GB2174401A - Self-leveling silicone sealant compositions - Google Patents

Self-leveling silicone sealant compositions Download PDF

Info

Publication number
GB2174401A
GB2174401A GB08607073A GB8607073A GB2174401A GB 2174401 A GB2174401 A GB 2174401A GB 08607073 A GB08607073 A GB 08607073A GB 8607073 A GB8607073 A GB 8607073A GB 2174401 A GB2174401 A GB 2174401A
Authority
GB
United Kingdom
Prior art keywords
composition
amine
terminated polydiorganosiloxane
weight
acyloxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08607073A
Other versions
GB2174401B (en
GB8607073D0 (en
Inventor
Melvin Dale Beers
John William Dean
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of GB8607073D0 publication Critical patent/GB8607073D0/en
Publication of GB2174401A publication Critical patent/GB2174401A/en
Application granted granted Critical
Publication of GB2174401B publication Critical patent/GB2174401B/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • C07F7/14Preparation thereof from optionally substituted halogenated silanes and hydrocarbons hydrosilylation reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • C08K5/31Guanidine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)

Abstract

A self-leveling silicone composition comprises (a) an acyloxy-terminated polydiorganosiloxane, (b) an effective amount of condensation catalyst, and (c) an amount of amine effective for rendering said composition self-leveling. n

