GB2205262A - Casting method and apparatus - Google Patents

Casting method and apparatus Download PDF

Info

Publication number
GB2205262A
GB2205262A GB08810632A GB8810632A GB2205262A GB 2205262 A GB2205262 A GB 2205262A GB 08810632 A GB08810632 A GB 08810632A GB 8810632 A GB8810632 A GB 8810632A GB 2205262 A GB2205262 A GB 2205262A
Authority
GB
United Kingdom
Prior art keywords
mould
chamber
pressure
pressurising
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08810632A
Other versions
GB8810632D0 (en
GB2205262B (en
Inventor
Brian Paine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AE PLC
Original Assignee
AE PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AE PLC filed Critical AE PLC
Publication of GB8810632D0 publication Critical patent/GB8810632D0/en
Publication of GB2205262A publication Critical patent/GB2205262A/en
Application granted granted Critical
Publication of GB2205262B publication Critical patent/GB2205262B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • B22D27/13Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of gas pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/08Shaking, vibrating, or turning of moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

( I- 2iw 205262 1 Casting method and Apparatus therefor The present
invention relates to a method and apparatus for casting of articles.
In our co-pending patent application DG55 of even filing date herewith and claiming priority from British patent application No 8712742 filed on 30 May 1987, a method and apparatus are described for the production of cast components having an equiaxed grain structure and reduced levels of shrinkage porosity.
The method comprises casting molten metal into a mould under reduced pressure or under a protective atmosphere in a first chamber and then immediately withdrawing the filled mould containing the molten metal into a second chamber and increasing the pressure in the second chamber with a fluid up to a maximum pressure of 7 MPa'until at least partial solidification has occurred. Apparatus is also -described for carrying out the method of the invention.
The method and apparatus described'in co-pending DG55 is particularly suitable for gas turbine engine components such as blades and nozzLe guide vanes, for exampLe, which are cast in gas permeable ceramic moulds. Such components as blades, for example. possess substantial differences in section between the root and airfoil portions which Leads, in conventional casting methods for components having equiaxed grain structures, to shrinkage porosity in the thinner airfoil portion.
The method described in co-pending DG55 ensures enhanced feeding of liquid metal to solidifying regions by pressurisation- and thus producing reduced levels of porosity.
There is a need, however, to produce components which have very considerable differences in section.
Such components include turbine wheels for gas turbine engines and turbochargers, for example, where a multiplicity of airfoils are cast integrally with a hub or disc portion.
In such components there is not only' a- problem with porosity in the thinner airfoil portions but there is an additional problem with the grain structure in the hub portion. Because of the generaLLy thick and relatively 1 C 1 extensive section of the hub portion.large columnar grains tend to grow unchecked. Such grain structures are detrimental to the mechanical properties of the hub which needs to be able to withstand very high forces during operation. An equiaxed -grain structure in the hub is highly desirable. It is known to prevent the for.mation of columnar grains by oscillating the filled mould about an axis eccentric to the component axis. Such oscillation causes mass movement within the solidifying mushy metal and breaks up the growing metal dendrites before they become too large and firmly set as growing columnar grains. A generally equiaxed grain structure is thus produced.
The method and apparatus of the present invention provide components which have large section differences with both an equiaxed grain structure and reduced levels of porosity.
According to a first aspect of the present invention a method for the production of cast components comprises the step of filling a mould of the desired component with molten metal in a first chamber, withdrawing the filled mould into a second chamber, isolating the second chamber from the first chamber with regard to pressure, pressurising the second chamber with a fluid up to a maximum pressure of 7 MPa and oscillating the filled mould whilst under pressure until at least partial solidification has occurred.
In the case of turbine components cast from iron-, nickelor cobalt-based superalloys the metal may be cast in the first chamber under reduced pressure or under a protective atmosphere.
Preferably the mould may be preheated whiLst in the first chamber rather than preheating in an external preheating furnace. Greater control and flexibility of preheating is obtainable with in-situ preheating by means of, for example, radiant heaters. I Preferably the pressurising fluid may be a gas little or no chemical reaction with the molten Examples may include argon, helium and nitrogen.
having metal.
Preferably the pressure may be applied to the filled mould in the mould chamber within 60 seconds of the completion of pouring and more preferably within 30 seconds.
The mould may be oscillated about an axis -which is eccentric to the axis of the component being cast.
d C The mould may be oscillated within a frequency range from 5 to 500 cycles per minute.
o f The amplitude of oscillation may lie in the range from 50 to 3600 in any one cycle or may be in excess of one complete revolution of the mould.
Frequency and amplitude of oscillation will vary with component dimensions and geometry and furthermore may also vary during the solidification process itself and be affected by the alloy being cast.
According to a second aspect of the present invention apparatus for the production of cast components comprises a casting chamber. metal melting and pouring means.
mould chamber adjacent the casting chamber and thereto by valve means of sufficient size to allow a mould to pass therethrough. mould moving means to move the mould between the casting chamber and the mould chamber. pressurising means for pressurising the mould chamber with a fluid and means for oscillating the mould in the mould chamber.
a connected The casting chamber may also have vacuum pump means associated with it. as may the mould chamber. for producing a reduced pressure within the chambers.
C Alternatively or additional.ly the ch.ambers may be provided with suitable connections for producing a gaseous protective atmosphere such as with argon, for example, within the chambers.
