor may be coupled to corresponding signal terminals and common conductors of external devices, such as, for example, a VCR or a teletext decoder.
To simplify the coupling of signals between the external devices and the television receiver, the common conductors of the receiver and of the external devices are connected together so that all are at the same potential.
The signal lines of each external device are coupled to the corresponding signal terminals of the receiver. In such an arrangement, the common conductor of each device, such as of the television receiver, may be held "floating", or conductively isolated, relative to the corresponding AC mains supply source that energizes the device. When the common conductor is held floating, a user touching a terminal that is at the potential of the common conductor will not suffer an electrical shock.
A floating common conductor is isolated from the potentials of the terminals of the AC mains supply source that provide power to the television receiver typically by a transformer. The floating or isolated common conductor is sometimes referred to as a "cold" ground conductor.
In a typical switch mode power supply (SMPS) of a television receiver the AC mains supply voltage is directly coupled to a bridge rectifier, for example, without using transformer coupling. An unregulated direct current (DC) input supply voltage is produced that is, for.example, referenced to a common conductor, referred to as "hot" ground, because it is conductively coupled to the AC mains supply source. A pulse width modulator controls the duty cycle of a chopper transistor switch that applies the unregulated supply voltage across a primary winding of an isolating flyback transformer. A flyback voltage, at a frequency that is determined by the modulator, is developed at a secondary winding of the transformer, and is rectified to produce a DC output supply voltage such as a B+ voltage that energizes a horizontal deflection circuit of the television receiver.The primary winding of the flyback transformer is, for example, conductively coupled to the hot ground conductor. The secondary winding of the flyback transformer and B+ voltage may be conductively isolated from the hot ground conductor by the hot-cold barrier formed by the transformer.
In some prior art circuits, B+ voltage is sensed by sensing a voltage developed by a transformer action at a separate winding of the flyback transformer.
Disadvantageously, such sensed voltage may not track variation of voltage B+ with sufficient accuracy. In order to provide better regulation of B+ voltage, it may be desirable to sense B+ voltage directly at a terminal where it is produced.
In a SMPS embodying an aspect of the invention, an output supply voltage is produced in accordance with a control signal having a controllable duty cycle. A control voltage is produced at a level that is indicative of the value of the duty cycle of the control signal that is required for regulating the output supply voltage. A proportional change in the output supply voltage is capable of causing a proportionally greater change in the control voltage.
Both the control and output supply voltages are, for example, referenced to the cold ground conductor. The duty cycle indicative control voltage is applied via a switching arrangement across a winding of an isolation transformer and coupled via the transformer to an arrangement that generates the control signal for varying the duty cycle of the control signal. The transformer isolates the control voltage and the output supply voltage from the control signal generating arrangement that is referenced to the hot ground conductor.
In an embodiment of the invention, the transformer is included in a blocking oscillator. The transformer of the blocking oscillator also provides a regenerative signal path in the oscillator. Variations of the control voltage produce corresponding variations of the duty cycle of the oscillator control signal. The oscillator output signal is produced at a second winding of the transformer. The oscillator control signal is referenced to the hot ground conductor and is conductively isolated, with respect to an electrical shock hazard, from the output supply voltage by the transformer of the blocking oscillator. The oscillator output signal, that is a pulse-width modulated signal, is applied to a chopper transistor switch to produce pulse width modulation of the duty cycle of the chopper transistor switch.The chopper transistor switch is used for producing the output supply voltage in a manner that regulates the output supply voltage.
A switch mode power supply, embodying an aspect of the invention, includes a transformer having first and second windings. First switching arrangement is coupled to the first winding for generating a first current in the first winding to energize the second winding. A second switching arrangement is coupled to the second winding and to a capacitor for generating a rectified current from the second winding that develops a first control voltage in the capacitor. The first control voltage is coupled to the transformer for developing a second control voltage that changes in accordance with the first control voltage. The first control voltage is controlled in such a way that a change in a magnitude of the output supply voltage from a nominal value thereof produces an amplified change in a magnitude of the second control voltage.An output supply voltage is generated by an arrangement that includes a switching arrangement that is switched at timing points determined in accordance with the amplified change of the second control voltage for regulating the output supply voltage.
In the Drawing: FIGURE 1 illustrates a power supply embodying an aspect of the invention; FIGURES 2a-2d illustrate waveforms useful for explaining the run mode operation of the circuit of FIGURE 1 when loading varies; FIGURES 3a-3g illustrate additional waveforms useful for explaining the run mode operation of the circuit of FIGURE 1 under a constant loading condition; FIGURE 4 illustrates the construction of the isolation transformers that are used in the circuit of FIGURE 1; FIGURES 5a-5d illustrate waveforms useful for explaining a standby operation of the power supply of FIGURE 1; FIGURES 6a-6d illustrate transient waveforms useful for explaining the operation of the circuit of FIGURE 1 during start-up; FIGURE 7 illustrates the circuit of FIGURE 1 that incorporates a modification to increase output power; ; FIGURE 8 provides a table of performance data of the circuit of FIGURE 1 and also, for comparison purposes, of a conventional power supply; and FIGURE 9 provides a table of additional performance data of the circuit of FIGURE 1 and also, for comparison purposes, of a conventional power supply.