Description

SPECIFICATION Self-leveling silicone sealant compositions and methods for making same The present invention relates to self-leveling silicone sealant compositions and method for making such compositions. More particularly, the present invention relates to one component, acyloxy-functional, room temperature vulcanizable (RTV) silicone compositions which incorporate therein, as a self-leveling agent, an amine such as, for example, n-hexylamine.
In many applications, it is desirable to utilize a self-leveling silicone sealant composition.
Traditionally, self-leveling, one component silicone RTV's are manufactured using untreated fumed silica fillers. The manufacturing process for producing these self-leveling compositions requires extremely high shear mixing conditions as well as elevated temperatures for effecting the mixing.
Accordingly, it would be highly desirable to provide self-leveling, one component silicone RTV's which can use both treated and untreated silica fillers and eliminates the need for high shear mixing at elevated temperatures in their manufacture.
Bruner, U.S. Patent No. 3,035,016, discloses room temperature vulcanizable silicone compositions of the formula
where Ac is a saturated aliphatic monoacyl radical of a carboxylic acid, R and R1 are selected from the group consisting of monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and cyanoalkyl radicals, and n is an integer of at least five. The acyloxyfunctional polysiloxane is prepared by reacting acyloxy silanes of the formula R'Si(OAc)3, with hydroxylated siloxanes of the formula
where R and R1 are as previously defined.
Bruner, U.S. Patent No. 3,077,465, teaches that the room temperature vulcanizable composition described in U.S. Patent No. 3,035,016 can be made to cure more effectively by including therein from 0.001 to 10 percent by weight of a carboxylic acid salt of a metal ranging from lead to manganese, inclusive, in the electromotive series of metals.
Ceyzeriat, U.S. Patent No. 3,133,891, relates to room temperature vulcanizable compositions which comprise a linear diorganopolysiloxane consisting of units of the formula R2SiO, in which each R represents a monovalent radical selected from the group consisting of halogenated and halogen-free aliphatic, alicyclic and aromatic hydrocarbon radicals and containing at least 0.1 weight percent hydroxyl groups and 0.5 to 25 weight percent, based on the diorganopolysiloxane, of an organotriacyloxysilane of the formula R1Si(OCOR2)3, where R1 is a monovalent radical selected from the group consisting of lower alkyl, alkenyl, aryl and aralkyl radicals and R2 is a monovalent radical selected from the group consisting of alkyl radicals having 1 to 18 carbon atoms and aryl radicals.
Kulpa, U.S. Patent No. 3,296,161, describes a silicone composition comprising an organopolysiloxane having a viscosity of from about 200 to 500,000 centipoise at 25"C, and containing from 0.02 to 2% silicon-bonded hydroxyl groups; and from 0.2 to 6 parts per 100 parts of said organopolysiloxane of a dialkoxydiacyloxysilane and from 1.8 to 6 parts of an organotriacyloxysilane.
Goossens, U.S. Patent No. 3,296,195, discloses a silicone RTV composition comprising a silanol chainstopped polydiorganosiloxane, and an alkoxyacyloxysilane wherein the four valences of silicon are satisified by either zero or one silicon-bonded radical selected from monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and cyanoalkyl radicals, at least one radical selected from alkoxy radicals and halogenated alkoxy radicals, and at least one saturated aliphatic monoacyl radical.
Beers, U.S. Patent No. 3,382,205, provides a substantially anhydrous organopolysiloxane composition curable at room temperatures to the elastomeric state upon exposure to moisture comprising (A) 100 parts of a silanol terminated organopolysiloxane consisting essentially of chemically combined diorganosiloxy units of the formula R2SiO; (B) 2 to 20 parts of a curing agent of the formula RSi(OCOR')3; and (C) 2 to 30 parts of an organosilicon process aid composed of diorganosiloxy units of (A) chemically combined with organosiloxy units of the formula RSiO15 and trioganosiloxy units of the formula R3SiOo5; where the organosilicon process aid has from 0.1 to 8 weight percent hydroxy radicals attached to silicon, a ratio of organosiloxy units to diorgansiloxy units of 0.11 to 1.4 and a ratio of triorganosiloxy units to diorganosiloxy units of 0.02 to 1.
