GB2174401A - Self-leveling silicone sealant compositions - Google Patents
Self-leveling silicone sealant compositions Download PDFInfo
- Publication number
- GB2174401A GB2174401A GB08607073A GB8607073A GB2174401A GB 2174401 A GB2174401 A GB 2174401A GB 08607073 A GB08607073 A GB 08607073A GB 8607073 A GB8607073 A GB 8607073A GB 2174401 A GB2174401 A GB 2174401A
- Authority
- GB
- United Kingdom
- Prior art keywords
- composition
- amine
- terminated polydiorganosiloxane
- weight
- acyloxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 95
- 239000004590 silicone sealant Substances 0.000 title description 4
- 150000001412 amines Chemical class 0.000 claims abstract description 45
- 239000003054 catalyst Substances 0.000 claims abstract description 14
- 238000009833 condensation Methods 0.000 claims abstract description 14
- 230000005494 condensation Effects 0.000 claims abstract description 14
- 238000009877 rendering Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 29
- 239000000945 filler Substances 0.000 claims description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 22
- 239000004215 Carbon black (E152) Substances 0.000 claims description 14
- 229930195733 hydrocarbon Natural products 0.000 claims description 14
- 229910021485 fumed silica Inorganic materials 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 239000012763 reinforcing filler Substances 0.000 claims description 13
- 150000003335 secondary amines Chemical class 0.000 claims description 11
- PXSXRABJBXYMFT-UHFFFAOYSA-N n-hexylhexan-1-amine Chemical group CCCCCCNCCCCCC PXSXRABJBXYMFT-UHFFFAOYSA-N 0.000 claims description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 5
- 125000001931 aliphatic group Chemical group 0.000 claims description 5
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 4
- 150000003141 primary amines Chemical class 0.000 claims description 4
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 2
- 125000000271 carboxylic acid salt group Chemical group 0.000 claims 2
- 230000003340 mental effect Effects 0.000 claims 1
- 229920006395 saturated elastomer Polymers 0.000 claims 1
- 229920001296 polysiloxane Polymers 0.000 abstract description 16
- -1 for example Chemical class 0.000 description 35
- 150000003254 radicals Chemical class 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 5
- 239000011133 lead Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000000565 sealant Substances 0.000 description 4
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- AFBPFSWMIHJQDM-UHFFFAOYSA-N N-methylaniline Chemical compound CNC1=CC=CC=C1 AFBPFSWMIHJQDM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229920005601 base polymer Polymers 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 150000001734 carboxylic acid salts Chemical class 0.000 description 2
- 239000012975 dibutyltin dilaurate Substances 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 229920005645 diorganopolysiloxane polymer Polymers 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000004614 Process Aid Substances 0.000 description 1
- 239000004965 Silica aerogel Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- OPARTXXEFXPWJL-UHFFFAOYSA-N [acetyloxy-bis[(2-methylpropan-2-yl)oxy]silyl] acetate Chemical compound CC(=O)O[Si](OC(C)=O)(OC(C)(C)C)OC(C)(C)C OPARTXXEFXPWJL-UHFFFAOYSA-N 0.000 description 1
- TVJPBVNWVPUZBM-UHFFFAOYSA-N [diacetyloxy(methyl)silyl] acetate Chemical compound CC(=O)O[Si](C)(OC(C)=O)OC(C)=O TVJPBVNWVPUZBM-UHFFFAOYSA-N 0.000 description 1
- TUCNEACPLKLKNU-UHFFFAOYSA-N acetyl Chemical compound C[C]=O TUCNEACPLKLKNU-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 125000000068 chlorophenyl group Chemical group 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- RPBPCPJJHKASGQ-UHFFFAOYSA-K chromium(3+);octanoate Chemical compound [Cr+3].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O.CCCCCCCC([O-])=O RPBPCPJJHKASGQ-UHFFFAOYSA-K 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- QCWKNPBWGUZSTH-UHFFFAOYSA-L decanedioate;lead(2+) Chemical compound [Pb+2].[O-]C(=O)CCCCCCCCC([O-])=O QCWKNPBWGUZSTH-UHFFFAOYSA-L 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 125000006303 iodophenyl group Chemical group 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000002801 octanoyl group Chemical group C(CCCCCCC)(=O)* 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 229920002631 room-temperature vulcanizate silicone Polymers 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000000516 sunscreening agent Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 125000000725 trifluoropropyl group Chemical group [H]C([H])(*)C([H])([H])C(F)(F)F 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 125000005023 xylyl group Chemical group 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/17—Amines; Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
- C08L83/06—Polysiloxanes containing silicon bound to oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/12—Organo silicon halides
- C07F7/14—Preparation thereof from optionally substituted halogenated silanes and hydrocarbons hydrosilylation reactions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/29—Compounds containing one or more carbon-to-nitrogen double bonds
- C08K5/31—Guanidine; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Sealing Material Composition (AREA)
Abstract
A self-leveling silicone composition comprises (a) an acyloxy-terminated polydiorganosiloxane, (b) an effective amount of condensation catalyst, and (c) an amount of amine effective for rendering said composition self-leveling. n
Description
SPECIFICATION
Self-leveling silicone sealant compositions and methods for making same
The present invention relates to self-leveling silicone sealant compositions and method for making such compositions. More particularly, the present invention relates to one component, acyloxy-functional, room temperature vulcanizable (RTV) silicone compositions which incorporate therein, as a self-leveling agent, an amine such as, for example, n-hexylamine.