In order that the present invention may be mo.re fully understood an example will now be described by way of illustration only with reference to the accompanying drawings, of which:
Figure 1 shows a schematic section through apparatus according to the present invention prior to casting metal into the mould; Figure 2 shows part of the apparatus of Figure 1 after casting; and Figure 3 which shows a section through an alternative construction of apparatus for oscillating the mould.
Referring now to F i g u r e s 1 and 2 and where the same features are denoted by common reference numerals. The apparatus is shown generally at 10 and comprises a vacuum casting chamber 11 which includes a port 12 connected to a vacuum pump (not shown). Contained in the chamber 11 is a coil box assembly 13 having induction heating coils (not shown) and crucible 14; the assembly 13 being mounted such c C - that it may be tilted to pour the molten metal 15 in known manner. The chamber also includes a-port 16 and vacuum lock 17 to enable the crucible 14 to be recharged with fresh metal whilst under vacuum. In the bottom wall 20 of the chamber 11 is an aperture 21 of sufficient size to allow a mould assembly 22, having an axis 22a,- to pass therethrough. Above and surrounding the aperture 21 is a mould heating chamber 23 which comprises an outer insulating box 24 having contained therein known radiant heating means 25 having the appropriate power supply and control means (not shown) attached thereto. In the top of the insulation box 24 is an aperture having a pouring tube 27 therein to guide the molten metal into the mould 22 on pouring. Below the vacuum chamber 11 is a mould chamber 30. The mould chamber 30 is attached in sealed engagement to the bottom wall 20 of the casting chamber 11. The chamber 30 may be isolated from the chamber 11 by means of the isolation valve 31 and seal 32. The valve 31 may be moved between the open position (Figure 1) and the closed position (Figure 2) by suitable known remotely operated control means (not shown). Cooling passages 33 are provided around the chamber wall. The chamber 30 has a door 34 in the wall to allow positioning and subsequent removal of the mould 22, the door 34 is sealable to the chamber wall 35. Also provided in the chamber wall 35 is a vacuum pumping port 36 connected to a vacuum pump (not shown) via a valve 37. A further port 38 in the wall 35 c is provided to supply fluid under,pressure supply source (not shown) via a valve 39. The mould 22 is mounted on a table 40 but insulated therefrom by an insulation block 41. The table 40 is itself mounted on a movable ram 42 having an axis 43 and which ram may slide in sealed engagement with the bottom wall 4-5 of the chamber 30 and also rotate or oscillate in seaUed engagement therewith. A bearing 46 in the bottom wall 45 supports the ram in both sliding and oscillatory movement.
The ram 42 also includes passages 48 for provision of coolant. At the Lower end of the ram 42 is a second bearing 49 and a manifold 50 to connect coo.Lant pipes 51, 52 to the ram and allow oscillatory movement. A pulley wheel 54 is mounted on the Lower end of the ram 42 and which pulley wheel is drivabLy connected to a second pulley wheel 55 by a transmission belt 56. The pulley wheel 55 is driven by an electric motor 58 which has appropriate power supplies (not shown) and control means (not shown). The motor 58 and bearing 49 are both mounted on a platform 60 which is itself mounted on a ram 61. The platform 60 may be varied in height relative to the bottom wall 45 of the chamber 30.
In operation the chamber 11 is pumped down to a appropriate to the requirements of the alloy being cast. The valve 31 is closed against the seal 32 and the ram retracted to its position within the chamber 30. The mould 1 C, 22 is placed and secured on the insulation block 41, the door 34 closed and sealed and the chamber 30 pumped down to a pressure in the region of that in chamber 11. The valve 31 is opened and the ram 42 elevated to move the mould 22 into the mould heating chamber 23. The mould is heated by the radiant heaters 25 to a desired temperature and once at the desired temperature molten metal 15 at a a second desired temperature is poured from the assembly 13 into the mould 33 via the pouring tube 27. The filled mould is immediately withdrawn from the chamber 23 into the chamber 30 and the valve 31 is closed against the seal 32 whereupon the valve 37 is closed and the valve 39 opened to pressurise the chamber 30 with fluid such as argon for example. The pressure may be brought to bear against the molten metal in a time of less than 20 seconds and may be raised to a maximum pressure of about 7 MPa. The filled mould 22 is now oscillated about the ram axis 43 at a frequency of 280 cycles/min. and an amplitude of 700. Since the axis 22a of the mould is eccentric to the axis 43 the metal in the mould in the thicker sections. and which comprises a mixture of liquid metal and growing metal dendrites. is aggitated and causes the growing dendrites to be broken up thus preventing the formation of undesirable. coarse columnar grains. The pressure within the chamber 30 assists in the feeding of liquid metal to the solidifying portions to eliminate or minimise the formation of shrinkage porosity. Oscillation frequency and - amplitude may be varied during the course solidification and may only be applied for part time required to achieve complete solidification.
Similarly the pressure may be released before complete solidification has occurred.
o f o f t h e Figure 3 shows an alternative construction of drive for oscillating the mould 22. In this construction the ram 42 does not itself oscillate. Interposed between the ram table 40 and the insulation block 41 is a carrier 70 which is free to rotate on the table 40 supported by a rolling element bearing 71. On the outer periphery of the carier 70 is a gear toothed ring 72 which, when the ram 42 is Lowered to its Lowermost extent, meshes with a gear pinion 73 driven by an electric motor 74. The motor 74 is connected to suitable control apparatus (not shown) situated outside the chamber 30.
In the examples given above the article being cast is a turbine disc and blade unit having rotational symmetry. Such symmetry is not necessary as any article which has widely different section thicknesses includ ed therein may be cast by the method and apparatus of the present invention.
Many modifications may be made to the embodiment shown. Such modifications may relate to the type of valve employed to seal the casting ch.amber from the mould chamber and to the method and prec. ise apparatus used to move the ram and mould between chambers and also the means used to oscillate the mould.
The ram 42 may be elevated by electrical means, for example.
or. hydrauli