FIGURE 1 illustrates a switch-mode power supply (SMPS) 200, embodying an aspect of the invention. SMPS 20C produces an output B+ supply voltage of +145 volts at terminal 99 that is used for energizing, for example, a deflection circuit 222 of a television receiver, not shown, and an output supply voltage V+ of +18 volts, that are bot regulated. A mains supply voltage VAC is rectified in a bridge rectifier 100 to produce an unregulated voltage VUR at terminal 100a. A primary winding Wp of a flyback isolation transformer T1 is coupled between terminal 100a and a drain electrode of a power chopper MOS filed effect transistor (FET) Q1.
The source electrode of MOS transistor Q1 of FIGURE 1 is coupled to a common conductor, referred to herein as "hot" ground. The gate electrode of FET Q1 is coupled via a coupling resistor 102 to a terminal 104 where a pulse-width modulated signal V5 is produced. Signal V5 produces a switching operation in FET Q1. A secondary winding W3 of an isolation transformer T2, across which signal V5 is developed, is coupled between terminal 104 and the hot ground conductor. A pair of back-to-back zener diodes Z18A and Z18B provide gate protection for FET Q1.
Winding W3, winding Wp, FET Q1 and signal V5 are at potentials that are referenced to the hot ground conductor.
Transformers T1 and T2 are constructed in a manner shown in FIGURE 4. Similar symbols and numerals in FIGURES 1 and 4 indicate similar items or functions.
FIGURES 3a-3g illustrate waveforms useful for explaining the normal steady state operation or run mode of the SMPS of FIGURE 1 under a constant loading condition.
Similar symbols and numerals in FIGURES 1 and 3a-3g indicate similar items or functions.
During, for example, interval t0 - tl of FIGURE 3b of a corresponding given cycle or period, the voltage of pulse signal V5 is positive relative to the hot ground conductor for maintaining FET Q1 of FIGURE 1 conductive during interval to - tl of FIGURE 3b. Consequently, a current il in winding Wp of FIGURE 1 is upramping, as shown in FIGURE 3d, during interval t0 - tl. Therefore, inductive energy is stored in transformer T1 of FIGURE 1.
At time tl of FIGURE 3d, FET Q1 of FIGURE 1 becomes nonconductive.
After FET Q1 becomes nonconductive, the inductive energy stored in winding Wp is transferred by flyback transformer action to a secondary winding Ws of transformer T1. Flyback pulses developed at corresponding terminals 108 and 109 of winding Ws are rectified by diodes 106 and 107, respectively, and filtered by capacitors 121 and 122, respectively, for producing DC voltages B+ and V+, respectively, that are all referenced to a second common conductor, referred to herein as "cold" ground. The cold ground is conductively isolated from the hot ground conductor with respect to electrical shock hazard by transformers T1 and T2. FET Q1, transformer T1 and diodes 106 and 107 form an output stage of the SMPS.
A pulse-width modulator of SMPS 200 includes a blocking oscillator 110, embodying an aspect of the invention, that produces switching signal V5 for controlling the switching operation of FET Q1. Oscillator 110 includes a switching transistor Q2 having a base electrode that is also controlled or switched by signal V5.
Winding W3 of transformer T2 provides positive feedback in oscillator 110 by developing signal V5. Transformer T2 has a primary winding W1 that is coupled between voltage VUR and the collector of transistor Q2 such that winding W1 is referenced to the hot ground conductor. A secondary winding W2 of transformer T2 that is referenced to the cold ground conductor is conductively coupled to a diode D3 of a control circuit 120, embodying another aspect of the invention, that is also referenced to the cold ground conductor.
The cathode of diode D3 is coupled to the cold ground conductor via a capacitor C4. As explained later on, a DC control voltage V4, developed across capacitor C4, varies the nonconduction time, and therefore the duty cycle of transistor Q2 during each period.
A capacitor C2 is coupled between the base electrode of transistor Q2 and a terminal 104a. A resistor R2 is coupled between terminal 104a and terminal 104 where signal V5 is developed. During interval t0 - tl of FIGURE 3b, a current i5 of FIGURE 3c is produced in resistor R2 of FIGURE 1 that is coupled between terminals 104 and 104a.
Current i5 of FIGURE 3c, that is produced by signal V5 of FIGURE 3b, charges capacitor C2 of FIGURE 1 in a manner that turns on transistor Q2, during interval to - tl of FIGURE 3d.
During normal operation, when transistor Q2 of FIGURE 1 is conductive, a current i2 of FIGURE 3d in winding W1 of FIGURE 1 increases linearly, until the emitter voltage of transistor Q2, that is developed across an emitter resistor R4, is sufficiently high to initiate a rapid turn-off operation of transistor Q2. Feedback resistor R4 is coupled between the emitter of transistor Q2 and the hot ground conductor. Resistor R4 causes a gradual decrease of current i5 of FIGURE 3c when transistor Q2 of FIGURE 1 is conductive until transistor Q2 ceases to conduct at time tl of FIGURE 3c. Resistor R4 of FIGURE 1 also serves to optimize the switching condition and to provide current protection for transistor Q2. The result is that the voltage across winding W1 reverses polarity.
The turn-off operation is rapid because of the positive feedback caused by winding W3 in developing signal V5.
As indicated before, winding W3 provides pulse drive signal V5 that controls also FET Q1. The conduction interval in each cycle of FET Q1 and transistor Q2 remains substantially constant or unaffected by loading.
Therefore, advantageously, the stored energy in transformer T1, when transistor Q1 becomes nonconductive, is substantially constant for a given level of voltage VUR.
However, the conduction interval may vary when a variation in voltage VUR occurs.