In many applications, it is desirable to utilize a self-leveling silicone sealant composition.
Traditionally, self-leveling, one component silicone RTV's are manufactured using untreated fumed silica fillers. The manufacturing process for producing these self-leveling compositions requires extremely high shear mixing conditions as well as elevated temperatures for effecting the mixing.
Accordingly, it would be highly desirable to provide self-leveling, one component silicone
RTV's which can use both treated and untreated silica fillers and eliminates the need for high shear mixing at elevated temperatures in their manufacture.
Bruner, U.S. Patent No. 3,035,016, discloses room temperature vulcanizable silicone compositions of the formula
where Ac is a saturated aliphatic monoacyl radical of a carboxylic acid, R and R1 are selected from the group consisting of monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and cyanoalkyl radicals, and n is an integer of at least five. The acyloxyfunctional polysiloxane is prepared by reacting acyloxy silanes of the formula R'Si(OAc)3, with hydroxylated siloxanes of the formula
where R and R1 are as previously defined.
Bruner, U.S. Patent No. 3,077,465, teaches that the room temperature vulcanizable composition described in U.S. Patent No. 3,035,016 can be made to cure more effectively by including therein from 0.001 to 10 percent by weight of a carboxylic acid salt of a metal ranging from lead to manganese, inclusive, in the electromotive series of metals.
Ceyzeriat, U.S. Patent No. 3,133,891, relates to room temperature vulcanizable compositions which comprise a linear diorganopolysiloxane consisting of units of the formula R2SiO, in which each R represents a monovalent radical selected from the group consisting of halogenated and halogen-free aliphatic, alicyclic and aromatic hydrocarbon radicals and containing at least 0.1 weight percent hydroxyl groups and 0.5 to 25 weight percent, based on the diorganopolysiloxane, of an organotriacyloxysilane of the formula R1Si(OCOR2)3, where R1 is a monovalent radical selected from the group consisting of lower alkyl, alkenyl, aryl and aralkyl radicals and R2 is a monovalent radical selected from the group consisting of alkyl radicals having 1 to 18 carbon atoms and aryl radicals.
Kulpa, U.S. Patent No. 3,296,161, describes a silicone composition comprising an organopolysiloxane having a viscosity of from about 200 to 500,000 centipoise at 25"C, and containing from 0.02 to 2% silicon-bonded hydroxyl groups; and from 0.2 to 6 parts per 100 parts of said organopolysiloxane of a dialkoxydiacyloxysilane and from 1.8 to 6 parts of an organotriacyloxysilane.
Goossens, U.S. Patent No. 3,296,195, discloses a silicone RTV composition comprising a silanol chainstopped polydiorganosiloxane, and an alkoxyacyloxysilane wherein the four valences of silicon are satisified by either zero or one silicon-bonded radical selected from monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and cyanoalkyl radicals, at least one radical selected from alkoxy radicals and halogenated alkoxy radicals, and at least one saturated aliphatic monoacyl radical.
Beers, U.S. Patent No. 3,382,205, provides a substantially anhydrous organopolysiloxane composition curable at room temperatures to the elastomeric state upon exposure to moisture comprising (A) 100 parts of a silanol terminated organopolysiloxane consisting essentially of chemically combined diorganosiloxy units of the formula R2SiO; (B) 2 to 20 parts of a curing agent of the formula RSi(OCOR')3; and (C) 2 to 30 parts of an organosilicon process aid composed of diorganosiloxy units of (A) chemically combined with organosiloxy units of the formula RSiO15 and trioganosiloxy units of the formula R3SiOo5; where the organosilicon process aid has from 0.1 to 8 weight percent hydroxy radicals attached to silicon, a ratio of organosiloxy units to diorgansiloxy units of 0.11 to 1.4 and a ratio of triorganosiloxy units to diorganosiloxy units of 0.02 to 1.