Claims (1)

  1. 3.
    A method for the production of cast components, the method comprising the steps of filling a mould of the desired component with molten metal in a first chamber, withdrawing the filled mould into a second chamber, isolating the second chamber from the first chamber with regard to pressure, pressurising the second chamber with a fluid up to a maximum pressure of 7 MPa and o-scillating the filled mould whilst under pressure until at least partial solidification has occurred.
    A method according to claim 1 wherein the filled mould is oscillated within a frequency range of 5 to 500 cycles per minute._ A method according to either claim 1 or claim 2 wherein the amplitude of oscillation is greater than one complete revolution.
    A method according to either claim 1 or claim 2 wherein the amplitude of oscillation lies in the 0 0 range of 5 to 360 A method according to any one preceding claim wherein the pressurising fluid is a gas.
    11 Q 1 C 6. A method according to claim.5 wherein the gas is selected from the g. roup comprising helium, argon and nitrogen.
    7. A method according to any one preceding claim wherein the mould is heated in the first chamber prior to filling the mould with molten metal.
    A method according to any one preceding claim wherein the pressure is applied within 60 seconds of the completion of pouring of the molten metal.
    9. A method according to claim 8 wherein the pressure is applied within 30 seconds of pouring.
    10. A method according to any one preceding claim wherein the metal being cast is selected from the group comprising aluminium alloys, copper alloys, iron alloys, nickel alloys and cobalt alloys.
    - 14 11.
    Apparatus for the production of cast components the apparatus comprising a casting chamber, metal melting and pouring means, a mould chamber adjacent the casting chamber and connected thereto by valve means of sufficient size to allow a mould to pass therethrough, mould moving means to move the mould between the casting chamber and the mould chamber. pressurising means for pressurising the mould chamber with a fluid and means for oscillating the mould in the mould chamber.
    Apparatus according to claim 11 wherein the mould axis and the axis of oscillation are not coincident.
    Apparatus according to either claim 11 or claim 12 wherein the casting chamber and/or the mould chamber are provided with vacuum pumping means.
    14. Apparatus according to any one of claims 11 to 13 wherein the mould moving means comprises a height positionable ram which is itself osciltatabte about its axis.
    15. Apparatus according to any one of claims 11 to 13 wherein the mould is fixed to carrier means which is supported by the mould moving means on bearing means to allow independent rotation thereof.
    1 0 - is - 16. A method substantially as herei.nbefore described with reference to the accompanying specification and either Figures 1 and 2 or Figure 3 of the drawings.
    17. Apparatus substantially as hereinbefore described with reference to the accompanying specification and either Figures 1 and 2 or Figure 3 of the drawings.
    Published 1988 at The Patent OMoe, State House, 68171 High Holborn, Landon WClR 4TP. Further opples may be obtained ftm The Patent Omoe, Sales Brsncl4 St XBXY CrAY, Orpington, Kent BR5 3RD. Printed by Multiplex techniques ltd, St Mary Cray. Kent, COIL 1/87.
GB8810632A 1987-05-30 1988-05-05 Casting apparatus and method therefor Expired - Fee Related GB2205262B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB878712743A GB8712743D0 (en) 1987-05-30 1987-05-30 Casting method

Publications (3)

Publication Number Publication Date
GB8810632D0 GB8810632D0 (en) 1988-06-08
GB2205262A true GB2205262A (en) 1988-12-07
GB2205262B GB2205262B (en) 1991-03-06

Family

ID=10618177

Family Applications (2)

Application Number Title Priority Date Filing Date
GB878712743A Pending GB8712743D0 (en) 1987-05-30 1987-05-30 Casting method
GB8810632A Expired - Fee Related GB2205262B (en) 1987-05-30 1988-05-05 Casting apparatus and method therefor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GB878712743A Pending GB8712743D0 (en) 1987-05-30 1987-05-30 Casting method

Country Status (3)

Country Link
EP (1) EP0293961B1 (en)
DE (1) DE3864194D1 (en)
GB (2) GB8712743D0 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261480A (en) * 1990-12-13 1993-11-16 Sulzer-Mtu Casting Technology Gmbh Process and apparatus for repair of drive blades such as turbine blades
CN110804713A (en) * 2019-11-14 2020-02-18 尹秀兰 Hydraulic pump valve body machining process

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19539770A1 (en) * 1995-06-20 1997-01-02 Abb Research Ltd Process for producing a directionally solidified casting and device for carrying out this process
US6253828B1 (en) * 1997-04-03 2001-07-03 Shouzui Yasui Method and casting device for precision casting
US5931214A (en) * 1997-08-07 1999-08-03 Howmet Research Corporation Mold heating vacuum casting furnace
EP1031391A1 (en) * 1999-02-22 2000-08-30 Howmet Research Corporation Anti-swirl mold pour cup and casting method
US6263951B1 (en) 1999-04-28 2001-07-24 Howmet Research Corporation Horizontal rotating directional solidification
EP1048759A1 (en) * 1999-04-28 2000-11-02 Howmet Research Corporation Horizontal directional solidification
US6257311B1 (en) 1999-04-28 2001-07-10 Howmet Research Corporation Horizontal directional solidification
JP4314207B2 (en) * 2005-03-15 2009-08-12 株式会社日本製鋼所 Casting method and casting apparatus
US7712511B2 (en) 2005-03-15 2010-05-11 The Japan Steel Works, Ltd. Casting method and casting apparatus
FR2976594A1 (en) * 2011-06-16 2012-12-21 Inst Polytechnique Grenoble Installation, useful for crystallization of silicon that is present in molten state in crucible e.g. hot and cold crucibles, comprises unit for imparting periodic oscillation motion to crucible so as to ensure mixing of the molten silicon
CN103231017B (en) * 2013-04-07 2015-10-28 上海交通大学 A kind of high temperature alloy complex thin wall castings hot investment casting device
EP3099439B1 (en) * 2014-01-28 2020-04-01 United Technologies Corporation Casting apparatus and method for forming multi-textured, single crystal microstructure
CN105478671A (en) * 2015-12-18 2016-04-13 贵州安吉航空精密铸造有限责任公司 Microseismic casting process for aluminum alloy precision-investment casting
CN105834409B (en) * 2016-05-20 2017-09-19 河南理工大学 A kind of magnesium alloy thin wall pieces integration system is for former
CN111112587A (en) * 2019-12-30 2020-05-08 江苏奇纳新材料科技有限公司 Method for reducing secondary shrinkage cavity of high-temperature alloy master alloy
CN117020157A (en) * 2023-07-26 2023-11-10 潍坊博源动力科技有限公司 Vibration pressurizing fine-grain casting equipment and manufacturing process

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3568752A (en) * 1968-12-05 1971-03-09 Univ Ohio State Method for controlling the as-cast grain structure of solidified materials
DE2135159C3 (en) * 1971-07-14 1975-11-13 Leybold-Heraeus Gmbh & Co Kg, 5000 Koeln Melting, casting and crystallization system for operation under vacuum or protective gas
US3895672A (en) * 1973-12-26 1975-07-22 United Aircraft Corp Integrated furnace method and apparatus for the continuous production of individual castings
GB1472288A (en) * 1974-05-01 1977-05-04 Tuchkevich N Method of producing metal ingots
DE3220744A1 (en) * 1982-06-02 1983-12-08 Leybold-Heraeus GmbH, 5000 Köln Melting and casting plant for vacuum or protective gas operation with at least two chambers
DE3603310A1 (en) * 1986-02-04 1987-08-06 Leybold Heraeus Gmbh & Co Kg Method and apparatus for the casting of mouldings with subsequent isostatic compression

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261480A (en) * 1990-12-13 1993-11-16 Sulzer-Mtu Casting Technology Gmbh Process and apparatus for repair of drive blades such as turbine blades
CN110804713A (en) * 2019-11-14 2020-02-18 尹秀兰 Hydraulic pump valve body machining process
CN110804713B (en) * 2019-11-14 2022-04-15 青海晶和节能环保技术服务有限公司 Hydraulic pump valve body machining process

Also Published As

Publication number Publication date
GB8810632D0 (en) 1988-06-08
EP0293961B1 (en) 1991-08-14
GB2205262B (en) 1991-03-06
GB8712743D0 (en) 1987-07-01
DE3864194D1 (en) 1991-09-19
EP0293961A1 (en) 1988-12-07

Similar Documents

Publication Publication Date Title
EP0293961B1 (en) Casting method and apparatus therefor
US5335711A (en) Process and apparatus for metal casting
US8136572B2 (en) Method for production of precision castings by centrifugal casting
US3841384A (en) Method and apparatus for melting and casing metal
EP0728546B1 (en) Directionally solidified investment casting with improved filling
US9381569B2 (en) Vacuum or air casting using induction hot topping
CN111451447B (en) Precision casting method of solid duplex single crystal guide blade
EP3570994B1 (en) Method and apparatus for counter-gravity mold filling
CN115055659B (en) Centrifugal casting preparation method of high-temperature alloy casting
US5607007A (en) Directional solidification apparatus and method
EP0127552B1 (en) Casting of articles with predetermined crystalline orientation
CN101391295B (en) Metal material casting system and method
EP0293960B1 (en) Process and apparatus for metal casting
US6263951B1 (en) Horizontal rotating directional solidification
CN109304426A (en) It is a kind of for producing the foundry furnace and its casting method of thin-shell type container casting
CN115090850B (en) Full-automatic production line and production method for centrifugal casting of high-temperature alloy castings
JP4046782B2 (en) Method for casting melt in mold cavity, investment casting method for melt in mold cavity, and method for producing directional solidified casting
CN117020157A (en) Vibration pressurizing fine-grain casting equipment and manufacturing process
SU1048180A1 (en) Method of preparing mould with ceramic core for casting metal for manufacturing centrifugal pump case with guide vanes
EP2086705B1 (en) Method for production of turbine blades by centrifugal casting
CN115519071A (en) Single crystal blade mould shell of gas turbine and preparation method thereof
Tanaka et al. Method and System for Manufacturing Superalloy Disk
Paine Production of Low Porosity Castings With Equiaxed Grain Structure
JPH03110058A (en) Method and apparatus for precision casting

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19970505