When transistor Q2 ceases to conduct, a downramping current i4 of FIGURE 3e is produced in winding W2 of transformer T2 of FIGURE 1. Current i4 causes diode D3 of FIGURE 1 to be conductive, and charges capacitor C4, during interval tl - t4 of FIGURE 3e. For a given level of voltage VuR of FIGURE 1, and for a given duty cycle of transistor Q2, the charge added to capacitor C4 is the same in each cycle. During interval tl - t4, control voltage V4 of FIGURE 1, except for the forward voltage drop in diode D3, is substantially developed across winding W2.
In accordance with an aspect of the invention, voltage V4 determines the length of interval tl - t4 of FIGURE 3e that is required to deplete the magnetic energy stored in transformer T2 of FIGURE 1. When, at time t4, of FIGURE 3e, current i4 becomes zero, the polarity of signal V5 of FIGURE 3b changes as a result of resonance oscillations in the windings of transformer T2. Therefore, positive current is of FIGURE 3c is generated. As explained before, when current i5 is positive, it causes transistors Q1 and Q2 to be conductive.
During the aforementioned nonconduction interval tl - t4 of FIGURE 3b of transistors Q1 and Q2 of FIGURE 1, signal V5 is negative, as shown during interval t1 - t4 of FIGURE 3b. Consequently, a current in the opposite polarity, as shown in FIGURE 3c, flows through capacitor C2 of FIGURE 1, during interval tl - t2 of FIGURE 3c and through diode D1 during interal t2 - t4 of FIGURE 3c. The resulting charge in capacitor C2 produces a voltage in capacitor C2 in such a polarity that tends to turn on transistor Q2 rapidly, when, at time t4 of FIGURES 3b, signal V5 reverses polarity.
Control circuit 120 of FIGURE 1, that is referenced to the cold ground conductor, controls the duty cycle of oscillator 110 by varying control voltage V4 across capacitor C4. A transistor Q4 of circuit 120 is coupled in a common base amplifier configuration. The base voltage of transistor Q4 is obtained via a temperature compensating forward biased diode D5 from a +12V voltage regulator VR1. Regulator VR1 is energized by voltage V+.
A resistor R51 is coupled between the emitter of transistor Q4 and terminal 99. As a result of the common base operation, a current i8 in resistor R51 is proportional to voltage B+. An adjustable resistor R5, that is used for adjusting the level of voltage B+, is coupled between the cold ground conductor and a junction terminal between the emitter of transistor Q4 and-resistor R51. Resistor R51 is used for controlling the level of the current in transistor Q4. Thus, an adjustable preset portion of current is flows to the cold ground conductor through resistor R5, and an error component of current i8 flows through the emitter of transistor Q4.
The collector current of transistor Q4 is coupled to the base of a transistor 03 for controlling a collector current of transistor Q3. The collector of transistor Q3, forming a high output impedance, is coupled to the junction between capacitor C4 and diode D3. When transistor Q2 becomes nonconductive the stored energy in transformer T2 causes current i4 to flow via diode D3 into capacitor C4, as indicated before. Regulation of the power supply is obtained by controlling control voltage V4. Voltage V4 is controlled by controlling the loading across winding W2 of transformer T2 by means of transistor Q3.
The collector current of transistor Q3, that forms a current source having a high output impedance, is coupled to capacitor C4 that operates as a flywheel. In steady state, the amount of charge that is added to capacitor C4 during interval tl - t4 of FIGURE 3e is equal to the amount of charge that is removed by transistor Q3 from capacitor C4 in a given period to - t4.
FIGURES 2a-2d illustrate waveforms useful for explaining the regulation operation of the SMPS of FIGURE 1 under different loading conditions. Similar symbols and numerals in FIGURES 1, 2a-2d and 3a-3g indicate similar items or functions.
After, for example, time tA of FIGURES 2a-2d, the power supply current loading across capacitor 121 of FIGURE 1 decreases and voltage B+ tends to increase. As a result of the increase in voltage B+, transistor 03 conducts a higher level of collector current. Therefore, voltage V4 of FIGURE 2c across capacitor C4 of FIGURE 1 becomes smaller.
Therefore, a longer time is required in each period for depleting the stored inductive energy from transformer T2 of blocking oscillator 110, after transistor Q2 becomes nonconductive. It follows that the length of the interval, tA - tB, of FIGURE 2a, in a given cycle, when transistor Q2 of oscillator 10 of FIGURE 1 is nonconductive, increases under reduced loading condition. The result is that the duty cycle, that is the ratio between the "on" time to the "off" time of transistor Q1 decreases, as required for proper regulation.
In steady state, voltage V4 is stabilized at a level that causes an equilibrium between the charging and discharging currents of capacitor C4. The increase in voltage B+ is capable of causing, advantageously, a proportionally greater change in voltage V4, as a result of amplification and current integration of the collector current of transistor Q3 in capacitor .C4. In a transient condition, as long as voltage B+ is, for example, greater than +145 volts, voltage V4 will decrease.
The result is that voltage V4 of FIGURE 1 tends to change in a manner that tends to nullify the aforementioned tendency of voltage B+ to increase under reduced loading.
Thus, regulation is obtained in a negative feedback manner.
In the extreme case, a short circuit across winding W2 could inhibit oscillation in oscillator 110 thus providing, advantageously, an inherent fail safe feature, as described later on.
Conversely, a tendency of voltage B+ to decrease will increase the duty cycle of transistors Qi and Q2 in a manner that provides regulation. Thus, the nonconduction interval of transistor Q1 varies with current loading at a terminal 99 where voltage B+ is developed.
Processing voltage B+ for producing control voltage V4 is accomplished, advantageously, in a DC coupled signal path for improving error sensing. Also, a change in voltage B+ is capable of causing a proportionally greater change in voltage V4 thus improving error sensitivity.