Nowhere, however, do any of these references disclose or suggest the inclusion of an amine in order to make the curable compositions self-leveling rather than thixotropic.
All of the foregoing patents are hereby incorporated by reference into the instant disclosure in their entireties for their teachings directed to acyloxy-functional silicone RTV compositions.
It is an object of the present invention to provide self-levelling organopolysiloxane compositions which are curable to the elastomeric state upon exposure to moisture.
It is another object of the present invention to provide methods for making self-leveling silicone RTV compositions wherein high shear mixing at elevated temperatures is not necessary.
Still another object of the present invention is self-leveling silicone compositions which can employ both treated and untreated silica fillers.
In accordance with one aspect of the present invention the foregoing objects are accomplished with a one component organopolysiloxane composition comprising:
(a) an acyloxy-terminated polydiorganosiloxane,
(b) an effective amount of condensation catalyst, and
(c) an amount of amine effective for rendering said composition self-leveling.
In another aspect of the present invention there is provided a self-leveling silicone RTV composition comprising:
(a) a silanol-terminated polydiorganosiloxane,
(b) at least about one mole of polyacyloxysilane per mole of silicon-bonded hydroxyl groups in (a),
(c) an effective amount of condensation catalyst, and
(d) an amount of amine effective for rendering said composition self-leveling.
Preferably, the room temperature vulcanizable compositions of the present invention also include a reinforcing filler such as treated or untreated fumed silica. Further, other additives well known in the art can optionally be included in the compositions of the present invention.
There is provided by the present invention a self-leveling, one component, room temperature vuncanizable silicone composition curable to the elastomeric state upon exposure to moisture, comprising:
(a) an acyloxy-terminated polydiorganosiloxane,
(b) an effective amount of condensation catalyst, and
(c) an amount of amine effective for rendering said composition self-leveling.
Acyloxy-terminated polydiorganosiloxane (a) preferably has the general formula
wherein Ac is a saturated aliphatic monoacyl radical, R and R1 are independently selected from the group consisting of monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and cyanoalkyl radicals, n is an integer of at least 5, and a equals 0 or 1.
The acyloxy-terminated polydiorganosiloxane of formula I is prepared by reacting a polyacyloxysilane of the formula.
II. (R1)a Si (OAc)4 a where R1, a and Ac are as previously defined, with a silanol terminated polydiorganosiloxane of the formula
where R and n are as previously defined. Because reaction between the acyloxy silane and hydroxyl terminated polydiorganosiloxane is believed to occur upon mixing the two, it is possible to utilize compounds of formula II and formula Ill in place of the acyloxy-terminated polymer of formula
In formulas I and II, Ac is a saturated aliphatic monoacyl radical of a carboxylic acid. Illustrative of the preferred radicals are those in which the acyl radical contains up to four carbon atoms such as formyl, acetyl, proprionyl and butyryl radicals. However, the acyl groups can also be groups such as, for example, hexoyl, 2-ethyl hexoyl, octanoyl, isovaleryl, stearyl and the like.
Most preferably, Ac is an acetyl radical, and hence the curable composition is referred to in the art as an acetoxy sealant. R1 can be any monovalent hydrocarbon radical, for example, an alkyl radical such as methyl, ethyl, propyl or octadecyl; an alkenyl radical such as vinyl, allyl or hexenyl; a cycloaliphatic radical such as cyclopentyl, cyclohexyl or cyclohexenyl; an alkaryl radical such as benzyl or B-phenylethyl; or an aromatic radical such as phenyl, tolyl, xylyl, napthyl, xenyl or phenanthryl. R1 can also be any halogenated monovalent hydrocarbon radical such as chloromethyl, pentaflurobutyl, trifluoropropyl, chlorophenyl, bromoxenyl, chlorotrifluorocyclobutyl, iodophenyl and the like. In addition, R1 can be any cyanoalkyl radical such as beta-cyanoethyl, gamma-cyanopropyl, omega-cyanobutyl, beta-cyanopropyl, gamma-cyanobutyl and the like.Preferably Rl is methyl.
In formula Ill, R can be any of the radicals previously identified for R and preferably is methyl.
