GB2158082A - Amino-formaldehyde resin moulding composition - Google Patents

Amino-formaldehyde resin moulding composition Download PDF

Info

Publication number
GB2158082A
GB2158082A GB08510544A GB8510544A GB2158082A GB 2158082 A GB2158082 A GB 2158082A GB 08510544 A GB08510544 A GB 08510544A GB 8510544 A GB8510544 A GB 8510544A GB 2158082 A GB2158082 A GB 2158082A
Authority
GB
United Kingdom
Prior art keywords
resin
formaldehyde
moulding composition
filler
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08510544A
Other versions
GB8510544D0 (en
GB2158082B (en
Inventor
David Taylor
Janet Patricia Griffiths
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bip Chemicals Ltd
Original Assignee
Bip Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB848411432A external-priority patent/GB8411432D0/en
Application filed by Bip Chemicals Ltd filed Critical Bip Chemicals Ltd
Priority to GB08510544A priority Critical patent/GB2158082B/en
Publication of GB8510544D0 publication Critical patent/GB8510544D0/en
Publication of GB2158082A publication Critical patent/GB2158082A/en
Application granted granted Critical
Publication of GB2158082B publication Critical patent/GB2158082B/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A method for the manufacture of an amino-formaldehyde moulding composition comprising curable amino formaldehyde resin and filler in which the resin and filler are compounded together under such conditions as to leave the resin in a state in which it will flow and cure under heat and pressure and wherein the components of the composition which are compounded together comprise: a) an aqueous amino-formaldehyde resin solution which is used in an amount such as to provide curable amino-formaldehyde resin to make up 0 to 90 percent by weight of the resin component of moulding composition. b) at least one filler in an amount such as to make up 20 to 60 percent by weight of the moulding composition and c) a urea-formaldehyde resin which is solid at room temperature and which has a low degree of condensation and a softening point in the range 50 DEG C to 90 DEG C and/or which is a product of reaction of at least, urea, formaldehyde and a modifier selected from the group consisting of organic amides, aminotriazines, reactive organic hydroxyl compounds and reaction products of these compounds with formaldehyde, the solid resin making up 4 to 80 percent by weight of the moulding composition. A moulding composition comprises curable amino-formaldehyde resin and filler, in which at least some of the curable aminoformaldehyde resin is incorporated into the composition as a solid resin having a degree of condensation which is in the range 25 to 45 percent, and a softening point in the range 50 DEG C to 90 DEG C.