Nowhere, however, do any of these references disclose or suggest the inclusion of an amine in order to make the curable compositions self-leveling rather than thixotropic.
All of the foregoing patents are hereby incorporated by reference into the instant disclosure in their entireties for their teachings directed to acyloxy-functional silicone RTV compositions.
It is an object of the present invention to provide self-levelling organopolysiloxane compositions which are curable to the elastomeric state upon exposure to moisture.
It is another object of the present invention to provide methods for making self-leveling silicone RTV compositions wherein high shear mixing at elevated temperatures is not necessary.
Still another object of the present invention is self-leveling silicone compositions which can employ both treated and untreated silica fillers.
In accordance with one aspect of the present invention the foregoing objects are accomplished with a one component organopolysiloxane composition comprising: (a) an acyloxy-terminated polydiorganosiloxane, (b) an effective amount of condensation catalyst, and (c) an amount of amine effective for rendering said composition self-leveling.
In another aspect of the present invention there is provided a self-leveling silicone RTV composition comprising: (a) a silanol-terminated polydiorganosiloxane, (b) at least about one mole of polyacyloxysilane per mole of silicon-bonded hydroxyl groups in (a), (c) an effective amount of condensation catalyst, and (d) an amount of amine effective for rendering said composition self-leveling.
Preferably, the room temperature vulcanizable compositions of the present invention also include a reinforcing filler such as treated or untreated fumed silica. Further, other additives well known in the art can optionally be included in the compositions of the present invention.
There is provided by the present invention a self-leveling, one component, room temperature vuncanizable silicone composition curable to the elastomeric state upon exposure to moisture, comprising: (a) an acyloxy-terminated polydiorganosiloxane, (b) an effective amount of condensation catalyst, and (c) an amount of amine effective for rendering said composition self-leveling.
Acyloxy-terminated polydiorganosiloxane (a) preferably has the general formula
wherein Ac is a saturated aliphatic monoacyl radical, R and R1 are independently selected from the group consisting of monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and cyanoalkyl radicals, n is an integer of at least 5, and a equals 0 or 1.
The acyloxy-terminated polydiorganosiloxane of formula I is prepared by reacting a polyacyloxysilane of the formula.
II. (R1)a Si (OAc)4 a where R1, a and Ac are as previously defined, with a silanol terminated polydiorganosiloxane of the formula
where R and n are as previously defined. Because reaction between the acyloxy silane and hydroxyl terminated polydiorganosiloxane is believed to occur upon mixing the two, it is possible to utilize compounds of formula II and formula Ill in place of the acyloxy-terminated polymer of formula In formulas I and II, Ac is a saturated aliphatic monoacyl radical of a carboxylic acid. Illustrative of the preferred radicals are those in which the acyl radical contains up to four carbon atoms such as formyl, acetyl, proprionyl and butyryl radicals. However, the acyl groups can also be groups such as, for example, hexoyl, 2-ethyl hexoyl, octanoyl, isovaleryl, stearyl and the like.
Most preferably, Ac is an acetyl radical, and hence the curable composition is referred to in the art as an acetoxy sealant. R1 can be any monovalent hydrocarbon radical, for example, an alkyl radical such as methyl, ethyl, propyl or octadecyl; an alkenyl radical such as vinyl, allyl or hexenyl; a cycloaliphatic radical such as cyclopentyl, cyclohexyl or cyclohexenyl; an alkaryl radical such as benzyl or B-phenylethyl; or an aromatic radical such as phenyl, tolyl, xylyl, napthyl, xenyl or phenanthryl. R1 can also be any halogenated monovalent hydrocarbon radical such as chloromethyl, pentaflurobutyl, trifluoropropyl, chlorophenyl, bromoxenyl, chlorotrifluorocyclobutyl, iodophenyl and the like. In addition, R1 can be any cyanoalkyl radical such as beta-cyanoethyl, gamma-cyanopropyl, omega-cyanobutyl, beta-cyanopropyl, gamma-cyanobutyl and the like.Preferably Rl is methyl.
