GB2171622A - Welding torch cleaner for robotic welding - Google Patents

Welding torch cleaner for robotic welding Download PDF

Info

Publication number
GB2171622A
GB2171622A GB08500782A GB8500782A GB2171622A GB 2171622 A GB2171622 A GB 2171622A GB 08500782 A GB08500782 A GB 08500782A GB 8500782 A GB8500782 A GB 8500782A GB 2171622 A GB2171622 A GB 2171622A
Authority
GB
United Kingdom
Prior art keywords
cutter
welding
nozzle
welding torch
cleaner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB08500782A
Other versions
GB8500782D0 (en
Inventor
Charles Raymond Winterford
Edward William Bridges
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Milacron Inc
Original Assignee
Milacron Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Milacron Inc filed Critical Milacron Inc
Priority to GB08500782A priority Critical patent/GB2171622A/en
Publication of GB8500782D0 publication Critical patent/GB8500782D0/en
Publication of GB2171622A publication Critical patent/GB2171622A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories
    • B23K9/328Cleaning of weld torches, i.e. removing weld-spatter; Preventing weld-spatter, e.g. applying anti-adhesives

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

A baseplate 20 carries an axially-advanceable rotating cutter 26. A V-block and clamp head 23, 24 are aligned on the plate to locate and secure a robot-positioned welding torch nozzle 17 in a vertical attitude. After clamping the nozzle in position, the rotating cutter is advanced into the nozzle bore to remove accumulated internal weld spatter. The machined-away weld spatter can therefore be discharged under the influence of gravity or by a blast of purging air applied to the torch nozzle. <IMAGE>