Description

SPECIFICATION Improvements in or relating to moulding materials This invention relates to moulding materials made from amino-formaldehyde resins, and particularly but not exclusively to such materials made from urea-formaldehyde resins.
Moulding materials made from urea-formaldehyde resins are well-known and have been in widespread use for many years. However, it has proved difficult to prepare materials which are suited to injection-moulding, especially when using urea-formaldehyde resins.
It has also been proposed in UK Patent No. 1,390,370 to manufacture solid, low softening point resins by reacting together, in the absence of solvent, urea, paraformaldehyde and hexamethylene tetramine to produce an amorphous solid resin with a softening point within the range 60"C to 100 C and to use such solid resins to manufacture moulding materials. The drawback with this proposal is that the solventless reaction is difficult to control so that the product is not reproducible with the consistency needed for commercial use.
The resin produced has a very irregular molecular distribution, containing substantial fractions of highly condensed materials, and substantially unreacted products.
We have now found a method of making amino-formaldehyde moulding compositions incorporating urea-formaldehyde resins which have a beneficial effect upon the moulding materials produced, and do not require resins to be made from hexamethylene tetramine and paraformaldehyde.
Thus, according to the present invention there is provided a method for the manufacture of an amino-formaldehyde resin and filler in which the resin and filler are compounded together under such conditions as to leave the resin in a state in which it will flow and cure under heat and pressure and wherein the components of the composition which are compounded together comprise a) an aqueous amino-formaldehyde resin solution which is used in an amount such as to provide curable amino-formaldehyde resin to make up O to 90 percent by weight of the resin component of moulding composition b) at least one filler in an amount such as to make up 20 to 60 percent by weight of the moulding composition and c) a urea-formaldehyde resin which is solid at room temperature and which has a low degree of condensation and a softening point in the range 50"C to 90"C and/or which is a product of reaction of at least, urea-formaldehyde and a modifier selected from the group consisting of organic amides, amino-triazines, reactive organic hydroxyl and reaction products of these compounds with formaldehyde, the solid resin making up 4 to 80 percent by weight of the moulding composition.
The aqueous amino-formaldehyde resin is preferably of the kind suitable for manufacture of moulding materials by the wet process. It is preferably a urea-formaldehyde resin, although other amino-resins may be used, and it may be a urea-formaldehyde resin into which another monomer has been reacted. The molar ratio of urea to formaldehyde is preferably in the range 1:1.1 to 1:1.7.
The aqueous resin is used in the form of a solution or syrup to which the other ingredients may be added, and such a syrup preferably has a dry solids content in the range 50% to 75%.
The filler which is used may be a mixture of fillers, and may be fibrous or particulate or a mixture of the two. preferably the filler includes a cellulose filler, as is commonly used in amino-formaldehyde moulding powders. A particulate filler which is suitable is a precipitated cured melamine or urea-formaldehyde material such as those described in UK Patents Nos 1,422,158 and 1,529,053.
The solid urea-formaldehyde resin is made by reaction of urea and aqueous formaldehyde with subsequent removal of water, for example as described in UK Patent Application No. 04758, and has a low degree of condensation in order that it may remain suitable for plasticization and moulding after being compounded into the moulding material. By the expression "degree of condensation" we mean a degree of condensation less than 45%, degree of condensation being: Total formaldehyde Methylol formaldehyde content (1) - content (2) x 100 Total formaldehyde content (1) where (1) is determined by acid hydrolysis with phosphoric acid followed by sulphite determination of liberated formaldehyde and (2) is determined by the ACC sulphite method.
The degree of condensation of the solid resin may be as low as 25% but the preferred range is 30 to 43 percent.
The compounding of the ingredients may be accomplished in one of several ways. For instance the filler may be added to the aqueous resin in the usual manner utilised in the wet process for making moulding powders, and the solid resin may be added along with the filler. Alternatively the aqueous resin may be used to impregnate the filler, and the mixture dried and ground, only then adding the solid resin. If no aqueous resin is being used the filler and the solid resin may be compounded dry by conventional means.
In each case the usual additives such as pigments, curing agents, stabilisers, etc, may be included in the composition and compounded therein in conventional manner.
Thus the present invention provides also a moulding composition comprising a curable aminoformaldehyde resin and filler in which at least some of the curable amino-formaldehyde resin is incorporated into the composition as a curable solid urea-formaldehyde resin having a degree of condensation which is in the range 25 to 45 percent.
The solid urea-formaidehyde resin may contain as modifier a reactive organic hydroxyl compound, an organic amide or an amino-triazine compound such as melamine and/or the reaction products of these compounds with formaldehyde. The principal purpose of the modifier is to assist in the formation of a solid resin but compounds can be used for this purpose which also have useful effects on moulding compositions produced using the resin. Such compounds include p-toluene sulphonamide, sulphanilamide, acetamide and malonamide.
Other compounds which are effective modifiers include succinamide, dicyandiamide, phenol, ethylene glycol, o-cresol and melamine-formaldehyde resins. Mixtures of modifiers may also be used.
The total amount of modifier used is preferably such that units derived thereform will comprise not more than 4 percent by weight of the resin, more preferably not more than 2.0 percent. It is to be noted, however that when the modifier is an amino-triazine such as melamine, or a reaction product of such a compound with formaldehyde the amount of modifier used can be substantially greater eg up to 20 percent by weight of the resin, if desired although this is not normally preferred. If such greater amounts of these modifiers are used the amount will not usually exceed 10 percent by weight of the resin.
The solid urea-formaldehyde resin preferably has a molar ratio of urea to formaldehyde which is in the range 1:1.2 up to 1:2.0 and more preferably in the range 1:1.3 up to 1:1.6.
In addition to the aqueous resin and solid resin mentioned above, other resins may be added to the moulding compositions of this invention in an amount of up to 20 percent by weight of the total resin in the composition. Resins which may be included must be compatible with the resins already mentioned and two particularly useful additive resins are polyester alkyd resins, often used with amino-formaldehyde resins in coating systems, and spray-dried melamine-formaldehyde resins which blend readily with the solid urea-formaldehyde resin. The latter are a particularly useful addition and will normally have a softening point in the range 70 to 1 20'C.
The moulding compositions of the invention and their method of manufacture will now be more particularly described by means of examples.
Examples 7to3 In these examples a solid urea-formaldehyde resin was used as a process modifier in manufacture of moulding compositions byte wet process.
The aqueous resin used was a urea-formaldehyde resin syrup of 61.5% solids and a U:F molar ratio of 1:1.4. As filler cellulose was used and as solid UF resin a urea-formaldehyde resin of U:F ratio 1:1.41 containing as modifier 0.3% by weight of malonamide and 0.4% by weight of polypropylene glycol. The solid resin had a degree of condensation of 38%, and a softening point of 67"C.
Moulding compositions were made up as detailed in Table I (amounts being stated as parts by weight unless otherwise specified) by mixing the cellulose, solid resin and other ingredients into the resin syrup and then drying the resulting materials in tray ovens with regular turning of the materials.
TABLE I Example No. 1 2 3 Resin Content Urea formaldehyde aqueous resin (g) 3800 2631 1325 Solid urea formaldehyde resin (g) 639 1278 Cellulose (9) 1000 1000 1000 Blancfixe (g) 66 66 66 Hexamine(g) 48 48 48 Zine Stearate (g) 11 11 11 Polypropylene glycol (g) 8.8 8.8 8.8 Catalyst (B3 Masterbatch) (g) 100 100 100 Table II below gives details of tests carried out on the moulding compositions produced, and of mouldings produced therefrom by compression moulding. Example 1 is a comparitive example in which no solid resin was used and it will be seen that the introduction of the solid resin gave a substantial reduction in drying time and reduction in disc flow without incurring major penalty in physical properties in the mouldings produced.
TABLE II Example No. 1 2 3 Percentage solid urea resin replacement % 0 20 40 Drymixflow(thou) 0.57 0.54 0.47 Disc flow (thou) 0.43 0.35 0.38 Percentage drying time saved % 0 23.5 29.4 Free water content % 0.68 1.35 1.56 Total Water Content% 6.21 6.8 7.12 Mould shrinkage (%) 0.57 0.61 0.62 After shrinkage (%) 48hrs @ 80"C 0.207 0.17 0.22 Unnotched Impact 7.9 7.9 7.3 Flexural Strength (MPa) 110 106 103 Flexural Modulus (GPa) 9.7 8.7 9.3 Examples 4 to 9 In these examples a urea-formaldehyde moulding composition was prepared by the wet process without solid resin addition and dried as in example 1.To the dry pre-grind compostion were then added varying amounts of the solid urea-formaldehyde resin used in examples 2 and 3 and the dry materials were intimately mixed together by a dry densification process.
Table III below gives details of the amount of solid resin added, and the results of tests on the moulding powders produced, and on compression mouldings produced therefrom.
TABLE III Example No. 4 5 6 7 8 9 Solid urea resin addition (%) 0 10 20 25 35 50 Aqueous resin pregrind (%) 100 90 80 75 65 50 fibre content (%) 28.2 25.38 22.56 21.15 18.3 14.25 Disofiow(thou) 024 018 011 008 005 002 Orifice flow (sec) N/F N/F 14 11 9 4 Total watercontent% 7.48 7.91 8.19 8.62 8.74 8.6 Free water content % 6.46 0.84 0.81 1.0 1.6 1.7 Compression Mouldings Boiling water absorption (mg) 338.2 366.5 350.5 Cold water absorption (mg) 67.8 64.7 63.4 NOT MOULDABLE Mould shrinkage (%) 0.67 0.75 0.71 After shrinkage (%) 48 hrs @; 80"C 0.27 0.34 0.34 Flexuralstrength(MPa) 107 110 100 Flexural modulus (GPa) 9.1 8.6 8.2 Unnotched Impact Strength (KJ/m2) 7.3 7.4 8.2 N/F = No Flow Injection moulding tests were also undertaken with the series of moulding powders produced in Examples 1 to 9. Details of these are set out in Tables IV and V below from which it can be seen that the addition of the solid resin enhances considerably the mouldability of the material in the context of injection moulding, the advantageous range of addition of the solid resin being up to about 25% of the composition, beyond which the physical properties of the mouldings begin to be more severely affected.
TABLE IV Example No. 4 5 6 7 8 9 Percentage solid resin content (%) 0 10 20 25 35 50 Mould shrinkage (%) 1.1 1.1 1.14 1.25 1.04 1.02 After shrinkage (%) 48 hrs @ 80"C 0.56 0.76 0.9 0.47 0.83 1.05 Boiling water absorption (mg) 541 602 574 572 577 605 Cold water absorption (mg) 99 108 105 100 97 92 Unnotched Impact Strength (KJ/m2) 5.8 - - 11.4 - 9.7 Flexural strength (MPa) 130 157 169 148 127 106 Flexural modulus (Ga) 10.1 9.8 9.7 9.6 8.9 7.7 Electric Strength (Mv/m) 7.65 7.7 7.7 7.1 6.6 6.35 Appearance Weld lines 5 3 2 1 0 0 Graded0-5 0 = none 5 = very bad TABLE V Example No. 4 5 6 7 8 9 Plaque Moulding Apparent Cure (sec) 15 15 15 15 20 20 Injection fill time (sec) 3.7 1.1 1.1 1.1 0.5 0.3 Screw back time (sec) 5 5 5.1 5.1 4.5 5 Feed required (inch) 21/4 2 17/8 17/8 11/2 11/2 Mould shrinkage across the flow % 0.95 1.1 1.2 1.2 1.1 1.2 Mould shrinkage with the flow % 1.24 1.1 1.1 1.3 1.0 0.91 After shrinkage at 80 C for 48 hrs across the flow % 0.54 0.4 0.62 0.47 0.87 1.1 with the flow % 0.58 1.12 1.2 0.42 0.8 1.0 After shrinkage at l000C for 48 hrs across the flow % 0.81 0.96 0.98 1.42 1.25 1.56 with the flow % 0.84 1.2 1.25 0.87 1.03 1.0 stoving at 80 C days 6 9 14 21 22 22 stoving at 100"C days 5-7 6.7 6-7 6-7 6-7 6-7 These examples thus clearly show the benefits of adding the solid resin, especially when an injection moulding composition is desired.
Examples 10 to 16 In these examples moulding compositions were made in the same way as in examples 4 to 9 by adding solid resin after the drying stage. In examples 10 to 16, however, example 10 is a comparitive example containing no solid urea-formaldehyde resin and in all the other examples a solid urea-formaldehyde resin was added with an additional filler (particulate or fibrous).
The solid resin in this case was a urea-formaldehyde resin containing 1.5% by weight of para-toluene sulphonamide as modifier and having a U:F molar ratio of 1:1.41. The degree of condensation was 34.6%, and the softening point of the resin was 64"C.
The aqueous resin and other ingredients were as detailed for example 1. Table VI below gives details of the compositions made up as examples lotto 17.
TABLE VI Example No. 10 11 12 13 14 15 16 Aqueous resin pre-grind % 100 50 75 50 50 50 50 Solid urea resin % 0 40 12.5 37.5 47.5 35 40 Additionfiíler% 0 10 12.5 12.5 2.5 15.5 10.5 Type of filler added Powdered cellulose % 10 Wood flour % 15 10 China clay % 12.5 Cotton flock % 12.5 3m Terylene fibres % 2.5 Calcium carbonate % 0.5 0.5 Pregrind fibre content % 28.2 14.25 21.25 14.25 14.25 14.25 14.25 Total fibre content% 25.2 24.25 21.25 26.75 16.75 29.25 24.25 Pregrind resin content % 64.5 32.25 48.37 32.25 32.25 32.25 32.25 Solid urea resin content% - 40 12.5 37.5 47.5 35 40 Total resin content % 64.5 72.25 60.87 69.75 79.75 67.25 72.2 Injection moulding tests were carried out on examples 10 to 16 and the results are tabulated below in Table VII for standard test mouldings, and in Table VIII for a plaque moulding. It will be noted that materials of varying properties were obtained depending upon the nature of the additional filler which was added.
TABLE Vll Example No. 10 11 12 13 14 15 16 Mould shrinkage % 0.42 1.08 0.64 0.67 0.58 0.89 0.98 After shrinkage % 0.54 0.64 0.44 0.67 0.80 0.47 0.60 48hrs@80'C Boiling water absorption mg 497.7 513.3 489.9 505 567.8 434.5 732.4 Coldwaterabsorptionmg 132.6 108.8 120.9 121.4 119.1 107 115.7 Unnotched Impact Strength (KJ/M2) 5.1 13.1 9.4 9.0 9.3 4.8 6.8 Notched Impact Strength (KJ/M2) 1.4 1.7 - 1.9 1.7 FlexuralStrength(MPa) 168 126 146 133 90 110 114 Flexural Modulus (GPa) 11.5 9.0 11.3 9.6 7.6 9.3 9.0 Fracture toughness KIC (MNm 3/2) 0.68 1.21 0.97 1.36 1.01 0.95 1.41 El (KJ/m2) 0.10 0.23 0.15 0.29 0.18 0.15 0.22 ET (KJ/m2) 0.15 0.38 0.23 0.50 0.34 0.24 0.38 Electric strength (MV/m) 6.96 5.38 7.39 5.39 5.59 5.6 5.78 Appearance:: Weld lines Graded 0-5 5 1 5 3 0 2 0 0 = none 5 = very bad weld lines In this table the results are given for a fracture toughness slow bend test in which K1c is the force required to initiate a crack, El is the energy absorbed on initiation of cracking, ET is the total energy absorbed.
TABLE VIII Example No. 10 11 12 13 14 15 16 Plaque moulding Apparentcure(sec) 15 15 15 15 15 10 15 Injection fill time (sec) 1.5 1.0 4.6 1.2 2 2.6 0.8 Screw back time (sec) 5 5.1 5.5 6 5.4 5.0 5.0 Feed required (inch) 21/4 17/8 2 13/4 21/a 2.0 17/8 Mould shrinkage acrossflow% 1.02 0.96 0.87 0.96 1.17 1.00 1.00 Mould shrinkage with flow % 0.9 0.91 1.01 0.69 0.64 0.82 1.00 After shrinkage at 800C for 48 hrs across the flow % 1.08 1.43 0.92 1.54 1.21 0.92 1.1 with the flow % 1.08 0.87 0.84 0.87 1.08 0.78 0.58 After shrinkage at 100 C for48 hrs across the flow % 1.79 0.96 0.7 1.79 1.85 0.54 0.58 with the flow % 1.53 1.16 1.24 1.90 1.57 0.99 1.35 stoving at 80"C (days) 6-7 21 4 21 23 21 21 stoving at 100 C (days) 5 5 2 5 6 7 6 Examples 17to24 In these examples moulding compositions were made by adding to solid resin fillers and other additives and compounding them directly together.
The details of the compositions made are given in Table IX below. In each the dry solid resin was blended with all the other ingredients in the dry state in a morton blender without heating.
The dry mixture thus produced was compounded on differential rolls preheated to 105or and the sheet of compounded material from the rolls was cooled and comminuted to yield a granular product.
TABLE IX Example No. 17 18 19 20 21 22 23 24 Solid urea resin % 50 50 50 78 70 70 70 62 Aqueous urea resin % Cellulose % 22 22 22 Woodflour % 30 30 Barium sulphate % 5 8 - 8 China clay % 40 8 Coated calcium carbonate % 25 20 Glass fibre 4mm % 25 10 Terylene fibre 12 mm % 5 Tale % Fibre content % 5 25 10 22 22 22 30 30 Zinc stearate % 0.4 0.5 0.5 0.4 0.4 0.4 0.4 0.3 Hexamine % 0.2 0.25 0.25 0.35 0.35 0.35 0.35 0.21 Polypropylene glycol % - - - - - - - Catalyst masterbatch B3 % - - - - - - Phthalicanhydride% 0.1 0.25 0.12 0.20 0.20 0.20 0.20 0.13 The solid urea-formaldehyde resin in these examples was a resin having a degree of condensation of 31.1%, a molar ratio of U:F of 1:1.36 and contained as modifier 1.8 % by weight of para-toluene sulphonamide and 1.0% by weight of a solid melamine-formaldehyde commercially available from BIP Chemicals Limited under reference BL 435. The softening point of the solid urea-formaldehyde resin was 67or.
Tests were carried out on the moulding materials produced, and test mouldings were made on an injection moulding machine from each composition. The results of all these tests are given in Table X below.
TABLE X Example No 17 18 19 20 21 22 23 24 4 Powder Tests Discflow(thou) 030 008 005 004 009 008 013 011 024 Orifice flow (sec) 14 5 4 5 3 5 4 5 N/F Total water content % 4.5 4.5 4.4 7.6 6.3 6.3 7.0 6.4 7.5 Free water content % 1.00 1.00 1.1 1.3 1.2 0.9 1.4 1.5 0.5 Injection Moulding physical properties Mould shrinkage % 0.6 0.6 0.3 0.98 0.98 0.78 0.85 1.03 1.1 Aftershrinkage48hrs@;80 C 0.5 0.12 0.29 0.3 0.5 0.3 0.4 0.3 0.6 Boiling water absorption mg 496 496 582 715 688 664 679 624 541 Cold water absorption mg 103.8 809 137 368 277 330 216 182 99 Notched impact strength KJ/m2 1.8 2.56 2.6 1.8 2.1 2.4 1.7 1.9 Unnotched impact strength KJ/m2 2.93 6.5 7.2 10.4 9.36 12.1 8.1 8.3 5.8 Flexural strength MPa 67 95 63 79 101 85 7.6 96.1 130 Flexural modulus GPa 11.5 11.7 11.4 7.1 7.5 7.8 7.3 8.4 10.1 Kic (MNm-3/2) 0.95 3.51 1.49 1.14 1.42 1.42 1.20 1.62 0.5 El (KJlm2) 0.11 0.90 0.23 0.22 0.3 0.28 0.23 0.36 Et (KJ/m2) 1.00 1.57 0.44 0.38 0.48 0.43 0.38 0.52 Electric strength (MV/m) 7.1 6.6 6.0 4.35 6.00 6.01 7.0 6.48 7.6 Appearance Weld lines 1 0 0 0 0 0 0 0 5 0 = none 5 = very bad Plaque moulding Stoving at 800C (days) 15 > 25 > 25 > 25 > 25 > 25 > 25 > 25 6 Stoving at 100"C (days) 3 > 25 > 25 > 25 > 25 > 25 > 25 > 25 5 The table includes comparable results for the composition used in Example 4 for comparison. it may be seen from the flow characteristics of the moulding materials that they were particularly suited for injection moulding. This was borne out in the excellent appearance of the mouldings produced, and their stability under stoving in comparison with the material produced wholly from aqueous resin.

Claims (19)

1. A method for the manufacture of an amino-formaldehyde moulding composition comprising curable amino formaldehyde resin and filler in which the resin and filler are compounded together under such conditions as to leave the resin in a state in which it will flow and cure under heat and pressure and wherein the components of the composition which are compounded together comprise: a) an aqueous amino-formaldehyde resin solution which is used in an amount such as to provide curable amino-formaldehyde resin to make up 0 to 90 percent by weight of the resin component of moulding composition.
b) at least one filler in an amount such as to make up 20 to 60 percent by weight of the moulding composition and c) a urea-formaldehyde resin which is solid at room temperature and which has a low degree of condensation and a softening point in the range 50"C to 90"C and/or which is a product of reaction of at least, urea, formaldehyde and a modifier selected from the group consisting of organic amides, amino-triazines, reactive organic hydroxyl compounds and reaction products of these compounds with formaldehyde, the solid resin making up 4 to 80 percent by weight of the moulding composition.
2. A method according to claim 1 in which the filler (b) is mixed with the aqueous resin (a) and solid resin component (c) is mixed in to the wet mixture of the filler and resin components (a) and (b), the resulting mixture being dried and ground.
3. A method according to claim 1 in which the aqueous resin (a) is mixed with filler, and the mixture is dried and ground, the solid resin being blended with the resulting powder.
4. A method according to claim 3 in which further filler is added with the solid resin to be mixed with the said powder.
5. A method according to any one of claims 1 to 4 in which the solid resin is compounded with filler under conditions such as to fully impregnate the filler with resin without causing substantial cure of the resin.
6. A method according to any one of claims 1 to 4 in which the filler comprises cellulose.
7. A method for the manufacture of an amino-formaldehyde moulding composition substantially as described herein in any one of the foregoing examples.
8. A moulding composition comprising curable amino-formaldehyde resin and filler, in which at least some of the curable amino-formaldehyde resin is incorporated into the composition as a solid resin having a degree of condensation which is in the range 25 to 45 percent, and a softening point in the range 50"C to 90"C.
9. A moulding composition according to claim 8 in which the curable solid resin is a product of reaction of urea, formaldehyde and a modifier selected from the group consisting of organic amides and reactive organic hydroxyl compounds.
10. A moulding composition according to claim 9 in which the modifier is a mono- or diamide of an aliphatic or aromatic carboxylic acid.
11. A moulding composition according to claim 10 in which the modifier is malonamide orformamide.
12. A moulding composition according to claim 10 in which the modifier is sulphanilamide, or para-toluene sulphonamide.
13. A moulding composition according to any one of claims 8 to 12 in which the solid resin has a molar ratio of formaldehyde to urea which is less than 2.0:1.
14. A moulding composition according to any one of claims 8 to 13 in which the amount of units derived from modifier in the solid resin is not more than 4 percent by weight of the resin.
15. A moulding composition according to claim 14 in which the amount of said units in the resin is not more than 1.75 percent by weight of the resin.
16. A moulding composition according to any one of the preceding claims which also includes a further resin, compatible with the resins a) and c) in an amount up to 20 percent by weight.
17. A moulding composition according to claim 16 in which the further resin is a solid melamine formaldehyde resin having a softening point in the range 70 to 120"C.
18. A moulding composition according to claim 16 in which the further resin isa polyester alkyd resin.
19. A moulding composition substantially as described herein in any one of the foregoing examples.
GB08510544A 1984-05-03 1985-04-25 Amino-formaldehyde resin moulding composition Expired GB2158082B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB08510544A GB2158082B (en) 1984-05-03 1985-04-25 Amino-formaldehyde resin moulding composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB848411432A GB8411432D0 (en) 1984-05-03 1984-05-03 Moulding materials
GB08510544A GB2158082B (en) 1984-05-03 1985-04-25 Amino-formaldehyde resin moulding composition

Publications (3)

Publication Number Publication Date
GB8510544D0 GB8510544D0 (en) 1985-05-30
GB2158082A true GB2158082A (en) 1985-11-06
GB2158082B GB2158082B (en) 1987-08-19

Family

ID=26287698

Family Applications (1)

Application Number Title Priority Date Filing Date
GB08510544A Expired GB2158082B (en) 1984-05-03 1985-04-25 Amino-formaldehyde resin moulding composition

Country Status (1)

Country Link
GB (1) GB2158082B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB987655A (en) * 1962-08-01 1965-03-31 Joel Ostrowicz Aminoplast molding compounds and the production thereof
GB1390370A (en) * 1971-08-05 1975-04-09 British Industrial Plastics Process for manufacturing aminoplast precondensates
GB1406383A (en) * 1972-08-18 1975-09-17 Dynamit Nobel Ag Moulding compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB987655A (en) * 1962-08-01 1965-03-31 Joel Ostrowicz Aminoplast molding compounds and the production thereof
GB1390370A (en) * 1971-08-05 1975-04-09 British Industrial Plastics Process for manufacturing aminoplast precondensates
GB1406383A (en) * 1972-08-18 1975-09-17 Dynamit Nobel Ag Moulding compositions

Also Published As

Publication number Publication date
GB8510544D0 (en) 1985-05-30
GB2158082B (en) 1987-08-19

Similar Documents

Publication Publication Date Title
CA2554036A1 (en) Flame-resistant amino resin system
US6399719B1 (en) Cyclic urea-formaldehyde prepolymer-modified melamine-containing resins, and use in binders for cellulosic-based composites
US5254639A (en) Binding agents
CA1315446C (en) Method for the production of amino resin
KR100553628B1 (en) Continuous Method for Producing Amino- and/or Phenoplasts
EP1122268B1 (en) Polymer composition for curing novolac resins
CA1317062C (en) Amino resin and methods for its production
US2826559A (en) Cured resinous compositions of phenol, melamine, and formaldehyde and process of preparing same
US3637548A (en) Melamine molding composition
US4623691A (en) Moulding materials
EP0343433B1 (en) Phenolic moulding compositions
GB2158082A (en) Amino-formaldehyde resin moulding composition
US4925887A (en) Latent hardeners for melamine resin moulding compositions
US3629176A (en) Non-resinous compositions containing a urea-formaldehyde reaction product and melamine
CA2000472A1 (en) Composite particles, method for preparing the same and amino resin composition containing the particles
US3884867A (en) Self-extinguishing polyoxymethylene molding compositions reinforced with glass fibers
US2480514A (en) Preparation of infusible resins
US3996190A (en) Formaldehyde fume abatement in the production of urea/formaldehyde molding resins
US2665260A (en) Preparation of infusible resins of superior toughness and flexibility from a ketodiguanamine and formaldehyde
US2773848A (en) Resinous compositions
US4451620A (en) Diethanolamine salt of sulphamic acid as a curing accelerator for aminoplast resins
KR100201223B1 (en) Far-infrared radiating thermosetting resin compositions
US2668155A (en) Urea-formaldehyde primary alkylene diamine condensation products
US3425970A (en) Soft flowing aminoplast molding compositions
US3457211A (en) Formaldehyde polymers plasticized with vinyl ester polymers

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19960425