In formula Ill, R can be any of the radicals previously identified for R and preferably is methyl.
Preferably, the value of n is sufficient to provide a viscosity at 25"C which ranges from about 100 centipoise to about 500,000 centipoise. More preferably the viscosity ranges from about 2500 centipoise to about 100,000 centipoise at 25"C and, most preferably, ranges from about 10,000 centipoise to about 50,000 centipoise at 25"C.
It would be understood that for the purposes of this invention mixtures of compounds can be employed, that different type acyl groups can be present in one or more molecules, and that various R and R1 groups can be present in any molecule or mixture of molecules. In short, single acyloxysilanes can be employed or mixtures of two or more different acyloxysilanes can be employed. Also, it should be understood that the hydroxylated polysiloxane can be a homopolymer or it can be a copolymer of two or more different siloxane units. It should also be understood that mixtures of two or more hydroxylated siloxanes can be employed in preparing the polysiloxane of formula I.
The preparation of acyloxy-terminated polydiorganosiloxanes of formula I from acyloxysilanes of formula II and silanol terminated polydiorganosiloxanes of formula Ill is well known in the art and is described, for example, in U.S. Patent No. 3,035,016.
Condensation catalysts suitable for use in practicing the present invention include, for example, carboxylic acid salts of a metal ranging from lead to manganese, inclusive, in the electromotive series of metals. Specifically, the metals included are lead, tin, nickel, cobalt, iron, cadmium, chromium, zinc and manganese. Most preferably tin salts are employed in the practice of the present invention. The carboxylic acids employed in the preparation of the salts of this component can be monocarboxylic acids or dicarboxylic acids.
Specific examples of salts which are operative in this invention are lead napthenate, cobalt naphthenate, iron-2-ethylhexoate, lead 2-ethylhexoate, chromium octoate and lead sebacate.
Examples of the preferred tin salts include carbomethoxyphenyltintrisuberate, isobutyltintricerotate, dimethyltindibutyrate, dibutyltindiacetate and dibutyltindilaurate.
The amount of metal salt of the organic carboxylic acid which can be employed in the practice of the present invention is a function of the increased rate of curing desired. In general, no particular benefit is derived from employing more than about 5% by weight of such metal salt based on the weight or organopolysiloxane base polymer. Preferably, such metal salt is present in an amount of from about 0.01 percent by weight to about 2.0 percent by weight, based on the weight of the base polymer.
Other condensation catalysts are well known in the art, for example, tin oxide, zirconium octoate, antimony octoate, and their suitability for practicing the present invention is readily ascertainable by the artisan without undue experimentation.
The novel aspect of the present invention resides in the quite unexpected discovery that the presence of small quantities of organic amine in prior art acyloxy-functional silicone RTV compositions renders such compositions self-leveling. The amine used in practicing the present invention can be a primary amine, secondary amine or tertiary amine, or a mixture thereof. Preferably the amine is a primary or secondary amine and most preferably is a secondary amine.
Examples of operative amines include methylamine, ethylamine, hexylamine, dimethylamine, diethylamine, dihexylamine, trimethylamine, triethylamine, ethylenediamine, propylenediamine, aniline, N-methylaniline, ethanolamine, diphenylamine, and the like. Other amines suitable for use in practicing the present invention can be determined by the artisan without undue experimentation.
The most preferred amine is di-n-hexylamine.
For purposes of the present invention the term "amine" includes guanidines of the formula
where R2 are independently selected from hydrogen and alkyl radicals having from 1 to 8 carbon atoms, and R3 is an alkyl radical having from 1 to 8 carbon atoms.