Only after the error in voltage B+ is amplified, the amplified error contained in DC coupled voltage V4 is transformer or AC coupled to effectuate pulse-width modulation. The combination of such features improves the regulation of voltage B+.
Another way by which an arrangement similar to control circuit 120 is used or regulation purposes is shown and explained in a copending U.S. Patent Application, 424,353, filed 19 October 1989, entitled, A SYNCHRONIZED Gg cfooS-r; rZ c, SWITCH-MODE POWER SUPPLY, (RCA 85439/filed herewith). There, a voltage that is produced similarly to voltage V4 of FIGURE 1 is transformer coupled to a sawtooth generator.
The transformer coupled voltage varies a sawtooth signal that is used for producing a pulse-width modulated control signal.
A zener diode D4 is coupled in series with a resistor RD4, between the base and collector electrodes of transistor Q3. Zener diode D4, advantageously, limits voltage V4 to about 39 volts.
In accordance with a feature of the invention, zener diode D4 limits the frequency of oscillator 110, or the minimum cut-off time of transistors Q2 and 01. In this way, the maximum power transferred to the load is, advantageously, limited for providing over-current protection.
For safe operation, it may be desirable to have secondary current i3 in winding W8 decay to zero before transistor Q1 is turned on again. This means that the decay time of current i3 should be, preferably, shorter than the minimum decay time of current i4 of blocking oscillator 110. This condition can be met by a proper choice of the primary inductance of transformer T2 and the value of zener diode D4.
Standby operation is initiated by operating SMPS 200 in a low power operation mode. The low power operation mode occurs when the power demand from the SMPS drops below 20-30 watts. For example, when a horizontal oscillator, not shown, that is controlled by a remote control unit 333, ceases operating, horizontal deflection circuit 222, that is energized by voltage B+ ceases operation as well.
Therefore, the loading at terminal 99, where voltage B+ is produced, is reduced. Consequently, voltage B+ and the error current in transistor Q4 tend to increase.
Therefore, transistor Q3 saturates, causing a near short circuit across winding W2 of transformer T2, that causes voltage V4 to be approximately zero. Consequently, unlike in the run-mode of operation, a positive pulse of signal V5 cannot be generated by resonance oscillations in transformer T2. It follows that the regenerative feedback loop is prevented from initiating the turn on of transistor Q2. Consequently, continuous oscillations cannot be sustained.
However, transistor Q2 is periodically triggered into switching in a burst mode operation by an upramping portion of a half wave rectified voltage of a signal V7.
Signal V7 occurs at the mains frequency, such as 50Hz.
Signal V7 is derived from bridge rectifier 100 and is applied to the base of transistor Q2 via a series arrangement of a resistor R1 and a capacitor C1. The series arrangement operates as a differentiator that produces a current i7.
FIGURES 5a-5d illustrate waveform during standby operation, indicating that burst mode switching operation of oscillator 110 occurs during an interval t10-t12 followed by a dead time interval tl2-tl3 when no trigger pulses of signal V5 are present in the blocking oscillator.
Similar symbols and numerals in FIGURES 1 and 5a-5d indicate similar items or functions.
A parallel arrangement of a capacitor C3 of FIGURE 1 and a resistor R3 is coupled in series with a diode D2 to form an arrangement that is coupled between the hot ground conductor and junction terminal 104a, between capacitor C2 and resistor R2. A diode D1 is coupled in parallel with capacitor C2.
During normal run mode operation, capacitor C3 remains charged to a constant voltage V6 by the positive voltage pulses of signal V5 that is developed in winding W3 each time transistor Q2 is conductive. Therefore, during normal run mode operation, capacitor C3 has no effect.
During standby operation, capacitor C3 discharges during the long inactive periods or dead time, as shown between times t12-t13 in FIGURE Sb.
Immediately after time t10 of FIGURE 5a of a given interval t10-t13, current i7 of FIGURE 1 that is produced by voltage differentiation in capacitor C1 increases from zero to a maximum positive value. As a result, a base current, produced in transistor 02, causes transistor Q2 to be conductive. When transistor Q2 becomes conductive, a positive pulse of signal V5 is produced in winding W3 that renders transistors Q1 and Q2 conductive.
Similarly to normal run mode operation that was described before, transistor Q2 remains conductive until the magnitude of the base current of transistor Q2 is insufficient to maintain transistor Q2 in saturation, as collector current i2 is upramping. Then, collector voltage V2 increases and signal V5 decreases. The result is that transistor Q2 is turned-off.
The voltage across capacitor C2 produces negative current is that discharges capacitor C2 via a diode D7 and that maintains transistor Q2 in cut-off. As long as a magnitude of negative current is is larger than that of positive current i7, the base current in transistor Q2 is zero and transistor Q2 remains nonconductive. When the magnitude of negative current is of FIGURE 1 becomes smaller than current i7, transistor Q2 is turned on again and positive current is is generated.
During a substantial portion of a given conduction interval of transistor Q2, current is flows entirely via capacitor C2 to form the base current of transistor Q2.
Because collector current i2 is upramping, the emitter voltage of transistor Q2 increases in an upramping manner, causing the voltage at the anode of diode D2 to increase.
When the voltage at the anode of diode D2 becomes sufficiently positive, diode D2 begins conducting.
Therefore, a substantial portion of current is is diverted by capacitor C3 from the base of transistor Q2. The result is that the base current becomes insufficient to sustain the collector current of transistor 02. Therefore, the positive feedback signal path causes transistor Q2 to turn off. Thus, the peak amplitude of current i2 is determined by the level of voltage V6 across capacitor C3.
During interval t10 - tl2 of FIGURES 5a-5d, capacitor C3 of FIGURE 1 is charged by positive current i5.