Preferably, the value of n is sufficient to provide a viscosity at 25"C which ranges from about 100 centipoise to about 500,000 centipoise. More preferably the viscosity ranges from about 2500 centipoise to about 100,000 centipoise at 25"C and, most preferably, ranges from about 10,000 centipoise to about 50,000 centipoise at 25"C.
It would be understood that for the purposes of this invention mixtures of compounds can be employed, that different type acyl groups can be present in one or more molecules, and that various R and R1 groups can be present in any molecule or mixture of molecules. In short, single acyloxysilanes can be employed or mixtures of two or more different acyloxysilanes can be employed. Also, it should be understood that the hydroxylated polysiloxane can be a homopolymer or it can be a copolymer of two or more different siloxane units. It should also be understood that mixtures of two or more hydroxylated siloxanes can be employed in preparing the polysiloxane of formula I.
The preparation of acyloxy-terminated polydiorganosiloxanes of formula I from acyloxysilanes of formula II and silanol terminated polydiorganosiloxanes of formula Ill is well known in the art and is described, for example, in U.S. Patent No. 3,035,016.
Condensation catalysts suitable for use in practicing the present invention include, for example, carboxylic acid salts of a metal ranging from lead to manganese, inclusive, in the electromotive series of metals. Specifically, the metals included are lead, tin, nickel, cobalt, iron, cadmium, chromium, zinc and manganese. Most preferably tin salts are employed in the practice of the present invention. The carboxylic acids employed in the preparation of the salts of this component can be monocarboxylic acids or dicarboxylic acids.
Specific examples of salts which are operative in this invention are lead napthenate, cobalt naphthenate, iron-2-ethylhexoate, lead 2-ethylhexoate, chromium octoate and lead sebacate.
Examples of the preferred tin salts include carbomethoxyphenyltintrisuberate, isobutyltintricerotate, dimethyltindibutyrate, dibutyltindiacetate and dibutyltindilaurate.
The amount of metal salt of the organic carboxylic acid which can be employed in the practice of the present invention is a function of the increased rate of curing desired. In general, no particular benefit is derived from employing more than about 5% by weight of such metal salt based on the weight or organopolysiloxane base polymer. Preferably, such metal salt is present in an amount of from about 0.01 percent by weight to about 2.0 percent by weight, based on the weight of the base polymer.
Other condensation catalysts are well known in the art, for example, tin oxide, zirconium octoate, antimony octoate, and their suitability for practicing the present invention is readily ascertainable by the artisan without undue experimentation.
The novel aspect of the present invention resides in the quite unexpected discovery that the presence of small quantities of organic amine in prior art acyloxy-functional silicone RTV compositions renders such compositions self-leveling. The amine used in practicing the present invention can be a primary amine, secondary amine or tertiary amine, or a mixture thereof. Preferably the amine is a primary or secondary amine and most preferably is a secondary amine.
Examples of operative amines include methylamine, ethylamine, hexylamine, dimethylamine, diethylamine, dihexylamine, trimethylamine, triethylamine, ethylenediamine, propylenediamine, aniline, N-methylaniline, ethanolamine, diphenylamine, and the like. Other amines suitable for use in practicing the present invention can be determined by the artisan without undue experimentation.
The most preferred amine is di-n-hexylamine.
For purposes of the present invention the term "amine" includes guanidines of the formula
where R2 are independently selected from hydrogen and alkyl radicals having from 1 to 8 carbon atoms, and R3 is an alkyl radical having from 1 to 8 carbon atoms.
The amount of amine effective for imparting self-leveling to the compositions of this invention generally is greater than about 25 parts per million; preferably is greater than about 40 parts per million; and most preferably is greater than about 75 parts per million based on the weight of the polydiorganosiloxane component. No particular benefit is derived from employing more than about 1 percent by weight based on the polydiorganosiloxane component. Particularly effective results have been obtained when the amine is utilized in an amount of from about 100 parts per million to about 200 parts per million based on the polydiorganosiloxane component. Accordingly, the preferred range of amine for imparting self-leveling to the composition of the present invention is from about 25 ppm to about 200 ppm based on the polydiorganosiloxane.
Preferably, compositions of the present invention further include any of the well known reinforcing fillers such as fumed silica, silica aerogel or precipitated silica. Such reinforcing fillers may also be treated according to methods well known in the art, for example, with cyclopolysiloxanes as disclosed in U.S. Patent No. 2,938,009 or with silazanes as disclosed in U.S. Patent
No. 3,635,743. Preferably, there is utilized untreated or treated fumed silica.