The amount of amine effective for imparting self-leveling to the compositions of this invention generally is greater than about 25 parts per million; preferably is greater than about 40 parts per million; and most preferably is greater than about 75 parts per million based on the weight of the polydiorganosiloxane component. No particular benefit is derived from employing more than about 1 percent by weight based on the polydiorganosiloxane component. Particularly effective results have been obtained when the amine is utilized in an amount of from about 100 parts per million to about 200 parts per million based on the polydiorganosiloxane component. Accordingly, the preferred range of amine for imparting self-leveling to the composition of the present invention is from about 25 ppm to about 200 ppm based on the polydiorganosiloxane.
Preferably, compositions of the present invention further include any of the well known reinforcing fillers such as fumed silica, silica aerogel or precipitated silica. Such reinforcing fillers may also be treated according to methods well known in the art, for example, with cyclopolysiloxanes as disclosed in U.S. Patent No. 2,938,009 or with silazanes as disclosed in U.S. Patent No. 3,635,743. Preferably, there is utilized untreated or treated fumed silica.
In addition to such reinforcing fillers it is often desirable to further include extending fillers such as coarse silicas such as diatomaceous earth and crushed quartz, metal oxides such as ferric oxide and zinc oxide, asbestos, and the like. In short, any of the fillers commonly employed with silicone rubbers may be employed in the compositions of this invention.
The amounts of filler used can be varied within wide limits in accordance with the intended use of the curable composition. For example, in some sealant applications, the curable compositions of the present invention can be used free of filler. In other applications, such as the employment of the curable compositions for making binding material, as much as 700 parts by weight filler per 100 parts by weight polydiorganosiloxane can be employed.
The compositions of the present invention also can be employed as construction sealants and caulking componds. The exact amount of filler, therefore, will depend upon such factors as the application for which the composition is intended, the type of filler utilized (that is, the density of the filler and its particle size). Preferably, a proportion of from 10 to 300 parts by weight filler, which can include up to about 35 parts reinforcing filler per 100 parts by weight polydiorganosiloxane is utilized.
In addition to the foregoing ingredients the compositions of this invention may include any other desirable additive such as pigments, sun-screen agents, oxidation inhibitors, plasticizers, flame retardants and the like.
The compositions of the present invention are prepared simply by mixing the various components in the substantial absence of moisture. However, for ease of manufacturing, it is often convenient to form a blend or mixture of all the components of the composition except the acyloxysilane, to then remove moisture from the resulting mixture by maintaining the mixture under vacuum, and thereafter to add the acyloxysilane prior to packaging the compositions in containers protected from moisture.
The following examples are illustrative of the practice of the invention and are not intended to be limiting in any manner. All parts are by weight unless otherwise noted.
EXAMPLES The following base compounds were prepared: (1) 100 parts silanol terminated polydimethylsiloxane (18,000 cps.) (2) methyldimethoxysiloxy terminated polydimethylsiloxane containing 0.5 weight percent dihexylamine as set forth in Table 1.
(3) 15 parts M, D, T-OH fluid as described as the "process aid" in the second paragraph of Example 1 in US Patent No 3,382,205.
(4) 20 parts methyltetramer treated fumed silica having a surface area of 200 m2/gm.
Table I Wt% (2) in Calculated Exp. # Base Compound ppm Dihexylamine 1 5.0 200 2 2.0 100 3 0.5 25 4 0.1 5 5 - 100 (added directly) To each of the foregoing base compounds there was added 4.2 parts of a mixture comprising 79.5 weight percent methyltriacetoxysilane, 19.9 weight percent di-t-butoxydiacetoxysilane and 0.6 weight percent dibutyltindilaurate.
The rheological properties of the sealants were determined on a vertical Boeing flow jig and were found to flow at the rates set forth in Table II.
Table II Exp. # Flow Rate (1) 1 82 2 79 3 -(2) 4 -(3) 5 82 (1) seconds to flow four inches (2) flowed 0.4 inch in three minutes (3) flowed less than 0.1 inch in three minutes