Description

SPECIFICATION Welding torch cleaner for robotic welding Description of invention The invention relates generally to devices for cleaning welding torch nozzles, particularly those welding torches which employ wire-fed welding rods through the centre of the torch.
The invention relates more specifically to a wire feed welding torch system used in conjunction with an automatic manipulator, or welding robot.
Wire feed welding torches of the TIG and MIG type employ a device for welding which consists generally of a tubular body through the centre of which is fed the welding rod from a wire spool and inert gases are also fed through the body of the torch to provide a suitable welding environment.
The torch body is fitted with a torch nozzle at its forward end, and the nozzle consists of a generally tubular device having a hollow inside diameter and having its outer diameter tapered to a converging end point. The nozzle is also fitted with gas outlet slots around its diameter. The nozzle or "shroud" can accumulate weld spatter around its inside surface, and the weld spatter may block the gas outlet ports and possibly interfere with the wire feed movement.
It is known in the art to sometimes apply a spray of anti-spatter compound to the inside of the welding nozzle to prevent spatter build-up. However, build-up will usually occur as time progresses.
It therefore becomes necessary to provide for some means of scraping away and removing the weld spatter from the inside of the welding nozzle of a welding robot. Most welding robots have the ability to move the end effector and its associated welding torch through a variety of spatial orientations, so a remotely located device for removing weld spatter presents no problem of access.
A popular nozzle cleaner for robotic welding is found in the prior art devices manufactured by MTE Binzel (UK) Limited, and illustrated in the 12 page catalogue of that company. Specifically, on page 7 of that catalogue, a nozzle cleaner for ro botic welding is depicted, wherein a base frame carries a vertically oriented tube. The tube is spring-mounted to the base frame so that the tube is compliant and movable through multi-degress of freedom. The tube carries an end sleeve at its top most end which is spring-loaded in an axial direction into the tube. The end sleeve has a bellmouthed hole at its topmost end, which is ca pable of receiving the convergent outersurface of a robot welding nozzle. The lower part of the vertical tube carried a rotary motor attached to a reamer spring extending upward through the tube and end sleeve.The reamer spring performs the function of a helical auger (of the type used in augering plumbing lines). At desired clean out times, the ro bot presents its nozzle to the nozzle cleaner and upon engaging the bellmouthed sleeve, the reamer drive motor is switched on and causes the rotary reamer to auger out the inside of the nozzle. The Binzel cleaner is very compliant, thus accommodating positional inaccuracies in the robot device.
Further, large cleaner cutting forces are not experienced by the robot welding tool, which is cantilevered from the robot base and not otherwise supported. The spring auger of the Binzel device permits removed weld spatter to fall into the spring mechanism to clear the nozzle. After the nozzle has been reamed, it is lifted from the nozzle cleaner and a blast of air is provided to clear the nozzle of any remaining spatter debris. Many Binzel devices also provide for an air-misted antispatter compound to be sprayed into the weld nozzle.
Applicant has found that for many applications, the accumulated weld spatter is resistant to dislodging by means of the relatively flimsy spring auger. Thus, it has been necessary for applicant to create a more positive and rigid nozzle cleaner for robotic welding. Applicant has obviated the difficulties inherent in the prior art device, by creation of a relatively rigid assembly which provides for clamping of a proximally positioned weld nozzle and, after clamping the nozzle into the device, a substantially rigid reamer can be moved through the interior of the weld nozzle to remove accumulated spatter.
According to this invention there is provided an automatic welding torch cleaner, comprising: (a) a base; (b) a relatively rigid cutter rotatably carried on said base; (c) means for rotating said cutter; (d) means for reversibly moving said cutter along its axis of rotation on said base between advanced and retracted positions; (e) means for linearly guiding said cutter while reversibly moving; and (f) means for aligning a welding torch coaxially with said cutter and for clamping said welding torch stationarily on said base with respect to said cutter.
There will be now be given a detailed description to be read with reference to the accompanying drawings, of an automatic welding torch cleaner which has been selected for the purposes of illustrating the invention by way of example.
In the accompanying drawings: Figure 1 is a perspective view of a welding robot and welding torch cleaner device; Figure 2 is a front elevational view of the welding torch cleaner of Figure 1; Figure 3 is a right side elevational view of the welding torch cleaner; Figure 4 is a top plan view of the welding torch cleaner.
Referring to the drawings and particularly to Figure 1 thereof, there is shown an industrial robot 10 corresponding to those manufactured by Cincinnati Milacron Inc., the assignee of the present invention. The robot 10 includes an upper arm 11, a forearm 12, and a wrist unit 13, which are all independently movable according to the dictates of the robot control (not shown). The wrist unit 13 carries an industrial welding gun 14 of the wire feed type, wherein a gun mount 15 is affixed to the rotatable end effector 16 of the wrist unit 13. The gun mount 15 supports the automatic welding gun 14 which has a generally tubular construction with independent wire feed means (not shown) for feeding a consumable wire electrode through the centre of the gun 14.Additionally, the gun 14 is provided with gas lines (not shown) to provide for the flow of oxygen or air when needed, and to provide an inert atmosphere at a welding site, when necessary. The general constructional details of the automatic welding gun 14 are omitted since they do not form part of the invention and are wellknown in the art. The gun 14 is fitted with a welding nozzle 17, or shroud, at its end, and the nozzle 17 comprises a tubular part having a converging outer surface at the welding end. The nozzle 17 is also fitted with exit slots 18 to permit the escape of gases from the gun 14.
As successive welding operations proceed, weld spatter will generally accumulate around the inside of the welding nozzle 17, and the build-up will interfere with wire feed and cause blockage of gas flow.
A welding torch cleaner 19 is shown in the foreground of Figure 1, and the device is affixed to a stationary base such as the box-like welding table 20 shown. The robot 10 may be programmed so that at appropriate intervals, when weld spatter build-up is expected to be at its maximum tolerable amount, the welding gun 14 and its attendant nozzle 17 may be positioned within the operating mechanism of the welding torch cleaner 19. The welding torch cleaner 19 has two main units fastened to a baseplate 21. The positioning and clamping unit 22 carried on the baseplate 21 has as its main parts, a V-block 23 for accurately positioning the outer diameter of the torch nozzle 17, and a movable clamp head 24 which is operated to clamp and unclamp the nozzle 17 in the cleaner 19.