In addition to such reinforcing fillers it is often desirable to further include extending fillers such as coarse silicas such as diatomaceous earth and crushed quartz, metal oxides such as ferric oxide and zinc oxide, asbestos, and the like. In short, any of the fillers commonly employed with silicone rubbers may be employed in the compositions of this invention.
The amounts of filler used can be varied within wide limits in accordance with the intended use of the curable composition. For example, in some sealant applications, the curable compositions of the present invention can be used free of filler. In other applications, such as the employment of the curable compositions for making binding material, as much as 700 parts by weight filler per 100 parts by weight polydiorganosiloxane can be employed.
The compositions of the present invention also can be employed as construction sealants and caulking componds. The exact amount of filler, therefore, will depend upon such factors as the application for which the composition is intended, the type of filler utilized (that is, the density of the filler and its particle size). Preferably, a proportion of from 10 to 300 parts by weight filler, which can include up to about 35 parts reinforcing filler per 100 parts by weight polydiorganosiloxane is utilized.
In addition to the foregoing ingredients the compositions of this invention may include any other desirable additive such as pigments, sun-screen agents, oxidation inhibitors, plasticizers, flame retardants and the like.
The compositions of the present invention are prepared simply by mixing the various components in the substantial absence of moisture. However, for ease of manufacturing, it is often convenient to form a blend or mixture of all the components of the composition except the acyloxysilane, to then remove moisture from the resulting mixture by maintaining the mixture under vacuum, and thereafter to add the acyloxysilane prior to packaging the compositions in containers protected from moisture.
The following examples are illustrative of the practice of the invention and are not intended to be limiting in any manner. All parts are by weight unless otherwise noted.
EXAMPLES
The following base compounds were prepared:
(1) 100 parts silanol terminated polydimethylsiloxane (18,000 cps.)
(2) methyldimethoxysiloxy terminated polydimethylsiloxane containing 0.5 weight percent dihexylamine as set forth in Table 1.
(3) 15 parts M, D, T-OH fluid as described as the "process aid" in the second paragraph of
Example 1 in US Patent No 3,382,205.
(4) 20 parts methyltetramer treated fumed silica having a surface area of 200 m2/gm.
Table I
Wt% (2) in Calculated
Exp. # Base Compound ppm Dihexylamine 1 5.0 200 2 2.0 100 3 0.5 25 4 0.1 5 5 - 100 (added directly)
To each of the foregoing base compounds there was added 4.2 parts of a mixture comprising 79.5 weight percent methyltriacetoxysilane, 19.9 weight percent di-t-butoxydiacetoxysilane and 0.6 weight percent dibutyltindilaurate.
The rheological properties of the sealants were determined on a vertical Boeing flow jig and were found to flow at the rates set forth in Table II.
Table II
Exp. # Flow Rate (1) 1 82 2 79 3 -(2) 4 -(3) 5 82
(1) seconds to flow four inches
(2) flowed 0.4 inch in three minutes
(3) flowed less than 0.1 inch in three minutes
Claims (1)
1. A curable composition, comprising:
(a) an acyloxy-terminated polydiorganosiloxane,
(b) an effective amount of condensation catalyst, and
(c) an amount of amine effective for rendering said composition self-leveling.
2. The composition of Claim 1, wherein the acyloxy-terminated polydiorganosiloxane has the general formula
wherein Ac is a saturated aliphatic monoacyl radical, R and R' are independently. selected from the group consisting of monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and cyanoalkyl radicals, n is an integer of at least 5, and a equals 0 or 1.
3. The composition of Claim 2, wherein the acyloxy-terminated polydiorganosiloxane has a viscosity of from about 100 centipoise to about 500,000 centipoise at 25eC.
4. The composition of Claim 2, wherein the acyloxy-terminated polydiorganosiloxane has a viscosity of from about 2500 centipoise to about 100,000 centipoise at 252C.
5. The composition of Claim 2, wherein the acyloxy-terminated polydiorganosiloxane has a viscosity of from about 10,000 centipoise to about 50,000 centipoise at 252C.
6. The composition of Claim 1, wherein the condensation catalyst is a carboxylic acid salt of a metal ranging from lead to manganese, inclusive, in the electromotive series of mentals.
7. The composition of Claim 6 wherein the metal is tin.
8. The composition of Claim 6 wherein the condensation catalyst is present in an amount of from about 0.01 percent by weight to about 2.0 percent by weight, based on the weight of acyloxy-terminated polydiorganosiloxane.