Claims (1)

1. A curable composition, comprising: (a) an acyloxy-terminated polydiorganosiloxane, (b) an effective amount of condensation catalyst, and (c) an amount of amine effective for rendering said composition self-leveling.
2. The composition of Claim 1, wherein the acyloxy-terminated polydiorganosiloxane has the general formula
wherein Ac is a saturated aliphatic monoacyl radical, R and R' are independently. selected from the group consisting of monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and cyanoalkyl radicals, n is an integer of at least 5, and a equals 0 or 1.
3. The composition of Claim 2, wherein the acyloxy-terminated polydiorganosiloxane has a viscosity of from about 100 centipoise to about 500,000 centipoise at 25eC.
4. The composition of Claim 2, wherein the acyloxy-terminated polydiorganosiloxane has a viscosity of from about 2500 centipoise to about 100,000 centipoise at 252C.
5. The composition of Claim 2, wherein the acyloxy-terminated polydiorganosiloxane has a viscosity of from about 10,000 centipoise to about 50,000 centipoise at 252C.
6. The composition of Claim 1, wherein the condensation catalyst is a carboxylic acid salt of a metal ranging from lead to manganese, inclusive, in the electromotive series of mentals.
7. The composition of Claim 6 wherein the metal is tin.
8. The composition of Claim 6 wherein the condensation catalyst is present in an amount of from about 0.01 percent by weight to about 2.0 percent by weight, based on the weight of acyloxy-terminated polydiorganosiloxane.
9. The composition of Claim 1 wherein the amine is a primary amine or secondary amine.
10. The composition of Claim 1 wherein the amine is a secondary amine.
11. The composition of Claim 10 wherein the amine is dihexylamine.
12. The composition of Claim 1 wherein the amine is present in an amount greater than about 25 parts per million, based on the weight of acyloxy-terminated polydiroganosiloxane.
13. The composition of Claim 1 wherein the amine is present in an amount greater than about 40 parts per million, based on the weight of acyloxy-terminated polydiorganosiloxane.
14. The composition of Claim 1, wherein the amine is present in an amount greater than about 75 parts per million, based on the weight of acyloxy-terminated polydiorganosiloxane.
15. The composition of Claim 1 wherein the amine is present in an amount of from about 100 parts per million to about 200 parts per million, based on the weight of acyloxy-terminated polydiorganosiloxane.
16. The composition of Claim 1 further comprising a filler.
17. The composition of Claim 16, wherein the filler is a reinforcing filler or treated reinforcing filler.
18. The composition of Claim 17 wherein the filler is fumed silica or treated fumed silica.
19. A method for making a curable composition, comprising I. anhydrously mixing (a) an acyloxy-terminated polydiorganosiloxane, (b) an effective amount of condensation catalyst, and (c) an amount of amine effective for rendering the curable composition self-leveling.
20. The method of Claim 19 wherein the acyloxy-terminated polydiorganosiloxane has the general formula
wherein Ac is a saturated monoacyl radical, R and Rl are independently selected from the group consisting of monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and cyanoalkyl radicals, n is an integer of at least 5, and a equals 0 or 1.
21. The method of Claim 20 wherein the acyloxy-terminated polydiorganosiloxane has a viscosity of from about 100 centipoise to about 500,000 centipoise at 25"C.
22. The method of Claim 19 wherein the amine is a primary amine or secondary amine.
23. The method of Claim 19 wherein the amine is a secondary amine.
24. The method of Claim 23 wherein the amine is dihexylamine.
25. The method of Claim 19, wherein the amine is present in an amount greater than about 25 parts per million, based on the weight of acyloxy-terminated polydiorganosiloxane.
26. The method of Claim 19 wherein the amine is present in an amount greater than about 40 parts per million, based on the weight of acyloxy-terminated polydiorganosiloxane.
27. The method of Claim 19 wherein the amine is present in an amount greater than about 75 parts per million, based on the weight of acyloxy-terminated polydioganosiloxane.
28. The method of Claim 19, further comprising mixing a filler.
29. The method of Claim 28 wherein the filler is a reinforcing filler or a treated reinforcing filler.
30. The method of Claim 29 wherein the filler is fumed silica or treated fumed silica.
31. A curable composition, comprising: (a) a silanol-terminated polydiorganosiloxane, (b) at least about one mole of polyacyloxysilane per mole of silicon-bonded hydroxyl groups in (a), (c) an effective amount of condensation catalyst, and (d) an amount of amine effective for rendering said composition self-leveling.
32. The composition of Claim 31, wherein the silanol-terminated polydiorganosiloxane has the general formula