Therefore, voltage V6 of FIGURE 5b becomes progressively larger. Voltage V6 that becomes progressively larger causes the conduction interval during each cycle that occurs in interval tlo-tl2 of FIGURES 5a-5d to become progressively longer.
During a corresponding nonconduction portion of each cycle that occurs in interval tlo-tl2 capacitor C2 of FIGURE 1 is discharged. The length of the nonconduction interval of transistor Q2 in each cycle is determined by the time required for discharging capacitor C2 to such a level that causes a magnitude of negative current i5 to be smaller than that of positive current i7. That nonconduction interval becomes progressively longer because capacitor C2 is charged to a progressively higher voltage and also because the magnitude of current i7 becomes progressively smaller. Therefore, positive base current will begin flowing in the base of transistor Q2 after progressively longer nonconduction intervals.
At time t12 of FIGURE 5a current i7 is zero.
Therefore, burst mode operation that occurred during interval tl0-tl2 cannot continue and the long dead time interval tl2-tl3 occurs in which no switching operation happens. At time tl3, positive current i7 is generated again and a subsequent burst mode switching interval occurs in transistors Q1 and 02.
During the burst mode interval t10-t12 of FIGURE 5d, the length of the conduction interval in each cycle increases progressively, as explained before. Such operation may be referred to by the term soft start operation. Because of the soft start operation, capacitor 121 for example, of SMPS 200 is charged or discharged gradually. Voltage V6 by being lower than during run mode operation maintains the switching frequency of transistors Q1 and Q2 of FIGURE 1 above the audible range in SMPS 200 of FIGURE 1 throughout interval t10-t12 of FIGURE 5a. As a result of the soft start operation and of the high switching frequency during standby, noise produced by parasitic mechanical vibration in inductors and transformers of SMPS 200 of FIGURE 1 is, advantageously, substantially reduced.
The burst mode operation during interval t10-t12 of FIGURE 5c produces voltage V+ of FIGURE 1 at a sufficient level to enable the operation of remote control unit 333 of FIGURE 1, during standby. Because of the burst mode operation, the energy consumed in SMPS 200 is maintained substantially lower, at about 6 watts, than during normal run mode operation.
To generate voltage V+ at the required level for operating remote control unit 333, a corresponding average duty cycle of transistors Q1 and Q2 that is substantially lower than during run mode is required. The length of the conduction interval in transistor Q1, for example, should be longer than the storage time of transistor Q1.
Accordingly, by operating in the burst mode, the conduction interval of transistor Q1 in each cycle can be maintained longer for obtaining the required lower average duty cycle than if continuous switching operation had occurred during standby. Such continuous switching operation in transistors Q1 and Q2 occurs during normal run mode operation when no dead time intervals such as interval t12t13 of FIGURE 5d occur.
The SMPS has also a soft start-up feature, as will now be explained with the aid of waveforms in FIGURES 6a6d. Similar symbols and numerals in FIGURES 1, 5a-5d and 6a-6d indicate similar items or functions. The start-up mode is similar to the stand-by operation. When the power supply is first turned on, capacitors C3 and C4 are discharged and there is no forward bias on the base of transistor Q2. Oscillation is initiated by feeding a small portion of rectified AC supply signal V7 to the base of transistor Q2. As illustrated by FIGURE 6d, the oscillator duty cycle is initially very short, or the interval in each cycle when transistor Q2 is nonconductive is long, because winding W2 of transformer T2 is heavily loaded by the discharged capacitor C4.The charge on capacitors C3 and C4, and voltage B+ build up gradually over a period of about 15msec, as shown in FIGURE 6c. Normal operation begins following this slow build up.
In case of a short circuit at terminal 99 of FIGURE 1, for example, SMPS 200 goes into an intermittent mode operation, in a similar manner to the stand-by operation mode. For example, if capacitor C121 of FIGURE 1 is short circuited, the increase in current i3 flowing through secondary winding Ws of transformer T1 causes a higher negative bias to develop across a resistor R6 that is coupled to the emitter of transistor 03. Base current then flows into transistor 03 through a diode D55, causing transistor Q3 to saturate and to clamp its collector voltage V4 to ground. The consequent loading of transformer T2 causes SMPS 200 to operate in the intermittent burst mode as described for stand-by mode operation.
The low voltage supply portion of SMPS 200 that produces voltage V+ may be arranged to operate as a forward converter in case of, for example, high audio power requirements. FIGURE 7 shows a modification of the circuit of FIGURE 1 for obtaining forward converter operation. A resistor Rx and a diode Dy of FIGURE 7 serve as an overload protection, as explained later on. Similar symbols and numerals in FIGURES 1 and 7 indicate similar items or functions. Should an overload occur when the modification shown in FIGURE 7 is employed to provide the high power audio supply, resistor Rx senses the excess current and provides negative bias to the emitter of transistor Q3.
FIGURE 8 shows, in a table form, the variation of voltage B+ caused by a corresponding variation in a beam current flowing in an ultor electrode, not shown, of a television receiver. Voltage B+ energizes the deflection circuit output stage, not shown, for producing the ultor voltage and the beam current. FIGURE 9 shows, in a table form, a variation of voltage B+ caused by a variation of mains supply voltage Vc.
For comparison purposes, row No. 1 in each of the tables of FIGURES 8 and 9 provides data obtained when a conventional prior art SMPS using an integrated circuit TDA4601 control circuit and a power transformer Orega No.
V4937700 is utilized. Row No. 2 in each of the tables of FIGURES 8 and 9 provides data obtained when the unmodified SMPS of FIGURE 1 is utilized. As can be seen, the performance of SMPS 200 of FIGURE 1 is superior.