9. The composition of Claim 1 wherein the amine is a primary amine or secondary amine.
10. The composition of Claim 1 wherein the amine is a secondary amine.
11. The composition of Claim 10 wherein the amine is dihexylamine.
12. The composition of Claim 1 wherein the amine is present in an amount greater than about 25 parts per million, based on the weight of acyloxy-terminated polydiroganosiloxane.
13. The composition of Claim 1 wherein the amine is present in an amount greater than about 40 parts per million, based on the weight of acyloxy-terminated polydiorganosiloxane.
14. The composition of Claim 1, wherein the amine is present in an amount greater than about 75 parts per million, based on the weight of acyloxy-terminated polydiorganosiloxane.
15. The composition of Claim 1 wherein the amine is present in an amount of from about 100 parts per million to about 200 parts per million, based on the weight of acyloxy-terminated polydiorganosiloxane.
16. The composition of Claim 1 further comprising a filler.
17. The composition of Claim 16, wherein the filler is a reinforcing filler or treated reinforcing filler.
18. The composition of Claim 17 wherein the filler is fumed silica or treated fumed silica.
19. A method for making a curable composition, comprising
I. anhydrously mixing
(a) an acyloxy-terminated polydiorganosiloxane,
(b) an effective amount of condensation catalyst, and
(c) an amount of amine effective for rendering the curable composition self-leveling.
20. The method of Claim 19 wherein the acyloxy-terminated polydiorganosiloxane has the general formula
wherein Ac is a saturated monoacyl radical, R and Rl are independently selected from the group consisting of monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and cyanoalkyl radicals, n is an integer of at least 5, and a equals 0 or 1.
21. The method of Claim 20 wherein the acyloxy-terminated polydiorganosiloxane has a viscosity of from about 100 centipoise to about 500,000 centipoise at 25"C.
22. The method of Claim 19 wherein the amine is a primary amine or secondary amine.
23. The method of Claim 19 wherein the amine is a secondary amine.
24. The method of Claim 23 wherein the amine is dihexylamine.
25. The method of Claim 19, wherein the amine is present in an amount greater than about 25 parts per million, based on the weight of acyloxy-terminated polydiorganosiloxane.
26. The method of Claim 19 wherein the amine is present in an amount greater than about 40 parts per million, based on the weight of acyloxy-terminated polydiorganosiloxane.
27. The method of Claim 19 wherein the amine is present in an amount greater than about 75 parts per million, based on the weight of acyloxy-terminated polydioganosiloxane.
28. The method of Claim 19, further comprising mixing a filler.
29. The method of Claim 28 wherein the filler is a reinforcing filler or a treated reinforcing filler.
30. The method of Claim 29 wherein the filler is fumed silica or treated fumed silica.
31. A curable composition, comprising:
(a) a silanol-terminated polydiorganosiloxane,
(b) at least about one mole of polyacyloxysilane per mole of silicon-bonded hydroxyl groups in (a),
(c) an effective amount of condensation catalyst, and
(d) an amount of amine effective for rendering said composition self-leveling.
32. The composition of Claim 31, wherein the silanol-terminated polydiorganosiloxane has the general formula
wherein R is independently selected from the group consisting of monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and cyanoalkyl radicals, and n is an integer of at least 5.
33. The composition of Claim 32 wherein the silanol-terminated polydiorganosiloxane has a viscosity of from about 100 centipoise to about 500,000 centipoise at 25"C.
34. The composition of Claim 32 wherein the silanol-terminated polydiorganosiloxane has a viscosity of from about 2500 centipoise to about 100,000 centipoise at 25"C.
35. The composition of Claim 32 wherein the silanol-terminated polydiorganosiloxane has a viscosity of from about 10,000 centipoise to about 50,000 centipoise at 25"C.
36. The composition of Claim 31, wherein the polyacyloxysilane has the general formula (R1), Si (OAC)4 a wherein Ac is a saturated aliphatic monoacyl radical, Rl is independently selected from the group consisting of monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and cyanoalkyl radicals, and a equals 0 or 1.
37. The composition of Claim 31, wherein the condensation catalyst is a carboxylic acid salt of a metal ranging from lead to manganese, inclusive, in the electromotive series of metals.
38. The composition of Claim 37, wherein the metal is tin.
38. The composition of Claim 37, wherein the condensation catalyst is present in an amount of from about 0.01 percent by weight to about 2.0 percent by weight, based on the weight of silanol-terminated polydiorganosiloxane.