The reamer unit 25 is also secured to the baseplate 21, and has as its main element a rotatable reaming cutter 26 which is aligned coaxially with a clamp nozzle 17, and the reaming cutter 26 may be axially advanced into the bore of the nozzle 17 to machine away accumulated weld spatter. The baseplate 21 is, in turn, carried on a pair of angle brackets 27,28 which are affixed to the welding table 20 so that the cutter 26 will advance in a vertical direction. It should be noted that while a vertical attitude of the cutter 26 has been selected so that chip removal from the torch nozzle 17 will be facilitated by gravity, other attitudes are possible to suit the particular work environment, since industrial robots are generally postionable to present the welding gun 14 in a variety of spatial orientations.
Referring to Figures 2, 3 and 4, the front elevational view of Figure 2 depicts the welding torch cleaner 19 with its cover 29 (see Figures 3 and 4) removed for clarity. The baseplate 21 is shown with a support bracket 30 affixed to its topmost section. The support bracket 30 is generally Ushaped with its legs 31, 32 extending horizontally away from the baseplate 21 (see Figure 4). The support bracket 30 carries a V-block 23 secured to one leg 31 by countersunk screws 33, and the Vsupporting surfaces are aligned to be vertical. The other leg 31 of the support bracket 30 carries a pneumatic cylinder 34 in a horizontal attitude by means of a locknut 35 received on a threaded pilot diameter 36 of the cylinder 34 passing through the leg 31.The piston rod 37 of the cylinder 34 is threadably received in a clamp head 24 which is a cylindrical block having a set screw 38 received in its side.
The clamp head 24 may thus be moved in horizontal directions towards and away from the Vblock 23 to clamp and unclamp the robot-positioned torch nozzle 17.
Approximately midway down the baseplate 21 a bearing block 39 is positioned and locked to the baseplate 21 by screws 40. The bearing block 39 has a flat base 41 and upstanding web 42 which is welded to a cylindrical section 43 bored to receive a bearing 44. The bearing bore 45 is aligned with its axis in a vertical direction to be coaxial with the torch nozzle 17.
The baseplate 21 carries a feed support bracket 46 at approximately one-third of its length up from the bottom, and the bracket 46 is a 900 angie having one leg 47 secured to the baseplate 21 and having its other leg 48 extending horizontally across the baseplate 21. The centre section of the feed support bracket 46 is machined, so that a central electric cutter drive motor 49 may be accommodated with clearance. Straddling the drive motor 49, a pair of feed cylinders 50 are received in the feed support bracket 46, and are secured therewith, by locknuts 51 threadably received on threaded pilots 52 extending through the support bracket 46. The lower end of the feed cylinders are supported by a tubular standoff 53 received between the baseplate 21 and the tang 54 of the feed cylinder 50.A first screw 55 is received through the tangs 54 into the standoff 53, and a second screw 56 is received through the rear face of the baseplate 21 into the threaded standoff 53 to provide a rigid support for the feed cylinders 50. Upwardlyextending piston rods 57 are threadably received into a horizontal yoke bar 58 subtending the feed cylinders 50 and are secured with locknuts 59. The central portion of the yoke bar 58 is provided with a clearance hole 60 and a counterbore 61. The counterbore 61 receives the accurate pilot diameter 62 of the motor 49, and the motor shaft 63 extends upwardly through the clearance hole 60 into the bore 64 of a cutter shaft 65. A plurality of cap screws 76 are received through the top surface of the yoke bar 58 and are threadably received into the feed motor 49 for securing the bar 58 and motor 49 together. The cutter shaft 65 has a set screw 66 received therein to secure the shafts 63,65 together. The outer diameter of the cutter shaft 65 is machined to a precision fit with the bearing 44 of the bearing block 39, so that relative rotational and axial movement may occur between the cutter shaft 65 and bearing block 39. The top end of the cutter shaft 65 is machined to a reduced outer diameter terminating at an external shoulder 67 to form the integral reaming cutter 26. A central drilled hole 68 is provided in the top end of the cutter shaft 65 intersecting cross-drilled hole 69 provided in the shaft 65 at the shoulder 67. The reaming cutter 26 has a plurality of longitudinal serrations or teeth 70, which are suitable to remove weld spatter from the bore of the torch nozzle 17.The feed support bracket 46 has a pair of fixed vertical rods 71 extending from its horizontal leg 48, straddling the feed cylinders 50. The rods 71 are threaded at each end, and pass through clearance holes 72 in the yoke bar 58. The lower end is threadably received into the feed support bar 46 and secured with a locknut 73. The top end of the rod 71 is provided with a pair of lock nuts 73 which are positioned to provide a positive upward stop for the yoke bar 58 during the cutter operation.
Here it should be noted that the feed cylinders 50 are pneumatic cylinders, as is the clamp cylinder 34. Also, the cylinders 34, 50 are provided with suitable external proximity switches 74, which are well-known in the art and are positionable on the outer surface of a given cylinder to indicate the extreme end positions of the piston.
Figure 3 shows the reamer unit cover 29 in position and secured to the edges of the baseplate 21 by a plurality of screws 75.
The robot control (not shown) is preprogrammed to first position the torch nozzle 17 within the Vblock 23 and then send an output signal to an air valve solenoid (not shown) to advance the clamp head 24 to hold the torch nozzle 17 firmly. The robot control will receive an input signal from the clamp cylinder proximity switch 74 that the clamp head 24 is in the forward position. Next, the robot control will send an output signal to both activate the cutter drive motor 49 and to actuate the feed cylinder air valve solenoid (not shown) to advance the yoke bar 58 and cutter shaft 65 vertically, thus moving the cutter 26 into the torch nozzle 17. The final upward position of the cutter is governed by the adjustable stop nuts 73 and, upon reaching them, the proximity switch 74 will signal that the robot control is to index to the remaining part of its program which, in turn, sequentially retracts the clamp head; retracts and stops the cutter; and then removes the welding torch from the V-block.
The cutter 26 is configured to suit the internal bore of the torch nozzle 17, and weld spatter which is machined free will fall into the drilled hole 68 and subsequently be discharged through the crossdrilled hole 69 of the cutter. Gravity will generally suffice for the removal of spatter chips, but discharge may be assisted by means of an air blast into the torch nozzle by way of the gas outlet slots 18.

Claims (5)

1. An automatic welding torch cleaner comprising a base, a relatively rigid cutter rotatably carried on said base, means for rotating said cutter, means for reversibly moving said cutter along its axis of rotation on said base between advanced and retracted positions, means for linearly guiding said cutter while reversibly moving, and means for aligning a welding torch coaxially with said cutter and for clamping said welding torch stationarily on said base with respect to said cutter.
2. A welding torch cleaner according to Claim 1 wherein said aligning and clamping means comprises a support bracket and a clamping head movable to clamp the torch against the support bracket.
3. A welding torch cleaner according to Claim 2 wherein said support bracket is afforded by a Vblock, the longitudinal axis of which is parallel to the axis of movement of the cutter, and the clamping head is movable in a direction at right angles to said longitudinal axis.
4. A welding torch cleaner constructed and arranged substantially as hereinbefore described with reference to the accompanying drawings.
5. Any novel feature or novel combination of features hereinbefore described and/or illustrated in the accompanying drawings.
GB08500782A 1985-01-12 1985-01-12 Welding torch cleaner for robotic welding Withdrawn GB2171622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB08500782A GB2171622A (en) 1985-01-12 1985-01-12 Welding torch cleaner for robotic welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB08500782A GB2171622A (en) 1985-01-12 1985-01-12 Welding torch cleaner for robotic welding

Publications (2)

Publication Number Publication Date
GB8500782D0 GB8500782D0 (en) 1985-02-13
GB2171622A true GB2171622A (en) 1986-09-03

Family

ID=10572758

Family Applications (1)

Application Number Title Priority Date Filing Date
GB08500782A Withdrawn GB2171622A (en) 1985-01-12 1985-01-12 Welding torch cleaner for robotic welding

Country Status (1)

Country Link
GB (1) GB2171622A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1396257A (en) * 1972-12-21 1975-06-04 Hadady Machining Co Inc Centre drilling machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1396257A (en) * 1972-12-21 1975-06-04 Hadady Machining Co Inc Centre drilling machine

Also Published As

Publication number Publication date
GB8500782D0 (en) 1985-02-13

Similar Documents

Publication Publication Date Title
US4583257A (en) Welding torch cleaner for robotic welding
EP1454698B1 (en) Apparatus for automatically changing a robot tool tip member
RU2120833C1 (en) Drill press
US4716271A (en) Apparatus for positioning a tool with respect to a cylindrical work piece
JP3101040B2 (en) Machine tool mounting equipment for workpiece support and machining
EP1645353A2 (en) Arc welding and arc welding robot system
EP2025449B1 (en) Machine tool with automatic tool changer
JP2007530283A (en) Apparatus and method for automated maintenance of a welding torch
EP1894664B1 (en) Automatic tool changer of laser beam machine
JPH0577044A (en) Welding torch, nozzle exchanging device for this welding torch, chip cleaning device, wire cutting device and automatic welding system
US5945009A (en) Apparatus for processing workpieces by spark erosion
GB2171622A (en) Welding torch cleaner for robotic welding
US4824296A (en) Bearing arrangement for a rotatable turning bar
JPH0329892A (en) Method and equipment for exchanging heating rod of pressurizer of pressurized water reactor
CA2526776C (en) Welding torch maintenance center
EP0345530A2 (en) Orbital weld head tool
US11919109B2 (en) Welding devices
US8534657B2 (en) Automatically releasing machine tool clamp
WO1999010785A1 (en) An improved clamping device and method of operation for a cnc machine
JP2023543944A (en) robot laser
JP2002512890A (en) Equipment for welding cylindrical workpieces
DE10144718A1 (en) Sensor element and mounting for contactless control of gap between machining tool and workpiece for use in flame and water jet cutting machines has air cooled capacitive sensor position adjustable to match cutting angle
JPS6157142B2 (en)
CN113910002B (en) Machining method of double-spindle and double-Y-axis composite numerical control machine tool
US20220395947A1 (en) System for processing a workpiece

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)