Claims (36)

CLAIMS:
1. A switch mode power supply, comprising: a transformer having first and second windings; first switching means coupled to said first winding for generating a first current in said first winding to energize said second winding; a capacitor; second switching means coupled to said second winding and to said capacitor for generating a rectified current from said second winding that develops a first control voltage in said capacitor, said first control voltage being coupled to said transformer for developing a second control voltage that changes in accordance with said first control voltage; means responsive to an output supply voltage and coupled to said capacitor for controlling said first control voltage in such a way that a change in a magnitude of said output supply voltage from a nominal value thereof produces an amplified change in a magnitude of said second control voltage;; a source of input supply voltage; and means energized by said input supply voltage and responsive to said second control voltage that is applied thereto via said transformer for generating from said input supply voltage said output supply voltage, said output supply voltage generating means including switching means that is switched at timing points determined in accordance with said amplified change of said second control voltage for regulating said output supply voltage.
2. A power supply according to Claim 1 wherein said first control voltage is coupled to said second winding via said second switching means that rectifies said rectified current flowing in said second winding.
3. A power supply according to Claim 1 wherein said change in said output supply voltage is DC coupled, from a terminal where said output supply voltage is developed, to said second winding.
4. A power supply according to Claim 1 wherein said first switching current stores inductive energy in said transformer during a first portion of a given period, said stored energy being removed from said transformer by said rectified current, that flows in said second winding, in a flyback mode of operation of said transformer during a second portion of said given period.
5. A power supply according to Claim 4 wherein said amplified change in said second control voltage produces a corresponding change in a length of said second portion of said given period that is required to remove said stored energy from said transformer.
6. A power supply according to Claim 1 wherein said second switching means comprises a diode that is forward biased by said rectified current during a first portion of a given period to generate in said diode said rectified current and that is back biased during a second portion of said given period.
7. A power supply according to Claim 1 wherein said output supply voltage generating means comprises a blocking oscillator for producing a first control signal that is pulse-width modulated and wherein said transformer provides a regenerative feedback signal path in said blocking oscillator.
8. A power supply according to Claim 1 wherein said first control voltage controlling means generates a second current in said capacitor such that both said rectified and second currents that are'coupled to said capacitor are DC currents that flow in opposite directions in said capacitor.
9. A power supply according to Claim 1 wherein said first control voltage controlling means comprises a transistor for generating in a main current conducting electrode thereof a second current that varies in accordance with said output supply voltage, said second current flowing in said capacitor in the opposite direction to said rectified current.
10. A power supply according to Claim 1 wherein said first control voltage controlling means is responsive to a load current for providing an overcurrent protection.
11. A power supply according to Claim 1 wherein said first control voltage controlling means is responsive to a run-mode/standby-mode control signal for establishing said first control voltage at a level that prevents switching operation from occurring in said output supply voltage generating means during a standby mode of operation.
12. A power supply according to Claim 1 wherein said second switching means comprises a diode and wherein said rectified current forward biases said diode during a flyback interval of said first current to render said diode conductive.
13. A power supply according to Claim 1 wherein said rectified current flows in said second winding in a ramping manner at a rate of change that varies in accordance with said first control voltage, such that magnetic energy that is stored in said transformer prior to a flyback portion of a given period is removed during said flyback portion of said given period, said flyback portion having a length that is determined by said output supply voltage.
14. A power supply according to Claim 13 wherein said output supply voltage generating means comprises a chopper transistor responsive to a first control signal that is produced in a winding of said transformer such that a duty cycle of said first control signal varies in accordance with variation of said rate of change of said rectified current.
15. A power supply according to Claim 1 wherein said first switching means comprises a switching transistor having a main current conducting electrode that is coupled to said first winding, and a control electrode that is coupled to a third winding of said transformer, said switching transistor and said transformer forming an oscillator such that said transformer provides a regenerative positive feedback signal path that sustains oscillations in said oscillator.
16. A power supply according to Claim 15 further comprising means for increasing the oscillation frequency of said oscillator above an audible range during a standby operation.
17. A power supply according to Claim 1 wherein said first control voltage controlling means comprises a transistor having an electrode forming a current source with a high output impedance that is coupled to said capacitor for discharging said capacitor at a rate of change that is determined in accordance with said output supply voltage to maintain said first control voltage in said capacitor at a level that is indicative of the required duty cycle of switching operation in said output supply voltage generating means.
18. A power supply according to Claim 1 wherein said transformer isolates said output supply voltage from said input supply voltage with respect to an electrical shock hazard.
19. A switch mode power supply, comprising: a transformer having first and second windings; first switching means coupled to said first winding for generating a switching current therein that stores magnetic energy in said transformer during a first interval of a given period; second switching means coupled to said second winding for generating a second switching current in a current path that includes said second winding that depletes said stored energy from said transformer during a flyback interval of said given period, said transformer and said first switching means forming a regenerative positive feedback signal path that forms a blocking oscillator, said oscillator producing an output signal that is modulated in accordance with the depletion of said stored energy; a source of input supply voltage;; means coupled to said input supply voltage and responsive to said oscillator output signal for generating from said input supply voltage an output supply voltage by a switching operation in accordance with timing modulation of said oscillator output signal; and means responsive to said output supply voltage and coupled to said second winding of said transformer for generating a control voltage between two terminals that are coupled in said current path of said second winding for varying the rate of depletion of said stored energy, thereby modulating said oscillator output signal in a manner that regulates said output supply voltage.