40. The composition of Claim 31 wherein the amine is a primary or secondary amine.
41. The composition of Claim 31 wherein the amine is a secondary amine.
42. The composition of Claim 41 wherein the amine is dihexylamine.
43. The composition of Claim 31 wherein the amine is present in an amount greater than about 25 parts per million based on the weight of silanol-terminated polydiorganosiloxane.
44. The composition of Claim 31 wherein the amine is present in an amount greater than about 40 parts per million, based on the weight of silanol-terminated polydiorganosiloxane.
45. The composition of Claim 31 wherein the amine is present in an amount greater than about 75 parts per million, based on the weight of silanol-terminated polydiorganosiloxane.
46. The composition of Claim 31 wherein the amine is present in an amount of from about 100 parts per million to about 200 parts per million, based on the weight of silanol terminated polydiorganosiloxane.
47. The composition of Claim 31 further comprising a filler.
48. The composition of Claim 47 wherein the filler is a reinforcing filler or a treated reinforcing filler.
49. The composition of Claim 48 wherein the filler is fumed silica or treated fumed silica.
50. A method for making a curable composition comprising
I. anhydrously mixing:
(a) a silanol-terminated polydiorganosiloxane,
(b) at least about one mole of polyacyloxysilane per mole of silicon-bonded hydroxyl groups in (a),
(c) an effective amount of condensation catalyst, and
(d) an amount of amine effective for rendering said composition self-leveling.
51. The method of Claim 50 wherein the silanol-terminated polydiorganosiloxane has the general formula
wherein R is independently selected from the group consisting of monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and cyanoalkyl radicals, and n is an integer of at least 5.
52. The method of Claim 51 wherein the silanol-terminated polydiorganosiloxane has a viscosity of from about 100 centipoise to about 500,000 centipoise at 25"C.
53. The method of Claim 50 wherein the amine is a primary amine or secondary amine.
54. The method of Claim 50 wherein the amine is a secondary amine.
55. The method of Claim 54 wherein the amine is dihexylamine.
56. The method of Claim 50 wherein the amine is present in an amount greater than about 25 parts per million, based on the weight of silanol-terminated polydiorganosiloxane.
57. The method of Claim 50 wherein the amine is present in an amount greater than about 40 parts per million, based on the weight of silanoi-terminated polydiorganosiloxane.
58. The method of Claim 50 wherein the amine is present in an amount greater than about 75 parts per million, based on the weight of silanol-terminated polydiorganosiloxane.
59. The method of Claim 50 further comprising mixing a filler.
60. The method of Claim 59 wherein the filler is a reinforcing filler or a treated reinforcing filler.
61. The method of Claim 60 wherein the filler is fumed silica or treated fumed silica.
62. A curable composition as claimed in Claim 1 substantially as hereinbefore described in any one of the examples.
63. A method of making a curable composition as claimed in Claim 19 substantially as described in any one of the examples.
64. A curable composition when produced by a method as claimed in any one of Claims 19 to 30, 50 to 61 and 63.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71607385A | 1985-03-26 | 1985-03-26 |
Publications (3)
Publication Number | Publication Date |
---|---|
GB8607073D0 GB8607073D0 (en) | 1986-04-30 |
GB2174401A true GB2174401A (en) | 1986-11-05 |
GB2174401B GB2174401B (en) | 1989-12-13 |
Family
ID=24876618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB8607073A Expired GB2174401B (en) | 1985-03-26 | 1986-03-21 | Self-leveling silicone sealant compositions and methods for making same |
Country Status (6)
Country | Link |
---|---|
JP (1) | JPH0668103B2 (en) |
KR (1) | KR860007271A (en) |
CA (1) | CA1284849C (en) |
DE (1) | DE3609543A1 (en) |
FR (1) | FR2587351A1 (en) |
GB (1) | GB2174401B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1333307C (en) * | 1988-04-15 | 1994-11-29 | John Earl Dietlein | Asphalt highway joint sealant |
CA1337313C (en) * | 1988-04-15 | 1995-10-10 | Dow Corning Corporation | Self leveling highway sealant |
US4889878A (en) * | 1988-04-15 | 1989-12-26 | Dow Corning Corporation | Flowable joint sealant for concrete highway |