wherein R is independently selected from the group consisting of monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and cyanoalkyl radicals, and n is an integer of at least 5.
33. The composition of Claim 32 wherein the silanol-terminated polydiorganosiloxane has a viscosity of from about 100 centipoise to about 500,000 centipoise at 25"C.
34. The composition of Claim 32 wherein the silanol-terminated polydiorganosiloxane has a viscosity of from about 2500 centipoise to about 100,000 centipoise at 25"C.
35. The composition of Claim 32 wherein the silanol-terminated polydiorganosiloxane has a viscosity of from about 10,000 centipoise to about 50,000 centipoise at 25"C.
36. The composition of Claim 31, wherein the polyacyloxysilane has the general formula (R1), Si (OAC)4 a wherein Ac is a saturated aliphatic monoacyl radical, Rl is independently selected from the group consisting of monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and cyanoalkyl radicals, and a equals 0 or 1.
37. The composition of Claim 31, wherein the condensation catalyst is a carboxylic acid salt of a metal ranging from lead to manganese, inclusive, in the electromotive series of metals.
38. The composition of Claim 37, wherein the metal is tin.
38. The composition of Claim 37, wherein the condensation catalyst is present in an amount of from about 0.01 percent by weight to about 2.0 percent by weight, based on the weight of silanol-terminated polydiorganosiloxane.
40. The composition of Claim 31 wherein the amine is a primary or secondary amine.
41. The composition of Claim 31 wherein the amine is a secondary amine.
42. The composition of Claim 41 wherein the amine is dihexylamine.
43. The composition of Claim 31 wherein the amine is present in an amount greater than about 25 parts per million based on the weight of silanol-terminated polydiorganosiloxane.
44. The composition of Claim 31 wherein the amine is present in an amount greater than about 40 parts per million, based on the weight of silanol-terminated polydiorganosiloxane.
45. The composition of Claim 31 wherein the amine is present in an amount greater than about 75 parts per million, based on the weight of silanol-terminated polydiorganosiloxane.
46. The composition of Claim 31 wherein the amine is present in an amount of from about 100 parts per million to about 200 parts per million, based on the weight of silanol terminated polydiorganosiloxane.
47. The composition of Claim 31 further comprising a filler.
48. The composition of Claim 47 wherein the filler is a reinforcing filler or a treated reinforcing filler.
49. The composition of Claim 48 wherein the filler is fumed silica or treated fumed silica.
50. A method for making a curable composition comprising I. anhydrously mixing: (a) a silanol-terminated polydiorganosiloxane, (b) at least about one mole of polyacyloxysilane per mole of silicon-bonded hydroxyl groups in (a), (c) an effective amount of condensation catalyst, and (d) an amount of amine effective for rendering said composition self-leveling.
51. The method of Claim 50 wherein the silanol-terminated polydiorganosiloxane has the general formula
wherein R is independently selected from the group consisting of monovalent hydrocarbon radicals, halogenated monovalent hydrocarbon radicals and cyanoalkyl radicals, and n is an integer of at least 5.
52. The method of Claim 51 wherein the silanol-terminated polydiorganosiloxane has a viscosity of from about 100 centipoise to about 500,000 centipoise at 25"C.
53. The method of Claim 50 wherein the amine is a primary amine or secondary amine.
54. The method of Claim 50 wherein the amine is a secondary amine.
55. The method of Claim 54 wherein the amine is dihexylamine.
56. The method of Claim 50 wherein the amine is present in an amount greater than about 25 parts per million, based on the weight of silanol-terminated polydiorganosiloxane.
57. The method of Claim 50 wherein the amine is present in an amount greater than about 40 parts per million, based on the weight of silanoi-terminated polydiorganosiloxane.
58. The method of Claim 50 wherein the amine is present in an amount greater than about 75 parts per million, based on the weight of silanol-terminated polydiorganosiloxane.
59. The method of Claim 50 further comprising mixing a filler.
60. The method of Claim 59 wherein the filler is a reinforcing filler or a treated reinforcing filler.
61. The method of Claim 60 wherein the filler is fumed silica or treated fumed silica.
62. A curable composition as claimed in Claim 1 substantially as hereinbefore described in any one of the examples.
63. A method of making a curable composition as claimed in Claim 19 substantially as described in any one of the examples.
64. A curable composition when produced by a method as claimed in any one of Claims 19 to 30, 50 to 61 and 63.
GB8607073A 1985-03-26 1986-03-21 Self-leveling silicone sealant compositions and methods for making same Expired GB2174401B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US71607385A 1985-03-26 1985-03-26