20. A power supply according to Claim 19 wherein said control voltage generating means forms a DC coupled signal path between a terminal where said output supply voltage is developed and said second winding.
21. A power supply according to Claim 19 wherein said oscillator output signal is electrically nonisolated, with respect to electrical shock hazard, from said input supply voltage, and wherein said transformer electrically isolates, with respect to electrical shock hazard, said control voltage from said oscillator output signal and from said input supply voltage.
22. A power supply according to Claim 19 wherein a third winding of said transformer is coupled to a control terminal of said first switching means to form said regenerative positive feedback signal path.
23. A power supply according to Claim 22 wherein said oscillator output signal is generated in said third winding.
24. A power supply according to Claim 19 wherein said control voltage generating means comprises a capacitor coupled between said two terminals for generating said control voltage in said capacitor having a value that is indicative of a duty cycle of said oscillator output signal, required for regulating said output supply voltage, such that a change in said output supply voltage produces a proportionally greater change in said control voltage, wherein said second switching means is responsive to said second switching current for coupling said capacitor to said second winding to apply said control voltage in said capacitor to said second winding during said flyback interval of said given period.
25. A power supply according to Claim 24 wherein said capacitor is charged, in a given direction during said flyback interval of said given period, from said second switching current that is produced in said second winding.
26. A power supply according to Claim 19 wherein said control voltage generating means provides at least one of a soft start operation and an overvoltage protection in said power supply.
27. A power supply according to Claim 19 wherein said control voltage generating means comprises a capacitor and wherein said second switching means is coupled to said second winding and to said capacitor for rectifying said second switching current in said second winding to produce a rectified current that flows in said capacitor and that develops in said capacitor said control voltage such that said second switching means applies said control voltage to said second winding.
28. A power supply according to Claim 27 wherein said control voltage generating means further comprises a transistor having a main current conducting electrode that is coupled to said capacitor and a control electrode that is coupled to said output supply voltage for generating a main current conducting electrode current in said transistor that is proportional to a difference between required and actual values of said output supply voltage.
29. A power supply according to Claim 28 wherein said transistor operates as a switch that inhibits oscillations in said oscillator when an overcurrent condition occurs.
30. A power supply according to Claim 19 further comprising means coupled to said oscillator for increasing the frequency thereof above an audible range during a standby mode of operation.
31. A switch mode power supply, comprising: means for generating a first control signal having a controllable duty cycle; means energized by a source of input supply voltage and responsive to said first control signal for generating from said input supply voltage an output supply voltage that is regulated in accordance with the duty cycle of said first control signal; a transformer having first and second windings; first switching means coupled to said first winding and switching at a given frequency for generating a switching current in said first winding to energize said second winding;; means responsive to said output supply voltage for generating a first control voltage that changes in accordance with said output supply voltage, such that a change in a magnitude of said output supply voltage produces a proportionally greater change in said first control voltage; and second switching means responsive to the switching current that flows in said second winding during a flyback portion of a given period for coupling said first control voltage to said second winding to develop in said second winding a second control voltage that causes the duty cycle of said first control signal to vary in accordance with said first control voltage.
32. A switch mode power supply according to Claim 31 wherein said second switching means comprises a rectifier and wherein, when said switching current in said first winding is at a first polarity, said switching current flows in said rectifier in a forward direction to render said rectifier conductive.
33. A power supply according to Claim 32 wherein said first control voltage generating means is responsive to a load current for varying said control voltage in a manner that provides an over-current protection.
34. A power supply according to Claim 31 wherein said transformer is included in a regenerative feedback path of a blocking oscillator and wherein a duty cycle of an output signal of said oscillator varies in accordance with said output supply voltage.
35. A switch mode power supply, comprising: a transformer having first and second windings; first switching means coupled to said first winding for storing energy in said transformer during a first interval of a switching cycle; second switching means coupled to said second winding and operated in a flyback converter mode for depleting said stored energy from said transformer during a flyback interval of said switching cycle; control means coupled to said transformer and responsive to the depletion of said stored energy for controlling the duty cycle of said first switching means; a source of an input voltage; means responsive to the cyclical switching of said first switching means for generating an output voltage from said input voltage; and a negative feedback circuit responsive to said output voltage for generating a control voltage that is applied to said transformer during said flyback interval to vary the rate of depletion of said stored energy, thereby varying said duty cycle in a manner that regulates said output voltage.
36. A switch mode power supply substantially as hereinbefore described witn reference to the accomDanying drawings.
GB9004975A 1989-03-07 1990-03-06 A synchronized switch-mode power supply Expired - Fee Related GB2230114B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB898905173A GB8905173D0 (en) 1989-03-07 1989-03-07 An economical switched-mode power supply with secondary side regulation
GB898905172A GB8905172D0 (en) 1989-03-07 1989-03-07 Switched-mode power supply with secondary to primary control and fixed frequency
US07/424,354 US4937727A (en) 1989-03-07 1989-10-19 Switch-mode power supply with transformer-coupled feedback

Publications (3)

Publication Number Publication Date
GB9004975D0 GB9004975D0 (en) 1990-05-02
GB2230114A true GB2230114A (en) 1990-10-10
GB2230114B GB2230114B (en) 1993-08-11

Family

ID=27264353

Family Applications (2)

Application Number Title Priority Date Filing Date
GB9004975A Expired - Fee Related GB2230114B (en) 1989-03-07 1990-03-06 A synchronized switch-mode power supply
GB9301775A Expired - Fee Related GB2262822B (en) 1989-03-07 1993-01-29 A synchronized switch-mode power supply

Family Applications After (1)

Application Number Title Priority Date Filing Date
GB9301775A Expired - Fee Related GB2262822B (en) 1989-03-07 1993-01-29 A synchronized switch-mode power supply

Country Status (3)

Country Link
JP (1) JP2721925B2 (en)
FR (1) FR2647280B1 (en)
GB (2) GB2230114B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126930A (en) * 1989-12-29 1992-06-30 Samsung Electronics Co., Ltd. Switched mode power supply controller having a stand-by state using a frequency divided burst mode
US5903451A (en) * 1996-10-07 1999-05-11 Thomson Multimedia S.A. SMPS with a variable frequency start up circuit
EP1006647A2 (en) * 1998-12-02 2000-06-07 Murata Manufacturing Co., Ltd. Switching power supply unit
EP1120893A2 (en) * 2000-01-11 2001-08-01 Murata Manufacturing Co., Ltd. Switching power supply
US6456511B1 (en) 2000-02-17 2002-09-24 Tyco Electronics Corporation Start-up circuit for flyback converter having secondary pulse width modulation
US6775164B2 (en) 2002-03-14 2004-08-10 Tyco Electronics Corporation Three-terminal, low voltage pulse width modulation controller IC
DE10160671B4 (en) * 2000-12-11 2012-03-29 Fuji Electric Co., Ltd. Method for controlling a DC-DC converter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19826152A1 (en) * 1998-06-12 1999-12-16 Thomson Brandt Gmbh Arrangement with a switching power supply and a microprocessor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1535100A (en) * 1975-06-23 1978-12-06 Philips Electronic Associated Controlling voltage converters

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914981B2 (en) * 1979-03-17 1984-04-06 ティーディーケイ株式会社 switching power supply
US4524411A (en) * 1982-09-29 1985-06-18 Rca Corporation Regulated power supply circuit
CA1317369C (en) * 1988-03-10 1993-05-04 Giovanni Michele Leonardi Switch-mode power supply

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1535100A (en) * 1975-06-23 1978-12-06 Philips Electronic Associated Controlling voltage converters

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126930A (en) * 1989-12-29 1992-06-30 Samsung Electronics Co., Ltd. Switched mode power supply controller having a stand-by state using a frequency divided burst mode
US5903451A (en) * 1996-10-07 1999-05-11 Thomson Multimedia S.A. SMPS with a variable frequency start up circuit
EP1006647A2 (en) * 1998-12-02 2000-06-07 Murata Manufacturing Co., Ltd. Switching power supply unit
EP1006647A3 (en) * 1998-12-02 2003-06-25 Murata Manufacturing Co., Ltd. Switching power supply unit
EP1120893A2 (en) * 2000-01-11 2001-08-01 Murata Manufacturing Co., Ltd. Switching power supply
EP1120893A3 (en) * 2000-01-11 2003-05-14 Murata Manufacturing Co., Ltd. Switching power supply
US6456511B1 (en) 2000-02-17 2002-09-24 Tyco Electronics Corporation Start-up circuit for flyback converter having secondary pulse width modulation
DE10160671B4 (en) * 2000-12-11 2012-03-29 Fuji Electric Co., Ltd. Method for controlling a DC-DC converter
US6775164B2 (en) 2002-03-14 2004-08-10 Tyco Electronics Corporation Three-terminal, low voltage pulse width modulation controller IC

Also Published As

Publication number Publication date
FR2647280B1 (en) 1993-06-04
JP2721925B2 (en) 1998-03-04
JPH02273073A (en) 1990-11-07
GB2262822A (en) 1993-06-30
GB9004975D0 (en) 1990-05-02
GB2230114B (en) 1993-08-11
GB9301775D0 (en) 1993-03-17
FR2647280A1 (en) 1990-11-23
GB2262822B (en) 1993-09-15

Similar Documents

Publication Publication Date Title
US4937727A (en) Switch-mode power supply with transformer-coupled feedback
US5420777A (en) Switching type DC-DC converter having increasing conversion efficiency at light load
US5351177A (en) Switch mode power supply with standby mode operation
US4926304A (en) Switched-mode power supply with low loss interrupted oscillation
US4651214A (en) Remote controlled television receiver power supply
GB2168865A (en) Switching power supplies
CA2011229C (en) Switch-mode power supply with burst mode standby operation
EP0588173B1 (en) Switch mode power supply with standby mode operation
US5013980A (en) Voltage regulator in a television apparatus
US4930060A (en) Switch-mode power supply
CA1317369C (en) Switch-mode power supply
GB2230114A (en) A switch-mode power supply
EP0767528B1 (en) Tuned switch-mode power supply with current mode control
GB2209856A (en) Regulating power supply for video display apparatus
US4301394A (en) Horizontal deflection circuit and power supply with regulation by horizontal output transistor turn-off delay control
US5615092A (en) Switching power supply regulator with an inductive pulse circuit
MXPA96004531A (en) Power supply of tuned switch mode with control of corrie mode
FI70104B (en) ADJUSTMENT OF THE LINE
US4163926A (en) Switching regulator for a television apparatus
US4812719A (en) High voltage regulator in a television apparatus
US4916366A (en) Power supply protection circuit
KR920004104B1 (en) Television receiver load compensation circuit
US4298830A (en) Horizontal deflection generator and driver circuit
US4209732A (en) Regulated deflection circuit
JP2742955B2 (en) Synchronous switch mode power supply

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20090306