US11597123B2 (en) | 2017-06-29 | 2023-03-07 | Elkem Silicones France Sas | Method for producing silicone elastomer molds |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB835790A (en) * | 1957-07-12 | 1960-05-25 | Rhone Poulenc Sa | Improvements in or relating to siloxane elastomers |
GB849069A (en) * | 1957-12-31 | 1960-09-21 | Rhone Poulenc Sa | Organopolysiloxane compositions |
GB856321A (en) * | 1958-12-02 | 1960-12-14 | Rhone Poulenc Sa | Improvements in or relating to siloxane elastomers |
GB1042273A (en) * | 1962-06-14 | 1966-09-14 | Wacker Chemie Gmbh | Improvements in and relating to silicone elastomers |
EP0066286A1 (en) * | 1981-06-03 | 1982-12-08 | Wacker-Chemie GmbH | Elastomeric hardenable composition |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5594956A (en) * | 1979-01-12 | 1980-07-18 | Toshiba Silicone Co Ltd | Room temperature curable polysiloxane composition |
US4304897A (en) * | 1980-07-17 | 1981-12-08 | General Electric Company | Room temperature vulcanizable silicone rubber compositions and process of making |
-
1986
- 1986-03-14 CA CA000504145A patent/CA1284849C/en not_active Expired - Fee Related
- 1986-03-21 DE DE19863609543 patent/DE3609543A1/en not_active Withdrawn
- 1986-03-21 GB GB8607073A patent/GB2174401B/en not_active Expired
- 1986-03-25 KR KR1019860002207A patent/KR860007271A/en not_active Application Discontinuation
- 1986-03-26 JP JP61066122A patent/JPH0668103B2/en not_active Expired - Lifetime
- 1986-03-26 FR FR8604365A patent/FR2587351A1/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB835790A (en) * | 1957-07-12 | 1960-05-25 | Rhone Poulenc Sa | Improvements in or relating to siloxane elastomers |
GB849069A (en) * | 1957-12-31 | 1960-09-21 | Rhone Poulenc Sa | Organopolysiloxane compositions |
GB856321A (en) * | 1958-12-02 | 1960-12-14 | Rhone Poulenc Sa | Improvements in or relating to siloxane elastomers |
GB1042273A (en) * | 1962-06-14 | 1966-09-14 | Wacker Chemie Gmbh | Improvements in and relating to silicone elastomers |
EP0066286A1 (en) * | 1981-06-03 | 1982-12-08 | Wacker-Chemie GmbH | Elastomeric hardenable composition |
Also Published As
Publication number | Publication date |
---|---|
JPS61252286A (en) | 1986-11-10 |
KR860007271A (en) | 1986-10-10 |
GB2174401B (en) | 1989-12-13 |
CA1284849C (en) | 1991-06-11 |
JPH0668103B2 (en) | 1994-08-31 |
FR2587351A1 (en) | 1987-03-20 |
GB8607073D0 (en) | 1986-04-30 |
DE3609543A1 (en) | 1986-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4973623A (en) | Fast curing oximo-ethoxy functional siloxane sealants | |
US4111890A (en) | Curable organopolysiloxane compositions containing titanium esters | |
US4489199A (en) | Room temperature vulcanizable organopolysiloxane compositions | |
US4528324A (en) | Process for producing RTV silicone rubber compositions using a devolatilizing extruder | |
US4525400A (en) | Composition for promoting adhesion of curable silicones to substrates | |
EP0495298B1 (en) | Improved room-temperature vulcanizable silicone compositions and process for their preparation | |
US4499234A (en) | Non-corrosive silicone RTV compositions | |
JPH0479384B2 (en) | ||
GB2072208A (en) | Room temperature vulcanizable silicone rubber compositions with sag-control | |
EP0104179A4 (en) | Scavengers for one-component alkoxy-functional rtv compositions and processes. | |
JPS6365229B2 (en) | ||
EP0236043A2 (en) | Improved room-temperature curing silicone sealants | |
JPH0320148B2 (en) | ||
US4554338A (en) | Room temperature vulcanizable organopolysiloxane compositions and method for making | |
EP0389235B1 (en) | Neutral cure silicone sealants | |
JPH0649825B2 (en) | Room temperature curable organopolysiloxane composition | |
JP4440517B2 (en) | Room temperature curable organopolysiloxane composition and parts using the composition as an adhesive | |
US4578492A (en) | Non-corrosive silicone RTV compositions | |
US4877828A (en) | Self-bonding silicone caulking compositions | |
JPH0323107B2 (en) | ||
CA1248264A (en) | Scavengers for one component alkoxy-functional rtv compositions | |
GB2174401A (en) | Self-leveling silicone sealant compositions | |
US5011869A (en) | Self-leveling silicone sealant compositions and methods for making same | |
JP2763939B2 (en) | Curable composition | |
CA1246285A (en) | Room temperature vulcanizable organopolysiloxane compositions and method for making |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PCNP | Patent ceased through non-payment of renewal fee |