Publications (3)

Publication Number Publication Date
GB8607073D0 GB8607073D0 (en) 1986-04-30
GB2174401A true GB2174401A (en) 1986-11-05
GB2174401B GB2174401B (en) 1989-12-13

Family

ID=24876618

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8607073A Expired GB2174401B (en) 1985-03-26 1986-03-21 Self-leveling silicone sealant compositions and methods for making same

Country Status (6)

Country Link
JP (1) JPH0668103B2 (en)
KR (1) KR860007271A (en)
CA (1) CA1284849C (en)
DE (1) DE3609543A1 (en)
FR (1) FR2587351A1 (en)
GB (1) GB2174401B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1333307C (en) * 1988-04-15 1994-11-29 John Earl Dietlein Asphalt highway joint sealant
CA1337313C (en) * 1988-04-15 1995-10-10 Dow Corning Corporation Self leveling highway sealant
US4889878A (en) * 1988-04-15 1989-12-26 Dow Corning Corporation Flowable joint sealant for concrete highway
US11597123B2 (en) 2017-06-29 2023-03-07 Elkem Silicones France Sas Method for producing silicone elastomer molds

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB835790A (en) * 1957-07-12 1960-05-25 Rhone Poulenc Sa Improvements in or relating to siloxane elastomers
GB849069A (en) * 1957-12-31 1960-09-21 Rhone Poulenc Sa Organopolysiloxane compositions
GB856321A (en) * 1958-12-02 1960-12-14 Rhone Poulenc Sa Improvements in or relating to siloxane elastomers
GB1042273A (en) * 1962-06-14 1966-09-14 Wacker Chemie Gmbh Improvements in and relating to silicone elastomers
EP0066286A1 (en) * 1981-06-03 1982-12-08 Wacker-Chemie GmbH Elastomeric hardenable composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594956A (en) * 1979-01-12 1980-07-18 Toshiba Silicone Co Ltd Room temperature curable polysiloxane composition
US4304897A (en) * 1980-07-17 1981-12-08 General Electric Company Room temperature vulcanizable silicone rubber compositions and process of making

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB835790A (en) * 1957-07-12 1960-05-25 Rhone Poulenc Sa Improvements in or relating to siloxane elastomers
GB849069A (en) * 1957-12-31 1960-09-21 Rhone Poulenc Sa Organopolysiloxane compositions
GB856321A (en) * 1958-12-02 1960-12-14 Rhone Poulenc Sa Improvements in or relating to siloxane elastomers
GB1042273A (en) * 1962-06-14 1966-09-14 Wacker Chemie Gmbh Improvements in and relating to silicone elastomers
EP0066286A1 (en) * 1981-06-03 1982-12-08 Wacker-Chemie GmbH Elastomeric hardenable composition

Also Published As

Publication number Publication date
JPS61252286A (en) 1986-11-10
KR860007271A (en) 1986-10-10
GB2174401B (en) 1989-12-13
CA1284849C (en) 1991-06-11
JPH0668103B2 (en) 1994-08-31
FR2587351A1 (en) 1987-03-20
GB8607073D0 (en) 1986-04-30
DE3609543A1 (en) 1986-10-02

Similar Documents

Publication Publication Date Title
US4973623A (en) Fast curing oximo-ethoxy functional siloxane sealants
US4111890A (en) Curable organopolysiloxane compositions containing titanium esters
US4489199A (en) Room temperature vulcanizable organopolysiloxane compositions
US4528324A (en) Process for producing RTV silicone rubber compositions using a devolatilizing extruder
US4525400A (en) Composition for promoting adhesion of curable silicones to substrates
EP0495298B1 (en) Improved room-temperature vulcanizable silicone compositions and process for their preparation
US4499234A (en) Non-corrosive silicone RTV compositions
JPH0479384B2 (en)
GB2072208A (en) Room temperature vulcanizable silicone rubber compositions with sag-control
EP0104179A4 (en) Scavengers for one-component alkoxy-functional rtv compositions and processes.
JPS6365229B2 (en)
EP0236043A2 (en) Improved room-temperature curing silicone sealants
JPH0320148B2 (en)
US4554338A (en) Room temperature vulcanizable organopolysiloxane compositions and method for making
EP0389235B1 (en) Neutral cure silicone sealants
JPH0649825B2 (en) Room temperature curable organopolysiloxane composition
JP4440517B2 (en) Room temperature curable organopolysiloxane composition and parts using the composition as an adhesive
US4578492A (en) Non-corrosive silicone RTV compositions
US4877828A (en) Self-bonding silicone caulking compositions
JPH0323107B2 (en)
CA1248264A (en) Scavengers for one component alkoxy-functional rtv compositions
GB2174401A (en) Self-leveling silicone sealant compositions
US5011869A (en) Self-leveling silicone sealant compositions and methods for making same
JP2763939B2 (en) Curable composition
CA1246285A (en) Room temperature vulcanizable organopolysiloxane compositions and method for making

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee